Building Applications for Ubiquitous Computing
Environments *

Christopher K. Hess, Manuel Roman, and Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract. Ubiquitous computing embodies a fundamental change from
traditional desktop computing. The computational environment is aug-
mented with heterogeneous devices, choice of input and output devices,
mobile users, and contextual information. The design of systems and
applications needs to accommodate this new operating environment. In
this paper, we present our vision of future computing environments we
term User Virtual Spaces, the challenges facing developers, and how they
motivate the need for new application design. We present our approach
for developing applications that are portable across ubiquitous comput-
ing environments and describe how we use contextual information to
store and organize application data and user preferences. We present an
application we have implemented that illustrates the advantages of our
techniques in this new computing environment.

1 Introduction

Ubiquitous computing challenges the conventional notion of a user logged into a
personal computing device, whether it is a desktop, a laptop, or a digital assis-
tant. When the physical environment of a user contains hundreds of networked
computer devices each of which may be used to support one or more user appli-
cations, the notion of personal computing becomes inadequate. Further, when a
group of users share such a physical environment, new forms of sharing, cooper-
ation and collaboration are possible and mobile users may constantly change the
computers with which they interact. We believe this requires a new abstraction
for computing which we term a User Virtual Space. The User Virtual Space is
composed of data, tasks and devices associated to users, it is permanently active
and independent of specific devices, moves with the users, and proactively maps
data and tasks into the users’ ubiquitous computing environment according to
current context.

User Virtual Spaces pose several challenges regarding data availability, ap-
plication mobility and adaptability, context management, and resource coordi-
nation. As a result, applications must provide functionality to be partitioned

* This research is supported by a grant from the National Science Foundation, NSF
0086094, NSF 98-70736, and NSF 99-72884 CISE.

among different devices, move from device to device, and adapt as demanded by
users and their environment. We believe that this environment requires support
from an external software middleware infrastructure that provides a standard set
of mechanisms and interfaces to coordinate the contained resources. We use the
term active space to refer to any ubiquitous computing environment orchestrated
by such a middleware infrastructure.

In this paper, we discuss our proposed solution for constructing user-centric,
space-aware, multi-device applications, which meet the requirements imposed by
User Virtual Spaces and describe an example application that we have imple-
mented in our prototype active space. The remainder of the paper continues as
follows: Section 2 discusses the motivation for our application framework. Sec-
tion 3 details the framework and Section 4 discusses how data is managed in
our environment. Section 5 gives an overview of our development platform and
Section 6 describes an application developed with our framework, which includes
how the application is created, instantiated, and used. Sections 7 and 8 discuss
related work and conclusions, respectively.

2 Motivation

Aspects unique to User Virtual Spaces motivate the need for a different approach
to application construction. Below we discuss some of the inherent difficulties in
the environment that affect applications. In later sections, we present our model
for building applications that accommodates these challenges.

Context. A distinguishing feature of ubiquitous computing is context-driven
application adaptation. Context can trigger changes in applications to adapt to
the surroundings of a user in order to facilitate the use of the computational
environment [10,2]. User Virtual Spaces maintain a collection of data for each
user that may be remotely distributed and constitutes user’s application data,
configurations, and preferences. For any given task, only a portion of this per-
sonal data may be required; context can be used to organize data such that the
information pertinent to the current context is easily accessible. Limiting the
amount of data is even more important when a space is populated by a number
of users that have come together to perform a specific task, where each user may
contribute some amount of information to the shared space, and the amount of
aggregate information can become large. By pruning irrelevant material not nec-
essary for the current task, locating information may be simplified. In addition,
continually running applications may not have the luxury of human interven-
tion to manually search for data. If relevant information, which may change over
time, is known to exist in a particular location, the application is relieved from
performing costly searches over the entire collection of data.

Binding. Ubiquitous environments are often task-driven, which often precludes
applications from being permanently associated to a single device, or to a col-
lection of well-defined devices. Applications must be constructed so they can be

partitioned and mapped into the most appropriate resources according to phys-
ical context, personal configurations, and other attributes, thereby transferring
the application binding from particular devices to users and spaces. Consider
a music jukebox application, in which the application automatically finds and
uses the most appropriate resources to continue playing and controlling the mu-
sic as context changes (e.g., as the user moves from office to car) The emphasis
is on the application itself, instead of the devices used to execute and control
the application.

Mobility. Mobility affects the application architecture by requiring the ability
to migrate parts of their functional components at runtime. User mobility also
has implications on data availability; users should not be burdened with man-
ually transferring files or data, be it configurations, preferences, or application
data. Personal data should be available to them regardless of their physical lo-
cation. Data becomes implicitly linked to a user and can follow them around,
becoming available whenever they enter a new active space.

Adaptability. Application developers should not be concerned with the com-
plexities of data format conversions; they should gain access to data in a par-
ticular format by simply opening the data source as the specific desired type
and the system should be responsible for automatically adapting content to the
desired format.

User preferences or influences from the environment may also affect the inter-
nal structure of an application. Applications must expose a means to configure
this structure in order modify the way in which a user interacts with an ap-
plication or the way in which the application data is presented. For example,
control of an application running in an active space may be passed between
group members who have different devices, new controllers may be attached to
enable parallel manipulation of the application, or a user may switch to a new
type of controller, such as from pen-based to voice-activated.

3 Application Framework

Ubiquitous environments require a user-centric multi-device application model
where applications are partitioned across a group of coordinated devices, receive
input events from different devices, and present their state using different types
of devices. Applications must be designed such that their composition may be
changed based on the context of the current situation. Therefore, the structure
of an application must be described by a generic set of components that can
be customized based on the available resources or preferences. This gives users
more flexibility in deciding how to interact with applications by allowing them
to choose among a number of input, output, and processing devices.

To address the challenges inherent in developing applications for ubiquitous
computing environments, we have developed an application framework that as-

sists in the creation of generic loosely coupled distributed component-based ap-
plications. The framework reuses the application partitioning concepts described
by the traditional Model-View-Controller and introduces new functionality to
export and manipulate the bindings of the application components. Exposing
information about component bindings allows reasoning about the composition
of the application components, and enables modification of this composition
according to different properties, such as context and user preferences.

Our application framework defines three basic components that constitute
the building blocks for all applications: the Model, Presentation (a generalization
of the View), and Controller, where the Model implements the application logic,
the Presentation exports the model’s state, the Controller maps input events
(e.g., input sensors and context changes) into messages sent to the model. To
coordinate these components, the application framework introduces a fourth el-
ement, called the Coordinator, which is responsible for storing the application
component bindings, as well as exporting mechanisms to access and alter these
bindings, such as (dis)connecting a controller or presentation, and listing cur-
rent presentations. The Model, Presentation, and Controller are strictly related
to application functionality, while the Coordinator implements the meta-level
functionality of the application. The application framework (MPCC) defines
methods for performing common tasks, such as application mobility.

e :
! !l Input Sensor ! !

Application Application
Base—Level ! Meta-Level

Fig. 1. The Model-Presentation-Controller-Coordinator application framework decou-
ples application components and exposes the internal structure of the application

Applications are constructed independent of a particular active space by us-
ing generic application descriptions that can be customized for the resources
available in a specific space. For example, a calendar application running in an
active office may use a plasma display to present the appointments for the week,
a handheld to display the appointments for the day, and may use a controller
running in the desktop PC to enter data. However, the same calendar running
in a vehicle may use the sound system to broadcast information about the next
appointment, and use a controller based on speech recognition to query the cal-
endar or to enter and delete data. The framework defines two types of application

description files: the application generic description (AGD), and the application
customized description (ACD). The AGD is independent of the space in which
the application runs and contains information regarding the required compo-
nents that compose the application, such as the name and type of components
and the number of instances allowed. The AGD acts as a template from which
concrete application configurations can be generated. The ACD is an application
description that customizes an AGD to the resources of a specific active space.
The ACD consists of information about what components to use, how many
instances to create, and where to instantiate the components. The application
framework offers tools that allow users to create and store ACDs. The resulting
ACD is a script that coordinates the application instantiation process.

4 Application Data

Generated ACDs are typically associated with the context for which they are
created. Therefore, we store application configurations in the context of the ac-
tive space, particular to the owner of the configurations. We have developed a
data management system that is context aware and plays the role of a file system
in a traditional environment. It allows application data to be organized based
on context to limit the scope of a user’s full collection of data to what is im-
portant for the current task and provides dynamic data types to accommodate
device characteristics and user preferences. The system uses context to alleviate
many of the tasks that are traditionally performed manually or require addi-
tional programming effort. More specifically, context is used to 1) automatically
make personal storage available to applications, conditioned on user presence,
2) organize data to simplify the location of data important for applications and
users, and 3) retrieve data in a format appropriate to user preferences or device
characteristics.

The file system is composed of distributed file servers and mount servers.
Each file server manages data on the machine on which it is executing. An
active space maintains a single mount server, which stores the current storage
layout (i.e., namespace) of the space. The mount server contains mappings to
data relevant to the active space, as well as the personal data of users. The
user mappings are dynamic, changing as users move between spaces; when a
user enters an active space, their personal data is dynamically added, making it
locally available.

There are occasions when data is generated in a different context from which
it will be used. In such cases, the context in which the data is important must be
explicitly attached to the data to make it available in the specified context. Our
system uses standard file system primitives (i.e., rename, remove, copy, mkdir)
to attach and detach context to files and directories.

The system constructs a virtual directory hierarchy based on what types of
context are available and what context values are associated with particular files
or directories. What data items are available depends on the current context of
the active space, which may change over time as users move, situations change,

Active Space 1 Active Space 2

" IR Beacon
s ,
N . R

merge/extract i L”””””””j
mounts » | !

,,,

Active Space 3

Fig. 2. The file system architecture consists of distributed file servers (FS) and mount
servers (MS). A mobile handheld may be used to carry the mount points of a user,
which can be merged into an active space to make remote personal storage available
to the space

or new tasks are initiated. The layout of the directory hierarchy is implemented
using the mounting mechanism, where mount points are owned by users and
contain context indicators. Mount points may be automatically retrieved from
a home server or can be carried with a user via a mobile handheld device and
injected into the current environment to make personal storage available to ap-
plications and other users, as shown in Figure 2. In our current implementation,
we employ the latter approach. A special directory called “current” aggregates
data that is important to the current context. This supports the concept of the
User Virtual Space by automatically configuring an active space to the needs of
the user and the tasks being performed. Even though a user’s data may be dis-
persed among several remote machines, that data is presented as a single source
with only pertinent information visible.

We have implemented a shell and graphical directory browser, shown in Fig-
ure 3, that can be used to view the virtual directory structure, can be used to
associate context with files and directories, and can launch applications.

5 Infrastructure

We have developed a middleware infrastructure, called Gaia [9], that exports and
coordinates the resources contained in a physical space and provides a generic
computational environment. Gaia converts physical spaces and the ubiquitous
computing devices they contain into a programmable computing system. Gaia
is similar to traditional operating systems by managing the tasks common to
all applications built for physical spaces. Each space is self contained, but may
interact with other spaces. Gaia provides core services, including events, entity

. Gaia Data Explorer {context) /location: /2401 fsituation: /meeting B e |E| ﬂ
Ele Edit Context Yew Hep

20 B0 miayq/fxs -]

Narme I Size | Type | Modified | Source |
group: 0 Directory “na> <vir gl

_lspace: 0 Directory <nas =virtual=

Itime: 0 Directory <nax =<irfual>

[Gaia.ppt 1046016 Fle Thu Dec 06 13:17:00 2001 fusersickhess/presentations

[GalaPics,ppt: 91135 Fie Mon Dec 17 16:43:54 2001 Jusersfckhess/fpresentations

B Proposal.doc 91136 File Mon Apr 24 14:44:36 2000 Jusersfckhessidocuments

1 ToDo.txt 361313 Fie ThuiJan 20 17:34:24 2000 Jusersfckhess/mise
Ready | 7

Fig. 3. Screenshot of the context file system browser. The virtual hierarchy is used to
attach context to files and directories

presence (devices, users, and services), context notification, discovery, and nam-
ing. By specifying well-defined interfaces to services, applications may be built
in a generic way that are able to run in arbitrary active spaces. The core services
are started through a bootstrap protocol that starts the Gaia infrastructure.

6 Presentation Manager

In this section, we present the Gaia Presentation Manager (GPM), an application
based on the application framework that provides functionality for creating and
presenting synchronized slide shows. These slide shows exploit multiple input and
output devices contained in a ubiquitous computing environment, can present
multiple (possibly different) slides simultaneously in multiple form factors, can
attach and detach controllers, and can migrate slides views to different displays.

The functionality to edit synchronized slide shows allows users to define the
number of steps for the presentation, select multiple slides from existing Power
Point files, and specify synchronization rules. These synchronization rules define
which slides to present in every step, and what display to use for every slide.
The functionality to present the synchronized slide shows allows users to navi-
gate through the different steps of the presentation. As an MPCC application,
the GPM also exports functionality to move and duplicate controllers and pre-
sentations, adapt to different active spaces, and partition the application among
multiple devices. Figure 4 shows the application running in our prototype ac-
tive space. We have implemented and currently use the GPM to present slide
shows in our experimental active space, which implements the full functionality
described in this section.

Fig. 4. Example of an active meeting room in which the presentation manager is de-
ployed

6.1 Application Design and Implementation

The GPM is composed of five components: Model, Presentation, Controller,
Editor, and Coordinator, as shown in Figure 5. The GPM implements the first
four components and reuses the default Coordinator provided by the application
framework; the GPM does not require any special behavior from the Coordina-
tor.

The GPM model uses an acyclic directed graph to model the synchronized
slide show presentation. Nodes in the graph store information about the slides to
present and the displays to use, while arcs define the transition order. The GPM
model defines an abstraction called a wvirtual display that decouples the slide
show views from specific environmental resources. While editing, users assign the
slides to the virtual displays, which will be mapped to real displays contained in
the ubiquitous computing environment. When the state of the model is changed
by a controller, the model sends a notify event to all presentations. Presentations
affected by the model’s state change contact the model to retrieve the new
changes and update their presented information. The GPM Model leverages
the event functionality implemented by the Gaia middleware infrastructure to
notify the GPM presentations.

The GPM presentation provides functionality to display the contents of a
slide. When instantiating a GPM presentation, the application assigns it an id
that corresponds to one of the virtual display ids used by the GPM model. During
the presentation of a synchronized slide show, the GPM model sends update
events including a virtual display id and information specific to the update.
GPM presentations compare the received virtual display id with their assigned
id to decide whether or not to they need to update their assigned slide.

Plasma Display 1 Plasma Display 2
Presentation Presentation
Video Wall Outline Figures Touch Screen
N 7
" Notify Notify .~ Change __| Controller
Presentation |- - ﬁgc"'/é .
Notify -1 T
Main Sl
" Notify Nolify . Change E
- : Controller
Presentation Presentation
Current Section Details Coordinator
Plasma Display 3 PlasmaDisplay4 .. 4 .

| GPMPresentation (Main) |
| GPMPresentation (Outling) |
GPM Presentation(Figures)
' GPMPresentation(Details)
GPMPresentation(Current)
1 GPMController |
GPMModel |

Fig. 5. Schematic of the GPM application architecture

The GPM controller is used during the presentation of the synchronized slide
show and provides functionality to start and stop the presentation, and move to
the next and previous step.

The GPM editor is a design-time tool used to edit the synchronized slide
show presentation. It provides functionality to create and delete steps, create
and delete virtual displays, select existing Power Point presentations, assign
slides to virtual displays, and save the synchronized slide show presentation.

Table 1 presents the AGD defined for the GPM. The model, for example, is
implemented by a component named CORBA/GPMModel, requires the name
of a previously created synchronized slide show as an input parameter, has a
cardinality of one (a GPM application has exactly one model), and requires an
ExecutionNode device (device with functionality to execute components) run-
ning on Windows 2000.

6.2 Using the Application

This section describes the different mechanisms involved in using the GPM ap-
plication in a real environment: a meeting room equipped with a variety of
resources including four 61” plasma displays, 6 touch screens, two Sound Web
audio systems, badge detectors, and IR beacons. Mobile devices communicate
with the applications and services in the active space via 802.11 wireless. We
describe the usage of this application for a group presentation in the active
meeting room, consisting of the following actions: creating an ACD for the ac-
tive meeting room, entering the meeting room, registering a handheld device,

Table 1. Examples of a presentation manager AGD (left) and ACD (right)

Model { Application = {
ClassName CORBA/GPMModel Model = { {
Params —-f <fileName> ClassName ="CORBA/GPMModel",
Cardinality 1 1 Hosts = {{ "amri.as.edu" },}
Requirements device=ExecutionNode } 3,
and 0S=Windows2000 Presentation = {
} ClassName ="CORBA/GPMPresentation",
Presentation { Hosts = { { "plasmal.as.edu","-i Outline" },
ClassName CORBA/PPTPresentation { "plasma2.as.edu","-i Current" },
Params -i<VirtualDisplayID> { "projector.as.edu","-i Main" },
Cardinality 1 * { "plasma3.as.edu","-i Figures" },
Requirements device=Display { "plasma4.as.edu","-i Details" }
and 0S=Windows2000 }
} 3}
Controller { Controller = { {
ClassName Exec/VCRController Classname ="Exec/GPMNavigationController",
Cardinality 1 * Hosts = {{ "touchscreenl.as.edu"},}
Requirements device=Touchscreen 13,
and 0S=Windows2000 Coordinator = { {
} ClassName ="CORBA/Coordinator",
Coordinator { Hosts = {{ "amr2.as.edu","" },}
ClassName CORBA/Coordinator } 3,
Cardinality 1 1 }
Requirements device=ExecutionNode
and 0S=Windows2000
}

mounting personal data storage, starting the application, and interacting with
the application.

Creating an ACD for the Active Meeting Room. The application frame-
work provides a tool to generate ACDs from an AGD based on the resources
available in an active space, as shown in Figure 6. This tool parses the GPM
AGD and presents a list of devices contained in the active meeting room compat-
ible with the requirements specified by each application component. When the
specialization is finished, the specialization tool generates an ACD customized
for the active meeting room where the presentation will be held.

ACDs are space dependent and user specific. Different users may have differ-
ent configuration preferences for the same application and the same active space.
The specialization mechanism stores the resulting ACD in the users’ personal
storage and attaches information specific to the context for which the AGD was
customized. The customized application description presented in Table 1 is the
result of customizing the AGD to the active meeting room.

Entering the Active Meeting Room. The active meeting room is equipped
with active badge detectors, iButtons, and infrared beacons to detect people en-
tering the room. The speaker walks in the room with a handheld device (equipped

£ appProfileEditor =lelx]

|Profi\a Wame: |D efaultPresentationLayout Save | Exit | ‘

~Application Template ————— [Compatble Devices ————————————————— - Assigned Devices

CORBA/Conrdnator Eoal —
CORBA/GPMModel Plasmaz Plasmaz
CORBA/GPMPresantation Plasma3 Plasma3
Exec/GPMContraller Plasmad Plasmad
Exec/GPME ditor Praiector] Frojector]

Add
powerpoint. gad Laad m‘
Remove Template Component
Add Template Comparent

- Automatic Generation
[T Maximized [Auto Expandable
I” Minimized

Component Info
e Minimum Cardinality: |1

M aximum Cardinality: |*

Tepe: [FRESENTATION

Fig. 6. The specialization tool is used to customize an AGD to the resources available
in an active space

with an infrared port) and points it at the infrared beacon. The handheld device
receives a reference to the active meeting room that allows the speaker to access
available services via the handheld’s wireless interface. The handheld uses this
reference to register itself with the the active space, thereby becoming a resource
of the active meeting room. The speaker then uses the handheld to merge the
personal data mount points into the mount server of the room. Based on the
current context, the synchronized presentation and the ACD files are visible in
the “current” directory.

Starting the Application. Using the graphical directory browser, the speaker
finds the file for the presentation in the “current” context directory. The context
file system browser allows mapping file extensions to applications. Although this
is a common practice in almost every traditional file browser (e.g., Windows
Explorer, and KDE File Manager), ubiquitous computing environments require
additional functionality for the mapping mechanism. Specifying a single default
application for every file extension is not sufficient because an active space al-
lows multiple layouts for the same application. Furthermore, different users may
have different preferred configurations. The file browser solves this problem by
selecting the ACDs in the speaker’s “current” directory and allowing the speaker
to choose one of these ACDs. This mechanism presents the speaker with ACDs
associated to the file extension and relevant to the current context. Once the ap-
plication is started, the four plasma displays and the projector have an instance
of a GPM presentation and the GPM controller is displayed on the touch screen.

The GPM controller is a GUI with four push buttons and is used to start, stop,
and navigate through the slides.

Interacting with the Application. The speaker starts the presentation us-
ing the controller, which triggers the four plasma displays and the projector to
display the first slide of the presentation, according to the synchronization infor-
mation stored in the model. The flexibility of the application framework allows
the speaker to move or duplicate both controllers and presentations to any dis-
play in the room, including handhelds owned by attendees. For example, if the
speaker wishes to start a video that requires an occupied display, the slide ren-
dered on the display can be moved to an auxiliary display. Since both the video
and presentation applications have the same control interface, the controller may
be reused by simply attaching it to the video application.

7 Related Work

Our work is related to work involving ubiquitous computing, application con-
struction, and data management. The Easy Living project at Microsoft [6] fo-
cuses on home and work environments and includes an infrastructure that allows
user interfaces to move, according to user location. We differ in that we change
the way in which applications are built by partitioning them across devices. Our
work is similar to the Interactive Workspaces [4] from Stanford in that we believe
there is a need for a supporting infrastructure or operating system in workspaces.
However, we consider the concept of the virtual space in which applications and
data are associated to the user and can move with them. The Aura architec-
ture [12] allows tasks to be bound to users, similar to our virtual space concept.
We are also considering application partitioning and dynamic composition. The
Virtual Home Environment (VHE) model [3] proposes an architecture where
mobile users may access their environment (e.g., services) from different loca-
tions and devices. The model considers device and network heterogeneity with
the goal of presenting a consistent look and feel to services. Our model is more
related to an operating system, by treating a space as a programmable entity to
assist in the development of interactive ubiquitous applications.

PIMA [1] and I-Crafter [8] propose models for building platform independent
applications. Developers define an abstract application that is automatically cus-
tomized at run-time to particular devices. PIMA and I-Crafter generate appli-
cations for a single device, while we consider applications partitioned across de-
vices. The Pebbles [7] project is investigating partitioning user interfaces among
a collection of devices. While Pebbles is mostly concerned with issues related to
GUISs, our application model focuses on the application structure (logic, control,
presentation, and meta-level management), application life-cycle, and applica-
tion adaptability and configurability.

Early work in integrating context with file access was investigated as part of
the ParcTab project [11]. The tab allowed access to files that were meaningful to a
particular location. As users moved between office spaces, the file browser would

change to display relevant data. While they only considered location in their file
system, this seminal work was important in establishing the relevance of context
in data access and application adaptation. Research in tangible interfaces has
proposed tying digital information to physical objects, which can trigger some
action (e.g., file transfer) when they are discovered by a new environment [5]. We
expand on this idea by treating the user as the physical object that triggers the
addition of information into a space. The FUSE research group has developed
applications for teamwork support based on active documents [13]. Our work
differs in that we allow arbitrary context to be attached to data and we consider
user configurations and preferences as part of the user’s context data.

8 Conclusions and Future Work

This paper has presented our framework for building applications in future com-
puting environments in which a user’s environment is implicitly linked to them
and is available as they move between physical spaces. Such an environment di-
verges from the traditional desktop environment due to factors such as context,
mobility, and device heterogeneity. Our framework deals with both the structure
of the application and the management of the data, which includes application
data, configurations, and user preferences. Application logic is separated from
presentation and control and the framework introduces a meta-level component
that is used to expose the internal structure of the application so that it may be
manipulated. Our framework is built on top of a ubiquitous computing middle-
ware infrastructure we have developed that has allowed us to experiment with
several applications. Applications built using the framework are described in
generic terms and may be customized for the resources that are available in a
particular space. As a user moves between spaces, the application can (un)bind
new hardware resources and interfaces when they become (un)available. We be-
lieve that future applications will have increased flexibility in terms of choice of
devices, partitioning, and migration to accommodate the requirements of User
Virtual Spaces. This degree of suppleness is amenable to applications being con-
structed with a component-based approach, where portions of the application
may be swapped, removed, or added.

Our future work will involve increasing the ease with which our applications
may be used and configured. We have built several applications that have fit
well into the framework. However, we will be constructing more applications
to validate our approach to building a wide range of ubiquitous applications.
Gaining more experience with building and instantiating ubiquitous applications
will help us to refine the framework and the management of application data.
Our current implementation does not include access control or authentication.
We are currently developing a security architecture to control access to devices,
applications, and data.

9

Acknowledgments

We would like to thank Herbert Ho for his work on the implementation of the
GPM. We would also like to the thank the anonymous reviewers for providing
valuable comments.

References

10.

11.

12.

13.

. Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Munson, Jeremy B.

Sussman, and Deborra Zukowski. Challenges: an application model for pervasive
computing. In Mobile Computing and Networking, pages 266—274, 2000.

. Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A Context-based Infrastruc-

ture for Smart Environments. In Proceedings of the 1st International Workshop on
Managing Interactions in Smart Environments (MANSE ’99), pages pp. 114-128,
1999.

. EURESCOM. Realizing the Virtual Home Environment (VHE) concept in ALL-IP

UMTS networks. http://wuw.eurescom.de.

. Armando Fox, Brad Johanson, Pat Hanrahan, and Terry Winograd. Integrating

Information Appliances into an Interactive Workspace. IEEE Computer Graphics
and Applications, 20(3), May/June 2000.

. Hiroshi Ishii and Brygg Ullmer. Tangible Bits: Towards Seamless Interfaces be-

tween People, Bits and Atoms. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI’97), pages 234-241, Atlanta, GA, March 22-27
1997.

. Microsoft Corp. Easyliving. http://www.research.microsoft.com/easyliving.
. B. A. Myers. Using Hand-Held Devices and PCs Together. In Communications of

the ACM, volume 44, pages 3441, 2001.

. S. R. Ponekanti, B. Lee, A. Fox, P. Hanrahan, , and T. Winograd. ICrafter:

A Service Framework for Ubiquitous Computing Environments. In Ubiquitous
Computing, Third International Conference (Ubicomp 2001), Atlanta, GA, 2001.
Springer.

. Manuel Roman, Christopher K. Hess, Renato Cerqueira, Klara Narhstedt, and

Roy H. Campbell. Gaia: A Middleware Infrastructure to Enable Active Spaces.
Technical Report UTUCDCS-R-2002-2265 UILU-ENG-2002-1709, University of Illi-
nois at Urbana-Champaign, February 2002.

Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit: Aid-
ing the Development of Context-Enabled Applications. In Proceeding of CHI’99,
Pittsburgh, PA, May 15-20 1999. ACM Press.

Bill N. Schilit, Norman Adams, and Roy Want. Context-Aware Computing Ap-
plications. In IEEE Workshop on Mobile Computing Systems and Applications,
Santa Cruz, CA, 1994.

Joao Pedro Sousa and David Garlan. Aura: an Architectural Framework for User
Mobility in Ubiquitous Computing Environments. In Working IEEE/IFIP Con-
ference on Software Architecture, Montreal, August 25-31 2002.

Patrik Werle, Fredrik Kilander, Martin Jonsson, Perter Lonnqvist, and Carl Gustaf
Jansson. A Ubiquitous Service Environment with Active Documents for Team-
work Support. In Ubiquitous Computing, Third International Conference (Ubicomp
2001), pages 139-155, Atlanta, GA, September 30-October 2 2001. Springer.

