
System Services for Ad-Hoc Routing: Architecture, Implementation and
Experiences

Vikas Kawadia
�

ECE Dept and CSL, UIUC
kawadia@uiuc.edu

Yongguang Zhang
HRL Laboratories, LLC

ygz@hrl.com

Binita Gupta
Qualcomm Inc.

bgupta@qualcomm.com

Abstract

This work explores several system issues regarding
the design and implementation of routing protocols for
ad-hoc wireless networks. We examine the routing ar-
chitecture in current operating systems and find it in-
sufficient on several counts, especially for supporting
on-demand or reactive routing protocols. Examples in-
clude lack of mechanisms for queuing outstanding pack-
ets awaiting route discovery and mechanisms for com-
municating route usage information from kernel to user-
space. We propose an architecture and a generic API for
any operating system to augment the current routing ar-
chitecture. Implementing the API may normally require
kernel modifications, but we provide an implementation
for Linux using only the standard Linux 2.4 kernel facil-
ities. The API is provided as a shared user-space library
called the Ad-hoc Support Library (ASL), which uses a
small loadable kernel module. To prove the viability of
our framework, we provide a full-fledged implementa-
tion of the AODV protocol using ASL, and a design for
the DSR protocol. Through this study, we also reinforce
our belief that it is profoundly important to consider sys-
tem issues in ad-hoc routing protocol design.

1 Introduction

Routing datagrams in a mobile ad-hoc network
(MANET) is a difficult problem. Existing protocols
to solve this problem include, but are not limited to
AODV [25], DSR [20], DSDV [26] and TORA [24].
However most of the existing studies of these protocols
are simulation based, with few real implementations.
Validating MANET algorithms in real systems is neces-
sary for their proliferation in the real world. But the so-
phisticated system-level programming so often required
in the implementation of an ad-hoc routing protocol dis-
courages MANET researchers from pursuing the much

�

Part of this work was performed at HRL Laboratores, LLC when
the author was a summer intern.

needed experimental studies.

We believe the core reason for having such difficul-
ties in implementation is the lack of system support
and programming abstractions in general purpose op-
erating systems (such as Unix/Linux). As we will ex-
plain later in this paper, ad-hoc routing protocols of-
ten employ new routing models or have special require-
ments that are not directly supported by the current op-
erating systems. Without proper systems support and
convenient programming abstractions, implementors are
forced to do low-level system programming, and often
end up making unplanned changes to the system inter-
nals in order to gain the additional functionality required
for ad-hoc routing. Not only is this a non-trivial task,
but in practice it can also lead to unstable systems, in-
compatible changes (by different implementations), and
undeployable solutions.

To address these issues, we develop the system sup-
port and programming abstractions needed to facilitate
MANET protocol implementations and deployment. Our
solution provides a set of system services that provide
the necessary system support to meet the requirements
of most ad-hoc routing protocols. The new program-
ming abstractions also allow easy programming of ad-
hoc routing protocols without the need for low-level sys-
tem programming.

In this paper, we explore the difficulties encountered
in implementing MANET routing protocols in real oper-
ating systems, and study the common requirements im-
posed by MANET routing on the underlying operating
system services. Then, we propose a general modifi-
cation of the current IP routing architecture, and a spe-
cific implementation of this architecture in Linux. Fi-
nally, we present our experiences in implementing sev-
eral MANET routing protocols under this framework.

2 Challenges in Mobile Ad-Hoc Routing

2.1 Current Routing Architecture

The current Internetworking architecture segregates
the routing functionality into two parts: packet forward-
ing and packet routing (see Section 4.2 of Peterson &
Davie’s “Computer Networks” [28] for a good discus-
sion on this topic). Packet forwarding refers to the pro-
cess of taking a packet, consulting a table (the forwarding
table), and sending the packet towards its destination as
determined by that table. Packet routing, on the other
hand, refers to the process of building the forwarding
table. Forwarding is a well-defined process performed
locally at each node, whereas routing involves a com-
plex distributed decision making process commonly re-
ferred to as the routing algorithm or the routing protocol.
The forwarding table contains enough information to ac-
complish the forwarding function, whereas the routing
table contains information used by the routing algorithm
to discover and maintain routes. Strictly speaking, these
two tables are different data structures but the two terms
are often used interchangeably.

In modern operating systems, packet forwarding is
implemented inside the OS kernel whereas routing is im-
plemented in the user space as a daemon program (the
routing daemon). Figure 1 illustrates the general routing
architecture. The forwarding table is inside the kernel
and is often called the kernel routing table or route table.
Whenever the kernel receives a packet, it consults this
table, and forwards the packet to the “next-hop” neigh-
bor through the corresponding network “interface”. The
kernel routing table is populated by the routing daemon
according to the routing algorithm it implements.

There are numerous reasons for separating forwarding
and routing [28], and placing packet forwarding inside
the kernel and packet routing in user-space. Packet for-
warding must make decisions for every packet and there-
fore should be efficient. It should reside inside the kernel
so that a packet can traverse this node as fast as possi-
ble. On the other hand, packet routing involves complex
and CPU/memory intensive tasks, which are properly sit-
uated outside the kernel. This principle of separation has
made routing in modern operating systems efficient and
flexible. It allows the routing function to continue evolv-
ing and improving without changing the OS kernel.

2.2 Challenges in On-demand Routing

It is desirable to fit mobile ad-hoc routing into the
above architecture. Most ad-hoc routing protocols can
be classified into two categories: proactive and reactive
protocols. Pro-active (or table-driven) routing protocols

Packet−Routing Function

User Space

Kernel Space

interfacenext−hop

10.1.1.1

10.2.2.2

Default

eth0

eth1
packets in

eth0 eth1

packets out

Kernel Routing table

Routing daemon

destination

R
ou

tin
g

ta
bl

e
m

ai
nt

en
an

ce

Kernel API

Packet−Forwarding Function

eth1

10.20.1.1

192.168.1.1

10.3.4.5

Figure 1. Current Routing Architecture

maintain routes to all possible destinations by period-
ically exchanging control messages. Reactive (or on-
demand) protocols, on the other hand, discover routes
only when there is a demand for it. Proactive proto-
cols (such as DSDV [26]) can be easily implemented as
user-space routing daemons in the current routing archi-
tecture, in much the same way as routing protocols of
the wired world (such as RIP, OSPF, or BGP). However,
problems arise with reactive or on-demand routing pro-
tocols, such as AODV [25] and DSR [15]. We now de-
scribe these challenges in detail.

Challenge 1 Handling Outstanding Packets

Normally, each packet traversing the packet forward-
ing function will be matched against the kernel routing
table. If no entry matches its destination, the kernel will
drop the packet immediately. However, this is not a de-
sirable behavior for on-demand ad-hoc routing. In on-
demand ad-hoc routing, not all routes will exist apriori;
some must be “discovered” when needed [15]. In such
cases, the correct behavior should be: to notify the ad-
hoc routing daemon of a route request, and to withhold
the packet until the discovery finishes and route table up-
dated. Unfortunately, there is no mechanism in modern
operating systems to support this new packet forward-
ing behavior, and there is insufficient kernel support to
implement tasks like queuing of all outstanding pack-
ets. Therefore, the operating system should implement
the following functions for on-demand ad-hoc routing:

1. Identify the need for a route request.

2. Notify ad-hoc routing daemon of a route request.

3. Queue outstanding packets waiting for route discov-
ery.

4. Re-inject them after successful route discovery.

Challenge 2 Updating the Route Cache

On-demand routing protocols typically maintain a
cache of recently used routes in user space to optimize
the route discovery overhead. Each entry in this route
cache has an expiration timer, which needs to be reset
when the corresponding route is used. The entry should
be deleted (both from the user-space route cache and the
kernel routing table) when the timer for that entry ex-
pires. Therefore, when an entry in the kernel routing
table remains unused (i.e., has not been looked up) for
a predefined time period, this information should be ac-
cessible to the the user-space routing daemon. This is
difficult to achieve under the current routing architecture,
because no record of route usage in the kernel is available
to user-space programs.

Challenge 3 Intermixing Forwarding and Routing
Functions

Certain ad-hoc routing protocols do not have a clean
separation between the forwarding and routing func-
tions in their design. Many of these protocols (no-
tably DSR [15]) are based on the “on-demand behav-
ior”, where actions are taken only on reaction to data
packets [21]. Since there is no periodic activities such
as router advertisements, link/neighbor status sensing, or
even the timely expirations of unused routing table or
cache entries, routing activities must be made part of the
forwarding activities. This protocol design presents a
big implementation challenge to fit in the current rout-
ing architecture. There are two basic implementation ap-
proaches. The in-kernel approach typically requires the
bulk of their routing logic to be implemented inside the
kernel, making it difficult to program and to modify. On
the other hand, the user-space approach requires the for-
warding action to take place in user space, forcing every
packet into user space.

In some cases, the principle of separation is violated
for subtle optimizations aimed at reducing routing over-
head. Such optimizations are usually simple to imple-
ment in a simulation environment, but present significant
system design challenges. In the course of this study, we
have found such examples in protocol design. We will
present them in the later sections when we describe our
experiences in implementing them.

Challenge 4 New Routing Models

Some ad-hoc routing protocols adopt unconventional
routing models such as source routing ([15]), flow-based

forwarding ([13]), etc. These new routing models devi-
ate from the current IP routing architecture and present
new challenges in system design. For example, in source
routing the entire path that a packet should traverse is
determined by the origin of the packet and encoded in
the packet header, whereas in traditional IP routing the
forwarding decision is made hop-by-hop and driven by
the local routing tables. In flow-based forwarding each
packet carries a flow id, and each node in the network
has a flow table, which maintains the next-hop address
and other information for each flow id. The forwarding
is driven by table lookup on the flow id, and routing is
the process to establish the flow table in each node.

Most general purpose operating systems are not flexi-
ble enough to provide a blanket support for all these and
other new routing models. Implementation of these rout-
ing protocols will either modify the kernel IP stack to in-
corporate new routing architecture, or use kernel exten-
sion mechanisms (such as loadable modules) to bypass
the IP stack.

Challenge 5 Cross-Layer Interactions

The wireless channel presents a lot of opportunities
for optimizations through cross-layer interactions. For
example, some ad-hoc routing protocols use physical
and link layer parameters like signal strength, link sta-
tus sensing, and link layer supported neighbor discovery,
etc., in their routing algorithm. The problem of deal-
ing with cross-layer interactions is a more difficult prob-
lem, both at the conceptual level and the implementation
level. At the conceptual level, substantial work is needed
in laying down guidelines for systematizing cross-layer
interactions. This is necessary, since even though cross-
layer design may provide optimizations, an indiscrimi-
nate access to all lower layer parameters would seriously
damage the neat architecture which lies at the foundation
of all networking.

At the implementation level, such cross-layer interac-
tions obviously depend on the hardware capabilities and
whether the hardware allows access to that information.
It may be possible to provide access to lower layer pa-
rameters for some particular hardware, but a general so-
lution for all hardware would require some standardiza-
tion across the plethora of wireless interface cards and
drivers available.

We believe that Challenges 1 and 2 can be met
with enhanced system services in the operating systems.
However, Challenge 3 and 4 may have to be dealt with
on a case by case basis for every protocol. In this work,
we first develop a general architecture to meet the first
two challenges. And we will illustrate how we deal with
the remaining challenges through our implementations of
some ad-hoc routing protocols. Cross-layer interactions
will also be the subject of future investigations.

3 New Architecture and API

We first develop a general solution to support on-
demand routing in general purpose operating systems.
The purpose is to suggest modifications to these oper-
ating systems so that ad-hoc routing can be easily sup-
ported in the future. We propose enhancements to the
current packet-forwarding function with the following
mechanisms.

An additional flag should be added to each kernel
routing table entry to denote whether it is an on-demand
entry, defined as those entries for which the kernel is
prepared to queue packets in case of route unavailabil-
ity. An on-demand route entry is said to be deferred if it
has empty next-hop or interface fields, meaning that the
route is yet to be discovered. Instead of getting dropped
in the normal packet forwarding path, packets matching
a deferred route will be processed as described in Chal-
lenge 1. We note that it is not necessary to include ev-
ery possible on-demand destination in the routing table.
Flagging a subnet-based route or the default route as on-
demand can serve the same purpose.

A new component, called the on-demand routing
component (ODRC), should be added to complement
the kernel packet-forwarding function and implement the
desired on-demand routing functionalities. When it re-
ceives a packet for a deferred route, it first notifies the
user-space ad-hoc routing daemon of a route request for
the packet’s destination. Then, it stores the packet in a
temporary buffer and waits for the ad-hoc routing dae-
mon to return with the route discovery status. Once this
process finishes and the corresponding kernel routing ta-
ble entry is populated, the stored packets are removed
from the temporary buffer and re-injected into packet for-
warding.

To address Challenge 2, a timestamp field needs to
be added to each route entry to record the last time this
entry was used in packet forwarding. This timestamp can
be used to retire a stale route that has not been used for a
long time.

Finally, we provide a programming abstraction (API)
so that these new mechanisms can be conveniently used
in an ad-hoc routing daemon program. The API should
contain the following functions:

� int route_add(addr_t dest,

addr_t next_hop, char *dev);

int route_del(addr_t dest);

These basic routines add or delete an on-demand en-
try from kernel routing table. To add a deferred
route entry, specify next_hop to be 0. (Here,
addr_t is a generic type for the network address,
such as unsigned long for IPv4 address.)

� int open_route_request();

int read_route_request(int fd,

struct route_info *r_info);

ODRC notifies the ad-hoc routing daemon about
the route requests in the form of an asynchronous
stream. The first function returns a file descriptor
for this stream and the second function fills in infor-
mation about the route requests in the second argu-
ment, struct route_info* which is defined as
follows :

struct route_info {
addr_t dest;
addr_t src;
u_int8_t protocol;

};

This structure contains information about the packet
that triggers the route request, which can be useful
for some routing daemons. For example a different
action may be warranted if the packet was generated
locally rather than being forwarded for some other
host (which can be deduced from the src field).
Similarly, some routing protocols may need to know
if the route request is for a TCP packet or a UDP
packet.

The file descriptor semantics allows the ad-hoc rout-
ing daemon to use either event-driven or polling
strategy. The function read_route_request()

blocks until the next route request becomes avail-
able.

� int route_discovery_done(addr_t dest,

int result);

This function informs the ODRC that a route dis-
covery for the given destination has finished and the
kernel routing table populated. The result field in-
dicates whether the route discovery was successful
or not.

�

int query_route_idle_time(addr_t dest);

Given a destination, this function returns the idle
time recorded in the kernel routing table for this en-
try (elapsed time since the last use of the route).

� int close_route_request(int fd);

This function is called by the routing daemon when
it no more desires to receive any more route re-
quests. This enables the ODRC to free the memory
used up by packets already queued up and close the
fd.

Figure 2 illustrates our new architecture and its com-
ponents. The shaded parts are our proposed additions.

interfacedestination next−hop

Kernel Routing table

10.1.1.1

10.2.2.2

10.2.2.3

eth0

eth110.2.2.4

no

yes

yes

timestamp

0

0

10:20.40

on−demand

192.168.1.1

ODRC
Packet−Forwarding Function

packets in

Packet−Routing Function

Kernel API

Ad−hoc Routing daemon

eth0 eth1

packets out

Kernel Space

User Space

Figure 2. New Routing Architecture

The API we have provided takes care of Challenges 1
and 2. However, it is not yet complete as Challenges 3
and 4 have not yet been completely addressed.

Implementing this API in a Unix-like modern operat-
ing system usually requires some changes to the system
internals. The ideal way is to integrate the above mech-
anisms into the kernel IP stack. This would involve im-
plementing queuing for every deferred route and adding
a special file descriptor for route-request stream. De-
pending on the operating system’s kernel facilities and
extensibility, this architecture can also be implemented
as kernel modules, or largely in user-space.

It is debatable whether the ODRC functionality
should be implemented outside the kernel and whether
it is better to queue all deferred-routing packets in user-
space. The advantage of a user-space approach is that it
reduces the kernel complexity and memory usage. If the
routing protocol requires prolonged route discovery pro-
cedure, it will be compelling to buffer packets outside
the kernel. The disadvantage is the need to copy every
deferred-routing packet (i.e., packets awaiting route dis-
covery) from kernel to user-space and to re-inject them
back to kernel when the routes are ready, but it can be
argued that such overhead is insignificant compared with
the time and overhead in an average route discovery.

4 Implementation in Linux: Ad-hoc Sup-
port Library

Our long-term objective is to implement this solution
in common operating systems and make it standard in fu-
ture versions. However, our immediate goal is to make it
available to the current Linux 2.4 users because getting
changes accepted into a standard operating system is a
tedious process. We would like to find a way to provide

the services described in Section 3 without being intru-
sive. This strategy certainly has practical value as few
users are willing to modify their operating system ker-
nels. To do this efficiently needs a careful design, which
we describe in this section.

Linux provides several mechanisms for extending the
kernel functionalities. These include loadable modules,
where a new kernel function can be inserted into a run-
ning kernel without recompiling or rebooting, and a
packet filtering and mangling facility called Netfilter [5].
In particular, Netfilter provides a set of hooks in the ker-
nel networking stack where kernel modules can regis-
ter callback functions, and allows them to mangle each
packet traversing the corresponding hooks. We use these
two mechanisms to implement our system services and
make it our goal not to change the kernel source code.

4.1 Design and Mechanisms

We place the ODRC function in user-space to reduce
the kernel complexity and memory requirements. There
are two possible ways to implement this. One approach
is to put ODRC in a shared library and link any routing
daemon that wishes to use this ODRC function with this
library. Another approach is to put ODRC in a separate
daemon program and let it communicate with the routing
daemon using some inter-process communication mech-
anism like sockets. Both approaches have their pros and
cons. The library approach is more efficient because it
does not have the overhead of inter-process communica-
tion, but any bug in the library is likely to crash the rout-
ing daemon also. The library approach gives a more nat-
ural picture of the ODRC functionalities as system ser-
vices, i.e., the API is available as direct function calls
once the appropriate header files are included.

We thus implement ODRC as a user-space library. We
call it the Ad-hoc Support Library (ASL) or libASL. ASL
implements the API we described in Section 3. The im-
plementation consists of two main components: the first
component is completely in user-space and implements
the common functionalities which are needed by most
on-demand routing daemons; the other part is specific to
particular routing protocols and is implemented as load-
able kernel modules. For example, for the AODV pro-
tocol there is the aodv-helper kernel module which pro-
vides additional API for some subtle optimizations pre-
scribed by the AODV draft. The dsr-helper module is
more complicated to accommodate for DSR’s sophisti-
cated features. We also provide a generic helper module
called the route-check, which provides a simple solution
to the route caching problem. This architecture consist-
ing of libASL and helper modules provides ASL with
the flexibility to incorporate future routing protocols or
modifications to current ones in their respective helper

modules.

4.1.1 Handling Outstanding Packets

To solve the problem of identifying the need for a route
request, we need to filter all packets for which there ex-
ists no route. Without modifying the routing table struc-
ture, there is no simple way to do that in kernel. We solve
this with an unused local tunnel device called Universal
TUN/TAP (tun) as the “interface” device for these des-
tinations. To catch packets for all such destinations, we
can use the default route which is used for packets which
do not match any other entry in the routing table. The
default route can be setup like this :

ifconfig tun 127.0.0.2 netmask 255.255.255.255 \
broadcast 127.0.0.2 up

route add default dev tun

TUN/TAP is a virtual tunnel device that makes avail-
able all received packets to a user-space program through
the /dev/net/tun device. In our implementation, this de-
vice is opened by a call to open_route_request(),
hence it receives all packets that kernel writes to tun,
i.e., all packets for which there is no route. This also
solves the problem of passing and storing packets in user-
space.

Whenever a new packet is read from the virtual
device, /dev/net/tun, the ad-hoc routing daemon
which has opened a route request gets notified on that
fd. It can read the details of the route request through
read_route_request(), and then can initiate route
discovery for the requested destinations. These packets
are temporarily queued in a hash table keyed by the des-
tination IP address. This functionality is implemented in
the Ad-hoc Support Library. Since the buffer is in user-
space, a large buffer is available to queue packets. This
means that packets would not be lost even if the route
discovery delays are large.

The next issue is to re-inject packets back into the IP
stack after a successful route discovery. The mechanism
we use is a raw IP socket

�

. A packet sent through a raw
socket is inserted as is (bypassing any IP and header pro-
cessing) to the kernel output chain just before the packet-
forwarding function. Here, we use a raw socket to send
the queued packets out. These packets are appropriately
routed in the kernel using the newly discovered routes.

A natural question to ask is that why don’t we re-inject
the packets back into the IP stack by writing it on the
user end of the same virtual interface used earlier, i.e.,
/dev/net/tun. To the kernel it appears as if a packet has
been received on the tun virtual interface, and it can do

�

Raw sockets are normally used to handle packets that the kernel
does not support explicitly. The ping program, for example, uses raw
sockets to generate ICMP packets.

the routing as if it were a normal incoming packet. This
approach works fine for packets which a node forwards,
but unfortunately does not work for packets generated
locally by the node. Packets which are generated locally
already pass through the IP output routines, and when
re-injected through tun appear on the forwarding chain.
The forwarding chain does not allow packets in which
the source IP address matches the local IP address, since
this is an indication that the node’s IP address is being
spoofed by somebody else. Hence, we have to resort to
raw IP sockets as described above.

4.1.2 Updating the Route Cache

Now we come to Challenge 2, to refresh entries in
the user-space route cache when a route is used in the
kernel. Since we are not making changes to the ker-
nel routing table, the only way is to maintain a sepa-
rate timestamp table for each entry in the routing ta-
ble. We thus design a simple kernel module called
route_check to maintain this table and register it
at Netfilter’s POST_ROUTING hook (after routing table
lookup and before entering the physical network inter-
face). This means that every outgoing packet will pass
through this module. It simply peeks at the packet header
and updates the corresponding timestamp value. This
timestamp information is made available to user-space
programs using an entry in the /proc file system. The
query_route_idle_time() function exposed by the
ASL API reads this file (/proc/asl/route_check) to
determine the idle time for a destination. The routing
daemon can check the freshness of a route by reading this
file, and delete the stale routes from the kernel routing
table accordingly. The route check module is a generic
helper module, which is available to all the routing dae-
mons.

Actually, the current Linux kernel does maintain a
cache of most frequently used routes to make routing
lookups efficient. When a route is first used it is looked
up from the Forwarding Information Base (FIB) which is
a complex data structure maintaining all the routes. Af-
ter first use this entry is inserted in the route cache for
fast lookup. It expires from the cache if not used for
some length of time. Information about this route cache
is exposed through the files /proc/net/rt_cache

and /proc/net/rt_cache_stat. Unfortunately
these files do not include information about the
last_use_time of the entries. It is a very simple mod-
ification to the Linux kernel to make it output this in-
formation, but since we are not making any changes at
all in the core kernel source as it would require kernel re-
compilation, we have adopted the route_checkmodule
approach just described. We emphasize that a very small
change in the Linux kernel would make the route check

eth0 eth1

interfacedestination next−hop

Kernel Routing table

Packet−Forwarding Function

10.1.1.1

10.2.2.2

10.2.2.3

192.168.1.1

127.0.0.2

10.2.2.4

eth0

eth1

tun

Netfilter hook

packets in

Packet−Routing Function

Ad−hoc Routing daemon

Ad−hoc Support Library

packets out
POST_ROUTING

TUN/TAPRaw socket

ioctl()

/proc/asl/route_check

destination last use time

0:0:0

11:41:31

10:20:40

10.1.1.1

10.2.2.2

10.2.2.3

route_check module

User Space

Kernel Space

Figure 3. ASL software architecture

module unnecessary.

4.2 ASL Implementation Details

Figure 3 illustrates the structure of this implementa-
tion. The two main components are the user-space li-
brary ASL and the kernel module route_check. The
library implements the API described in Section 3. We
now describe how we implement these functions in our
library.

route_add() and route_del() functions add or
delete routes to the kernel using the ioctl() interface.
When the user indicates that the route be a deferred
route by specifying an empty next-hop, the device for
the route is made to be tun. open_route_request()
initializes the tun device, the raw socket, the data struc-
tures to queue deferred packets, and also inserts the
route_check module in the kernel. The data struc-
ture to store the packets is a hash table of queues,
keyed by the destination IP address. The function
open_route_request() returns the descriptor of the
tun device which can be monitored using a polling
or event driven strategy. read_route_request()

blocks reading from this tun device. When a packet
is received on tun, this functions stores the packet
and delivers information about the packet in the form
of struct route_info. Based on this the rout-
ing daemon initiates route discovery, and calls the
route_discovery_done() function on completion
of this process. If the route discovery was suc-
cessful then this function retrieves the packets for
that destination from the storage and sends them out
on the raw socket. If a route could not be found
then the packets are thrown away and the memory
used for them is freed. query_route_idle_time()

reads the last_use_time for that destination from

/proc/asl/route_check and returns the idle time.
This needs to be called whenever the routing daemon has
to make a decision to expire routes from its user-space
route cache. The function close_route_request()

simply shuts down all the sockets, frees all the memory
for storing the packets, and removes the route_check

module from the kernel.
Below we give the pseudo code of an example routing

daemon which uses this library.

aslfd = open_route_request()
route_add(default,0) /* add deferred route */
loop /* this could be select or poll */

wait for input from {aslfd or other fd’s}
if input from aslfd
dest = read_route_request()
if(route request is new)

do route discovery for dest
if successful

add route for dest to kernel
route_discovery_done(success)

else
route_discovery_done(failure)

end
else

continue
end

end
if input from other fd’s
process according to protocol semantics
/*call before expiring routes*/
query_route_idle_time()

end
end
close_route_request()

5 Implementing Routing Protocols: Expe-
riences using ASL

To evaluate the utility of the Ad-hoc Support Library,
we set out implementing the various routing protocols
that have been proposed. We provide a full-fledged im-
plementation of the AODV protocol. We also provide
implementation design guidelines for some other proto-
cols.

5.1 Ad-hoc On-demand Distance Vector Rout-
ing (AODV)

Our implementation of AODV is a user-space routing
daemon which uses the Ad-hoc Support Library for sys-
tem services. It follows a modular architecture in C++ to
provide a clean and extensible implementation. The cur-
rent implementation supports all the features of AODV
draft version 10 [27]. In the following sections we de-
scribe both the user-space design as well as the special
system support (in addition to standard ASL) required for
AODV, which we implemented as the aodv-helper kernel
module.

Blacklist

Timer
Queue

Pending
RREQ

Forward
RREQ

RREQ RREP RERR

Local
Repair

Route
Table

ASL

AODV
A

O
D

V
 C

om
po

ne
nt

s

eth0 eth1

interfacedestination next−hop

Kernel Routing table

10.1.1.1

10.2.2.2

10.2.2.3

192.168.1.1

127.0.0.2

10.2.2.4

eth0

eth1

tun

Netfilter hook

packets in

Ad−hoc Support Library

packets out
POST_ROUTING

TUN/TAPRaw socket

ioctl()

/proc/asl/route_check

User Space

Kernel Space

aodv−helper module

AODV Routing Daemon

destination last use time

0:0:0

10:20:40

10.1.1.1

10.2.2.2

10.2.2.3

11:41:31

1

0

1

dest flag

Figure 4. Software architecture of the
AODV-UIUC routing daemon.

5.1.1 AODV Components

This section talks about the different components of our
AODV routing daemon, their functionalities and the in-
teractions among these components to implement vari-
ous features of the AODV protocol. This is illustrated in
Figure 4. Details of this implementation, called AODV-
UIUC, are provided in [11].

The component called AODV defines the main flow
of control inside the AODV routing daemon. The control
flow is based on an event-driven design. The set of pos-
sible events include reception of routing control packets,
expiration of various timers, and reception of route re-
quests on the ASL socket. Possible actions include send-
ing out packets, setting new timers and updating vari-
ous data structures. The daemon program is essentially a
big select() loop which monitors various file descriptors
for the events and takes the appropriate actions. This
component also initializes ASL by calling the functions
int route_add() and open_route_request().

The RREQ, RREP and RERR components take care
of both generating as well as processing incoming route
requests, route replies and route error packets respec-
tively. The Routing Table component (routeTable) han-
dles updates to the aodv routing table as well as to the
kernel routing table. It also maintains a route cache us-
ing the aodv-helper module through the corresponding
API function query_route_idle_time_aodv(), as
explained in the next subsection. The Pending Route Re-
quest component (rreqPendingList) implements the ex-
panding ring search and RREQ retransmission features
of the AODV routing protocol. The Forward Route Re-
quest component ensures that a node does not process a

particular RREQ packet multiple times, by storing a list
of recently seen RREQ packets. The Local Repair com-
ponent attempts to repair links locally and the BlackList
component takes care of routing in the presence of uni-
directional links. Finally, the TimerQueue component
maintains various AODV timers including reboot timer,
periodic refresh timer, hello timer and rreq retransmis-
sion timer.

5.1.2 ASL and Aodv-helper

Using ASL makes efficient on-demand routing possible
in our AODV implementation. The generic route-check
module can be used for maintaining the user-space route
cache. However, the AODV protocol requires that when-
ever a packet is forwarded to any destination by a node
using a particular route, the node should update the life-
time values (in its route-cache) associated with the desti-
nation, the previous hop and the next hop nodes on that
route. Previous hop is defined as the next-hop along the
reverse path back to the source. Updating the previous
hop node, when a route is used was not possible using the
generic route-check module, since the information about
the previous hop is not available in the packet but only
in the routing table . We had to redesign our data struc-
tures and the query process for updating the lifetime of
the previous hop for a route. These substantially more
complicated new data structures and query process were
made part of the aodv-helper module.

Like the generic route check module, the aodv-helper
module also registers at the Netfilter’s POST ROUTING
hook and peeks at the every outgoing packet to log in
the timestamp information. But, unlike the route-check
module, the aodv-helper module also logs an additional
flag parameter called the destination flag with every entry
in the /proc file. A value of 1 for this flag signifies that the
entry correspond to the destination of the packet, and a
value of 0 implies that the entry corresponds to the source
of the packet. Thus, the aodv-helper module logs two
entries for every outgoing packet, one for the destination
and one for the source.

The query_route_idle_time() API function in-
terface has also been modified as follows :

int query_route_idle_time_aodv(addr_t k,

int destination_flag);

Given a destination k, this function returns the idle
time recorded in the kernel routing table for this entry
(elapsed time since the last use of the route). The des-
tination flag is used to differentiate between the return
value. A value of 1, for the flag implies that the query
is for the idle time since a packet was last forwarded to
this destination, whereas a value of 0 denotes a query for
the idle time since a packet was last received from this
source. The aodv daemon, uses this API as follows:

1. Whenever the routing table entry for a destina-
tion d expires, the AODV routing daemon queries
the aodv-helper module for the idle time for
that destination with the following API func-
tion call (note the destination flag passed is 1):
query_route_idle_time_aodv(d,1).

2. If the destination d is just one hop away, then
the routing daemon goes through the entire rout-
ing table looking for the nodes for which this
destination acts as the next hop. It then queries
aodv-helper module for the idle time correspond-
ing to each of these nodes (with the destination
flag set to both 1 and 0) and chooses the mini-
mum idle time of all such idle times. The idle time
for previous hops can be determined by a call to
query_route_idle_time() API function with
the destination flag set to 0, when the timer for such
an entry expires. This ensures compliance with all
the features of the draft.

5.1.3 Experiences

We found that it was pretty straightforward to implement
AODV as a user-space daemon, once all the kernel inter-
action issues were taken care of by the Ad-hoc Support
Library. The user-space daemon is about 5000 lines of
C++ code and the aodv-helper module is about 800 lines.
ASL itself is about 2500 lines of C code. Using ASL,
AODV development was easier as all the debugging was
confined to user-space. We have tested our implementa-
tion (See [11]) on a testbed of about 10 laptops.

We also realized that some of the subtle optimiza-
tions which needed hard work were probably not very
important. For example, after implementing the aodv-
helper, we realized that updating the previous hop and
next hop lifetimes, when a route is used, is probably com-
pletely redundant. This is because the draft also says that
nodes should maintain connectivity information with all
one-hop neighbors, using either explicit hello messages,
link layer notification mechanism or passive acknowl-
edgments, and update the lifetime field for all the one-
hop neighbors if the link is determined to be up. Since
the set of possible previous hops and next hops is a subset
of the set of one-hop neighbors, the lifetime for all such
hops is automatically updated by the neighbor detection
mechanism. Thus, updating next-hop and prev-hop life-
times during route caching is probably unnecessary, as it
comes into play only on those very rare occasions when
a few consecutive hello packets from a neighbor were
lost, but that neighbor was somehow still used as a pre-
vious/next hop on some route. Thus, if we ignore this
redundant feature in the draft, aodv-helper is no more
needed and the generic route-check module will be suf-
ficient.

5.2 Dynamic Source Routing (DSR)

Our second attempt is to implement DSR within the
ASL framework. We choose DSR because it is an-
other popular and maturing ad-hoc routing protocol with
significant research backing, and is also architecturally,
a different protocol from AODV. The implementation
starts with the DSR Internet Draft [14].

5.2.1 Difficulties

Implementing DSR within ASL framework is a big chal-
lenge. First, it is a source routing protocol and has
its own protocol format to specify source routes (Chal-
lenge 4). Second, it is based entirely on on-demand be-
havior and does not have a separable routing and for-
warding function (Challenge 3). Neither of these features
fits directly in the ASL architecture.

In particular, we consider the following issues:

� Interfacing with the kernel’s IP stack. DSR spec-
ifies its own protocol header, which is immedi-
ately after the IP header and before any IP payload.
This implies that the naturally appropriate place for
inserting the DSR implementation will be in the
IP stack at the IP multiplex/demultiplexing point.
There are other alternatives, such as intercepting ev-
ery DSR packets at the packet input/output chains
and bypassing the kernel IP stack, or processing the
DSR packets in a virtual device driver below IP.

� Processing every packet. Every data packet carries
the source route in the DSR header. As part of the
packet forwarding process, this header information
needs to be looked up and modified at each inter-
mediate node. Further, the source route is also used
to update the forwarding node’s route cache. Route
shortening in forms of gratuitous route reply may
be applied if the forwarding note has a better route
to the destination in its route cache. In addition,
DSR control information (e.g., gratuitous route er-
ror messages) may be piggybacked on any packet,
to reduce routing overhead. Therefore, all pack-
ets require significant processing. This makes fast
packet forwarding difficult.

� Maintaining routes In the absence of periodic
neighbor/link sensing, DSR relies on data packets
to detect broken links. It requires every packet
forwarded by a node to be acknowledged by the
next hop, either through the possible built-in link-
layer acknowledgment mechanism (such as 802.11
MAC), or by passive acknowledgment where the
sending node overhears the next hop further for-
warding the packet, or by explicit network layer

acknowledgment from the next-hop back to the
sender. This requires each node to keep a copy of
all forwarded packets for a short period of time until
being acknowledged. Packets unacknowledged af-
ter timeout period will trigger route error messages,
and optionally salvaging actions where a forward-
ing node rewrites the packet’s source route option
to choose a different path. Route maintenance fur-
ther complicates the system design.

� Listening in the promiscuous mode. DSR allows the
optional use of promiscuous mode listening for per-
formance improvement. Promiscuous listening is
defined as the process by which the network card
can overhear packets not intended for its hardware
address, and deliver it to the network stack. Using
this feature, a node can overhear a data packet and
can add the source route to its route cache. Promis-
cuous mode requires support from hardware and de-
vice driver, but not all wireless devices supports this
type of operation for security considerations.

5.2.2 A Split Design

Our goal, in accordance with the philosophy of this work,
is to do a reasonably simple and maintainable imple-
mentation of DSR in Linux, with minimum modifica-
tions to the kernel source. As we have explained earlier,
due to the inseparable forwarding and routing functions,
there are usually two ways to implement such protocols:
a complete in-kernel approach (such as in [19]), and a
complete user-space approach (such as in [10]). Both
approach have pros and cons. A complete user-space ap-
proach will be inefficient for the forwarding function, but
an in-kernel approach is different to maintain, different to
modify, and different to port to other operating systems.

In our implementation, we attempt a split-system ap-
proach. The idea is to segregate the forwarding and rout-
ing functions to some extent, even though they are inter-
mixed in the protocol design (Challenge 3). We believe
that the core of the source-routing based forwarding ac-
tivities, i.e., to send a data packet to the next-hop based
on its DSR header, should be as efficient as possible and
reside inside the kernel. We call this the source forward-
ing function. The majority of other source routing activi-
ties, which are induced by source forwarding, need to be
flexible and can reside in user-space.

Figure 5 illustrates the overall design of this DSR im-
plementation; the shaded parts indicate the various DSR
components. It consists of a user-space DSR Routing
Daemon and two kernel modules: DSR-forwarding-
helper and DSR-maintenance-helper. The
user-space daemon performs majority of the DSR rout-
ing functions, including route discovery and route main-
tenance. It relies on ASL to manage on-demand route

eth0eth0

forwarding

extraction

DSR source

DSR header
buffering

packet

explicit
ack request

Ad−hoc Support Library

User Space

Kernel Space

OUTIN

DSR control messages

Route Cache Maintenance Buffer

10.2.2.2
10.2.2.3

destination
10.1.1.1

source routes

DSR Routing daemon

R
aw

 socket

ioctl()

T
U

N
/T

A
P

packets out

interfacedestination next−hop

Kernel Routing table

10.1.1.1

10.2.2.2

10.2.2.3

127.0.0.2

eth0

tun

packets out

Netfilter hook
NF_IP_POST_ROUTING

10.1.1.1

10.2.2.3

Netfilter hook

eth1

eth1

eth1

packets in

NF_IP_PRE_ROUTING

packets in

D
SR

−
m

aintenance−
helperD

SR
−

fo
rw

ar
di

ng
−

he
lp

er

Figure 5. Design of DSR Routing Daemon

requests, and relies on the two kernel modules to interact
with the forwarding function.

The DSR-forwarding-helper module handles
all incoming DSR packets from the network devices. If
it receives a DSR packet with a source route option, it
executes the forwarding function, which involves mak-
ing changes to the IP and the DSR headers. At the same
time, it also extracts necessary DSR header information
into a buffer. Later, this header information is passed on
upward to the user-space route daemon and processed in
the background, after the in-kernel forwarding is done.
If the DSR packet is meant for this node, it is demulti-
plexed here (with the DSR header removed). Or, if it is a
Route Request packet, it is sent upward to the DSR route
daemon for source routing functions.

The DSR-maintenance-helper module in-
spects all outgoing DSR packets before sending to the
network devices. Its only purpose is for route mainte-
nance. It makes a copy of every outgoing packet and
sends them upward to DSR route daemon for tempo-
rary buffering (in DSR Maintenance Buffer). Option-
ally, if the DSR route daemon determines that an ex-
plicit acknowledgment should be used, this module can
insert a DSR Acknowledgment Request option in the
DSR header of selected packets. Other than this, the
route maintenance is almost entirely handled in user-
space. The reason for this design is the following. We
believe that route maintenance is not part of the core
source forwarding function and should not stand in the
way inside kernel. Once the packets are sent and copies
are made, the route maintenance can work “in the back-
ground”. When the acknowledgment comes back in
the form of a DSR Acknowledgment option, the DSR-
forwarding-helper module will forward it to the
DSR route daemon, where the matching is done. If an
entry in the Maintenance Buffer times out, the route dae-
mon can update the Route Cache and generates Route

Error messages.
Under this design, a DSR data packet can pass

through the kernel quickly without being delayed by non-
critical DSR activities. Majority of other DSR activities
are performed in user-space without getting in the way
of the kernel source forwarding path. The kernel rout-
ing table will only contain entries for its neighbors. All
other nodes will be marked as deferred (i.e., use tun0)
so ASL can catch all the outstanding packets. ASL’s
route check module is not used because DSR does
not require periodic deletion of unused route cache en-
tries.

5.2.3 Implementation

Following the same philosophy of the ASL work, our
DSR implementation uses the standard Linux 2.4 kernel
facilities only. All the kernel additions are implemented
in two loadable kernel modules. No kernel recompilation
is required.

We use the Netfilter facility extensively. The DSR-
forwarding-helper module attaches itself to the
Netfilter NF IP PRE ROUTING hook to capture all in-
coming DSR packets from the network devices. The
DSR-maintenance helper module attaches itself
to the Netfilter NF IP POST ROUTING hook to capture
all outgoing DSR packets before passing to the network
devices.

Our experience shows that an intermixing rout-
ing/forwarding protocol like DSR is more difficult to im-
plement in a modern operating system, even with the
help from the ASL framework. To achieve both effi-
ciency and portability in the system design, we have
to excise the routing/forwarding functional separation to
some extent. Compared with the prior approaches (either
all-in-kernel as in [19] or all-in-user-space as in [10]),
our split design is better than the all-in-user-space ap-
proach because we now copy only the DSR header in-
formation, not the entire packet, to the user-space. The
forwarding is entirely in kernel, while this header infor-
mation can be processed later in the background, after
the forwarding is done. This ensures a high performance
forwarding function for DSR. Further, this design is bet-
ter than the all-in-kernel approach, because kernel now
process only the most critical function, not rest of the
tedious on-demand behavior logics. The user-space im-
plementation of the non-critical functions ensure that it
is portable, maintainable, and extensible.

5.3 Other On-demand Routing Protocols

Temporally ordered routing algorithm (TORA) [24]
is an adaptive, distributed routing algorithm based on the
concept of link reversal. It strives to minimize commu-

nication overhead due to network topological changes.
The TORA protocol specifications [23] are very amiable
to the framework we have developed in this work. The
algorithmic details can be implemented in user-space as
the the TORA daemon, which uses the Ad-hoc Support
Library for the on-demand mode of operation. For route
caching, the generic route-check module seems suffi-
cient.

Associativity based routing [30], is an on-demand,
distance-vector routing protocol in which the metric is
link-stability instead of the traditional hop-count based
metric as in AODV. The link-stability is determined by
associativity ticks which is essentially a count of beacons
received from the neighbors. Since ABR specifies lots of
features [31], which depend critically on the granularity
of the associativity metric, it assumes that the data link
layer is capable of getting a reactive estimate of the as-
sociativity metric efficiently. If the network card or the
driver does not support this, ABR is not practicable for
those devices. If such support is available, then ABR is
quite cleanly implementable using our framework.

5.4 Pro-active Routing Protocols

Pro-active routing protocols can be easily imple-
mented with the current routing architecture in all oper-
ating systems. They do not need the framework which
we present. The DSDV (Destination Sequenced Dis-
tance Vector) routing protocol and the Adaptive DSDV
protocol have been implemented in [11]. Another pro-
active protocol called VDBP (Virtual Dynamic Back-
bone Routing) [18] has also been implemented for Linux.
Optimized Link State Routing (OLSR) and Topology
Broadcast with Reverse Path Forwarding (TBRPF) are
two other popular proactive routing protocols which
have also been successfully implemented in Linux and
FreeBSD respectively.

Hybrid routing protocols use a combination of pro-
active and reactive routing schemes. For example, the
Zone Routing Protocol (ZRP [12]) divides the network
dynamically into zones, and uses a pro-active protocol
for intra-zone routing whereas a reactive protocol for
inter-zone routing. From a systems viewpoint, ZRP does
not present any new challenges compared to AODV; ASL
can be used for efficiently implementing the inter-zone
routing part of ZRP.

6 Existing Implementations and Related
Work

There have been several implementations of some on-
demand ad-hoc routing protocols. These implementa-
tions address some or all of the on-demand routing prob-

lems, but very few attempt to provide a general frame-
work as we do. In this section, we provide a compari-
son on how these implementations attempt to address the
problems we described in Section 2, and suggest how our
approach can help improving them.

An implementation study of AODV routing protocol
[29] raises issues similar to what we have discussed here.
To address on-demand routing problems for AODV, it
suggests significant modifications to the existing kernel
code. First, IP layer builds a short lived dummy routing
table entry for every unroutable destination. It then uses
netlink socket to inform AODV routing daemon about
the need to initiate a route discovery. Data packets are
buffered inside the kernel in a simple linked list refer-
enced from the dummy routing table entry. IP is also
modified to add a Last Use field for every route, which
is used by the routing daemon when deleting the routes.
Our independent investigations led to the identification
of similar issues and development of the API we pre-
sented in Section 3. However instead of modifying the
Linux kernel, we focused on providing a user-space im-
plementation in the form of a shared library, which we
hope will be of more immediate use in implementing ad-
hoc routing protocols.

Madhoc is a user-space implementa-
tion of AODV [25]. To address the on-demand routing
problem, it snoops ARP (Address Resolution Protocol)
packets and uses them as an indication that the destina-
tion has no route and route discovery should be triggered.
This scheme has a few serious drawbacks. First, the ker-
nel generates an ARP request only if the destination be-
longs to the subnet of one of the network interfaces, or a
host-specific route entry exists for this destination. This
limits the applications to certain types of network config-
urations. Secondly, ARP will time out in relatively short
time, and mad-hoc provides no mechanism to queue out-
standing packets. This means that these packets might
be dropped before the route discovery can be completed.
Finally, ARP cache has a time-out value and snooping on
ARP requests can result in spurious route requests when
a next-hop node has been timed out in the ARP cache but
the route is still valid.

AODV-UU [2] and AODV-UCSB [1] are two imple-
mentations of the AODV routing protocol. The ker-
nel interaction part of the two implementations is the
same. They differ only in the AODV protocol logic
implementation, which is done in user-space. The ker-
nel part consists of two Linux kernel modules (kaodv
and ip_queue_aodv). To address the on-demand rout-
ing problems, these implementations use Netfilter to
copy all packets from the kernel space to user-space.
kaodv uses Netfilter to collect all packets before they en-
ter the packet-forwarding function and ip_queue_aodv
queues them to user-space. By matching these packets

against the entries in the user-space route cache, packets
for which there is no route can be identified and route re-
quest initiated. There are two obvious drawbacks of this
approach: every packet has to cross the user kernel ad-
dress space twice, inducing much overhead, and for ev-
ery packet the routing is done twice as well, once in user-
space and once again in the kernel. In our AODV-UIUC
implementation, all such system interactions are cleanly
taken care of by the Ad-hoc Support Library. The over-
head of processing every packet in user-space is elimi-
nated. The result is a much simpler, cleaner, and more
efficient implementation.

Kernel-AODV [4] is another AODV implementation
by NIST. The entire implementation is in the form of
Linux kernel modules. As we have discussed earlier in
Section 2, it is not a good system design to put the en-
tire routing protocol in kernel-space. The complex pro-
tocol processing can slow the kernel, hog the memory,
and crash the whole system if there are any bugs in the
routing protocol.

Another kernel implementation of AODV [9] has
been done by extending ARP. Note that unlike Mad-hoc
which uses the ARP mechanism just to detect route re-
quests, this approach reuses the ARP code in the kernel
to do a complete implementation of the AODV protocol.
Modified ARP requests and replies are used to generate
AODV RREQ and RREP packets. ARP table essentially
acts as the AODV routing table. Modified ARP reply
with a special flag is used to generate RERR messages.
Data packets are buffered inside the kernel in an ARP
queue. This approach is a smart idea, but has the lim-
itations of an in-kernel implementations which we have
discussed above.

Dynamic Source Routing (DSR) [15, 19] has been
implemented by the Rice University Monarch project in
FreeBSD [3]. This implementation is entirely in-kernel
and does extensive modifications in the kernel IP stack.
While the implementation is a commendable project, it
is difficult to maintain and update due to its complex-
ity. For example, this implementation of DSR was de-
veloped on FreeBSD 2.2.7 and has only been upgraded
to FreeBSD 3.3, whereas the current version of FreeBSD
is 4.6.2 when this paper is written. Porting it to other
operating systems will be prohibitively difficult.

Internet Manet Encapsulation Layer (IMEP) [8] is
an encapsulation protocol proposed for manet routing,
which provides certain common functions like single-
interface abstraction, link status sensing, control mes-
sage aggregation, and reliable broadcasting. IMEP at-
tempts to provide a unified framework for all other ad-
hoc routing protocols at the protocol processing level,
whereas we attempt to provide a common module and
a common interface at the implementation level. These
two approaches are complementary. A simple user-space

implementation of IMEP is possible using our frame-
work. Additional support may be needed from the net-
work device driver for link status sensing.

Temporally ordered link
reversal algorithm (TORA) [24] has been implemented
in Linux by University of Maryland [6]. It has been im-
plemented over IMEP and hence can benefit from our
framework. TORA can independently be implemented
over our framework too.

University of Colorado has implemented several rout-
ing protocols [32, 22, 10] using MIT’s Click Modular
Router [17]. Click is a software architecture for build-
ing flexible and configurable routers. It provides basic
protocol processing modules called elements, each of
which implements a specific function like packet clas-
sification, queuing, and scheduling. Protocol developers
write Click configuration files to instantiate elements and
to connect them in a way to implement the protocol. In
this aspect, Click can be a good candidate to meet Chal-
lenge 4. Nevertheless, our work focuses on common op-
erating systems, whereas Click is designed for a special
purpose application (fast and configurable routers).

A recent work [16] aims to provide a library of utili-
ties for manet routing protocols, much like the GNU Ze-
bra project does for wired routing protocols. It plans to
provide utilities for timer management, neighbor discov-
ery, managing tables etc. It however does not systemat-
ically deal with all the system issues, as we have done.
ASL could be used in building this framework.

MagnetOS [7] is a distributed, power-aware, adaptive
operating system which abstracts an ad-hoc network as a
unified Java Virtual Machine. It allows for objects and
components to automatically migrate among nodes in
the network to optimize system performance. MagnetOS
focuses on sensor networks, using distributed operating
system techniques.

7 Conclusions

In this work, we study the operating system services
for mobile ad-hoc routing, and propose a generic archi-
tecture and API for implementing ad-hoc routing proto-
cols in modern OS. We implement these services and
API in Linux. With the helps of standard Linux primi-
tives, we were able to do so without any modification in
the core kernel source, i.e., without the need to recompile
the kernel. The software consists of a user-space library
(ASL) and protocol dependent loadable kernel modules.
To demonstrate the flexibility of this approach, we imple-
ment AODV using ASL. We also give detailed design for
implementing other routing protocols in this framework,
and share our experience in implementing these different
protocols.

We believe that the principle of separating routing and
forwarding has profound importance in ad-hoc routing
system design. Protocols that follow this principle are
easier to implement in a clean way. The code will be ef-
ficient, portable, maintainable, and extensible. Protocols
that violate this principle and mix routing and forwarding
will require significantly more efforts to produce a clean
and well-structured implementation. Unfortunately, little
attention is paid in today’s ad-hoc network research on
the considerations of system issues in protocol design.
Even if the protocol architecture follows the principle of
separation, many protocols still suggest subtle optimiza-
tions that violate this rule. These optimizations are often
easy to simulate but very difficult to implement in real
systems. In some cases the complications encountered
can nullify the benefits of the intended optimizations.

Implementing a routing protocol is very important to
validate its design. Coming up with a clean implementa-
tion not only helps better understanding of the protocol
nuances, but also allows extensions to explore the proto-
col design space. For example, many ad-hoc routing re-
search efforts have extended upon AODV and DSR; hav-
ing clean and extensible implementations of these two
protocols would benefit these entire research directions.
Note: Source code for the Ad-hoc Support Library
and AODV-UIUC is available under the GNU Pub-
lic License from http://aslib.sourceforge.net.
Source code for DSR implementation will also be avail-
able at this URL.

References

[1] AODV homepage. http://moment.cs.ucsb.edu/AODV/
aodv.html.

[2] AODV-uppasala university. http://www.docs.uu.se/ hen-
rikl/aodv.

[3] Implementation of DSR. http://www.monarch.cs.cmu.
edu/dsr-impl.html.

[4] Kernel AODV. http://w3.antd.nist.gov/wctg/
aodv kernel/.

[5] Netfilter/Iptables homepage. http://www.netfilter.org.
[6] TORA/IMEP. http://www.cshcn.umd.edu/tora.shtml.
[7] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. D. Kim,

B. Zhou, and E. G. Sirer. On the need for system-level
support for ad hoc and sensor networks. ACM Operating
Systems Review, 36(2):1–5, Apr. 2002.

[8] S. Corson, S. Papademetriou, P. Papadopoulos, V. Park,
and A. Qayyum. An internet MANET encapsulation pro-
tocol (IMEP) specification, Aug 1999. IETF Draft, draft-
ietf-manet-imep-spec02.txt, work in progress.

[9] S. Desilva and S. Das. Experimental evaluation of a wire-
less ad hoc network. In Proceedings of the 9th Inter-
national Conerence. on Computer Communications and
Networks, 2000.

[10] S. Doshi, S. Bhandare, and T. X. Brown. An on-demand
minimum energy routing protocol for a wireless ad hoc

network. Mobile Computing and Communications Re-
view, 6(2), July 2002.

[11] B. Gupta. Design, implementation and testing of routing
protocols for mobile ad-hoc networks. Master’s thesis,
University of Illinois at Urbana-Champaign, 2002.

[12] Z. J. Haas. The routing algorithm for the reconfigurable
wireless networks. In Proceedings of IEEE Interna-
tional Conference on Universal Personal Communica-
tions (ICUPC’97), San Diego, California, Oct. 1997.

[13] Y.-C. Hu and D. B. Johnson. Implicit source routes for
on-demand ad hoc network routing. In Proceedings of
the 2001 ACM International Symposium on Mobile Ad
Hoc Networking & Computing (MobiHoc’01), pages 1–
10, Long Beach, California, Oct. 2001.

[14] D. Johnson, D. Maltz, Y.-C. Hu, and J. Jetcheva. The
dynamic source routing protocol for mobile ad hoc net-
works (DSR). IETF Internet-Draft, draft-ietf-manet-dsr-
07.txt, Feb. 2002.

[15] D. B. Johnson and D. A. Maltz. Dynamic source routing
in ad hoc wireless networks. In T. Imielinski and H. Ko-
rth, editors, Mobile Computing, volume 353. Kluwer
Academic Publishers, 1996.

[16] F. Kargl, J. Nagler, and S. Schlott. Building a frame-
work for manet routing protocols. URL: http://medien.
informatik.uni-ulm.de/ � frank/research/
manetframework.pdf.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions
on Computer Systems, 18(3):263–297, August 2000.

[18] U. C. Kozat, G. Kondylis, B. Ryu, and M. K. Marina.
Virtual dynamic backbone for mobile ad hoc networks.
In Proceedings of IEEE ICC’01, 2001.

[19] D. Maltz, J. Broch, and D. Johnson. Experiences de-
signing and building a multi-hop wireless ad hoc network
testbed. Mar. 1999.

[20] D. A. Maltz. On-Demand Routing in Multi-hop Wireless
Mobile Ad Hoc Networks. PhD thesis, Carnegie Mellon
University, 2001.

[21] D. A. Maltz, J. Broch, J. Jetcheva, and D. B. Johnson.
The effects of on-demand behavior in routing protocols
for multi-hop wireless ad hoc networks. IEEE Journal
on Selected Areas in Communications, 17(8):1439–1453,
August 1999.

[22] N. K. Palanisam. Modular implementation of temporally
ordered routing algorithm. Master’s thesis, University of
Colorado, 2001.

[23] V. Park and S. Carson. Temporally-ordered routing algo-
rithm (TORA) version 1 functional specification. IETF
Internet-Draft, draft-ietf-manet-tora-04.txt, July 2001.

[24] V. D. Park and M. S. Corson. A highly adaptive dis-
tributed routing algorithm for mobile wireless networks.
In Proceedings of IEEE INFOCOM, 1997.

[25] C. Perkins and E. Royer. Ad hoc on-demand distance
vector routing. In Proceedings of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications, pages
90–100, New Orleans, LA, Feb. 1999.

[26] C. E. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV)
for mobile computers. In Proceedings of ACM SIG-
COMM’94, London, U.K., Sept. 1994.

[27] C. E. Perkins, E. M. Royer, and S. R. Das. Ad hoc on
demand distance vector (AODV) routing. IETF Internet-
Draft, draft-ietf-manet-aodv-10.txt, work in progress,
Jan. 2002.

[28] L. L. Peterson and B. S. Davie. Computer Networks.
Morgan Kaufmann Publishers, 2nd edition, 2000.

[29] E. M. Royer and C. E. Perkins. An implemenatation
study of the aodv routing protocol. In Proceedings of the
IEEE Wireless Communications and Networking Confer-
ence, 2000.

[30] C.-K. Toh. A novel distributed routing protocol to sup-
port ad hoc mobile computing. In Proceedings of IEEE
15th Annual International Conference on Computers and
Communications, pages 480–486, Phoenix, March 1996.

[31] C.-K. Toh. Long-lived ad hoc routing based on the
concept of associativity. IETF Internet-Draft, draft-ietf-
manet-longlived-adhoc-routing-00.txt, Mar. 1999.

[32] A. Tornquis. A modular framework for implement-
ing ad hoc routing protocols. Master’s thesis, Univer-
sity of Colorado, 2000. http://systems.cs.colorado.edu/
Networking/modular-adhoc.html.

