
Netsim: A JavaTM -Based WWW Simulation Package

by
Tamie Lynne Veith

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Industrial and Systems Engineering

Approved:
Dr. Pat Koelling, Co-chair
Dr. John Kobza, Co-chair

Dr. J.W. Schmidt

April 29, 1997
Blacksburg, Virginia

Keywords: Internet, Java, modeling, Netsim, programming, simulation, WWW
Copyright 1997, Tamie Lynne Veith

Netsim: A JavaTM -Based WWW Simulation Package

by
Tamie Lynne Veith

(ABSTRACT)

Use of the World Wide Web (WWW) for transfer of information and ideas is increasingly
popular. Java, a programming language for the WWW, provides a simple method of distributing
platform-independent, executable programs over the WWW. Such programs allow the expansion
of WWW-based computational and analytical tools that support and enhance the existing WWW
environment. However, a WWW-based, generalized simulation package is not yet available.
Current literature motivates development of a general, WWW-based simulation package with
maximum user interactivity and cross-platform capabilities. Advantages of such a package are
discussed and explored in three potential applications. Main advantages are wide availability,
controlled access, efficient maintenance, and increased integration. Disadvantages, such as
variable download times, are also discussed. Netsim, a general, WWW-based simulation package
written entirely in Java, is developed and demonstrated. Netsim provides complete model
creation and modification capabilities along with graphical animation and data output. Netsim
uses the event graph paradigm and object-oriented programming. Java, event graphs and object-
oriented programming are discussed briefly. The Java random number generator is verified for
uniformity and independence. Netsim is compared to SIGMA, a non-Internet simulation
package, using a standard M/M/1 queueing model. Comparison issues and results are discussed.
Additionally, tested through hand-tracing for coding validity, Netsim performs as theory
prescribes. Netsim documentation and user’s manual are included. Netsim allows expandability
for complex modeling and integration with other Java-based programs, such as graphing and
analysis packages. Current Netsim limitations and potential customization and expansion issues
are explored. Future work in WWW-based simulation is suggested.

iii

Acknowledgments

I would like to acknowledge my committee’s time, advice, and dedication to this project. In
particular, my thanks to Dr. Kobza for his help, throughout the summer, in formulating and
motivating the project proposal. Additionally, my sincerest thanks to Dr. Koelling for his past
year and a half of availability and support, including funding and work space, even while on a
semester sabbatical.

Also, I would like to thank Ron and Theresa for ensuring my familiarity with the ETD process
and for making sure I stopped to eat occasionally.

Finally, my deepest gratitude to Archer for her constant support, understanding and constructive
suggestions throughout the past two years.

iv

Table of Contents

Abstract ii

Acknowledgments iii

List of Figures vii

List of Tables viii

Chapter 1: Introduction 1

Chapter 2: WWW-Based Simulation 3

2.1 Advantages and Disadvantages 3
2.1.1 Advantages 3
2.1.2 Disadvantages 5

2.2 Applications 6
2.2.1 Business Performance 7
2.2.2 Product Sales 7
2.2.3 Skill Training, Role-playing 8

Chapter 3: Structural Background 10

3.1 JavaTM 10

3.2 Object-Oriented Programming 11

3.3 Event Graphs 12

Chapter 4: Literature Review 14

Chapter 5: Motivation for Netsim 18

Chapter 6: Netsim Simulation Package 20

6.1 Overview 21

6.2 Information Flow 23
6.2.1 Database 24
6.2.2 Interfaces 24

v

6.2.3 Simulator 24

6.3 Model Creation 25

Chapter 7: Analysis of Netsim 28

7.1 Random Number Generator in Java 28

7.2 Comparison of Netsim with SIGMA 29

7.3 Random Variate Calculations in NetSim and SIGMA 30

7.4 Comparison Results and Discussion 31

7.5 Netsim Limitations 32
7.5.1 Conversion of Clock Values 32
7.5.2 Thread Synchronicity 32

Chapter 8: Conclusions 33

8.1 Benefits of WWW Simulation 33

8.2 Contributions of Netsim 34

8.3 Programming in Java 35

8.4 Future Work 36

References and Bibliography 38

Appendix A: Copyrights/ Disclaimers 42

Appendix B: Check of Java Random Number Generator: Data Output 43

Appendix C: Check of Java Random Number Generator: Program 45

Appendix D: SIGMA Random Variate Calculations: Data Output 50

Appendix E: Carwash Model: SIGMA & NetSim Data Output 53

Appendix F: Carwash Model: SIGMA Program 61

Appendix G: Netsim Documentation 63

Appendix H: Netsim Source Code 76

vi

Appendix I: Netsim User’s Manual 125

Vita 130

vii

List of Figures

Figure 1: Example of object-oriented hierarchy 12
Figure 2: Netsim package internal structure 20
Figure 3: Interface for creating and modifying model 22
Figure 4: Interface for viewing model animation and data output 23
Figure 5: Information flow within Netsim 24
Figure 6: Frequencies of p-values for each set of independence test runs 29
Figure 7: Event graph for carwash model 29

viii

List of Tables

Table 1: Format for edge conditions 26
Table 2: Test results of the Java random number generator 28
Table 3: Variable definitions for carwash model 30
Table 4: Natural log calculations 31
Table 5: Sample of simulation run using different clock multipliers 32

1

Chapter 1: Introduction

A growing number of people use the Internet daily for both business and pleasure. The Internet
is a computer network through which many types of data can be transferred. The vast system of
server computers connected to the Internet, the development of standardized protocols, and the
Uniform Resource Locator computer addressing system have helped create a worldwide
information system within the Internet, called the World Wide Web.

People increasingly connect to the World Wide Web (WWW), through WWW browsers such as
Netscape Navigator (Netscape 1997), to access resources, share information, schedule meetings,
and leave messages. Through JavaTM (Sun, 1997; Appendix A), a WWW-based programming
language, people can also customize and interact with WWW-based computational programs as
they would with traditional, non-Internet-based programs. However, WWW-based applications
do not yet include a generalized, interactive simulation program for modeling, demonstrating, and
analyzing a particular project. As a result, many WWW users must still use a specialized, non-
Internet-based simulation program to work with the technical aspects of a project.

A general, WWW-based simulation package can enable users to model, explore and analyze the
same problems for which they would otherwise need traditional simulation packages. The
resulting models are then easily explored and manipulated by any colleagues or clients connected
to the WWW without the introduction of additional, possibly unfamiliar software. Because Java
programs operate on WWW browsers, they are platform-independent, thus avoiding system
compatibility problems often encountered with non-Internet programs. Additionally, WWW
applications are generally maintained in a single location, allowing the provider to easily
distribute modifications, maintain version control and control user access. Other benefits with
WWW-based applications include access from distant sites and off-hour availability.

The purpose of this research is to create and demonstrate a general, Java-based, WWW
simulation package called Netsim. A simulation problem, modeled in Netsim, can be instantly
viewed as an animated model on a WWW browser, allowing users to benefit fully from the
advantages of the WWW environment. Such Java-based models allow the user the same degree of
interactive, multimedia capability as do non-Internet-based programs (Jones, 1996).
Additionally, the object-oriented paradigm used in Java-based WWW simulation provides
distinct modeling advantages over more traditional procedural-based simulation packages such as
SLAM II (Pritsker, 1986; Appendix A) or SIGMA (Schruben, 1995; Appendix A).

Chapter 2 outlines and discusses the advantages and disadvantages of a WWW-based simulation
package, such as Netsim. In addition, three applications in which Netsim could be advantageous
are considered. Chapter 3 presents background information on Java, object oriented

2

programming, and event graph simulation. A literature review of Internet, WWW and simulation-
based work leading up to this project, as well as current work in this rapidly evolving area, is
presented in Chapter 4. Chapter 5 motivates the development of the Netsim simulation package,
discussing the ways Netsim answers limitations of and contributes significantly to the existing
set of WWW-based simulation tools. Netsim’s structure and capabilities are explained in
Chapter 6. Chapter 7 describes the procedures used for verifying the accuracy of Netsim and
also reports and analyzes the results of this verification. Conclusions and ideas for future
research are given in Chapter 8.

3

Chapter 2: WWW-Based Simulation

2.1 Advantages and Disadvantages

As mentioned in the introductory chapter, a WWW-based simulation program provides several
beneficial features that are lacking in currently established, non-Internet-based packages such as
SLAM II or SIGMA (Nair, 1996). These features include wide availability among different
systems, controlled access, efficient maintenance, and increased integration into current working
environments. A few disadvantages also exist when simulating over the WWW. These include
difficulty in tailoring a program to a specific platform, loading time variability, and the possibility
of inconsistent model access. The following sections discuss advantages and disadvantages of
WWW-based simulation.

2.1.1 Advantages

Advantages of a WWW-based simulation program can be grouped into the following main
characteristics with associated features:

Wide Availability
• allows access on many platforms without recompiling.
• allows access at distant sites without transporting hardware or software.
• allows access outside normal business hours.

Controlled Access
• protects against inadvertent and unauthorized change and duplication of original.
• allows “copy exactly” model distribution.
• enables individualized access through passwords on unrestricted machines.
• enables limited time-span access.

Efficient Maintenance
• enables frequent modifications to be made and instantly distributed.
• reduces error potential when updating and distributing models.
• eliminates virtually all on-site maintenance.
• allows modifications and implementations to be made through the server.

Increased Integration
• interfaces instantly with existing WWW browsers.
• requires only a WWW browser capable of viewing Java programs.
• encourages communication and interaction through the WWW.

Wide Availability. Platform specificity or recompilation is often necessary with non-Internet-
based simulation software. Utilizing traditional simulation packages requires access to a

4

computer containing the proper simulation software, as well as an appropriately compiled copy
of the model source code. The portability of a WWW-based model onto numerous platforms
enables the user to quickly access and run the model from multiple, wide-spread locations. Users
at distant sites can instantly access the most up-to-date models using the available computer
platform. There is no need to transport hardware or software to these sites, download an
appropriate version of the file, or recompile the code. Furthermore, since the Internet is usually
available twenty-four hours a day, access to a model and its WWW site is not limited by time
constraints. This allows users to proceed at their own pace and to work within their own time
schedule.

Controlled Access. Permanently modifying a model in either WWW-based or traditional
simulation packages requires access to the model source code. With non-Internet simulation
packages, the user often accesses the model directly from the computer on which the model is
running, with the complete source code of the model and the software package residing on that
computer. In this situation, there is significant potential for confusion and later difficulties
caused by inadvertent, permanent changes to and multiple copies of a model. Additionally, users
are able to retain, change, duplicate, and share models or software beyond the limits of any
agreements they might have made with the supplying company.

On the WWW, a single copy of any model, provided through a server, is necessary. Also,
although Java-based WWW simulation packages, such as Netsim, are accessible through any
Java-compatible browser, the package may not be copied without direct access to the uncompiled
package source code. As a result, only a person with access to the original model or package code
can permanently change the model or allow duplication of the simulation package, preventing
inadvertent or unauthorized alterations and the resulting difficulties. This can be particularly
useful for companies providing “copy exactly” instructions through a model and depending on
exact replicas of a product based on information from that model.

When using WWW-based simulation, one person can control access to a model through secure
WWW sites, password requirements and limited time-spans. This helps link the use of the
model to the appropriate people as opposed to specific computers with multiple users, as often
happens with current simulation packages. Additionally, such access restrictions are placed on
the model or the WWW site, not on the machine itself. This ensures uniform access privileges
regardless of platform.

Efficient Maintenance. With WWW-based simulation the existence of a single working model
enables frequent, permanent modifications with a smaller degree of error. Additionally, there is
seldom need for on-site maintenance. The model or simulation package can be modified and made
instantly available over the WWW and users notified, if necessary, through e-mail. In the more
traditional packages, implementing modifications can be tedious and time consuming. First, users

5

must be made aware of the need for and existence of an updated model. Then the update must
either be made on each copy of the model, increasing the chance of model inconsistencies, or the
new model be delivered to and reinstalled onto each computer and the old one deleted.

Additionally, the creator/ maintainer of a WWW-based simulation model generally has access,
through the Internet, to the model’s source code on the serving computer. This allows that
person to access the server from a distant site, if desired, in order to permanently modify the
model. For most traditional simulation packages, any changes to the source code must be made
directly on, or copied to, the computer running the simulation model.

Increased Integration. Programming software and viewing browsers that support a WWW-
based simulation package are readily available through the Internet. Appropriate browsers, such
as Netscape, are Java-compatible and already installed on many computer systems. Where not
currently installed, these browsers are easy to locate and available for immediate installation.
Many such browsers are currently free to educators, researchers, and students or are included in
standard office software packages.

Since many users are familiar with navigating WWW browsers, the total software learning curve
for using a model is minimal. Once the browsers are installed, no additional software or
downtime is required before accessing a simulation model. Unlike many standard simulation
packages, the needs for proper installation of the software package and for working knowledge of
the operating commands do not pose major hurdles to effective, timely use of a model.
Additionally, the WWW-based software can be made user friendly, enabling the creation of non-
technical, menu-driven models. This encourages users to become more involved with the
available technology and minimizes the need for assistance by a skilled programmer.

Active use of the WWW allows the user to immediately and efficiently resolve issues raised by a
simulation model. Each WWW simulation model is linked to a hypertext markup language
(HTML) page. This page can contain e-mail links, help or problem request forms, connections to
relevant search engines, and links to previous models. Such connections are easy for a WWW site
programmer to provide, maintain and use. Additionally, the page can provide supplemental
information in the form of textual instructions, images, sound clips, and other appropriate
multimedia tools. User communication might be further enhanced by Internet tools such as list-
serves, electronic bulletin boards, or chat rooms. While examining a model, a user can easily send
messages, answer questions, explore a subject area and research a particular topic in depth. There
is no need to exit and reopen software as might be necessary when using more traditional
simulation packages.

2.1.2 Disadvantages

Simulation over the WWW does have a few potential drawbacks. These disadvantages, as well as

6

the previously discussed advantages, should be considered when deciding which simulation
package best meets a user’s needs. Users not relying on the possibilities available through
WWW-based simulation or not interested in connecting to the Internet might find a traditional
package more suitable, as might users frequently modeling large or complex systems.

The following explain benefits of traditional simulation packages over WWW-based ones.
• Many current simulation packages are each specialized to idiosyncrasies of a single

platform, making maximum use of its capabilities. This may increase efficiency of
simulation runs when using models that require few or no updates over long periods of
time.

• Loading times for traditional programs are dependent on the computer and not on the
current volume of Internet usage. During times of heavy Internet traffic, models with
complex or extensive amounts of code may initially take a large amount of time to
download.

• Because each computer usually contains a copy of the traditional simulation software, the
user can generally rely on the availability of the software. When using the Internet,
however, temporary interruptions in Internet service may cause the WWW-based
simulation model to be momentarily unavailable.

2.2 Applications

The advantages of WWW-based simulation suggest far-reaching applications involving timely,
long distance interactions or temporary, wide-spread viewing of models. Researchers, instructors
and organizations can share timely simulations of their current work with partners, students,
clients, and potential customers over the WWW. Anyone connected to and familiar with the
WWW already has access to and knowledge of the appropriate software. Additionally, viewing
access to the most recent model is easily arranged and maintained.

Researchers can use an on-line simulation program to share up-to-date work with collaborators
and with grant providers. Instructors of distance learning classes can use WWW-based
simulation models to provide demonstrations and hands-on examples and to encourage student
feedback. Manufacturing companies can increase communication between plants by providing
immediate, visual demonstrations of the processing layout for a new product. Other companies
might use such simulations to advertise new products to clients. Consultation and management
advisory groups can use WWW-based simulations to provide role-playing games and problem-
solving services.

The following examples outline the unique benefits of WWW simulation modeling as it pertains
to three types of situations: competitive business performance, marketing and product sales, and

7

skill training and role-playing. Additionally, these examples go beyond the basic queueing models
currently provided by Netsim to explore future possibilities of WWW simulation.

2.2.1 Business Performance

In today's fast-paced, corporate world, businesses try hard to keep ahead of competitors and of
the market. To do so often involves major changes, such as reorganization of management
structure and cutbacks in personnel. Managers of an organization must be able to determine how
such changes will affect the company and its outside interactions. Through WWW-based
simulation, companies can make timely, knowledgeable decisions with regard to major
organizational restructuring for their company.

With WWW-based simulation managers can:
• access the simulation while at distant companies or collaborating sites.
• always access the model version reflecting the most current situation.
• instantly access the model through any Java-compatible, WWW-linked computer.

Outside collaborators and physically distant areas of the company can become actively involved
in the situation of the company. WWW-based simulation eliminates the need to carry along
computers with appropriate software and latest-model versions. Representatives of the
company visiting these collaborators or other companies can easily demonstrate the active
improvement of their company by accessing the simulation model over the WWW.

A WWW-based simulation model can reflect the current state of the particular company and of
outside influences (competitors, customers, world and local markets). The model parameters can
be updated frequently as the company or outside influences change; for example, as other
companies restructure or markets fall. A mutual fund company might use daily updates of a
stockmarket econometric model to forecast interest rates and update portfolios. Fund managers
can then access these updates twenty-four hours a day to determine buy/sell actions and advise
investors.

A company using a traditional simulation program must submit a change in the model to the
programmer and then wait for the updated model to be distributed and installed. By placing the
updated model on a WWW server, the programmer can significantly reduce this waiting time.
The client/server relationship of the WWW makes the updated models instantly accessible,
allowing managers to make decisions with regard to the latest information about crucial factors.

2.2.2 Product Sales

Timely demonstrations of the benefits of new products can be vital to the growth of competing

8

companies, both supplier and consumer. Customer feedback regarding a supplying company's
products can help the marketer focus its efforts. Likewise, easily accessible, well-explained
product previews help a consumer company function and expand smoothly. Demonstrating, via
an WWW-based simulation model, the ways a new product can enhance the customer’s system is
effective for both the marketing company and the customer and encourages suppliers to market
new products in a cost-effective, consumer-aware manner. For example, a production-line
machine supplier might use WWW-based simulation modeling to demonstrate a more efficient
machine. By providing two simulation models, one based on the current machine and one on the
new product, and by allowing customers to input model parameters for their particular
production runs, suppliers can easily demonstrate the benefits of the new products.

Using WWW-based simulation to display new products, the marketing company can:
• make previews instantly available to anyone with a Java-compatible WWW browser.
• make one copy widely available through multiple platforms to potential customers.
• utilize the WWW to provide on-line assistance and receive customer feedback.

By making a single copy of the simulation model available over the WWW instead of mailing
multiple copies, the company can reach more people, especially individuals and small businesses
who might otherwise be overlooked. The demo is instantly available to anyone using a Java-
compatible WWW browser. This method eliminates the need for costly copies of demo software
and instructions for viewing the product. Additionally, the WWW-based simulation models are
platform-independent, assuring the customer will be able to view the model on any available
Internet-connected machine with a Java-compatible browser.

E-mail and other relevant WWW links provided along with the demo can help customers learn
about the company, locate additional products, and direct questions to the most helpful source.
Likewise, survey forms and search engines built into the preview help the marketer find out more
about the needs and concerns of their customers through customer feedback, orders, and
complaints and can allow the marketer to respond quickly on an individualized basis. Combining
these types of WWW-based tools with simulation models describing the product provides an
interactive connection between the marketer and both potential and existing customers.

2.2.3 Skill Training, Role-playing

Many companies are reducing their levels of management and increasing their use of teams
throughout the leadership hierarchy. As the company hierarchy changes, managers may need
additional education and training to effectively carry out their new responsibilities. They will
need insight into the roles of other managers to work most effectively as a team. To help with
these tasks, situational and role-playing games may be used. These games simulate the behavior
of an organization and the positions of the people within the organization. Additionally, they

9

allow users to perfect skills and role play as the need arises to resolve conflicts or uncertainties in
a timely fashion.

Frequent use of simulation models in this manner can lead to closer knit teams with the ability to
improve their own operations. Such use can also heighten awareness throughout all levels of the
organization as to interactions between and contributions of its various members. Skill training
and role-playing via WWW-based simulation provides important advantages over non-Internet
based simulation, particularly in terms of maintenance and access control.

A WWW-based training or role-playing model can:
• allow learners to access the model as their schedule permits.
• allow providers to control the level of user access and modification to the model.
• allow providers to address and resolve problems through the providing server.

Because the WWW is usually available 24-hours a day, users can access the training or role-
playing model as their schedule permits. Their access is not limited to normal business hours,
scheduled around the availability of a computer with the necessary software. This allows users
to work at their own pace without the pressure of finishing within a given time slot.

Through the server the provider can control access to skill training and role-playing models by
including passwords for the site or particular models and by making the model available for a set
time period. Additionally, the use of Java in developing the models helps protect them from user
changes and duplication. This ensures the provider that the fair use guidelines agreed upon by
the user will be upheld. These same features allow many people in a company to work
simultaneously with a model. For example, users can role play in teams or individually to
promote understanding or resolve conflicts. Additionally, users need not worry about making
inadvertent changes to the model or maintaining copies of the model on their local machines.

Utilizing the server/client relationship of WWW-linked computers allows the provider to
permanently revise a model through connection to the server computer. This eliminates visits to
the users' actual locations, as required by non-Internet simulation models. In addition, it helps
enable problem resolution in a timely manner and frees the user from downloading and
maintaining files.

10

Chapter 3: Structural Background

Netsim uses the event graph simulation method and the object-oriented structure of the Java
programming language. This combination allows the capabilities of Netsim to be easily modified,
maintained, or expanded and allows for code re-use. Additionally, it helps minimize the amount
of computer memory used by a Netsim simulation model. This chapter provides background
information about Java, object-oriented programming, and event graphs.

3.1 JavaTM

Development of Java, as an object-oriented programming language, began in 1991 by a team of
programmers at Sun Microsystems, Inc. Their goal was to use Java in creating fast, platform-
independent software that could be used in simple, consumer electronic products. As a result of
Java being designed for simple, efficient, platform-independent programming, it appeared to be an
ideal language for creating WWW-based programs. In 1994, as the WWW became increasingly
popular, the Java team began to modify the Java language to work through the WWW and created
the first Java browser, WebRunner (December, 1995). Interest caught on to the capabilities of
Java for the WWW, and Sun produced a more stable Java browser, HotJava, as well as a Java
Development Kit. Many WWW browsers are now Java-compatible, and there are a growing
number of software packages for developing Java programs.

Using Java one can create small programs called applets that are embedded into an HTML
document and viewable on any Java-compatible browser. Java applets are compiled into a set of
bytecodes, or machine-independent processing instructions. This set of bytecodes is then
translated by an interpreter within a Java-compatible browser and the applet is executed (Lemay
and Perkins, 1996). Java's high portability enables an applet to be accessed through numerous
platforms on almost any computer connected to the Internet.

Java's programming language closely resembles the C and C++ languages with a few alterations,
such as the removal of pointers, specifically intended to make Java more robust. This similarity
makes switching from C++ to Java similar, in difficulty, to switching to an updated version of
C++ (Freeman and Ince, 1996; Aitken, 1996). Java further simplifies use for the end user, as well
as the programmer, by supporting graphical user interfaces and a number of menu formats.

Java utilizes complete object-oriented programming, a programming technique particularly well-
suited for simulation modeling (Banks, 1996). Netsim takes advantage of this object-oriented
structure.

11

3.2 Object-Oriented Programming

Object-oriented programming languages reduce the need to pass multiple parameters sequentially
through a program as is often necessary in procedural languages such as Pascal or FORTRAN.
Instead the program consists of a number of objects. Each object is a module defining some
aspect of the program’s process. As the program runs, the objects interact as necessary by
passing parameters back and forth. By using separate modules to define unique attributes,
object-oriented programming allows easy modification and code reuse. This results in efficient,
cost-effective model creation and maintenance (Freeman and Ince, 1996; Joines and Roberts,
1996).

Object oriented languages consist of several packages, or logical groupings of classes. A class is a
group of program coding that defines a set of attributes and behaviors. For example, one class
will define the features needed to display and maintain the user interface, while another will
enable running a particular simulation model. Each class created in Netsim incorporates or
expands on a number of standard classes contained in the Java class library through a process
called inheritance. For example, the Netsim class defining the viewing interface includes the
java.awt.Graphics class and extends the java.awt.Canvas class. These classes provide behaviors
for drawing, updating, and displaying the graphic version of the simulation model onto the
interface. Both of these classes are contained in the Abstract Window Toolkit (AWT) package of
the Java class library, available to all programmers.

Activating a particular class creates an instance, or object, of that class. The class acts as a
template, with its attributes and behaviors defining the instance. For example, while Netsim’s
viewing interface class defines the interface, an instance of that class represents those definitions
at any particular step of the simulation. As the user runs a simulation model, instances of classes
are created and destroyed on an as-needed basis.

Figure 1 demonstrates the way Netsim uses the inheritance structure of object-oriented languages.
Three object-oriented packages are represented in this figure: java.lang, java.awt, and netsim. The
solid arrows depict subclass relationships, i.e., netsim.SchedThread is a subclass of
java.awt.Thread which is a subclass of java.lang.Object. By this subclassing, an instance, or
object, of netsim.SchedThread contains all the behaviors defined by each of these three classes.

Each object-oriented class contains a number of methods that analyze and manipulate various
aspects of a current instance of that class. When a user initiates a simulation run, the program
coding creates instances of classes and requests the instances call appropriate methods within
their associated classes. These methods either provide information about that instance, such as
size or color, or change an aspect of the instance, often by performing a set of operations such as
reordering variables in the instance array. In Figure 1 the dotted arrows depict the types of
messages passed between Netsim classes via methods.

12

java.awt.Canvas

netsim.AnimateCanvasnetsim.SchedThread

java.awt.Thread

netsim.DataDictionary

java.lang.Object

requests event list update;
returns next event name

asks this instance
to redraw itself

Figure 1: Example of object-oriented hierarchy

3.3 Event Graphs

Event graphs are a means of capturing the behavior of a simulation model in a modular, graphical
manner (Buss, 1996; Schruben, 1995). This section briefly discusses event graphs and their
connection with object-oriented programming. For a more detailed description of event graphs
see the SIGMA documentation (Schruben, 1995).

Event graphs consist of two basic elements, event nodes and connecting edges. The nodes
represent moments within the system during which one or more state variables, or event
attributes, change. Simulated time passes on the connecting edges between nodes, provided any
conditions associated with the respective edges are satisfied.

A future events list is used to keep track of scheduled events; as a scheduled event is activated, it
is removed from the list and all associated state variables are updated. Then conditions on all
edges connecting from that event are checked. If the conditions are satisfied and there is no time
delay associated with that edge, the connecting event is scheduled immediately. Otherwise, given
the conditions are satisfied, the time for the connecting event is determined and the event is added
to the future events list. Because a simulation model, unlike a real system, can process only one
event at a time, scheduling priorities are associated with the event scheduled by each edge.
Events scheduled to occur simultaneously are placed on the future events list in order of their
assigned priorities. By assigning priorities carefully, users can design models that more closely
describe a system where events often occur simultaneously.

13

By adding simplicity and uniformity to the modeling process, event graphs allow users to focus
on the creation and understanding of the actual models. Additionally, because they separate all
the changes of the system into discrete nodes, or modules, they interface well with object-
oriented programming languages. An event graph models a system visually, providing a global
view of the system. The object-oriented program of the model transfers the visual nodes into
objects with methods, or behaviors, among which the messages provided by the edge conditions
are passed.

14

Chapter 4: Literature Review

In the 1980’s Jack Thorpe, in conjunction with the United States Department of Defense, created
SIMulator NETworking (SIMNET), a networked system of computers running a single
simulation program. SIMNET was an attempt to make the use of simulators and simulation
techniques more feasible for military defense operations (Fullford, 1996). In this system each
user computer acts as a simulator, allowing multiple users to experience a single simulation
program simultaneously in a safe, cost-effective environment.

The success of SIMNET resulted in a standardized simulation networking protocol, Distributed
Interactive Simulation (DIS). DIS allows computerized simulators to communicate and act in
synchronicity through the Internet. Although DIS began in the military environment, it is now
being used increasingly often in non-military applications such as air traffic control, intelligent
vehicle highway systems, and interactive, multi-user computer games. Work is underway to
incorporate some aspects of Internet markup and programming languages such as Virtual Reality
Markup Language (VRML) and Java to the DIS protocol. This will increase the abilities of DIS
systems to define behavioral information and visual representations as users enter and exit the
simulation environment.

There are several benefits of using not just the Internet, but the WWW and its existing structure
of interconnected hypermedia, to enhance simulation technology (Neilson et al., 1996). Irene
Neilson discusses the use of the Interact Simulation Environment (ISE), created as an aid to
teaching engineering students. The ISE embeds simulation models into a graphical user interface
while specific commands are placed into related HTML documents. The HTML commands,
when activated, access a database that prompts an action from the simulation model. Also, at
some simulation states, commands within the graphical user interface link the user to relevant
HTML documents for more information. As a result, ISE supplements HTML articles with
simulation demonstrations and allows context-sensitive help while viewing the simulation.

Because of differences in students’ background computer knowledge, the ISE is set up to utilize
simulation as a modeling tool without requiring the student to interact with the actual simulation
interface. This way the students do not spend time away from their engineering courses learning
the C++ classes that ISE uses to build the graphical interface for the simulation model. A student
may save “snapshots” of the simulation model at a given state for later reference or to use in
discussion with others.

While Neilson discusses many advantages of the ISE and the WWW teaching lessons that utilize
simulation modeling, she does state a limiting factor readily overcome by the use of the Java
language. Many WWW browsers use established protocols when interpreting data types and can

15

not interpret recently created or non-traditional protocols. As a result, the ISE, as currently
developed, requires the original simulation model to be stored directly on the user’s machine in
order to access “snapshots” of that model. Java-compatible browsers, however, understand
traditional, established protocols in addition to interpreting Java programs into executable
programs. Using Java to develop the ISE would allow platform independent model interpretation
and eliminate the need for multiple storage of the simulation, as well as the resulting increase in
file maintenance.

Rodney Cole and Scott Tooker (Cole and Tooker, 1996) have developed WWW-based physics
tutorials to assist physics students. Making these simulation models available over the WWW
greatly expands the range of possible access locations. Like ISE, the physics tutorials allow
students to see interesting cases of a given simulation model without requiring prior knowledge of
the parameters defining these cases or of the background programming languages involved.
Additionally, the use of familiar WWW browsers such as Netscape virtually eliminates the
amount of time necessary for distributing and learning viewing software.

The tutorials use Apple’s OpenDoc Frameworks to provide a basic simulation environment.
OpenDoc Frameworks is a tool for creating software components, in this case physics simulation
models. The components can then be included in an OpenDoc application that is embedded into
a WWW page using HTML. OpenDoc supports modular development of models, allowing
existing tutorials to be tailored to meet the needs of different educational grade levels.

Cole and Tooker state that future tutorials will consist of OpenDoc components, HTML, and
multimedia effects created using Java. OpenDoc and Java are complementary tools (Apple,
1997); OpenDoc components can be written entirely in the Java language or Java applets can be
embedded into the components. However, using OpenDoc in this method voids the platform-
independence of Java. OpenDoc applications and OpenDoc components, such as those created
by OpenDoc Frameworks, must be downloaded onto the user machine with a working copy of
OpenDoc. Additionally, OpenDoc is currently available only for the Macintosh platform.

The importance of the WWW as a platform for interactive learning is supported by T. Singh
(Singh et al., 1996). In particular, he discusses the WWW in connection with the added cross-
platform benefits of Java. Singh demonstrates Java applets for teaching electromagnetics and
theories of dipole-antenna. These tutorial applets are embedded in instructive HTML pages and
allow some degree of user interaction with the presented models.

Gordon Bradley (Bradley, 1996) talks at length about using Java to share research ideas in a
timely fashion over the WWW. He is particularly interested in the comprehensive value that
Java applets can add to interactive, electronic research papers. Such papers are dynamic, report
research more effectively, and allow non-linear evaluation, he claims. The inclusion of Java

16

applets can allow complete reproducibility of research results by allowing the author to embed
the data, algorithms, and analysis work into the electronic paper. A reader may then instantly
examine and manipulate these data without necessarily downloading data or software onto his/her
machine.

Paul Fishwick (Fishwick, 1996) considers three important areas of educational WWW-based
interaction: education and training, publications, and simulation programs. Using the WWW for
education and training allows and encourages the reuse of knowledge while not limiting the
amount of storage space available for expressing new ideas, as is the case with CD-ROMs or hard
drives. Additionally, Fishwick discusses timesaving aspects of using WWW tools in reading and
publishing research articles. The WWW is valuable in all stages of producing an article, from
accessing documents via electronic databases or URL’s cited in bibliographies, to transmitting
electronic copies of the publication to reviewers and for final publication. Simulation models
included in the electronic research publications enhance their educational value. The paper gives
an example of such an electronic article where a simulation model using Perl script is included to
demonstrate current, workstation resource, queueing sizes based on user input gathered through
an HTML form. Besides the value of simulations in aiding understanding, Fishwick discusses the
possibilities of WWW-based simulation or simulation interfaces for multi-user situations such as
multi-user dungeons, where users typically cooperate to reach a solution, and DIS as discussed
earlier.

Using simulation models based on the process interaction paradigm, Rajesh Nair demonstrates
WWW-based simulation through a unique combination of Java applets and query driven
databases (Nair et al., 1996). Actions by the user send queries to a database which then
initializes the appropriate applet. The database stores data created by the running simulation and
supplies these data back to the applet as necessary throughout the simulation run. Using a
database in this manner helps circumvent some security issues currently imposed by Java
applets. Nair’s simulation model applets incorporate JSIM, a library of Java classes specifically
created for this simulation project. The user interfaces provided for the example applets are
simple and self-explanatory. However, animation is interrupted periodically as the applet pauses
to connect with the database on the server. Simple, descriptive statistics are available for the
simulation run after the user chooses to exit the simulation. Unfortunately, the window
displaying the model closes before the statistics appear, so the user is unable to refer back to the
model.

SimKit, created by Arnold Buss and Kirk Stork (Buss and Stork, 1996), runs as an applet on the
WWW and takes advantage of Java being object-oriented by using the event graph design
approach. SimKit models discrete-event simulations and is particularly geared toward military
applications. The main simulation facilitating package, Javasim, is designed to allow for
expansion in order to accommodate frameworks for various types of simulations. Javasim makes

17

extensive use of Java interfaces, which add defined behaviors to identified classes without
imposing the hierarchical structure of class inheritance. This structure allows a modeler to add
customized tools into SimKit without making changes to Javasim. SimKit permits user
interaction through a detailed, model entry form. Additionally, SimKit is combined with a Java-
based graphing package designed by Leigh Brookshaw, to allow a useful output of statistics and
graphs.

18

Chapter 5: Motivation for Netsim

As seen in Chapter 4, research in the area of WWW-based simulation is developing rapidly as
WWW programming tools develop. Still, much of this research provides only limited, WWW-
based simulation capabilities. Referencing the contributions and limitations of the current
literature, this chapter will discuss how Netsim answers these limitations and provides a
positive, unique contribution to WWW-based simulation.

Thorpe helped introduced the idea of Internet-based simulation and, with the development of
DIS as a standardized protocol, simulation developers and users began to realize the potential
benefits of networked simulation. Unfortunately, DIS is mainly geared toward specific, technical
situations and is not connected to the type of widely-accessed, open-topic, network environment
presented by the WWW.

By creating simulation models linked to HTML pages, Neilson and Cole and Tooker set the stage
for incorporating analytical informational tools to the WWW environment. Their simulation
packages allow user interaction, through the WWW browser, between provided models and any
relevant WWW sites. However at this stage, Java was not available. As a result, both of their
simulation packages require the model and/or the appropriate, browser-compatible software to
reside on the user’s machine.
Both Singh and Bradley realized the effectiveness of the Java applet as a WWW multimedia tool.
By including informational applets in their science tutorials and research publications they
enhance the informational value for the user as well as the potential for the user to reproduce
reported results more easily. Unfortunately, neither of these implementations take full advantage
of the interactive capabilities of Java, particularly in terms of a general WWW-based simulation
tool.

By combining a database for handling data with a Java applet for displaying the model to the
user, Nair’s JSIM package provides more interactivity for the user. Additionally, because the
database resides on the server, JSIM realizes many of the potential advantages of WWW
simulation. The main drawback to JSIM is the interruption during simulating caused by constant
information transfer between the database and the applet.

SimKit is written entirely in Java, eliminating the need for the model to exist on the user’s
machine and for a connected database. SimKit allows a fair degree of user interaction through a
form for entering and editing basic model parameters. Additionally, although it does not provide
model animation, SimKit does combine with Java-based graphing packages to provide a number
of statistical and graphical interpretations. By using the event-graph approach and utilizing the
object-oriented nature of the Java language, SimKit allows for future expansion. However, the

19

current focus is primarily toward military applications.

Netsim, like SimKit, is written entirely in Java and models discrete-event simulations using the
event graph approach. A model created in Netsim appears as an applet on an HTML page and is
available over the WWW, taking full advantage of the portability of Java. No special software or
code is needed on the user’s machine.

Netsim provides a maximum amount of user interaction with the simulation model. A
programming interface provides a blank template with text fields for the various parts of a
simulation model, such as event name and state variables. Any type of basic simulation model
may be entered into this interface by following the format described in 6.3. While knowledge of
simulation, particularly including the event graph approach, is useful in designing a model in
Netsim, no knowledge of Java or simulation modeling is required to enter or modify the model.

A second interface allows user interaction with running the simulation model. This interface not
only provides start, pause, and stop capabilities and data output, but also an animation of the
model. Model animation allows viewers a visual demonstration of how the system is operating
over time. This is an important feature of Netsim in that users of all education backgrounds can
use this WWW-based simulation tool to visually understand the operation of a system or
process.

Written as a general simulation package that allows users to define and customize models, Netsim
provides more model flexibility than SimKit. The object-oriented structure offered by Java and
maintained in Netsim allows easy expansion of the package as well as compatibility with other
Java-based tools such as the graphing or analytical tools used by SimKit.

Netsim incorporates all the advantages of WWW simulation presented in Chapter 2 while
overcoming all the limitations presented in the current WWW-based simulation literature. Netsim
enhances the WWW environment, offering an effective, general simulation tool that provides both
model animation and data output. Additionally, Netsim’s capabilities for expansion and
combination with other Java tools ensure that Netsim can grow with the technology supported
by Java and the WWW.

20

Chapter 6: Netsim Simulation Package

As discussed in Chapter 5, the Netsim simulation package supports discrete-event simulation
using event-graph modeling. The current version handles up to six events and six total
connections between events and is easily expandable. Consisting of two user interfaces, an input
interface for defining and editing the model and an output interface for viewing the model, Netsim
features complete model creation and modification capabilities as well as standard simulation,
data collection capabilities. Netsim also allows the user to choose the random number seed, the
run-length and the output mode (animation and/or data). Netsim runs as a Java applet on any
Java-compatible WWW browser or applet viewer. Additionally, a basic user’s manual written in
HTML accompanies the Netsim package and, through the WWW, can be hypertext linked to the
HTML page containing the Netsim applet (Appendix I). The manual explains how to create and
interact with a model using Netsim.

Figure 2 outlines the relationship among all classes specifically created for and contained within
the Netsim package. The classes of Netsim extend various Java classes as shown in the Netsim
documentation and source code (Appendices G and H). Currently none of the Netsim classes

MainApplet

EntryPanel ViewerPanel

CardPanel

ScheduleThread AnimateCanvas

DataDictionary

RndGenerator

ModelParser

MyVector MyHashtable

COMPILERUSER/PROGRAMMER
INTERFACE

INTERPRETER

Figure 2: Netsim package internal structure

21

extends another class within Netsim. Consequently, it should be understood that Figure 2 is not
a class hierarchy diagram in the sense that a class in the lower level of the chart extends a class in
an upper level. Rather, upper level classes invoke instances of connected, lower level classes and
call methods within those classes. The package must be compiled as a group or the classes
compiled in succession from the lowest level upward.

6.1 Overview

The Netsim simulation package can be considered from a number of different levels. At the most
general level, Netsim consists of three interconnected pieces: a user/ programmer interface, a
compiler, and an interpreter as shown in Figure 2.

The user/ programmer interface provides a means for the programmer to introduce a model into
the simulation package. This interface may be designed to prompt the programmer for specific
information and specific formats. Alternatively, the interface may be as simple as a text window
with the expectation that the programmer is familiar with the appropriate format. In the case of
Netsim, this interface, shown in Figure 3, resembles a general entry form with text fields for the
necessary information. The model user can also use this interface to check and modify model
parameters.

Netsim takes advantage of a hypercard type layout format in Java to link the programmer’s entry
form with the viewing interface on which the interpreter will display the simulation output.
Using password restrictions on this interface link, Netsim may be setup so that the programming
interface or modifications to the model through it are strictly limited to an authorized
programmer. Alternatively, access may be left unrestricted allowing any user to create and edit
his/her own model.

In both interfaces Netsim makes extensive use of the java.util.StringTokenizer class for parsing
data input. This class is extended by ModelParser and greatly simplifies the compiling process.

The compiler reads the data input into the entry form and parses them into forms usable by the
interpreter. Because no special compiler software is needed, the model is instantly executable
with a single mouse-click after a being entered into Netsim.

22

Figure 3: Interface for creating and modifying model

Finally, the interpreter combines the model specifications entered in the entry form with
information preprogrammed into the simulation package, such as random variate formulas, to
create a dynamic version of the simulation model. The interpreter provides the user with an
animation of the model as well as requested data output as shown in Figure 4. Either of the
output options may be temporarily canceled, allowing the viewer to get a feel for the general
behavior of the system by focusing solely on the animation, or providing the data output at a
much higher speed.

23

Figure 4: Interface for viewing model animation and data output

6.2 Information Flow

Like Netsim as a whole, the interpreter section of the package can be split into three main
sections: the database, the DataDictionary class; the interfaces for the user, the ViewerPanel,
AnimationCanvas and EntryPanel classes; and the simulator, the SchedThread class. The
database holds the information specific to a given model and supplies these data to the viewing
interface as well as to the user/ programmer interface. These interfaces present the model data to
the user in a graphical, user-friendly way and enable interaction with the model. Certain user
commands on the viewing interface change the status of a simulation run. The run status is
passed to the simulator, which then determines the next step in the run. This information is sent
to the database to process, resulting in new and revised data for the display on the interfaces.
Figure 5 depicts this ongoing cycle. The following subsections discusses each of the three pieces
in more detail.

24

continue run

supply data

Database

Interfaces Simulator

process next event

Figure 5: Information flow within Netsim

6.2.1 Database

The database categorizes initial input according to its role in the model and then transfers each
type of input into a functional data form that it can manipulate and analyze. The data are stored
in hashtables or vectors until needed. Once a simulation run begins, the database takes the next
event from the future events list of the simulator, calculates new state variables and random
variate values, as necessary, and updates existing database values. Finally, the database updates
the future events list and sends requested data to the viewing interface.

6.2.2 Interfaces

The viewing interface displays the simulation model graphically, redrawing the screen as data
changes are received from the database. It also displays data output, such as the time and name
of the current event. This interface and the user/programmer interface link the user to the heart of
the simulation program by presenting model specific information and animating the behavior of
the model. Additionally, the viewing interface provides tools such as menus and buttons that
allow the user to alter model parameters and control the status of the simulation run. The current
run status as well as any changes in the model parameters are passed to the simulator.

6.2.3 Simulator

The simulator accepts run status and model parameter information from the viewing interface in
addition to monitoring the simulation clock and the future events list. Using the run status,
specified run-length, current clock time and future events list, the simulator determines the next
action of the simulation. The simulator sends this information to the database, enabling the
database to process the next event and update variable values.

25

6.3 Model Creation

At any time a user may switch between the user/ programmer interface and the viewing interface
by clicking on the lower right button of the screen, which is labeled “View Simulation” or
“Define/ Revise Model” depending on the current interface. The save buttons on the lower left
side of the screen are currently disabled. Ideally, they would allow the user to name and save
either the data output or the model specifications into a directory on the local computer. The
data output, as a text file, can then be imported into traditional spreadsheet and analysis packages
and is available for further analysis by the user. The model specifications, also as a text file,
would act as parameters that, when opened in Netsim, define the saved model. Due to security
restrictions, Java applets themselves are currently not able to be saved in this type of manner.
While saving and retrieving text from an applet as described is theoretically possible, it was not
attempted in this version of Netsim and actual limitations and implementation difficulties are
unclear.

To create a model the programmer simply enters the name of each event into the entry form
interface, followed by the state variable rules for that event. All names and variables are case-
sensitive, should begin with a letter, and should not contain any spaces. The events will appear
on the animated model from left to right in the order they are entered on the entry form. The
state variables will also be processed in the order they are listed. This may make a difference in
the results of a model if one variable references another during the same event.

State variable rules must be separated from the variable name by an equals sign and from another
variable equation by a semicolon, (e.g., {1st var. name}={1st var. rule};{2nd var. name}={2nd
var. rule}; etc.) Note there is no space between any two of these sections. Each event may
contain as many variables and variable rules as desired. A variable rule may do the following, for
the example variables Q, TS, T, TE and the reserved variable W[]:

• change the existing value by assigning a new integer value,
(e.g., Q=1 , where Q is the variable name and 1 is the new variable value).

• increase or decrease the existing value by an integer amount,
(e.g., Q=+ 1 or Q=- 1, with a space left between the operation and the integer).

• increase or decrease the existing value by another variable,
(e.g., Q=+ TS or Q=- TS, again with a space left between the operation and the value).

• assign the current simulation time to a variable using the reserved word “clk,”
(e.g., T=clk).

• increase or decrease the existing value by “clk,” the current simulation time,
(e.g., T=+ clk, again with a space between the operation and the value).

• assign the current “clk” time to the reserved variable array, W[], using another
variable to index the array,
(e.g., W[Q]=clk creates an array of clock times indexed by Q).

• combine any of these six operations, except that the array, W[], may only contain

26

“clk” times and should come at the end of the equation,
(e.g., TE=clk - TS or T=+ clk - W[Q]).

Edges may be created between any two consecutive events, or an edge may be self-scheduling
(i.e., from an event back to the same event). Netsim currently allows one edge in each direction
between two different events, with up to one condition on each edge. These limitations, as well
as the current limitation of six event nodes, may be eliminated by extending the current code.
However, the interfaces may have to be revised to effectively display on screen the model
specifications and the event graphs of a larger model.

The programmer creates an edge by typing in the name of the event where the edge begins in the
“from” text box and the event where the edge ends in the “to” text box. These names are case-
sensitive and must match the event names defined in the upper section of the event form or the
edge will not appear in the model.

Basic conditions may be placed on the edges by using the format shown in Table 1. The variable
name may be any variable defined as a state variable in the upper section of the event form. The
operator is <, >, or =; the integer value may be any integer. Note a space separates the operator
from each of the other terms. The reserved word “TRUE” typed without the quotations in the
“condition” text box, makes that edge unconditional.

var. name <space> operator <space> integer value
Examples: Q < 1

Q > -1
Q = 0

TRUE
Table 1: Format for edge conditions

Additionally, time delays are added to the edges by typing the appropriate function in the “time
delay” text box. Integer-valued parameters of the function are separated by commas and enclosed
by parentheses. These time delay functions are case-sensitive and contain no spaces. Netsim
currently supports three types of time delays: constant increases, sta(a); uniform random
variates, uni(a,b); and exponential random variates, exp(a). The parameters “a” and “b” may be
any integers chosen by the user. For example, the delay defined by sta(5) causes constant time
increments of 5 time units, uni(3,5) causes a delay uniformly distributed between 3 and 5 time
units, and exp(5) delays the upcoming event an exponential amount of time with a mean of 5 time
units. Netsim is easily expandable to include other random distributions.

The user alters the priority of an edge by typing the preferred priority, integers 1 to 9, in the
“priority” text box. The priority is set by default at 5 with 9 signaling an immediate priority and

27

1 being a very low priority. This priority scale, while backwards from SIGMA’s, seems to be
slightly more intuitive, particularly to the occasional user. With Netsim an edge requiring a higher
priority should be assigned a higher priority value.

28

Chapter 7: Analysis of Netsim

7.1 Random Number Generator in Java

The random number stream generated by the class java.util.Random was tested for uniformity
and independence using the Chi-square test and two versions of the Runs test. Data are
presented in Appendix B while results are summarized in Table 2: Test results of the Java
random number generator and discussed below.

For the Chi-square test the [0,1] interval was partitioned into 1,000 even sections, leaving 999
degrees of freedom. Thirty independent runs of 10,000 numbers each were tested. Theoretically,
1.5 of these runs should result in a test value having a p-value less than 0.05. As shown in Table
2: Test results of the Java random number generator, the two largest Chi-square test statistics for
the thirty runs have p < 0.05 with the third maximum test value being 1073.6 with p = 0.050.
These results follow the expected distribution and the hypothesis of uniformity is not rejected.

For independence tests thirty independent sets of 10,001 numbers were used. Both tests for
independence use a two-tailed Z test. The Runs Up and Down test gave a maximum test statistic
of 1.874, with p = 0.061. The Runs Above and Below the Mean test resulted in a maximum test
statistic of 2.189, p = 0.029, and a second largest test statistic of 1.941, p = 0.051. Again, out of
thirty runs, one to two are expected to result in a p-value less than 0.05 as was the case in the
Runs Above and Below the Mean test. For each independence test’s set of thirty runs, Figure 6
displays a frequency count of the resulting p-values . As shown by Figure 6, both sets are
normally distributed. Additionally, a visual scan of runs of 10 numbers each shows no apparent
pattern in the length of runs for either of the above independence tests. Hence, the hypothesis of
independence is not rejected.

Test Statistic: p-value:
Chi-square:

Maximum value 1106.7 0.010
Second highest 1078.1 0.041

Third highest 1073.6 0.050
Runs Up and Down:

Maximum value 1.874 0.061
Runs Above and Below:

Maximum value 2.189 0.029
Second highest 1.941 0.051

Table 2: Test results of the Java random number generator

29

0
2
4

6
8

10
-2

.5

-1
.5

-0
.5

0
.4

9

1
.4

7

2
.4

5

Bin

F
re

q
u
e
n
c
y

Runs Up & Down
Runs Above & Below

Figure 6: Frequencies of p-values for each set of independence test runs

Due to the results of this section, the random number generator used by the Random class, a
standard part of the Java language, was determined to be both uniform and independent.

7.2 Comparison of Netsim with SIGMA

Netsim was compared to SIGMA using the carwash model as presented in Figure 2.6 on page 26
of the SIGMA documentation (Schruben, 1995). This model is a standard G/G/1 queueing model
and provides some measure of control in the comparison between the simulation packages. The
event graph and state variable rules of the carwash model are given in Figure 7 with the variables
defined in Table 3. The time delay for arrivals was exponentially distributed with a mean of 5
time units, while the service time was exponentially distributed with a mean of 3 units.

S=1 Q=Q+1 S=0 S=1
Q=0 CI=CI+1 Q=Q-1 CO=CO+1
CI=0 W[CI]=clk TS=clk TE=TE+clk-TS
CO=0 WT=WT+clk-W[CO]
TS=0
TE=0
W[]=0
WT=0

ts

ta

S>0
run enter start leave

Q>0

Figure 7: Event graph for carwash model

30

State variables in model:
S = # of servers available
Q = # of customers in queue
CI = # of customers that have entered system
CO = # of customers that have left system
TS = time customer begins service
TE = total time server is busy throughout run
W[] = array tracking the time of each entry into the system
WT = total accumulated waiting time of customers in the system
ta = interarrival time, exponential with a mean of 5 time units
ts = service time, exponential with a mean of 3 time units

Variables collected for data comparison:
Q = # of customers left in the queue
CO = system throughput
WT = total waiting time
TE = total server busy time

Table 3: Variable definitions for carwash model

In case of scheduling ties between interarrivals and services, a higher priority was placed on the
enter-enter edge than on the start-leave edge. On a scale of 1 to 9 the higher priority is 6 in
Netsim while in SIGMA it is 4; this is due to the inverse relationship of the two programs’
priority scales. The default priority for both Netsim and SIGMA is 5.

7.3 Random Variate Calculations in NetSim and SIGMA

To calculate an exponential random variate using the inverse transformation technique, one takes
the natural log of a uniform random number and multiplies by the negative of the exponential rate.
Given a single random number, the exponential random variate calculated by this formula should
be the same regardless of differences in software or hardware.

The first column, ARND, of Table 4 consists of a stream of uniform random numbers calculated
by SIGMA with the seed 12352. In the second column of Table 4, ln(ARND) is the natural log
of ARND as computed by Netsim, or by a standard calculator. The third column depicts TLN,
the natural log of ARND as computed by SIGMA. As shown, the values of ln(ARND) and
TLN differ slightly. Because of this difference the TLN values are input in Netsim for model
comparison between Netsim and SIGMA. The comparison model is described in Section 7.2 and
the comparison discussed in Section 7.4. Using the stream of random numbers, ARND,
Appendix D supplies a complete table of the exponential random variates, as calculated by
SIGMA, for the comparison.

31

ARND ln(ARND) TLN
0.096 -2.343 -2.336
0.754 -0.282 -0.281
0.236 -1.444 -1.439
0.246 -1.402 -1.400
0.740 -0.301 -0.299
0.583 -0.540 -0.538
0.095 -2.354 -2.352
0.336 -1.091 -1.087
0.669 -0.402 -0.401
0.326 -1.121 -1.118
0.017 -4.075 -4.036
0.831 -0.185 -0.185
0.083 -2.489 -2.477
0.034 -3.381 -3.360

Table 4: Natural log calculations

7.4 Comparison Results and Discussion

To accurately compare treatment of the carwash model between Netsim and SIGMA, the natural
log values produced by SIGMA (TLN values shown in Table 4, column 3) were input directly
into Netsim, bypassing the usual random number generator and natural log calculator. These
values were then used by both Netsim and SIGMA in calculating the required exponential
random variates. Output at each time unit of activity was compared for the time unit, event,
number in queue, accumulated system throughput, accumulated time spent in system (or waiting
time), and total server busy time. Appendix E shows this data output from both simulation
packages, with the variable names as defined in Section 7.2. As shown, both packages present
identical results to at least the second decimal, differing by at most 0.001. This slight difference
is non-accumulating during simulation runs and quite possibly results from package differences in
byte storage and manipulation.

The future events lists for the two packages matched, as seen in Appendix E, and, when hand
traced, corresponded to the theoretical behavior of the model. At each step of the run, state
variables and random variates matched between packages and with theoretical values.

In addition, the future events list generated by Netsim was traced for numerous variations, both
stochastic and deterministic, of the carwash model. State variables at each simulation step, as
well as overall model behavior were examined in each case and, for deterministic models, were
compared to those from identical models run in Sigma. In all cases the models performed as
expected by discrete-event simulation theory.

32

7.5 Netsim Limitations

7.5.1 Conversion of Clock Values

In the current version of Netsim in order to maintain a compatible format among variable values
in the database, “clk” must be an integer. However, the simulation clock time is taken from
uniform(0,1) random variates calculated by the java.util.Random.nextDouble() method in Java.
To solve this discrepancy, the clock time, when used in the variable database, is first converted to
an integer. This is done by multiplying by 10,000 and truncating the remaining decimal portion.
The new value is equivalent to “clk.” Time-valued variables are easily rescaled by dividing by
10,000.

In Table 5, a sample of rescaled data output using the 10,000 multiplier is compared to a run with
the same seed and using a 1,000,000 multiplier. As shown, the 10,000 multiplier reduces the
number of significant digits in the data output to at most three, but does not otherwise affect the
accuracy of the output. The number of significant digits can be increased by increasing the
multiplier. However, this causes variable values to quickly exceed the predefined integer size
limit. Potential solutions to this conversion problem for future versions of Netsim are discussed
in Chapter 8.

multiplier time event Q CO WT TE
10,000 14433.98 leave 0 266 2006.2937 82.81475

1,000,000 14433.98 leave 0 266 2006.294220 82.8147698
Table 5: Sample of simulation run using different clock multipliers

7.5.2 Thread Synchronicity

The current version of Netsim contains the following, surface level, oddities caused by lack of
proper synchronicity among the threads. These inconsistencies affect viewing the animation, but
do not affect the simulation process or accuracy of the data output. In particular, in order to
rerun the simulation the user must actually click on the stop button before clicking the play
button, even if the simulation has finished naturally. Additionally, when viewing a Netsim model
on a WWW browser, pausing the animation and temporarily activating a different window on the
computer screen may cause the simulation run to resume. Finally, the pause button is not
reliable on machines, such as the Sun, that use multithreaded processors. An effective fix to these
problems will involve a thorough understanding of multithreading capabilities and behaviors
within the Java language (Lemay and Perkins, 1996).

33

Chapter 8: Conclusions

8.1 Benefits of WWW Simulation

In computer applications involving long-term use from a single machine, a traditional, non-
Internet-based simulation package may be appropriate. Such a package is often developed to
handle specific, complex problems and can be customized to work optimally with a particular
computer platform. Additionally, it can generally be expected to perform with a great deal of
reliability as software availability and access times depend only on one computer, not on the
Internet network.

The expanding popularity of the WWW, however, suggests a growing number of situations
efficiently modeled through WWW-based simulation. Companies may find WWW-based
simulation tools helpful in monitoring business performance and in demonstrating the features of
a new product. Other potential applications include educational tutorials, skill training and role
playing games. WWW-based simulation presents these and other applications with many
advantages over non-Internet-based simulation. Several important advantages are summarized in
the following paragraphs.

WWW-based simulation, particularly when created using the Java programming language, can be
made widely available. Such simulation models are accessible from any Internet-connected
computer through a number of computer platforms and without recompilation. Also, because the
Internet is usually accessible twenty-four hours a day, simulation modeling is possible during
evening and weekend hours as well as normal business hours.

WWW-based simulation models can be protected from inadvertent or unauthorized modifications
by the user. This ensures distribution of identical models to all users and minimizes file
maintenance issues for the user. In addition, providers of WWW-based simulation models can
easily control access to the site by imposing password and time limit restrictions on either the
model or the entire site.

WWW-based simulation models run from a single WWW site enabling both reliable version
control and frequent model modifications. Additionally, the most up-to-date versions of the
model are instantly available through the server to all authorized Internet users, regardless of
physical location.

Finally, WWW-simulation models created with Java require only a Java-compatible WWW
browser for viewing. Such browsers are easy to install and use, allowing users to access models
quickly. By providing the browser as a simple access tool, along with many tools for

34

communication, interaction and data access, the WWW environment can enhance the
informational value of the simulation model.

8.2 Contributions of Netsim

The current literature for WWW-based simulation motivates the development of Netsim, a
general, discrete-event, WWW-simulation package. Programmed entirely in the WWW-
compatible Java language, Netsim offers all the previously discussed advantages of WWW-based
simulation. Additionally, Netsim allows users full interactive capabilities and provides both
model animation and data output. Users may create, modify and interact with a simulation
model, receiving requested data output. Meanwhile, the animation capabilities of Netsim present
a visual representation of the behavior of the system. By providing a means for general
simulation modeling in connection with these advantages and capabilities, Netsim enables most, if
not all, of the users in the WWW environment to take advantage of simulation modeling as an
analytical, informative tool.

Netsim takes advantages of the drawing and string parsing portions of Java to increase cross-
platform compatibility and allow users maximum interaction capabilities. The Abstract Window
Toolkit in Java aids the creation of graphical user interfaces in Netsim and allows the interfaces to
be rendered according to the platform-dependent information in the user’s WWW browser,
ensuring maximum graphical compatibility with that platform. When users enter and modify
models, Netsim extends the Java StringTokenizer class to parse the entered data from string
format into the proper format for the databases.

Additionally, Netsim uses threads and flexible database structures to minimize download time
and unnecessary memory usage within the applet. Threads are used in classes, such as the
interface creation classes, that define numerous variables, graphical components, and/or data
structures. The threads decrease package startup time by allowing classes to define and
instantiate themselves simultaneously. Netsim uses databases composed of hashtables and
vectors that expand themselves as necessary instead of being initially defined with unchanging
sizes. As a result, the amount of memory required by the Netsim applet at a given time depends
on the number of events, edges, and variables within the current model. Additionally, this
composition of databases contributes to the ability of Netsim to model varied types and sizes of
models.

At this time, reasonable size limits on Java applets, particularly in terms of download time and
browser or client platform memory allocation, are unclear; current documentation does not
specify a suggested or originally targeted size limit. However, because of WWW security issues,
applet memory allocation is made at run-time and, consequently, is dependent on the client
software and hardware (Gosling, 1996). As seen with Netsim, applets of a substantial nature can

35

be utilized without requiring extreme download times or amounts of free memory on the client
platform.

As demonstrated in Chapter 7 with the carwash model, Netsim codes and processes simple,
discrete event simulation models accurately. Whether or not the models themselves are valid for
their respective systems is up to the modeler and programmer, as is the case with any simulation
software. Because Java applets such as Netsim are entirely downloaded onto the local computer
before interpretation into a platform-specific, executable program, download times for Netsim are
proportional to a given computer’s Internet connection and to the level of current activity on that
part of the Internet.

8.3 Programming in Java

As an object-oriented programming language designed for simplicity and robustness, Java is, in
fact, relatively simple and well-behaved. The Java language contains a set of class libraries that
provide data structures and handle common utility functions. Also, the descriptive names
allowed in Java simplify documentation and mental bookkeeping by helping the programmer and
other readers follow method calls within a program. Furthermore, much Java coding resembles
that of established object-oriented languages like C++. However, unlike C++, Java does not use
reference pointers that can cause nearly undetectable memory problems. Additionally, self-
initiated threads in Java manage applet memory allocation and garbage control throughout the life
of an applet. These features allow more focus on programming and allow program
experimentation without disastrous results such as system crashes.

For a novice Java programmer, more difficult coding involves forcing the graphical components to
refresh at appropriate times. Within an applet, Java uses a self-initiated thread to control
painting and repainting onto the screen. While this is beneficial in many applets, those relying on
graphical display techniques such as animation require particular refresh rates. Because the
involved Java-defined methods create a required graphics object that can not be explicitly
instantiated, calling these methods from user-defined methods that describe repainting behaviors
can be tricky. An inelegant solution can often be obtained through less than true object-oriented
programming where most or all behaviors involved in painting and repainting are included into the
Java-defined methods, not into the multiple user-defined methods suggested by the logic of the
particular program.

Netsim was created using the Java Development Kit (JDK), version 1.0.2. The Macintosh
version of the JDK includes an applet viewer with several user-interface bugs that slow
development. However, on all platforms, the JDK compiler error information is helpful. Also, a
number of graphical development environments for Java were marketed during the development
of Netsim; by allowing drag and drop programming techniques, such software should noticeably

36

speed Java applet development, particularly for infrequent programmers. There are small
typographical errors or confusing issues with a number of the examples in the cited Java resource
books that can cause minor setbacks in the learning process if one is not actively testing the
examples while reading. However, during development of Netsim, the number of Java
programming books has expanded greatly, hopefully providing a more exhaustive and
comprehensive resource library. Additionally, Java maintains a web site with Application
Programming Interface (API) documentation, white papers and information about current
product releases (Sun, 1997).

8.4 Future Work

The current version of Netsim contains a small number of limitations as discussed in Chapter 7,
Section 7.5. These are programming issues which can be remedied with more complex
programming techniques than undertaken for the creation of Netsim. In particular, the creation of
a special database could prevent the loss of significant digits caused by integer translation of
simulation clock time. Such a database would have to recognize and be devoted specifically to
time-valued variables, managing those variables separately from other variables. Viewing
inconsistencies discussed in Section 7.5.2 are remedied by carefully synchronizing the threads
within the package. However, because some of these threads reference methods within each
other, proper solution of this problem will necessitate solid knowledge of multithreading. None
of the discussed limitations directly affect the simulation process and both involve programming
techniques outside the scope of the current research.

Because Netsim was specifically created as a general simulation package, expansion, in most
cases, simply involves extension through additional classes and/or methods. The object-oriented
structure of Netsim greatly facilitates this process. Future additions should include classes for
handling more advanced simulation models, support for a wider range of random variates, and
additional user interfaces. Databases holding edge information should be expanded to allow
parameter passing, enabling complex modeling through simple event graphs. Additionally, user
understanding would be enhanced by replacing event graphs with system-appropriate icons and
designs and by including context-sensitive help within the applet. For users concerned with
replicating or presenting the data output, future modifications include enabling the current “save”
buttons as well as adding graphing and statistical analysis capabilities.

Use of the Java language is expanding rapidly, especially in the creation of educational software.
Consequently, some of the potential enhancements mentioned for Netsim may be made possible
by linking with other existing Java-based classes, in their current form or with minor
modifications.

The information potential through the WWW is growing rapidly, encouraging more and more

37

people of all backgrounds and interests to gain regular, frequent access to the WWW.
Additionally, the increase of standardized HTML formats, multimedia browser plug-ins, and
scripting and programming languages are allowing WWW site providers to create sites that are
more interesting, visual, and user-friendly. As the popularity of the WWW for everyday transfer
of information and ideas expands, WWW-based simulation may become an extremely beneficial
and desired addition to the common WWW environment. For example, by providing a high level
of user interactivity through simple interfaces, Netsim encourages users of all levels of
understanding to interact with the model. Additionally, through animation and data output,
Netsim contributes a graphic as well as analytic representation of a system process. This enables
users to understand the system both visually and statistically. By accessing the Netsim
simulation models through the WWW users are able to ensure a common reference and to
communicate easily with each other, building on understandings and ideas.

38

References and Bibliography

Afergan, Micheal M. (1996) JavaTM: Quick Reference. Que, Indianapolis, IN.
Aitken, Gary. (1996) Moving from C++ to Java, Dr. Dobb's Journal. March, 21(3): 52-56.

Apple Computer, Inc. (1997) Apple Computer's web site for OpenDoc developers: About
OpenDoc . http://www.opendoc.apple.com/press/od-cdog.html.

Apple Computer, Inc. (1996) OpenDoc Development Framework Overview.
http://www.devtools.apple.com/odf/overview.html.

Banks, Jerry. (1996) Interpreting Simulation Software Checklists, OR/MS Today. June - Special
International Issue, 74-78.

Banks, Jerry, John S. Carson, II and Barry L. Nelson. (1996) Discrete-Event System
Simulation: second edition. Prentice Hall, New Jersey.

Bradley, Gordon H. (1996) Dynamic and interactive research publications using Java,
http://dubhe.cc.nps.navy.mil/~gbradley/. February.

Buss, Arnold H. (1996) Modeling with Event Graphs, Proceedings of the 1996 Winter Simulation
Conference. ed.: J.M. Charnes, D.J. Morrice, D.T. Brunner, and J.J. Swain. Coronado,
California. December 8-11.

Buss, Arnold H. and Kirk A. Stork. (1996) Discrete Event Simulation on the World Wide Web
Using Java, Proceedings of the 1996 Winter Simulation Conference. ed.: J.M. Charnes,
D.J. Morrice, D.T. Brunner, and J.J. Swain. Coronado, California. December 8-11.
http://131.120.142.115/~stork/simkit_home.html.

Cole, Rodney and Scott Tooker. (1996) Physics To Go: Web-based Tutorials For CoLoS Physics
Simulations, Technology-Based Re-Engineering. Engineering Education. Proceeding of the
Frontiers on Education FIE’96 26th Annual Conference. 2: 681-683.

December, John. (1995) Presenting Java: An Introduction to Java and HotJava. Sams.net,
Indianapolis, IN.

Fishwick, Paul A. (1996) Web-based Simulation: Some Personal Observations, Proceedings of
the 1996 Winter Simulation Conference. ed.: J.M. Charnes, D.J. Morrice, D.T. Brunner,
and J.J. Swain. Coronado, California. December 8-11.
http://www1.cise.ufl.edu/~fishwick/websim.html.

Freeman, Adam and Darrel Ince. (1996) Active Java: Object-Oriented Programming for the
World Wide Web. Addison-Wesley, Harlow, England.

Fullford, Deb. (1996) Distributed Interactive Simulation: It’s Past, Present and Future,
Proceedings of the 1996 Winter Simulation Conference. ed.: J.M. Charnes, D.J. Morrice,
D.T. Brunner, and J.J. Swain. Coronado, California. December 8-11.

Gosling, James and Henry McGilton. (1996) The Java Language Environment: A White Paper,
http://www.javasoft.com/docs/language_environment/. May.

39

Joines, Jeffery A., and Stephen D. Roberts. (1996) Design of Object-Oriented Simulation in
C++, Proceedings of the 1996 Winter Simulation Conference. ed.: J.M. Charnes, D.J.
Morrice, D.T. Brunner, and J.J. Swain. Coronado, California. December 8-11.

Jones, Christopher V. (1996) Java and OR/MS, INFORMS CSTS Newsletter. Spring, 17(1): 3-
11.

Law, Averill M. and W. David Kelton. (1991) Simulation Modeling & Analysis: second
edition. McGraw-Hill, New York, New York.

Lemay, Laura and Charles L. Perkins. (1996) Teach Yourself JavaTM in 21 days. Sams.net,
Indianapolis, IN.

Nagaratnam, Nataraj, Brian Maso, and Arvind Srinivasan. (1996) JavaTM Networking and AWT
API Superbible. Waite Group Press, Carte Madera, CA.

Nair, Rajesh S., John A. Miller, Zhiwei Zhang. (1996) Java-Based Query Driven Simulation
Environment, Proceedings of the 1996 Winter Simulation Conference. ed.: J.M. Charnes,
D.J. Morrice, D.T. Brunner, and J.J. Swain. Coronado, California. December 8-11.
http://www.cs.uga.edu/~rajesh/JSIM/jsimdistribution/docs/API_users_guide.html.

Neilson, Irene, Ruth Thomas, Calum Smeaton, Alan Slater, and Gopal Chand. (1996) Education
2000: Implications of W3 Technology, Computers and Education. 26(1-3):113-122.

Netscape Communications Corporation. (1997) Netscape Navigator. Mountain View, CA.
http://home.netscape.com/.

Pritsker, A. Alan B. (1986) Introduction to Simulation and SLAM II: third edition. John
Wiley & Sons, New York.

Schruben, Lee W. (1995) Graphical Simulation Modeling and Analysis: Using SIGMA for
Windows. Boyd & Fraser, Danvers, MA.

Schulzrinne, Henning. (1996) World Wide Web: Whence, Whither, What Next?, IEEE Network.
March/April, 10(2): 10-17.

Schriber, Thomas J. & Daniel T. Brunner. (1996) Inside Simulation Software: How It Works and
Why It Matters, Proceedings of the 1996 Winter Simulation Conference. ed.: J.M.
Charnes, D.J. Morrice, D.T. Brunner, and J.J. Swain. Coronado, California. December 8-
11.

Singh, T., M. Zhu, U. Thakker, and U. Ravaioli. (1996) Impact of World Wide Web, Java, and
Virtual Environments on Education in Computational Science and Engineering,
Technology-Based Re-Engineering. Engineering Education. Proceeding of the Frontiers on
Education FIE’96 26th Annual Conference. 3: 1007-1010.

Sun Microsystems, Inc. (1997) The Source For Java: JavaSoft Home Page.
http://java.sun.com/.

Tooker, Scott and Rodney Cole. (1996) Using OpenDoc To Create Low-Cost Physics Simulation
Tools For Secondary and Higher Education, Technology-Based Re-Engineering.
Engineering Education. Proceeding of the Frontiers on Education FIE’96 26th Annual

40

Conference. 2: 688-689.

Zar, Jerrold H. (1984) Biostatistical Analysis: second edition. Prentice Hall, New Jersey.

41

Appendices

42

Appendix A: Copyrights/ Disclaimers

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. Tamie Lynne Veith and the Netsim
simulation package are independent of Sun Microsystems, Inc.

SLAM II (Simulation Language for Alternative Modeling) is a registered trademark of Pritsker &
Associates, Inc.

SIGMA (Simulation Graphical Modeling and Analysis) is a trademark of Systems Design, Inc.

Except as explicitly stated in the above disclaimers, the entire contents of this document and of
any accompanying software, including Java applets, are copyrighted by Tamie Lynne Veith,
April 29, 1997. This software may be reproduced for educational purposes only and should be
accompanied by the following copyright notice: Copyright 1997, Tamie Lynne Veith.

43

Appendix B: Check of Java Random Number Generator:

Data Output

Uniformity test: Chi-square
degrees of freedom: 999

RNG Seed: # of numbers: test value:
12345 10000 968.5
12346 10000 1073.6
12347 10000 989.7
12348 10000 984.4
12349 10000 975.8
12350 10000 1015.7
12351 10000 1035.4
12352 10000 976.8
12353 10000 1054.2
12354 10000 971.9
12355 10000 1006.6
12356 10000 1034.8
12357 10000 1023.0
12358 10000 1036.7
12359 10000 986.4
12360 10000 1106.7
12361 10000 1078.1
12362 10000 963.8
12363 10000 1054.4
12364 10000 1014.8
12365 10000 1024.7
12366 10000 1025.6
12367 10000 1049.0
12368 10000 1000.2
12369 10000 986.7
12370 10000 1049.6
12371 10000 966.0
12372 10000 985.0
12373 10000 894.3
12374 10000 1003.5

Max (Abs): 1106.7
p-value: 0.010

44

Independence tests: Runs Up & Down Runs Above & Below Mean of 0.5

RNG Seed: # of numbers: # of runs: test value: # above mean: # below mean: # of runs: test value:
12345 10001 6610 -1.352 4952 5048 4960 -0.791
12346 10001 6706 0.925 4919 5081 4980 -0.374
12347 10001 6669 0.047 4958 5042 4965 -0.693
12348 10001 6746 1.874 4960 5040 4983 -0.334
12349 10001 6718 1.210 4944 5056 5026 0.533
12350 10001 6608 -1.399 4940 5060 4986 -0.266
12351 10001 6713 1.091 5057 4943 4983 -0.327
12352 10001 6641 -0.617 5030 4970 5045 0.904
12353 10001 6641 -0.617 4942 5058 4955 -0.887
12354 10001 6673 0.142 4963 5037 4948 -1.035
12355 10001 6682 0.356 4983 5017 5012 0.241
12356 10001 6671 0.095 4985 5015 5097 1.941
12357 10001 6669 0.047 4965 5035 4993 -0.135
12358 10001 6666 -0.024 5005 4995 5004 0.080
12359 10001 6658 -0.213 5000 5000 5016 0.320
12360 10001 6637 -0.712 4859 5141 5105 2.182
12361 10001 6658 -0.213 5028 4972 5029 0.583
12362 10001 6742 1.779 5020 4980 5018 0.362
12363 10001 6746 1.874 5002 4998 5026 0.520
12364 10001 6649 -0.427 4877 5123 4977 -0.400
12365 10001 6700 0.783 5001 4999 4990 -0.200
12366 10001 6667 0.000 5036 4964 4992 -0.155
12367 10001 6653 -0.332 5030 4970 5011 0.224
12368 10001 6736 1.637 4867 5133 4948 -0.970
12369 10001 6705 0.901 4945 5055 4997 -0.048
12370 10001 6723 1.328 5002 4998 5003 0.060
12371 10001 6604 -1.494 4968 5032 4978 -0.436
12372 10001 6708 0.972 5001 4999 4930 -1.400
12373 10001 6657 -0.237 5037 4963 5055 1.106
12374 10001 6635 -0.759 4936 5064 4967 -0.644

Max (Abs): 1.874 2.1817
p-value: 0.061 0.0290

45

Appendix C: Check of Java Random Number Generator: Program

Random Number Test HTML Document1
2

<HTML>3
<HEAD>4
<TITLE>Random Number Test</TITLE>5
</HEAD>6

7
<BODY>8
<APPLET CODE = "RndNum.class" WIDTH =100 HEIGHT =250>9
Random Number Test</APPLET>10
</BODY>11
</HTML>12

46

import java.awt.*;1
import java.lang.*;2
import java.util.*;3

4
/**5
 File name: RndNum.java6
 Class: RndNum extends java.applet.Applet7

8
To test the randomness of Double random numbers9
generated by the java.util.Random class.10

*/11
12

public class RndNum extends java.applet.Applet{13
double aRnd =0, aRnd2 = 0;14

15
public void chiTest(long newSeed) {16

Random r = new Random(newSeed);17
int[] intervals = new int[1000];18
double thisValue = 0;19
double lstSq = 0;20
double totalLstSq = 0;21
for(int i = 0; i < 9999; i++) { //10,000 total observations22
aRnd= r.nextDouble();23

 Double aRndDbl=new Double(aRnd*1000);24
 Integer whichBin=new Integer((aRndDbl).intValue());25

intervals[whichBin.intValue()]++; // always falls in interval below26
}27
//System.out.println("intervals:");28
for(int i = 0; i < 999; i++) {29

//System.out.print(intervals[i]+"; ");30
//System.out.print("(o-e)^2/e = ");31
thisValue = intervals[i];32
lstSq =(((thisValue-10)*(thisValue-10))/10);33
//System.out.println(lstSq);34
totalLstSq += lstSq;35

}36
System.out.println("value to test: "+totalLstSq);37

}38
39

public void runsTest(long newSeed) {40

47

Random r = new Random(newSeed);41
double upCount = 0, downCount=0;42
double[] runlength;43
double aboveMean = 0, belowMean=0;44
int run = 0, runM=0;45
aRnd= r.nextDouble();46
boolean switchUp = true;47
boolean switchM = true;48
for(int i = 0; i < 10000; i++) {49

aRnd2=r.nextDouble();50
//System.out.println("aRnd: "+aRnd+" aRnd2: "+aRnd2);51
//test general run lengths52
if (aRnd<aRnd2) {53

if (switchUp) {54
run ++;55
switchUp = false;56

}57
upCount ++;58

} else if (aRnd>=aRnd2) {59
if (!switchUp) {60

run ++;61
switchUp = true;62

}63
downCount ++;64

}65
//test runs about mean66
if (aRnd<0.5) {67

if (switchM) {68
runM ++;69
switchM = false;70

}71
belowMean++;72

} else if (aRnd>=0.5) {73
if (!switchM) {74

runM ++;75
switchM = true;76

}77
aboveMean++;78

}79
aRnd=aRnd2;80

48

}81
//System.out.print("total runs {general}: "+run+" upCount: ");82
//System.out.println(upCount+" downCount: "+downCount);83
//System.out.print("total runs {mean}: "+runM+" aboveMean: ");84
//System.out.println(aboveMean+" belowMean: "+belowMean);85
System.out.print("runs: "+run+" aboveMean: "+aboveMean);86
System.out.println(" belowMean: "+belowMean+" runsM: "+runM);87

}88
89

public void expTest(long newSeed) {90
Random r = new Random(newSeed);91
double tff = 2.302585;92
double aLn=0,aLog=0;93
double totalRnd=0,totalLn=0,totalLog=0;94
double avgRnd=0,avgLn=0,avgLog=0;95
for(int i = 0; i < 10000; i++) {96

aRnd =r.nextDouble();97
totalRnd += aRnd;98
aLn = Math.log(aRnd);99
aLog = (Math.log(aRnd)/tff);100
totalLn += Math.log(aRnd);101
totalLog += (Math.log(aRnd)/tff);102
//System.out.print("aRnd = "+ aRnd+ "; aLog = "+ aLog);103
//System.out.println("; aLn = "+ aLn);104

}105
avgRnd = totalRnd/10000;106
avgLog = totalLog/10000;107
avgLn = totalLn/10000;108
System.out.print("totalRnd = "+ totalRnd+ "; totalLog = ");109
System.out.println(totalLog+"; totalLn = "+ totalLn);110
System.out.print("meanRnd = "+ avgRnd+ "; meanLog = ");111
System.out.println(avgLog+"; meanLn = "+avgLn);112

}113
114

public void start() {115
RndNum rd= new RndNum();116
for(long mySeed = 12345; mySeed < 12375; mySeed++) {117

//System.out.println("RND gen for doubles with seed: " +118
mySeed);119

//rd.chiTest(mySeed);120

49

//rd.runsTest(mySeed);121
rd.expTest(mySeed);122

}123
stop();124

}125
}//endof RndNum class126

127

50

Appendix D: SIGMA Random Variate Calculations: Data Output

RNG seed:
12352

variables:
ARND = uniform random variate generated by SIGMA
TLN = ln(ARND)
TA = -5*TLN
TSER = -3*TLN

Count ARND TLN TA TSER
1 0.096 -2.336 11.682 7.009
2 0.754 -0.281 1.406 0.844
3 0.236 -1.439 7.199 4.319
4 0.246 -1.4 7.003 4.202
5 0.74 -0.299 1.499 0.899
6 0.583 -0.538 2.69 1.614
7 0.095 -2.352 11.764 7.058
8 0.336 -1.087 5.438 3.263
9 0.669 -0.401 2.008 1.204

10 0.326 -1.118 5.594 3.356
11 0.017 -4.036 20.181 12.109
12 0.831 -0.185 0.925 0.555
13 0.083 -2.477 12.387 7.432
14 0.034 -3.36 16.803 10.082
15 0.358 -1.026 5.134 3.08
16 0.856 -0.154 0.772 0.463
17 0.037 -3.291 16.458 9.874
18 0.087 -2.43 12.152 7.291
19 0.95 -0.051 0.255 0.153
20 0.635 -0.453 2.268 1.36
21 0.786 -0.239 1.199 0.719
22 0.016 -4.101 20.508 12.305
23 0.039 -3.231 16.158 9.694
24 0.751 -0.285 1.427 0.856

51

25 0.853 -0.158 0.792 0.475
26 0.624 -0.471 2.355 1.413
27 0.95 -0.05 0.254 0.152
28 0.207 -1.574 7.874 4.724
29 0.424 -0.857 4.289 2.573
30 0.106 -2.242 11.211 6.726
31 0.282 -1.262 6.313 3.788
32 0.67 -0.4 2 1.2
33 0.819 -0.199 0.996 0.597
34 0.281 -1.267 6.335 3.801
35 0.083 -2.483 12.418 7.45
36 0.349 -1.052 5.261 3.156
37 0.351 -1.045 5.226 3.135
38 0.182 -1.701 8.509 5.105
39 0.293 -1.224 6.124 3.674
40 0.663 -0.41 2.052 1.231
41 0.424 -0.857 4.286 2.571
42 0.461 -0.774 3.87 2.322
43 0.301 -1.199 5.998 3.599
44 0.451 -0.795 3.978 2.387
45 0.557 -0.584 2.922 1.753
46 0.816 -0.203 1.016 0.609
47 0.952 -0.049 0.245 0.147
48 0.902 -0.102 0.513 0.307
49 0.513 -0.666 3.332 1.999
50 0.553 -0.591 2.955 1.773
51 0.743 -0.296 1.481 0.889
52 0.942 -0.058 0.294 0.176
53 0.989 -0.01 0.051 0.03
54 0.649 -0.431 2.159 1.295
55 0.641 -0.444 2.223 1.334
56 0.696 -0.361 1.805 1.083
57 0.462 -0.77 3.853 2.311
58 0.85 -0.161 0.809 0.485

52

59 0.538 -0.619 3.095 1.857
60 0.09 -2.401 12.007 7.204
61 0.274 -1.29 6.454 3.872
62 0.866 -0.142 0.714 0.428
63 0.238 -1.434 7.17 4.302
64 0.694 -0.364 1.82 1.092
65 0.003 -5.693 28.467 17.08
66 0.6 -0.51 2.554 1.532
67 0.416 -0.874 4.373 2.624
68 0.732 -0.31 1.554 0.932
69 0.784 -0.243 1.216 0.729
70 0.948 -0.052 0.263 0.158
71 0.734 -0.309 1.545 0.927
72 0.923 -0.079 0.396 0.237
73 0.514 -0.664 3.323 1.994
74 0.473 -0.748 3.742 2.245
75 0.439 -0.821 4.107 2.464
76 0.834 -0.18 0.902 0.541
77 0.984 -0.015 0.078 0.047
78 0.637 -0.45 2.252 1.351

53

Appendix E: Carwash Model: SIGMA & NetSim Data Output

Carwash model run in SIGMA:
Uses SIGMA-generated random number stream and TLN values (seed=12352).

Time Event Q CO WT TE
0 run 0 0 0 0
0 enter 1 0 0 0
0 start 0 0 0 0

0.844 leave 0 1 0.844 0.844
11.682 enter 1 1 0.844 0.844
11.682 start 0 1 0.844 0.844
15.884 leave 0 2 5.046 5.046
18.881 enter 1 2 5.046 5.046
18.881 start 0 2 5.046 5.046
20.381 enter 1 2 5.046 5.046
20.496 leave 1 3 6.66 6.66
20.496 start 0 3 6.66 6.66
23.759 leave 0 4 10.038 9.923
32.145 enter 1 4 10.038 9.923
32.145 start 0 4 10.038 9.923
34.153 enter 1 4 10.038 9.923
35.502 leave 1 5 13.395 13.28
35.502 start 0 5 13.395 13.28
36.057 leave 0 6 15.298 13.835
54.335 enter 1 6 15.298 13.835
54.335 start 0 6 15.298 13.835
64.417 leave 0 7 25.38 23.917
66.723 enter 1 7 25.38 23.917
66.723 start 0 7 25.38 23.917
67.186 leave 0 8 25.844 24.381
71.857 enter 1 8 25.844 24.381
71.857 start 0 8 25.844 24.381
79.148 leave 0 9 33.135 31.672
88.315 enter 1 9 33.135 31.672
88.315 start 0 9 33.135 31.672

54

88.571 enter 1 9 33.135 31.672
89.676 leave 1 10 34.496 33.033
89.676 start 0 10 34.496 33.033
89.77 enter 1 10 34.496 33.033

101.982 leave 1 11 47.907 45.338
101.982 start 0 11 47.907 45.338
102.838 leave 0 12 60.975 46.195
105.929 enter 1 12 60.975 46.195
105.929 start 0 12 60.975 46.195
106.721 enter 1 12 60.975 46.195
106.976 enter 2 12 60.975 46.195
107.342 leave 2 13 62.388 47.609
107.342 start 1 13 62.388 47.609
109.916 leave 1 14 65.583 50.182
109.916 start 0 14 65.583 50.182
114.85 enter 1 14 65.583 50.182

116.642 leave 1 15 75.25 56.909
116.642 start 0 15 75.25 56.909
117.843 leave 0 16 78.242 58.11
121.164 enter 1 16 78.242 58.11
121.164 start 0 16 78.242 58.11
122.16 enter 1 16 78.242 58.11

124.965 leave 1 17 82.043 61.911
124.965 start 0 17 82.043 61.911
128.121 leave 0 18 88.005 65.067
134.578 enter 1 18 88.005 65.067
134.578 start 0 18 88.005 65.067
139.684 leave 0 19 93.111 70.173
139.804 enter 1 19 93.111 70.173
139.804 start 0 19 93.111 70.173
141.036 leave 0 20 94.343 71.405
145.929 enter 1 20 94.343 71.405
145.929 start 0 20 94.343 71.405
148.251 leave 0 21 96.665 73.727

55

150.215 enter 1 21 96.665 73.727
150.215 start 0 21 96.665 73.727
152.602 leave 0 22 99.052 76.114
156.214 enter 1 22 99.052 76.114
156.214 start 0 22 99.052 76.114
156.824 leave 0 23 99.662 76.724
159.136 enter 1 23 99.662 76.724
159.136 start 0 23 99.662 76.724
159.382 enter 1 23 99.662 76.724
159.444 leave 1 24 99.97 77.032
159.444 start 0 24 99.97 77.032
161.218 leave 0 25 101.805 78.806
162.714 enter 1 25 101.805 78.806
162.714 start 0 25 101.805 78.806
162.891 leave 0 26 101.982 78.982
164.196 enter 1 26 101.982 78.982
164.196 start 0 26 101.982 78.982
164.248 enter 1 26 101.982 78.982
165.492 leave 1 27 103.278 80.278
165.492 start 0 27 103.278 80.278
166.471 enter 1 27 103.278 80.278
166.575 leave 1 28 105.605 81.361
166.575 start 0 28 105.605 81.361
167.061 leave 0 29 106.196 81.847
170.324 enter 1 29 106.196 81.847
170.324 start 0 29 106.196 81.847
173.419 enter 1 29 106.196 81.847
177.529 leave 1 30 113.4 89.052
177.529 start 0 30 113.4 89.052
177.958 leave 0 31 117.939 89.481
179.874 enter 1 31 117.939 89.481
179.874 start 0 31 117.939 89.481
180.966 leave 0 32 119.031 90.573
187.045 enter 1 32 119.031 90.573

56

187.045 start 0 32 119.031 90.573
188.577 leave 0 33 120.563 92.105
215.512 enter 1 33 120.563 92.105
215.512 start 0 33 120.563 92.105
216.445 leave 0 34 121.496 93.038
219.886 enter 1 34 121.496 93.038
219.886 start 0 34 121.496 93.038
220.045 leave 0 35 121.655 93.197
221.103 enter 1 35 121.655 93.197
221.103 start 0 35 121.655 93.197
221.341 leave 0 36 121.892 93.434
222.649 enter 1 36 121.892 93.434
222.649 start 0 36 121.892 93.434
224.895 leave 0 37 124.138 95.68
225.973 enter 1 37 124.138 95.68
225.973 start 0 37 124.138 95.68
226.514 leave 0 38 124.68 96.222
230.08 enter 1 38 124.68 96.222
230.08 start 0 38 124.68 96.222

230.158 enter 1 38 124.68 96.222

57

Carwash model run in Netsim:
Uses TLNEX (TLN*1,000,000) values from SIGMA.
Output vars time, WT, TE are then divided by 1,000,000 and rounded to 3 decimals.

time event Q CO WT TE
0 run 0 0 0 0
0 enter 1 0 0 0
0 start 0 0 0 0

0.844 leave 0 1 0.844 0.844
11.682 enter 1 1 0.844 0.844
11.682 start 0 1 0.844 0.844
15.884 leave 0 2 5.046 5.046
18.882 enter 1 2 5.046 5.046
18.882 start 0 2 5.046 5.046
20.381 enter 1 2 5.046 5.046
20.496 leave 1 3 6.660 6.660
20.496 start 0 3 6.660 6.660
23.759 leave 0 4 10.038 9.924
32.145 enter 1 4 10.038 9.924
32.145 start 0 4 10.038 9.924
34.154 enter 1 4 10.038 9.924
35.502 leave 1 5 13.395 13.280
35.502 start 0 5 13.395 13.280
36.057 leave 0 6 15.299 13.835
54.336 enter 1 6 15.299 13.835
54.336 start 0 6 15.299 13.835
64.418 leave 0 7 25.381 23.918
66.723 enter 1 7 25.381 23.918
66.723 start 0 7 25.381 23.918
67.187 leave 0 8 25.844 24.381
71.858 enter 1 8 25.844 24.381
71.858 start 0 8 25.844 24.381
79.149 leave 0 9 33.136 31.673
88.316 enter 1 9 33.136 31.673

58

88.316 start 0 9 33.136 31.673
88.572 enter 1 9 33.136 31.673
89.677 leave 1 10 34.497 33.034
89.677 start 0 10 34.497 33.034
89.771 enter 1 10 34.497 33.034

101.982 leave 1 11 47.907 45.339
101.982 start 0 11 47.907 45.339
102.839 leave 0 12 60.975 46.196
105.929 enter 1 12 60.975 46.196
105.929 start 0 12 60.975 46.196
106.722 enter 1 12 60.975 46.196
106.976 enter 2 12 60.975 46.196
107.343 leave 2 13 62.389 47.609
107.343 start 1 13 62.389 47.609
109.916 leave 1 14 65.583 50.183
109.916 start 0 14 65.583 50.183
114.851 enter 1 14 65.583 50.183
116.643 leave 1 15 75.250 56.910
116.643 start 0 15 75.250 56.910
117.844 leave 0 16 78.243 58.110
121.164 enter 1 16 78.243 58.110
121.164 start 0 16 78.243 58.110
122.160 enter 1 16 78.243 58.110
124.965 leave 1 17 82.044 61.911
124.965 start 0 17 82.044 61.911
128.122 leave 0 18 88.005 65.068
134.579 enter 1 18 88.005 65.068
134.579 start 0 18 88.005 65.068
139.684 leave 0 19 93.111 70.174
139.805 enter 1 19 93.111 70.174
139.805 start 0 19 93.111 70.174
141.037 leave 0 20 94.343 71.406
145.929 enter 1 20 94.343 71.406
145.929 start 0 20 94.343 71.406

59

148.252 leave 0 21 96.665 73.728
150.216 enter 1 21 96.665 73.728
150.216 start 0 21 96.665 73.728
152.603 leave 0 22 99.052 76.115
156.215 enter 1 22 99.052 76.115
156.215 start 0 22 99.052 76.115
156.825 leave 0 23 99.662 76.725
159.137 enter 1 23 99.662 76.725
159.137 start 0 23 99.662 76.725
159.382 enter 1 23 99.662 76.725
159.445 leave 1 24 99.970 77.033
159.445 start 0 24 99.970 77.033
161.218 leave 0 25 101.806 78.806
162.715 enter 1 25 101.806 78.806
162.715 start 0 25 101.806 78.806
162.892 leave 0 26 101.983 78.983
164.197 enter 1 26 101.983 78.983
164.197 start 0 26 101.983 78.983
164.248 enter 1 26 101.983 78.983
165.492 leave 1 27 103.278 80.279
165.492 start 0 27 103.278 80.279
166.471 enter 1 27 103.278 80.279
166.576 leave 1 28 105.606 81.362
166.576 start 0 28 105.606 81.362
167.062 leave 0 29 106.196 81.848
170.325 enter 1 29 106.196 81.848
170.325 start 0 29 106.196 81.848
173.420 enter 1 29 106.196 81.848
177.529 leave 1 30 113.401 89.052
177.529 start 0 30 113.401 89.052
177.958 leave 0 31 117.939 89.481
179.875 enter 1 31 117.939 89.481
179.875 start 0 31 117.939 89.481
180.967 leave 0 32 119.031 90.573

60

187.045 enter 1 32 119.031 90.573
187.045 start 0 32 119.031 90.573
188.578 leave 0 33 120.564 92.106
215.513 enter 1 33 120.564 92.106
215.513 start 0 33 120.564 92.106
216.446 leave 0 34 121.497 93.039
219.887 enter 1 34 121.497 93.039
219.887 start 0 34 121.497 93.039
220.045 leave 0 35 121.655 93.197
221.103 enter 1 35 121.655 93.197
221.103 start 0 35 121.655 93.197
221.341 leave 0 36 121.893 93.435
222.649 enter 1 36 121.893 93.435
222.649 start 0 36 121.893 93.435
224.895 leave 0 37 124.139 95.681
225.973 enter 1 37 124.139 95.681
225.973 start 0 37 124.139 95.681
226.515 leave 0 38 124.680 96.222
230.080 enter 1 38 124.680 96.222
230.080 start 0 38 124.680 96.222

61

Appendix F: Carwash Model: SIGMA Program

I. STATE VARIABLE DEFINITIONS.

For this simulation, the following state variables are defined:
S: (integer valued)
Q: (integer valued)
CI: (integer valued)
CO: (integer valued)
TS: (real valued)
TE: (real valued)
W[512]: (real valued)
WT: (real valued)

II. EVENT DEFINITIONS.

Simulation state changes are represented by event vertices (nodes or balls) in a SIGMA graph.
Event vertex parameters, if any, are given in parentheses. Logical and dynamic relationships
between pairs of events are represented in a SIGMA graph by edges (arrows) between event
vertices. Unless otherwise stated, vertex execution priorities, to break time ties, are equal to 5.

1. The run() event causes the following state change(s):
S=1
Q=0
CI=0
CO=0
TS=0
TE=0
W=0
WT=0

 After every occurrence of the run event:
Unconditionally, schedule the enter() event to occur without delay.

2. The enter() event causes the following state change(s):
Q=Q+1
CI=CI+1
W[CI]=CLK

 After every occurrence of the enter event:

62

Unconditionally, schedule the enter() event to occur in -5*ln{rnd} time units.
(Time ties are broken by an execution priority of 4.)
If S>0, then schedule the start() event to occur without delay.

3. The start() event causes the following state change(s):
S=0
Q=Q-1
TS=CLK

 After every occurrence of the start event:
Unconditionally, schedule the leave() event to occur in -3*ln{rnd} time units.

4. The leave() event causes the following state change(s):
S=1
CO=CO+1
TE=TE+CLK-TS
WT=WT+CLK-W[CO]

 After every occurrence of the leave event:
If Q>0, then schedule the start() event to occur without delay.

63

Appendix G: Netsim Documentation

AnimationCanvas extends Canvas 64
CardPanel extends Panel 65
DataDictionary 66
EntryPanel extends Panel implements Runnable 68
MainApplet extends java.applet.Applet 69
ModelParser extends StringTokenizer 70
MyHashtable extends Hashtable 71
MyVector extends Vector 72
RndGenerator extends Random 72
SchedThread extends Thread 73
ViewerPanel extends Panel implements Runnable 74

64

AnimationCanvas extends Canvas

Draws the event graph of the simulation model onto the viewing panel. Animates the event
graph by periodically repainting sections as requested by the simulation thread, an instance of
SchedThread.
AnimationCanvas must be contained in same text file as ViewerPanel.
Imports: java.awt.*, java.util.*.
Methods:

♦ public AnimationCanvas(DataDictionary data, ViewerPanel target, int width, int
height): Creates a new instance of AnimationCanvas associated with the instances
identified by this method’s parameters. Sets the size of this instance of
AnimationCanvas.

♦ private void backwardEdge(int startIndex): Draws an edge from the node
indicated by the parameter “startIndex” to the preceding node.
◊ Called by whichEdge(int, int, int).

♦ private void curvedEdge(int startIndex): Draws an edge from the node indicated
by the parameter “startIndex” back to the same node.
◊ Called by whichEdge(int, int, int).

♦ private void drawArrow(Graphics g): Draws an edge of the event graph in the
direction and location specified by the associated instance variables.
◊ Called by paint(Graphics).
◊ Called by update(Graphics).

♦ private void drawNode(Graphics g): Draws a node of the event graph in the
location specified by the associated instance variables.
◊ Called by paint(Graphics).
◊ Called by update(Graphics).

♦ private void forwardEdge(int startIndex): Draws an edge from the node indicated
by the parameter” startIndex” to the next node.
◊ Called by whichEdge(int, int, int).

♦ private void locateNode(int nodeIndex): Locates the physical location of the
current node.
◊ Called by paint(Graphics).
◊ Called by update(Graphics).

♦ private void makeNodeList(): Creates a list of the nodes for the event graph
based on the events list in the database.
◊ Called by paint(Graphics).

♦ public void paint(Graphics g): Draws the initial event graph of the simulation
model.
◊ Overrides java.awt.Canvas.paint(Graphics).

65

◊ Calls drawArrow(Graphics).
◊ Calls drawNode(Graphics).
◊ Calls locateNode(int).
◊ Calls makeNodeList().
◊ Calls whichEdge(int, int, int).

♦ public void repaint(String[] event, Object[] item): Locates the next section of
the event graph to be animated.
◊ Called by SchedThread.run().
◊ Calls update(Graphics) by calling java.awt.Component.repaint(long).

♦ public void update(Graphics g): Repaints the section of the model identified by
repaint(String[], Object[]), causing the animation effect. From its original color
of yellow, the section is painted cyan and then repainted yellow.
◊ Overrides java.awt.Component.update(Graphics).
◊ Calls drawArrow(Graphics).
◊ Calls drawNode(Graphics).
◊ Calls locateNode(int).
◊ Calls whichEdge(int, int, int).

♦ private void whichEdge(int next, int list, int active): Uses the parameters of this
method to determine the direction of the current edge and calls the appropriate
method.
◊ Called by paint(Graphics).
◊ Called by update(Graphics).
◊ Calls backwardEdge(int).
◊ Calls curvedEdge(int).
◊ Calls forwardEdge(int).

CardPanel extends Panel

Allocates resources for each graphical user interface (GUI) and connects the interfaces for data
transfer purposes.
Imports: java.awt.*, java.util.*.
Methods:

♦ public CardPanel(): Creates resources, much like hyper cards, for each user
interface.
◊ Calls newCard(EntryPanel).
◊ Calls newCard(ViewerPanel).

♦ private void fillEdgesHt(MyHashtable edgesHt, String[] thisEventsKey,
MyVector thisVedge): Fills the edge hashtable with vectors, one for each edge.
◊ Called by transferDataS(EntryPanel, ViewerPanel).

66

♦ private void fillEventsHt(MyHashtable events, String[] thisEventsKey,
MyHashtable thisVevents, String thisStateVars): Fills the event hashtable with
the event names and each individual event hashtable with the correct event name
and state variables as listed on the entry form.
◊ Called by transferDataS(EntryPanel, ViewerPanel).
◊ Calls putVars(MyHashtable, String).

♦ private Panel newCard(EntryPanel thisModule): Adds the entry form user
interface, or card, to the main applet. Initializes and returns a started instance of
this interface.
◊ Called by CardPanel().

♦ private Panel newCard(ViewerPanel thisModule): Adds the output viewer user
interface, or card, to the main applet. Initializes and returns a started an instance
of this interface.
◊ Called by CardPanel().

♦ private void putVars(MyHashtable varHt, String varString): Creates an instance
of ModelParser to parse the equations for the state variables as entered in the
entry form. Transfers the resulting information into the individual event
hashtables.
◊ Called by fillEventsHt(MyHashtable, String[], MyHashtable, String).
◊ Calls ModelParser.decipherVars().

♦ protected void transferDataS(): Allows actual user interface instances to be
hidden from the Main Applet.
◊ Called by MainApplet.action(Event, Object).
◊ Calls transferDataS(EntryPanel, ViewerPanel).

♦ private void transferDataS(EntryPanel epm, ViewerPanel vpm): Reads the
information from the entry form and transfers this data into the database.
◊ Calls fillEdgesHt(MyHashtable, String[], MyVector).
◊ Calls fillEventsHt(MyHashtable, String[], MyHashtable, String).
◊ Calls placeEdge(MyHashtable, String, String, String, String, String).

♦ private void placeEdge(MyHashtable edgeHt, String fromEdge, String toEdge,
String condEdge, String prEdge, String timeEdge): Fills each edge vector with the
information listed on the entry form for that edge.
◊ Called by transferDataS(EntryPanel, ViewerPanel).

DataDictionary

Creates and manages the databases for the events, variables and future events list of the
simulation model. Calls an instance of a random number stream as needed.
Events are maintained as keys in a hashtable with each element of the hashtable being a hashtable

67

holding the variables associated with that event key. Each element of the variable’s hashtable is a
string or integer representing the rule associated with that variable key. The edges of the event
graph are also maintained in a hashtable with each element being a vector. Each element vector
defines a property of that edge (i.e., location, condition, time delay, priority). The current values
of the variables are maintained in a hashtable where the variable name is the key and the value is
the element. The future events list is a vector with each element being a string array consisting of
a time, priority, and event name.
Imports: java.util.*.
Methods:

♦ public DataDictionary(): Creates a new instance of DataDictionary.
♦ protected Object[] adjustEventSch(): Returns the next entry from the future

events list to the simulation thread and removes that entry from the list.
◊ Called by SchedThread.run().

♦ private void clearData(): Clears the databases of all previous data.
◊ Called by putData(MyHashtable, MyHashtable, MyHashtable,

MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyVector, MyVector, MyVector, MyVector, MyVector,
MyVector).

♦ protected void initData(MyHashtable initEvent): Fills the initial variable values
from the entry form into the variable database.
◊ Called by ViewerPanel.initModel(String[], MyHashtable).
◊ Called by setUp(long, MyHashtable).

♦ private void makeDataTables(MyHashtable incoming, MyHashtable
toReplace): Adds the event information to the databases.
◊ Called by putData(MyHashtable, MyHashtable, MyHashtable,

MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyVector, MyVector, MyVector, MyVector, MyVector,
MyVector).

♦ private void makeDataTables(MyVector incoming, MyVector toReplace):
Adds the variable information to the databases.
◊ Called by putData(MyHashtable, MyHashtable, MyHashtable,

MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyVector, MyVector, MyVector, MyVector, MyVector,
MyVector).

♦ protected void putData(MyHashtable htEV, MyHashtable ht1, MyHashtable
ht2, MyHashtable ht3, MyHashtable ht4, MyHashtable ht5, MyHashtable ht6,
MyHashtable htED, MyVector v1, MyVector v2, MyVector v3, MyVector v4,
MyVector v5, MyVector v6): Uses the following methods and the data from the
entry form to fill in the databases.

68

◊ Called by ViewerPanel.putData(MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyVector, MyVector, MyVector,
MyVector, MyVector, MyVector).

◊ Calls clearData().
◊ Calls makeDataTables(MyHashtable, MyHashtable).
◊ Calls makeDataTables(MyVector, MyVector).

♦ protected void setUp(long seedText, MyHashtable initEvent): Calls the methods
to clear the databases and future events list and to start a new random number
stream. This method is called whenever a new simulation run is started.
◊ Called by SchedThread.SchedThread(DataDictionary, ViewerPanel, long,

double).
◊ Calls initData(MyHashtable).
◊ Calls startRnd(long).

♦ private void startRnd(long theSeed): Starts a new random number stream.
◊ Called by setUp(long, MyHashtable).

♦ protected void updateEventSch(String[] thisEvent, double currentTime):
Checks edge conditions between the current event and all connected events,
schedules time for all valid connected events, and updates the future events list.
Scheduling ties are broken by priorities, if given, with 9 being a higher priority and
1 being low. Otherwise, the newest event is placed below the existing, tying
event.
◊ Called by SchedThread.run().
◊ Calls ModelParser.decipherCondition(MyHashtable).
◊ Calls RndGenerator.calcRndNum(String).

♦ protected void updateEventVars(MyHashtable varht, double currentTime):
Updates the values in the variables database according to the rules of the current
event, given in the parameter “varht”.
◊ Called by SchedThread.run().
◊ Calls ModelParser.decipherRule(Integer, Integer, MyHashtable,

MyVector).

EntryPanel extends Panel implements Runnable

Defines and draws the graphical user interface (GUI) for defining and modifying the simulation
model.
Imports: java.awt.*.
Methods:

♦ public EntryPanel(): Creates a new instance of EntryPanel.

69

♦ private void labelEdgeSection(String label): Labels the text fields for defining
the edges.
◊ Called by run().

♦ private void labelSection(String label): Labels the general sections of the entry
form.
◊ Called by run().

♦ private void makeEdgeSection(TextField from, TextField to, TextField cond,
TextField td, TextField pr): Places the text fields for the edge locations,
conditions, time delays, and priorities.
◊ Called by run().

♦ private void makeEventSection(String ename, TextField event, TextArea evar):
Labels and places the text fields for the event names and state variables.
◊ Called by run().

♦ public void run(): Defines the layout and components of the entry form. Calls
the methods that create and label these components.
◊ Calls labelEdgeSection(String).
◊ Calls labelSection(String).
◊ Calls makeEdgeSection(TextField, TextField, TextField, TextField,

TextField).
◊ Calls makeEventSection(String, TextField, TextArea).

♦ public void start(): Starts a thread to manage the operations within this class.
This allows Netsim to create GUI’s simultaneously, reducing user waiting time for
applet interpretation by the browser.

♦ public void stop(): Stops the thread managing this class.

MainApplet extends java.applet.Applet

Provides general applet behaviors for the Netsim program. This includes initializing the program;
starting, stopping, and redrawing the applet as necessary; and destroying any resources used in
the applet before closing.
Imports: java.awt.*.
Methods:

♦ public boolean action(Event evt, Object arg): Handles actions required to switch
between graphical user interfaces (GUI’s) or to save the current GUI information
(either model or output) into a file on the user’s machine. The “save” buttons are
currently non-functional.
◊ Overrides java.awt.Component.action(Event, Object).
◊ Called by user through mouse clicks on GUI button.
◊ Calls CardPanel.transferDataS().

70

♦ public void init(): Sets the background formatting for the GUI’s and initializes
the default GUI. The current default is the entry form interface.
◊ Overrides java.applet.Applet.init().
◊ Calls insets().
◊ Calls labelCard(String, String, String).

♦ public Insets insets(): Returns the amount of space between layout components
and the border of the current container.
◊ Overrides java.awt.Container.insets().
◊ Called by init().
◊ Calls java.awt.Insets(int, int, int, int).

♦ private void labelCard(String moduleLabel, String saveLabel, String
buttonLabel): Adjusts titles and button labels for a given graphical user interface
(GUI).
◊ Called by init().

ModelParser extends StringTokenizer

Parses textual information from the entry panel into forms compatible with the databases.
Imports: java.util.*.
Methods:

♦ public ModelParser(String rule): Creates a new instance of the super class
StringTokenizer with a blank space as the delimiter. This is used to parse edge
conditions and variable rules.

♦ public ModelParser(String rule, String delim): Creates a new instance of the
super class StringTokenizer with the specified delimiter. This is used to parse
random distributions and to separate and parse variable equations.

♦ public void db(String toDebug): Prints statements to a standard output window
for debugging purposes.
◊ Called by various methods in ModelParser.

♦ protected boolean decipherCondition(MyHashtable ht): Compares the edge
condition to the current variable values and returns the booleam value of the
condition, true or false.
◊ Called by DataDictionary.updateEventSch(String[], double).
◊ Calls tryEqual(Integer, int).
◊ Calls tryGreater(Integer, int).
◊ Calls tryLess(Integer, int).
◊ Calls tryNot(Integer, int).

♦ protected int[] decipherRndParam(): Locates and returns the values of the
parameters of the current random distribution.

71

◊ Called by RndGenerator.calcRndNum(String).
♦ protected Integer decipherRule(Integer old, Integer intTime, MyHashtable

varData, MyVector W): Parses the variable rule for the given variable and the
current event. Calls the methods to change the current variable value, given by the
parameter “old”, by the appropriate amount. Returns the updated value to the
database.
◊ Called by DataDictionary.updateEventVars(MyHashtable, double).
◊ Calls increaseVar(Integer, int).
◊ Calls replaceVar(int).

♦ protected String[] decipherVars(): Deciphers variable equations, returning an
array with the variable name and the variable value.
◊ Called by CardPanel.putVars(MyHashtable, String).

♦ private Integer increaseVar(Integer isNow, int howMuch): Increases the
current variable value by the specified amount, which may be positive or negative.
◊ Called by decipherRule(Integer, Integer, MyHashtable, MyVector).

♦ private Integer replaceVar(int howMuch): Replaces the current variable value
with the specified value.
◊ Called by decipherRule(Integer, Integer, MyHashtable, MyVector).

♦ private boolean tryEqual(Integer isNow, int compareTo): Compares edge
conditions consisting of an equality statement. Returns the boolean value of the
statement.
◊ Called by decipherCondition(MyHashtable).

♦ private boolean tryGreater(Integer isNow, int compareTo): Compares edge
conditions consisting of a “greater than” statement. Returns the boolean value of
the statement.
◊ Called by decipherCondition(MyHashtable).

♦ private boolean tryLess(Integer isNow, int compareTo): Compares edge
conditions consisting of a “less than” statement. Returns the boolean value of the
statement.
◊ Called by decipherCondition(MyHashtable).

♦ private boolean tryNot(Integer isNow, int compareTo): Compares edge
conditions consisting of a “not equal” statement. Returns the boolean value of the
statement.
◊ Called by decipherCondition(MyHashtable).

MyHashtable extends Hashtable

Extends java.util.Hashtable, purely for debugging purposes.
Imports: java.util.Hashtable, java.util.Enumeration.

72

Methods:
♦ public MyHashtable(int size): Creates a new instance of the super class

Hashtable with the specified size.
♦ public void listAll(): Lists the elements of a hashtable into a standard output

window. This method is for hashtables where neither the keys nor elements are
arrays.
◊ Called by many methods in Netsim.

♦ public void listAllE(): Lists the elements of a hashtable into a standard output
window. This method is for hashtables where the keys are arrays.
◊ Called by many methods in Netsim.

MyVector extends Vector

Extends java.util.Vector, purely for debugging purposes.
Imports: java.util.Vector, java.util.Enumeration.
Methods:

♦ public MyVector(int size): Creates a new instance of the super class Vector with
the specified size.

♦ public void listAll(): Lists the elements of a vector into a standard output
window. This method is for vectors where the elements are arrays of objects.
◊ Called by many methods in Netsim.

♦ public void listAllC(): Lists the elements of a vector into a standard output
window. This method is for vectors where the elements are arrays of characters.
◊ Called by many methods in Netsim.

RndGenerator extends Random

Determines the random number stream for the current simulation run and calculates random
variates from that stream as needed.
Imports: java.util.Random.
Methods:

♦ public RndGenerator(): Creates a new instance of the super class Random with
a seed defined by the current system time of the computer.

♦ public RndGenerator(long theSeed): Creates a new instance of the super class
Random with the value of the parameter “theSeed” as the seed.

♦ protected Double calcRndNum(String description): Takes the next number from
the SIGMA random number stream, or SIGMA’s associated set of natural logs, if
the value of the seed is currently “-2”. Otherwise, this method takes the next
number of the random stream created by java.util.Random, using the current seed
value. The method then notifies ModelParser to parse the parameter description

73

and calculates a random variate based on the distribution parameters of the
resulting random distribution.
◊ Called by DataDictionary.updateEventSch(String[], double).
◊ Calls ModelParser.decipherRndParam().
◊ Calls sigmaRndNum().
◊ Calls sigmaNaturalLogOfRndNum().

♦ private double sigmaRndNum(): Supplies approx. the first 100 numbers in the
random number stream created by SIGMA for the seed 12352.
◊ Called by calcRndNum(String).

♦ private double sigmaNaturalLogOfRndNum(): Supplies the SIGMA
calculated, natural logs for approx. the first 100 numbers in the random number
stream created by SIGMA for the seed 12352.
◊ Called by calcRndNum(String).

SchedThread extends Thread

Monitors the simulation clock and future event list, determines the type of output desired by the
user, notifies the database of the current random number seed, and signals the database to process
the next event. This class manages the simulation run until the clock exceeds the current run-
length, the future events list is empty, or the simulation is stopped by the user.
SchedThread must be contained in same text file as ViewerPanel.
Imports: java.awt.*, java.util.*.
Methods:

♦ public SchedThread(DataDictionary data, ViewerPanel target, long seed, double
runlength): Creates a new instance of SchedThread associated with the instances
identified by this method’s parameters. Notifies the database to initialize the
state variables. Identifies the starting node on the event graph.
◊ Calls DataDictionary.setUp(long, MyHashtable).

♦ public void run(): Acts as the main method for the class, managing the simulation
run and calling other methods as needed.
◊ Calls DataDictionary.adjustEventSch().
◊ Calls DataDictionary.updateEventSch(String[], double).
◊ Calls DataDictionary.updateEventVars(MyHashtable, double).
◊ Calls outputData().
◊ Calls AnimationCanvas.repaint(String[], Object[]).
◊ Calls ViewerPanel.stopN().

♦ public void outputData(): Writes the data from the simulation run into the text
area of the viewing interface or into a standard output text window associated
with the user’s browser.

74

◊ Called by run().

ViewerPanel extends Panel implements Runnable

Defines and draws the GUI for viewing and interacting with the simulation model.
Imports: java.awt.*, java.util.*.
Methods:

♦ public ViewerPanel(): Creates a new instance of ViewerPanel.
♦ public boolean action(Event evt, Object arg): Handles button actions for

interacting with this GUI: stop, pause or play.
◊ Overrides java.awt.Component.action(Event, Object).
◊ Called by user through mouse clicks on GUI button.
◊ Calls stopB().
◊ Calls pauseB().
◊ Calls playB().

♦ protected void initModel(String[] startNode, MyHashtable initEvent): Notifies
the database of the first event in the model.
◊ Calls DataDictionary.initData(MyHashtable).

♦ public Insets insets(): Sets the amount of space between layout components and
the border of the current container.
◊ Overrides java.awt.Container.insets().
◊ Called by run().
◊ Calls java.awt.Insets(int, int, int, int).

♦ protected void putData(MyHashtable htEV, MyHashtable ht1, MyHashtable
ht2, MyHashtable ht3, MyHashtable ht4, MyHashtable ht5, MyHashtable ht6,
MyHashtable htED, MyVector v1, MyVector v2, MyVector v3, MyVector v4,
MyVector v5, MyVector v6): Passes the data from the entry form to the
database.
◊ Calls DataDictionary.putData(MyHashtable, MyHashtable,

MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyVector, MyVector, MyVector,
MyVector, MyVector, MyVector).

♦ private void pauseB(): Pauses simulation thread when user clicks the “pause”
button.
◊ Called by action().

♦ private void playB(): Begins or resumes simulation thread when user clicks the
“play” button.
◊ Called by action().
◊ Calls setSD().

75

◊ Calls setRL().
♦ private double readRunLength(String lengthChangeTo): Reads the value in the

“model run-length” text field or calculates a new value, if necessary, and returns
this value.
◊ Called by setRL().

♦ private long readSeed(String seedChangeTo): Reads the value in the “random
number seed” text field or calculates a new value, if necessary, and returns this
value.
◊ Called by setSD().

♦ public void run(): Defines the layout and components of the viewing panel and
also creates and labels these components.
◊ Calls insets().

♦ public void start(): Starts a thread to manage the operations within this class.
This allows Netsim to create GUI’s simultaneously, reducing user waiting time for
applet interpretation by the browser.

♦ private double setRL(): Replaces the value in the “model run-length” text field
with the current value and returns the current value.
◊ Called by playB().
◊ Calls readRunLength(String).

♦ private long setSD(): Replaces the value in the “random number seed” text field
with the current value and returns the current value.
◊ Called by playB().
◊ Calls readSeed(String).

♦ public void stop(): Stops the thread managing this class.
♦ private void stopB(): Stops simulation thread when user clicks the “stop”

button.
◊ Called by action().

♦ protected void stopN(): Stops simulation thread when simulation ends naturally.
Called by SchedThread.run().

76

Appendix H: Netsim Source Code

MainApplet HTML Document 77
CardPanel extends Panel 78
DataDictionary 82
EntryPanel extends Panel implements Runnable 89
MainApplet extends java.applet.Applet 95
ModelParser extends StringTokenizer 98
MyHashtable extends Hashtable 105
MyVector extends Vector 106
RndGenerator extends Random 107
ViewerPanel extends Panel implements Runnable 110
SchedThread extends Thread 116
AnimationCanvas extends Canvas 119

77

MainApplet HTML Document1

2
<HTML>3
<HEAD>4
<TITLE>TISA</TITLE>5
</HEAD>6

7
<BODY>8
Tamie's Internet Simulation Applet for an M/M/1 queue.
9

10
Please be patient while your computer downloads and interprets the applet.
11
<APPLET CODE = "netSim/MainApplet.class" WIDTH =600 HEIGHT =510>12
<center>13
This space is where the applet should be.
14
Please check your operating system and internet browser for Java viewing15
capabilities.
16
Learn more about Java at www.javasoft.com17
</center>18
</APPLET>19
</BODY>20

21
</HTML>22

78

package netSim;1
import java.awt.*;2
import java.util.*;3

4
/**5

 CardPanel extends Panel6

Allocates resources for each graphical user interface (GUI) and connects7
the interfaces for data transfer purposes.8

*/9
10

class CardPanel extends Panel{11
EntryPanel entry;12
ViewerPanel view;13

14
public CardPanel() {15

entry = new EntryPanel();16
view = new ViewerPanel();17
setLayout(new CardLayout());18
add("Entry Form",newCard(entry));19
add("Simulator", newCard(view));20

}21
22

private Panel newCard(EntryPanel thisModule) {23
Panel parent = new Panel();24
parent.add("Center", thisModule);25
thisModule.start();26
return parent;27

}28
29

private Panel newCard(ViewerPanel thisModule) {30
Panel parent = new Panel();31
parent.add("Center", thisModule);32
thisModule.start();33
return parent;34

}35
36

protected void transferDataS() { //called by MainApplet.action(,)37
transferDataS(entry,view);38

}39
40

79

private void transferDataS(EntryPanel epm, ViewerPanel vpm) {41
/*init each event*/42

String[] eventsKey1 = {new String("0"), epm.event1.getText()};43
String[] eventsKey2 = {new String("1"), epm.event2.getText()};44
String[] eventsKey3 = {new String("2"), epm.event3.getText()};45
String[] eventsKey4 = {new String("3"), epm.event4.getText()};46
String[] eventsKey5 = {new String("4"), epm.event5.getText()};47
String[] eventsKey6 = {new String("5"), epm.event6.getText()};48

/*create main &individual event hts*/49
MyHashtable events = new MyHashtable(10);50
MyHashtable vevent1 = new MyHashtable(10);51
MyHashtable vevent2 = new MyHashtable(10);52
MyHashtable vevent3 = new MyHashtable(10);53
MyHashtable vevent4 = new MyHashtable(10);54
MyHashtable vevent5 = new MyHashtable(10);55
MyHashtable vevent6 = new MyHashtable(10);56

/*fill events ht & individual event hts*/57
fillEventsHt(events, eventsKey1, vevent1, epm.evars1.getText());58
fillEventsHt(events, eventsKey2, vevent2, epm.evars2.getText());59
fillEventsHt(events, eventsKey3, vevent3, epm.evars3.getText());60
fillEventsHt(events, eventsKey4, vevent4, epm.evars4.getText());61
fillEventsHt(events, eventsKey5, vevent5, epm.evars5.getText());62
fillEventsHt(events, eventsKey6, vevent6, epm.evars6.getText());63

/*create main & individual edge vects*/64
MyHashtable edges = new MyHashtable(10);65
MyVector vedge1 = new MyVector(8);66
MyVector vedge2 = new MyVector(8);67
MyVector vedge3 = new MyVector(8);68
MyVector vedge4 = new MyVector(8);69
MyVector vedge5 = new MyVector(8);70
MyVector vedge6 = new MyVector(8);71

/*fill edges ht*/72
fillEdgesHt(edges, eventsKey1, vedge1);73
fillEdgesHt(edges, eventsKey2, vedge2);74
fillEdgesHt(edges, eventsKey3, vedge3);75
fillEdgesHt(edges, eventsKey4, vedge4);76
fillEdgesHt(edges, eventsKey5, vedge5);77
fillEdgesHt(edges, eventsKey6, vedge6);78

/*fill individual edge vectors*/79
placeEdge(edges, epm.from1.getText(), epm.to1.getText(),80

80

epm.cond1.getText(), epm.pr1.getText(),81
 epm.td1.getText());82
placeEdge(edges, epm.from2.getText(), epm.to2.getText(),83

epm.cond2.getText(), epm.pr2.getText(),84
 epm.td2.getText());85

placeEdge(edges, epm.from3.getText(), epm.to3.getText(),86
epm.cond3.getText(), epm.pr3.getText(),87
epm.td3.getText());88

placeEdge(edges, epm.from4.getText(), epm.to4.getText(),89
epm.cond4.getText(), epm.pr4.getText(),90
 epm.td4.getText());91

placeEdge(edges, epm.from5.getText(), epm.to5.getText(),92
epm.cond5.getText(), epm.pr5.getText(),93
epm.td5.getText());94

placeEdge(edges, epm.from6.getText(), epm.to6.getText(),95
epm.cond6.getText(), epm.pr6.getText(),96
 epm.td6.getText());97

//events.listAllE(); //debug98
//edges.listAllE(); //debug99
//put data into ViewerPanel/DataDictionary;100

vpm.putData(events, vevent1, vevent2, vevent3, vevent4, vevent5,101
vevent6, edges, vedge1, vedge2, vedge3, vedge4, vedge5,102
 vedge6);103

vpm.initModel(eventsKey1, vevent1);104
}105

106
private void fillEventsHt(MyHashtable events, String[] thisEventsKey,107

MyHashtable thisVevent, String thisStateVars) {108
if (!thisEventsKey[1].equals("")) {109

events.put(thisEventsKey, thisVevent);110
putVars(thisVevent, thisStateVars);111

}112
}113

114
private void fillEdgesHt(MyHashtable edgesHt, String[] thisEventsKey,115

MyVector thisVedge) {116
if (!thisEventsKey[1].equals("")) {117

edgesHt.put(thisEventsKey, thisVedge);118
}119

}120

81

121
private void putVars(MyHashtable varHt, String varString) {122

ModelParser mp= new ModelParser(varString, ";");123
String[] stateVars = mp.decipherVars();124
//System.out.println(stateVars);125
for (int i=0; i < stateVars.length; i+=2) {126

String thisKey = stateVars[i];127
String thisElem = stateVars[i+1];128
varHt.put(thisKey,thisElem);129

}130
}131

132
private void placeEdge(MyHashtable edgeHT, String fromEdge, String toEdge,133

String condEdge, String prEdge, String timeEdge) {134
for (Enumeration ef = edgeHT.elements(), kf = edgeHT.keys();135

ef.hasMoreElements();){136
Vector elemf = (Vector) ef.nextElement();137
String[] keyf = (String[]) kf.nextElement();138
if (keyf[1].equals(fromEdge)) {139

for (Enumeration et = edgeHT.elements(),140
 kt = edgeHT.keys(); et.hasMoreElements();){141
Vector elemt = (Vector) et.nextElement();142
String[] keyt = (String[]) kt.nextElement();143
if (keyt[1].equals(toEdge)) {144

elemf.addElement(keyt);//set edge conditions145
elemf.addElement(condEdge);146
try {147
elemf.addElement(new Integer(prEdge));148
} catch(NumberFormatException nfe) {149

elemf.addElement(new Integer(5));150
}151
elemf.addElement(timeEdge);152
break;153

}154
}155
break;156

}157
}158

}159
} //endof CardPanel class160

82

package netSim;1
import java.util.*;2
import java.lang.*;3

4
/**5

DataDictionary6

Creates and manages the databases for the events, variables and future7
events list of the simulation model. Calls an instance of a random number8
stream as needed.9
Events are maintained as keys in a hashtable with each element of the10
hashtable being a hashtable holding the variables associated with that11
event key. Each element of the variable’s hashtable is a string or integer12
representing the rule associated with that variable key. The edges of the13
event graph are also maintained in a hashtable with each element being a14
vector. Each element vector defines a property of that edge (i.e.,15
location, condition, time delay, priority). The current values of the16
variables are maintained in a hashtable where the variable name is the key17
and the value is the element. The future events list is a vector with each18
element being a string array consisting of a time, priority, and event name.19

*/20
21

class DataDictionary{22
MyHashtable events = new MyHashtable(10); //events23
MyHashtable vevent1 = new MyHashtable(10); //vars,each assoc w an event24
MyHashtable vevent2 = new MyHashtable(10);25
MyHashtable vevent3 = new MyHashtable(10);26
MyHashtable vevent4 = new MyHashtable(10);27
MyHashtable vevent5 = new MyHashtable(10);28
MyHashtable vevent6 = new MyHashtable(10);29
MyHashtable edges = new MyHashtable(10); //edges30
MyVector vedge1 = new MyVector(8); //conditions,each assoc with an edge31
MyVector vedge2 = new MyVector(8);32
MyVector vedge3 = new MyVector(8);33
MyVector vedge4 = new MyVector(8);34
MyVector vedge5 = new MyVector(8);35
MyVector vedge6 = new MyVector(8);36
MyHashtable varData = new MyHashtable(10); //main variable database37
MyVector linkedList = new MyVector(10);38

//scheduling event list, elements are String[3]39
RndGenerator RandomStream; //Random Stream var40

83

double time;41
MyVector W = new MyVector(500); //vector for customerIn counting42

43
public DataDictionary() {44
}45

46
protected void putData(MyHashtable htEV, MyHashtable ht1, MyHashtable47

ht2,48
MyHashtable ht3, MyHashtable ht4, MyHashtable ht5, MyHashtable49

ht6,50
MyHashtable htED, MyVector v1, MyVector v2, MyVector v3,51
MyVector v4, MyVector v5, MyVector v6){52

clearData();53
makeDataTables(htEV, events);54
makeDataTables(ht1, vevent1);55
makeDataTables(ht2, vevent2);56
makeDataTables(ht3, vevent3);57
makeDataTables(ht4, vevent4);58
makeDataTables(ht5, vevent5);59
makeDataTables(ht6, vevent6);60

61
makeDataTables(htED, edges);62
makeDataTables(v1, vedge1);63
makeDataTables(v2, vedge2);64
makeDataTables(v3, vedge3);65
makeDataTables(v4, vedge4);66
makeDataTables(v5, vedge5);67
makeDataTables(v6, vedge6);68

}69
70

private void clearData() {71
vevent1.clear();72
vevent2.clear();73
vevent3.clear();74
vevent4.clear();75
vevent5.clear();76
vevent6.clear();77
events.clear();78
vedge1.removeAllElements();79
vedge2.removeAllElements();80

84

vedge3.removeAllElements();81
vedge4.removeAllElements();82
vedge5.removeAllElements();83
vedge6.removeAllElements();84
edges.clear();85

}86
87

private void makeDataTables(MyHashtable incoming, MyHashtable toReplace) {88
for (Enumeration e = incoming.elements(), k = incoming.keys();89

e.hasMoreElements();){90
toReplace.put(k.nextElement(), e.nextElement());91

}92
}93

94
private void makeDataTables(MyVector incoming, MyVector toReplace) {95

for (Enumeration e = incoming.elements();e.hasMoreElements();){96
toReplace.addElement(e.nextElement());97

}98
}99

100
protected void initData(MyHashtable initEvent) {101

//set init var values, called by ViewerPanel102
for (Enumeration e = initEvent.elements(), k = initEvent.keys();103

e.hasMoreElements();){104
String elem = (String) e.nextElement();105
String key = (String) k.nextElement();106
try {107

varData.put(key, new Integer(elem));108
} catch (NumberFormatException exp) {}109
for (int i=0; i<501; i++) {110

W.addElement(new Integer(0));111
}112

}113
}114

115
protected void setUp(long seedText, MyHashtable initEvent) {116

//used by SchedThread (ViewerPanel)117
varData.clear(); //empty var database118
initData(initEvent); //set init var values119
linkedList.removeAllElements(); //empty linkedList120

85

startRnd(seedText); //restart Rnd Num Stream121
}122

123
private void startRnd(long theSeed){124

RandomStream = new RndGenerator(theSeed);125
}126

127
protected void updateEventVars(MyHashtable varht, double currentTime) {128

String stringIndex = null;129
int intIndex = 0;130
Double dblTime= new Double(currentTime*10000);131
Integer intTime = new Integer(dblTime.intValue());132
for (Enumeration e1 = varht.elements(), k1 = varht.keys();133

e1.hasMoreElements();){134
String elem1 = (String) e1.nextElement();135
String key1 = (String) k1.nextElement();136
//update all non array vars, before array vars!!!137

for (Enumeration e2 = varData.elements(),138
 k2 = varData.keys(); e2.hasMoreElements();){139

Integer elem2= (Integer) e2.nextElement();140
String key2 = (String) k2.nextElement();141
//System.out.print("key1: "+key1+" elem1: 142
// "+elem1); //debug143
//System.out.println(" key2 "+key2+ " elem2: 144
// "+elem2);//debug145
if (key2.equals(key1)) {146
 ModelParser rg= new ModelParser(elem1);147
 Integer theUpdateValue = rg.decipherRule(elem2,148

intTime, varData, W);149
 //System.out.println("update "+key2+" ToThis "150
 // + theUpdateValue); //debug151
 varData.put(key2,theUpdateValue);152
 break;153
}154

}155
}156
for (Enumeration eA = varht.elements(), kA = varht.keys();157

eA.hasMoreElements();){158
String elemA = (String) eA.nextElement();159
String keyA = (String) kA.nextElement();160

86

// now update array vars161
if (keyA.startsWith("W[")) {162

//parse out into vector163
stringIndex = keyA.substring(2,(keyA.length() -1));164
for (Enumeration e3 = varData.elements(),165
 k3 = varData.keys(); e3.hasMoreElements();){166

Integer elem3= (Integer) e3.nextElement();167
String key3 = (String) k3.nextElement();168
if (key3.equals(stringIndex)) {169

intIndex = elem3.intValue();170
break;171

}172
}173
if (W.size() > intIndex) {174
 W.setElementAt(intTime,intIndex); //force175

W = clk176
} else {177

W.addElement(intTime); //force W = clk178
}179

}180
}181

} //endof updateEventVars182
183

protected void updateEventSch(String[] thisEvent, double currentTime) {184
double time = currentTime;185
Double schEventIn, schEventAt;186
String[] nextEvent;187
Integer priority;188
String whenEvent;189
Object[] tmp;190
Double compareEventTo;191
Integer comparePriorityTo;192
int index = 0;193
for (Enumeration e = edges.elements(), k = edges.keys();194

e.hasMoreElements();){195
Vector elem = (Vector) e.nextElement();196
String[] key = (String[]) k.nextElement();197
//System.out.print("key "+key[0]+", "+key[1]+", thisEvent ");198
//System.out.println(thisEvent[0]+", "+thisEvent[1]);199
if (key.equals(thisEvent)) {200

87

for (int i = 0;i < elem.size();i = i+4) {201
 String checkCondition = (String) elem.elementAt(i+1);202
 //System.out.println("checkCondition " +203

checkCondition+204
 //" boolean value is:205
 //"+Boolean.getBoolean(checkCondition)); //debug206
 ModelParser rg= new ModelParser(checkCondition);207
 boolean theResult = rg.decipherCondition(varData);208
 //System.out.println("theResult "+theResult); //debug209

if (theResult) {210
nextEvent = (String[]) elem.elementAt(i);211
priority = (Integer) elem.elementAt(i+2);212
whenEvent = (String) elem.elementAt(i+3);213
schEventIn = RandomStream.calcRndNum(whenEvent);214
schEventAt= new Double(schEventIn.doubleValue()+time);215
//System.out.println("nextEvent:" + nextEvent[0]+", "216
// +nextEvent[1]); //debug217
//System.out.println("priority " + priority);//debug218
//System.out.println("schEventAt " + schEventAt); //debug219
Object[] LLelement = new Object[3];220
LLelement[0] = schEventAt;221
LLelement[1] = priority;222
LLelement[2] = nextEvent;223
//System.out.println("LLelement:" + " schEventAt is "224
//+LLelement[0]+ ", priority is "+LLelement[1]+225
//", nextEvent is "+nextEvent[0]+","+nextEvent[1]);//debug226
if (linkedList.isEmpty()) {227

linkedList.addElement(LLelement);228
//System.out.println("(first) linkedList: ");229
//linkedList.listAll(); //debug230

}231
else {232
 index = 0;233
 for (Enumeration eLL =linkedList.elements();234

 eLL.hasMoreElements();) {235
 tmp = (Object[]) eLL.nextElement();236
 compareEventTo = (Double) tmp[0];237
comparePriorityTo = (Integer) tmp[1];238
if ((schEventAt.doubleValue() <239

compareEventTo.doubleValue())240

88

|241
((schEventAt.doubleValue() ==242
compareEventTo.doubleValue()) &243
 (priority.intValue() >244
comparePriorityTo.intValue()))245
) {246
 linkedList.insertElementAt(LLelement,index);247
 break;248

}249
else if (index == linkedList.size() -1) {250

linkedList.addElement(LLelement);251
break;252

}253
index = index+1;254

}255
//System.out.println("linkedList: "); //debug256
//linkedList.listAll(); //debug257

}258
}259

}260
break;261

}262
}263

} //endof updateEventSch264
265

protected Object[] adjustEventSch() {266
Object [] LLmarker=null;267
try {268

LLmarker = (Object[]) linkedList.firstElement();269
linkedList.removeElementAt(0);270

} catch (NoSuchElementException e) {271
System.out.println("linkedList was empty");}272

return(LLmarker);273
}274

} //endof DataDictionary class275

89

package netSim;1
import java.awt.*;2

3
/**4

 EntryPanel extends Panel implements Runnable5

Defines and draws the graphical user interface (GUI) for defining and6
modifying the simulation model.7

*/8
9

class EntryPanel extends Panel implements Runnable{10
GridBagLayout gridbag;11
GridBagConstraints gbc;12
Thread entryThread;13

14
/*define events*/15

TextField event1,event2,event3,event4,event5,event6;16
/*define state vars for each event*/17

TextArea evars1,evars2,evars3,evars4,evars5,evars6;18
/*define edges*/19

TextField from1,from2,from3,from4,from5,from6;20
TextField to1,to2,to3,to4,to5,to6;21
TextField pr1,pr2,pr3,pr4,pr5,pr6;22
TextField cond1,cond2,cond3,cond4,cond5,cond6;23
TextField td1,td2,td3,td4,td5,td6;24

25
public EntryPanel() {26
}27

28
public void start() {29

if (entryThread == null) {30
entryThread = new Thread(this);31
entryThread.start();32

}33
}34

35
public void run() {36

/*define events*/37
event1 = new TextField("run",7);38
event2 = new TextField("enter",7);39
event3 = new TextField("start",7);40

90

event4 = new TextField("leave",7);41
event5 = new TextField(7);42
event6 = new TextField(7);43

/*define state vars for each event*/44
evars1 = new45

TextArea("S=1;Q=0;CI=0;CO=0;TS=0;TE=0;W[]=0;WT=0", 2,10);46
evars2 = new TextArea("Q=+ 1;CI=+ 1;W[CI]=clk", 2,10);47
evars3 = new TextArea("S=0;Q=- 1;TS=clk", 2,10);48
evars4 = new TextArea("S=1;CO=+ 1;TE=+ clk - TS;WT=+ clk -\ 49

W[CO]",2,10);50
evars5 = new TextArea(2,10);51
evars6 = new TextArea(2,10);52
/*define edges*/53

from1 = new TextField("run", 7);54
to1 = new TextField("enter", 7);55
pr1 = new TextField("5",1);56
cond1 = new TextField("TRUE",10);57
td1 = new TextField("", 10);58
from2 = new TextField("enter", 7);59
to2 = new TextField("enter", 7);60
pr2 = new TextField("6",1);61
cond2 = new TextField("TRUE", 10);62
td2 = new TextField("exp(5)", 10);63
from3 = new TextField("enter", 7);64
to3 = new TextField("start", 7);65
pr3 = new TextField("5",1);66
cond3 = new TextField("S > 0",10);67
td3 = new TextField("",10);68
from4 = new TextField("start", 7);69
to4 = new TextField("leave", 7);70
pr4 = new TextField("5",1);71
cond4 = new TextField("TRUE",10);72
td4 = new TextField("exp(3)", 10);73
from5 = new TextField("leave", 7);74
to5 = new TextField("start", 7);75
pr5 = new TextField("5",1);76
cond5 = new TextField("Q > 0",10);77
td5 = new TextField("", 10);78
from6 = new TextField(7);79
to6 = new TextField(7);80

91

pr6 = new TextField(1);81
cond6 = new TextField(10);82
td6 = new TextField(10);83

/*set fonts*/84
Font f = new Font("TimesRoman",Font.PLAIN,10);85
Font bf = new Font("TimesRoman",Font.BOLD,12);86

/*setlayout*/87
gridbag = new GridBagLayout();88
gbc = new GridBagConstraints();89
setLayout(gridbag);90
gbc.ipadx = 2;91
gbc.ipady=1;92
setFont(bf);93
gbc.gridx = 1;94
gbc.gridy = 1;95
gbc.gridwidth = 2;96
gbc.anchor= GridBagConstraints.NORTHWEST;97
labelSection("EVENTS");98
gbc.gridx = 1;99
gbc.gridy = 2;100
gbc.gridwidth = 2;101
gbc.anchor= GridBagConstraints.NORTHWEST;102
labelSection("& VARS");103
gbc.gridx = 1;104
gbc.gridy = 3;105
gbc.gridwidth = 2;106
labelSection("(nodes &");107
gbc.gridx = 1;108
gbc.gridy = 4;109
gbc.gridwidth = 2;110
labelSection("attributes):");111

/*event textboxes*/112
setFont(f);113
gbc.gridx = 3;114
gbc.gridy = 1;115
gbc.gridwidth = 1;116
makeEventSection("event 1",event1,evars1);117
makeEventSection("event 2",event2,evars2);118
makeEventSection("event 3",event3,evars3);119
gbc.gridx = 3;120

92

gbc.gridy = 3;121
makeEventSection("event 4",event4,evars4);122
makeEventSection("event 5",event5,evars5);123
makeEventSection("event 6",event6,evars6);124

/*create new panel*/125
setFont(bf);126
gbc.gridx = 1;127
gbc.gridy = 5;128
gbc.gridwidth = 2;129
gbc.insets = new Insets(10,0,0,0);130
gbc.anchor= GridBagConstraints.NORTHWEST;131
labelSection("EDGES:");132
setFont(f);133
gbc.gridx = 3;134
gbc.gridy = 5;135
gbc.gridwidth = 1;136
gbc.insets = new Insets(1,0,5,0);137
labelEdgeSection("from");138
labelEdgeSection("to");139
labelEdgeSection("condition");140
labelEdgeSection("time delay");141
labelEdgeSection("priority");142
gbc.gridx = 3;143
gbc.gridy = 6;144
makeEdgeSection(from1,to1,cond1,td1,pr1);145
makeEdgeSection(from2,to2,cond2,td2,pr2);146
makeEdgeSection(from3,to3,cond3,td3,pr3);147
makeEdgeSection(from4,to4,cond4,td4,pr4);148
makeEdgeSection(from5,to5,cond5,td5,pr5);149
makeEdgeSection(from6,to6,cond6,td6,pr6);150
gbc.gridx = 1;151
gbc.gridy = 12;152

}153
154

public void stop() {155
if (entryThread != null) {156

entryThread.stop();157
entryThread = null;158

}159
}160

93

161
private void labelSection(String label) {162

Label L1 = new Label();163
L1.setForeground(Color.blue);164
L1.setText(label);165
gridbag.setConstraints(L1,gbc);166
add(L1);167
gbc.gridx = gbc.gridx+1;168

}169
170

private void makeEventSection(String ename,TextField event,TextArea evar) {171
gbc.insets = new Insets(1,0,5,0);172
gbc.anchor= GridBagConstraints.SOUTH;173
Label L1 = new Label();174
L1.setText(ename);175
gridbag.setConstraints(L1,gbc);176
add(L1);177
gbc.insets = new Insets(1,0,3,0);178
gbc.gridx = gbc.gridx+1;179
Label L2 = new Label("state vars");180
gridbag.setConstraints(L2,gbc);181
add(L2);182
gbc.insets = new Insets(1,0,5,0);183
gbc.anchor= GridBagConstraints.NORTH;184
gbc.gridx = gbc.gridx-1;185
gbc.gridy = gbc.gridy+1;186
gridbag.setConstraints(event,gbc);187
add(event);188
gbc.insets = new Insets(1,0,3,0);189
gbc.gridx = gbc.gridx+1;190
gridbag.setConstraints(evar,gbc);191
add(evar);192
gbc.gridx = gbc.gridx+1;193
gbc.gridy = gbc.gridy-1;194

}195
196

private void labelEdgeSection(String label) {197
gbc.anchor= GridBagConstraints.SOUTH;198
Label L1 = new Label();199
L1.setText(label);200

94

gridbag.setConstraints(L1,gbc);201
add(L1);202
gbc.gridx = gbc.gridx+1;203

}204
205

private void makeEdgeSection(TextField from,TextField to,TextField cond,206
 TextField td,TextField pr){207

gbc.insets = new Insets(0,1,5,0);208
gbc.anchor= GridBagConstraints.NORTH;209
gridbag.setConstraints(from,gbc);210
add(from);211
gbc.gridx = GridBagConstraints.RELATIVE;212
gbc.insets = new Insets(0,1,3,0);213
gridbag.setConstraints(to,gbc);214
add(to);215
gbc.gridx = GridBagConstraints.RELATIVE;216
gbc.insets = new Insets(0,1,5,0);217
gridbag.setConstraints(cond,gbc);218
add(cond);219
gbc.gridx = GridBagConstraints.RELATIVE;220
gbc.insets = new Insets(0,1,5,0);221
gridbag.setConstraints(td,gbc);222
add(td);223
gbc.gridx = GridBagConstraints.RELATIVE;224
gbc.insets = new Insets(0,1,5,0);225
gridbag.setConstraints(pr,gbc);226
add(pr);227
gbc.gridx = 3;228
gbc.gridy = gbc.gridy+1;229

}230
} //endof EntryPanel class231

95

package netSim;1
import java.awt.*;2

3
/**4

MainApplet extends java.applet.Applet5

Provides general applet behaviors for the Netsim program. This6
includes initializing the program; starting, stopping, and redrawing7
the applet as necessary; and destroying any resources used in the8
applet before closing.9

*/10
11

public class MainApplet extends java.applet.Applet {12
Font f = new Font("TimesRoman",Font.PLAIN,12);13
Panel pn = new Panel(); //north panel14
Panel pc = new Panel(); //center panel15
Panel ps = new Panel(); //south panel16
Label title = new Label(); //applet title17
Button saveCard = new Button(); //save button18
Button switchCard = new Button(); //switch between views19
CardPanel viewStack = new CardPanel(); //stack of mainApplet modules20

21
public void init() {22

insets();23
setFont(f);24
setBackground((Color.lightGray).darker());25
setLayout(new BorderLayout(0,10));26
resize(600,510);27
/*north panel*/28

pn.setBackground(Color.lightGray);29
pn.setForeground(Color.blue);30
pn.add(title);31
pn.resize(this.size().width,10);32
add("North", pn);33

/*south panel*/34
ps.setBackground(Color.lightGray);35
ps.setForeground(Color.blue);36
ps.setLayout(new GridLayout(1,2,5,5));37
ps.add(saveCard);38
ps.add(switchCard);39
add("South", ps);40

96

/*center panel*/41
pc.setBackground(Color.white);42
pc.add(viewStack);43
add("Center",pc);44

// start with Entry Form45
labelCard("Entry Form for Creating Your Simulation Model",46

"Save Model","View Simulation NOW");47
((CardLayout)viewStack.getLayout()).show(viewStack,"Entry Form");48

}49
50

public Insets insets() {51
return new Insets(10,10,10,10);52

}53
54

private void labelCard(String moduleLabel, String saveLabel,55
 String buttonLabel) {56

title.setText(moduleLabel);57
saveCard.setLabel(saveLabel);58
switchCard.setLabel(buttonLabel);59

}60
61

public boolean action(Event evt, Object arg) {62
if (evt.target instanceof Button) {63

if ("View Simulation NOW".equals(arg)) {64
viewStack.transferDataS();65
labelCard("Interface for Viewing Your Simulation Model",66

"Save Output","Define/ Revise Model");67
((CardLayout)viewStack.getLayout()).show(viewStack,"Simulator");68

}69
else if("Define/ Revise Model".equals(arg)) {70
 labelCard("Entry Form for Creating Your Simulation Model",71

"Save Model","View Simulation NOW");72
((CardLayout)viewStack.getLayout()).show(viewStack,"Entry Form");73

}74
else if("Save Model".equals(arg)) {75

/* add functionality for saving model */76
}77
else if("Save Output".equals(arg)) {78

/* add functionality for saving output */79
}80

97

return true;81
}82
return false;83

}84
} //endof MainApplet class85

98

package netSim;1
import java.util.*;2

3
/**4

ModelParser extends StringTokenizer5

Parses textual information from the entry panel into forms compatible6
with the databases.7

*/8
9

class ModelParser extends StringTokenizer {10
String rule;11
String delimiter;12
String new_value = null;13
int num_tokens = countTokens();14

15
public ModelParser(String rl) { //conditions & rules16

super(rl, " ", false);17
rule=rl;18

}19
20

public ModelParser(String rl, String delim) { //rnd distr. & state vars21
super(rl, delim, false);22
rule = rl;23
delimiter=delim;24

}25
26

protected String[] decipherVars() {27
int i = 0;28
String[] splitVar = new String[(this.countTokens())*2];29
while (this.hasMoreTokens()) {30

String thisVar = nextToken();31
ModelParser varMP = new ModelParser(thisVar, "=");32
int num_tokens = varMP.countTokens();33
if (num_tokens-->0) {34

splitVar[i] = varMP.nextToken();35
splitVar[i+1] = varMP.nextToken();36
i = i+2;37

}38
}39
return(splitVar);40

99

}41
42

protected int[] decipherRndParam() {43
int[] parameter_values = new int[2];44
int p0 =0,p1=0;45
while (this.hasMoreTokens()) {46

if (num_tokens == 2) {47
p0 = Integer.parseInt(nextToken());48
p1 = Integer.parseInt(nextToken());49

}50
else /*(num_tokens=1)*/ {51

p0 = Integer.parseInt(nextToken());52
p1 = 0;53

}54
}55
parameter_values[0] = p0;56
parameter_values[1] = p1;57
return(parameter_values);58

}59
60

protected boolean decipherCondition(MyHashtable ht) {61
MyHashtable actualDataValues=ht;62
boolean chk = false;63
char ch = '\0';64
int testValue = 0;65
try {66

new_value = nextToken();67
} catch (NoSuchElementException nsee1) {};68
//db("this Element is --> "+new_value); //debug69
if (new_value.equals("true") | (new_value.equals("TRUE"))) {70

chk = true;71
}72
else {73
 for (Enumeration e = actualDataValues.elements(),74

k = actualDataValues.keys(); e.hasMoreElements();){75
Integer elem= (Integer) e.nextElement();76
String key = (String) k.nextElement();77
//db("key: "+key+" elem: "+elem); //debug78
if (key.equals(new_value)) {79

num_tokens = num_tokens-1;80

100

try {81
ch = nextToken().charAt(0);82

} catch (NoSuchElementException nsee2) {};83
//db("the character is " + ch); //debug84
num_tokens = num_tokens-1;85
try {86

testValue = Integer.parseInt(nextToken());87
} catch (NoSuchElementException nsee3) {};88
//db("the testValue is " + testValue); //debug89
switch (ch) {90
case '=' : {chk = tryEqual(elem, testValue); break;}91
case '>' : {chk = tryGreater(elem, testValue); break;}92
case '<' : {chk = tryLess(elem, testValue); break;}93
case '!' : {chk = tryNot(elem, testValue); break;}94
}95
break;96

}97
}98

}99
return(chk);100

}101
102

private boolean tryEqual(Integer isNow, int compareTo) {103
boolean ans = false;104
if (isNow.intValue() == compareTo) {105

//db("was equal??: "+isNow.intValue()+" = "+compareTo); //debug106
ans = true;107

}108
return(ans);109

}110
111

private boolean tryGreater(Integer isNow, int compareTo) {112
boolean ans = false;113
if (isNow.intValue() > compareTo) {114
 //db("was greater??: "+isNow.intValue()+" > "+compareTo); //debug115
 ans = true;116
}117
return(ans);118

}119
120

101

private boolean tryLess(Integer isNow, int compareTo) {121
boolean ans = false;122
if (isNow.intValue() < compareTo) {123

//db("was less??: "+isNow.intValue()+" < "+compareTo); //debug124
ans = true;125

}126
return(ans);127

}128
129

private boolean tryNot(Integer isNow, int compareTo) {130
boolean ans = false;131
if (isNow.intValue() != compareTo) {132
 //db("was not equal??: "+isNow.intValue()+" !="+compareTo); //debug133
 ans = true;134
}135
return(ans);136

}137
138

protected Integer decipherRule(Integer old, Integer intTime,139
MyHashtable vd, MyVector W) {140

Integer orgValue=old;141
Integer calculatedValue = null;142
int increment = 0;143
String stringIndex = null;144
int intIndex = 0;145
while (this.hasMoreTokens()) {146

new_value = nextToken();147
//db("this Element is --> "+new_value); //debug148
//db("number of tokens now --> "+num_tokens); //debug149
if ((new_value.equals("+")) & (num_tokens >1)) {150

num_tokens = num_tokens-1;151
String next = (String) nextToken();152
//db("number of tokens after '+' --> "+num_tokens); //debug153
 try{ increment = Integer.parseInt(next); //treat as int154

 //db(" add increment --> "+increment); //debug155
 calculatedValue=increaseVar(orgValue,increment);156

 orgValue = calculatedValue;157
} catch (NumberFormatException nfe) {158

if (next.equals("clk")) {159
 increment = intTime.intValue();160

102

calculatedValue=increaseVar(orgValue,increment);161
 orgValue = calculatedValue;162
}163
else if (next.startsWith("W[")) {164

165
//parse out into vector166

stringIndex = next.substring(2,(next.length() -1));167
for (Enumeration e3 = vd.elements(), k3 = vd.keys();168

 e3.hasMoreElements();){169
Integer elem3= (Integer) e3.nextElement();170
String key3 = (String) k3.nextElement();171
if (key3.equals(stringIndex)) {172

intIndex = elem3.intValue();173
break;174

}175
}176
Integer integerIndex =(Integer)W.elementAt(intIndex);177
increment = integerIndex.intValue();178
calculatedValue=increaseVar(orgValue,increment);179
orgValue = calculatedValue;180

} else {181
for (Enumeration e = vd.elements(), k = vd.keys();182

e.hasMoreElements();){183
 Integer elem= (Integer) e.nextElement();184
 String key = (String) k.nextElement();185
 if (key.equals(next)) {186
 increment = elem.intValue();187

 calculatedValue=increaseVar(orgValue,increment);188
 orgValue = calculatedValue;189
 break;190
 }191

}192
}193
}194
}195
else if ((new_value.equals("-")) & (num_tokens >1)) {196

num_tokens = num_tokens-1;197
String next = (String) nextToken();198
//db("number of tokens after '-' --> "+num_tokens); //debug199
try{ increment = 0-Integer.parseInt(next);200

103

//db(" minus increment --> "+increment); //debug201
calculatedValue=increaseVar(orgValue,increment);202
} catch (NumberFormatException nfe) {203

if (next.equals("clk")) {204
increment = 0-intTime.intValue();205

calculatedValue=increaseVar(orgValue,increment);206
orgValue = calculatedValue;207

}208
else if (next.startsWith("W[")) {209

//parse out into vector210
stringIndex = next.substring(2,(next.length() -1));211
for (Enumeration e3 = vd.elements(), k3 = vd.keys();212

e3.hasMoreElements();){213
Integer elem3= (Integer) e3.nextElement();214
String key3 = (String) k3.nextElement();215
if (key3.equals(stringIndex)) {216

intIndex = elem3.intValue();217
break;218

}219
}220
Integer integerIndex =(Integer)W.elementAt(intIndex);221
increment = 0-(integerIndex.intValue());222
calculatedValue=increaseVar(orgValue,increment);223
orgValue = calculatedValue;224

} else{225
for (Enumeration e = vd.elements(), k = vd.keys();226

e.hasMoreElements();){227
Integer elem= (Integer) e.nextElement();228
 String key = (String) k.nextElement();229
 if (key.equals(next)) {230

increment = 0-elem.intValue();231
calculatedValue=increaseVar(orgValue,increment);232
orgValue = calculatedValue;233
break;234

 }235
}236
}237
}238
} 239
else if (new_value.equals("clk")) {240

104

num_tokens = num_tokens-1;241
//db("number of tokens after 'clk' --> "+num_tokens);242
//System.out.print(" the time now --> "+increment); //debug243
calculatedValue=intTime;244
orgValue = intTime;245

} 246
else { //assume its an integer247

//db(" int? --> "+new_value); //debug248
//db("number of tokens with this int --> "+num_tokens);249
increment =Integer.parseInt(new_value);250
calculatedValue=replaceVar(increment);251

}252
}253
return(calculatedValue);254

}255
256

private Integer increaseVar(Integer isNow, int howMuch) {257
int v = isNow.intValue();258
int d = howMuch;259
Integer update = new Integer(v + d);260
//db("increaseVar:"+"v "+v+" d "+d+" update "+update); //debug261
return(update);262

}263
264

private Integer replaceVar(int howMuch) {265
Integer update = new Integer(howMuch);266
return(update);267

}268
269

public void db(String toDebug) {270
System.out.println(toDebug);271

}272
} //endof ModelParser class273

105

package netSim;1
import java.util.Hashtable;2
import java.util.Enumeration;3

4
/**5

MyHashtable extends Hashtable6

Extends java.util.Hashtable, purely for debugging purposes.7
*/8

9
class MyHashtable extends Hashtable {10

public MyHashtable(int size) {11
super(size); // number of items per MyHashtable12

 }13
14

public void listAll() {15
System.out.println("Key ; Element ");16
for (Enumeration e = elements(), k = keys(); e.hasMoreElements();) {17

System.out.println(k.nextElement() + " ; "+ e.nextElement());18
}19

}20
21

public void listAllE() {22
for (Enumeration e = elements(), k = keys(); e.hasMoreElements();) {23

Object[] ky = (Object[]) k.nextElement();24
Object el = (Object) e.nextElement();25
System.out.print(ky[0]+" "+ky[1]+ ":");26
System.out.println(el.toString());27

}28
}29

} //endof MyHashtable class30

106

package netSim;1
import java.util.Vector;2
import java.util.Enumeration;3

4
/**5

 MyVector extends Vector6

Extends java.util.Vector, purely for debugging purposes.7
*/8

9
class MyVector extends Vector {10

public MyVector(int size) {11
super(size); // number of items per MyVector12

}13
14

public void listAll() {15
for (Enumeration e = elements(); e.hasMoreElements();) {16

Object[] el = (Object[]) e.nextElement();17
System.out.print(this.indexOf(el) +": ");18
for (int i = 0; i< el.length; i++) {19

System.out.print(el[i]+", ");20
}21
System.out.println(" ");22

}23
}24

25
public void listAllC() {26

for (Enumeration e = elements(); e.hasMoreElements();) {27
char[] el = (char[]) e.nextElement();28
System.out.print(this.indexOf(el) +": ");29
for (int i = 0; i< el.length; i++) {30

System.out.print(el[i]+", ");31
}32
System.out.println(" ");33

}34
}35

} //endof MyVector class36

107

package netSim;1
import java.util.Random;2

3
/**4

RndGenerator extends Random5

Determines the random number stream for the current simulation run and6
calculates random variates from that stream as needed.7

*/8
9

class RndGenerator extends Random {10
double aRND,aLnNum;11
//double JaLnNum = 0, JthisRndNum = 0; //debugging vars12
int i;13
long thisSeed = 0;14

15
public RndGenerator() {16

super();17
}18

19
public RndGenerator(long theSeed) {20

super(theSeed);21
thisSeed = theSeed;22

}23
24

protected Double calcRndNum(String description) {25
double thisRndNum=0;26
int first =0, second=0;27
if ((!description.equals(""))&(!description.equals("0"))) {28

String p = description.substring(4,(description.length() -1));29
ModelParser rg= new ModelParser(p, ",");30
int[] parameters = rg.decipherRndParam();31
first = parameters[0];32
second = parameters[1];33
// use sigma numbers or not34
if (thisSeed==-2) {35

//aRND = sigmaRndNum();36
aLnNum = sigmaNaturalLogOfRndNum();37

}38
else {39

aRND = this.nextDouble();40

108

aLnNum = Math.log(aRND);41
}42
if (description.startsWith("exp")) {43

thisRndNum = -(first)*(aLnNum);44
//JaLnNum = Math.log(aRND); //debugging45
//JthisRndNum = -(first)*(JaLnNum); //debugging46
//System.out.println("aLnNum:"+aLnNum+"47
// thisRndNum:"+thisRndNum);48
//System.out.print("Java calculated:49

JaLnNum:"+JaLnNum);50
//System.out.println(" & this RNV:"+JthisRndNum);51

}52
else if (description.startsWith("uni")) { 53

thisRndNum = (aRND*(second-first))+first;54
}55
else if (description.startsWith("sta")) { 56

thisRndNum =first;57
}58

}59
Double thisDblRndNum = new Double(thisRndNum); 60

 61
return(thisDblRndNum);62

}63
64

private double sigmaRndNum() {65
//double[] list={0.096,0.754,0.236,0.246, 0.740, 0.583, 0.095, 0.336,66
// 0.669, 0.326, 0.017, 0.831, 0.083, 0.034};67
double[] list=68

{96671.312,754759.125,236939.765,246429.515,740916.5,583869.5,69
95099.476,336982.75,669204.875,326650.656,17661.154,831027.812,70
83955.187,34709.234,358116.062,856788.125,37192.121,87996.078,71
950118.125,635317.812,786756.5,16543.078,39492.566,751582.875,72
853431.562,624260.75,950330.625,207022.312,424055.812,106222.578,73
282898.218,670186.25,819377.75,281673.312,83438.398,349161.156,74
351590.531,182322.468,293786.093,663260.812,424314.937,461135.312,75
301270.375,451273.718,557435.312,816026.187,952038,902452.187,76
513509.437,553682.625,743496.312,942761.375,989804.812,649291.437,77
641024.437,696939.5,462714.968,850451.5,538471.5,90573.867,78
274996.562,866795.875,238334.906,694889.25,3367.645,600012.875,79
416953.218,732717.562,784015.5,948577.062,734034.812,923812.375,80

109

514397.156,473043.343,439806.906,834829.812,984389.687,637366.812};81
double nextRnd = (list[i]);82
i = i+1;83
return(nextRnd);84

}85
86

private double sigmaNaturalLogOfRndNum() {87
//double[] list={-2.336,-0.281,-1.439,-1.4,-0.299,-0.538,-2.352,-1.087,88
// -0.401,-1.118,-4.036,-0.185,-2.477,-3.36};89
double[] list=90

{-2336438.8,-281356.59,-1439949.4,-1400679.3,-299867.38,-538077.75,91
-2352831.8,-1087723.5,-401665,-1118864,-4036388,-185092.02,92
-2477472,-3360749.5,-1026898.1,-154564.66,-3291658.5,-2430463,93
-51168.96,-453629.94,-239836.45,-4101787.5,-3231642.8,-285573.81,94
-158489.89,-471187.19,-50945.335,-1574928.8,-857890.19,-2242218.5,95
-1262668.1,-400199.66,-199210.11,-1267007.4,-2483646.8,-1052221.8,96
-1045287.9,-1701978.4,-1224903.4,-410586.97,-857279.31,-774063.69,97
-1199747.3,-795681.25,-584408.75,-203308.81,-49150.339,-102639.59,98
-666486.88,-591163.63,-296391.5,-58942.089,-10247.523,-431873.59,99
-444687.75,-361056.63,-770644,-161987.86,-619020.69,-2401589.8,100
-1290996.8,-142951.73,-1434078.5,-364002.78,-5693541.5,-510804.13,101
-874781.25,-310994.94,-243326.52,-52792.261,-309198.78,-79246.265,102
-664759.63,-748568.25,-821419.5,-180527.41,-15733.461,-450409.91};103

double nextLnNum = (list[i]);104
i = i+1;105
return(nextLnNum);106

}107
}// end of RndGenerator class108

110

package netSim;1
import java.util.*;2
import java.awt.*;3

4
/**5

ViewerPanel extends Panel implements Runnable6

This file contains three classes: ViewerPanel, SchedThread, AnimationCanvas.7
8

ViewerPanel defines and draws the GUI for viewing and interacting with the9
simulation model.10

*/11
12

public class ViewerPanel extends Panel implements Runnable {13
boolean wasPaused = false;14
DataDictionary DD = new DataDictionary();15
Thread viewerThread;16
SchedThread simThread;17
String[] startNode;18

19
Panel pn = new Panel(); //North20
Panel pn1 = new Panel(); //North -left21
Button playpauseButton = new Button("PLAY");22
Button stopButton = new Button("STOP");23
Choice c = new Choice(); //North-middle24
Panel pn2 = new Panel(); //North - right25
TextField sd = new TextField(7); //seed field26
TextField rl = new TextField(7); //runlength field27
Panel pc = new Panel(); //Center28
AnimationCanvas cc1 = new AnimationCanvas(DD,this,550,130);29

//Center top - holds animation30
Panel pc2 = new Panel(); //Center bottom - holds note31
Label note = new Label("",Label.LEFT);32
TextArea t = new TextArea(6,50); //***South -- data output33
MyHashtable initEvent;34

35
public ViewerPanel() {36

t = new TextArea(6,50);37
}38

39
protected void putData(MyHashtable htEV, MyHashtable ht1, MyHashtable40

111

ht2,41
MyHashtable ht3, MyHashtable ht4, MyHashtable ht5, MyHashtable42

ht6,43
MyHashtable htED, MyVector v1, MyVector v2, MyVector v3,44
MyVector v4, MyVector v5, MyVector v6){45

DD.putData(htEV, ht1, ht2, ht3, ht4, ht5, ht6, htED, v1,v2,v3,v4,v5,v6);46
}47

48
protected void initModel(String[] st, MyHashtable ie) {49

startNode=st;50
initEvent=ie;51
DD.initData(initEvent);52

}53
54

public void start() {55
if (viewerThread == null) {56

viewerThread = new Thread(this);57
viewerThread.start();58

}59
}60

61
public void run() {62

setBackground((Color.lightGray).darker());63
insets();64
setLayout(new BorderLayout(0,10));65
resize(570,400);66

67
/*north panel*/68
pn.setBackground(Color.lightGray);69
pn.setLayout(new GridLayout(1,2,5,5));70
pn.resize(this.size().width, 40);71

c.addItem("Animation & Data");72
c.addItem("Animation only");73
c.addItem("Data Output only");74

pn1.setLayout(new FlowLayout(FlowLayout.CENTER,5,5));75
pn1.add(playpauseButton);76
pn1.add(stopButton);77
pn1.add(c);78

sd.setBackground(Color.white);79
setSD();80

112

rl.setBackground(Color.white);81
setRL();82

pn2.setLayout(new GridLayout(2,2));83
pn2.add(new Label("random number seed:"));84
pn2.add(sd);85
pn2.add(new Label("model run-length:"));86
pn2.add(rl);87

pn.add(pn1);88
pn.add(pn2);89
add("North", pn);90

91
/*south panel*/92
t.setBackground(Color.lightGray);93
t.appendText("Data output:");94
add("South", t);95

96
/*center panel*/97
pc.setLayout(new BorderLayout(0,10));98

note.resize(this.size().width,20);99
note.setAlignment(Label.LEFT);100
pc2.setBackground(Color.white);101
pc2.setForeground(Color.magenta);102
pc2.resize(this.size().width,20);103
pc2.add(note);104

pc.add("South",pc2);105
cc1.setBackground(Color.white);106
cc1.resize(550,130); // sets canvas size107

pc.add("Center",cc1);108
add("Center", pc);109
stop();110

}111
112

public Insets insets() {113
return new Insets(10,10,10,10);114

}115
116

public boolean action(Event evt,Object arg){117
if ((evt.target instanceof Button) && ("STOP".equals(arg))){118

stopB();119
return true;120

113

}121
else if ((evt.target instanceof Button) && ("PAUSE".equals(arg))){122

pauseB();123
return true;124

}125
else if ((evt.target instanceof Button) && ("PLAY".equals(arg))){126

playB();127
return true;128

}129
return false;130

}131
132

protected void stopN(){ //called from SchedThread to end run133
note.resize(this.size().width,20);134
note.setText("SIMULATION FINISHED");135
simThread.stop();136
simThread = null;137

}138
139

private void stopB(){ //user stop sim by button140
if (simThread !=null) {141

playpauseButton.setLabel("PLAY");142
note.resize(this.size().width,20);143
note.setText("SIMULATION STOPPED: press PLAY to144

restart.");145
simThread.stop();146
simThread = null;147
t.appendText("\n ** Simulation run aborted. ** \n");148

}149
}150

151
private void pauseB() { //user pause by button152

if (simThread.isAlive()) { //simulation is running153
note.resize(this.size().width,20);154
note.setText("SIMULATION PAUSED: press PLAY to155

resume.");156
playpauseButton.setLabel("PLAY");157
simThread.suspend(); //pause sim until play button158
wasPaused = true;159

}160

114

}161
162

private void playB() { //user play,start by button163
note.resize(this.size().width,20);164
note.setText("SIMULATION IN PROGRESS");165
playpauseButton.setLabel("PAUSE");166
if (simThread==null) { //sim was stopped167

long valueSD = setSD();168
double valueRL = setRL();169
simThread = new SchedThread(DD,this,valueSD,valueRL);170
simThread.start();171

}172
else if (wasPaused){ //sim was paused173

playpauseButton.setLabel("PAUSE");174
wasPaused=false;175
simThread.resume();176

}177
}178

179
private long setSD() {180

long newSd;181
newSd = readSeed(sd.getText());182
Long newSeed =new Long(newSd);183
sd.setText(newSeed.toString());184
return(newSd);185

}186
187

private double setRL() {188
double newRL;189
newRL=readRunLength(rl.getText());190
Double newRun =new Double(newRL);191
rl.setText(newRun.toString());192
return(newRL);193

}194
195

private long readSeed(String seedChangeTo) {196
long theSeed = 0;197
if ((seedChangeTo.equals(""))|(seedChangeTo == null)) {198

theSeed = System.currentTimeMillis();199
}200

115

else {201
try {202

theSeed = (Long.valueOf(seedChangeTo)).longValue();203
}204
catch (NumberFormatException e) {};205

}206
return(theSeed);207

}208
209

private double readRunLength(String lengthChangeTo) {210
double runLength = 0;211
if ((lengthChangeTo.equals(""))|(lengthChangeTo == null)) {212

runLength = 1440;213
}214
else {215

try {216
runLength = (Double.valueOf(lengthChangeTo)).doubleValue();217
}218
catch (NumberFormatException e) {};219

}220
return(runLength);221

}222
223

public void stop() {224
if (viewerThread != null) {225

viewerThread.stop();226
viewerThread = null;227

}228
}229

} //endof ViewerPanel class230
231

116

class SchedThread extends Thread {232
double runLength;233
double time;234
Double nextTime = null;235
String[] currentEvent;236
Object[] nextListItem;237
MyHashtable schedEvent;238

239
DataDictionary processDD;240
ViewerPanel viewerVP;241

242
/**243

SchedThread extends Thread244

Monitors the simulation clock and future event list, determines the type of245
output desired by the user, notifies the database of the current random246
number seed, and signals the database to process the next event. This class247
manages the simulation run until the clock exceeds the current run-length,248
the future events list is empty, or the simulation is stopped by the user.249

250
SchedThread must be contained in same text file as ViewerPanel.251

*/252
 253

public SchedThread(DataDictionary data, ViewerPanel target,254
long sd, double rl) {255

super();256
processDD=data;257
viewerVP=target;258
time = 0;259
runLength = rl;260
processDD.setUp(sd, viewerVP.initEvent);261
currentEvent= target.startNode; //set init node262
setPriority(Thread.MIN_PRIORITY);263

}264
265

public void run(){266
if ((viewerVP.c.getSelectedIndex()==0)267

|(viewerVP.c.getSelectedIndex()==2)){268
//(animation&data output)|(data output))269
viewerVP.t.appendText("\n time; event; Queue Length; Throughput;");270
viewerVP.t.appendText(" Waiting Time; Server Busy Time"); //outputdata271

117

//System.out.println("time; event; Q; CO; WT; TE"); //output272
quick273

}274
while (time<=runLength) {275

//System.out.print("currentEvent ");276
//System.out.println(currentEvent[0]+", "+currentEvent[1]);277
schedEvent = (MyHashtable)278

processDD.events.get(currentEvent);279
//System.out.println("schedEvent ");280
//schedEvent.listAll();281
processDD.updateEventVars(schedEvent, time);282
processDD.updateEventSch(currentEvent, time);283
nextListItem = processDD.adjustEventSch();284
if ((viewerVP.c.getSelectedIndex()==0)285

|(viewerVP.c.getSelectedIndex()==2)){286
//(animation&data output)|(data output))287

outputData();288
}289
if ((viewerVP.c.getSelectedIndex()==0)290

|(viewerVP.c.getSelectedIndex()==1)){291
//(animation&data output)|(animation))292

viewerVP.cc1.repaint(currentEvent, nextListItem);293
try { Thread.sleep(910); }294
catch (InterruptedException e) { };295

}296
currentEvent = (String[]) nextListItem[2];297
nextTime = (Double) nextListItem[0];298
time = nextTime.doubleValue();299

//System.out.println("time: "+time);//debug300
//System.out.print("nextListItem: ");301
//System.out.println(nextListItem[0]+ ",302

"+nextListItem[1]+303
// ", {"+currentEvent[0]+", "+currentEvent[1]+"}");304

}305
//System.out.println("==================");306
viewerVP.t.appendText("\n ==============================");307
viewerVP.t.appendText("\n Simulation run has finished.");308
viewerVP.t.appendText("\n ==============================");309
viewerVP.playpauseButton.setLabel("PLAY");310
viewerVP.stopN();311

118

this.stop();312
} //endof run313

314
public void outputData() {315

Integer VI1= (Integer) processDD.varData.get("Q");316
double v1= VI1.doubleValue()/10000;317
Integer VI2= (Integer) processDD.varData.get("CO");318
double v2= VI2.doubleValue()/10000;319
Integer VI3= (Integer) processDD.varData.get("WT");320
double v3= VI3.doubleValue()/10000;321
Integer VI4= (Integer) processDD.varData.get("TE");322
double v4= VI4.doubleValue()/10000;323
viewerVP.t.appendText("\n "+time +"; "+currentEvent[1]+"; ");324
viewerVP.t.appendText(v1+"; ");325
viewerVP.t.appendText(v2+"; ");326
viewerVP.t.appendText(v3+"; ");327
viewerVP.t.appendText(v4+" ");328
//System.out.println(time +"; "+currentEvent[1]+"; "329
//+processDD.varData.get("Q")+"; "+processDD.varData.get("CO")+"; "330
//+processDD.varData.get("WT")+"; "+processDD.varData.get("TE"));331
//processDD.W.listAll();332

}333
}//endof SchedThread class334

119

class AnimationCanvas extends Canvas{335
int activeIndex;336
int nextIndex;337
DataDictionary processDD;338
MyVector eVectList = new MyVector(10);339
ViewerPanel viewerVP;340

341
static int xinit = 20, y1 = 35; //init point for nodes342
static int xwidth = 40, ywidth = 40; //size of nodes343
char[] elabel; //node labels344
int x1,x2;345
int xlabel, ylabel;346
int[] Exes, Whys;347
int Pts;348

349
Image offscreenImg;350
Graphics offscreenG;351
Font f = new Font("TimesRoman",Font.PLAIN,10);352
Dimension imageSize;353

354
/**355

 AnimationCanvas extends Canvas356

Draws the event graph of the simulation model onto the viewing panel. 357
Animates the event graph by periodically repainting sections as requested358
by the simulation thread, an instance of SchedThread.359

360
AnimationCanvas must be contained in same text file as ViewerPanel.361

*/362
363

public AnimationCanvas(DataDictionary data, ViewerPanel target,364
int width,int height) {365

processDD = data;366
this.viewerVP = target;367
imageSize = new Dimension(width,height);368

}369
370

public void paint(Graphics g) {371
offscreenImg = createImage(imageSize.width, imageSize.height);372
offscreenG = offscreenImg.getGraphics();373
offscreenG.setFont(f);374

120

eVectList.removeAllElements();375
makeNodeList();376
//System.out.println("ready to draw nodes"); //debug377
for (int i=0; i < eVectList.size();i++) {378

locateNode(i);379
offscreenG.setColor(Color.yellow);380
drawNode(g);381

}382
//System.out.println("starting edges"); //debug383
for (Enumeration e2 = processDD.edges.elements(),384

k2 = processDD.edges.keys(); e2.hasMoreElements();){385
MyVector edgeList= (MyVector)e2.nextElement();386
String[] thisKey2 = (String[])k2.nextElement();387
int edgeIndexFrom = Integer.parseInt(thisKey2[0]);388
char[] edgeNameFrom = thisKey2[1].toCharArray();389
//System.out.println("edgeFirstName "+edgeNameFrom[0]+" "390
// +edgeNameFrom[1]+" "+edgeNameFrom[2]);391
for (int dest = 0; dest<edgeList.size(); dest = dest+4) {392

String[] thisElem = (String[])edgeList.elementAt(dest);393
int edgeIndexTo = Integer.parseInt(thisElem[0]);394
for (Enumeration e3 = eVectList.elements();395
 e3.hasMoreElements();) {396
 char[] currentNode= (char[]) e3.nextElement();397
 if (edgeIndexFrom == eVectList.indexOf(currentNode)) {398

whichEdge(edgeIndexTo, eVectList.indexOf(currentNode), edgeIndexFrom);399
offscreenG.setColor(Color.yellow);400
drawArrow(g);401
break;402

}403
}404

}405
}406
this.viewerVP.cc1.getGraphics().drawImage(offscreenImg,0,0,this);407

} //end of paint408
409

public void repaint(String[] event, Object[] item) {410
activeIndex = Integer.parseInt(event[0]);411
String[] nextNode = (String[]) item[2];412
nextIndex = Integer.parseInt(nextNode[0]);413
repaint(0);414

121

}415
416

public void update(Graphics g) {417
//System.out.println("start update method");418
for (Enumeration e3 = eVectList.elements(); e3.hasMoreElements();) {419

char[] listNode= (char[]) e3.nextElement();420
int listIndex = eVectList.indexOf(listNode);421
//System.out.println("listIndex "+listIndex);422
if (activeIndex == listIndex) {423

/*redraw node*/424
locateNode(activeIndex);425
offscreenG.setColor(Color.cyan);426
drawNode(g);427

this.viewerVP.cc1.getGraphics().drawImage(offscreenImg,0,0,this);428
/*pause before repainting*/429
try { Thread.sleep(220); }430
catch (InterruptedException ie1) { };431
offscreenG.setColor(Color.yellow);432
drawNode(g);433

this.viewerVP.cc1.getGraphics().drawImage(offscreenImg,0,0,this);434
/*check edges*/435
for (Enumeration e2 = processDD.edges.elements(),436

k2 = processDD.edges.keys();437
e2.hasMoreElements();){438

MyVector edgeList= (MyVector) e2.nextElement();439
String[] thisKey2 = (String[])k2.nextElement();440
int edgeIndexFrom = Integer.parseInt(thisKey2[0]);441
if (edgeIndexFrom == activeIndex) {442

443
for (int dest = 0; dest<edgeList.size();dest =dest+4) {444

 String[] thisElem = (String[])edgeList.elementAt(dest);445
 int edgeIndexTo = Integer.parseInt(thisElem[0]);446
 if (edgeIndexTo == nextIndex) {447

/*redraw edges*/448
whichEdge(nextIndex, listIndex, activeIndex);449

offscreenG.setColor(Color.cyan);450
drawArrow(g);451

this.viewerVP.cc1.getGraphics().drawImage(offscreenImg,0,0,this);452
/*pause before repainting*/453
try { Thread.sleep(450); }454

122

catch (InterruptedException ie2) { };455
offscreenG.setColor(Color.yellow);456
drawArrow(g);457

this.viewerVP.cc1.getGraphics().drawImage(offscreenImg,0,0,this);458
break;459

 }460
}461
break;462

}463
}464
break;465

}466
}467
//pause before repainting468
try { Thread.sleep(220); }469
catch (InterruptedException ie3) { };470

} //end of update471
472

private void whichEdge(int n, int l, int a) {473
int next = n;474
int list = l;475
int active = a;476
if (next < list) {477

//System.out.println("call backwardEdge");478
backwardEdge(active);479

}480
else if (next == list) {481

//System.out.println("call curvedEdge");482
curvedEdge(active);483

}484
else if (next > list) {485

//System.out.println("call forwardEdge");486
forwardEdge(active);487

}488
}489

490
private void makeNodeList() {491

char[] eCharList = null;492
String[] thisKey = null;493
for (int j=0; j<processDD.events.size(); j++) {494

123

for (Enumeration k = processDD.events.keys();495
k.hasMoreElements();){496
thisKey = (String[])k.nextElement();497
if (Integer.parseInt(thisKey[0]) == j) {498

eCharList = (thisKey[1]).toCharArray();499
eVectList.addElement(eCharList);500
break;501

}502
}503

}504
//System.out.println("eVectList: "); //debug505
//eVectList.listAllC(); //debug506

}507
508

private void locateNode(int nodeIndex) {509
elabel = (char[]) eVectList.elementAt(nodeIndex);510
x1 = xinit+ nodeIndex*90;511
xlabel=x1+6;512
ylabel=y1+24;513

}514
515

private void drawNode(Graphics g) {516
offscreenG.fillOval(x1,y1,xwidth,ywidth);517
offscreenG.setColor(Color.black);518
offscreenG.drawOval(x1,y1,xwidth,ywidth);519
offscreenG.drawChars(elabel,0,elabel.length,xlabel,ylabel);520

}521
522

private void drawArrow(Graphics g) {523
offscreenG.fillPolygon(Exes,Whys,Pts);524
offscreenG.setColor(Color.black);525
offscreenG.drawPolygon(Exes,Whys,Pts);526

}527
528

private void backwardEdge(int startIndex) {529
x2=xinit+ startIndex*90;530
x1=x2 - 90;531
int[] exes = {x2,x1+47,x1+47,x1+40,x1+47,x1+47,x2};532
int[] whys = {y1+16,y1+16,y1+18,y1+15,y1+12,y1+14,y1+14};533
int pts = exes.length;534

124

Exes = exes;535
Whys = whys;536
Pts = pts;537

}538
539

private void curvedEdge(int startIndex) {540
 x1=xinit+ startIndex*90;541

 int[] exes = {x1+31,x1+31,x1+7,x1+7,x1+9,x1+6,x1+3,x1+5,x1+5,x1+33,x1+33};542
 int[] whys = {y1+4,y1-9,y1-9,y1-1,y1-1,y1+5,y1-1,y1-1,y1-11,y1-11,y1+6};543
 int pts = exes.length;544
 Exes = exes;545
 Whys = whys;546
 Pts = pts;547
}548

549
private void forwardEdge(int startIndex) {550

x1=xinit+ startIndex*90;551
x2=x1 + 90;552
int[] exes = {x1+40,x2-7,x2-7,x2,x2-7,x2-7,x1+40};553
int[] whys = {y1+21,y1+21,y1+23,y1+20,y1+17,y1+19,y1+19};554
int pts = exes.length;555
Exes = exes;556
Whys = whys;557
Pts = pts;558

}559
}//endof AnimationCanvas class560

125

Appendix I: Netsim User’s Manual

CONTENTS:

1. Use Requirements

2. Interfaces

3. Saving

4. Creating a Model

 a. Events/ Variables
 b. Edges
5. Viewing a Model

1. Use Requirements:

Netsim runs as a Java applet on any Java-compatible WWW browser or applet viewer.

The Netsim simulation package supports discrete-event simulation using event-graph modeling.
While knowledge of simulation, particularly including the event graph approach, is useful in
designing a model in Netsim, no knowledge of Java or simulation modeling is required to enter or
modify the model.

To use Netsim one does need working knowledge of WWW browsers and must follow the
formatting requirements stated in this user's manual.

2. Interfaces

View the simulation by clicking on the lower right button of the screen, "View Simulation NOW."

View the model parameters by clicking on the lower right button of the screen, "Define/ Revise
Model."

3. Saving

The save buttons on the lower left side of the screen are currently disabled. Ideally, they would
allow the user to name and save either the model specifications or the data output into a directory
on the local computer.

126

4. Creating a Model

Switch to the entry form, if necessary, by clicking on the lower right button of the screen,
"Define/ Revise Model."

All names and variables

• are case-sensitive,
• begin with a letter,
• do not contain spaces,
• appear in model in order listed.

4a. Events & Variables

Events/ Nodes

Netsim currently allows up to six events.

Enter the name of each event into the "event" text field on the entry form.

The events will appear on the animated model from left to right in the order they appear on the
entry form.

Variables/ Attributes

Each event may contain as many variables and variable rules as desired.

Enter the variable rules for each event in the "state vars" text field following the associated event
text field on the entry form.

• There are 2 reserved variables:
clk , the current simulation time.
W[], an array containing clk times and indexed by a given variable.

• All other variables are integer-valued.
• Separate variable name and rule by = .
• Separate equations by ;.
• When used, place W[] last in the equation.
• Note:

Leave no spaces between equation sections or equations.
Within a variable rule leave one space between the operation and the value, as shown
below.

127

The state variables will be processed in the order listed. This may make a difference in the results
of a model if one variable references another during the same event.

Variable rules may do the following: Example:
Change the existing value by an integer,

or the clock time.
Q=1
T=clk

Increase or decrease the existing value by an integer,
another variable,
or the clock value.

Q=+ 1
Q=- TS
T=+ clk

Create an array, W[] of clock times indexed by another variable. W[Q]=clk
Combine any of these operations. TE=clk - TS

T=+ clk - W[Q])

4b. Edges

Location

Edges may be created between any two consecutive events, or an edge may be self-scheduling
(i.e., from an event back to the same event). Netsim currently allows one edge in each direction
between two different events, with up to one condition on each edge.

Type the name of the event where the edge begins in the "from" text box.

Type the name of the event where the edge ends in the "to" text box.

Note:
These names are case-sensitive and must match the event names defined in the event section of the
entry form or the edge will not appear in the model.

Condition

Place basic conditions on the edges by using the format shown in the table below.

• The variable name may be any variable defined as a state variable in the upper section
of the entry form.

• The integer value may be any integer.
• The operator is <, >, or =.
• The reserved word "TRUE" typed without the quotations makes that edge

unconditional.
• Note:

One space separates the operator from each of the other terms.

128

var. name <space> operator <space> integer value

Examples: Q < 1

Q > -1

Q = 0

TRUE

Time Delay

Netsim currently supports three types of time delays, as shown below.

Type the appropriate function in the "time delay" text box.

• Parameters of the function are
 integer-valued,
 separated by commas,
 enclosed by parentheses.

• Note:
These time delay functions are case-sensitive and contain no spaces.

Time Delay: Function: Example:
constant increases sta(a) sta(5)
uniform random variates uni(a,b) uni(3,5)
exponential random variates exp(a) exp(5)

Priority

Type the preferred priority, integers 1 to 9, in the "priority" text box.

• 1 = lowest priority

• 5 = default setting

• 9 = highest priority

5. Viewing a Model

Switch to the output interface, if necessary, by clicking on the lower right button of the screen,

129

"View Simulation NOW."

To set the RNG seed:

Type any integer into the "random number seed" text box.

To set the simulation run length:

Type any integer into the "model run-length" text box.
Use the same units as in the time delay functions.

To change output type:

Hold the mouse button down over the "Animation & Data" box and select one of

• "Animation & Data,"
• "Animation only,"
• "Data Output only."

When selected, the model animates throughout the run. Current events and edges are
displayed in blue.

The large scrollable text area displays data for selected variables at each event time. Variable
selection for this display is not current available for the user.

To run simulation:

Click the mouse on the labeled buttons

• PLAY - starts or resumes a simulation run,
• PAUSE - pauses a run,
• STOP - aborts the run.

The PLAY/ PAUSE button is a toggle switch.

Note:
If the run finishes naturally, you must press STOP before starting another run. This is a bug
in the current version.

130

Vita

Tamie Lynne Veith will receive her M.S. in Industrial and Systems Engineering at Virginia
Polytechnic Institute and State University in May 1997. Her concentration is in Operations
Research with particular interest in simulation and WWW applications. For the three years
preceeding her graduate work, Tamie worked as a Technical Coordinator and Data Control
Technician for the Sleep and Aging Research Program at the University of Washington in Seattle.
 She recieved her B.A. in Mathematics in 1992 from Reed College, Portland, Oregon.

