Netsim: A Java™ -Based WWW Simulation Package

by
Tamie Lynne Veith

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science
in
Industrial and Systems Engineering

Approved:
Dr. Pat Koelling, Co-chair
Dr. John Kobza, Co-chair
Dr. JW. Schmidt

April 29, 1997
Blacksburg, Virginia

Keywords: Internet, Java, modeling, Netsim, programming, simulation, WWW
Copyright 1997, Tamie Lynne Veith

Netsim: A Java™ -Based WWW Simulation Package

by
Tamie Lynne Veith

(ABSTRACT)

Use of the World Wide Web (WWW) for transfer of information and ideas is increasingly
popular. Java, a programming language for the WWW, provides a simple method of distributing
platform-independent, executable programs over the WWW. Such programs allow the expansion
of WWW-based computational and analytical tools that support and enhance the existing WWW
environment. However, a WWW-based, generalized simulation package is not yet available.
Current literature motivates development of a general, WWW-based simulation package with
maximum user interactivity and cross-platform capabilities. Advantages of such a package are
discussed and explored in three potential applications. Main advantages are wide availability,
controlled access, efficient maintenance, and increased integration. Disadvantages, such as
variable download times, are also discussed. Netsim, a general, WWW-based simulation package
written entirely in Java, is developed and demonstrated. Netsim provides complete model
creation and modification capabilities along with graphical animation and data output. Netsim
uses the event graph paradigm and object-oriented programming. Java, event graphs and object-
oriented programming are discussed briefly. The Java random number generator is verified for
uniformity and independence. Netsim is compared to SIGMA, a non-Internet simulation
package, using a standard M/M/1 queueing model. Comparison issues and results are discussed.
Additionally, tested through hand-tracing for coding validity, Netsim performs as theory
prescribes. Netsim documentation and user’s manual are included. Netsim allows expandability
for complex modeling and integration with other Java-based programs, such as graphing and
analysis packages. Current Netsim limitations and potential customization and expansion issues
are explored. Future work in WWW-based simulation is suggested.

Acknowledgments

I would like to acknowledge my committee’s time, advice, and dedication to this project. In
particular, my thanks to Dr. Kobza for his help, throughout the summer, in formulating and
motivating the project proposal. Additionally, my sincerest thanks to Dr. Koelling for his past
year and a half of availability and support, including funding and work space, even while on a
semester sabbatical.

Also, I would like to thank Ron and Theresa for ensuring my familiarity with the ETD process
and for making sure | stopped to eat occasionally.

Finally, my deepest gratitude to Archer for her constant support, understanding and constructive
suggestions throughout the past two years.

Table of Contents

Abstract i

Acknowledgments i

List of Figures vii
List of Tables viii
Chapter 1: Introduction 1
Chapter 2: WWW-Based Simulation 3
2.1 Advantages and Disadvantages 3
2.1.1 Advantages 3
2.1.2 Disadvantages)

2.2 Applications 6
2.2.1 Business Performance 7
2.2.2 Product Sales 7
2.2.3 Skill Training, Role-playing 8
Chapter 3: Structural Background 10
3.1 Java™ 10
3.2 Object-Oriented Programming 11
3.3 Event Graphs 12
Chapter 4: Literature Review 14
Chapter 5: Motivation for Netsim 18
Chapter 6: Netsim Simulation Package 20
6.1 Overview 21
6.2 Information Flow 23
6.2.1 Database 24
6.2.2 Interfaces 24

6.2.3 Simulator
6.3 Model Creation

Chapter 7: Analysis of Netsim

7.1 Random Number Generator in Java
7.2 Comparison of Netsim with SIGMA
7.3 Random Variate Calculations in NetSim and SIGMA
7.4 Comparison Results and Discussion

7.5 Netsim Limitations
7.5.1 Conversion of Clock Values
7.5.2 Thread Synchronicity

Chapter 8: Conclusions

8.1 Benefits of WWW Simulation
8.2 Contributions of Netsim

8.3 Programming in Java

8.4 Future Work

References and Bibliography

Appendix A: Copyrights/ Disclaimers

Appendix B: Check of Java Random Number Generator: Data Output
Appendix C: Check of Java Random Number Generator: Program
Appendix D: SIGMA Random Variate Calculations: Data Output
Appendix E: Carwash Model: SIGMA & NetSim Data Output
Appendix F: Carwash Model: SIGMA Program

Appendix G: Netsim Documentation

Appendix H: Netsim Source Code

24
25

28

28
29
30
31

32
32
32

33

33
34
35
36

38

42

43

45

50

53

61

63

76

Appendix I: Netsim User’s Manual 125

Vita 130

Vi

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure5:
Figure 6:
Figure7:

List of Figures

Example of object-oriented hierarchy

Netsim package internal structure

Interface for creating and modifying model

Interface for viewing model animation and data output
Information flow within Netsim

Freguencies of p-values for each set of independence test runs
Event graph for carwash model

vii

List of Tables

Table 1: Format for edge conditions

Table 2: Test results of the Java random number generator

Table 3: Variable definitions for carwash model

Table 4: Natural log calculations

Table 5: Sample of simulation run using different clock multipliers

viii

26
28
30
31
32

Chapter 1: Introduction

A growing number of people use the Internet daily for both business and pleasure. The Internet
is a computer network through which many types of data can be transferred. The vast system of
server computers connected to the Internet, the development of standardized protocols, and the
Uniform Resource Locator computer addressing system have helped create a worldwide
information system within the Internet, called the World Wide Web.

People increasingly connect to the World Wide Web (WWW), through WWW browsers such as
Netscape Navigator (Netscape 1997), to access resources, share information, schedule meetings,
and leave messages. Through Java™ (Sun, 1997; Appendix A), a WWW-based programming
language, people can also customize and interact with WWW-based computational programs as
they would with traditional, non-Internet-based programs. However, WWW-based applications
do not yet include a generalized, interactive simulation program for modeling, demonstrating, and
analyzing a particular project. As a result, many WWW users must still use a specialized, non-
Internet-based simulation program to work with the technical aspects of a project.

A general, WWW-based simulation package can enable users to model, explore and analyze the
same problems for which they would otherwise need traditional simulation packages. The
resulting models are then easily explored and manipulated by any colleagues or clients connected
to the WWW without the introduction of additional, possibly unfamiliar software. Because Java
programs operate on WWW browsers, they are platform-independent, thus avoiding system
compatibility problems often encountered with non-Internet programs. Additionally, WWW
applications are generally maintained in a single location, allowing the provider to easily
distribute modifications, maintain version control and control user access. Other benefits with
WWW-based applications include access from distant sites and off-hour availability.

The purpose of this research is to create and demonstrate a general, Java-based, WWW
simulation package called Netsim. A simulation problem, modeled in Netsim, can be instantly
viewed as an animated model on a WWW browser, allowing users to benefit fully from the
advantages of the WWW environment. Such Java-based models allow the user the same degree of
interactive, multimedia capability as do non-Internet-based programs (Jones, 1996).

Additionally, the object-oriented paradigm used in Java-based WWW simulation provides
distinct modeling advantages over more traditional procedural-based simulation packages such as
SLAM 11° (Pritsker, 1986; Appendix A) or SIGMA (Schruben, 1995; Appendix A).

Chapter 2 outlines and discusses the advantages and disadvantages of a WWW-based simulation
package, such as Netsim. In addition, three applications in which Netsim could be advantageous
are considered. Chapter 3 presents background information on Java, object oriented

1

programming, and event graph simulation. A literature review of Internet, WWW and simulation-
based work leading up to this project, as well as current work in this rapidly evolving area, is
presented in Chapter 4. Chapter 5 motivates the development of the Netsim simulation package,
discussing the ways Netsim answers limitations of and contributes significantly to the existing
set of WWW-based simulation tools. Netsim’s structure and capabilities are explained in
Chapter 6. Chapter 7 describes the procedures used for verifying the accuracy of Netsim and
also reports and analyzes the results of this verification. Conclusions and ideas for future
research are given in Chapter 8.

Chapter 2: WWW-Based Simulation

2.1 Advantages and Disadvantages

As mentioned in the introductory chapter, a WWW-based simulation program provides several
beneficial features that are lacking in currently established, non-Internet-based packages such as
SLAM Il or SIGMA (Nair, 1996). These features include wide availability among different
systems, controlled access, efficient maintenance, and increased integration into current working
environments. A few disadvantages also exist when simulating over the WWW. These include
difficulty in tailoring a program to a specific platform, loading time variability, and the possibility
of inconsistent model access. The following sections discuss advantages and disadvantages of
WWW-based simulation.

2.1.1 Advantages
Advantages of a WWW-based simulation program can be grouped into the following main
characteristics with associated features:
Wide Availability
allows access on many platforms without recompiling.
allows access at distant sites without transporting hardware or software.
allows access outside normal business hours.
Controlled Access
protects against inadvertent and unauthorized change and duplication of original.
allows *“copy exactly” model distribution.
enables individualized access through passwords on unrestricted machines.
enables limited time-span access.
Efficient Maintenance
enables frequent modifications to be made and instantly distributed.
reduces error potential when updating and distributing models.
eliminates virtually all on-site maintenance.
allows modifications and implementations to be made through the server.
Increased Integration
interfaces instantly with existing WWW browsers.
requires only a WWW browser capable of viewing Java programs.
encourages communication and interaction through the WWW.

Wide Availability. Platform specificity or recompilation is often necessary with non-Internet-
based simulation software. Utilizing traditional simulation packages requires access to a

3

computer containing the proper simulation software, as well as an appropriately compiled copy
of the model source code. The portability of a WWW-based model onto numerous platforms
enables the user to quickly access and run the model from multiple, wide-spread locations. Users
at distant sites can instantly access the most up-to-date models using the available computer
platform. There is no need to transport hardware or software to these sites, download an
appropriate version of the file, or recompile the code. Furthermore, since the Internet is usually
available twenty-four hours a day, access to a model and its WWW site is not limited by time
constraints. This allows users to proceed at their own pace and to work within their own time
schedule.

Controlled Access. Permanently modifying a model in either WWW-based or traditional
simulation packages requires access to the model source code. With non-Internet simulation
packages, the user often accesses the model directly from the computer on which the model is
running, with the complete source code of the model and the software package residing on that
computer. In this situation, there is significant potential for confusion and later difficulties
caused by inadvertent, permanent changes to and multiple copies of a model. Additionally, users
are able to retain, change, duplicate, and share models or software beyond the limits of any
agreements they might have made with the supplying company.

On the WWW, a single copy of any model, provided through a server, is necessary. Also,
although Java-based WWW simulation packages, such as Netsim, are accessible through any
Java-compatible browser, the package may not be copied without direct access to the uncompiled
package source code. As a result, only a person with access to the original model or package code
can permanently change the model or allow duplication of the simulation package, preventing
inadvertent or unauthorized alterations and the resulting difficulties. This can be particularly
useful for companies providing “copy exactly” instructions through a model and depending on
exact replicas of a product based on information from that model.

When using WWW-based simulation, one person can control access to a model through secure
WWW sites, password requirements and limited time-spans. This helps link the use of the
model to the appropriate people as opposed to specific computers with multiple users, as often
happens with current simulation packages. Additionally, such access restrictions are placed on
the model or the WWW site, not on the machine itself. This ensures uniform access privileges
regardless of platform.

Efficient Maintenance. With WWW-based simulation the existence of a single working model
enables frequent, permanent modifications with a smaller degree of error. Additionally, there is
seldom need for on-site maintenance. The model or simulation package can be modified and made
instantly available over the WWW and users notified, if necessary, through e-mail. In the more
traditional packages, implementing modifications can be tedious and time consuming. First, users

4

must be made aware of the need for and existence of an updated model. Then the update must
either be made on each copy of the model, increasing the chance of model inconsistencies, or the
new model be delivered to and reinstalled onto each computer and the old one deleted.

Additionally, the creator/ maintainer of a WWW-based simulation model generally has access,
through the Internet, to the model’s source code on the serving computer. This allows that
person to access the server from a distant site, if desired, in order to permanently modify the
model. For most traditional simulation packages, any changes to the source code must be made
directly on, or copied to, the computer running the simulation model.

Increased Integration. ~ Programming software and viewing browsers that support a WWW-
based simulation package are readily available through the Internet. Appropriate browsers, such
as Netscape, are Java-compatible and already installed on many computer systems. \Where not
currently installed, these browsers are easy to locate and available for immediate installation.
Many such browsers are currently free to educators, researchers, and students or are included in
standard office software packages.

Since many users are familiar with navigating WWW browsers, the total software learning curve
for using a model is minimal. Once the browsers are installed, no additional software or
downtime is required before accessing a simulation model. Unlike many standard simulation
packages, the needs for proper installation of the software package and for working knowledge of
the operating commands do not pose major hurdles to effective, timely use of a model.
Additionally, the WWW-based software can be made user friendly, enabling the creation of non-
technical, menu-driven models. This encourages users to become more involved with the
available technology and minimizes the need for assistance by a skilled programmer.

Active use of the WWW allows the user to immediately and efficiently resolve issues raised by a
simulation model. Each WWW simulation model is linked to a hypertext markup language
(HTML) page. This page can contain e-mail links, help or problem request forms, connections to
relevant search engines, and links to previous models. Such connections are easy for a WWW site
programmer to provide, maintain and use. Additionally, the page can provide supplemental
information in the form of textual instructions, images, sound clips, and other appropriate
multimedia tools. User communication might be further enhanced by Internet tools such as list-
serves, electronic bulletin boards, or chat rooms. While examining a model, a user can easily send
messages, answer questions, explore a subject area and research a particular topic in depth. There
is no need to exit and reopen software as might be necessary when using more traditional
simulation packages.

2.1.2 Disadvantages
Simulation over the WWW does have a few potential drawbacks. These disadvantages, as well as
5

the previously discussed advantages, should be considered when deciding which simulation
package best meets a user’s needs. Users not relying on the possibilities available through
WWW-based simulation or not interested in connecting to the Internet might find a traditional
package more suitable, as might users frequently modeling large or complex systems.

The following explain benefits of traditional simulation packages over WWW-based ones.
Many current simulation packages are each specialized to idiosyncrasies of a single
platform, making maximum use of its capabilities. This may increase efficiency of
simulation runs when using models that require few or no updates over long periods of
time.

Loading times for traditional programs are dependent on the computer and not on the
current volume of Internet usage. During times of heavy Internet traffic, models with
complex or extensive amounts of code may initially take a large amount of time to
download.

Because each computer usually contains a copy of the traditional simulation software, the
user can generally rely on the availability of the software. When using the Internet,
however, temporary interruptions in Internet service may cause the WWW-based
simulation model to be momentarily unavailable.

2.2 Applications

The advantages of WWW-based simulation suggest far-reaching applications involving timely,
long distance interactions or temporary, wide-spread viewing of models. Researchers, instructors
and organizations can share timely simulations of their current work with partners, students,
clients, and potential customers over the WWW. Anyone connected to and familiar with the
WWW already has access to and knowledge of the appropriate software. Additionally, viewing
access to the most recent model is easily arranged and maintained.

Researchers can use an on-line simulation program to share up-to-date work with collaborators
and with grant providers. Instructors of distance learning classes can use WWW-based
simulation models to provide demonstrations and hands-on examples and to encourage student
feedback. Manufacturing companies can increase communication between plants by providing
immediate, visual demonstrations of the processing layout for a new product. Other companies
might use such simulations to advertise new products to clients. Consultation and management
advisory groups can use WWW-based simulations to provide role-playing games and problem-
solving services.

The following examples outline the unique benefits of WWW simulation modeling as it pertains
to three types of situations: competitive business performance, marketing and product sales, and

6

skill training and role-playing. Additionally, these examples go beyond the basic queueing models
currently provided by Netsim to explore future possibilities of WWW simulation.

2.2.1 Business Performance

In today's fast-paced, corporate world, businesses try hard to keep ahead of competitors and of
the market. To do so often involves major changes, such as reorganization of management
structure and cutbacks in personnel. Managers of an organization must be able to determine how
such changes will affect the company and its outside interactions. Through WWW-based
simulation, companies can make timely, knowledgeable decisions with regard to major
organizational restructuring for their company.

With WWW-based simulation managers can:
access the simulation while at distant companies or collaborating sites.
always access the model version reflecting the most current situation.
instantly access the model through any Java-compatible, WWW-linked computer.

Outside collaborators and physically distant areas of the company can become actively involved
in the situation of the company. WWW-based simulation eliminates the need to carry along
computers with appropriate software and latest-model versions. Representatives of the
company visiting these collaborators or other companies can easily demonstrate the active
improvement of their company by accessing the simulation model over the WWW.

A WWW-based simulation model can reflect the current state of the particular company and of
outside influences (competitors, customers, world and local markets). The model parameters can
be updated frequently as the company or outside influences change; for example, as other
companies restructure or markets fall. A mutual fund company might use daily updates of a
stockmarket econometric model to forecast interest rates and update portfolios. Fund managers
can then access these updates twenty-four hours a day to determine buy/sell actions and advise
investors.

A company using a traditional simulation program must submit a change in the model to the
programmer and then wait for the updated model to be distributed and installed. By placing the
updated model on a WWW server, the programmer can significantly reduce this waiting time.
The client/server relationship of the WWW makes the updated models instantly accessible,
allowing managers to make decisions with regard to the latest information about crucial factors.

2.2.2 Product Sales
Timely demonstrations of the benefits of new products can be vital to the growth of competing

7

companies, both supplier and consumer. Customer feedback regarding a supplying company's
products can help the marketer focus its efforts. Likewise, easily accessible, well-explained
product previews help a consumer company function and expand smoothly. Demonstrating, via
an WWW-based simulation model, the ways a new product can enhance the customer’s system is
effective for both the marketing company and the customer and encourages suppliers to market
new products in a cost-effective, consumer-aware manner. For example, a production-line
machine supplier might use WWW-based simulation modeling to demonstrate a more efficient
machine. By providing two simulation models, one based on the current machine and one on the
new product, and by allowing customers to input model parameters for their particular
production runs, suppliers can easily demonstrate the benefits of the new products.

Using WWW-based simulation to display new products, the marketing company can:
make previews instantly available to anyone with a Java-compatible WWW browser.
make one copy widely available through multiple platforms to potential customers.
utilize the WWW to provide on-line assistance and receive customer feedback.

By making a single copy of the simulation model available over the WWW instead of mailing
multiple copies, the company can reach more people, especially individuals and small businesses
who might otherwise be overlooked. The demo is instantly available to anyone using a Java-
compatible WWW browser. This method eliminates the need for costly copies of demo software
and instructions for viewing the product. Additionally, the WWW-based simulation models are
platform-independent, assuring the customer will be able to view the model on any available
Internet-connected machine with a Java-compatible browser.

E-mail and other relevant WWW links provided along with the demo can help customers learn
about the company, locate additional products, and direct questions to the most helpful source.
Likewise, survey forms and search engines built into the preview help the marketer find out more
about the needs and concerns of their customers through customer feedback, orders, and
complaints and can allow the marketer to respond quickly on an individualized basis. Combining
these types of WWW-based tools with simulation models describing the product provides an
interactive connection between the marketer and both potential and existing customers.

2.2.3 Skill Training, Role-playing

Many companies are reducing their levels of management and increasing their use of teams
throughout the leadership hierarchy. As the company hierarchy changes, managers may need
additional education and training to effectively carry out their new responsibilities. They will
need insight into the roles of other managers to work most effectively as a team. To help with
these tasks, situational and role-playing games may be used. These games simulate the behavior
of an organization and the positions of the people within the organization. Additionally, they

8

allow users to perfect skills and role play as the need arises to resolve conflicts or uncertainties in
a timely fashion.

Frequent use of simulation models in this manner can lead to closer knit teams with the ability to
improve their own operations. Such use can also heighten awareness throughout all levels of the
organization as to interactions between and contributions of its various members. Skill training
and role-playing via WWW-based simulation provides important advantages over non-Internet
based simulation, particularly in terms of maintenance and access control.

A WWW-based training or role-playing model can:
allow learners to access the model as their schedule permits.
allow providers to control the level of user access and modification to the model.
allow providers to address and resolve problems through the providing server.

Because the WWW is usually available 24-hours a day, users can access the training or role-
playing model as their schedule permits. Their access is not limited to normal business hours,
scheduled around the availability of a computer with the necessary software. This allows users
to work at their own pace without the pressure of finishing within a given time slot.

Through the server the provider can control access to skill training and role-playing models by
including passwords for the site or particular models and by making the model available for a set
time period. Additionally, the use of Java in developing the models helps protect them from user
changes and duplication. This ensures the provider that the fair use guidelines agreed upon by
the user will be upheld. These same features allow many people in a company to work
simultaneously with a model. For example, users can role play in teams or individually to
promote understanding or resolve conflicts. Additionally, users need not worry about making
inadvertent changes to the model or maintaining copies of the model on their local machines.

Utilizing the server/client relationship of WWW-linked computers allows the provider to
permanently revise a model through connection to the server computer. This eliminates visits to
the users' actual locations, as required by non-Internet simulation models. In addition, it helps
enable problem resolution in a timely manner and frees the user from downloading and
maintaining files.

Chapter 3: Structural Background

Netsim uses the event graph simulation method and the object-oriented structure of the Java
programming language. This combination allows the capabilities of Netsim to be easily modified,
maintained, or expanded and allows for code re-use. Additionally, it helps minimize the amount
of computer memory used by a Netsim simulation model. This chapter provides background
information about Java, object-oriented programming, and event graphs.

3.1 Java™

Development of Java, as an object-oriented programming language, began in 1991 by a team of
programmers at Sun Microsystems, Inc. Their goal was to use Java in creating fast, platform-
independent software that could be used in simple, consumer electronic products. As a result of
Java being designed for simple, efficient, platform-independent programming, it appeared to be an
ideal language for creating WWW-based programs. In 1994, as the WWW became increasingly
popular, the Java team began to modify the Java language to work through the WWW and created
the first Java browser, WebRunner (December, 1995). Interest caught on to the capabilities of
Java for the WWW, and Sun produced a more stable Java browser, HotJava, as well as a Java
Development Kit. Many WWW browsers are now Java-compatible, and there are a growing
number of software packages for developing Java programs.

Using Java one can create small programs called applets that are embedded into an HTML
document and viewable on any Java-compatible browser. Java applets are compiled into a set of
bytecodes, or machine-independent processing instructions. This set of bytecodes is then
translated by an interpreter within a Java-compatible browser and the applet is executed (Lemay
and Perkins, 1996). Java's high portability enables an applet to be accessed through numerous
platforms on almost any computer connected to the Internet.

Java's programming language closely resembles the C and C++ languages with a few alterations,
such as the removal of pointers, specifically intended to make Java more robust. This similarity
makes switching from C++ to Java similar, in difficulty, to switching to an updated version of
C++ (Freeman and Ince, 1996; Aitken, 1996). Java further simplifies use for the end user, as well
as the programmer, by supporting graphical user interfaces and a number of menu formats.

Java utilizes complete object-oriented programming, a programming technique particularly well-

suited for simulation modeling (Banks, 1996). Netsim takes advantage of this object-oriented
structure.

10

3.2 Object-Oriented Programming

Object-oriented programming languages reduce the need to pass multiple parameters sequentially
through a program as is often necessary in procedural languages such as Pascal or FORTRAN.
Instead the program consists of a number of objects. Each object is a module defining some
aspect of the program’s process. As the program runs, the objects interact as necessary by
passing parameters back and forth. By using separate modules to define unique attributes,
object-oriented programming allows easy modification and code reuse. This results in efficient,
cost-effective model creation and maintenance (Freeman and Ince, 1996; Joines and Roberts,
1996).

Object oriented languages consist of several packages, or logical groupings of classes. A class is a
group of program coding that defines a set of attributes and behaviors. For example, one class
will define the features needed to display and maintain the user interface, while another will
enable running a particular simulation model. Each class created in Netsim incorporates or
expands on a number of standard classes contained in the Java class library through a process
called inheritance. For example, the Netsim class defining the viewing interface includes the
java.awt.Graphics class and extends the java.awt.Canvas class. These classes provide behaviors
for drawing, updating, and displaying the graphic version of the simulation model onto the
interface. Both of these classes are contained in the Abstract Window Toolkit (AWT) package of
the Java class library, available to all programmers.

Activating a particular class creates an instance, or object, of that class. The class acts as a
template, with its attributes and behaviors defining the instance. For example, while Netsim’s
viewing interface class defines the interface, an instance of that class represents those definitions
at any particular step of the simulation. As the user runs a simulation model, instances of classes
are created and destroyed on an as-needed basis.

Figure 1 demonstrates the way Netsim uses the inheritance structure of object-oriented languages.
Three object-oriented packages are represented in this figure: java.lang, java.awt, and netsim. The
solid arrows depict subclass relationships, i.e., netsim.SchedThread is a subclass of

java.awt. Thread which is a subclass of java.lang.Object. By this subclassing, an instance, or
object, of netsim.SchedThread contains all the behaviors defined by each of these three classes.

Each object-oriented class contains a number of methods that analyze and manipulate various
aspects of a current instance of that class. When a user initiates a simulation run, the program
coding creates instances of classes and requests the instances call appropriate methods within
their associated classes. These methods either provide information about that instance, such as
size or color, or change an aspect of the instance, often by performing a set of operations such as
reordering variables in the instance array. In Figure 1 the dotted arrows depict the types of
messages passed between Netsim classes via methods.

11

javalang.Object

java.awt.Thread java.awt.Canvas
netsm.DataDictionary
/‘/ ‘

(_ requests event list update;

e returns next event name

,',I'I asks this instance

! to redraw itsalf
v . D/ 4
netsm.SchedThread |- --------¥---------- » | netsm.AnimateCanvas

Figure 1: Example of object-oriented hierarchy

3.3 Event Graphs

Event graphs are a means of capturing the behavior of a simulation model in a modular, graphical
manner (Buss, 1996; Schruben, 1995). This section briefly discusses event graphs and their
connection with object-oriented programming. For a more detailed description of event graphs
see the SIGMA documentation (Schruben, 1995).

Event graphs consist of two basic elements, event nodes and connecting edges. The nodes
represent moments within the system during which one or more state variables, or event
attributes, change. Simulated time passes on the connecting edges between nodes, provided any
conditions associated with the respective edges are satisfied.

A future events list is used to keep track of scheduled events; as a scheduled event is activated, it
is removed from the list and all associated state variables are updated. Then conditions on all
edges connecting from that event are checked. If the conditions are satisfied and there is no time
delay associated with that edge, the connecting event is scheduled immediately. Otherwise, given
the conditions are satisfied, the time for the connecting event is determined and the event is added
to the future events list. Because a simulation model, unlike a real system, can process only one
event at a time, scheduling priorities are associated with the event scheduled by each edge.

Events scheduled to occur simultaneously are placed on the future events list in order of their
assigned priorities. By assigning priorities carefully, users can design models that more closely
describe a system where events often occur simultaneously.

12

By adding simplicity and uniformity to the modeling process, event graphs allow users to focus
on the creation and understanding of the actual models. Additionally, because they separate all
the changes of the system into discrete nodes, or modules, they interface well with object-
oriented programming languages. An event graph models a system visually, providing a global
view of the system. The object-oriented program of the model transfers the visual nodes into
objects with methods, or behaviors, among which the messages provided by the edge conditions
are passed.

13

Chapter 4: Literature Review

In the 1980°s Jack Thorpe, in conjunction with the United States Department of Defense, created
SIMulator NETworking (SIMNET), a networked system of computers running a single
simulation program. SIMNET was an attempt to make the use of simulators and simulation
techniques more feasible for military defense operations (Fullford, 1996). In this system each
user computer acts as a simulator, allowing multiple users to experience a single simulation
program simultaneously in a safe, cost-effective environment.

The success of SIMNET resulted in a standardized simulation networking protocol, Distributed
Interactive Simulation (DIS). DIS allows computerized simulators to communicate and act in
synchronicity through the Internet. Although DIS began in the military environment, it is now
being used increasingly often in non-military applications such as air traffic control, intelligent
vehicle highway systems, and interactive, multi-user computer games. Work is underway to
incorporate some aspects of Internet markup and programming languages such as Virtual Reality
Markup Language (VRML) and Java to the DIS protocol. This will increase the abilities of DIS
systems to define behavioral information and visual representations as users enter and exit the
simulation environment.

There are several benefits of using not just the Internet, but the WWW and its existing structure
of interconnected hypermedia, to enhance simulation technology (Neilson et al., 1996). Irene
Neilson discusses the use of the Interact Simulation Environment (ISE), created as an aid to
teaching engineering students. The ISE embeds simulation models into a graphical user interface
while specific commands are placed into related HTML documents. The HTML commands,
when activated, access a database that prompts an action from the simulation model. Also, at
some simulation states, commands within the graphical user interface link the user to relevant
HTML documents for more information. As a result, ISE supplements HTML articles with
simulation demonstrations and allows context-sensitive help while viewing the simulation.

Because of differences in students’ background computer knowledge, the ISE is set up to utilize
simulation as a modeling tool without requiring the student to interact with the actual simulation
interface. This way the students do not spend time away from their engineering courses learning
the C++ classes that ISE uses to build the graphical interface for the simulation model. A student
may save “snapshots” of the simulation model at a given state for later reference or to use in
discussion with others.

While Neilson discusses many advantages of the ISE and the WWW teaching lessons that utilize
simulation modeling, she does state a limiting factor readily overcome by the use of the Java
language. Many WWW browsers use established protocols when interpreting data types and can

14

not interpret recently created or non-traditional protocols. As a result, the ISE, as currently
developed, requires the original simulation model to be stored directly on the user’s machine in
order to access “snapshots” of that model. Java-compatible browsers, however, understand
traditional, established protocols in addition to interpreting Java programs into executable
programs. Using Java to develop the ISE would allow platform independent model interpretation
and eliminate the need for multiple storage of the simulation, as well as the resulting increase in
file maintenance.

Rodney Cole and Scott Tooker (Cole and Tooker, 1996) have developed WWW-based physics
tutorials to assist physics students. Making these simulation models available over the WWW
greatly expands the range of possible access locations. Like ISE, the physics tutorials allow
students to see interesting cases of a given simulation model without requiring prior knowledge of
the parameters defining these cases or of the background programming languages involved.
Additionally, the use of familiar WWW browsers such as Netscape virtually eliminates the
amount of time necessary for distributing and learning viewing software.

The tutorials use Apple’s OpenDoc Frameworks to provide a basic simulation environment.
OpenDoc Frameworks is a tool for creating software components, in this case physics simulation
models. The components can then be included in an OpenDoc application that is embedded into
a WWW page using HTML. OpenDoc supports modular development of models, allowing
existing tutorials to be tailored to meet the needs of different educational grade levels.

Cole and Tooker state that future tutorials will consist of OpenDoc components, HTML, and
multimedia effects created using Java. OpenDoc and Java are complementary tools (Apple,
1997); OpenDoc components can be written entirely in the Java language or Java applets can be
embedded into the components. However, using OpenDoc in this method voids the platform-
independence of Java. OpenDoc applications and OpenDoc components, such as those created
by OpenDoc Frameworks, must be downloaded onto the user machine with a working copy of
OpenDoc. Additionally, OpenDoc is currently available only for the Macintosh platform.

The importance of the WWW as a platform for interactive learning is supported by T. Singh
(Singh et al., 1996). In particular, he discusses the WWW in connection with the added cross-
platform benefits of Java. Singh demonstrates Java applets for teaching electromagnetics and
theories of dipole-antenna. These tutorial applets are embedded in instructive HTML pages and
allow some degree of user interaction with the presented models.

Gordon Bradley (Bradley, 1996) talks at length about using Java to share research ideas in a
timely fashion over the WWW. He is particularly interested in the comprehensive value that
Java applets can add to interactive, electronic research papers. Such papers are dynamic, report
research more effectively, and allow non-linear evaluation, he claims. The inclusion of Java

15

applets can allow complete reproducibility of research results by allowing the author to embed
the data, algorithms, and analysis work into the electronic paper. A reader may then instantly
examine and manipulate these data without necessarily downloading data or software onto his/her
machine.

Paul Fishwick (Fishwick, 1996) considers three important areas of educational WWW-based
interaction: education and training, publications, and simulation programs. Using the WWW for
education and training allows and encourages the reuse of knowledge while not limiting the
amount of storage space available for expressing new ideas, as is the case with CD-ROMs or hard
drives. Additionally, Fishwick discusses timesaving aspects of using WWW tools in reading and
publishing research articles. The WWW is valuable in all stages of producing an article, from
accessing documents via electronic databases or URL’s cited in bibliographies, to transmitting
electronic copies of the publication to reviewers and for final publication. Simulation models
included in the electronic research publications enhance their educational value. The paper gives
an example of such an electronic article where a simulation model using Perl script is included to
demonstrate current, workstation resource, queueing sizes based on user input gathered through
an HTML form. Besides the value of simulations in aiding understanding, Fishwick discusses the
possibilities of WWW-based simulation or simulation interfaces for multi-user situations such as
multi-user dungeons, where users typically cooperate to reach a solution, and DIS as discussed
earlier.

Using simulation models based on the process interaction paradigm, Rajesh Nair demonstrates
WWW-based simulation through a unique combination of Java applets and query driven
databases (Nair et al., 1996). Actions by the user send queries to a database which then
initializes the appropriate applet. The database stores data created by the running simulation and
supplies these data back to the applet as necessary throughout the simulation run. Using a
database in this manner helps circumvent some security issues currently imposed by Java
applets. Nair’s simulation model applets incorporate JSIM, a library of Java classes specifically
created for this simulation project. The user interfaces provided for the example applets are
simple and self-explanatory. However, animation is interrupted periodically as the applet pauses
to connect with the database on the server. Simple, descriptive statistics are available for the
simulation run after the user chooses to exit the simulation. Unfortunately, the window
displaying the model closes before the statistics appear, so the user is unable to refer back to the
model.

SimKit, created by Arnold Buss and Kirk Stork (Buss and Stork, 1996), runs as an applet on the
WWW and takes advantage of Java being object-oriented by using the event graph design
approach. SimKit models discrete-event simulations and is particularly geared toward military
applications. The main simulation facilitating package, Javasim, is designed to allow for
expansion in order to accommodate frameworks for various types of simulations. Javasim makes

16

extensive use of Java interfaces, which add defined behaviors to identified classes without
imposing the hierarchical structure of class inheritance. This structure allows a modeler to add
customized tools into SimKit without making changes to Javasim. SimKit permits user
interaction through a detailed, model entry form. Additionally, SimKit is combined with a Java-
based graphing package designed by Leigh Brookshaw, to allow a useful output of statistics and
graphs.

17

Chapter 5: Motivation for Netsim

As seen in Chapter 4, research in the area of WWW-based simulation is developing rapidly as
WWW programming tools develop. Still, much of this research provides only limited, WWW-
based simulation capabilities. Referencing the contributions and limitations of the current
literature, this chapter will discuss how Netsim answers these limitations and provides a
positive, unique contribution to WWW-based simulation.

Thorpe helped introduced the idea of Internet-based simulation and, with the development of
DIS as a standardized protocol, simulation developers and users began to realize the potential
benefits of networked simulation. Unfortunately, DIS is mainly geared toward specific, technical
situations and is not connected to the type of widely-accessed, open-topic, network environment
presented by the WWW.

By creating simulation models linked to HTML pages, Neilson and Cole and Tooker set the stage
for incorporating analytical informational tools to the WWW environment. Their simulation
packages allow user interaction, through the WWW browser, between provided models and any
relevant WWW sites. However at this stage, Java was not available. As a result, both of their
simulation packages require the model and/or the appropriate, browser-compatible software to
reside on the user’s machine.

Both Singh and Bradley realized the effectiveness of the Java applet as a WWW multimedia tool.
By including informational applets in their science tutorials and research publications they
enhance the informational value for the user as well as the potential for the user to reproduce
reported results more easily. Unfortunately, neither of these implementations take full advantage
of the interactive capabilities of Java, particularly in terms of a general WWW-based simulation
tool.

By combining a database for handling data with a Java applet for displaying the model to the
user, Nair’s JSIM package provides more interactivity for the user. Additionally, because the
database resides on the server, JSIM realizes many of the potential advantages of WWW
simulation. The main drawback to JSIM is the interruption during simulating caused by constant
information transfer between the database and the applet.

SimKit is written entirely in Java, eliminating the need for the model to exist on the user’s
machine and for a connected database. SimKit allows a fair degree of user interaction through a
form for entering and editing basic model parameters. Additionally, although it does not provide
model animation, SimKit does combine with Java-based graphing packages to provide a number
of statistical and graphical interpretations. By using the event-graph approach and utilizing the
object-oriented nature of the Java language, SimKit allows for future expansion. However, the

18

current focus is primarily toward military applications.

Netsim, like SimKit, is written entirely in Java and models discrete-event simulations using the
event graph approach. A model created in Netsim appears as an applet on an HTML page and is
available over the WWW, taking full advantage of the portability of Java. No special software or
code is needed on the user’s machine.

Netsim provides a maximum amount of user interaction with the simulation model. A
programming interface provides a blank template with text fields for the various parts of a
simulation model, such as event name and state variables. Any type of basic simulation model
may be entered into this interface by following the format described in 6.3. While knowledge of
simulation, particularly including the event graph approach, is useful in designing a model in
Netsim, no knowledge of Java or simulation modeling is required to enter or modify the model.

A second interface allows user interaction with running the simulation model. This interface not
only provides start, pause, and stop capabilities and data output, but also an animation of the
model. Model animation allows viewers a visual demonstration of how the system is operating
over time. This is an important feature of Netsim in that users of all education backgrounds can
use this WWW-based simulation tool to visually understand the operation of a system or
process.

Written as a general simulation package that allows users to define and customize models, Netsim
provides more model flexibility than SimKit. The object-oriented structure offered by Java and
maintained in Netsim allows easy expansion of the package as well as compatibility with other
Java-based tools such as the graphing or analytical tools used by SimKit.

Netsim incorporates all the advantages of WWW simulation presented in Chapter 2 while
overcoming all the limitations presented in the current WWW-based simulation literature. Netsim
enhances the WWW environment, offering an effective, general simulation tool that provides both
model animation and data output. Additionally, Netsim’s capabilities for expansion and
combination with other Java tools ensure that Netsim can grow with the technology supported
by Java and the WWW.

19

Chapter 6: Netsim Simulation Package

As discussed in Chapter 5, the Netsim simulation package supports discrete-event simulation
using event-graph modeling. The current version handles up to six events and six total
connections between events and is easily expandable. Consisting of two user interfaces, an input
interface for defining and editing the model and an output interface for viewing the model, Netsim
features complete model creation and modification capabilities as well as standard simulation,
data collection capabilities. Netsim also allows the user to choose the random number seed, the
run-length and the output mode (animation and/or data). Netsim runs as a Java applet on any
Java-compatible WWW browser or applet viewer. Additionally, a basic user’s manual written in
HTML accompanies the Netsim package and, through the WWW, can be hypertext linked to the
HTML page containing the Netsim applet (Appendix I). The manual explains how to create and
interact with a model using Netsim.

Figure 2 outlines the relationship among all classes specifically created for and contained within
the Netsim package. The classes of Netsim extend various Java classes as shown in the Netsim
documentation and source code (Appendices G and H). Currently none of the Netsim classes

! MainApplet !
I l :
! CardPanel !
I I
EntryPanel : : ViewerPand
I I
E ' ScheduleThread AnimateCanvas
I I
! ! DataDictionary
X X I%endGenerator
: : MyVector l MyHashtable
' ' Model Parser

USER/PROGRAMMER . COMPILER : INTERPRETER
INTERFACE ! :

Figure 2: Netsim package internal structure

20

extends another class within Netsim. Consequently, it should be understood that Figure 2 is not
a class hierarchy diagram in the sense that a class in the lower level of the chart extends a class in
an upper level. Rather, upper level classes invoke instances of connected, lower level classes and
call methods within those classes. The package must be compiled as a group or the classes
compiled in succession from the lowest level upward.

6.1 Overview

The Netsim simulation package can be considered from a number of different levels. At the most
general level, Netsim consists of three interconnected pieces: a user/ programmer interface, a
compiler, and an interpreter as shown in Figure 2.

The user/ programmer interface provides a means for the programmer to introduce a model into
the simulation package. This interface may be designed to prompt the programmer for specific
information and specific formats. Alternatively, the interface may be as simple as a text window
with the expectation that the programmer is familiar with the appropriate format. In the case of
Netsim, this interface, shown in Figure 3, resembles a general entry form with text fields for the
necessary information. The model user can also use this interface to check and modify model
parameters.

Netsim takes advantage of a hypercard type layout format in Java to link the programmer’s entry
form with the viewing interface on which the interpreter will display the simulation output.
Using password restrictions on this interface link, Netsim may be setup so that the programming
interface or modifications to the model through it are strictly limited to an authorized
programmer. Alternatively, access may be left unrestricted allowing any user to create and edit
his/her own model.

In both interfaces Netsim makes extensive use of the java.util.StringTokenizer class for parsing
data input. This class is extended by ModelParser and greatly simplifies the compiling process.

The compiler reads the data input into the entry form and parses them into forms usable by the

interpreter. Because no special compiler software is needed, the model is instantly executable
with a single mouse-click after a being entered into Netsim.

21

= Metscape - [TISP] |~

File Edit Yiew Go Bookmarks Options Directory Window Help

T +
Pleaze be patient while your computer downloads and interprets the applet

Entry Form for Creating Your Simulation Model

EWENTS ewvent 1 state vars

MWARES w[C N=ck

«[] [][=

(hodes ewent 4 state vare

attributes): |lkeave TE=+ck- T |

I

«[[=

time delzy

|]

=

e

' Save Model l iw Simulation MO] "

[z T @

Figure 3: Interface for creating and modifying model

Finally, the interpreter combines the model specifications entered in the entry form with
information preprogrammed into the simulation package, such as random variate formulas, to
create a dynamic version of the simulation model. The interpreter provides the user with an
animation of the model as well as requested data output as shown in Figure 4. Either of the
output options may be temporarily canceled, allowing the viewer to get a feel for the general
behavior of the system by focusing solely on the animation, or providing the data output at a
much higher speed.

22

= Netscape - [TISP] - |~
File Edit Yiew Go DBookmarks Options Directory Window Help

Ty +

Flease be patient while your computer downloads and mterprets the applet

Interface for Viewing Your Simulation Maodel

SIMULATION STOPPED: press PLAY to restart. :I

time; event; Gueue Length; Throughput; Waiting Time; Server Busy Time
0;run; 0; 0, 0,0

]
L]
0; enter; 1, 0, 0; 0
0 start; 0; 0; 0,0
[+]

4 06917; leave; 0; 1; 40691, 40691

' Save Cutput l Definel Revise Model I 5

=gl [Applet netSim Maindpplet running BE7
Figure 4: Interface for viewing model animation and data output

6.2 Information Flow

Like Netsim as a whole, the interpreter section of the package can be split into three main
sections: the database, the DataDictionary class; the interfaces for the user, the ViewerPanel,
AnimationCanvas and EntryPanel classes; and the simulator, the SchedThread class. The
database holds the information specific to a given model and supplies these data to the viewing
interface as well as to the user/ programmer interface. These interfaces present the model data to
the user in a graphical, user-friendly way and enable interaction with the model. Certain user
commands on the viewing interface change the status of a simulation run. The run status is
passed to the simulator, which then determines the next step in the run. This information is sent
to the database to process, resulting in new and revised data for the display on the interfaces.
Figure 5 depicts this ongoing cycle. The following subsections discusses each of the three pieces
in more detail.

23

suppgigggiz”// i-\\\\lﬂf)\cessnexte!vent

Interfaces —_—
continue run

Figure 5: Information flow within Netsim

6.2.1 Database

The database categorizes initial input according to its role in the model and then transfers each
type of input into a functional data form that it can manipulate and analyze. The data are stored
in hashtables or vectors until needed. Once a simulation run begins, the database takes the next
event from the future events list of the simulator, calculates new state variables and random
variate values, as necessary, and updates existing database values. Finally, the database updates
the future events list and sends requested data to the viewing interface.

6.2.2 Interfaces

The viewing interface displays the simulation model graphically, redrawing the screen as data
changes are received from the database. It also displays data output, such as the time and name
of the current event. This interface and the user/programmer interface link the user to the heart of
the simulation program by presenting model specific information and animating the behavior of
the model. Additionally, the viewing interface provides tools such as menus and buttons that
allow the user to alter model parameters and control the status of the simulation run. The current
run status as well as any changes in the model parameters are passed to the simulator.

6.2.3 Simulator

The simulator accepts run status and model parameter information from the viewing interface in
addition to monitoring the simulation clock and the future events list. Using the run status,
specified run-length, current clock time and future events list, the simulator determines the next
action of the simulation. The simulator sends this information to the database, enabling the
database to process the next event and update variable values.

6.3 Model Creation

At any time a user may switch between the user/ programmer interface and the viewing interface
by clicking on the lower right button of the screen, which is labeled “View Simulation” or
“Define/ Revise Model” depending on the current interface. The save buttons on the lower left
side of the screen are currently disabled. Ideally, they would allow the user to name and save
either the data output or the model specifications into a directory on the local computer. The
data output, as a text file, can then be imported into traditional spreadsheet and analysis packages
and is available for further analysis by the user. The model specifications, also as a text file,
would act as parameters that, when opened in Netsim, define the saved model. Due to security
restrictions, Java applets themselves are currently not able to be saved in this type of manner.
While saving and retrieving text from an applet as described is theoretically possible, it was not
attempted in this version of Netsim and actual limitations and implementation difficulties are
unclear.

To create a model the programmer simply enters the name of each event into the entry form
interface, followed by the state variable rules for that event. All names and variables are case-
sensitive, should begin with a letter, and should not contain any spaces. The events will appear
on the animated model from left to right in the order they are entered on the entry form. The
state variables will also be processed in the order they are listed. This may make a difference in
the results of a model if one variable references another during the same event.

State variable rules must be separated from the variable name by an equals sign and from another
variable equation by a semicolon, (e.g., {1st var. name}={1st var. rule};{2nd var. name}={2nd
var. rule}; etc.) Note there is no space between any two of these sections. Each event may
contain as many variables and variable rules as desired. A variable rule may do the following, for
the example variables Q, TS, T, TE and the reserved variable W[]:
- change the existing value by assigning a new integer value,

(e.g., Q=1, where Q is the variable name and 1 is the new variable value).

increase or decrease the existing value by an integer amount,

(e.g., Q=+ 1 or Q=- 1, with a space left between the operation and the integer).

increase or decrease the existing value by another variable,

(e.g., Q=+ TS or Q=- TS, again with a space left between the operation and the value).

assign the current simulation time to a variable using the reserved word “clk,”

(e.g., T=clKk).

increase or decrease the existing value by “clk,” the current simulation time,

(e.g., T=+clk, again with a space between the operation and the value).

assign the current “clk” time to the reserved variable array, W[], using another

variable to index the array,

(e.g., W[Q]=clk creates an array of clock times indexed by Q).

combine any of these six operations, except that the array, W[], may only contain

25

“clk” times and should come at the end of the equation,
(e.g., TE=clk - TS or T=+ clk - W[Q]).

Edges may be created between any two consecutive events, or an edge may be self-scheduling
(i.e., from an event back to the same event). Netsim currently allows one edge in each direction
between two different events, with up to one condition on each edge. These limitations, as well
as the current limitation of six event nodes, may be eliminated by extending the current code.
However, the interfaces may have to be revised to effectively display on screen the model
specifications and the event graphs of a larger model.

The programmer creates an edge by typing in the name of the event where the edge begins in the
“from” text box and the event where the edge ends in the “to” text box. These names are case-
sensitive and must match the event names defined in the upper section of the event form or the
edge will not appear in the model.

Basic conditions may be placed on the edges by using the format shown in Table 1. The variable
name may be any variable defined as a state variable in the upper section of the event form. The
operator is <, >, or =; the integer value may be any integer. Note a space separates the operator
from each of the other terms. The reserved word “TRUE” typed without the quotations in the
“condition” text box, makes that edge unconditional.

var.name <space> operator <space> integer value
Examples: Q < 1
Q > -1
Q = 0
TRUE

Table 1: Format for edge conditions

Additionally, time delays are added to the edges by typing the appropriate function in the “time
delay” text box. Integer-valued parameters of the function are separated by commas and enclosed
by parentheses. These time delay functions are case-sensitive and contain no spaces. Netsim
currently supports three types of time delays: constant increases, sta(a); uniform random
variates, uni(a,b); and exponential random variates, exp(a). The parameters “a” and “b” may be
any integers chosen by the user. For example, the delay defined by sta(5) causes constant time
increments of 5 time units, uni(3,5) causes a delay uniformly distributed between 3 and 5 time
units, and exp(5) delays the upcoming event an exponential amount of time with a mean of 5 time
units. Netsim is easily expandable to include other random distributions.

The user alters the priority of an edge by typing the preferred priority, integers 1 to 9, in the
“priority” text box. The priority is set by default at 5 with 9 signaling an immediate priority and

26

1 being a very low priority. This priority scale, while backwards from SIGMA’s, seems to be
slightly more intuitive, particularly to the occasional user. With Netsim an edge requiring a higher
priority should be assigned a higher priority value.

27

Chapter 7: Analysis of Netsim

7.1 Random Number Generator in Java

The random number stream generated by the class java.util. Random was tested for uniformity
and independence using the Chi-square test and two versions of the Runs test. Data are
presented in Appendix B while results are summarized in Table 2: Test results of the Java
random number generator and discussed below.

For the Chi-square test the [0,1] interval was partitioned into 1,000 even sections, leaving 999
degrees of freedom. Thirty independent runs of 10,000 numbers each were tested. Theoretically,
1.5 of these runs should result in a test value having a p-value less than 0.05. As shown in Table
2: Test results of the Java random number generator, the two largest Chi-square test statistics for
the thirty runs have p < 0.05 with the third maximum test value being 1073.6 with p = 0.050.
These results follow the expected distribution and the hypothesis of uniformity is not rejected.

For independence tests thirty independent sets of 10,001 numbers were used. Both tests for
independence use a two-tailed Z test. The Runs Up and Down test gave a maximum test statistic
of 1.874, with p = 0.061. The Runs Above and Below the Mean test resulted in a maximum test
statistic of 2.189, p = 0.029, and a second largest test statistic of 1.941, p = 0.051. Again, out of
thirty runs, one to two are expected to result in a p-value less than 0.05 as was the case in the
Runs Above and Below the Mean test. For each independence test’s set of thirty runs, Figure 6
displays a frequency count of the resulting p-values . As shown by Figure 6, both sets are
normally distributed. Additionally, a visual scan of runs of 10 numbers each shows no apparent
pattern in the length of runs for either of the above independence tests. Hence, the hypothesis of
independence is not rejected.

Test Statistic: p-value:
Chi-square:
Maximum value 1106.7 0.010
Second highest 1078.1 0.041
Third highest 1073.6 0.050
Runs Up and Down:
Maximum value 1.874 0.061
Runs Above and Below:
Maximum value 2.189 0.029
Second highest 1.941 0.051

Table 2: Test results of the Java random number generator

28

B Runs Up & Down
B Runs Above & Below

Frequency

-2.5
-1.5
-0.5
0.49
1.47
2.45

Bin

Figure 6: Frequencies of p-values for each set of independence test runs

Due to the results of this section, the random number generator used by the Random class, a
standard part of the Java language, was determined to be both uniform and independent.

7.2 Comparison of Netsim with SIGMA

Netsim was compared to SIGMA using the carwash model as presented in Figure 2.6 on page 26
of the SIGMA documentation (Schruben, 1995). This model is a standard G/G/1 queueing model
and provides some measure of control in the comparison between the simulation packages. The
event graph and state variable rules of the carwash model are given in Figure 7 with the variables
defined in Table 3. The time delay for arrivals was exponentially distributed with a mean of 5
time units, while the service time was exponentially distributed with a mean of 3 units.

® @ 0. ®

Q=Q+1
Q=0 CI=Cl+1 Q Q -1 co CO+1

CI 0 WI[CI]=clk TS=clk TE=TE+clk-TS
CO=0 WT=WT+clk-W[CO]
TS=0

TE=0

W[]=0

WT=0

Figure 7: Event graph for carwash model

29

State variables in model:
S =# of servers available
Q =# of customers in queue
Cl = # of customers that have entered system
CO = # of customers that have left system
TS = time customer begins service
TE = total time server is busy throughout run
W[] = array tracking the time of each entry into the system
WT = total accumulated waiting time of customers in the system
t, = interarrival time, exponential with a mean of 5 time units
ts = service time, exponential with a mean of 3 time units

Variables collected for data comparison:
Q = # of customers left in the queue
CO = system throughput
WT = total waiting time
TE = total server busy time
Table 3: Variable definitions for carwash model

In case of scheduling ties between interarrivals and services, a higher priority was placed on the
enter-enter edge than on the start-leave edge. On a scale of 1 to 9 the higher priority is 6 in
Netsim while in SIGMA it is 4; this is due to the inverse relationship of the two programs’
priority scales. The default priority for both Netsim and SIGMA is 5.

7.3 Random Variate Calculations in NetSim and SIGMA

To calculate an exponential random variate using the inverse transformation technique, one takes
the natural log of a uniform random number and multiplies by the negative of the exponential rate.
Given a single random number, the exponential random variate calculated by this formula should
be the same regardless of differences in software or hardware.

The first column, ARND, of Table 4 consists of a stream of uniform random numbers calculated
by SIGMA with the seed 12352. In the second column of Table 4, In(ARND) is the natural log
of ARND as computed by Netsim, or by a standard calculator. The third column depicts TLN,
the natural log of ARND as computed by SIGMA. As shown, the values of In(ARND) and
TLN differ slightly. Because of this difference the TLN values are input in Netsim for model
comparison between Netsim and SIGMA. The comparison model is described in Section 7.2 and
the comparison discussed in Section 7.4. Using the stream of random numbers, ARND,
Appendix D supplies a complete table of the exponential random variates, as calculated by
SIGMA, for the comparison.

30

ARND IN(ARND) TLN

0.096 -2.343 -2.336
0.754 -0.282 -0.281
0.236 -1.444 -1.439
0.246 -1.402 -1.400
0.740 -0.301 -0.299
0.583 -0.540 -0.538
0.095 -2.354 -2.352
0.336 -1.091 -1.087
0.669 -0.402 -0.401
0.326 -1.121 -1.118
0.017 -4.075 -4.036
0.831 -0.185 -0.185
0.083 -2.489 -2.477
0.034 -3.381 -3.360

Table 4: Natural log calculations

7.4 Comparison Results and Discussion

To accurately compare treatment of the carwash model between Netsim and SIGMA, the natural
log values produced by SIGMA (TLN values shown in Table 4, column 3) were input directly
into Netsim, bypassing the usual random number generator and natural log calculator. These
values were then used by both Netsim and SIGMA in calculating the required exponential
random variates. Output at each time unit of activity was compared for the time unit, event,
number in queue, accumulated system throughput, accumulated time spent in system (or waiting
time), and total server busy time. Appendix E shows this data output from both simulation
packages, with the variable names as defined in Section 7.2. As shown, both packages present
identical results to at least the second decimal, differing by at most 0.001. This slight difference
is non-accumulating during simulation runs and quite possibly results from package differences in
byte storage and manipulation.

The future events lists for the two packages matched, as seen in Appendix E, and, when hand
traced, corresponded to the theoretical behavior of the model. At each step of the run, state
variables and random variates matched between packages and with theoretical values.

In addition, the future events list generated by Netsim was traced for numerous variations, both
stochastic and deterministic, of the carwash model. State variables at each simulation step, as
well as overall model behavior were examined in each case and, for deterministic models, were
compared to those from identical models run in Sigma. In all cases the models performed as
expected by discrete-event simulation theory.

31

7.5 Netsim Limitations

7.5.1 Conversion of Clock Values

In the current version of Netsim in order to maintain a compatible format among variable values
in the database, “clk” must be an integer. However, the simulation clock time is taken from
uniform(0,1) random variates calculated by the java.util.Random.nextDouble() method in Java.
To solve this discrepancy, the clock time, when used in the variable database, is first converted to
an integer. This is done by multiplying by 10,000 and truncating the remaining decimal portion.
The new value is equivalent to “clk.” Time-valued variables are easily rescaled by dividing by
10,000.

In Table 5, a sample of rescaled data output using the 10,000 multiplier is compared to a run with
the same seed and using a 1,000,000 multiplier. As shown, the 10,000 multiplier reduces the
number of significant digits in the data output to at most three, but does not otherwise affect the
accuracy of the output. The number of significant digits can be increased by increasing the
multiplier. However, this causes variable values to quickly exceed the predefined integer size
limit. Potential solutions to this conversion problem for future versions of Netsim are discussed
in Chapter 8.

multiplier | time event Q_CO WT TE
10,000 | 14433.98 leave 0 266 2006.2937 82.81475

1,000,000 | 14433.98 leave 0 266 2006.294220 82.8147698
Table 5: Sample of simulation run using different clock multipliers

7.5.2 Thread Synchronicity

The current version of Netsim contains the following, surface level, oddities caused by lack of
proper synchronicity among the threads. These inconsistencies affect viewing the animation, but
do not affect the simulation process or accuracy of the data output. In particular, in order to
rerun the simulation the user must actually click on the stop button before clicking the play
button, even if the simulation has finished naturally. Additionally, when viewing a Netsim model
on a WWW browser, pausing the animation and temporarily activating a different window on the
computer screen may cause the simulation run to resume. Finally, the pause button is not
reliable on machines, such as the Sun, that use multithreaded processors. An effective fix to these
problems will involve a thorough understanding of multithreading capabilities and behaviors
within the Java language (Lemay and Perkins, 1996).

32

Chapter 8: Conclusions

8.1 Benefits of WWW Simulation

In computer applications involving long-term use from a single machine, a traditional, non-
Internet-based simulation package may be appropriate. Such a package is often developed to
handle specific, complex problems and can be customized to work optimally with a particular
computer platform. Additionally, it can generally be expected to perform with a great deal of
reliability as software availability and access times depend only on one computer, not on the
Internet network.

The expanding popularity of the WWW, however, suggests a growing number of situations
efficiently modeled through WWW-based simulation. Companies may find WWW-based
simulation tools helpful in monitoring business performance and in demonstrating the features of
a new product. Other potential applications include educational tutorials, skill training and role
playing games. WWW-based simulation presents these and other applications with many
advantages over non-Internet-based simulation. Several important advantages are summarized in
the following paragraphs.

WWW-based simulation, particularly when created using the Java programming language, can be
made widely available. Such simulation models are accessible from any Internet-connected
computer through a number of computer platforms and without recompilation. Also, because the
Internet is usually accessible twenty-four hours a day, simulation modeling is possible during
evening and weekend hours as well as normal business hours.

WWW-based simulation models can be protected from inadvertent or unauthorized modifications
by the user. This ensures distribution of identical models to all users and minimizes file
maintenance issues for the user. In addition, providers of WWW-based simulation models can
easily control access to the site by imposing password and time limit restrictions on either the
model or the entire site.

WWW-based simulation models run from a single WWW site enabling both reliable version
control and frequent model modifications. Additionally, the most up-to-date versions of the
model are instantly available through the server to all authorized Internet users, regardless of
physical location.

Finally, WWW-simulation models created with Java require only a Java-compatible WWW
browser for viewing. Such browsers are easy to install and use, allowing users to access models
quickly. By providing the browser as a simple access tool, along with many tools for

33

communication, interaction and data access, the WWW environment can enhance the
informational value of the simulation model.

8.2 Contributions of Netsim

The current literature for WWW-based simulation motivates the development of Netsim, a
general, discrete-event, WWW-simulation package. Programmed entirely in the WWW-
compatible Java language, Netsim offers all the previously discussed advantages of WWW-based
simulation. Additionally, Netsim allows users full interactive capabilities and provides both
model animation and data output. Users may create, modify and interact with a simulation
model, receiving requested data output. Meanwhile, the animation capabilities of Netsim present
a visual representation of the behavior of the system. By providing a means for general
simulation modeling in connection with these advantages and capabilities, Netsim enables most, if
not all, of the users in the WWW environment to take advantage of simulation modeling as an
analytical, informative tool.

Netsim takes advantages of the drawing and string parsing portions of Java to increase cross-
platform compatibility and allow users maximum interaction capabilities. The Abstract Window
Toolkit in Java aids the creation of graphical user interfaces in Netsim and allows the interfaces to
be rendered according to the platform-dependent information in the user’s WWW browser,
ensuring maximum graphical compatibility with that platform. When users enter and modify
models, Netsim extends the Java StringTokenizer class to parse the entered data from string
format into the proper format for the databases.

Additionally, Netsim uses threads and flexible database structures to minimize download time
and unnecessary memory usage within the applet. Threads are used in classes, such as the
interface creation classes, that define numerous variables, graphical components, and/or data
structures. The threads decrease package startup time by allowing classes to define and
instantiate themselves simultaneously. Netsim uses databases composed of hashtables and
vectors that expand themselves as necessary instead of being initially defined with unchanging
sizes. As a result, the amount of memory required by the Netsim applet at a given time depends
on the number of events, edges, and variables within the current model. Additionally, this
composition of databases contributes to the ability of Netsim to model varied types and sizes of
models.

At this time, reasonable size limits on Java applets, particularly in terms of download time and
browser or client platform memory allocation, are unclear; current documentation does not
specify a suggested or originally targeted size limit. However, because of WWW security issues,
applet memory allocation is made at run-time and, consequently, is dependent on the client
software and hardware (Gosling, 1996). As seen with Netsim, applets of a substantial nature can

34

be utilized without requiring extreme download times or amounts of free memory on the client
platform.

As demonstrated in Chapter 7 with the carwash model, Netsim codes and processes simple,
discrete event simulation models accurately. Whether or not the models themselves are valid for
their respective systems is up to the modeler and programmer, as is the case with any simulation
software. Because Java applets such as Netsim are entirely downloaded onto the local computer
before interpretation into a platform-specific, executable program, download times for Netsim are
proportional to a given computer’s Internet connection and to the level of current activity on that
part of the Internet.

8.3 Programming in Java

As an object-oriented programming language designed for simplicity and robustness, Java is, in
fact, relatively simple and well-behaved. The Java language contains a set of class libraries that
provide data structures and handle common utility functions. Also, the descriptive names
allowed in Java simplify documentation and mental bookkeeping by helping the programmer and
other readers follow method calls within a program. Furthermore, much Java coding resembles
that of established object-oriented languages like C++. However, unlike C++, Java does not use
reference pointers that can cause nearly undetectable memory problems. Additionally, self-
initiated threads in Java manage applet memory allocation and garbage control throughout the life
of an applet. These features allow more focus on programming and allow program
experimentation without disastrous results such as system crashes.

For a novice Java programmer, more difficult coding involves forcing the graphical components to
refresh at appropriate times. Within an applet, Java uses a self-initiated thread to control
painting and repainting onto the screen. While this is beneficial in many applets, those relying on
graphical display techniques such as animation require particular refresh rates. Because the
involved Java-defined methods create a required graphics object that can not be explicitly
instantiated, calling these methods from user-defined methods that describe repainting behaviors
can be tricky. An inelegant solution can often be obtained through less than true object-oriented
programming where most or all behaviors involved in painting and repainting are included into the
Java-defined methods, not into the multiple user-defined methods suggested by the logic of the
particular program.

Netsim was created using the Java Development Kit (JDK), version 1.0.2. The Macintosh
version of the JDK includes an applet viewer with several user-interface bugs that slow
development. However, on all platforms, the JDK compiler error information is helpful. Also, a
number of graphical development environments for Java were marketed during the development
of Netsim; by allowing drag and drop programming techniques, such software should noticeably

35

speed Java applet development, particularly for infrequent programmers. There are small
typographical errors or confusing issues with a number of the examples in the cited Java resource
books that can cause minor setbacks in the learning process if one is not actively testing the
examples while reading. However, during development of Netsim, the number of Java
programming books has expanded greatly, hopefully providing a more exhaustive and
comprehensive resource library. Additionally, Java maintains a web site with Application
Programming Interface (API) documentation, white papers and information about current
product releases (Sun, 1997).

8.4 Future Work

The current version of Netsim contains a small number of limitations as discussed in Chapter 7,
Section 7.5. These are programming issues which can be remedied with more complex
programming techniques than undertaken for the creation of Netsim. In particular, the creation of
a special database could prevent the loss of significant digits caused by integer translation of
simulation clock time. Such a database would have to recognize and be devoted specifically to
time-valued variables, managing those variables separately from other variables. Viewing
inconsistencies discussed in Section 7.5.2 are remedied by carefully synchronizing the threads
within the package. However, because some of these threads reference methods within each
other, proper solution of this problem will necessitate solid knowledge of multithreading. None
of the discussed limitations directly affect the simulation process and both involve programming
techniques outside the scope of the current research.

Because Netsim was specifically created as a general simulation package, expansion, in most
cases, simply involves extension through additional classes and/or methods. The object-oriented
structure of Netsim greatly facilitates this process. Future additions should include classes for
handling more advanced simulation models, support for a wider range of random variates, and
additional user interfaces. Databases holding edge information should be expanded to allow
parameter passing, enabling complex modeling through simple event graphs. Additionally, user
understanding would be enhanced by replacing event graphs with system-appropriate icons and
designs and by including context-sensitive help within the applet. For users concerned with
replicating or presenting the data output, future modifications include enabling the current “save”
buttons as well as adding graphing and statistical analysis capabilities.

Use of the Java language is expanding rapidly, especially in the creation of educational software.
Consequently, some of the potential enhancements mentioned for Netsim may be made possible
by linking with other existing Java-based classes, in their current form or with minor
modifications.

The information potential through the WWW is growing rapidly, encouraging more and more

36

people of all backgrounds and interests to gain regular, frequent access to the WWW.
Additionally, the increase of standardized HTML formats, multimedia browser plug-ins, and
scripting and programming languages are allowing WWW site providers to create sites that are
more interesting, visual, and user-friendly. As the popularity of the WWW for everyday transfer
of information and ideas expands, WWW-based simulation may become an extremely beneficial
and desired addition to the common WWW environment. For example, by providing a high level
of user interactivity through simple interfaces, Netsim encourages users of all levels of
understanding to interact with the model. Additionally, through animation and data output,
Netsim contributes a graphic as well as analytic representation of a system process. This enables
users to understand the system both visually and statistically. By accessing the Netsim
simulation models through the WWW users are able to ensure a common reference and to
communicate easily with each other, building on understandings and ideas.

37

References and Bibliography

Afergan, Micheal M. (1996) Java™™: Quick Reference. Que, Indianapolis, IN.
Aitken, Gary. (1996) Moving from C++ to Java, Dr. Dobb's Journal. March, 21(3): 52-56.

Apple Computer, Inc. (1997) Apple Computer's web site for OpenDoc developers: About
OpenDoc. http://www.opendoc.apple.com/press/od-cdog.html.

Apple Computer, Inc. (1996) OpenDoc Development Framework Overview.
http://www.devtools.apple.com/odf/overview.html.

Banks, Jerry. (1996) Interpreting Simulation Software Checklists, OR/MS Today. June - Special
International Issue, 74-78.

Banks, Jerry, John S. Carson, Il and Barry L. Nelson. (1996) Discrete-Event System
Simulation: second edition. Prentice Hall, New Jersey.

Bradley, Gordon H. (1996) Dynamic and interactive research publications using Java,
http://dubhe.cc.nps.navy.mil/~gbradley/. February.

Buss, Arnold H. (1996) Modeling with Event Graphs, Proceedings of the 1996 Winter Simulation
Conference. ed.: J.M. Charnes, D.J. Morrice, D.T. Brunner, and J.J. Swain. Coronado,
California. December 8-11.

Buss, Arnold H. and Kirk A. Stork. (1996) Discrete Event Simulation on the World Wide Web
Using Java, Proceedings of the 1996 Winter Simulation Conference. ed.: J.M. Charnes,
D.J. Morrice, D.T. Brunner, and J.J. Swain. Coronado, California. December 8-11.
http://131.120.142.115/~stork/simkit_home.html.

Cole, Rodney and Scott Tooker. (1996) Physics To Go: Web-based Tutorials For CoLoS Physics
Simulations, Technology-Based Re-Engineering. Engineering Education. Proceeding of the
Frontiers on Education FIE’96 26th Annual Conference. 2: 681-683.

December, John. (1995) Presenting Java: An Introduction to Java and HotJava. Sams.net,
Indianapolis, IN.

Fishwick, Paul A. (1996) Web-based Simulation: Some Personal Observations, Proceedings of
the 1996 Winter Simulation Conference. ed.: J.M. Charnes, D.J. Morrice, D.T. Brunner,
and J.J. Swain. Coronado, California. December 8-11.
http://lwww1.cise.ufl.edu/~fishwick/websim.html.

Freeman, Adam and Darrel Ince. (1996) Active Java: Object-Oriented Programming for the
World Wide Web. Addison-Wesley, Harlow, England.

Fullford, Deb. (1996) Distributed Interactive Simulation: It’s Past, Present and Future,
Proceedings of the 1996 Winter Simulation Conference. ed.: J.M. Charnes, D.J. Morrice,
D.T. Brunner, and J.J. Swain. Coronado, California. December 8-11.

Gosling, James and Henry McGilton. (1996) The Java Language Environment: A White Paper,
http://www.javasoft.com/docs/language_environment/. May.

38

Joines, Jeffery A., and Stephen D. Roberts. (1996) Design of Object-Oriented Simulation in
C++, Proceedings of the 1996 Winter Simulation Conference. ed.: J.M. Charnes, D.J.
Morrice, D.T. Brunner, and J.J. Swain. Coronado, California. December 8-11.

Jones, Christopher V. (1996) Java and OR/MS, INFORMS CSTS Newsletter. Spring, 17(1): 3-
11.

Law, Averill M. and W. David Kelton. (1991) Simulation Modeling & Analysis: second
edition. McGraw-Hill, New York, New York.

Lemay, Laura and Charles L. Perkins. (1996) Teach Yourself Java™ in 21 days. Sams.net,
Indianapolis, IN.

Nagaratnam, Nataraj, Brian Maso, and Arvind Srinivasan. (1996) Java™ Networking and AWT
API Superbible. Waite Group Press, Carte Madera, CA.

Nair, Rajesh S., John A. Miller, Zhiwei Zhang. (1996) Java-Based Query Driven Simulation
Environment, Proceedings of the 1996 Winter Simulation Conference. ed.: J.M. Charnes,
D.J. Morrice, D.T. Brunner, and J.J. Swain. Coronado, California. December 8-11.
http://www.cs.uga.edu/~rajesh/JSIM/jsimdistribution/docs/API_users_guide.html.

Neilson, Irene, Ruth Thomas, Calum Smeaton, Alan Slater, and Gopal Chand. (1996) Education
2000: Implications of W3 Technology, Computers and Education. 26(1-3):113-122.

Netscape Communications Corporation. (1997) Netscape Navigator. Mountain View, CA.
http://home.netscape.com/.

Pritsker, A. Alan B. (1986) Introduction to Simulation and SLAM II: third edition. John
Wiley & Sons, New York.

Schruben, Lee W. (1995) Graphical Simulation Modeling and Analysis: Using SIGMA for
Windows. Boyd & Fraser, Danvers, MA.

Schulzrinne, Henning. (1996) World Wide Web: Whence, Whither, What Next?, IEEE Network.
March/April, 10(2): 10-17.

Schriber, Thomas J. & Daniel T. Brunner. (1996) Inside Simulation Software: How It Works and
Why It Matters, Proceedings of the 1996 Winter Simulation Conference. ed.: J.M.

Charnes, D.J. Morrice, D.T. Brunner, and J.J. Swain. Coronado, California. December 8-
11.

Singh, T., M. Zhu, U. Thakker, and U. Ravaioli. (1996) Impact of World Wide Web, Java, and
Virtual Environments on Education in Computational Science and Engineering,
Technology-Based Re-Engineering. Engineering Education. Proceeding of the Frontiers on
Education FIE’96 26th Annual Conference. 3: 1007-1010.

Sun Microsystems, Inc. (1997) The Source For Java: JavaSoft Home Page.
http://java.sun.com/.

Tooker, Scott and Rodney Cole. (1996) Using OpenDoc To Create Low-Cost Physics Simulation
Tools For Secondary and Higher Education, Technology-Based Re-Engineering.
Engineering Education. Proceeding of the Frontiers on Education FIE’96 26th Annual

39

Conference. 2: 688-689.
Zar, Jerrold H. (1984) Biostatistical Analysis: second edition. Prentice Hall, New Jersey.

40

Appendices

41

Appendix A: Copyrights/ Disclaimers

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. Tamie Lynne Veith and the Netsim
simulation package are independent of Sun Microsystems, Inc.

SLAM Il (Simulation Language for Alternative Modeling) is a registered trademark of Pritsker &
Associates, Inc.

SIGMA (Simulation Graphical Modeling and Analysis) is a trademark of Systems Design, Inc.
Except as explicitly stated in the above disclaimers, the entire contents of this document and of
any accompanying software, including Java applets, are copyrighted by Tamie Lynne Veith,

April 29, 1997. This software may be reproduced for educational purposes only and should be
accompanied by the following copyright notice: Copyright 1997, Tamie Lynne Veith.

42

Appendix B: Check of Java Random Number Generator:

Data Output

Uniformity test: Chi-sguare

degrees of freedom: 999

RNG Seed: | # of numbers: test value:
12345 10000 968.5
12346 10000 1073.6
12347 10000 989.7
12348 10000 984.4
12349 10000 975.8
12350 10000 1015.7
12351 10000 1035.4
12352 10000 976.8
12353 10000 1054.2
12354 10000 971.9
12355 10000 1006.6
12356 10000 1034.8
12357 10000 1023.0
12358 10000 1036.7
12359 10000 086.4
12360 10000 1106.7
12361 10000 1078.1
12362 10000 963.8
12363 10000 1054.4
12364 10000 1014.8
12365 10000 1024.7
12366 10000 1025.6
12367 10000 1049.0
12368 10000 1000.2
12369 10000 986.7
12370 10000 1049.6
12371 10000 966.0
12372 10000 985.0
12373 10000 894.3
12374 10000 1003.5

Max (Abs): 1106.7

p-value: 0.010

43

Independence tests:

Runs Up & Down

Runs Above & Below Mean of 0.5

RNG Seed:| # of numbers: #of runs;| test value: # above mean:| # below mean:| # of runs:| test value:
12345 10001 6610 -1.352 4952 5048 4960 -0.791
12346 10001 6706 0.925 4919 5081 4980 -0.374
12347 10001 6669 0.047 4958 5042 4965 -0.693
12348 10001 6746 1.874 4960 5040 4983 -0.334
12349 10001 6718 1.210 4944 5056 5026 0.533
12350 10001 6608 -1.399 4940 5060 4986 -0.266
12351 10001 6713 1.091 5057 4943 4983 -0.327
12352 10001 6641 -0.617 5030 4970 5045 0.904
12353 10001 6641 -0.617 4942 5058 4955 -0.887
12354 10001 6673 0.142 4963 5037 4948 -1.035
12355 10001 6682 0.356 4983 5017 5012 0.241
12356 10001 6671 0.095 4985 5015 5097 1.941
12357 10001 6669 0.047 4965 5035 4993 -0.135
12358 10001 6666 -0.024 5005 4995 5004 0.080
12359 10001 6658 -0.213 5000 5000 5016 0.320
12360 10001 6637 -0.712 4859 5141 5105 2.182
12361 10001 6658 -0.213 5028 4972 5029 0.583
12362 10001 6742 1.779 5020 4980 5018 0.362
12363 10001 6746 1.874 5002 4998 5026 0.520
12364 10001 6649 -0.427 4877 5123 4977 -0.400
12365 10001 6700 0.783 5001 4999 4990 -0.200
12366 10001 6667 0.000 5036 4964 4992 -0.155
12367 10001 6653 -0.332 5030 4970 5011 0.224
12368 10001 6736 1.637 4867 5133 4948 -0.970
12369 10001 6705 0.901 4945 5055 4997 -0.048
12370 10001 6723 1.328 5002 4998 5003 0.060
12371 10001 6604 -1.494 4968 5032 4978 -0.436
12372 10001 6708 0.972 5001 4999 4930 -1.400
12373 10001 6657 -0.237 5037 4963 5055 1.106
12374 10001 6635 -0.759 4936 5064 4967 -0.644

Max (Abs): 1.874 2.1817

p-vaue 0.061 0.0290

44

Appendix C: Check of Java Random Number Generator: Program

Random Number Test HTML Document

1
2
3 <HTML>

4 <HEAD>

5 <TITLE>Random Number Test</TITLE>
6 </HEAD>

7

8

9

<BODY>

<APPLET CODE = "RndNum.class" WIDTH =100 HEIGHT =250>
10 Random Number Test</APPLET>
11 </BODY>
12 </HTML>

45

O© 00 NO Ol WN P

B W WWWWWWWWWPNDNDNMNDNMNDNNMNNMNNMNDNNNNNRPRPRPEPRPERPERPERPERRPREPR
QO OWoONO U WNPFPOOOLO~NOOPRWNPFPOOONOOILEAWDNPEO

import java.awt.*;
import java.lang.*;
import java.util.*;

/**

File name: RndNum.java
Class: RndNum extends java.applet.Applet

*/

To test the randomness of Double random numbers
generated by the java.util. Random class.

public class RndNum extends java.applet.Applet{
double aRnd =0, aRnd2 = 0;

public void chiTest(long newSeed) {

Random r = new Random(newSeed);

int[] intervals = new int[1000];

double thisValue = 0;

double IstSq = 0;

double totalLstSq = 0;

for(inti=0;i<9999; i++) { //10,000 total observations
aRnd= r.nextDouble();

Double aRndDbl=new Double(aRnd*1000);
Integer whichBin=new Integer((aRndDbl).intValue());

¥

intervals[whichBin.intValue()]++; // always falls in interval below
}
/[System.out.printin("intervals:");
for(inti=0;i<999; i++) {
/ISystem.out.print(intervals[i]+";);
/ISystem.out.print("(o-e)"2/e = ");
thisValue = intervals[i];
IstSq =(((thisValue-10)*(thisValue-10))/10);
/ISystem.out.printIn(IstSq);
totalLstSq += IstSq;
}

System.out.printin(*value to test: "+totalLstSq);

public void runsTest(long newSeed) {

46

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

Random r = new Random(newSeed);
double upCount = 0, downCount=0;

double[] runlength;

double aboveMean = 0, belowMean=0;

int run =0, runM=0;
aRnd=r.nextDouble();

boolean switchUp = true;

boolean switchM = true;

for(inti = 0;i<10000; i++) {
aRnd2=r.nextDouble();

//System.out.printin("aRnd: "+aRnd+" aRnd2

/ltest general run lengths

if (aRnd<aRnd

2){

if (switchUp) {

¥

run ++;
switchUp = false;

upCount ++;
} else if (aRnd>=aRnd2) {

if (Tswi

¥

tchUp) {
run ++;
switchUp = true;

downCount ++;

¥

/ltest runs about mean
if (aRnd<0.5) {

if (swit

¥

chM) {
runM ++;
switchM = false;

belowMean++;
} else if (aRnd>=0.5) {

if (switchM) {
runM ++;
switchM = true;
}
aboveMean++;
}
aRnd=aRnd2;

47

- "+aRnd2);

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

¥

¥

/ISystem.out.print("total runs {general}: "+run+" upCount:);
/ISystem.out.printin(upCount+" downCount: "+downCount);
/ISystem.out.print("total runs {mean}: "+runM+" aboveMean: ");
/ISystem.out.printin(aboveMean+" belowMean: "+belowMean);
System.out.print(“runs: "+run+" aboveMean: "+aboveMean);
System.out.printin(" belowMean: "+belowMean+" runsM: "+runM);

public void expTest(long newSeed) {

¥

Random r = new Random(newSeed);
double tff = 2.302585;
double aL.n=0,aL.og=0;
double totalRnd=0,totalLn=0,totalLog=0;
double avgRnd=0,avgLn=0,avgLog=0;
for(inti = 0; i < 10000; i++) {
aRnd =r.nextDouble();
totalRnd += aRnd;
aL.n = Math.log(aRnd);
aLog = (Math.log(aRnd)/tff);
totalLn += Math.log(aRnd);
totalLog += (Math.log(aRnd)/tff);
/[System.out.print("aRnd ="+ aRnd+ "; aLog = "+ alLog);
/[System.out.printin("; aLn = "+ aLn);
}
avgRnd = totalRnd/10000;
avgLog = totalLog/10000;
avgLn = totalL.n/10000;
System.out.print("totalRnd = "+ totalRnd+ "; totalLog = ");
System.out.printin(totalLog+"; totalLn = "+ totalLn);
System.out.print("meanRnd = "+ avgRnd+ "; meanLog =");
System.out.printin(avgLog+"; meanLn = "+avgLn);

public void start() {

mySeed);

RndNum rd= new RndNum();

for(long mySeed = 12345; mySeed < 12375; mySeed++) {
/ISystem.out.printin("RND gen for doubles with seed: " +
[lrd.chiTest(mySeed);

48

121
122
123
124
125
126
127

/rd.runsTest(mySeed);

rd.expTest(mySeed);
}
stop();
}
H/endof RndNum class

49

Appendix D: SIGMA Random Variate Calculations: Data Output

RNG seed
12352
variables:
ARND = | uniform random variate generated by SSIGMA
TLN = |In(ARND)
TA = |-5*TLN
TSER = |-3*TLN
Count |ARND TLN TA TSER
1 0.096 -2.336 11.682 7.009
2 0.754 -0.281 1.406 0.844
3 0.236 -1.439 7.199 4.319
4 0.246 -1.4 7.003 4.202
5 0.74 -0.299 1.499 0.899
6 0.583 -0.538 2.69 1.614
7 0.095 -2.352 11.764 7.058
8 0.336 -1.087 5.438 3.263
9 0.669 -0.401 2.008 1.204
10 0.326 -1.118 5.594 3.356
11 0.017 -4.036 20.181 12.109
12 0.831 -0.185 0.925 0.555
13 0.083 -2.477 12.387 7.432
14 0.034 -3.36 16.803 10.082
15 0.358 -1.026 5.134 3.08
16 0.856 -0.154 0.772 0.463
17 0.037 -3.291 16.458 9.874
18 0.087 -2.43 12.152 7.291
19 0.95 -0.051 0.255 0.153
20 0.635 -0.453 2.268 1.36
21 0.786 -0.239 1.199 0.719
22 0.016 -4.101 20.508 12.305
23 0.039 -3.231 16.158 9.694
24 0.751 -0.285 1.427 0.856

50

25 0.853 -0.158 0.792 0.4/75
26 0.624 -0.471 2.355 1.413
27 0.95 -0.05 0.254 0.152
28 0.207 -1.574 7.874 4.724
29 0.424 -0.857 4.289 2.573
30 0.106 -2.242 11.211 6.726
31 0.282 -1.262 6.313 3.788
32 0.67 -0.4 2 1.2
33 0.819 -0.199 0.996 0.597
34 0.281 -1.267 6.335 3.801
35 0.083 -2.483 12.418 7.45
36 0.349 -1.052 5.261 3.156
37 0.351 -1.045 5.226 3.135
38 0.182 -1.701 8.509 5.105
39 0.293 -1.224 6.124 3.674
40 0.663 -0.41 2.052 1.231
41 0.424 -0.857 4.286 2.571
42 0.461 -0.774 3.87 2.322
43 0.301 -1.199 5.998 3.599
44 0.451 -0.795 3.978 2.387
45 0.557 -0.584 2.922 1.753
46 0.816 -0.203 1.016 0.609
47 0.952 -0.049 0.245 0.147
48 0.902 -0.102 0.513 0.307
49 0.513 -0.666 3.332 1.999
50 0.553 -0.591 2.955 1.773
51 0.743 -0.296 1.481 0.889
52 0.942 -0.058 0.294 0.176
53 0.989 -0.01 0.051 0.03
54 0.649 -0.431 2.159 1.295
55 0.641 -0.444 2.223 1.334
56 0.696 -0.361 1.805 1.083
57 0.462 -0.77 3.853 2.311
58 0.85 -0.161 0.809 0.485

51

59 0.538 -0.619 3.095 1.857
60 0.09 -2.401 12.007 7.204
61 0.274 -1.29 6.454 3.872
62 0.866 -0.142 0.714 0.428
63 0.238 -1.434 7.17 4.302
64 0.694 -0.364 1.82 1.092
65 0.003 -5.693 28.467 17.08
66 0.6 -0.51 2.554 1.532
67 0.416 -0.874 4.373 2.624
68 0.732 -0.31 1.554 0.932
69 0.784 -0.243 1.216 0.729
70 0.948 -0.052 0.263 0.158
71 0.734 -0.309 1.545 0.927
72 0.923 -0.079 0.396 0.237
73 0.514 -0.664 3.323 1.994
74 0.473 -0.748 3.742 2.245
75 0.439 -0.821 4.107 2.464
76 0.834 -0.18 0.902 0.541
77 0.984 -0.015 0.078 0.047
78 0.637 -0.45 2.252 1.351

52

Appendix E: Carwash Model: SIGMA & NetSim Data Output

Carwash model run in SIGMA: | | |
Uses SIGMA-generated random number stream and TLN values (seed=12352).
Time Event Q CO WT TE
0| run 0 0 0 0
0| enter 1 0 0 0
0| start 0 0 0 0
0.844| leave 0 1 0.844 0.844
11.682| enter 1 1 0.844 0.844
11.682 start 0 1 0.844 0.844
15.884| leave 0 2 5.046 5.046
18.881| enter 1 2 5.046 5.046
18.881 | start 0 2 5.046 5.046
20.381 | enter 1 2 5.046 5.046
20.496| leave 1 3 6.66 6.66
20.496 | start 0 3 6.66 6.66
23.759| leave 0 4 10.038 9.923
32.145| enter 1 4 10.038 9.923
32.145| start 0 4 10.038 9.923
34.153| enter 1 4 10.038 9.923
35.502] leave 1 5 13.395 13.28
35.502] start 0 5 13.395 13.28
36.057| leave 0 6 15.298 13.835
54.335| enter 1 6 15.298 13.835
54.335| start 0 6 15.298 13.835
64.417| leave 0 7 25.38 23.917
66.723| enter 1 7 25.38 23.917
66.723| start 0 7 25.38 23.917
67.186| leave 0 8 25.844 24.381
71.857| enter 1 8 25.844 24.381
71.857 start 0 8 25.844 24.381
79.148| leave 0 9 33.135 31.672
88.315| enter 1 9 33.135 31.672
88.315| start 0 9 33.135 31.672

53

88.571| enter 1 9 33.135 31.672
89.676| leave 1 10 34.496 33.033
89.676| start 0 10 34.496 33.033

89.77| enter 1 10 34.496 33.033
101.982| leave 1 11 47.907 45.338
101.982 start 0 11 47.907 45,338
102.838| leave 0 12 60.975 46.195
105.929| enter 1 12 60.975 46.195
105.929 start 0 12 60.975 46.195
106.721 | enter 1 12 60.975 46.195
106.976| enter 2 12 60.975 46.195
107.342| leave 2 13 62.388 47.609
107.342 start 1 13 62.388 47.609
109.916| leave 1 14 65.583 50.182
109.916 start 0 14 65.583 50.182
114.85| enter 1 14 65.583 50.182
116.642| leave 1 15 75.25 56.909
116.642 start 0 15 75.25 56.909
117.843| leave 0 16 78.242 58.11
121.164| enter 1 16 78.242 58.11
121.164 start 0 16 78.242 58.11
122.16| enter 1 16 78.242 58.11
124.965| leave 1 17 82.043 61.911
124.965) start 0 17 82.043 61.911
128.121| leave 0 18 88.005 65.067
134.578| enter 1 18 88.005 65.067
134.578 start 0 18 88.005 65.067
139.684| leave 0 19 93.111 70.173
139.804 enter 1 19 93.111 70.173
139.804 start 0 19 93.111 70.173
141.036| leave 0 20 94.343 71.405
145.929| enter 1 20 94.343 71.405
145.929 start 0 20 94.343 71.405
148.251| leave 0 21 96.665 73.727

54

150.215 enter 1 21 96.665 713.727
150.215 start 0 21 96.665 73.727
152.602| leave 0 22 99.052 76.114
156.214| enter 1 22 99.052 76.114
156.214| start 0 22 99.052 76.114
156.824| leave 0 23 99.662 76.724
159.136| enter 1 23 99.662 76.724
159.136 start 0 23 99.662 76.724
159.382| enter 1 23 99.662 76.724
159.444| leave 1 24 99.97 77.032
159.444 start 0 24 99.97 77.032
161.218| leave 0 25 101.805 78.806
162.714 enter 1 25 101.805 78.806
162.714 start 0 25 101.805 78.806
162.891| leave 0 26 101.982 78.982
164.196| enter 1 26 101.982 78.982
164.196| start 0 26 101.982 78.982
164.248| enter 1 26 101.982 78.982
165.492| leave 1 27 103.278 80.278
165.492 start 0 27 103.278 80.278
166.471 enter 1 27 103.278 80.278
166.575| leave 1 28 105.605 81.361
166.575 start 0 28 105.605 81.361
167.061| leave 0 29 106.196 81.847
170.324 enter 1 29 106.196 81.847
170.324 start 0 29 106.196 81.847
173.419 enter 1 29 106.196 81.847
177.529| leave 1 30 113.4 89.052
177.529| start 0 30 113.4 89.052
177.958| leave 0 31 117.939 89.481
179.874 enter 1 31 117.939 89.481
179.874 start 0 31 117.939 89.481
180.966| leave 0 32 119.031 90.573
187.045| enter 1 32 119.031 90.573

55

187.045 start 0 32 119.031 90.573
188.577| leave 0 33 120.563 92.105
215.512| enter 1 33 120.563 92.105
215.512| start 0 33 120.563 92.105
216.445| leave 0 34 121.496 93.038
219.886| enter 1 34 121.496 93.038
219.886| start 0 34 121.496 93.038
220.045| leave 0 35 121.655 93.197
221.103| enter 1 35 121.655 93.197
221.103| start 0 35 121.655 93.197
221.341| leave 0 36 121.892 93.434
222.649| enter 1 36 121.892 93.434
222.649| start 0 36 121.892 93.434
224.895| leave 0 37 124.138 95.68
225.973| enter 1 37 124.138 95.68
225.973| start 0 37 124.138 95.68
226.514| leave 0 38 124.68 96.222

230.08| enter 1 38 124.68 96.222

230.08 start 0 38 124.68 96.222
230.158| enter 1 38 124.68 96.222

56

Carwash model run in Netsim:

Uses TLNEX (TLN*1,000,000) values from SIGMA.

Output vars time, WT, TE are then divided by 1,000,000 and rounded to 3 decimals.

time event Q CO WT TE

0 run 0 0 0 0

0| enter 1 0 0 0

0| start 0 0 0 0

0.844 | leave 0 1 0.844 0.844
11.682 | enter 1 1 0.844 0.844
11.682 | start 0 1 0.844 0.844
15.884 | leave 0 2 5.046 5.046
18.882 | enter 1 2 5.046 5.046
18.882 | start 0 2 5.046 5.046
20.381 | enter 1 2 5.046 5.046
20.496 | leave 1 3 6.660 6.660
20.496 | start 0 3 6.660 6.660
23.759 | leave 0 4 10.038 9.924
32.145 | enter 1 4 10.038 9.924
32.145 | start 0 4 10.038 9.924
34.154 | enter 1 4 10.038 9.924
35.502 | leave 1 5 13.395 13.280
35.502 | start 0 5 13.395 13.280
36.057 | leave 0 6 15.299 13.835
54.336 | enter 1 6 15.299 13.835
54,336 | start 0 6 15.299 13.835
64.418 | leave 0 7 25.381 23.918
66.723 | enter 1 7 25.381 23.918
66.723 | start 0 7 25.381 23.918
67.187 | leave 0 8 25.844 24.381
71.858 | enter 1 8 25.844 24.381
71.858 | start 0 8 25.844 24.381
79.149 | leave 0 9 33.136 31.673
88.316 | enter 1 9 33.136 31.673

57

88.316 | start 0 9 33.136 31.673

88.572 | enter 1 9 33.136 31.673

89.677 | leave 1 10 34.497 33.034

89.677 | start 0 10 34.497 33.034

89.771 | enter 1 10 34.497 33.034
101.982 | leave 1 11 47.907 45.339
101.982 | start 0 11 47.907 45.339
102.839 | leave 0 12 60.975 46.196
105.929 | enter 1 12 60.975 46.196
105.929 | start 0 12 60.975 46.196
106.722 | enter 1 12 60.975 46.196
106.976 | enter 2 12 60.975 46.196
107.343 | leave 2 13 62.389 47.609
107.343 | start 1 13 62.389 47.609
109.916 | leave 1 14 65.583 50.183
109.916 | start 0 14 65.583 50.183
114.851 | enter 1 14 65.583 50.183
116.643 | leave 1 15 75.250 56.910
116.643 | start 0 15 75.250 56.910
117.844 | leave 0 16 78.243 58.110
121.164 | enter 1 16 78.243 58.110
121.164 | start 0 16 78.243 58.110
122.160 | enter 1 16 78.243 58.110
124.965 | leave 1 17 82.044 61.911
124,965 | start 0 17 82.044 61.911
128.122 | leave 0 18 88.005 65.068
134579 | enter 1 18 88.005 65.068
134.579 | start 0 18 88.005 65.068
139.684 | leave 0 19 93.111 70.174
139.805 | enter 1 19 93.111 70.174
139.805 | start 0 19 93.111 70.174
141.037 | leave 0 20 94.343 71.406
145.929 | enter 1 20 94.343 71.406
145.929 | start 0 20 94.343 71.406

58

148.252 | leave 0 21 96.665 73.728
150.216 | enter 1 21 96.665 73.728
150.216 | start 0 21 96.665 73.728
152.603 | leave 0 22 99.052 76.115
156.215 | enter 1 22 99.052 76.115
156.215 | start 0 22 99.052 76.115
156.825 | leave 0 23 99.662 76.725
159.137 | enter 1 23 99.662 76.725
159.137 | start 0 23 99.662 76.725
159.382 | enter 1 23 99.662 76.725
159.445 | leave 1 24 99.970 77.033
159.445 | start 0 24 99.970 77.033
161.218 | leave 0 25 101.806 78.806
162.715 | enter 1 25 101.806 78.806
162.715 | start 0 25 101.806 78.806
162.892 | leave 0 26 101.983 78.983
164.197 | enter 1 26 101.983 78.983
164.197 | start 0 26 101.983 78.983
164.248 | enter 1 26 101.983 78.983
165.492 | leave 1 27 103.278 80.279
165.492 | start 0 27 103.278 80.279
166.471 | enter 1 27 103.278 80.279
166.576 | leave 1 28 105.606 81.362
166.576 | start 0 28 105.606 81.362
167.062 | leave 0 29 106.196 81.848
170.325 | enter 1 29 106.196 81.848
170.325 | start 0 29 106.196 81.848
173.420 | enter 1 29 106.196 81.848
177.529 | leave 1 30 113.401 89.052
177.529 | start 0 30 113.401 89.052
177.958 | leave 0 31 117.939 89.481
179.875 | enter 1 31 117.939 89.481
179.875 | start 0 31 117.939 89.481
180.967 | leave 0 32 119.031 90.573

59

187.045 | enter 1 32 119.031 90.573
187.045 | start 0 32 119.031 90.573
188.578 | leave 0 33 120.564 92.106
215.513 | enter 1 33 120.564 92.106
215,513 | start 0 33 120.564 92.106
216.446 | leave 0 34 121.497 93.039
219.887 | enter 1 34 121.497 93.039
219.887 | start 0 34 121.497 93.039
220.045 | leave 0 35 121.655 93.197
221.103 | enter 1 35 121.655 93.197
221.103 | start 0 35 121.655 93.197
221.341 | leave 0 36 121.893 93.435
222.649 | enter 1 36 121.893 93.435
222.649 | start 0 36 121.893 93.435
224.895 | leave 0 37 124.139 95.681
225.973 | enter 1 37 124.139 95.681
225973 | start 0 37 124.139 95.681
226.515 | leave 0 38 124.680 96.222
230.080 | enter 1 38 124.680 96.222
230.080 | start 0 38 124.680 96.222

60

Appendix F: Carwash Model: SIGMA Program

I. STATE VARIABLE DEFINITIONS.

For this simulation, the following state variables are defined:
S: (integer valued)
Q: (integer valued)
Cl: (integer valued)
CO: (integer valued)
TS: (real valued)
TE: (real valued)
W[512]: (real valued)
WT: (real valued)

Il. EVENT DEFINITIONS.

Simulation state changes are represented by event vertices (nodes or balls) in a SIGMA graph.
Event vertex parameters, if any, are given in parentheses. Logical and dynamic relationships
between pairs of events are represented in a SIGMA graph by edges (arrows) between event
vertices. Unless otherwise stated, vertex execution priorities, to break time ties, are equal to 5.

1. The run() event causes the following state change(s):
S=1
Q=0
CI=0
CO=0
TS=0
TE=0
W=0
WT=0

After every occurrence of the run event:

Unconditionally, schedule the enter() event to occur without delay.

2. The enter() event causes the following state change(s):
Q=Q+1
CI=CIi+1
W[CI]=CLK
After every occurrence of the enter event:

61

Unconditionally, schedule the enter() event to occur in -5*In{rnd} time units.
(Time ties are broken by an execution priority of 4.)
If S>0, then schedule the start() event to occur without delay.

3. The start() event causes the following state change(s):
S=0
Q=Q-1
TS=CLK
After every occurrence of the start event:
Unconditionally, schedule the leave() event to occur in -3*In{rnd} time units.
4. The leave() event causes the following state change(s):
S=1
CO=CO+1
TE=TE+CLK-TS
WT=WT+CLK-W[CO]
After every occurrence of the leave event:
If Q>0, then schedule the start() event to occur without delay.

62

Appendix G: Netsim Documentation

AnimationCanvas extends Canvas

CardPanel extends Panel

DataDictionary

EntryPanel extends Panel implements Runnable
MainApplet extends java.applet.Applet

M odel Par ser extends StringT okenizer
MyHashtable extends Hashtable

MyVector extends Vector

RndGenerator extends Random

SchedThread extends Thread

Viewer Panel extends Panel implements Runnable

63

AnimationCanvas extends Canvas

Draws the event graph of the simulation model onto the viewing panel. Animates the event
graph by periodically repainting sections as requested by the simulation thread, an instance of

SchedThread.

AnimationCanvas must be contained in same text file as ViewerPanel.
Imports: java.awt.*, java.util.*.

Methods:

public AnimationCanvas(DataDictionary data, ViewerPanel target, int width, int
height): Creates a new instance of AnimationCanvas associated with the instances
identified by this method’s parameters. Sets the size of this instance of
AnimationCanvas.

private void backwardEdge(int startindex): Draws an edge from the node
indicated by the parameter “startindex” to the preceding node.

a Called by whichEdge(int, int, int).

private void curvedEdge(int startindex): Draws an edge from the node indicated
by the parameter “startindex” back to the same node.

a Called by whichEdge(int, int, int).

private void drawArrow(Graphics g): Draws an edge of the event graph in the
direction and location specified by the associated instance variables.

a Called by paint(Graphics).

a Called by update(Graphics).

private void drawNode(Graphics g): Draws a node of the event graph in the
location specified by the associated instance variables.

a Called by paint(Graphics).

a Called by update(Graphics).

private void forwardEdge(int startindex): Draws an edge from the node indicated
by the parameter” startindex” to the next node.

a Called by whichEdge(int, int, int).

private void locateNode(int nodelndex): Locates the physical location of the
current node.

a Called by paint(Graphics).

a Called by update(Graphics).

private void makeNodeL.ist(): Creates a list of the nodes for the event graph
based on the events list in the database.

a Called by paint(Graphics).

public void paint(Graphics g): Draws the initial event graph of the simulation
model.

a Overrides java.awt.Canvas.paint(Graphics).

64

Calls drawArrow(Graphics).

Calls drawNode(Graphics).

Calls locateNode(int).

Calls makeNodeL.ist().

Calls whichEdge(int, int, int).

public void repaint(String[] event, Object[] item): Locates the next section of
the event graph to be animated.

a Called by SchedThread.run().

a Calls update(Graphics) by calling java.awt.Component.repaint(long).
public void update(Graphics g): Repaints the section of the model identified by
repaint(String[], Object[]), causing the animation effect. From its original color
of yellow, the section is painted cyan and then repainted yellow.

Overrides java.awt.Component.update(Graphics).

Calls drawArrow(Graphics).

Calls drawNode(Graphics).

Calls locateNode(int).

a Calls whichEdge(int, int, int).

private void whichEdge(int next, int list, int active): Uses the parameters of this
method to determine the direction of the current edge and calls the appropriate
method.

a Called by paint(Graphics).

a Called by update(Graphics).

a Calls backwardEdge(int).
a

a

QO QO QO QW Q-

a
a
a
a

Calls curvedEdge(int).
Calls forwardEdge(int).

CardPanel extends Panel

Allocates resources for each graphical user interface (GUI) and connects the interfaces for data
transfer purposes.
Imports: java.awt.*, java.util.*.

Methods:

public CardPanel(): Creates resources, much like hyper cards, for each user
interface.

a Calls newCard(EntryPanel).

a Calls newCard(ViewerPanel).

private void fillEdgesHt(MyHashtable edgesHt, String[] thisEventsKey,
MyVector thisVedge): Fills the edge hashtable with vectors, one for each edge.
a Called by transferDataS(EntryPanel, ViewerPanel).

65

private void fillEventsHt(MyHashtable events, String[] thisEventsKey,
MyHashtable thisVevents, String thisStateVars): Fills the event hashtable with
the event names and each individual event hashtable with the correct event name
and state variables as listed on the entry form.

a Called by transferDataS(EntryPanel, ViewerPanel).

a Calls putVars(MyHashtable, String).

private Panel newCard(EntryPanel thisModule): Adds the entry form user
interface, or card, to the main applet. Initializes and returns a started instance of
this interface.

a Called by CardPanel().

private Panel newCard(ViewerPanel thisModule): Adds the output viewer user
interface, or card, to the main applet. Initializes and returns a started an instance
of this interface.

a Called by CardPanel().

private void putVars(MyHashtable varHt, String varString): Creates an instance
of ModelParser to parse the equations for the state variables as entered in the
entry form. Transfers the resulting information into the individual event
hashtables.

a Called by fillEventsHt(MyHashtable, String[], MyHashtable, String).

a Calls ModelParser.decipherVars().

protected void transferDataS(): Allows actual user interface instances to be
hidden from the Main Applet.

a Called by MainApplet.action(Event, Object).

a Calls transferDataS(EntryPanel, ViewerPanel).

private void transferDataS(EntryPanel epm, ViewerPanel vpm): Reads the
information from the entry form and transfers this data into the database.

a Calls fillEdgesHt(MyHashtable, String[], MyVector).

a Calls fillEventsHt(MyHashtable, String[], MyHashtable, String).

a Calls placeEdge(MyHashtable, String, String, String, String, String).
private void placeEdge(MyHashtable edgeHt, String fromEdge, String toEdge,
String condEdge, String prEdge, String timeEdge): Fills each edge vector with the
information listed on the entry form for that edge.

a Called by transferDataS(EntryPanel, ViewerPanel).

DataDictionary

Creates and manages the databases for the events, variables and future events list of the
simulation model. Calls an instance of a random number stream as needed.
Events are maintained as keys in a hashtable with each element of the hashtable being a hashtable

66

holding the variables associated with that event key. Each element of the variable’s hashtable is a
string or integer representing the rule associated with that variable key. The edges of the event
graph are also maintained in a hashtable with each element being a vector. Each element vector
defines a property of that edge (i.e., location, condition, time delay, priority). The current values
of the variables are maintained in a hashtable where the variable name is the key and the value is
the element. The future events list is a vector with each element being a string array consisting of
a time, priority, and event name.

Imports: java.util.*.

Methods:

public DataDictionary(): Creates a new instance of DataDictionary.

protected Object[] adjustEventSch(): Returns the next entry from the future

events list to the simulation thread and removes that entry from the list.

a Called by SchedThread.run().

private void clearData(): Clears the databases of all previous data.

a Called by putData(MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyVector, MyVector, MyVector, MyVector, MyVector,
MyVector).

protected void initData(MyHashtable initEvent): Fills the initial variable values

from the entry form into the variable database.

a Called by ViewerPanel.initModel(String[], MyHashtable).

a Called by setUp(long, MyHashtable).

private void makeDataTables(MyHashtable incoming, MyHashtable

toReplace): Adds the event information to the databases.

a Called by putData(MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyVector, MyVector, MyVector, MyVector, MyVector,
MyVector).

private void makeDataTables(MyVector incoming, MyVector toReplace):

Adds the variable information to the databases.

a Called by putData(MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyVector, MyVector, MyVector, MyVector, MyVector,
MyVector).

protected void putData(MyHashtable htEV, MyHashtable htl, MyHashtable

ht2, MyHashtable ht3, MyHashtable ht4, MyHashtable ht5, MyHashtable ht6,

MyHashtable htED, MyVector v1, MyVector v2, MyVector v3, MyVector v4,

MyVector v5, MyVector v6): Uses the following methods and the data from the

entry form to fill in the databases.

67

a Called by ViewerPanel.putData(MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyVector, MyVector, MyVector,
MyVector, MyVector, MyVector).

a Calls clearData().

a Calls makeDataTables(MyHashtable, MyHashtable).

a Calls makeDataTables(MyVector, MyVector).

protected void setUp(long seedText, MyHashtable initEvent): Calls the methods

to clear the databases and future events list and to start a new random number

stream. This method is called whenever a new simulation run is started.

a Called by SchedThread.SchedThread(DataDictionary, ViewerPanel, long,
double).

a Calls initData(MyHashtable).

a Calls startRnd(long).

private void startRnd(long theSeed): Starts a new random number stream.

a Called by setUp(long, MyHashtable).

protected void updateEventSch(String[] thisEvent, double currentTime):

Checks edge conditions between the current event and all connected events,

schedules time for all valid connected events, and updates the future events list.

Scheduling ties are broken by priorities, if given, with 9 being a higher priority and

1 being low. Otherwise, the newest event is placed below the existing, tying

event.

a Called by SchedThread.run().

a Calls ModelParser.decipherCondition(MyHashtable).

a Calls RndGenerator.calcRndNum(String).

protected void updateEventVars(MyHashtable varht, double currentTime):

Updates the values in the variables database according to the rules of the current

event, given in the parameter “varht”.

a Called by SchedThread.run().

a Calls ModelParser.decipherRule(Integer, Integer, MyHashtable,
MyVector).

EntryPanel extends Panel implements Runnable
Defines and draws the graphical user interface (GUI) for defining and modifying the simulation

Imports: java.awt.*.

public EntryPanel(): Creates a new instance of EntryPanel.

68

private void labelEdgeSection(String label): Labels the text fields for defining

the edges.

a Called by run().

private void labelSection(String label): Labels the general sections of the entry

form.

a Called by run().

private void makeEdgeSection(TextField from, TextField to, TextField cond,

TextField td, TextField pr): Places the text fields for the edge locations,

conditions, time delays, and priorities.

a Called by run().

private void makeEventSection(String ename, TextField event, TextArea evar):

Labels and places the text fields for the event names and state variables.

a Called by run().

public void run(): Defines the layout and components of the entry form. Calls

the methods that create and label these components.

a Calls labelEdgeSection(String).

a Calls labelSection(String).

a Calls makeEdgeSection(TextField, TextField, TextField, TextField,
TextField).

a Calls makeEventSection(String, TextField, TextArea).

public void start(): Starts a thread to manage the operations within this class.

This allows Netsim to create GUI’s simultaneously, reducing user waiting time for

applet interpretation by the browser.

public void stop(): Stops the thread managing this class.

MainApplet extends java.applet.Applet

Provides general applet behaviors for the Netsim program. This includes initializing the program;
starting, stopping, and redrawing the applet as necessary; and destroying any resources used in
the applet before closing.

Imports: java.awt.*.

Methods:

public boolean action(Event evt, Object arg): Handles actions required to switch
between graphical user interfaces (GUI’s) or to save the current GUI information

(either model or output) into a file on the user’s machine. The “save” buttons are

currently non-functional.

a Overrides java.awt.Component.action(Event, Object).
a Called by user through mouse clicks on GUI button.
a Calls CardPanel.transferDataS().

69

public void init(): Sets the background formatting for the GUI’s and initializes
the default GUI. The current default is the entry form interface.

a Overrides java.applet.Applet.init().

a Calls insets().

a Calls labelCard(String, String, String).

public Insets insets(): Returns the amount of space between layout components
and the border of the current container.

a Overrides java.awt.Container.insets().
a Called by init().
a Calls java.awt.Insets(int, int, int, int).

private void labelCard(String moduleLabel, String savelLabel, String
buttonLabel): Adjusts titles and button labels for a given graphical user interface
(GUI).

a Called by init().

ModelParser extends StringTokenizer

Parses textual information from the entry panel into forms compatible with the databases.
Imports: java.util.*.

Methods:

” public ModelParser(String rule): Creates a new instance of the super class
StringTokenizer with a blank space as the delimiter. This is used to parse edge
conditions and variable rules.
public ModelParser(String rule, String delim): Creates a new instance of the
super class StringTokenizer with the specified delimiter. This is used to parse
random distributions and to separate and parse variable equations.
public void db(String toDebug): Prints statements to a standard output window
for debugging purposes.

a Called by various methods in ModelParser.

protected boolean decipherCondition(MyHashtable ht): Compares the edge
condition to the current variable values and returns the booleam value of the
condition, true or false.

a Called by DataDictionary.updateEventSch(String][], double).

a Calls tryEqual(Integer, int).

a Calls tryGreater(Integer, int).

a Calls tryLess(Integer, int).

a Calls tryNot(Integer, int).

protected int[] decipherRndParam(): Locates and returns the values of the
parameters of the current random distribution.

70

a Called by RndGenerator.calcRndNum(String).

protected Integer decipherRule(Integer old, Integer intTime, MyHashtable
varData, MyVector W): Parses the variable rule for the given variable and the
current event. Calls the methods to change the current variable value, given by the
parameter “old”, by the appropriate amount. Returns the updated value to the

database.

a Called by DataDictionary.updateEventVars(MyHashtable, double).
a Calls increaseVar(Integer, int).

a Calls replaceVar(int).

protected String[] decipherVars(): Deciphers variable equations, returning an
array with the variable name and the variable value.

a Called by CardPanel.putVars(MyHashtable, String).

private Integer increaseVar(Integer isNow, int howMuch): Increases the
current variable value by the specified amount, which may be positive or negative.
a Called by decipherRule(Integer, Integer, MyHashtable, MyVector).
private Integer replaceVar(int howMuch): Replaces the current variable value
with the specified value.

a Called by decipherRule(Integer, Integer, MyHashtable, MyVector).
private boolean tryEqual(Integer isNow, int compareTo): Compares edge
conditions consisting of an equality statement. Returns the boolean value of the
statement.

a Called by decipherCondition(MyHashtable).

private boolean tryGreater(Integer isNow, int compareTo): Compares edge
conditions consisting of a “greater than” statement. Returns the boolean value of
the statement.

a Called by decipherCondition(MyHashtable).

private boolean tryLess(Integer isNow, int compareTo): Compares edge
conditions consisting of a “less than” statement. Returns the boolean value of the
statement.

a Called by decipherCondition(MyHashtable).

private boolean tryNot(Integer isNow, int compareTo): Compares edge
conditions consisting of a “not equal” statement. Returns the boolean value of the
statement.

a Called by decipherCondition(MyHashtable).

MyHashtable extends Hashtable

Extends java.util.Hashtable, purely for debugging purposes.
Imports: java.util.Hashtable, java.util. Enumeration.

71

Methods:
” public MyHashtable(int size): Creates a new instance of the super class

Hashtable with the specified size.
public void listAll(): Lists the elements of a hashtable into a standard output
window. This method is for hashtables where neither the keys nor elements are
arrays.
a Called by many methods in Netsim.
public void listAlIE(): Lists the elements of a hashtable into a standard output
window. This method is for hashtables where the keys are arrays.
a Called by many methods in Netsim.

MyVector extends Vector

Extends java.util.Vector, purely for debugging purposes.

Imports: java.util.Vector, java.util. Enumeration.

Methods:

N public MyVector(int size): Creates a new instance of the super class Vector with

the specified size.
public void listAll(): Lists the elements of a vector into a standard output
window. This method is for vectors where the elements are arrays of objects.
a Called by many methods in Netsim.
public void listAlIC(): Lists the elements of a vector into a standard output
window. This method is for vectors where the elements are arrays of characters.
a Called by many methods in Netsim.

RndGenerator extends Random

Determines the random number stream for the current simulation run and calculates random

variates from that stream as needed.

Imports: java.util.Random.

Methods:

" public RndGenerator(): Creates a new instance of the super class Random with

a seed defined by the current system time of the computer.
public RndGenerator(long theSeed): Creates a new instance of the super class
Random with the value of the parameter “theSeed” as the seed.
protected Double calcRndNum(String description): Takes the next number from
the SIGMA random number stream, or SIGMA’s associated set of natural logs, if
the value of the seed is currently “-2”. Otherwise, this method takes the next
number of the random stream created by java.util.Random, using the current seed
value. The method then notifies ModelParser to parse the parameter description

72

and calculates a random variate based on the distribution parameters of the
resulting random distribution.

a Called by DataDictionary.updateEventSch(String|[], double).

a Calls ModelParser.decipherRndParam().

a Calls sigmaRndNum().

a Calls sigmaNaturalLogOfRndNum().

private double sigmaRndNum(): Supplies approx. the first 100 numbers in the
random number stream created by SIGMA for the seed 12352.

a Called by calcRndNum(String).

private double sigmaNaturalLogOfRndNum(): Supplies the SIGMA
calculated, natural logs for approx. the first 100 numbers in the random number
stream created by SIGMA for the seed 12352.

a Called by calcRndNum(String).

SchedThread extends Thread

Monitors the simulation clock and future event list, determines the type of output desired by the
user, notifies the database of the current random number seed, and signals the database to process
the next event. This class manages the simulation run until the clock exceeds the current run-
length, the future events list is empty, or the simulation is stopped by the user.

SchedThread must be contained in same text file as ViewerPanel.

Imports: java.awt.*, java.util.*.

Methods:

public SchedThread(DataDictionary data, ViewerPanel target, long seed, double
runlength): Creates a new instance of SchedThread associated with the instances
identified by this method’s parameters. Notifies the database to initialize the
state variables. Identifies the starting node on the event graph.

a Calls DataDictionary.setUp(long, MyHashtable).

public void run(): Acts as the main method for the class, managing the simulation
run and calling other methods as needed.

a Calls DataDictionary.adjustEventSch().

Calls DataDictionary.updateEventSch(String][], double).

Calls DataDictionary.updateEventVars(MyHashtable, double).

Calls outputData().

Calls AnimationCanvas.repaint(String[], Object[]).

a Calls ViewerPanel.stopN().

public void outputData(): Writes the data from the simulation run into the text
area of the viewing interface or into a standard output text window associated
with the user’s browser.

QW QO Q-

73

a Called by run().

ViewerPanel extends Panel implements Runnable

Defines and draws the GUI for viewing and interacting with the simulation model.
Imports: java.awt.*, java.util.*.

Methods:

public ViewerPanel(): Creates a new instance of ViewerPanel.

public boolean action(Event evt, Object arg): Handles button actions for
interacting with this GUI: stop, pause or play.

a Overrides java.awt.Component.action(Event, Object).

a Called by user through mouse clicks on GUI button.

a Calls stopB().

a Calls pauseB().

a Calls playB().

protected void initModel(String[] startNode, MyHashtable initEvent): Notifies
the database of the first event in the model.

a Calls DataDictionary.initData(MyHashtable).

public Insets insets(): Sets the amount of space between layout components and
the border of the current container.

a Overrides java.awt.Container.insets().
a Called by run().
a Calls java.awt.Insets(int, int, int, int).

protected void putData(MyHashtable htEV, MyHashtable htl, MyHashtable

ht2, MyHashtable ht3, MyHashtable ht4, MyHashtable ht5, MyHashtable ht6,

MyHashtable htED, MyVector v1, MyVector v2, MyVector v3, MyVector v4,

MyVector v5, MyVector v6): Passes the data from the entry form to the

database.

a Calls DataDictionary.putData(MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyHashtable, MyHashtable,
MyHashtable, MyHashtable, MyVector, MyVector, MyVector,
MyVector, MyVector, MyVector).

private void pauseB(): Pauses simulation thread when user clicks the “pause”

button.

a Called by action().

private void playB(): Begins or resumes simulation thread when user clicks the

“play” button.

a Called by action().

a Calls setSD().

74

a Calls setRL().

private double readRunLength(String lengthChangeTo): Reads the value in the
“model run-length” text field or calculates a new value, if necessary, and returns
this value.

a Called by setRL().

private long readSeed(String seedChangeTo): Reads the value in the “random
number seed” text field or calculates a new value, if necessary, and returns this
value.

a Called by setSD().

public void run(): Defines the layout and components of the viewing panel and
also creates and labels these components.

a Calls insets().

public void start(): Starts a thread to manage the operations within this class.
This allows Netsim to create GUI’s simultaneously, reducing user waiting time for
applet interpretation by the browser.

private double setRL(): Replaces the value in the “model run-length” text field
with the current value and returns the current value.

a Called by playB().

a Calls readRunLength(String).

private long setSD(): Replaces the value in the “random number seed” text field
with the current value and returns the current value.

a Called by playB().

a Calls readSeed(String).

public void stop(): Stops the thread managing this class.

private void stopB(): Stops simulation thread when user clicks the “stop”
button.

a Called by action().

protected void stopN(): Stops simulation thread when simulation ends naturally.
Called by SchedThread.run().

75

Appendix H: Netsim Source Code

MainApplet HTML Document

CardPanel extends Panel

DataDictionary

EntryPanel extends Panel implements Runnable
MainApplet extends java.applet.Applet

M odel Par ser extends StringT okenizer
MyHashtable extends Hashtable

MyVector extends Vector

RndGenerator extends Random

Viewer Panel extends Panel implements Runnable
SchedThread extends Thread

AnimationCanvas extends Canvas

76

O 00O NO Ol WN -

NNNNRPRPRRPRPRRERRRR
N, OOWOWwWNoOUNMWNERO

MainApplet HTML Document

<HTML>
<HEAD>
<TITLE>TISA</TITLE>
</HEAD>

<BODY>

Tamie's Internet Simulation Applet for an M/M/1 queue.

Please be patient while your computer downloads and interprets the applet.

<APPLET CODE = "netSim/MainApplet.class” WIDTH =600 HEIGHT =510>
<center>

This space is where the applet should be.

Please check your operating system and internet browser for Java viewing
capabilities.

Learn more about Java at www.javasoft.com
</center>

</APPLET>

</BODY>

</HTML>

77

©O© oo N O g~ W N

B W WWWWWWWWWPNDNDNMNDNMNDNNMNNMNNMNDNNNNNRPRPRPEPRPERPERPERPERRPREPR
QO OWoONO U WNPFPOOOLO~NOOPRWNPFPOOONOOILEAWDNPEO

package netSim;
import java.awt.*;
import java.util.*;

/**
CardPanel extends Panel
Allocates resources for each graphical user interface (GUI) and connects
the interfaces for data transfer purposes.
*/

class CardPanel extends Panel{
EntryPanel entry;
ViewerPanel view;

public CardPanel() {
entry = new EntryPanel();
view = new ViewerPanel();
setLayout(new CardLayout());
add("Entry Form",newCard(entry));
add("Simulator", newCard(view));

¥

private Panel newCard(EntryPanel thisModule) {
Panel parent = new Panel();
parent.add("Center"”, thisModule);
thisModule.start();
return parent;

¥

private Panel newCard(ViewerPanel thisModule) {
Panel parent = new Panel();
parent.add("Center", thisModule);
thisModule.start();
return parent;

¥

protected void transferDataS() { //called by MainApplet.action(,)
transferDataS(entry,view);

¥

78

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

private void transferDataS(EntryPanel epm, ViewerPanel vpm) {
[*init each event*/
String[] eventsKeyl1 = {new String("0"), epm.eventl.getText()};
String[] eventsKey2 = {new String("1"), epm.event2.getText()};
String[] eventsKey3 = {new String("2"), epm.event3.getText()};
String[] eventsKey4 = {new String("3"), epm.event4.getText()};
String[] eventsKey5 = {new String("4"), epm.event5.getText()};
String[] eventsKey6 = {new String("5"), epm.event6.getText()};
[*create main &individual event hts*/
MyHashtable events = new MyHashtable(10);
MyHashtable veventl = new MyHashtable(10);
MyHashtable vevent2 = new MyHashtable(10);
MyHashtable vevent3 = new MyHashtable(10);
MyHashtable vevent4 = new MyHashtable(10);
MyHashtable vevent5 = new MyHashtable(10);
MyHashtable vevent6 = new MyHashtable(10);
[*fill events ht & individual event hts*/
fillEventsHt(events, eventsKeyl, veventl, epm.evarsl.getText());
fillEventsHt(events, eventsKey2, vevent2, epm.evars2.getText());
fillEventsHt(events, eventsKey3, vevent3, epm.evars3.getText());
fillEventsHt(events, eventsKey4, vevent4, epm.evars4.getText());
fillEventsHt(events, eventsKey5, veventb, epm.evarsb.getText());
fillEventsHt(events, eventsKey6, vevent6, epm.evars6.getText());
[*create main & individual edge vects*/
MyHashtable edges = new MyHashtable(10);
MyVector vedgel = new MyVector(8);
MyVector vedge2 = new MyVector(8);
MyVector vedge3 = new MyVector(8);
MyVector vedge4 = new MyVector(8);
MyVector vedge5 = new MyVector(8);
MyVector vedge6 = new MyVector(8);
[*fill edges ht*/
fillEdgesHt(edges, eventsKeyl, vedgel);
fillEdgesHt(edges, eventsKey2, vedge?);
fillEdgesHt(edges, eventsKey3, vedge3);
fillEdgesHt(edges, eventsKey4, vedge4);
fillEdgesHt(edges, eventsKey5, vedgeb);
fillEdgesHt(edges, eventsKey6, vedgeb);
/*fill individual edge vectors*/
placeEdge(edges, epm.from1.getText(), epm.tol.getText(),

79

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

¥

epm.condl.getText(), epm.prl.getText(),
epm.td1.getText());
placeEdge(edges, epm.from2.getText(), epm.to2.getText(),
epm.cond2.getText(), epm.pr2.getText(),
epm.td2.getText());
placeEdge(edges, epm.from3.getText(), epm.to3.getText(),
epm.cond3.getText(), epm.pr3.getText(),
epm.td3.getText());
placeEdge(edges, epm.from4.getText(), epm.to4.getText(),
epm.cond4.getText(), epm.prd.getText(),
epm.td4.getText());
placeEdge(edges, epm.from5.getText(), epm.to5.getText(),
epm.cond5.getText(), epm.pr5.getText(),
epm.td5.getText());
placeEdge(edges, epm.from6.getText(), epm.to6.getText(),
epm.cond6.getText(), epm.pr6.getText(),
epm.td6.getText());
Ilevents.listAlIE(); //debug
/ledges.listAlIE(); //debug
/lput data into ViewerPanel/DataDictionary;
vpm.putData(events, veventl, vevent2, vevent3, vevent4, vevents,
vevent6, edges, vedgel, vedge2, vedge3, vedge4, vedgeb,
vedgeb);
vpm.initModel(eventsKey1, veventl);

private void fillEventsHt(MyHashtable events, String[] thisEventsKey,

¥

MyHashtable thisVevent, String thisStateVars) {
if ('thisEventsKey[1].equals("")) {

events.put(thisEventsKey, thisVevent);

putVars(thisVevent, thisStateVars);

private void fillEdgesHt(MyHashtable edgesHt, String[] thisEventsKey,

MyVector thisVedge) {
if ("thisEventsKey[1].equals("")) {
edgesHt.put(thisEventsKey, thisVedge);

¥

80

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

private void putVars(MyHashtable varHt, String varString) {
ModelParser mp= new ModelParser(varString, ";");
String[] stateVVars = mp.decipherVars();
//System.out.printIn(stateVars);
for (int i=0; i < stateVars.length; i+=2) {
String thisKey = stateVars[i];
String thisElem = stateVars[i+1];
varHt.put(thisKey,thisElem);

¥

private void placeEdge(MyHashtable edgeHT, String fromEdge, String toEdge,
String condEdge, String prEdge, String timeEdge) {
for (Enumeration ef = edgeHT.elements(), kf = edgeHT .keys();
ef.hasMoreElements();){
Vector elemf = (Vector) ef.nextElement();
String[] keyf = (String[]) kf.nextElement();
if (keyf[1].equals(fromEdge)) {
for (Enumeration et = edgeHT.elements(),
kt = edgeHT .keys(); et.hasMoreElements();){
Vector elemt = (Vector) et.nextElement();
String[] keyt = (String[]) kt.nextElement();
if (keyt[1].equals(toEdge)) {
elemf.addElement(keyt);//set edge conditions
elemf.addElement(condEdge);
try {
elemf.addElement(new Integer(prEdge));
} catch(NumberFormatException nfe) {
elemf.addElement(new Integer(5));

}
elemf.addElement(timeEdge);
break;
}
}
break;

}
}
} /lendof CardPanel class

81

©O© oo N O g~ W N

B W WWWWWWWWWPNDNDNMNDNMNDNNMNNMNNMNDNNNNNRPRPRPEPRPERPERPERPERRPREPR
QO OWoONO U WNPFPOOOLO~NOOPRWNPFPOOONOOILEAWDNPEO

package netSim;
import java.util.*;
import java.lang.*;

/**

*/

DataDictionary

Creates and manages the databases for the events, variables and future
events list of the simulation model. Calls an instance of a random number
stream as needed.

Events are maintained as keys in a hashtable with each element of the
hashtable being a hashtable holding the variables associated with that
event key. Each element of the variable’s hashtable is a string or integer
representing the rule associated with that variable key. The edges of the
event graph are also maintained in a hashtable with each element being a
vector. Each element vector defines a property of that edge (i.e.,
location, condition, time delay, priority). The current values of the
variables are maintained in a hashtable where the variable name is the key
and the value is the element. The future events list is a vector with each
element being a string array consisting of a time, priority, and event name.

class DataDictionary{

MyHashtable events = new MyHashtable(10); /levents

MyHashtable veventl = new MyHashtable(10); //vars,each assoc w an event

MyHashtable vevent2 = new MyHashtable(10);
MyHashtable vevent3 = new MyHashtable(10);
MyHashtable vevent4 = new MyHashtable(10);
MyHashtable vevent5 = new MyHashtable(10);
MyHashtable vevent6 = new MyHashtable(10);
MyHashtable edges = new MyHashtable(10); /ledges

MyVector vedgel = new MyVector(8); /[conditions,each assoc with an edge

MyVector vedge2 = new MyVector(8);
MyVector vedge3 = new MyVector(8);
MyVector vedge4 = new MyVector(8);
MyVector vedge5 = new MyVector(8);
MyVector vedge6 = new MyVector(8);

MyHashtable varData = new MyHashtable(10); //main variable database

MyVector linkedList = new MyVector(10);
//scheduling event list, elements are String[3]
RndGenerator RandomStream; //[Random Stream var

82

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

ht2,

ht6,

double time;
MyVector W = new MyVector(500); //vector for customerin counting

public DataDictionary() {
¥

protected void putData(MyHashtable htEV, MyHashtable htl, MyHashtable
MyHashtable ht3, MyHashtable ht4, MyHashtable ht5, MyHashtable

MyHashtable htED, MyVector v1, MyVector v2, MyVector v3,
MyVector v4, MyVector v5, MyVector v6){

clearData();

makeDataTables(htEV, events);

makeDataTables(htl, veventl);

makeDataTables(ht2, vevent?2);

makeDataTables(ht3, vevent3);

makeDataTables(ht4, vevent4);

makeDataTables(ht5, veventb);

makeDataTables(ht6, vevent6);

makeDataTables(htED, edges);
makeDataTables(v1, vedgel);
makeDataTables(v2, vedge?2);
makeDataTables(v3, vedge3);
makeDataTables(v4, vedged);
makeDataTables(v5, vedge5);
makeDataTables(v6, vedgeb);

¥

private void clearData() {

veventl.clear();
vevent2.clear();
vevent3.clear();
vevent4.clear();
vevent5.clear();
vevent6.clear();
events.clear();
vedgel.removeAllElements();
vedge2.removeAllElements();

83

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

vedge3.removeAllElements();
vedge4.removeAllElements();
vedge5.removeAllElements();
vedge6.removeAllElements();
edges.clear();

¥

private void makeDataTables(MyHashtable incoming, MyHashtable toReplace) {
for (Enumeration e = incoming.elements(), k = incoming.keys();
e.hasMoreElements();){
toReplace.put(k.nextElement(), e.nextElement());

¥

private void makeDataTables(MyVector incoming, MyVector toReplace) {
for (Enumeration e = incoming.elements();e.hasMoreElements();){
toReplace.addElement(e.nextElement());

¥
¥

protected void initData(MyHashtable initEvent) {
//set init var values, called by ViewerPanel
for (Enumeration e = initEvent.elements(), k = initEvent.keys();

e.hasMoreElements();){

String elem = (String) e.nextElement();

String key = (String) k.nextElement();

try {
varData.put(key, new Integer(elem));

} catch (NumberFormatException exp) {}

for (int i=0; i<501; i++) {
W.addElement(new Integer(0));

}

¥

protected void setUp(long seedText, MyHashtable initEvent) {
/lused by SchedThread (ViewerPanel)
varData.clear(); //empty var database
initData(initEvent); //set init var values
linkedL.ist.removeAllElements(); //empty linkedList

84

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

startRnd(seedText); //restart Rnd Num Stream

private void startRnd(long theSeed){

RandomStream = new RndGenerator(theSeed);

protected void updateEventVars(MyHashtable varht, double currentTime) {

String stringindex = null;
int intindex = 0;
Double dblTime= new Double(currentTime*10000);
Integer intTime = new Integer(dblTime.intValue());
for (Enumeration el = varht.elements(), k1 = varht.keys();
el.hasMoreElements();){
String elem1 = (String) el.nextElement();
String key1 = (String) k1.nextElement();
/lupdate all non array vars, before array vars!!!
for (Enumeration e2 = varData.elements(),
k2 = varData.keys(); e2.hasMoreElements();){
Integer elem2= (Integer) e2.nextElement();
String key?2 = (String) k2.nextElement();
/ISystem.out.print("keyl: "+keyl+" eleml.:
Il "+elem1); //debug
/ISystem.out.printIn(" key2 "+key2+ " elem2:
Il "+elem2);//debug
if (key2.equals(keyl)) {
ModelParser rg= new ModelParser(elem1);
Integer theUpdateValue = rg.decipherRule(elem2,
intTime, varData, W);
/ISystem.out.printIn("update "+key2+" ToThis
/[+theUpdateValue); //debug
varData.put(key2,theUpdateValue);
break;

¥

¥
¥

for (Enumeration eA = varht.elements(), kA = varht.keys();
eA.hasMoreElements();){
String elemA = (String) eA.nextElement();
String keyA = (String) kA.nextElement();

85

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

W =clk

} //endof updateEventVars

/I now update array vars
if (keyA.startsWith("WI[")) {

¥

/Iparse out into vector
stringIndex = keyA.substring(2,(keyA.length() -1));
for (Enumeration e3 = varData.elements(),
k3 = varData.keys(); e3.hasMoreElements();){
Integer elem3= (Integer) e3.nextElement();
String key3 = (String) k3.nextElement();
if (key3.equals(stringindex)) {
intindex = elem3.intValue();

break;

}
}
if (W.size() > intIndex) {

W.setElementAt(intTime,intIndex); /force

}else {

W.addElement(intTime); [fforce W = clk
}

protected void updateEventSch(String[] thisEvent, double currentTime) {

double time = currentTime;
Double schEventln, schEventAt;
String[] nextEvent;

Integer priority;
String whenEvent;
Object[] tmp;
Double compareEventTo;
Integer comparePriorityTo;
int index = 0;
for (Enumeration e = edges.elements(), k = edges.keys();

e.hasMoreElements();){
Vector elem = (Vector) e.nextElement();
String[] key = (String[]) k.nextElement();
/ISystem.out.print("key "+key[0]+", "+key[1]+", thisEvent ™);
/[System.out.printin(thisEvent[0]+", "+thisEvent[1]);
if (key.equals(thisEvent)) {

86

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

checkCondition+

for (inti = 0;i <elem.size();i = i1+4) {
String checkCondition = (String) elem.elementAt(i+1);
//System.out.printIn("checkCondition " +

/" boolean value is:
/I"+Boolean.getBoolean(checkCondition)); //debug
ModelParser rg= new ModelParser(checkCondition);
boolean theResult = rg.decipherCondition(varData);
/[System.out.printin("theResult "+theResult); //debug

if (theResult) {

nextEvent = (String[]) elem.elementAt(i);

priority = (Integer) elem.elementAt(i+2);

whenEvent = (String) elem.elementAt(i+3);

schEventin = RandomStream.calcRndNum(whenEvent);

schEventAt= new Double(schEventin.doubleValue()+time);

/[System.out.printin("nextEvent:" + nextEvent[0]+", "

Il +nextEvent[1]); //debug

/ISystem.out.printin("priority " + priority);//debug

/ISystem.out.printIn("schEventAt " + schEventAt); //debug

Object[] LLelement = new Object[3];

LLelement[0] = schEventAt;

LLelement[1] = priority;

LLelement[2] = nextEvent;

//System.out.printin("LLelement:" + " schEventAt is "

/[+LLelement[0]+ ", priority is "+LLelement[1]+

II", nextEvent is "+nextEvent[0]+","+nextEvent[1]);//debug

if (linkedList.isEmpty()) {
linkedL.ist.addElement(LLelement);
/[System.out.printIn("(first) linkedList: ");
/NlinkedList.listAll(); //debug

}

else {

index = 0;
for (Enumeration eLL =linkedL.ist.elements();
eLL.hasMoreElements();) {
tmp = (Object[]) eLL.nextElement();
compareEventTo = (Double) tmp[0];
comparePriorityTo = (Integer) tmp[1];
if ((schEventAt.doubleValue() <
compareEventTo.doubleValue())

87

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

I
((schEventAt.doubleValue() ==

compareEventTo.doubleValue()) &
(priority.intValue() >
comparePriorityTo.intValue()))

)

linkedList.insertElementAt(LLelement,index);

break;
}
else if (index == linkedList.size() -1) {
linkedList.addElement(LLelement);
break;
}
index = index+1;
}
//System.out.printin("linkedList: "); //debug
/NinkedList.listAll(); //debug

}
}
}
break;
}
}
} //endof updateEventSch

protected Object[] adjustEventSch() {

Object [] LLmarker=null;

try {
LLmarker = (Object[]) linkedList.firstElement();
linkedL.ist.removeElementAt(0);

} catch (NoSuchElementException e) {
System.out.printIn("linkedList was empty");}

return(LLmarker);

ky

} //lendof DataDictionary class

88

O© 0 N O Ol WD

B W WWWWWWWWWPNDNDNMNDNMNDNNMNNMNNMNDNNNNNRPRPRPEPRPERPERPERPERRPREPR
QO OWoONO U WNPFPOOOLO~NOOPRWNPFPOOONOOILEAWDNPEO

package netSim;
import java.awt.*;

/**
EntryPanel extends Panel implements Runnable
Defines and draws the graphical user interface (GUI) for defining and
modifying the simulation model.

*/

class EntryPanel extends Panel implements Runnable{
GridBagLayout gridbag;
GridBagConstraints gbc;
Thread entryThread;

[*define events*/

TextField eventl,event2,event3,event4,event5,event6;
[*define state vars for each event*/

TextArea evarsl,evars2,evars3,evars4,evarsb,evarso,
[*define edges*/

TextField from1,from2,from3,from4,from>5,from6;

TextField tol,t02,t03,t04,t05,t06;

TextField prl,pr2,pr3,pr4,pr5,pr6;

TextField condl,cond2,cond3,cond4,cond5,cond6;

TextField td1,td2,td3,td4,td5,td6;

public EntryPanel() {
k

public void start() {
if (entryThread == null) {
entryThread = new Thread(this);
entryThread.start();

¥

public void run() {
[*define events*/
eventl = new TextField("run",7);
event2 = new TextField("enter",7);
event3 = new TextField("start",7);

89

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

event4 = new TextField("leave",7);

event5 = new TextField(7);

event6 = new TextField(7);
[*define state vars for each event*/
evarsl = new

TextArea("S=1;Q=0;CI=0;C0O=0;TS=0;TE=0;W[]=0;WT=0", 2,10);
evars2 = new TextArea("Q=+ 1;Cl=+ 1;W][CI]=clk", 2,10);
evars3 = new TextArea("S=0;Q=- 1;TS=clk", 2,10);
evars4 = new TextArea("S=1;CO=+ 1;TE=+ clk - TS;WT=+ clk -\
W[CO]",2,10);

evars5 = new TextArea(2,10);
evarsé = new TextArea(2,10);
[*define edges*/

from1 = new TextField("run", 7);

tol = new TextField("enter", 7);

prl = new TextField("5",1);

condl = new TextField("TRUE",10);

td1 = new TextField("", 10);

from2 = new TextField("enter", 7);

to2 = new TextField("enter", 7);

pr2 = new TextField("6",1);

cond2 = new TextField("TRUE", 10);

td2 = new TextField("exp(5)", 10);

from3 = new TextField("enter", 7);

to3 = new TextField("start", 7);

pr3 = new TextField("5",1);

cond3 = new TextField("S > 0",10);

td3 = new TextField("",10);

from4 = new TextField("start", 7);

to4 = new TextField("leave", 7);

prd = new TextField("5",1);

cond4 = new TextField("TRUE",10);

td4 = new TextField("exp(3)", 10);

from5 = new TextField("leave”, 7);

to5 = new TextField("start", 7);

pr5 = new TextField("5",1);

cond5 = new TextField("Q > 0",10);

td5 = new TextField("", 10);

from6 = new TextField(7);

to6 = new TextField(7);

90

81 pré = new TextField(1);

82 cond6 = new TextField(10);
83 td6 = new TextField(10);
84 [*set fonts*/
85 Font f = new Font("TimesRoman",Font.PLAIN,10);
86 Font bf = new Font("TimesRoman",Font.BOLD,12);
87 [*setlayout*/
88 gridbag = new GridBagLayout();
89 gbc = new GridBagConstraints();
90 setLayout(gridbag);
91 gbc.ipadx = 2;
92 gbc.ipady=1;
93 setFont(bf);
94 gbc.gridx = 1;
95 gbc.gridy = 1;
96 gbc.gridwidth = 2;
97 gbc.anchor= GridBagConstraints. NORTHWEST;
98 labelSection("EVENTS™);
99 gbc.gridx = 1;
100 gbc.gridy = 2;
101 gbc.gridwidth = 2;
102 gbc.anchor= GridBagConstraints. NORTHWEST;
103 labelSection("& VARS");
104 gbc.gridx = 1;
105 gbc.gridy = 3;
106 gbc.gridwidth = 2;
107 labelSection("(nodes &");
108 gbc.gridx = 1;
109 gbc.gridy = 4;
110 gbc.gridwidth = 2;
111 labelSection("attributes):");
112 [*event textboxes*/
113 setFont(f);
114 gbc.gridx = 3;
115 gbc.gridy = 1,
116 gbc.gridwidth = 1;
117 makeEventSection("event 1" eventl,evarsl);
118 makeEventSection("event 2" ,event2,evars2);
119 makeEventSection("event 3" ,event3,evars3);
120 gbc.gridx = 3;

91

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

¥

gbc.gridy = 3;

makeEventSection("event 4" ,event4,evars4);
makeEventSection("event 5" ,event5,evarsb);
makeEventSection("event 6",event6,evars6);

[*create new panel*/

setFont(bf);

gbc.gridx = 1;

gbc.gridy = 5;

gbc.gridwidth = 2;

gbc.insets = new Insets(10,0,0,0);
gbc.anchor= GridBagConstraints. NORTHWEST;
labelSection("EDGES:");

setFont(f);

gbc.gridx = 3;

gbc.gridy = 5;

gbc.gridwidth = 1;

gbc.insets = new Insets(1,0,5,0);
labelEdgeSection(from"™);
labelEdgeSection("to");
labelEdgeSection(**condition™);
labelEdgeSection("time delay");
labelEdgeSection(*priority");

gbc.gridx = 3;

gbc.gridy = 6;
makeEdgeSection(from1,tol,condl,td1,prl);
makeEdgeSection(from2,to2,cond2,td2,pr2);
makeEdgeSection(from3,to3,cond3,td3,pr3);
makeEdgeSection(from4,to4,cond4,td4,pr4);
makeEdgeSection(from5,to5,cond5,td5,pr5);
makeEdgeSection(from6,to6,cond6,td6,pr6);
gbc.gridx = 1;

gbc.gridy = 12;

public void stop() {

if (entryThread !'=null) {

entryThread.stop();
entryThread = null;

92

161

162 private void labelSection(String label) {

163 Label L1 = new Label();

164 L1.setForeground(Color.blue);

165 L1.setText(label);

166 gridbag.setConstraints(L1,gbc);

167 add(L1);

168 gbc.gridx = gbc.gridx+1,;

169 }

170

171 private void makeEventSection(String ename, TextField event, TextArea evar) {
172 gbc.insets = new Insets(1,0,5,0);

173 gbc.anchor= GridBagConstraints.SOUTH,;
174 Label L1 = new Label();

175 L1.setText(ename);

176 gridbag.setConstraints(L1,gbc);

177 add(L1);

178 gbc.insets = new Insets(1,0,3,0);

179 gbc.gridx = gbc.gridx+1,;

180 Label L2 = new Label("state vars");

181 gridbag.setConstraints(L2,gbc);

182 add(L2);

183 gbc.insets = new Insets(1,0,5,0);

184 gbc.anchor= GridBagConstraints. NORTH;
185 gbc.gridx = gbc.gridx-1,;

186 gbc.gridy = gbc.gridy+1;

187 gridbag.setConstraints(event,gbc);

188 add(event);

189 gbc.insets = new Insets(1,0,3,0);

190 gbc.gridx = gbc.gridx+1,;

191 gridbag.setConstraints(evar,gbc);

192 add(evar);

193 gbc.gridx = gbc.gridx+1,;

194 gbc.gridy = gbc.gridy-1;

195 }

196

197 private void labelEdgeSection(String label) {

198 gbc.anchor= GridBagConstraints.SOUTH;
199 Label L1 = new Label();

200 L1.setText(label);

93

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

gridbag.setConstraints(L1,gbc);
add(L1);
gbc.gridx = gbc.gridx+1,;

}

private void makeEdgeSection(TextField from, TextField to, TextField cond,
TextField td, TextField pr){
gbc.insets = new Insets(0,1,5,0);
gbc.anchor= GridBagConstraints. NORTH;
gridbag.setConstraints(from,gbc);
add(from);
gbc.gridx = GridBagConstraints. RELATIVE;
gbc.insets = new Insets(0,1,3,0);
gridbag.setConstraints(to,gbc);
add(to);
gbc.gridx = GridBagConstraints. RELATIVE;
gbc.insets = new Insets(0,1,5,0);
gridbag.setConstraints(cond,gbc);
add(cond);
gbc.gridx = GridBagConstraints. RELATIVE;
gbc.insets = new Insets(0,1,5,0);
gridbag.setConstraints(td,gbc);
add(td);
gbc.gridx = GridBagConstraints. RELATIVE;
gbc.insets = new Insets(0,1,5,0);
gridbag.setConstraints(pr,gbc);
add(pr);
gbc.gridx = 3;
gbc.gridy = gbc.gridy+1;
}
} /lendof EntryPanel class

94

O© 0 N O Ol WD

B W WWWWWWWWWPNDNDNMNDNMNDNNMNNMNNMNDNNNNNRPRPRPEPRPERPERPERPERRPREPR
QO OWoONO U WNPFPOOOLO~NOOPRWNPFPOOONOOILEAWDNPEO

package netSim;
import java.awt.*;

/**
MainApplet extends java.applet.Applet
Provides general applet behaviors for the Netsim program. This
includes initializing the program; starting, stopping, and redrawing
the applet as necessary; and destroying any resources used in the
applet before closing.

*/

public class MainApplet extends java.applet. Applet {
Font f = new Font("TimesRoman",Font.PLAIN,12);

Panel pn = new Panel(); //north panel
Panel pc = new Panel(); //center panel
Panel ps = new Panel(); //south panel
Label title = new Label(); /lapplet title
Button saveCard = new Button(); //save button

Button switchCard = new Button(); //switch between views
CardPanel viewStack = new CardPanel(); //stack of mainApplet modules

public void init() {

insets();

setFont(f);

setBackground((Color.lightGray).darker());

setLayout(new BorderLayout(0,10));
resize(600,510);

[*north panel*/
pn.setBackground(Color.lightGray);
pn.setForeground(Color.blue);
pn.add(title);
pn.resize(this.size().width,10);
add("North", pn);

[*south panel*/
ps.setBackground(Color.lightGray);
ps.setForeground(Color.blue);
ps.setLayout(new GridLayout(1,2,5,5));
ps.add(saveCard);
ps.add(switchCard);
add(""South™, ps);

95

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

[*center panel*/

pc.setBackground(Color.white);

pc.add(viewStack);

add(""Center",pc);
/[start with Entry Form

labelCard("Entry Form for Creating Your Simulation Model",

"Save Model","View Simulation NOW");

((CardLayout)viewStack.getLayout()).show(viewStack,"Entry Form™);

¥

public Insets insets() {
return new Insets(10,10,10,10);

¥

private void labelCard(String moduleLabel, String saveLabel,
String buttonLabel) {
title.setText(moduleLabel);
saveCard.setLabel(saveLabel);
switchCard.setLabel(buttonLabel);

¥

public boolean action(Event evt, Object arg) {
if (evt.target instanceof Button) {
if ("View Simulation NOW".equals(arg)) {
viewStack.transferDataS();
labelCard("Interface for Viewing Your Simulation Model",
"Save Output”,"Define/ Revise Model");
((CardLayout)viewsStack.getLayout()).show(viewStack,"Simulator");
}
else if("Define/ Revise Model".equals(arg)) {
labelCard("Entry Form for Creating Your Simulation Model",
"Save Model","View Simulation NOW");
((CardLayout)viewStack.getLayout()).show(viewStack,"Entry Form");
}
else if("Save Model".equals(arg)) {
/* add functionality for saving model */
}
else if("Save Output”.equals(arg)) {
/* add functionality for saving output */

¥

96

81
82
83
84
85

return true;

¥

return false;

}
} /lendof MainApplet class

97

O© 0 N O Ol WD

B W WWWWWWWWWPNDNDNMNDNMNDNNMNNMNNMNDNNNNNRPRPRPEPRPERPERPERPERRPREPR
QO OWoONO U WNPFPOOOLO~NOOPRWNPFPOOONOOILEAWDNPEO

package netSim;
import java.util.*;

/**
M odel Par ser extends StringT okenizer
Parses textual information from the entry panel into forms compatible
with the databases.

*/

class ModelParser extends StringTokenizer {
String rule;
String delimiter;
String new_value = null;
int num_tokens = countTokens();

public ModelParser(String rl) { //conditions & rules
super(rl, " ", false);
rule=rl;

¥

public ModelParser(String rl, String delim) { //rnd distr. & state vars
super(rl, delim, false);
rule =rl;
delimiter=delim;

¥

protected String[] decipherVars() {
inti=0;
String[] splitVar = new String[(this.countTokens())*2];
while (this.hasMoreTokens()) {
String thisVar = nextToken();
ModelParser varMP = new ModelParser(thisVar, "=");
int num_tokens = varMP.countTokens();
if (num_tokens-->0) {
splitVar[i] = varMP.nextToken();
splitVar[i+1] = varMP.nextToken();
I =i+2;
}
}
return(splitVar);

98

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

¥

protected int[] decipherRndParam() {

¥

int[] parameter_values = new int[2];
int p0 =0,p1=0;
while (this.hasMoreTokens()) {
if (num_tokens == 2) {
p0 = Integer.parselnt(nextToken());
pl = Integer.parselnt(nextToken());
}
else /*(num_tokens=1)*/ {
p0 = Integer.parselnt(nextToken());
pl=0;
}
}

parameter_values[0] = p0;
parameter_values[1] = p1,;
return(parameter_values);

protected boolean decipherCondition(MyHashtable ht) {

MyHashtable actualDataValues=ht;
boolean chk = false;

char ch ="0"
int testValue = 0;
try {

new_value = nextToken();
} catch (NoSuchElementException nseel) {};
/[db("this Element is --> "+new_value); //debug

if (new_value.equals(true™) | (new_value.equals("TRUE"))) {

chk = true;

¥

else {

for (Enumeration e = actualDataValues.elements(),
k = actualDataValues.keys(); e.hasMoreElements();){
Integer elem= (Integer) e.nextElement();

String key = (String) k.nextElement();

/ldb("key: "+key+" elem: "+elem); //debug

if (key.equals(new_value)) {
num_tokens = num_tokens-1;

99

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

¥

¥

}
return(chk);

try {
ch = nextToken().charAt(0);

} catch (NoSuchElementException nsee2) {};
/ldb("'the character is " + ch); //debug
num_tokens = num_tokens-1,;
try {

testValue = Integer.parselnt(nextToken());
} catch (NoSuchElementException nsee3) {};
/[db("the testValue is " + testValue); //debug
switch (ch) {
case '='": {chk = tryEqual(elem, testValue); break;}
case >': {chk = tryGreater(elem, testValue); break;}
case '<': {chk = tryLess(elem, testVValue); break;}
case 'I': {chk = tryNot(elem, testValue); break;}
}
break;

private boolean tryEqual(Integer isNow, int compareTo) {

¥

boolean ans = false;

if (isNow.intValue() == compareTo) {
/ldb("was equal??: "+isNow.intValue()+" = "+compareTo); //debug

ans = true;

¥

return(ans);

private boolean tryGreater(Integer isNow, int compareTo) {

boolean ans = false;

if (isNow.intValue() > compareTo) {
/ldb("was greater??: "+isNow.intValue()+" > "+compareTo); //debug

ans = true;

¥

return(ans);

100

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

private boolean tryLess(Integer isNow, int compareTo) {
boolean ans = false;
if (isNow.intValue() < compareTo) {
/ldb("was less??: "+isNow.intValue()+" < "+compareTo); //debug
ans = true;

¥

return(ans);

¥

private boolean tryNot(Integer isNow, int compareTo) {
boolean ans = false;
if (isNow.intValue() !'= compareTo) {
/[db(""was not equal??: "+isNow.intValue()+" '="+compareTo); //debug
ans = true;

¥

return(ans);

¥

protected Integer decipherRule(Integer old, Integer intTime,
MyHashtable vd, MyVector W) {
Integer orgValue=old,
Integer calculatedValue = null;
int increment = 0;
String stringlndex = null;
int intindex = 0;
while (this.hasMoreTokens()) {
new_value = nextToken();
/[db("this Element is --> "+new_value); //debug
/[db(""number of tokens now --> "+num_tokens); //debug
if ((new_value.equals("+")) & (num_tokens >1)) {
num_tokens = num_tokens-1,;
String next = (String) nextToken();
/ldb("number of tokens after '+' --> "+num_tokens); //debug
try{ increment = Integer.parselnt(next); //treat as int
//db(" add increment --> "+increment); //debug
calculatedValue=increaseVar(orgValue,increment);
orgValue = calculatedValue;
} catch (NumberFormatException nfe) {
if (next.equals(*'clk™)) {
increment = intTime.intValue();

101

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

calculatedValue=increaseVar(orgValue,increment);
orgValue = calculatedValue;

}
else if (next.startsWith("WI[")) {

/Iparse out into vector
stringIndex = next.substring(2,(next.length() -1));
for (Enumeration e3 = vd.elements(), k3 = vd.keys();
e3.hasMoreElements();){
Integer elem3= (Integer) e3.nextElement();
String key3 = (String) k3.nextElement();
if (key3.equals(stringindex)) {
intindex = elem3.intValue();
break;

¥
¥

Integer integerindex =(Integer)W.elementAt(intindex);
increment = integerindex.intValue();
calculatedValue=increaseVar(orgValue,increment);
orgValue = calculatedValue;
}else {
for (Enumeration e = vd.elements(), k = vd.keys();
e.hasMoreElements();){
Integer elem= (Integer) e.nextElement();
String key = (String) k.nextElement();
if (key.equals(next)) {
increment = elem.intValue();
calculatedValue=increaseVar(orgValue,increment);
orgValue = calculatedValue;
break;

¥

D -

Ise if ((new_value.equals("-")) & (hum_tokens >1)) {
num_tokens = num_tokens-1,;
String next = (String) nextToken();
/[db(""number of tokens after -' --> "+num_tokens); //debug
try{ increment = O-Integer.parselnt(next);

102

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

/[db("" minus increment --> "+increment); //debug
calculatedValue=increaseVar(orgValue,increment);
} catch (NumberFormatException nfe) {
if (next.equals(clk™)) {
increment = 0-intTime.intValue();
calculatedValue=increaseVar(orgValue,increment);
orgValue = calculatedValue;
}
else if (next.startsWith("WI[")) {
/Iparse out into vector
stringIndex = next.substring(2,(next.length() -1));
for (Enumeration e3 = vd.elements(), k3 = vd.keys();
e3.hasMoreElements();){
Integer elem3= (Integer) e3.nextElement();
String key3 = (String) k3.nextElement();
if (key3.equals(stringIndex)) {
intindex = elem3.intValue();
break;

¥
¥

Integer integerindex =(Integer)W.elementAt(intindex);
increment = O0-(integerindex.intValue());
calculatedValue=increaseVar(orgValue,increment);
orgValue = calculatedValue;

for (Enumeration e = vd.elements(), k = vd.keys();

e.hasMoreElements();){

Integer elem= (Integer) e.nextElement();

String key = (String) k.nextElement();

if (key.equals(next)) {

increment = 0-elem.intValue();
calculatedValue=increaseVar(orgValue,increment);
orgValue = calculatedValue;
break;

D o

Ise if (new_value.equals(“clk™)) {

103

241 num_tokens = num_tokens-1,;

242 /[db("number of tokens after 'clk’ --> "+num_tokens);
243 /[System.out.print(" the time now --> "+increment); //debug
244 calculatedValue=intTime;

245 orgValue = intTime;

246 }

247 else { //assume its an integer

248 /ldb(*" int? --> "+new_value); //debug

249 /[db("number of tokens with this int --> "+num_tokens);
250 increment =Integer.parselnt(new_value);

251 calculatedValue=replaceVar(increment);

252 }

253 }

254 return(calculatedValue);

255 }

256

257 private Integer increaseVar(Integer isNow, int howMuch) {

258 int v = isNow.intValue();

259 int d = howMuch;

260 Integer update = new Integer(v + d);

261 /ldb("increaseVar:"+"v "+v+" d "+d+" update "+update); //debug
262 return(update);

263 }

264

265 private Integer replaceVar(int howMuch) {

266 Integer update = new Integer(howMuch);

267 return(update);

268 }

269

270 public void db(String toDebug) {

271 System.out.printin(toDebug);

272 }

273 } /lendof ModelParser class

104

©O© oo N O g~ W N

WNDNPNDNMDNDNNMNNMNDNNNDNNNMNNRPRPRPRPRPERPRPRPERRRERE
QO OWOONOO U WNPEFPOOOLONO O WDNPEFO

package netSim;
import java.util.Hashtable;
import java.util. Enumeration;

/**

MyHashtable extends Hashtable

Extends java.util.Hashtable, purely for debugging purposes.
*/

class MyHashtable extends Hashtable {
public MyHashtable(int size) {
super(size); /I number of items per MyHashtable

¥

public void listAll() {
System.out.printin("Key ; Element™);
for (Enumeration e = elements(), k = keys(); e.hasMoreElements();) {
System.out.printin(k.nextElement() + " ; "+ e.nextElement());
}
}

public void listAlE() {
for (Enumeration e = elements(), k = keys(); e.hasMoreElements();) {
Object[] ky = (Object[]) k.nextElement();
Object el = (Object) e.nextElement();
System.out.print(ky[0]+" "+ky[1]+ ":");
System.out.printin(el.toString());
}
}

} //lendof MyHashtable class

105

©O© oo N O g~ W N

W WWWWWWPNDNDNMNDNMNDNNMNNMNNMNDNNNNMNNRPRPRPRPRPERPERPERPERRPREPRE
OO~ WNPFPOOOO~NOOPRWNPOOONOOULEAWDNPEO

package netSim;
import java.util.Vector;
import java.util. Enumeration;

/**

MyVector extends Vector

Extends java.util.Vector, purely for debugging purposes.
*/

class MyVector extends Vector {
public MyVector(int size) {
super(size); // number of items per MyVector

¥

public void listAll() {
for (Enumeration e = elements(); e.hasMoreElements();) {
Object[] el = (Object[]) e.nextElement();
System.out.print(this.indexOf(el) +": ");
for (int1=0; i<el.length; i++) {

System.out.print(el[i]+",);

}
System.out.printin(* ");

¥

public void listAlIC() {
for (Enumeration e = elements(); e.hasMoreElements();) {
char[] el = (char[]) e.nextElement();
System.out.print(this.indexOf(el) +": ");
for (inti=0; i<el.length; i++) {
System.out.print(el[i]+",);

}
System.out.printin(" ");
}
}
} //lendof MyVector class

106

O© 0 N O Ol WD

B W WWWWWWWWWPNDNDNMNDNMNDNNMNNMNNMNDNNNNNRPRPRPEPRPERPERPERPERRPREPR
QO OWoONO U WNPFPOOOLO~NOOPRWNPFPOOONOOILEAWDNPEO

package netSim;
import java.util.Random;

/**
RndGenerator extends Random
Determines the random number stream for the current simulation run and
calculates random variates from that stream as needed.

*/

class RndGenerator extends Random {
double aRND,aLnNum;
//double JaLnNum = 0, JthisRndNum = 0; //debugging vars
inti;
long thisSeed = 0;

public RndGenerator() {
super();

¥

public RndGenerator(long theSeed) {
super(theSeed);
thisSeed = theSeed,

¥

protected Double calcRndNum(String description) {
double thisRndNum=0;
int first =0, second=0;
if (('description.equals(*""))&('description.equals(*0™))) {
String p = description.substring(4,(description.length() -1));
ModelParser rg= new ModelParser(p, *,");
int[] parameters = rg.decipherRndParam();
first = parameters[0];
second = parameters[1];
/I use sigma numbers or not
if (thisSeed==-2) {
//aRND = sigmaRndNum();
aLnNum = sigmaNaturalLogOfRndNum();
}
else {
aRND = this.nextDouble();

107

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

aLnNum = Math.log(aRND);

}

if (description.startsWith("exp")) {
thisRndNum = -(first)*(aLnNum);
//[JaLnNum = Math.log(aRND); //debugging
/1JthisRndNum = -(first)*(JaLnNum); //debugging
/[System.out.printin("aLnNum:"+aLnNum+"
[l thisRndNum:"+thisRndNum);
/ISystem.out.print("Java calculated:

JaLnNum:"+JaLnNum);

/[System.out.printIn(" & this RNV:"+JthisRndNum);

}

else if (description.startsWith(""uni")) {
thisRndNum = (aRND*(second-first))+first;

}

else if (description.startsWith("sta™)) {
thisRndNum =first;

}

}
Double thisDbIRndNum = new Double(thisRndNum);

return(thisDbIRndNum);
}

private double sigmaRndNum() {

//double[] list={0.096,0.754,0.236,0.246, 0.740, 0.583, 0.095, 0.336,

1 0.669, 0.326, 0.017, 0.831, 0.083, 0.034};

double[] list=
{96671.312,754759.125,236939.765,246429.515,740916.5,583869.5,
95099.476,336982.75,669204.875,326650.656,17661.154,831027.812,
83955.187,34709.234,358116.062,856788.125,37192.121,87996.078,
950118.125,635317.812,786756.5,16543.078,39492.566,751582.875,
853431.562,624260.75,950330.625,207022.312,424055.812,106222.578,
282898.218,670186.25,819377.75,281673.312,83438.398,349161.156,
351590.531,182322.468,293786.093,663260.812,424314.937,461135.312,
301270.375,451273.718,557435.312,816026.187,952038,902452.187,
513509.437,553682.625,743496.312,942761.375,989804.812,649291.437,
641024.437,696939.5,462714.968,850451.5,538471.5,90573.867,
274996.562,866795.875,238334.906,694889.25,3367.645,600012.875,
416953.218,732717.562,784015.5,948577.062,734034.812,923812.375,

108

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

514397.156,473043.343,439806.906,834829.812,984389.687,637366.812};
double nextRnd = (list[i]);
=i+l
return(nextRnd);

¥

private double sigmaNaturalLogOfRndNum() {

//double[] list={-2.336,-0.281,-1.439,-1.4,-0.299,-0.538,-2.352,-1.087,

1 -0.401,-1.118,-4.036,-0.185,-2.477,-3.36};

double[] list=
{-2336438.8,-281356.59,-1439949.4,-1400679.3,-299867.38,-538077.75,
-2352831.8,-1087723.5,-401665,-1118864,-4036388,-185092.02,
-2477472,-3360749.5,-1026898.1,-154564.66,-3291658.5,-2430463,
-51168.96,-453629.94,-239836.45,-4101787.5,-3231642.8,-285573.81,
-158489.89,-471187.19,-50945.335,-1574928.8,-857890.19,-2242218.5,
-1262668.1,-400199.66,-199210.11,-1267007.4,-2483646.8,-1052221.8,
-1045287.9,-1701978.4,-1224903.4,-410586.97,-857279.31,-774063.69,
-1199747.3,-795681.25,-584408.75,-203308.81,-49150.339,-102639.59,
-666486.88,-591163.63,-296391.5,-58942.089,-10247.523,-431873.59,
-444687.75,-361056.63,-770644,-161987.86,-619020.69,-2401589.8,
-1290996.8,-142951.73,-1434078.5,-364002.78,-5693541.5,-510804.13,
-874781.25,-310994.94,-243326.52,-52792.261,-309198.78,-79246.265,
-664759.63,-748568.25,-821419.5,-180527.41,-15733.461,-450409.91};

double nextLnNum = (list[i]);

=i+l

return(nextLnNum);

¥

Y/ end of RndGenerator class

109

©O© oo N O g~ W N

B W WWWWWWWWWPNDNDNMNDNMNDNNMNNMNNMNDNNNNNRPRPRPEPRPERPERPERPERRPREPR
QO OWoONO U WNPFPOOOLO~NOOPRWNPFPOOONOOILEAWDNPEO

package netSim;
import java.util.*;
import java.awt.*;

/**
Viewer Panel extends Panel implements Runnable
This file contains three classes: ViewerPanel, SchedThread, AnimationCanvas.
ViewerPanel defines and draws the GUI for viewing and interacting with the
simulation model.

*/

public class ViewerPanel extends Panel implements Runnable {
boolean wasPaused = false;
DataDictionary DD = new DataDictionary();
Thread viewerThread;
SchedThread simThread;
String[] startNode;

Panel pn = new Panel(); /[North

Panel pnl = new Panel(); /INorth -left

Button playpauseButton = new Button("PLAY");

Button stopButton = new Button("STOP");

Choice ¢ = new Choice(); /INorth-middle

Panel pn2 = new Panel(); /INorth - right

TextField sd = new TextField(7); //seed field

TextField rl = new TextField(7); //runlength field

Panel pc = new Panel(); /[Center

AnimationCanvas ccl = new AnimationCanvas(DD,this,550,130);
/[Center top - holds animation

Panel pc2 = new Panel(); //Center bottom - holds note

Label note = new Label("",Label.LEFT);

TextAreat = new TextArea(6,50); //***South -- data output

MyHashtable initEvent;

public ViewerPanel() {
t = new TextArea(6,50);

¥

protected void putData(MyHashtable htEV, MyHashtable htl, MyHashtable
110

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

ht2,

ht6,

MyHashtable ht3, MyHashtable ht4, MyHashtable ht5, MyHashtable

MyHashtable htED, MyVector v1, MyVector v2, MyVector v3,
MyVector v4, MyVector vb, MyVector v6){
DD.putData(htEV, htl, ht2, ht3, ht4, ht5, ht6, htED, v1,v2,v3,v4,v5,v6);
}

protected void initModel(String[] st, MyHashtable ie) {
startNode=st;
initEvent=ie;
DD.initData(initEvent);

}

public void start() {
if (viewerThread == null) {
viewerThread = new Thread(this);
viewerThread.start();

¥

public void run() {
setBackground((Color.lightGray).darker());
insets();
setLayout(new BorderLayout(0,10));
resize(570,400);

[*north panel*/
pn.setBackground(Color.lightGray);
pn.setLayout(new GridLayout(1,2,5,5));
pn.resize(this.size().width, 40);
c.addIitem("Animation & Data");
c.addItem("Animation only");
c.addltem("Data Output only™);
pnl.setLayout(new FlowLayout(FlowLayout. CENTER,5,5));
pnl.add(playpauseButton);
pnl.add(stopButton);
pnl.add(c);
sd.setBackground(Color.white);
setSD();

111

81 rl.setBackground(Color.white);

82 setRL();
83 pn2.setLayout(new GridLayout(2,2));
84 pn2.add(new Label("random number seed:"));
85 pn2.add(sd);
86 pn2.add(new Label(*model run-length:™));
87 pn2.add(rl);
88 pn.add(pnl);
89 pn.add(pn2);
90 add("North", pn);
91
92 [*south panel*/
93 t.setBackground(Color.lightGray);
94 t.appendText("Data output:");
95 add("South", t);
96
97 [*center panel*/
98 pc.setLayout(new BorderLayout(0,10));
99 note.resize(this.size().width,20);
100 note.setAlignment(Label . LEFT);
101 pc2.setBackground(Color.white);
102 pc2.setForeground(Color.magenta);
103 pc2.resize(this.size().width,20);
104 pc2.add(note);
105 pc.add("South",pc2);
106 ccl.setBackground(Color.white);
107 ccl.resize(550,130); // sets canvas size
108 pc.add("Center",ccl);
109 add("Center", pc);
110 stop();
111 }
112
113 public Insets insets() {
114 return new Insets(10,10,10,10);
115 }
116
117 public boolean action(Event evt,Object arg){
118 if ((evt.target instanceof Button) && ("STOP".equals(arg))){
119 stopB();
120 return true;

112

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

¥

protected void stopN(){

¥

private void stopB(){

restart.");

¥

private void pauseB() {
if (simThread.isAlive()) {

resume.");

¥

else if ((evt.target instanceof Button) && ("PAUSE".equals(arg))){

¥

pauseB();
return true;

else if ((evt.target instanceof Button) && ("PLAY".equals(arg))){

¥

playB();
return true;

return false;

/lcalled from SchedThread to end run
note.resize(this.size().width,20);
note.setText("SIMULATION FINISHED");
simThread.stop();

simThread = null;

/luser stop sim by button

if (simThread !'=null) {

playpauseButton.setLabel("PLAY™");
note.resize(this.size().width,20);
note.setText("SIMULATION STOPPED: press PLAY to

simThread.stop();
simThread = null;
t.appendText("\n ** Simulation run aborted. ** \n");

/luser pause by button
/[simulation is running
note.resize(this.size().width,20);
note.setText("SIMULATION PAUSED: press PLAY to

playpauseButton.setLabel("PLAY");

simThread.suspend(); /Ipause sim until play button
wasPaused = true;

113

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

¥

private void playB() { /luser play,start by button
note.resize(this.size().width,20);
note.setText("SIMULATION IN PROGRESS");
playpauseButton.setLabel("PAUSE");
if (simThread==null) { /Isim was stopped
long valueSD = setSD();
double valueRL = setRL();
simThread = new SchedThread(DD,this,valueSD,valueRL);
simThread.start();

}

else if (wasPaused){ //[sim was paused
playpauseButton.setLabel("PAUSE");
wasPaused=false;
simThread.resume();

}

¥

private long setSD() {
long newSd;
newSd = readSeed(sd.getText());
Long newSeed =new Long(newSd);
sd.setText(newSeed.toString());
return(newSd);

¥

private double setRL() {
double newRL;
newRL=readRunLength(rl.getText());
Double newRun =new Double(newRL);
rl.setText(newRun.toString());
return(newRL);

¥

private long readSeed(String seedChangeTo) {
long theSeed = 0;
if ((seedChangeTo.equals(""))|(seedChangeTo == null)) {
theSeed = System.currentTimeMillis();

¥

114

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

else {

try {
theSeed = (Long.valueOf(seedChangeTo)).longValue();
}
catch (NumberFormatException e) {};
}
return(theSeed);

¥

private double readRunLength(String lengthChangeTo) {
double runLength = 0;
if ((lengthChangeTo.equals(""))|(lengthChangeTo == null)) {
runLength = 1440;
}

else {

try {
runLength = (Double.valueOf(lengthChangeTo)).doubleValue();

¥

catch (NumberFormatException e) {};

¥

return(runLength);

¥

public void stop() {
if (viewerThread != null) {
viewerThread.stop();
viewerThread = null;

¥
¥

} /lendof ViewerPanel class

115

232
233
234
235
236
237
238
239
240
241
242
243

244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

class SchedThread extends Thread {
double runLength;

double time;

Double nextTime = null;
String[] currentEvent;
Object[] nextListltem;
MyHashtable schedEvent;

/**

*/

DataDictionary processDD;
ViewerPanel viewerVP;

SchedThread extends Thread

Monitors the simulation clock and future event list, determines the type of
output desired by the user, notifies the database of the current random
number seed, and signals the database to process the next event. This class
manages the simulation run until the clock exceeds the current run-length,
the future events list is empty, or the simulation is stopped by the user.

SchedThread must be contained in same text file as ViewerPanel.

public SchedThread(DataDictionary data, ViewerPanel target,

¥

long sd, double rl) {
super();
processDD=data;
viewerVP=target;
time = 0;
runLength = rl;
processDD.setUp(sd, viewerVP.initEvent);
currentEvent= target.startNode; //set init node
setPriority(Thread.MIN_PRIORITY);

public void run(){

if ((viewerVP.c.getSelectedIndex()==0)
|(viewerVP.c.getSelectedIndex()==2)){

/I(animation&data output)|(data output))

viewerVP.t.appendText("\n time; event; Queue Length; Throughput;");

viewerVP.t.appendText(" Waiting Time; Server Busy Time"); //outputdata

116

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

quick

/ISystem.out.printIin("time; event; Q; CO; WT; TE"); //output

}

while (time<=runLength) {
/[System.out.print("currentEvent ");
/[System.out.printIn(currentEvent[0]+", "+currentEvent[1]);
schedEvent = (MyHashtable)

processDD.events.get(currentEvent);

//System.out.printIn(""schedEvent ");
IIschedEvent.listAll();
processDD.updateEventVars(schedEvent, time);
processDD.updateEventSch(currentEvent, time);
nextListltem = processDD.adjustEventSch();
if ((viewerVP.c.getSelectedIndex()==0)
|(viewerVP.c.getSelectedIndex()==2)){
//(animation&data output)|(data output))
outputData();
}
if ((viewerVP.c.getSelectedIndex()==0)
|(viewerVP.c.getSelectedIndex()==1)){
/[(animation&data output)|(animation))
viewerVP.ccl.repaint(currentEvent, nextListltem);
try { Thread.sleep(910); }
catch (InterruptedException e) { };
}
currentEvent = (String[]) nextListltem[2];
nextTime = (Double) nextListltem|[0];
time = nextTime.doubleValue();
[[System.out.printIn("time: "+time);//debug
/ISystem.out.print("nextListltem: ");
/[System.out.printIn(nextListitem[0]+ ",

"+nextListltem[1]+

/1", {"+currentEvent[0]+", "+currentEvent[1]+"}");

¥

viewerVP.t.appendText("\n Simulation run has finished.");
ViewerVP_t.appendText("\n ::::::::::::::::::::::::::::::");
viewerVP.playpauseButton.setLabel("PLAY™");

viewerVP.stopN();

117

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

this.stop();

} //endof run

public void outputData() {

¥

Integer VI1= (Integer) processDD.varData.get("Q");

double v1=VI1.doubleValue()/10000;

Integer VI12= (Integer) processDD.varData.get("CQO");

double v2=VI2.doubleValue()/10000;

Integer VI13= (Integer) processDD.varData.get("WT");

double v3=VI3.doubleValue()/10000;

Integer V14= (Integer) processDD.varData.get("TE");

double v4=VI14.doubleValue()/10000;
viewerVP.t.appendText("\n "+time +"; "+currentEvent[1]+"; ");
viewerVP.t.appendText(vli+"; ™);
viewerVP.t.appendText(v2+"; ");
viewerVP.t.appendText(v3+";);
viewerVP.t.appendText(v4+" ");

/ISystem.out.printIn(time +"; "+currentEvent[1]+"; "
/[+processDD.varData.get("Q")+"; "+processDD.varData.get("CO")+"; "
/[+processDD.varData.get("WT™)+"; "+processDD.varData.get("TE"));
[IprocessDD.W.listAll();

}H/endof SchedThread class

118

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

356

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

class AnimationCanvas extends Canvas{

/**

*/

int activelndex;

int nextindex;

DataDictionary processDD;

MyVector eVectList = new MyVector(10);
ViewerPanel viewerVP;

static int xinit = 20, y1 = 35; /linit point for nodes

static int xwidth = 40, ywidth = 40; //size of nodes

charl[] elabel; /Inode labels
int x1,x2;

int xlabel, ylabel;
int[] Exes, Whys;
int Pts;

Image offscreenimg;

Graphics offscreenG;

Font f = new Font("TimesRoman",Font.PLAIN,10);
Dimension imageSize;

AnimationCanvas extends Canvas

Draws the event graph of the simulation model onto the viewing panel.
Animates the event graph by periodically repainting sections as requested
by the simulation thread, an instance of SchedThread.

AnimationCanvas must be contained in same text file as ViewerPanel.

public AnimationCanvas(DataDictionary data, ViewerPanel target,
int width,int height) {
processDD = data;
this.viewerVP = target;
imageSize = new Dimension(width,height);

¥

public void paint(Graphics g) {
offscreenlmg = createlmage(imageSize.width, imageSize.height);
offscreenG = offscreenimg.getGraphics();
offscreenG.setFont(f);

119

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

eVectList.removeAllElements();

makeNodeL.ist();

/ISystem.out.printin(*'ready to draw nodes"); //debug

for (int i=0; i < eVectList.size();i++) {
locateNode(i);
offscreenG.setColor(Color.yellow);
drawNode(Q);

}

//System.out.printIn("starting edges™); //debug

for (Enumeration e2 = processDD.edges.elements(),

k2 = processDD.edges.keys(); e2.hasMoreElements();){

MyVector edgeList= (MyVector)e2.nextElement();
String[] thisKey2 = (String[])k2.nextElement();
int edgelndexFrom = Integer.parselnt(thisKey2[0]);
char[] edgeNameFrom = thisKey2[1].toCharArray();
//System.out.printIn(“edgeFirstName "+edgeNameFrom[0]+
I +edgeNameFrom[1]+" "+edgeNameFrom[2]);
for (int dest = 0; dest<edgeL.ist.size(); dest = dest+4) {
String[] thisElem = (String[])edgeList.elementAt(dest);
int edgelndexTo = Integer.parselnt(thisElem[0]);
for (Enumeration e3 = eVectList.elements();
e3.hasMoreElements();) {
char[] currentNode= (char[]) e3.nextElement();

if (edgelndexFrom == eVectList.indexOf(currentNode)) {
whichEdge(edgelndexTo, eVectList.indexOf(currentNode), edgelndexFrom);

offscreenG.setColor(Color.yellow);
drawArrow(g);
break;

¥
¥

this.viewerVP.ccl.getGraphics().drawlmage(offscreenimg,0,0,this);

} //end of paint

public void repaint(String[] event, Object[] item) {

activelndex = Integer.parselnt(event[0]);
String[] nextNode = (String[]) item[2];
nextindex = Integer.parselnt(nextNode[0]);
repaint(0);

120

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

¥

public void update(Graphics g) {
/ISystem.out.printIn(*'start update method™);
for (Enumeration e3 = eVectList.elements(); e3.hasMoreElements();) {
char[] listNode= (char[]) e3.nextElement();
int listindex = eVectList.indexOf(listNode);
//System.out.printin("listindex "+listIndex);
if (activelndex == listIndex) {
[*redraw node*/
locateNode(activelndex);
offscreenG.setColor(Color.cyan);
drawNode(Q);
this.viewerVP.ccl.getGraphics().drawlmage(offscreenimg,0,0,this);
[*pause before repainting™/
try { Thread.sleep(220); }
catch (InterruptedException iel) { };
offscreenG.setColor(Color.yellow);
drawNode(Q);
this.viewerVP.ccl.getGraphics().drawlmage(offscreenimg,0,0,this);
/*check edges*/
for (Enumeration e2 = processDD.edges.elements(),
k2 = processDD.edges.keys();
e2.hasMoreElements();){
MyVector edgeList= (MyVector) e2.nextElement();
String[] thisKey2 = (String[])k2.nextElement();
int edgelndexFrom = Integer.parselnt(thisKey2[0]);
if (edgelndexFrom == activelndex) {

for (int dest = 0; dest<edgeL.ist.size();dest =dest+4) {

String[] thisElem = (String[])edgeL.ist.elementAt(dest);
int edgelndexTo = Integer.parselnt(thisElem[0]);
if (edgelndexTo == nextIndex) {

[*redraw edges*/
whichEdge(nextindex, listindex, activelndex);
offscreenG.setColor(Color.cyan);
drawArrow(g);
this.viewerVP.ccl.getGraphics().drawlmage(offscreenimg,0,0,this);
[*pause before repainting™/
try { Thread.sleep(450); }

121

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

catch (InterruptedException ie2) { };
offscreenG.setColor(Color.yellow);

drawArrow(g);
this.viewerVP.ccl.getGraphics().drawlmage(offscreenimg,0,0,this);
break;
}
}
break;
}
}
break;

¥
¥

/Ipause before repainting

try { Thread.sleep(220); }

catch (InterruptedException ie3) { };
} //end of update

private void whichEdge(int n, int I, int a) {

int next =n;

int list =1;

int active = a;

if (next < list) {
//System.out.printIn("call backwardEdge™);
backwardEdge(active);

}

else if (next == list) {
//System.out.printin(“call curvedEdge");
curvedEdge(active);

}

else if (next > list) {
//System.out.printin(*call forwardEdge™);
forwardEdge(active);

¥

private void makeNodeL.ist() {
char[] eCharList = null;
String[] thisKey = null;
for (int j=0; j<processDD.events.size(); j++) {

122

495 for (Enumeration k = processDD.events.keys();

496 k.hasMoreElements();){

497 thisKey = (String[])k.nextElement();

498 if (Integer.parselnt(thisKey[0]) ==)) {
499 eCharList = (thisKey[1]).toCharArray();
500 eVectList.addElement(eCharList);
501 break;

502 }

503 }

504 }

505 /ISystem.out.printin("eVectList: "); //debug

506 IleVectList.listAlIC(); //debug

507 }

508

509 private void locateNode(int nodelndex) {

510 elabel = (char[]) eVectList.elementAt(nodelndex);

511 x1 = xinit+ nodelndex*90;

512 xlabel=x1+6;

513 ylabel=y1+24;

514 }

515

516 private void drawNode(Graphics g) {

517 offscreenG.fillOval(x1,y1,xwidth,ywidth);

518 offscreenG.setColor(Color.black);

519 offscreenG.drawOval(x1,y1,xwidth,ywidth);

520 offscreenG.drawChars(elabel,0,elabel.length,xlabel,ylabel);
521 }

522

523 private void drawArrow(Graphics g) {

524 offscreenG.fillPolygon(Exes,Whys,Pts);

525 offscreenG.setColor(Color.black);

526 offscreenG.drawPolygon(Exes,Whys,Pts);

527 }

528

529 private void backwardEdge(int startindex) {

530 x2=xinit+ startindex*90;

531 x1=x2 - 90;

532 int[] exes = {x2,x1+47 x1+47 x1+40,x1+47 x1+47 x2};
533 int[] whys = {y1+16,y1+16,y1+18,y1+15,y1+12,y1+14,y1+14},
534 int pts = exes.length;

123

535 Exes = exes;

536 Whys = whys;

537 Pts = pts;

538 }

539

540 private void curvedEdge(int startindex) {

541 x1=xinit+ startindex*90;

542 int[] exes = {x1+31,x1+31,x1+7,x1+7,x1+9,x1+6,x1+3,x1+5,x1+5,x1+33,x1+33};
543 int[] whys = {y1+4,y1-9,y1-9,y1-1,y1-1,y1+5y1-1,y1-1y1-11,y1-11,y1+6};
544 int pts = exes.length;

945 Exes = exes;

546 Whys = whys;

547 Pts = pts;

548 }

549

550 private void forwardEdge(int startindex) {

551 x1=xinit+ startindex*90;

552 x2=x1 + 90;

553 int[] exes = {x1+40,x2-7,x2-7,x2,x2-7,X2-7,x1+40};

554 int[] whys = {y1+21,y1+21,y1+23,y1+20,y1+17,y1+19,y1+19};
555 int pts = exes.length;

556 EXxes = exes;

557 Whys = whys;

558 Pts = pts;

559 }

560 }lendof AnimationCanvas class

124

Appendix I: Netsim User’'s Manual

CONTENTS:

1. Use Requirements
Interfaces
Saving
Creating a Model
a. Events/ Variables
b. Edges
5. Viewing a Model

Mo

1. Use Requirements:
Netsim runs as a Java applet on any Java-compatible WWW browser or applet viewer.

The Netsim simulation package supports discrete-event simulation using event-graph modeling.
While knowledge of simulation, particularly including the event graph approach, is useful in
designing a model in Netsim, no knowledge of Java or simulation modeling is required to enter or
modify the model.

To use Netsim one does need working knowledge of WWW browsers and must follow the
formatting requirements stated in this user's manual.

2. Interfaces
View the simulation by clicking on the lower right button of the screen, "View Simulation NOW."

View the model parameters by clicking on the lower right button of the screen, "Define/ Revise
Model."

3. Saving

The save buttons on the lower left side of the screen are currently disabled. Ideally, they would
allow the user to name and save either the model specifications or the data output into a directory
on the local computer.

125

4. Creating a Model

Switch to the entry form, if necessary, by clicking on the lower right button of the screen,
"Define/ Revise Model."

All names and variables

are case-sensitive,

begin with a letter,

do not contain spaces,

appear in model in order listed.

4a. Events & Variables

Events/ Nodes
Netsim currently allows up to six events.
Enter the name of each event into the "event" text field on the entry form.

The events will appear on the animated model from left to right in the order they appear on the
entry form.

Variables/ Attributes
Each event may contain as many variables and variable rules as desired.

Enter the variable rules for each event in the "state vars" text field following the associated event
text field on the entry form.

There are 2 reserved variables:

clk, the current simulation time.

WI[], an array containing clk times and indexed by a given variable.
All other variables are integer-valued.

Separate variable name and rule by = .

Separate equations by ;.

When used, place W[] last in the equation.

Note:

Leave no spaces between equation sections or equations.

Within a variable rule leave one space between the operation and the value, as shown
below.

126

The state variables will be processed in the order listed. This may make a difference in the results
of a model if one variable references another during the same event.

Variable rules may do the following: Example:
Change the existing value by an integer, Q=1
or the clock time. T=clk
Increase or decrease the existing value by | an integer, Q=+1
another variable, Q=-TS
or the clock value. T=+clk
Create an array, W[] of clock times indexed by another variable. W[Q]=clk
Combine any of these operations. TE=clk - TS
T=+ clk - W[Q])
4b. Edges
Location

Edges may be created between any two consecutive events, or an edge may be self-scheduling
(i.e., from an event back to the same event). Netsim currently allows one edge in each direction
between two different events, with up to one condition on each edge.

Type the name of the event where the edge begins in the "from™ text box.
Type the name of the event where the edge ends in the "to™ text box.

Note:
These names are case-sensitive and must match the event names defined in the event section of the
entry form or the edge will not appear in the model.

Condition

Place basic conditions on the edges by using the format shown in the table below.

The variable name may be any variable defined as a state variable in the upper section
of the entry form.

The integer value may be any integer.

The operator is <, >, or =.

The reserved word "TRUE" typed without the quotations makes that edge
unconditional.

Note:

One space separates the operator from each of the other terms.

127

var.name | <space> | operator | <space> [integer value
Examples: Q < 1
Q > -1
Q = 0
TRUE
Time Delay

Netsim currently supports three types of time delays, as shown below.

Type the appropriate function in the “time delay" text box.

Parameters of the function are
integer-valued,
separated by commas,
enclosed by parentheses.
Note:
These time delay functions are case-sensitive and contain no spaces.

Time Delay: Function: | Example:

constant increases sta(a) sta(5)

uniform random variates uni(a,b) uni(3,5)

exponential random variates exp(a) exp(5)
Priority

Type the preferred priority, integers 1 to 9, in the "priority" text box.
1 = lowest priority
5 = default setting
9 = highest priority

5. Viewing a Model
Switch to the output interface, if necessary, by clicking on the lower right button of the screen,

128

"View Simulation NOW."

To set the RNG seed:
Type any integer into the "random number seed" text box.

To set the simulation run length:
Type any integer into the "model run-length” text box.
Use the same units asin the time delay functions.

To change output type:

Hold the mouse button down over the "Animation & Data' box and sdlect one of

"Animation & Data,"
"Animation only,"”
"Data Output only."

When selected, the model animates throughout the run. Current events and edges are
displayed in blue.

The large scrollable text area displays data for selected variables at each event time. Variable
selection for this display is not current available for the user.

To run simulation:
Click the mouse on the labeled buttons

PLAY - starts or resumes a simulation run,
PAUSE - pauses a run,
STOP - aborts the run.

The PLAY/ PAUSE button is a toggle switch.
Note:

If the run finishes naturally, you must press STOP before starting another run. This is a bug
in the current version.

129

Vita

Tamie Lynne Veith will receive her M.S. in Industrial and Systems Engineering at Virginia
Polytechnic Institute and State University in May 1997. Her concentration is in Operations
Research with particular interest in simulation and WWW applications. For the three years
preceeding her graduate work, Tamie worked as a Technical Coordinator and Data Control
Technician for the Sleep and Aging Research Program at the University of Washington in Seattle.
She recieved her B.A. in Mathematics in 1992 from Reed College, Portland, Oregon.

130

