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Abstract
Efficient invalidation and dynamic replacement of

executing code – on-stack replacement (OSR), is neces-
sary to facilitate effective, aggressive, specialization of
object-oriented programs that are dynamically loaded,
incrementally compiled, and garbage collected. Extant
OSR mechanisms restrict the performance potential of
program specialization since their implementations are
special-purpose and restrict compiler optimization.

In this paper, we present a novel, general-purpose
OSR mechanism that is more amenable to optimiza-
tion than prior approaches. In particular, we decou-
ple the OSR implementation from the optimization pro-
cess and update the program state information incre-
mentally during optimization. Our OSR implementa-
tion efficiently enables the use of code specializations
that are invalidated by any event – including those ex-
ternal to program code execution. We improve code
quality over the extant, state-of-the-art, resulting in per-
formance gains of 1-31%, and 9% on average.
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1 Introduction
Advanced implementations of modern object-

oriented languages, such as Java [12], depend on run-
time environments that employ “just-in-time” compi-
lation for performance. These language environments
dynamically compile program code that is loaded incre-
mentally, and possibly from a remote target. Although
optimization has the potential to significantly improve
program performance, on-the-fly and incremental com-
pilation makes optimization implementation challeng-
ing. In particular, the compiler must predict which op-
timizations will be most successful for the remainder of
program execution.

One successful approach to enable more aggressive
optimizations for such systems is to specialize the pro-
gram for a particular behavior or set of execution con-

ditions, and then to undo the optimization when condi-
tions change. This enables the compiler to identify op-
timizations that are likely to be successful in the near-
term, and then to apply others as it learns more about
future program and resource behavior. Examples of
such optimizations include virtual call inlining, excep-
tion handler removal, and memory management system
optimizations.

Key to the success of such specializations is the
presence of an efficient, general-purpose, mechanism
for undoing optimization on-the-fly when associated as-
sumptions are rendered invalid. Future method invo-
cations can be handled by recompilation. Replacing
the currently executing method and re-initiating exe-
cution in the new version is termed on-stack replace-
ment (OSR). OSR has previously been successfully em-
ployed for debugging optimized code [14], for deferred
compilation [7, 23, 10, 19], and method optimization-
level promotion [15, 10, 19].

Each of these prior approaches, however, is specific
to the particular optimization being performed. More-
over, extant approaches inhibit compiler optimizations
by employing special instructions for state collection,
in-line with generated program code. Such imple-
mentations, in addition to increasing code size, increase
variable live ranges and restrict code motion.

We present a general-purpose OSR implementation,
which can be used for any OSR-based specialization,
and is more amenable to compiler optimization. We de-
couple OSR from the program code, and consequently,
from compiler optimizations. This significantly im-
proves code quality over an extant, state-of-the-art ap-
proach, and enables OSR to occur at any point at which
control can transfer out of an executing method. We
can, therefore, support existing OSR-based specializa-
tions as well as other, more aggressive, optimizations
that are triggered by events external to the executing
code, including, class loading, changes in program and
JVM behavior, exception conditions, resource availabil-
ity, and user events, such as dynamic software updates.



In the sections that follow, we provide background
on OSR (Section 2) and detail our extensions and im-
plementation in the Jikes Research Virtual Machine
(JikesRVM) [1] (Section 3). We then describe three
OSR-based specializations (Section 4). The first two
are existing specializations for virtual method dispatch
and for dynamic GC switching. Our OSR implemen-
tation enables performance improvement by 6% for the
former technique, and by 9% for the latter. We also
present a novel specialization for generational garbage
collection in which we avoid adding write-barriers to
generated code until they are required (i.e. until there
are objects in the old generation(s)). Our results indi-
cate that we improve startup time for programs by 6%
on average; for short running programs we reduce ex-
ecution time by 8-14%. Following our empirical eval-
uation and analysis (Section 5), we present our conclu-
sions and plans for future work (Section 6).

2 Background and Related Work
On-stack replacement (OSR) [7, 15] is a four step

process. The runtime extracts the execution state (cur-
rent variable values and program counter) from a partic-
ular method. The compilation system then recompiles
the method. Next, the compiler generates a stack activa-
tion frame and updates it with the values extracted from
the previous version. Finally, the system replaces the
old activation frame with the new and restarts execution
in the new version.

Given OSR functionality, a dynamic compilation
system can implement aggressive specializations based
on conditions that may change as execution progresses.
If these conditions change as a result of an external or
a runtime event, the compilation system can recompile
(and possibly re-optimize) the code, and replace the cur-
rently executing version [7]. OSR has been employed
by extant virtual execution environments for dynami-
cally de-optimizing code for debugging [14], for de-
ferred compilation of method regions to avoid compi-
lation overhead and improve data flow [7, 23, 10, 19],
and to optimize methods that execute unoptimized for a
long time without returning [15, 10, 19].

These OSR implementations were specially de-
signed for a target purpose. For example, OSR for
deferred compilation is implemented as an uncondi-
tional branch to the OSR invocation routine. OSR for
method promotion and de-optimization is implemented
as part of the thread yield process. The JikesRVM from
IBM Research is a virtual machine that currently em-
ploys a state-of-the-art, special-purpose, OSR for de-
ferred compilation and method promotion [10]. It is this
system that we extend in this work.

The JikesRVM optimizing compiler inserts an in-
struction, called an OSRPoint, into the application code
at the point at which OSR should be unconditionally
performed. This instruction is implemented similarly to

a call instruction – execution of an OSRPoint inserted
in a method causes OSR to be performed uncondition-
ally for that method. The OSRPoint records necessary
execution state which consists of values for bytecode-
level, local and stack variables, and the current program
counter. The execution state is a mapping that provides
information about runtime values at the bytecode-level
so that the method can be recompiled and execution
restarted with another version. The JikesRVM OSR im-
plementation is similar to that used in other systems for
similar purposes [14, 23, 13, 19], although the authors
of each refer to the instruction using different names,
e.g., interrupt points [14], OPC RECOMPILE instruc-
tions [23], and uncommon traps [19].

Prior OSR implementations restrict compiler opti-
mization. Since the compiler considers all method
variables (locals and stack) live at an OSRPoint, it
artificially extends the live ranges of variables and
limits the applicability of optimizations such as dead
code elimination, load/store elimination, alias analy-
sis, and copy/constant propagation. In addition, the
compiler cannot move variable definitions around OS-
RPoints [14, 10].

3 Extending On-Stack Replacement
Existing implementations for OSR do not signifi-

cantly degrade code quality when there are a small num-
ber of OSRPoints [10, 14]. However, our goal is to
enable more aggressive, existing and novel, specializa-
tions including those triggered by events external to the
executing code, e.g., class loading, exception handling,
garbage collection optimization, and dynamic software
updating. For such specializations, we may be required
to perform OSR at all locations in a method at which ex-
ecution can be suspended. Since there are a large num-
ber of such locations, many along the critical path of the
program, we require an alternative implementation that
enables optimization at, and across, these locations.

To this end, we extended the current OSR imple-
mentation in the JikesRVM with a mechanism that de-
couples the OSR implementation from the optimization
process. In particular, we maintain execution state in-
formation without inserting extra instructions at every
point at which control may transfer out of a method.
This includes implicit yield points (method prologues,
method epilogues, and loop back-edges), call sites, ex-
ception throws, and explicit yield points. The data
structure we employ for state collection is called a
VARMAP (short for variable map).

A VARMAP is a per-method list of thread-switch
points and bytecode variables that are live at each point.
We maintain this list independent from compiled code
so it does not affect liveness of code variables. We up-
date the VARMAP incrementally as the compiler per-
forms its optimizations. Our VARMAP is somewhat
similar in form to the data structure described in [9]



..

15: int_move l8i(int)=l8i(int)
18: int_shl l17i(int)=l8i(int), 2
20: call static “callme() V”

25: int_add l19i(int) = l8i(int), 

l8i(int)
..

..

15: int_move l15i(int)=l8i(int)

18: int_shl l17i(int)=l15i(int), 2

20: call static “callme() V”

25: int_add l19i(int)= l8i(int), 

l15i(int)

..

After optimizationBefore optimization

Intermediate Code (HIR)
25@main (..LLL,..),.., l18i(int), 
l8i(int), l17i(int), ..

25@main (..LLL,..),.., l18i(int), 
l15i(int), l17i(int), ..

transferVarForOsr(l15i, l8i)

VARMAP entry

Figure 1. Shows how the VARMAP is
maintained and updated.

for tracking pointer updates in the presence of com-
piler optimizations, to support garbage collection in
Modula-3. Our implementation is different in that we
track all stack, local, and temporary variables across a
wide range of compiler optimizations automatically and
transparently, and do so online, during dynamic opti-
mization of Java programs.

To update VARMAP entries during optimization, we
defined the following system methods:

• transferVarForOsr(var1, var2): Record that var2
will be used in place of var1, henceforth in the
code (e.g. as a result of copy propagation)

• removeVarForOsr (var): Record that var is no
longer live/valid in the code.

• replaceVarWithExpression(var, vars[], oper-
ators[]): Record that variable var has been
replaced by an expression that is derivable from
the set of variables vars and operators.

Our OSR-enabled compilation system handles all
JikesRVM optimizations that impact liveness except
tail call and tail recursion elimination (which elim-
inate stack frames entirely). This set of optimiza-
tions includes copy and constant propagation, com-
mon subexpression elimination (CSE), branch opti-
mizations, dead-code elimination (DCE), and local es-
cape analysis optimization.

When a variable is updated, the compiler calls a
wrapper function that automatically invokes the ap-
propriate VARMAP functions. This enables users to
easily extend the compiler with new optimizations,
without having to manually handle VARMAP up-
dates. For example, when copy/constant propagation
or CSE replaces a use of a variable (rvalue) with an-
other variable or constant, the wrapper performs the
replacement in the VARMAP entry by invoking the
transferVarForOsr function.

We handle DCE and local escape analysis using a
similar wrapper function for updates to variable def-
initions. When definitions of dead variables that are

present in the VARMAP are removed during optimiza-
tion, the wrapper replaces its entry with the rvalue in
the instruction, or records all of the right-hand vari-
ables along with operators used to derive the lvalue in
case of multiple r-values (we currently only handle sim-
ple unary or binary expressions). Similarly, we replace
variables eliminated by escape analysis with their rval-
ues in the VARMAP.

The compiler automatically updates the VARMAP
during live variable analysis. We record variables that
are no longer live at an OSR point, and the relative
position of each in the map. Every variable that live
analysis discovers as dead, is set to a void type in the
VARMAP. We cannot simply drop the variable from the
entry since we must track the relative positions of vari-
ables in order to enable their restoration in the correct
location during OSR. During register allocation, we up-
date the VARMAP with physical register and spill loca-
tions. This enables us to restore these locations during
OSR as well.

Figure 1 shows how we maintain and update
VARMAP entries. We show the VARMAP before and
after copy propagation. We show a snippet of Java byte-
code (left), and high-level, JikesRVM intermediate code
representation (HIR). We also show the VARMAP entry
(bottom) for the callme() call site which contains the
bytecode index (25) of the instruction that follows the
call site, as well as three local (l) variables with inte-
ger (i) types (a: l8i, b: l15i, c: l17i).
The index identifies the place in the code at which ex-
ecution resumes following the call (in this example), if
OSR occurs during callme(). The VARMAP tracks
method variables (l8i, l15i, and l17i) at this
point; this entry is used by the system to update the
frame of the new version of meth() during OSR.

In the HIR before optimization, the instruction
at bytecode index 15 copies variable l8i to l15i
then uses both in the subsequent code. The op-
timization replaces all l15i uses with l8i dur-
ing copy propagation. During this optimization,
the replacement invokes a wrapper which automati-
cally updates the VARMAP, i.e., the wrapper calls
transferVarForOsr(l15i,l8i) prior to re-
placement. DCE will remove bytecode instruction 15
in a later pass. DCE of the instruction at index 15 will
cause the VARMAP to record that l15i is no longer
live.

When the compilation of a method completes, we
encode the VARMAP using a compact encoding for
OSRPoints from the existing implementation [10]. The
encoded map contains an entry for each OSR point,
which consists of the register map – a bitmap that indi-
cates which physical registers contain references (which
the garbage collector may update). In addition, the map
contains the current program counter (bytecode index),
and a list of pairs (local variable, location) (each pair



encoded as two integers), for every inlined method (in
case of an inlined call sequence). The encoded map
is maintained in the system throughout the lifetime of
the the program. All other data structures required for
OSR-aware compilation (including the VARMAP) are
reclaimed during GC.

We also handle certain cases specially to enable cor-
rect state collection and to enable efficient code gener-
ation. These cases include call site return values, ex-
ception throws and yield points, and machine-specific
instruction selection and optimization.

If the callee of a method to be replaced returns a
value, the OSR process extracts that value from the
execution state so that it is available in the new ver-
sion of the method. Return values are typically stored
in specific registers as dictated by the compiler’s call-
ing convention and the target architecture, and must be
extracted from these registers. We handle exception
throws and yield points as we do call sites. Moreover,
we do not perform OSR for methods for which execu-
tion has reached their epilogue.

3.1 Triggering On-Stack Replacement

Our system requires an appropriate trigger to initiate
OSR. The current OSR implementation in JikesRVM
uses a compiler-driven, eager approach. The compiler
inserts a call to a system method, which is guarded by
a condition that checks the validity of the specializing
assumption. Execution of this method causes OSR for
the callee.

The alternative, an external, lazy trigger, is more ap-
propriate for enabling OSR due to events in the envi-
ronment, out of line with application execution, such as
is done in Self-91 for debugging optimized code [14].
The runtime triggers OSR when it deems invalid an as-
sumption previously used by the compiler for special-
ization. The runtime invokes a helper method (called
OSR helper) that performs OSR. The method either
patches the code of the executing method(s) with code
that invokes the rest of the OSR process, or modifies
the return address of each callee of the method to be re-
placed. This approach does not require the insertion of
conditional calls into the application code or all inval-
idated methods to be replaced at once. As a result, it
enables a fast call stack traversal.

The OSR helper reroutes the return address of the
specialized method’s callee to itself so that OSR it can
perform OSR on the method incrementally – when the
callee returns. When this occurs, the OSR helper
sets up a new stack frame with execution state extracted
from the specialized method’s stack. To preserve values
the contained in registers during the execution of spe-
cialized method, the OSR helper saves all registers
(volatiles and non-volatiles) into its stack frame. The
OSR helper expects to find the specialized method
by traversing the stack, and hence, we “fake” a call to

the OSR helper from the specialized method. More
precisely, apart from re-routing the return address of the
specialized method’s callee, we set the return address
of the OSR helper to point to the current instruction
pointer in the specialized code, since this value will be
used during OSR to calculate the location to resume ex-
ecution at the corresponding location in the new version
of the method. We also update OSR helper’s stack
pointer appropriately.

4 Aggressive Program Specialization
We compare our OSR implementation to the current

state-of-the-art as part of our empirical evaluation. In
addition, we employ our system for novel specializa-
tion for generational garbage collection (GC) and to im-
prove two existing specialization systems, one for dy-
namic dispatch of virtual method calls and the other for
dynamic switching between GCs.

Write-Barrier Specialization for Generational GC
A generational garbage collector (GC) [18, 24] segre-
gates objects into young and old parts (generations),
based on their lifetimes. This separation enables young
objects to be garbage collected independently and more
frequently than the old, without collecting the entire
heap. Once objects age in the young generation, they
are promoted to the old. A generational GC must record
references from mature objects to nursery objects on ev-
ery field assignment. The compiler inserts extra instruc-
tions called write-barriers [25, 16, 3] into application
code for this purpose, for every pointer mutation (put-
fields and array stores in Java). These extra instructions
generally degrade program performance. Researchers
have recently found that with intelligent write-barrier
code and modern architectures, write-barrier cost for
many programs is small [3, 4], compared to the bene-
fits of generational GC.

However, for applications that do not allocate
enough memory to require a GC, or that trigger GC later
in their lifetime, write-barrier execution, regardless of
how efficiently the write-barriers are implemented, is
pure overhead. Such applications have become more
plentiful as the cost of memory for modern processors
has plummeted and memory has become abundant.

To address this issue, we introduce a novel special-
ization technique that avoids inserting write-barriers.
That is, we specialize frequently executing (hot) meth-
ods without write-barriers. The compiler inserts write-
barriers for all cold methods. If a GC occurs and objects
are promoted to the mature space, we invalidate and re-
place hot methods that require write-barriers. We do not
specialize hot methods once GC has occurred and ob-
jects have been promoted to the mature space, or when
the maximum heap size is below 500MB, or if heap res-
idency exceeds 60% (identified empirically).

Consequently, programs that perform no GC experi-
ence minimal write-barrier overhead (due to execution



of cold, unoptimized methods). Also, programs that do
not require GC at startup, experience improved startup
and reap the benefits of generational collection, with
only minor OSR overhead imposed at the first GC.

Specialization of Virtual Method Dispatch
Virtual method dispatch is a technique for aggressively
binding virtual call sites to their implementations. The
cost of executing virtual methods is higher than static
method invocations since the underlying object type
must be extracted at runtime, to identify the method to
dispatch. [17] discusses many such techniques.

JikesRVM employs pre-existence [8], code patch-
ing [17], and deferred compilation [10] to reduce the
overhead of dynamic dispatch. The optimizing com-
piler speculatively inlines a virtual method using a
heuristic to predict the likely underlying type of an ob-
ject [5, 11, 15]. The compiler omits a check to protect
inlined code if it can determine pre-existence – if given
the currently loaded class files, the object type does not
change once method execution commences. If a class
loaded later violates these assumptions, only future in-
vocations of the method are recompiled, obviating the
need for OSR [8].

If the compiler cannot establish a pre-existence guar-
antee, then it must insert a “guard” to protect the spec-
ulatively inlined code. JikesRVM uses code patching
for this purpose. The compiler generates code for the
inlined sequence, and instructions that will be executed
if inline specialization is invalidated. If class loading
invalidates the assumption used for inlining, the VM
overwrites the first instruction of the inlined sequence
that occurs after the current point in the execution, with
a branch to the alternative path. The compiler inserts
an OSRPoint at the alternative path to avoid compila-
tion of this unlikely case. Program execution of an OS-
RPoint causes the current method to be replaced with
a new version that implements only the dynamic dis-
patch code sequence. As an alternative to code patch-
ing, we extended this JikesRVM implementation to use
our VARMAP-based OSR for speculatively inlined call
sites for which pre-existence cannot be guaranteed.

Specialization of Automatic GC-Switching System
In prior work, we developed an extension to JikesRVM
that enables application-specific dynamic GC selec-
tion [21]. This system employs multiple garbage col-
lectors within a single JikesRVM execution image and
can switch between them at runtime in an effort to im-
prove performance. This prior work indicates the poten-
tial for significant performance improvements (11-14%
for standard benchmarks and up to 44% for short run-
ning applications).

To enable these improvements, the compilation sys-
tem must specialize the code for the underlying GC, i.e.,
inline allocation sites and include or omit generational
write-barriers, as appropriate. When the underlying GC
changes, the system must invalidate and if necessary,

OSR specialized methods to ensure correctness. The
system only performs OSR for optimized methods that
may execute specialized code after the current program
point. Support for OSR however significantly inhibits
dynamic GC selection from achieving its full potential.
We modified the switching system to use our VARMAP
extension, in place of the extant (default JikesRVM) ap-
proach.

5 Empirical Evaluation
To evaluate the efficacy of our OSR implementation,

we measured the performance of our system for the ag-
gressive specialization techniques described previously.
We first detail the experimental methodology and then
present results.

5.1 Experimental Methodology

We used a dedicated 2.4GHz x86-based single-
processor Xeon machine (with hyperthreading) running
RedHat Linux 9. We focus on the x86 system since it is
currently the most popular processor for desk-side sys-
tems and Internet computing. We extended JikesRVM
version 2.2.0 with jlibraries R-2002-11-21-19-57-19.

We ran all of our experiments using the Fast Adap-
tive JikesRVM configuration with a Generational Mark-
Sweep (GMS) garbage collector. This GC uses a copy-
ing young generation and a mark-sweep collected ma-
ture generation. We generated and employed off-line
profiles to guide hot-method optimization to reduce
non-determinism resulting from adaptive selection of
methods to be optimized (our profiles are available upon
request) as is done in similar studies [20, 21]. Our
benchmarks are a subset of the the SpecJVM98 [22]
and the JOlden [6] benchmark suites. We executed each
benchmark multiple times and report the average of all
but the first run. We report the compilation overhead
introduced by our system separately.

5.2 Results

We first present results from experiments that com-
pare our VARMAP-based implementation to a state-of-
the-art extant OSR implementation. In order to create a
valid reference to compare our implementation against,
we extended the JikesRVM OSR system to remove OS-
RPoints (described in Section 2) at the end of compila-
tion. By doing so, we are able to insert OSRPoints at
every point in a method at which execution can be sus-
pended, thus potentially allowing OSR at these points,
without actually triggering OSR unconditionally.

Figure 2 shows the results from this comparison. The
y-axis is percent reduction in execution time enabled
by VARMAP OSR over OSRPoints. The Average bar
shows the average across all benchmarks, and Average
Spec98 shows the average for only the SpecJVM bench-
marks. Both bars are averages across heap sizes (min-
imum to 12 times the minimum), to include the im-
pact of any space overhead introduced by VARMAPs.
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Figure 2. Performance of our VARMAP
OSR Implementation vs the JikesRVM
Reference System, across heap sizes.

 Compilation Time (ms)          Space Added (KB)
Benchmark Clean VARMAP Compile Time Runtime

compress 68 79 14.52 3.16
db 91 117 24.57 5.26
jack 445 543 139.67 30.00
javac 1962 2540 629.94 136.98
jess 504 656 136.80 29.20
mtrt 595 746 154.38 33.50

MST 50 66 17.03 3.73
Perimeter 86 66 15.82 3.47
Voronoi 96 129 62.06 13.49

Avg. 433 549 132.75 28.75
Avg. Spec98 611 780 183.31 39.68

Figure 3. Overhead of our OSR-VARMAP
Implementation in the JikesRVM refer-
ence system. Cols 2 & 3 indicate compila-
tion times and Cols 5-6 show space over-
head.

VARMAP shows significant improvement in applica-
tion performance – by 9% on average across all bench-
marks, and by over 10% across the SpecJVM bench-
marks. jess and mtrt show the most benefit, 31% and
20% respectively. For these benchmarks, the original
implementation severely inhibits optimization, partic-
ularly due to increased register pressure by artificially
extending live ranges of variables, past their last actual
use. This results in a large number of variable spills to
memory. With our implementation, we do not need to
maintain conservative liveness estimates, since we track
liveness information accurately.

Other benchmarks show benefits of 5% or less. For
these benchmarks, improved code quality does not im-
pact overall performance significantly. Since these pro-
grams are short running, they are not heavily optimized.
In addition, OSR VARMAP does impose some GC
overhead, since we maintain information for each pos-
sible OSR point – which for short running codes is not
fully amortized, especially for small heap sizes.

Figure 3 details the space compilation overhead of

Clean
Benchmark ET ET % Impr. WBs Elim. OSRs OSR Time

(s) (s) (ms)
compress 6.96 6.72 3.45 1209 0 0
jess 2.97 2.96 0.37 6902267 13 3.75
db 17.03 15.83 7.05 26852028 0 0
javac 6.71 6.56 2.24 2598303 1 0.38
mtrt 6.23 5.92 4.98 1851952 0 0
jack 4.11 4.08 0.73 4685883 7 3.94

MST 0.87 0.75 13.79 4683081 0 0
Perimeter 0.25 0.23 8 3170646 0 0
Voronoi 1.44 1.21 15.97 16047220 0 0

Avg. 5.17 4.92 6.29 7421399 2.33 0.90
Avg. Spec98 7.34 7.01 3.14 7148607 3.50 1.35

With WBSpec

Figure 4. Performance of write-barrier
specialization (WBSpec) for a heap size
of 500MB using the popular Generational
Mark Sweep GC.

our system. Columns 2 and 3 show the compilation
time for the reference system and our VARMAP, re-
spectively. Column 4 shows the percentage degradation
in compilation time imposed by VARMAP. Columns 5
and 6 show the space overhead introduced by VARMAP
during compilation time (collectable) and runtime (per-
manent), respectively. On average, our system increases
compilation time by just over 100ms, and adds space
overhead of 133KB that is collected, and 29KB that is
not collectable.

Specialization for Generational Garbage Collection
We next present results for a novel OSR-based special-
ization for write-barrier removal for generational GCs.
Prior to the initial GC when there are no objects in the
mature space, write-barriers are not required, and thus,
impose pure overhead. Our goal with this specialization
is to reduce the overhead of write-barriers for programs
that do not require GC, and to improve the startup per-
formance of those programs that do.

For this specialization, we employ the popular Gen-
erational Mark Sweep (GMS) collector. The com-
piler checks the maximum heap size to ensure that it
is large enough to warrant specialization (>=500MB),
and that heap residency (pages used/pages allocated) is
low (<=60%). We identified both values empirically. If
no GCs have occur, the compiler elides write-barriers.

This specialization must be invalidated when objects
are first promoted to the mature space. Our system only
performs OSR for methods that require write barriers
and when there are field assignments that will execute
after the point at which execution has been suspended.

We present the performance of write-barrier special-
ization (referred to as WBSpec) in Figure 4. We used
a heap size of 500MB for these experiments. Column
2 and 3 show the execution time performance in sec-
onds without and with WBSpec, respectively. Column
4 shows the percent improvement enabled by WBSpec.
Column 5 shows the number of write barriers elimi-
nated. The final two columns show the OSR overhead
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Figure 5. Performance improvement from
using OSR VARMAP for speculative de-
virtualization (dynamic dispatch) of vir-
tual methods. We omit benchmarks which
showed no significant change.

imposed – column 6 is the number of OSRs that occur
and column 7 is the total time for all OSRs. For many of
the benchmarks, no OSR is required since a minor GC
is not triggered for these. For those that require OSR,
the overhead is very small.

On average, WBSpec improves performance by 6%
across benchmarks. For the SPECJVM benchmarks
(first 6 in the table), WBSpec improves performance
by 3% on average. For benchmarks that require GC,
this benefit is during program startup. The JOlden
benchmarks require no GC when we use a heap size of
500MB. We believe that such applications are ideal can-
didates for specialization presented. The average im-
provement in execution time for these benchmarks is
13%.

OSR VARMAP for Existing Specializations
For guard-free dynamic dispatch, we replace code
patching and OSRPoints for deferred compilation with
our VARMAP implementation to guard speculatively
inlined virtual method calls. The compiler inlines calls
that meet size constraints and for which a single ob-
ject target can be predicted [2]. To preserve correct-
ness, we employ OSR to replace code that does not
have checks inserted, when class loading invalidates as-
sumptions made by the compiler. Upon recompilation,
the compiler generates a new version of the method that
implements dynamic dispatch at the previously inlined
call site. We only perform OSR for methods for which
the compiler cannot establish pre-existence guarantees
(see Section 4).

Figure 5 shows the impact of using VARMAP over
using the original OSRPoint and code patching. We
only presents the results for the benchmarks (2) that
implemented call sites for which the compiler was
unable to make pre-existence guarantees. For jess,
a single inlined method with an eliminated guard
( 202 jess.jess.ValueVector.size()) constitutes 8% of the
total number of method invocations. In the case of mtrt,
3 such methods constitute over 50% of the total invoca-
tions.
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Figure 6. Performance improvement from
using OSR VARMAP for OSR within an au-
tomatic GC switching system.

We also used our OSR implementation to im-
prove the performance of a dynamic, garbage-collection
switching system within JikesRVM that we developed
in prior work. This system enables performance gains
(including all overheads) of 11-14% on average. How-
ever, this system incurs an overhead of 10% on aver-
age, even when no dynamic switching is triggered. This
overhead inhibits the full performance potential of the
system, the primary source of which is the need for OSR
support. Our OSR implementation reduces the over-
head of the system by almost half.

Figure 6 shows the benefits on total execution time
due to the use of our OSR implementation in the GC
switching system. The data is the average improvement
across a range of heap sizes for each benchmark (from
the minimum to 12x the minimum). VARMAP im-
proves performance most significantly for jess (26%),
mtrt (19%), and MST (22%). This is due to the num-
ber of OSR points in the hot methods for these bench-
marks, and due to the fact that MST is very short run-
ning. Across benchmarks, VARMAP shows a 9% im-
provement. This result is similar to the performance
improvement enabled by VARMAP versus the extant
state-of-the-art that we presented previously.

6 Conclusions and Future Work
We present a new implementation of on-stack re-

placement (OSR) that decouples dynamic state collec-
tion from compilation and optimization. Unlike ex-
isting approaches, our implementation does not inhibit
compiler optimization, and enables the compiler to pro-
duce higher quality code. Our empirical measurements
within JikesRVM show a performance improvement by
9% on average (from 1% to 31%), over a commonly
used implementation. We implement a novel, OSR-
based specialization for write-barrier removal in gener-
ational GC that improves performance by 6% on aver-
age. Moreover, we empirically confirm that our system
is effective for extant specializations: dynamic dispatch
of virtual methods, and for automatic GC switching.

As part of future work, we plan to employ our OSR
system for other aggressive specializations. These in-



clude removing infrequently executing instructions, e.g.
exception handling code. In addition, OSR can be used
to trigger dynamic software updates in highly available
server systems. In such environments, control never
leaves a particular method (typically, a program loops
forever listening for service requests, and issues re-
quested work to slave processes). Using OSR, we can,
hence, upgrade code without affecting service availabil-
ity. Finally, we plan to investigate the use of OSR in ag-
gressive incremental alias, and escape analysis to per-
form speculative pointer-based optimizations, such as,
stack allocation of objects, memory layout optimiza-
tions, and synchronization removal.
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