
Improving Cache Performance in Dynamic Applications through
Data and Computation Reorganization at Run Time

Chen Ding Ken Kennedy

{ cding, ken} @es. rice. edu
Computer Science Department

Rice University
Houston, TX 77005

Abstract

With the rapid improvement of processor speed, perfor-
mance of the memory hierarchy has become the princi-
pal bottleneck for most applications. A number of com-
piler transformations have been developed to improve
data reuse in cache and registers, thus reducing the to-
tal number of direct memory accesses in a program.
Until now, however, most data reuse transformations
have been static--applied only at compile time. As a
result, these transformations cannot be used to optimize
irregular and dynamic applications, in which the data
layout and data access patterns remain unknown until
run time and may even change during the computation.

In this paper, we explore ways to achieve better data
reuse in irregular and dynamic applications by build-
ing on the inspector-executor method used by Saltz for
run-time parallelization. In particular, we present and
evaluate a dynamic approach for improving both com-
putation and data locality in irregular programs. Our
results demonstrate that run-time program transforma-
tions can substantially improve computation and data
locality and, despite the complexity and cost involved,
a compiler can automate such transformations, elimi-
nating much of the associated run-time overhead.

1 Introduction

As modern single-chip processors have increased the
rate at which they execute instructions, performance
of the memory hierarchy has become the bottleneck for
most applications. In the past, the principal challenge
in memory hierarchy management has been overcom-
ing latency, but blocking and prefetching have amelio-
rated that problem significantly. As exposed memory

Permission to make digital or hard copies of all or pan of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first Page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a tee.
SIGPLAN ‘99 (PLDI) 5/99 Atlanta, GA, USA
0 1999 ACM l-581 13-083-X/99/0004...$5.00

latency is reduced, bandwidth has become the domi-
nant performance constraint because limited memory
bandwidth bounds the rate of data transfer between
memory and CPU regardless of the speed of proces-
sors or the latency of memory access. Our experiments
on the SGI Origin 2000 have indicated that the band-
width needed to achieve peak performance levels on
most scientific applications on large data sets is a fac-
tor of two or more greater than that provided by the
memory system[ll]. As a result, program performance
is now limited by its effective bandwidth, that is, the
rate at which operands of a computation are transferred
between CPU and memory.

Currently, the principal software mechanism for im-
proving effective bandwidth in a program, as well as
reducing overall memory latency, is increasing tempo-
ral and spatial reuse through program transformation.
Temporal reuse occurs when multiple accesses to the
same data structure use a buffered copy in cache or
registers, eliminating the need for repeated accesses to
main memory. While temporal reuse reduces the fre-
quency of memory accesses, spatial reuse improves the
efficiency of each memory access by grouping accesses
on the same cache line. Since most current machines
transfer one cache line at a time from memory, this
grouping amortizes the cost of the bandwidth over more
references. The combination of temporal and spatial
reuse can minimize the number of transferred cache
lines, i.e. the total memory bandwidth requirement of
the program.

A substantive portion of the research on compiler
memory management has focused on increasing tem-
poral and spatial reuse in regular applications. Cache
and register blocking techniques group computations on
data tiles to enhance temporal reuse[5,22]. Various loop
reordering schemes seek to arrange stride-one data ac-
cess to maximize spatial reuse[l, 12, 171. Data transfor-
mations can often be used to effect spatial reuse when
computation transformation is insufficient or illegal[8].

229

None of these strategies, however, works well with
dynamic and irregular computations because the unpre-
dictable nature of data reuse prevents effective static
analysis. An example is molecular dynamics simula-
tion, which models the movement of particles in some
physical domain (e.g. a 3-D space). The distribution
of molecules remains unknown until run time, and the
distribution itself changes during the computation. An-
other class of dynamic applications employ sparse linear
algebra, where the non-zero entries in a sparse matrix
changes dynamically. In both types of computation, it
is impossible to enhance dynamic temporal reuse and
irregular spatial reuse with static transformations.

The alternative to static methods is to apply dy-
namic reorganization at run time. Such strategies have
been routinely employed to enhance the efficiency of
parallel computations using the so-called “inspector-
executor” method pioneered by Saltz and his colleagues.
The underlying strategy is to insert code into the object
program that reorganizes the computation or data lay-
out once the structure of that data is known. The cost
of this reorganization is then amortized over numerous
time steps of the computation[lO].

In this paper we describe two run-time transforma-
tions that improve the memory hierarchy performance
of irregular computations like molecular dynamics sim-
ulation, and we present experimental evidence of their
effectiveness. The locality grouping transformation re-
orders computation to improve dynamic temporal reuse.
Dynamic data packing, on the other hand, reorganizes
data to achieve better spatial locality. In addition to
these two transformations, we discuss a static data trans-
formation, data regrouping, that is necessary to opti-
mize global static data layout for large dynamic pro-
grams.

A substantial portion of this paper is devoted to
the compiler support for dynamic data packing. Trans-
forming data at run time carries a significant overhead
because of the need to redirect accesses from the old
layout to the transformed one. However, most of this
overhead can be eliminated by compiler optimizations.
This paper describes an implementation of packing and
evaluates the associated optimizations.

The remainder of the paper is organized as follows.
Section 2 describes locality grouping and dynamic data
packing, with a simulation study on their effectiveness
on various cache configurations. Section 3 presents the
compiler support for dynamic data packing, including
optimizations that eliminate most of its run-time over-
head. Section 4 briefly discusses data regrouping. In
Section 5, the three transformations are evaluated on
the SGI Origin2000 using three well-known benchmarks
and a full application. Related work is discussed in
Section 6. Finally, Section 7 summarizes the original
contributions of this paper.

2 Run-time Computation and Data Transformations

This section describes two run-time transformations: lo-
cality grouping, which reorders data access to improve
dynamic temporal reuse; and dynamic data packing,
which reorganizes data layout for better run-time spa-
tial reuse. Both transformations are then evaluated,
individually and combined, through various access se-
quences on simulated caches.

2.1 locality Grouping

The effectiveness of cache is predicated on the existence
of locality and good computation structure exploiting
that locality. In a dynamic application such as molec-
ular dynamics simulation, the locality comes directly
from its physical model in which a particle interacts
only with its neighbors. A set of neighboring particles
forms a locality group in which most interactions occur
within the group. In most programs, however, locality
groups are not well separated. Although schemes such
as domain partitioning exist for explicitly extracting lo-
cality, they are very time-consuming and may therefore
not be cost-effective in improving cache performance of
a sequential execution. To pursue a better tradeoff, this
section proposes the most efficient, yet also very pow-
erful reordering scheme, locality grouping.

Given a sequence of objects and their interactions,
locality grouping goes through the list of objects and
clusters all interactions involving each object in the list.
Figure 1 shows an example of locality grouping. Graph
(a) draws the example objects and their interactions
and Graph (b) is an example enumeration of all inter-
actions. Assuming a cache of 3 objects, the example
sequence incurs 10 misses. Locality grouping reorders
the access sequence so that all interactions with each ob-
ject are clustered. The new sequence then starts with
all interactions on object a, then b, until the last object
g. The locality-grouped access sequence incurs only 6
misses.

q

b
a

c!

(b cl
(e g)
(e f)

(a b)
(f 9)
(a c)

(a b)
(a c) > Group on (a)

(b c) - Groupon@)

(e 9)
(e f) > Group on (e)

(b) Example Sequence
(f g) - Group on (0

10 misses
(3-element cache, fully (c) Sequence after

(a) Example Interactions associative, LRU Locality Grouping

replacement) 6 misses

Figure 1: Example of Locality Grouping

Locality grouping incurs minimal run-time overhead.
It can be done by doing a radix sort through two passes:
the first pass collects a histogram and the second pass

230

produces the locality-grouped sequence. Locality group-
ing also applies to interactions in tuples involving more
than a pair of objects. A compiler can automate lo-
cality grouping by simply inserting a call to a sorting
subroutine. The legality and profitability of this trans-
formation can be determined either by compiler analy-
sis or user directives, similar to the compiler support to
run-time data transformations, which we will show in
detail in the next section.

We evaluated locality grouping on a data set from
mesh, a structural simulation. The data set is a list of
edges of a mesh structure of some physical object such
as an airplane. Each edge connects two nodes of the
mesh. This specific data set, provided by the Chaos
group at University of Maryland, has 10K nodes and
60K edges. We simulate only the data accesses on a
fully associative cache in order to isolate the inherent
cache reuse behavior from other factors. The two caches
we simulate are 2K and 4K bytes in size and they use
unit-length cache lines.

Table 1 gives the miss rate of mesh with and without
locality grouping. Locality grouping eliminates 96.9%
of cache misses in the 2K cache and 99.4% in the 4K
cache. The miss rates after locality grouping are ex-
tremely low, especially in the 4K cache (0.37%). Fur-
ther decreasing miss rate with more powerful reordering
schemes in this case is unlikely to be cost-effective if the
overhead of extra execution time does not out-weigh the
additional gain.

Original After locality grouping
miss rate 2K cache (4K 2K cache 1 4K
of mesh 93.2% 1 63.5% 2.93% 1 0.37%

Table 1: Effect of Locality Grouping

2.2 Dynamic Data Packing

Correct data placement is critical to effective use of
available memory bandwidth. Placement of data ele-
ments in memory in the order in which they are accessed
should improve spatial reuse. In regular computations,
this placement can be done at compile time. However,
in an irregular or adaptive computation, the order of
data access is not known until run time and that or-
der may change dynamically. Dynamic data packing is
a run-time optimization that groups data accessed at
close intervals in the program into the same cache line.
For example, if two objects are always accessed consec-
utively in a computation, placing them adjacent to each
other increases bandwidth utilization by increasing the
number of bytes on each line that are used before the
line is evicted.

Figure 2 will be used as an example throughout this
section to illustrate the packing algorithms and their
effects. Figure 2(a) shows an example access sequence.

The objects are numbered by their location in memory.
In the sequence, the first object interacts with the 600th
and 800th object and subsequently the latter two ob-
jects interact with each other. Assume that the cache
size is limited and the access to the last pair of the 600th
and 800th objects cannot reuse the data loaded at the
beginning. Since each of these three objects are on dif-
ferent cache lines, the total number of cache misses is
5. A transformed data layout is shown in Figure 2(b),
where the three objects are relocated at positions 0 to
2. Assuming a cache line can hold three objects, the
transformed layout only incurs two cache misses, a sig-
nificant reduction from the previous figure of 5 misses.

(0 800)
(0 600)

. . .

Runtime data
pdillg

>

(0 1)
(0 2)

(12) fall into the
. . .

Same cache line

(600 800) (2 1)

(5ePebe) - (X)

(a) Example interaction list @) Interaction list
before packing after packing

Figure 2: Example of Data Packing

The rest of this section presents three packing algo-
rithms and a comparison study of their performance on
different types of run-time inputs.

Packing Algorithms

The simplest packing strategy is to place data in the
order they first appear in the access sequence. We call
this strategy consecutive packing or first-touch packing.
The packing algorithm is as follows. To ensure that
each object has one and only one location in the new
storage, the algorithm uses a tag for each object to label
whether the object has been packed or not.

initializing each tag to be false (not packed)
for each object i in the access sequence

if i has not been packed
place i in the next available location
mark its tag to be true (packed)

end if
end iteration
place the remaining unpacked objects

Consecutive packing carries a minimal time and space
overhead because it traverses the access sequence and
object array once and only once. For access sequences
in which each object is accessed at most once, consec-
utive packing yields optimal cache line utilization be-
cause the objects are visited in stride-one fashion dur-
ing the computation. Achieving an optimal packing in
the presence of repeated accesses, on the other hand, is
NP-complete, as this problem can be reduced to the G-
partition problem[l6] following a similar reduction by
Thabit[20]. The packing algorithms presented in this
section are therefore based on heuristics.

231

One shortcoming of consecutive packing is that it
does not take into account the different reuse patterns
of different objects. Group packing attempts to over-
come this problem by classifying objects according to
their reuse pattern and applying consecutive packing
within each group. In the example in Figure 2(b), the
first object is not reused later but the 600th and 800th
object are reused after a similar interval. Based on reuse
patterns, group packing puts the latter two objects into
a new group and packs them separately from the first
object. If we assume a cache line of two objects, con-
secutive packing fails to put the latter two objects into
one cache line but grouping packing succeeds. As a re-
sult, consecutive packing yields four misses while group
packing incurs only three.

The key challenge for group packing is how to char-
acterize a reuse pattern. The simplest approach is to use
the average reappearance distance of each object in the
access sequence, which can be efficiently computed in
a single pass. More complex characterizations of reuse
patterns may be desirable if a user or compiler has addi-
tional knowledge on how objects are reused. However,
more complex reuse patterns may incur higher compu-
tation costs at run time.

The separation of objects based on reuse patterns is
not always profitable. It is possible that two objects
with the same reuse pattern are so far apart in the ac-
cess sequence so that they can never be in cache simul-
taneously. In this case, we do not want to pack them
together. To solve this problem, we need to consider the
distance between objects in the access sequence as well
as their reuse pattern. This consideration motivates the
third packing algorithm, consecutive-group packing.

Consecutive-group packing groups objects based on
the position of their first appearance. For example, it
first groups the objects appeared in the first N positions
in the access sequence, then the objects in the next N
positions, and so on until the end of the access sequence.
The parameter N is the consecutive range. Within each
range group, objects can then be reorganized with group
packing.

The length of the consecutive range determines the
balance between exploiting closeness and exploiting reuse
patterns. When the consecutive range is 1, data pack-
ing is the same as consecutive packing. When the range
is the full sequence, the packing is the same as grouping
packing. In this sense, these three packing algorithms
are actually one single packing heuristic with different
parameters.

Evaluation of Packing Algorithms

We evaluated all three packing algorithms on mesh and
another input access stream that we extracted from
moldyn, a molecular dynamics simulation program. The
Moldyn program initializes approximately 8K molecules

with random positions. As before, we simulated only
the data access on a fully associative cache.

The group packing classifies objects by their aver-
age reappearance distance; it is parameterized by its
distance granularity. A granularity of 1000 means that
objects whose average reappearance distance fall in each
lOOO-element range are grouped together. Consecutive-
group packing has two parameters: the first is the con-
secutive range, and the second is the grouping packing
algorithm used inside each range.

8.0 r
Mea, 4K Cache

cache Yn *ke

Figure 3: moldyn and mesh, 4K cache

The two graphs in Figure 3 show the effect of pack-
ing on the moldyn and mesh data sets. The left graph
draws the miss rate on a 4K-sized cache for different
cache line sizes from 1 to 16 molecules long. The miss
rate of the original data layout, shown by the first bar
of each cluster, increases dramatically as cache lines get
longer. The cache with 16-molecule cache lines incurs 6
times the number of misses of the unit-line cache. Since
the total amount of memory transfer is the number of
misses times cache line size, the 16-molecule cache lines
result in 96 times the memory transfer volume of the
unit cache line case-it is wasting 99% of the available
memory bandwidth! Even 2-molecule cache lines waste
over 80% of available memory bandwidth. After various
packing algorithms are applied, however, the miss rates
drop significantly, as indicated in the remaining four
bars in each cluster. Consecutive packing reduces the
miss rate by factors ranging from 7.33 to over 26. Be-
cause of the absence of consistent reuse pattern, group
and consecutive-group packing do not perform as well
as consecutive packing but nevertheless reduce the miss
rate by a similar amount.

The original access sequence of the mesh data set
has a cyclic reuse pattern and a very high miss rate; see,
for example, 64% on the 4K cache, shown in the right-
hand graph of Figure 3. Interestingly, the cyclic data
access pattern scales well on longer cache lines, except
at the size of 8. Data packing, however, evenly reduces
miss rate on all cache line sizes, including the size of 8.
At that size, packing improves from 29% to 46%. On
other sizes, consecutive packing and group packing yield
slightly higher miss rates than the original data layout.
One configuration, consecutive-group(lK,group(l50)),
is found to be the best of all; it achieves the lowest miss
rate in all cases, although it is only marginally better on

232

sizes other than 8. It should be noted that the result of
consecutive-group packing is very close to the ideal case
where the miss rate halves when cache line size doubles.
As shown in the next section, dynamic packing, when
combined with locality grouping, can reduce the miss
rate to as low as 0.02%.

We also simulated 2K-sized caches and observed sim-
ilar results. Consecutive packing reduces the miss rate
of moldyn by 27% to a factor of 3.2. Consecutive-group
packing improves mesh by 1% to 39%.

2.3 Combining Computation and Data Transformation

When we combine locality grouping with data pack-
ing on mesh (moldyn was already in locality-grouped
form), the improvement is far greater than when they
are individually applied. Figure 4 shows miss rates of
mesh after locality grouping. On a 4K cache, the miss
rate on a unit-line cache is reduced from 64% to 0.37%
after locality grouping. On longer cache-line sizes, data
packing further reduces the miss rate by 15% to a factor
of over 6. On the 16-molecule cache line case, the com-
bined effect is a reduction from a miss rate of 4.52%
(shown in Figure 3) to 0.02%, a factor of 226. On a
2K cache with 16-molecule cache lines, the combined
transformations reduce miss rate from 7.48% to 0.25%,
a factor of 30. Although not shown in the graph, group
and consecutive-group packing do not perform as well
as consecutive packing.

In summary, the simulation results show that lo-
cality grouping effectively extracts computation local-
ity, and data packing significantly improves data lo-
cality. The effect of data packing becomes even more
pronounced in caches with longer cache lines. In both
programs, simple consecutive packing performs the best
after locality grouping, and the combination of locality
grouping and consecutive packing yields the lowest miss
rate.

3 Compiler Support for Dynamic Data Packing

Run-time data transformations, dynamic data packing
in particular, involve redirecting memory accesses to
each transformed data structure. Such run-time changes
complicate program transformations and induce over-
head during the execution. This section presents com-

piler strategies to automate data transformations and
minimize their run-time overhead.

3.1 Packing and Packing Optimizations

The core mechanism for supporting packing is a run-
time data map, which maps from the old location be-
fore data packing to the new location after data pack-
ing. Each access to a transformed array is augmented
with the indirection of the corresponding run-time map.
Thus the correctness of packing is ensured regardless
the location and the frequency of packing. Some exist-
ing language features such as sequence and storage as-
sociation in Fortran prevent a compiler from accurately
detecting all accesses to a transformed array. However,
this problem can be safely solved in a combination of
compile, link and run-time checks described in [7].

Although the compiler support can guarantee the
correctness of packing, it needs additional information
to decide on the profitability of packing. Our compiler
currently relies on a one-line user directive to specify
whether packing should be applied, when and where
packing should be carried out and which access sequence
should be used to direct packing. The packing directive
provides users with full power of controlling data pack-
ing, yet relieves them from any program transformation
work. At the end of this section, we will show how the
profitability analysis of packing can be automated with-
out relying on any user-supplied directive.

The following example illustrates our compiler sup-
port for data packing. The example has two compu-
tation loops: the first loop calculates cumulative forces
on each object, and the second loop calculates the new
location of each object as a result of those forces. The
packing directive specifies that packing is to be applied
before the first loop.

The straightforward (unoptimized) packing produces the
following code. The call to applyqaclcing analyzes the
interactions array, packs force array and generates the
run-time data map, inter$map. After packing, indirec-
tions are added in both loops.

The cost of data packing includes both data reor-
ganization during packing and data redirection after
packing. The first cost can be balanced by adjusting
frequency of packing. Thus the cost of reorganizing
data is amortized over multiple computation iterations.
A compiler can make sure that this cost does not out-
weigh any performance gain by either applying packing
infrequently or making it adjustable at run time. As
will be shown in Section 5, data reorganization incurs
negligible overhead in practice.

Data indirection, on the other hand, can be very ex-
pensive, because its cost is incurred on every access to
a transformed array. The indirection overhead comes
from two sources: the instruction overhead of indirec-
tion and the references to run-time data maps. The in-
direction instructions have a direct impact on the num-
ber of memory loads but the overhead becomes less sig-
nificant in deeper memory hierarchy levels. However,
the cost of run-time data maps has an consistent effect
on all levels of cache, although this cost is likely to be
small in cases where the same data map is shared by
many data arrays. In addition, as we show next, the
cost of indirection can be almost entirely eliminated by
two compiler optimizations, pointer update and array
alignment.

Pointer update modifies all references to transformed
data arrays so that the indirections are no longer nec-
essary. In the above example, this means that the ref-
erences in interactions array are changed so that the
indirections in the first loop can be completely elimi-
nated. To implement this transformation correctly, a
compiler must (1) make sure that every indirection ar-
ray is associated with only one run-time data map and
(2) when packing multiple times, maintain two maps
for each run-time data map, one maps from the original
layout and the other maps from the most recent data
layout.

The indirections in the second loop can be eliminated
by array alignment, which reorganizes the location ar-
ray in the same way as the force array, that is, aligns
the i’s element of both arrays. Two requirements are
necessary for this optimization to be legal: (1) the loop
iterations can be arbitrarily reordered, and (2) the range
of loop iterations is identical to the range of re-mapped
data. The second optimization, strictly speaking, is
more than a data transformation because it reorders
loop iterations.

The following is the example code after applying
pointer update and array alignment. The update-map
array is added to map data from the last layout to the
current layout. After the two transformations, all in-
directions through the inter$map array have been re-
moved.

apply-packingc interactionsC*l, forceC*l,
inter$mapC*l, update-map[*l)

tipdate-indirection-array(interactions[*],
update-mapC*l)

transform-data-array(locationC*l, update-map[*l)

for each pair (i,j) in interactions
calculate-force(forceCil, forceCj1)

end for

for each object i
update-locationc locationcil, forceCil)

end for

The overhead of array alignment can be further re-
duced by avoiding packing those data arrays that are
not live at the point of data packing. In the above
example, if the location array does not carry any live
values at the point of packing, then the third call, which
transforms location array, can be removed.

3.2 Compiler Implementation

We have implemented the compiler support for pack-
ing in the D Compiler System at Rice University. The
compiler performs whole program compilation given all
source files of an input program. It uses a powerful
value-numbering package to handle symbolic variables
and expressions inside each subroutine and parameter
passing between subroutines. It has a standard set of
loop and dependence analysis, data flow analysis and
interprocedural analysis.

The first step of the compiler support is to find all
possible packing candidates, and it does so by first dis-
covering and then partitioning primitive packing groups.
Each primitive packing group contains two sets of ar-
rays: the set of access arrays, which hold the indirect
access sequence, and the set of data arrays, which are
either indirectly accessed through the first set of ar-
rays or alignable with some arrays that are indirectly
accessed. Given a program, the compiler identifies all
premitive packing groups as follows. For each indirect
data access in the program, the compiler puts the ac-
cess array and the data array into a new primitive pack-
ing group. For each loop that can be freely reordered,
the compiler puts all accessed data arrays into a new
primitive packing group. Then the compiler partitions
all primitive packing groups into disjoint packing par-
titions. Two primitive packing groups are disjoint if
they don’t share any array between their access array
sets and between their data array sets. A union-find
algorithm can efficiently perform the paritioning.

After partitioning, each disjoint packing partition
is a possible packing candidate. The two optimiza-
tions can be readily applied to any packing candidate,
should it become the choice of packing. Pointer update
changes all arrays in the access array set; array align-
ment transforms all arrays in the data array set and
reorders the loops that access aligned data arrays. For
all other accesses that are not covered by the above two

234

optimizations, the compiler inserts indirections through
run-time maps.

The current implementation of packing has several
limitations. It does not work on programs where the
indirect access sequence is incrementally computed be-
cause the one-line directive requires the existence of a
full access sequence. A possible extension would be to
allow user to specify a region of computation in which to
apply packing so that the compiler can record the full
access sequence at run time. The other restriction of
the current implementation is due to conservative han-
dling of array parameter passing. For each subroutine
with array parameters, we do not allow two different
array layouts to be passed to the same formal parame-
ter. This problem can be solved by propagating array
layout information in a way similar to interprocedural
constant propagation or data type analysis and then
cloning the subroutine for each reachable array layout.
In the programs we have encountered, however, there
is no need for such cloning. The implementation also
inherits limitations from our compiler infrastructure: it
only compiles programs written in Fortran 77 and con-
sequently it does not handle recursion. However, recur-
sion should present no fundamental obstacles to these
methods.

3.3 Extensions to Fully Automatic Packing

Although the one-line packing directive is convenient
when a user knows how to apply packing, the monda-
tory requirement for such a directive is not desirable in
situations when a user cannot make an accurate judge-
ment on the profitability of packing. This section dis-
cusses several straightforward extentions which can fully
automate the profitability analysis, specifically, exten-
sions that decide whether, where, and when to apply
packing.

With the algorithm described in the previous sec-
tion, a compiler can identify all packing candidates. For
each candidate, the compiler can record the access se-
quence at run time and determine whether it is non-
contiguous and, if so, whether packing can improve its
spatial reuse. Such decisions depend on program inputs
and must be made with some sort of run-time feedback
system. In addition, the same data may be indirectly
accessed by more than one access sequence, each may
demand a different reorganization scheme. Again, run-
time analysis is necessary to pick out the best packing
choice.

Once the compiler chooses a packing candidate, it
can place packing calls right before the place where the
indirect data accesses begin. The placement requires
finding the right loop level under which the whole indi-
rect access sequence is iterated.

The frequency of packing can also be automatically
determined. One efficient scheme is to monitor the av-

erage data distance in an indirect access sequence and
only invoke packing routines when adjacent computa-
tions access data that are too far apart in memory.
Since the overhead of data reorganization can be eas-
ily monitored at run-time, the frequency of packing can
be automatically controlled to balance the cost of data
reorganization.

4 Optimal Data Regrouping

A dynamic application may have multiple computa-
tion phases each of which computes on a different but
overlapping set of data. Data regrouping separates the
data of different phases, computes the optimal grouping
scheme and places data within each group consecutively
in memory. The regrouping algorithm and a more de-
tailed discussion can be found in [ll]. In summary, opti-
mal regrouping is equivalent to a set-partitioning prob-
lem and it can be computed in O(min(maz(2s, N), N *
log N*S), where N is the number of arrays and S is the
number of computation phases. For dynamic applica-
tions, optimal regrouping achieves full cache utilization
and maximal spatial reuse. The regrouping algorithm
also benefits regular applications because it guarantees
full cache utilization and minimal working sets in cache
and TLB. Existing compiler techniques are capable of
implementing the analysis and transformation of data
regrouping. In particular, bounded regular sections [14]
can be used to analyze computation phases and to direct
data transformations. It has been successfully applied
for similar purposes in other contexts.

5 Evaluation

5.1 Experimental Design

Table 2 lists the four applications we used for the study,
along with their description, source and size. We chose
three scientific simulation applications from molecular
dynamics, structural mechanics and hydrodynamics. De-
spite the difference in their physical model and compu-
tation, they have similar dynamic data access patterns
in which objects interact with their neighbors. Moldyn
and mesh are well-known benchmarks. We used a large
input data set for moldyn with random initialization.
Mesh has a user-supplied input set. Magi is a full,
real-world application consisting of almost 10,000 lines
of Fortran 90 code. In addition to the three simulation
programs, we included a sparse-matrix benchmark to
show the effect of packing on irregular data accesses in
such applications.

The test programs are measured on a single MIPS
RlOK processor of an SGI Origin2000.. The RlOK pro-
vides hardware counters that measure cache misses and
other hardware events with a very small run-time over-
head. The processor has two caches: the first-level (Ll)

235

name description source language No. lines
moldyn molecule dynamics simulation Chaos group f77 660
mesh structural simulation Chaos group C 932
magi particle hydrodynamics DOD f90 9339
NAS-CG sparse matrix-vector multiplication NAS/NPB Serial ~2.3 I77 1141

application input size source of input exe. time
moldyn 256K particles, 27.4M interactions, 1 iteration random initialization 53.2 set
mesh 9.4K nodes, 60K edges, 20 iterations provided by the Chaos group 8.14 set
magi 28K particles, 253 cycles provided by DOD 885 set
NAS-CG 14K non-zero entries, 15 iterations NASA/NPB Serial 2.3, Class A 48.3 set

application optimizations applied program components measured
locality grouping regrouping packing

moldyn + V V subroutine Compzlte-Force0
mesh V + V full application
magi + V V full application
NAS-CG n/a + v/+ full application

Table 2: Applications, Input Sizes, and Transformations Applied

cache is 32KB in size and uses 32-byte cache lines and
the second-level (L2) cache is 4MB with 128-byte cache
lines. Both caches are two-way set associative. The
RlOK achieves good latency hiding as a result of dy-
namic, out-of-order instruction issuing and compiler-
directed prefetching. All applications are compiled with
the highest optimization flag and prefetching turned on.

The second table in Table 2 gives the input size for
each application, the sources of the data inputs, and
the execution time before applying optimizations. The
working set is significantly larger than the Ll cache for
all applications. Mesh, Magi and NAS - CG are a
little bit larger than L2. Moldyn has the largest data
input and its data size is significantly greater than the
size of L2.

We applied the three transformations in the follow-
ing order: locality grouping, optimal data regrouping,
dynamic data packing and packing optimizations. Since
the access sequence is already transformed by locality
grouping, we use consecutive packing for all cases be-
cause of the observation made in Section 2.2. (One
test case, NAS - CG, accesses each element only once,
therefore consecutive packing is optimal.) For each trans-
formation applied, we measure its impact on execution
time and the number of cache and TLB misses.

5.2 Transformations Applied

The third table in Table 2 lists, for each application,
the optimizations applied and the program components
measured. Each of the base programs came with one
or more of the three optimizations done by hand. Such
cases are labeled with a ‘+’ sign in the table. The ‘V’

signs indicate the optimizations we added, except in
the case of NAS-CG. The base program of NAS - CG
came with data packing already done by hand, but we
removed it for the purpose of demonstrating the effect
of packing. We do not consider hand-applied packing
practical because of the complexity of transforming tens
of arrays repeatedly at run-time for a large program.

Locality grouping and data regrouping were inserted
by hand. Data packing of moldyn and CG was per-
formed automatically by our compiler given a one-line
directive of packing. The same compiler packing algo-
rithm was applied to mesh by hand because our com-
piler infrastructure cannot yet compile C. Unlike other
programs, Magi is written in Fortran and computes
the interaction list incrementally. We slightly modified
the source to let it run through the Fortran front-end
and inserted a loop to collect the overall data access
sequence. Then our compiler successfully applied base
packing transformation on the whole program. The ap-
plication of the two compiler optimizations were semi-
automatic: we inserted a 3-line loop to perform pointer
update; and we annotated a few dependence-free loops
which otherwise would not be recognized by the com-
piler due to the presence of procedural calls inside the
them. All other transformations are performed by the
compiler. The optimized packing reorganizes a total of
45 arrays in magi.

We refer to the original program as the base pro-
gram and the transformed version with optimizations
labeled ‘V’ as the optimized program. For NAS-CG,
the base program refers to the version with no packing.
Dynamic data packing is applied only once in each ap-

236

plication except magi where data are repacked every 75
iterations.

5.3 Effect of Transformations

The four graphs of Figure 5 show the effect of the three
transformations. The first plots the effect of optimiza-
tions on the execution speed. The first bar of each ap-
plication is the normalized performance (normalized to
1) of the base version. The other bars show the perfor-
mance after applying each transformation. Since not all
transformations are necessary, an application may not
have all three bars. The second bar, if shown, shows
the speedup of locality grouping. The third and fourth
bars show the speedup due to data regrouping and data
packing. The other three graphs are organized in the
same way, except that they are showing the reduction
on the number of Ll, L2 and TLB misses. The graphs
include the miss rate of the base program, but the re-
duction is on the total number of misses, not on the
miss rate.

Effect of Locality Grouping and Data Regrouping

Locality grouping eliminates over half of Ll and L2
misses in mesh and improves performance by 20%. In
addition, locality grouping avails the program for data
packing, which further reduces Ll misses by 35%. With-
out the locality grouping step, however, consecutive
packing not only results in no improvement but also in-
curs 5% more Ll misses and 54% more L2 misses. This
confirms the observation from our simulation study that
locality grouping is critical for the later data optimiza-
tion to be effective.

Data regrouping significantly improves moldyn and
magi. Magi has multiple computation phases, optimal
regrouping selectively groups 26 arrays into 6 arrays in
order to achieve full cache utilization and maximal spa-
tial reuse. As a result, the execution time is improved
by a factor of 1.32 and cache misses are reduced by
38% for Ll, 17% for L2, and 47% for TLB. By con-
trast, merging all 26 arrays improves performance by
only 12%, reduces Ll misses by 35%, and as a side ef-
fect, increases L2 misses by 32%. Data regrouping is
even more effective on moldyn, eliminating 70% of Ll
and L2 misses and almost doubling the execution speed.

Effect of Dynamic Data Packing

Data packing is applied to all four applications after
locality grouping and data regrouping. It further im-
proves performance in all cases. For moldyn, packing
improves performance by a factor of 1.6 and reduces L2
misses by 21% and TLB misses by 88% over the version
after data regrouping. For NAS - CG, the speedup is
4.36 and the amount of reduction is 44% for Ll, 85%
for L2 and over 97% for TLB.

For mesh after locality grouping, packing slightly
improves performance and reduces misses by additional
3% for Ll and 35% for L2. The main reason for the
modest improvement on Ll is that the data granularity
(24 bytes) is close to the size of Ll cache lines (32 bytes),
leaving little room for additional spatial reuse. In addi-
tion, packing is directed by the traversal of edges, which
does not work as well during the traversal of faces. The
number of Ll misses is reduced by over 6% during edge
traversals, but the reduction is less than 1% during face
traversals. Since the input data set almost fits in L2,
the significant reduction in L2 misses does not produce
a visible effect on the execution time.

When applied after data regrouping on magi, pack-
ing speeds up the computation by another 70 seconds
(12%) and reduces Ll misses by 33% and TLB misses
by 55%. Because of the relatively small input data set,
L2 and TLB misses are not a dominant factor in per-
formance. As a result, the speed improvement is not as
pronounced as the reduction in these misses.

Overall, packing achieves a significant reduction in
the number of cache misses especially for L2 and TLB,
where opportunities for spatial reuse are abundant. The
reduction in L2 misses ranges from 21% to 84% for all
four applications; the reduction in TLB misses ranges
from 55% to 97% except for mesh, whose working set
fits in TLB.

Packing Overhead and the Effect of Compiler Optimiza-

tions

The cost of dynamic data packing comes from the over-
head of data reorganization and the cost of indirect
memory accesses. The time spent in packing has a neg-
ligible effect on performance in all three applications we
measured. Packing time is 13% of the time of one com-
putation iteration in moldyn, and 5.4% in mesh. When
packing is applied for every 20 iterations, the cost is less
than 0.7% in moldyn and 0.3% in mesh. Magi packs
data every 75 iterations and spends less than 0.15% of
time on packing routines.

The cost of data indirection after packing can be
mostly eliminated by two compiler optimizations de-
scribed in Section 3.1. Figure 6 shows the effect of these
two compiler optimizations on all four applications we
tested.

The upper-left graph shows that, for moldyn, the
indirections (that can be optimized away) account for
10% of memory loads, 22% of Ll misses, 19% of L2
misses and 37% of TLB misses. After the elimination
of the indirections and the references to the run-time
map, execution time was reduced by 27%, a speedup of
1.37. The improvement in mesh is even larger. In this
case, the indirections account for 87% of the loads from
memory, in part because mesh is written in C and the

237

compiler does not do a good job of optimizing array ref-
erences. Since the excessive number of memory loads
dominates execution time, the compiler optimizations
achieve a similar reduction (82%) in execution time.
The number of loads is increased in magi after the op-
timizations because array alignment transforms 19 more
arrays than the base packing, and not all indirections to
these arrays can be eliminated. Despite the increased
number of memory loads, the cache misses and TLB
misses are reduced by 10% to 33%, and the overall speed

is improved by 8%. For NAS - CG, the compiler rec-
ognizes that matrix entries are accessed in stride-one
fashion and consequently, the compiler replaces the in-
direction accesses with direct stride-one iteration of the
reorganized data array. The transformed matrix-vector
multiply kernel has the equally efficient data access as
the original hand-coded version. As a result, the num-
ber of loads and cache misses is reduced by 23% to 50%.
The TLB working set fits in machine’s TLB buffer after
the optimizations, removing 97% of TLB misses. The
execution time is reduced by 60%, a speedup of 2.47.

6 Related Work

To our knowledge, this work is the first study on the
combination of run-time computation and data trans-
formation to improve cache performance of irregular
and dynamic applications. It is also the first to pro-
vide comprehensive compiler support for run-time data
transformation.

Our work is close in spirit to the run-time paralleliza-
tion work on dynamic applications. The Chaos group,
led by Saltz[10], partitions computation and reorganizes
data at run time in order to balance the computational
load across processors and reduce communication in a
parallel execution. Once computation is partitioned,
the data accessed by each processor are grouped and
placed in its local memory. However, the parallelization
work did not include a general restructuring method to
subsequently improve cache performance.

The Chaos group is also the first to use run-time

computation transformation to improve cache perfor-
mance. Das et al. used a reverse Cuthill Mcgee order-
ing to improve locality in a multi-grid computation[9].
Another method, domain partitioning, has been used to
block computation for cache by Tomko and Abraham[21].
However, they found no overall improvement by block-
ing. Building on our work reported in this paper, Mellor-
Crummey et a1.[18] have employed space-fitting curve
ordering to block dynamic computation. Domain par-
titioning and space-curve ordering are more powerful
than locality grouping because they can block computa-
tion for a specific cache size, but they are also more ex-
pansive than locality grouping. In fact, locality group-
ing works without looking at domain data, i.e. coordi-
nates of particles. For applications such as mesh, lo-
cality grouping is able to reduce miss rate to as low as
0.37%, leaving little room for further improvement with
more expansive methods. An idea that is similar to lo-
cality grouping is used by Han and Tseng to improve
parallel efficiency on a shared-memory machine[l3]. They
used owner-compute rule and assigned all updates of a
particle to a single thread to avoid the cost of reduction
among parallel processors.

The compiler support for dynamic data packing over-
comes a serious limitation of all previous run-time meth-
ods, that is, their reliance on the knowledge of program
structure and data domain. By comparison, our com-
piler exploits and optimizes data layout transformation
without relying on domain knowledge of either the pro-
gram or data. There has been recent work on hardware-
based data reorganization by Carter at e1.[6]. Their ap-
proach can be potentially more efficient because they
use an additional processor to remap memory. How-
ever, compiler analysis similar to ours is necessary to
effectively control such hardware features.

The goal of improving data reuse has been pursued
for regular applications by loop and data transforma-
tions such as cache blocking[5, 221, memory order loop
permutation[l, 12, 171, and data reshaping[& 3, 151.
However, static loop and data transformations devel-
oped for regular applications cannot optimize dynamic
computations where the data access pattern remains
unknown until run time and changes during the com-
putation.

Various static data placement schemes have been
used to avoid cache conflicts and to improve spatial
reuse. Thabit[20] studied data packing to reduce con-
flicts in cache. He used static program analysis to con-
struct a proximity matrix and packed simultaneously
used data into non-conflicting cache blocks. He proved
that finding the optimal packing using a proximity ma-
trix is NP-complete. Al-Furaih and Ranka modeled
irregular data as graph nodes and used edges to link
the data that are simultaneously accessed[2]. In addi-
tion, for programs with high-level data structures and

dynamic memory allocation, profiling information has
been used to analyze the order of access to both code
and data. Seidl and Zorn[lS] clustered frequently ref-
erenced objects, and Calder et a1.[4] reordered objects
based on their temporal relations.

Our work differs from such static data layout trans-
formations in that we apply data packing at run time.
Efficiently exploiting spatial reuse at run time is criti-
cal for applications in which data access order changes
during the execution. For example, in a sparse-matrix
code, the matrix may be iterated first by rows and then
by columns. In scientific simulations, the computation
order changes as the physical model evolves. In these
cases, a fixed static data layout is not likely to perform
well throughout the computation. Another difference is
that our packing method does not explicitly use prox-
imity or temporal relations of data. It is not yet estab-
lished whether the data reordering methods based on
proximity matrices or temporal relation graphs are cost
effective at run time. The cost of constructing a com-
plete proximity relationship can be prohibitively high,
given a large number of data elements involved. The
third difference is the granularity of the analysis and
transformation. Profiling-based methods have the fixed
granularity, i.e. the unit of memory allocation. The
granularity of our analysis and transformation is indi-
vidual array elements. In addition, our data transfor-
mation aligns and merges array elements that are at-
tributes of the same particle.

7 Contributions

We have presented and evaluated three novel program
and data transformations for improving the memory hi-
erarchy performance of dynamic applications. The prin-
cipal contribution of this paper is a demonstration of
how compiler-generated computation and data reorga-
nization at run time can improve temporal and spatial
reuse. We examined two run-time transformations for
this purpose.

l Locality grouping brings together all the interac-
tions involving the same data element. It is inex-
pensive, yet very powerful, eliminating over 50%
of cache misses in a full application. Furthermore,
locality grouping is vital for the subsequent data
transformation to be effective.

l Dynamic data packing improves spatial reuse by
reorganizing the data structures so that data el-
ements that are used together are close together
in memory. Since optimal data packing is NP-
complete, we have explored three different heuristic-
based packing algorithms and found that simple
consecutive packing performs extremely well when
carried out after locality grouping. For all appli-

239

cations tested on SGI Origin2000, dynamic data
packing reduced the number of L2 misses by 21%
to 84% and the number of TLB misses by 55%
to 97%. As a result, it improved overall program
performance by a factor up to 4.36.

A second contribution of this paper is a compiler
strategy for eliminating overhead associated with dy-
namic data packing. This support has been imple-
mented in an interprocedural compiler at Rice. The
compiler uses run-time data maps and data indirections
to ensure the correctness of any run-time data transfor-
mation. It then employs two optimizations, pointer up-
date and array alignment, to eliminate most of the data
indirections after data reorganization. The compiler op-
timizations are very effective in removing packing over-
head for all applications tested, improving performance
by factors ranging from 1.08 to 5.56.

Acknowlegement

The implementation described here is based on the D
System infrastructure at Rice University, a project led
by John Mellor-Crummey and Vikram Adve. We de-
pended especially on the scalar compiler version origi-
nated by Nat McIntosh. Dennis Moreau and William
Eaton provided access to SGI Origin2000, and Ehte-
sham Hayder helped setting up application magi. We
also wish to thank Keith Cooper and anonymous ref-
erees for helpful comments on the early drafts of this
paper.

References

[l] W. Abu-Sufah, D. Kuck, and D. Lawrie. On
the performance enhancement of paging systems
through program analysis and transformations.
IEEE Transactions on Computers, C-30(5):341-
356, May 1981.

[2] I. Al-Furaih and S. Ranka. Memory hierarchy man-
agement for iterative graph structures. In Proceed-
ings of IPPS, 1998.

[3] J. Anderson, S. Amarasinghe, and M. Lam. Data
and computation transformation for multiproces-
sors. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, Santa Barbara, CA, July 1995.

[4] B. Calder, K. Chandra, S. John, and T. Austin.
Cache-conscious data placement. In Proceedings
of the Eighth International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS- VIII), San Jose, Ott
1998.

[5] D. Callahan, S. Carr, and K. Kennedy. Improving
register allocation for subscripted variables. In Pro-
ceedings of the SIGPLAN ‘90 Conference on Pro-
gramming Language Design and Implementation,
White Plains, NY, June 1990.

[6] J. Carter, W. Hsieh, M. Swanson, L. Zhang,
A. Davis, M. Parker, L. Schaelicke, L. Stoller, and
T. Tateyama. Memory system support for irregular
applications. In Workshop on Languages, Compil-
ers, and Runtime Systems for Scalable Computers,
May 1998.

[7] R. Chandra, D. Chen, R. Cox, D.E. Maydan, and
N. Nedeljkovic. Data distribution support on dis-
tributed shared memory multiprocessors. In Pro-
ceedings of ‘97 Conference on Programming Lan-
guage Design and Implementation, 1997.

[8] M. Cierniak and W. Li. Unifying data and control
transformations for distributed share d-memory
machines. In Proceedings of the SIGPLAN ‘95
Conference on Programming Language Design and
Implementation, La Jolla, 1995.

[9] R. Das, D. Mavriplis, J. Saltz, S. Gupta, and
R. Ponnusamy. The design and implementation of
a parallel unstructured euler solver using software
primitives. In Proceedings of the 30th Aerospace
Science Meeting, Reno, Navada, January 1992.

[lo] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang.
Communication optimizations for irregular scien-
tific computations on distributed memory architec-
tures. Journal of Parallel and Distributed Comput-
ing, 22(3):462-479, September 1994.

[ll] C. Ding. Improving effective bandwidth on ma-
chines with complex memory hierarchy. Thesis
Proposal, Rice University, November 1998.

[12] D. Gannon, W. Jalby, and K. Gallivan. Strategies
for cache and local memory management by global
program transformations. In Proceedings of the
First International Conference on Supercomputing.
Springer-Verlag, Athens, Greece, June 1987.

[13] H. Han and C.-W. Tseng. Improving compiler
and run-time support for adaptive irregular codes.
In Proceedings of the International Conference
on Parallel Architectures and Compilation Tech-
niques, October 1998.

[14] P. Havlak and K. Kennedy. An implementation
of interprocedural bounded regular section analy-
sis. IEEE Transactions on Parallel and Distributed
Systems, 2(3):350-360, July 1991.

240

[15] T. E. Jeremiassen and S. J. Eggers. Reducing false
sharing on shared memory multiprocessors through
compile time data transformations. pages 179-188,
July 1995.

[16] D. G. Kirkpatrick and P. Hell. On the completeness
of a generalized matching problem. In The Tenth
Annual ACM Symposium on Theory of Computing,
1978.

[17] K. S. McKinley, S. Carr, and C.-W. Tseng. Improv-
ing data locality with loop transformations. ACM
Transactions on Programming Languages and Sys-
tems, 18(4):424-453, July 1996.

[18] J. Mellor-C rummey, D. Whalley, and K. Kennedy.
Improving memory hierarchy performance for ir-
regular applications. Technical Report TR 99-336,
Department of Computer Science, Rice University,
Feburary 1999.

[19] M. L. Seidl and B. G. Zorn. Segregating heap ob-
jects by reference behavior and lifetime. In Pro-
ceedings of the Eighth International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS- VIII), San Jose,
Ott 1998.

[20] K. 0. Thabit. Cache Management by the Com-
piler. PhD thesis, Dept. of Computer Science, Rice
University, 1981.

[21] K. A. Tomko and S. G. Abraham. Data and
program restructuring of irregular applications for
cache-coherent multiprocessors. In Proceedings of
‘94 International Conference on Supercomputing,
1994.

[22] M. E. Wolf and M. Lam. A data locality optimiz-
ing algorithm. In Proceedings of the SIGPLAN ‘91
Conference on Programming Language Design and
Implementation, Toronto, Canada, June 1991.

241

