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Abstract 

With the rapid improvement of processor speed, perfor- 
mance of the memory hierarchy has become the princi- 
pal bottleneck for most applications. A number of com- 
piler transformations have been developed to improve 
data reuse in cache and registers, thus reducing the to- 
tal number of direct memory accesses in a program. 
Until now, however, most data reuse transformations 
have been static--applied only at compile time. As a 
result, these transformations cannot be used to optimize 
irregular and dynamic applications, in which the data 
layout and data access patterns remain unknown until 
run time and may even change during the computation. 

In this paper, we explore ways to achieve better data 
reuse in irregular and dynamic applications by build- 
ing on the inspector-executor method used by Saltz for 
run-time parallelization. In particular, we present and 
evaluate a dynamic approach for improving both com- 
putation and data locality in irregular programs. Our 
results demonstrate that run-time program transforma- 
tions can substantially improve computation and data 
locality and, despite the complexity and cost involved, 
a compiler can automate such transformations, elimi- 
nating much of the associated run-time overhead. 

1 Introduction 

As modern single-chip processors have increased the 
rate at which they execute instructions, performance 
of the memory hierarchy has become the bottleneck for 
most applications. In the past, the principal challenge 
in memory hierarchy management has been overcom- 
ing latency, but blocking and prefetching have amelio- 
rated that problem significantly. As exposed memory 
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latency is reduced, bandwidth has become the domi- 
nant performance constraint because limited memory 
bandwidth bounds the rate of data transfer between 
memory and CPU regardless of the speed of proces- 
sors or the latency of memory access. Our experiments 
on the SGI Origin 2000 have indicated that the band- 
width needed to achieve peak performance levels on 
most scientific applications on large data sets is a fac- 
tor of two or more greater than that provided by the 
memory system[ll]. As a result, program performance 
is now limited by its effective bandwidth, that is, the 
rate at which operands of a computation are transferred 
between CPU and memory. 

Currently, the principal software mechanism for im- 
proving effective bandwidth in a program, as well as 
reducing overall memory latency, is increasing tempo- 
ral and spatial reuse through program transformation. 
Temporal reuse occurs when multiple accesses to the 
same data structure use a buffered copy in cache or 
registers, eliminating the need for repeated accesses to 
main memory. While temporal reuse reduces the fre- 
quency of memory accesses, spatial reuse improves the 
efficiency of each memory access by grouping accesses 
on the same cache line. Since most current machines 
transfer one cache line at a time from memory, this 
grouping amortizes the cost of the bandwidth over more 
references. The combination of temporal and spatial 
reuse can minimize the number of transferred cache 
lines, i.e. the total memory bandwidth requirement of 
the program. 

A substantive portion of the research on compiler 
memory management has focused on increasing tem- 
poral and spatial reuse in regular applications. Cache 
and register blocking techniques group computations on 
data tiles to enhance temporal reuse[5,22]. Various loop 
reordering schemes seek to arrange stride-one data ac- 
cess to maximize spatial reuse[l, 12, 171. Data transfor- 
mations can often be used to effect spatial reuse when 
computation transformation is insufficient or illegal[8]. 
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None of these strategies, however, works well with 
dynamic and irregular computations because the unpre- 
dictable nature of data reuse prevents effective static 
analysis. An example is molecular dynamics simula- 
tion, which models the movement of particles in some 
physical domain (e.g. a 3-D space). The distribution 
of molecules remains unknown until run time, and the 
distribution itself changes during the computation. An- 
other class of dynamic applications employ sparse linear 
algebra, where the non-zero entries in a sparse matrix 
changes dynamically. In both types of computation, it 
is impossible to enhance dynamic temporal reuse and 
irregular spatial reuse with static transformations. 

The alternative to static methods is to apply dy- 
namic reorganization at run time. Such strategies have 
been routinely employed to enhance the efficiency of 
parallel computations using the so-called “inspector- 
executor” method pioneered by Saltz and his colleagues. 
The underlying strategy is to insert code into the object 
program that reorganizes the computation or data lay- 
out once the structure of that data is known. The cost 
of this reorganization is then amortized over numerous 
time steps of the computation[lO]. 

In this paper we describe two run-time transforma- 
tions that improve the memory hierarchy performance 
of irregular computations like molecular dynamics sim- 
ulation, and we present experimental evidence of their 
effectiveness. The locality grouping transformation re- 
orders computation to improve dynamic temporal reuse. 
Dynamic data packing, on the other hand, reorganizes 
data to achieve better spatial locality. In addition to 
these two transformations, we discuss a static data trans- 
formation, data regrouping, that is necessary to opti- 
mize global static data layout for large dynamic pro- 
grams. 

A substantial portion of this paper is devoted to 
the compiler support for dynamic data packing. Trans- 
forming data at run time carries a significant overhead 
because of the need to redirect accesses from the old 
layout to the transformed one. However, most of this 
overhead can be eliminated by compiler optimizations. 
This paper describes an implementation of packing and 
evaluates the associated optimizations. 

The remainder of the paper is organized as follows. 
Section 2 describes locality grouping and dynamic data 
packing, with a simulation study on their effectiveness 
on various cache configurations. Section 3 presents the 
compiler support for dynamic data packing, including 
optimizations that eliminate most of its run-time over- 
head. Section 4 briefly discusses data regrouping. In 
Section 5, the three transformations are evaluated on 
the SGI Origin2000 using three well-known benchmarks 
and a full application. Related work is discussed in 
Section 6. Finally, Section 7 summarizes the original 
contributions of this paper. 

2 Run-time Computation and Data Transformations 

This section describes two run-time transformations: lo- 
cality grouping, which reorders data access to improve 
dynamic temporal reuse; and dynamic data packing, 
which reorganizes data layout for better run-time spa- 
tial reuse. Both transformations are then evaluated, 
individually and combined, through various access se- 
quences on simulated caches. 

2.1 locality Grouping 

The effectiveness of cache is predicated on the existence 
of locality and good computation structure exploiting 
that locality. In a dynamic application such as molec- 
ular dynamics simulation, the locality comes directly 
from its physical model in which a particle interacts 
only with its neighbors. A set of neighboring particles 
forms a locality group in which most interactions occur 
within the group. In most programs, however, locality 
groups are not well separated. Although schemes such 
as domain partitioning exist for explicitly extracting lo- 
cality, they are very time-consuming and may therefore 
not be cost-effective in improving cache performance of 
a sequential execution. To pursue a better tradeoff, this 
section proposes the most efficient, yet also very pow- 
erful reordering scheme, locality grouping. 

Given a sequence of objects and their interactions, 
locality grouping goes through the list of objects and 
clusters all interactions involving each object in the list. 
Figure 1 shows an example of locality grouping. Graph 
(a) draws the example objects and their interactions 
and Graph (b) is an example enumeration of all inter- 
actions. Assuming a cache of 3 objects, the example 
sequence incurs 10 misses. Locality grouping reorders 
the access sequence so that all interactions with each ob- 
ject are clustered. The new sequence then starts with 
all interactions on object a, then b, until the last object 
g. The locality-grouped access sequence incurs only 6 
misses. 
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Figure 1: Example of Locality Grouping 

Locality grouping incurs minimal run-time overhead. 
It can be done by doing a radix sort through two passes: 
the first pass collects a histogram and the second pass 

230 



produces the locality-grouped sequence. Locality group- 
ing also applies to interactions in tuples involving more 
than a pair of objects. A compiler can automate lo- 
cality grouping by simply inserting a call to a sorting 
subroutine. The legality and profitability of this trans- 
formation can be determined either by compiler analy- 
sis or user directives, similar to the compiler support to 
run-time data transformations, which we will show in 
detail in the next section. 

We evaluated locality grouping on a data set from 
mesh, a structural simulation. The data set is a list of 
edges of a mesh structure of some physical object such 
as an airplane. Each edge connects two nodes of the 
mesh. This specific data set, provided by the Chaos 
group at University of Maryland, has 10K nodes and 
60K edges. We simulate only the data accesses on a 
fully associative cache in order to isolate the inherent 
cache reuse behavior from other factors. The two caches 
we simulate are 2K and 4K bytes in size and they use 
unit-length cache lines. 

Table 1 gives the miss rate of mesh with and without 
locality grouping. Locality grouping eliminates 96.9% 
of cache misses in the 2K cache and 99.4% in the 4K 
cache. The miss rates after locality grouping are ex- 
tremely low, especially in the 4K cache (0.37%). Fur- 
ther decreasing miss rate with more powerful reordering 
schemes in this case is unlikely to be cost-effective if the 
overhead of extra execution time does not out-weigh the 
additional gain. 

Original After locality grouping 
miss rate 2K cache ( 4K 2K cache 1 4K 
of mesh 93.2% 1 63.5% 2.93% 1 0.37% 

Table 1: Effect of Locality Grouping 

2.2 Dynamic Data Packing 

Correct data placement is critical to effective use of 
available memory bandwidth. Placement of data ele- 
ments in memory in the order in which they are accessed 
should improve spatial reuse. In regular computations, 
this placement can be done at compile time. However, 
in an irregular or adaptive computation, the order of 
data access is not known until run time and that or- 
der may change dynamically. Dynamic data packing is 
a run-time optimization that groups data accessed at 
close intervals in the program into the same cache line. 
For example, if two objects are always accessed consec- 
utively in a computation, placing them adjacent to each 
other increases bandwidth utilization by increasing the 
number of bytes on each line that are used before the 
line is evicted. 

Figure 2 will be used as an example throughout this 
section to illustrate the packing algorithms and their 
effects. Figure 2(a) shows an example access sequence. 

The objects are numbered by their location in memory. 
In the sequence, the first object interacts with the 600th 
and 800th object and subsequently the latter two ob- 
jects interact with each other. Assume that the cache 
size is limited and the access to the last pair of the 600th 
and 800th objects cannot reuse the data loaded at the 
beginning. Since each of these three objects are on dif- 
ferent cache lines, the total number of cache misses is 
5. A transformed data layout is shown in Figure 2(b), 
where the three objects are relocated at positions 0 to 
2. Assuming a cache line can hold three objects, the 
transformed layout only incurs two cache misses, a sig- 
nificant reduction from the previous figure of 5 misses. 
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(0 600) 

. . . 

Runtime data 
pdillg 

> 

(0 1) 
(0 2) 

(12) fall into the 
. . . 

Same cache line 

(600 800) (2 1) 

(5ePebe) - (X) 

(a) Example interaction list @) Interaction list 
before packing after packing 

Figure 2: Example of Data Packing 

The rest of this section presents three packing algo- 
rithms and a comparison study of their performance on 
different types of run-time inputs. 

Packing Algorithms 

The simplest packing strategy is to place data in the 
order they first appear in the access sequence. We call 
this strategy consecutive packing or first-touch packing. 
The packing algorithm is as follows. To ensure that 
each object has one and only one location in the new 
storage, the algorithm uses a tag for each object to label 
whether the object has been packed or not. 

initializing each tag to be false (not packed) 
for each object i in the access sequence 

if i has not been packed 
place i in the next available location 
mark its tag to be true (packed) 

end if 
end iteration 
place the remaining unpacked objects 

Consecutive packing carries a minimal time and space 
overhead because it traverses the access sequence and 
object array once and only once. For access sequences 
in which each object is accessed at most once, consec- 
utive packing yields optimal cache line utilization be- 
cause the objects are visited in stride-one fashion dur- 
ing the computation. Achieving an optimal packing in 
the presence of repeated accesses, on the other hand, is 
NP-complete, as this problem can be reduced to the G- 
partition problem[l6] following a similar reduction by 
Thabit[20]. The packing algorithms presented in this 
section are therefore based on heuristics. 
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One shortcoming of consecutive packing is that it 
does not take into account the different reuse patterns 
of different objects. Group packing attempts to over- 
come this problem by classifying objects according to 
their reuse pattern and applying consecutive packing 
within each group. In the example in Figure 2(b), the 
first object is not reused later but the 600th and 800th 
object are reused after a similar interval. Based on reuse 
patterns, group packing puts the latter two objects into 
a new group and packs them separately from the first 
object. If we assume a cache line of two objects, con- 
secutive packing fails to put the latter two objects into 
one cache line but grouping packing succeeds. As a re- 
sult, consecutive packing yields four misses while group 
packing incurs only three. 

The key challenge for group packing is how to char- 
acterize a reuse pattern. The simplest approach is to use 
the average reappearance distance of each object in the 
access sequence, which can be efficiently computed in 
a single pass. More complex characterizations of reuse 
patterns may be desirable if a user or compiler has addi- 
tional knowledge on how objects are reused. However, 
more complex reuse patterns may incur higher compu- 
tation costs at run time. 

The separation of objects based on reuse patterns is 
not always profitable. It is possible that two objects 
with the same reuse pattern are so far apart in the ac- 
cess sequence so that they can never be in cache simul- 
taneously. In this case, we do not want to pack them 
together. To solve this problem, we need to consider the 
distance between objects in the access sequence as well 
as their reuse pattern. This consideration motivates the 
third packing algorithm, consecutive-group packing. 

Consecutive-group packing groups objects based on 
the position of their first appearance. For example, it 
first groups the objects appeared in the first N positions 
in the access sequence, then the objects in the next N 
positions, and so on until the end of the access sequence. 
The parameter N is the consecutive range. Within each 
range group, objects can then be reorganized with group 
packing. 

The length of the consecutive range determines the 
balance between exploiting closeness and exploiting reuse 
patterns. When the consecutive range is 1, data pack- 
ing is the same as consecutive packing. When the range 
is the full sequence, the packing is the same as grouping 
packing. In this sense, these three packing algorithms 
are actually one single packing heuristic with different 
parameters. 

Evaluation of Packing Algorithms 

We evaluated all three packing algorithms on mesh and 
another input access stream that we extracted from 
moldyn, a molecular dynamics simulation program. The 
Moldyn program initializes approximately 8K molecules 

with random positions. As before, we simulated only 
the data access on a fully associative cache. 

The group packing classifies objects by their aver- 
age reappearance distance; it is parameterized by its 
distance granularity. A granularity of 1000 means that 
objects whose average reappearance distance fall in each 
lOOO-element range are grouped together. Consecutive- 
group packing has two parameters: the first is the con- 
secutive range, and the second is the grouping packing 
algorithm used inside each range. 

8.0 r 
Mea, 4K Cache 

cache Yn *ke 

Figure 3: moldyn and mesh, 4K cache 

The two graphs in Figure 3 show the effect of pack- 
ing on the moldyn and mesh data sets. The left graph 
draws the miss rate on a 4K-sized cache for different 
cache line sizes from 1 to 16 molecules long. The miss 
rate of the original data layout, shown by the first bar 
of each cluster, increases dramatically as cache lines get 
longer. The cache with 16-molecule cache lines incurs 6 
times the number of misses of the unit-line cache. Since 
the total amount of memory transfer is the number of 
misses times cache line size, the 16-molecule cache lines 
result in 96 times the memory transfer volume of the 
unit cache line case-it is wasting 99% of the available 
memory bandwidth! Even 2-molecule cache lines waste 
over 80% of available memory bandwidth. After various 
packing algorithms are applied, however, the miss rates 
drop significantly, as indicated in the remaining four 
bars in each cluster. Consecutive packing reduces the 
miss rate by factors ranging from 7.33 to over 26. Be- 
cause of the absence of consistent reuse pattern, group 
and consecutive-group packing do not perform as well 
as consecutive packing but nevertheless reduce the miss 
rate by a similar amount. 

The original access sequence of the mesh data set 
has a cyclic reuse pattern and a very high miss rate; see, 
for example, 64% on the 4K cache, shown in the right- 
hand graph of Figure 3. Interestingly, the cyclic data 
access pattern scales well on longer cache lines, except 
at the size of 8. Data packing, however, evenly reduces 
miss rate on all cache line sizes, including the size of 8. 
At that size, packing improves from 29% to 46%. On 
other sizes, consecutive packing and group packing yield 
slightly higher miss rates than the original data layout. 
One configuration, consecutive-group(lK,group(l50)), 
is found to be the best of all; it achieves the lowest miss 
rate in all cases, although it is only marginally better on 
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sizes other than 8. It should be noted that the result of
consecutive-group packing is very close to the ideal case
where the miss rate halves when cache line size doubles.
As shown in the next section, dynamic packing, when
combined with locality grouping, can reduce the miss
rate to as low as 0.02%.

We also simulated 2K-sized caches and observed sim-
ilar results. Consecutive packing reduces the miss rate
of moldyn by 27% to a factor of 3.2. Consecutive-group
packing improves mesh by 1% to 39%.

2.3 Combining Computation and Data Transformation

When we combine locality grouping with data pack-
ing on mesh (moldyn was already in locality-grouped
form), the improvement is far greater than when they
are individually applied. Figure 4 shows miss rates of
mesh after locality grouping. On a 4K cache, the miss
rate on a unit-line cache is reduced from 64% to 0.37%
after locality grouping. On longer cache-line sizes, data
packing further reduces the miss rate by 15% to a factor
of over 6. On the 16-molecule cache line case, the com-
bined effect is a reduction from a miss rate of 4.52%
(shown in Figure 3) to 0.02%, a factor of 226. On a
2K cache with 16-molecule cache lines, the combined
transformations reduce miss rate from 7.48% to 0.25%,
a factor of 30. Although not shown in the graph, group
and consecutive-group packing do not perform as well
as consecutive packing.

In summary, the simulation results show that lo-
cality grouping effectively extracts computation local-
ity, and data packing significantly improves data lo-
cality. The effect of data packing becomes even more
pronounced in caches with longer cache lines. In both
programs, simple consecutive packing performs the best
after locality grouping, and the combination of locality
grouping and consecutive packing yields the lowest miss
rate.

3 Compiler Support for Dynamic Data Packing

Run-time data transformations, dynamic data packing
in particular, involve redirecting memory accesses to
each transformed data structure. Such run-time changes
complicate program transformations and induce over-
head during the execution. This section presents com-

piler strategies to automate data transformations and
minimize their run-time overhead.

3.1 Packing and Packing Optimizations

The core mechanism for supporting packing is a run-
time data map, which maps from the old location be-
fore data packing to the new location after data pack-
ing. Each access to a transformed array is augmented
with the indirection of the corresponding run-time map.
Thus the correctness of packing is ensured regardless
the location and the frequency of packing. Some exist-
ing language features such as sequence and storage as-
sociation in Fortran prevent a compiler from accurately
detecting all accesses to a transformed array. However,
this problem can be safely solved in a combination of
compile, link and run-time checks described in [7].

Although the compiler support can guarantee the
correctness of packing, it needs additional information
to decide on the profitability of packing. Our compiler
currently relies on a one-line user directive to specify
whether packing should be applied, when and where
packing should be carried out and which access sequence
should be used to direct packing. The packing directive
provides users with full power of controlling data pack-
ing, yet relieves them from any program transformation
work. At the end of this section, we will show how the
profitability analysis of packing can be automated with-
out relying on any user-supplied directive.

The following example illustrates our compiler sup-
port for data packing. The example has two compu-
tation loops: the first loop calculates cumulative forces
on each object, and the second loop calculates the new
location of each object as a result of those forces. The
packing directive specifies that packing is to be applied
before the first loop.

The straightforward (unoptimized) packing produces the
following code. The call to applyqaclcing  analyzes the
interactions array, packs force array and generates the
run-time data map, inter$map. After packing, indirec-
tions are added in both loops.



The cost of data packing includes both data reor- 
ganization during packing and data redirection after 
packing. The first cost can be balanced by adjusting 
frequency of packing. Thus the cost of reorganizing 
data is amortized over multiple computation iterations. 
A compiler can make sure that this cost does not out- 
weigh any performance gain by either applying packing 
infrequently or making it adjustable at run time. As 
will be shown in Section 5, data reorganization incurs 
negligible overhead in practice. 

Data indirection, on the other hand, can be very ex- 
pensive, because its cost is incurred on every access to 
a transformed array. The indirection overhead comes 
from two sources: the instruction overhead of indirec- 
tion and the references to run-time data maps. The in- 
direction instructions have a direct impact on the num- 
ber of memory loads but the overhead becomes less sig- 
nificant in deeper memory hierarchy levels. However, 
the cost of run-time data maps has an consistent effect 
on all levels of cache, although this cost is likely to be 
small in cases where the same data map is shared by 
many data arrays. In addition, as we show next, the 
cost of indirection can be almost entirely eliminated by 
two compiler optimizations, pointer update and array 
alignment. 

Pointer update modifies all references to transformed 
data arrays so that the indirections are no longer nec- 
essary. In the above example, this means that the ref- 
erences in interactions array are changed so that the 
indirections in the first loop can be completely elimi- 
nated. To implement this transformation correctly, a 
compiler must (1) make sure that every indirection ar- 
ray is associated with only one run-time data map and 
(2) when packing multiple times, maintain two maps 
for each run-time data map, one maps from the original 
layout and the other maps from the most recent data 
layout. 

The indirections in the second loop can be eliminated 
by array alignment, which reorganizes the location ar- 
ray in the same way as the force array, that is, aligns 
the i’s element of both arrays. Two requirements are 
necessary for this optimization to be legal: (1) the loop 
iterations can be arbitrarily reordered, and (2) the range 
of loop iterations is identical to the range of re-mapped 
data. The second optimization, strictly speaking, is 
more than a data transformation because it reorders 
loop iterations. 

The following is the example code after applying 
pointer update and array alignment. The update-map 
array is added to map data from the last layout to the 
current layout. After the two transformations, all in- 
directions through the inter$map array have been re- 
moved. 

apply-packingc interactionsC*l, forceC*l, 
inter$mapC*l, update-map[*l ) 

tipdate-indirection-array( interactions[*], 
update-mapC*l ) 

transform-data-array(locationC*l, update-map[*l) 

for each pair (i,j) in interactions 
calculate-force( forceCil, forceCj1 ) 

end for 

for each object i 
update-locationc locationcil, forceCil ) 

end for 

The overhead of array alignment can be further re- 
duced by avoiding packing those data arrays that are 
not live at the point of data packing. In the above 
example, if the location array does not carry any live 
values at the point of packing, then the third call, which 
transforms location array, can be removed. 

3.2 Compiler Implementation 

We have implemented the compiler support for pack- 
ing in the D Compiler System at Rice University. The 
compiler performs whole program compilation given all 
source files of an input program. It uses a powerful 
value-numbering package to handle symbolic variables 
and expressions inside each subroutine and parameter 
passing between subroutines. It has a standard set of 
loop and dependence analysis, data flow analysis and 
interprocedural analysis. 

The first step of the compiler support is to find all 
possible packing candidates, and it does so by first dis- 
covering and then partitioning primitive packing groups. 
Each primitive packing group contains two sets of ar- 
rays: the set of access arrays, which hold the indirect 
access sequence, and the set of data arrays, which are 
either indirectly accessed through the first set of ar- 
rays or alignable with some arrays that are indirectly 
accessed. Given a program, the compiler identifies all 
premitive packing groups as follows. For each indirect 
data access in the program, the compiler puts the ac- 
cess array and the data array into a new primitive pack- 
ing group. For each loop that can be freely reordered, 
the compiler puts all accessed data arrays into a new 
primitive packing group. Then the compiler partitions 
all primitive packing groups into disjoint packing par- 
titions. Two primitive packing groups are disjoint if 
they don’t share any array between their access array 
sets and between their data array sets. A union-find 
algorithm can efficiently perform the paritioning. 

After partitioning, each disjoint packing partition 
is a possible packing candidate. The two optimiza- 
tions can be readily applied to any packing candidate, 
should it become the choice of packing. Pointer update 
changes all arrays in the access array set; array align- 
ment transforms all arrays in the data array set and 
reorders the loops that access aligned data arrays. For 
all other accesses that are not covered by the above two 
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optimizations, the compiler inserts indirections through 
run-time maps. 

The current implementation of packing has several 
limitations. It does not work on programs where the 
indirect access sequence is incrementally computed be- 
cause the one-line directive requires the existence of a 
full access sequence. A possible extension would be to 
allow user to specify a region of computation in which to 
apply packing so that the compiler can record the full 
access sequence at run time. The other restriction of 
the current implementation is due to conservative han- 
dling of array parameter passing. For each subroutine 
with array parameters, we do not allow two different 
array layouts to be passed to the same formal parame- 
ter. This problem can be solved by propagating array 
layout information in a way similar to interprocedural 
constant propagation or data type analysis and then 
cloning the subroutine for each reachable array layout. 
In the programs we have encountered, however, there 
is no need for such cloning. The implementation also 
inherits limitations from our compiler infrastructure: it 
only compiles programs written in Fortran 77 and con- 
sequently it does not handle recursion. However, recur- 
sion should present no fundamental obstacles to these 
methods. 

3.3 Extensions to Fully Automatic Packing 

Although the one-line packing directive is convenient 
when a user knows how to apply packing, the monda- 
tory requirement for such a directive is not desirable in 
situations when a user cannot make an accurate judge- 
ment on the profitability of packing. This section dis- 
cusses several straightforward extentions which can fully 
automate the profitability analysis, specifically, exten- 
sions that decide whether, where, and when to apply 
packing. 

With the algorithm described in the previous sec- 
tion, a compiler can identify all packing candidates. For 
each candidate, the compiler can record the access se- 
quence at run time and determine whether it is non- 
contiguous and, if so, whether packing can improve its 
spatial reuse. Such decisions depend on program inputs 
and must be made with some sort of run-time feedback 
system. In addition, the same data may be indirectly 
accessed by more than one access sequence, each may 
demand a different reorganization scheme. Again, run- 
time analysis is necessary to pick out the best packing 
choice. 

Once the compiler chooses a packing candidate, it 
can place packing calls right before the place where the 
indirect data accesses begin. The placement requires 
finding the right loop level under which the whole indi- 
rect access sequence is iterated. 

The frequency of packing can also be automatically 
determined. One efficient scheme is to monitor the av- 

erage data distance in an indirect access sequence and 
only invoke packing routines when adjacent computa- 
tions access data that are too far apart in memory. 
Since the overhead of data reorganization can be eas- 
ily monitored at run-time, the frequency of packing can 
be automatically controlled to balance the cost of data 
reorganization. 

4 Optimal Data Regrouping 

A dynamic application may have multiple computa- 
tion phases each of which computes on a different but 
overlapping set of data. Data regrouping separates the 
data of different phases, computes the optimal grouping 
scheme and places data within each group consecutively 
in memory. The regrouping algorithm and a more de- 
tailed discussion can be found in [ll]. In summary, opti- 
mal regrouping is equivalent to a set-partitioning prob- 
lem and it can be computed in O(min(maz(2s, N), N * 
log N*S), where N is the number of arrays and S is the 
number of computation phases. For dynamic applica- 
tions, optimal regrouping achieves full cache utilization 
and maximal spatial reuse. The regrouping algorithm 
also benefits regular applications because it guarantees 
full cache utilization and minimal working sets in cache 
and TLB. Existing compiler techniques are capable of 
implementing the analysis and transformation of data 
regrouping. In particular, bounded regular sections [14] 
can be used to analyze computation phases and to direct 
data transformations. It has been successfully applied 
for similar purposes in other contexts. 

5 Evaluation 

5.1 Experimental Design 

Table 2 lists the four applications we used for the study, 
along with their description, source and size. We chose 
three scientific simulation applications from molecular 
dynamics, structural mechanics and hydrodynamics. De- 
spite the difference in their physical model and compu- 
tation, they have similar dynamic data access patterns 
in which objects interact with their neighbors. Moldyn 
and mesh are well-known benchmarks. We used a large 
input data set for moldyn with random initialization. 
Mesh has a user-supplied input set. Magi is a full, 
real-world application consisting of almost 10,000 lines 
of Fortran 90 code. In addition to the three simulation 
programs, we included a sparse-matrix benchmark to 
show the effect of packing on irregular data accesses in 
such applications. 

The test programs are measured on a single MIPS 
RlOK processor of an SGI Origin2000.. The RlOK pro- 
vides hardware counters that measure cache misses and 
other hardware events with a very small run-time over- 
head. The processor has two caches: the first-level (Ll) 

235 



name description source language No. lines 
moldyn molecule dynamics simulation Chaos group f77 660 
mesh structural simulation Chaos group C 932 
magi particle hydrodynamics DOD f90 9339 
NAS-CG sparse matrix-vector multiplication NAS/NPB Serial ~2.3 I77 1141 

application input size source of input exe. time 
moldyn 256K particles, 27.4M interactions, 1 iteration random initialization 53.2 set 
mesh 9.4K nodes, 60K edges, 20 iterations provided by the Chaos group 8.14 set 
magi 28K particles, 253 cycles provided by DOD 885 set 
NAS-CG 14K non-zero entries, 15 iterations NASA/NPB Serial 2.3, Class A 48.3 set 

application optimizations applied program components measured 
locality grouping regrouping packing 

moldyn + V V subroutine Compzlte-Force0 
mesh V + V full application 
magi + V V full application 
NAS-CG n/a + v/+ full application 

Table 2: Applications, Input Sizes, and Transformations Applied 

cache is 32KB in size and uses 32-byte cache lines and 
the second-level (L2) cache is 4MB with 128-byte cache 
lines. Both caches are two-way set associative. The 
RlOK achieves good latency hiding as a result of dy- 
namic, out-of-order instruction issuing and compiler- 
directed prefetching. All applications are compiled with 
the highest optimization flag and prefetching turned on. 

The second table in Table 2 gives the input size for 
each application, the sources of the data inputs, and 
the execution time before applying optimizations. The 
working set is significantly larger than the Ll cache for 
all applications. Mesh, Magi and NAS - CG are a 
little bit larger than L2. Moldyn has the largest data 
input and its data size is significantly greater than the 
size of L2. 

We applied the three transformations in the follow- 
ing order: locality grouping, optimal data regrouping, 
dynamic data packing and packing optimizations. Since 
the access sequence is already transformed by locality 
grouping, we use consecutive packing for all cases be- 
cause of the observation made in Section 2.2. (One 
test case, NAS - CG, accesses each element only once, 
therefore consecutive packing is optimal.) For each trans- 
formation applied, we measure its impact on execution 
time and the number of cache and TLB misses. 

5.2 Transformations Applied 

The third table in Table 2 lists, for each application, 
the optimizations applied and the program components 
measured. Each of the base programs came with one 
or more of the three optimizations done by hand. Such 
cases are labeled with a ‘+’ sign in the table. The ‘V’ 

signs indicate the optimizations we added, except in 
the case of NAS-CG. The base program of NAS - CG 
came with data packing already done by hand, but we 
removed it for the purpose of demonstrating the effect 
of packing. We do not consider hand-applied packing 
practical because of the complexity of transforming tens 
of arrays repeatedly at run-time for a large program. 

Locality grouping and data regrouping were inserted 
by hand. Data packing of moldyn and CG was per- 
formed automatically by our compiler given a one-line 
directive of packing. The same compiler packing algo- 
rithm was applied to mesh by hand because our com- 
piler infrastructure cannot yet compile C. Unlike other 
programs, Magi is written in Fortran and computes 
the interaction list incrementally. We slightly modified 
the source to let it run through the Fortran front-end 
and inserted a loop to collect the overall data access 
sequence. Then our compiler successfully applied base 
packing transformation on the whole program. The ap- 
plication of the two compiler optimizations were semi- 
automatic: we inserted a 3-line loop to perform pointer 
update; and we annotated a few dependence-free loops 
which otherwise would not be recognized by the com- 
piler due to the presence of procedural calls inside the 
them. All other transformations are performed by the 
compiler. The optimized packing reorganizes a total of 
45 arrays in magi. 

We refer to the original program as the base pro- 
gram and the transformed version with optimizations 
labeled ‘V’ as the optimized program. For NAS-CG, 
the base program refers to the version with no packing. 
Dynamic data packing is applied only once in each ap- 
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plication except magi where data are repacked every 75 
iterations. 

5.3 Effect of Transformations 

The four graphs of Figure 5 show the effect of the three 
transformations. The first plots the effect of optimiza- 
tions on the execution speed. The first bar of each ap- 
plication is the normalized performance (normalized to 
1) of the base version. The other bars show the perfor- 
mance after applying each transformation. Since not all 
transformations are necessary, an application may not 
have all three bars. The second bar, if shown, shows 
the speedup of locality grouping. The third and fourth 
bars show the speedup due to data regrouping and data 
packing. The other three graphs are organized in the 
same way, except that they are showing the reduction 
on the number of Ll, L2 and TLB misses. The graphs 
include the miss rate of the base program, but the re- 
duction is on the total number of misses, not on the 
miss rate. 

Effect of Locality Grouping and Data Regrouping 

Locality grouping eliminates over half of Ll and L2 
misses in mesh and improves performance by 20%. In 
addition, locality grouping avails the program for data 
packing, which further reduces Ll misses by 35%. With- 
out the locality grouping step, however, consecutive 
packing not only results in no improvement but also in- 
curs 5% more Ll misses and 54% more L2 misses. This 
confirms the observation from our simulation study that 
locality grouping is critical for the later data optimiza- 
tion to be effective. 

Data regrouping significantly improves moldyn and 
magi. Magi has multiple computation phases, optimal 
regrouping selectively groups 26 arrays into 6 arrays in 
order to achieve full cache utilization and maximal spa- 
tial reuse. As a result, the execution time is improved 
by a factor of 1.32 and cache misses are reduced by 
38% for Ll, 17% for L2, and 47% for TLB. By con- 
trast, merging all 26 arrays improves performance by 
only 12%, reduces Ll misses by 35%, and as a side ef- 
fect, increases L2 misses by 32%. Data regrouping is 
even more effective on moldyn, eliminating 70% of Ll 
and L2 misses and almost doubling the execution speed. 

Effect of Dynamic Data Packing 

Data packing is applied to all four applications after 
locality grouping and data regrouping. It further im- 
proves performance in all cases. For moldyn, packing 
improves performance by a factor of 1.6 and reduces L2 
misses by 21% and TLB misses by 88% over the version 
after data regrouping. For NAS - CG, the speedup is 
4.36 and the amount of reduction is 44% for Ll, 85% 
for L2 and over 97% for TLB. 

For mesh after locality grouping, packing slightly 
improves performance and reduces misses by additional 
3% for Ll and 35% for L2. The main reason for the 
modest improvement on Ll is that the data granularity 
(24 bytes) is close to the size of Ll cache lines (32 bytes), 
leaving little room for additional spatial reuse. In addi- 
tion, packing is directed by the traversal of edges, which 
does not work as well during the traversal of faces. The 
number of Ll misses is reduced by over 6% during edge 
traversals, but the reduction is less than 1% during face 
traversals. Since the input data set almost fits in L2, 
the significant reduction in L2 misses does not produce 
a visible effect on the execution time. 

When applied after data regrouping on magi, pack- 
ing speeds up the computation by another 70 seconds 
(12%) and reduces Ll misses by 33% and TLB misses 
by 55%. Because of the relatively small input data set, 
L2 and TLB misses are not a dominant factor in per- 
formance. As a result, the speed improvement is not as 
pronounced as the reduction in these misses. 

Overall, packing achieves a significant reduction in 
the number of cache misses especially for L2 and TLB, 
where opportunities for spatial reuse are abundant. The 
reduction in L2 misses ranges from 21% to 84% for all 
four applications; the reduction in TLB misses ranges 
from 55% to 97% except for mesh, whose working set 
fits in TLB. 

Packing Overhead and the Effect of Compiler Optimiza- 

tions 

The cost of dynamic data packing comes from the over- 
head of data reorganization and the cost of indirect 
memory accesses. The time spent in packing has a neg- 
ligible effect on performance in all three applications we 
measured. Packing time is 13% of the time of one com- 
putation iteration in moldyn, and 5.4% in mesh. When 
packing is applied for every 20 iterations, the cost is less 
than 0.7% in moldyn and 0.3% in mesh. Magi packs 
data every 75 iterations and spends less than 0.15% of 
time on packing routines. 

The cost of data indirection after packing can be 
mostly eliminated by two compiler optimizations de- 
scribed in Section 3.1. Figure 6 shows the effect of these 
two compiler optimizations on all four applications we 
tested. 

The upper-left graph shows that, for moldyn, the 
indirections (that can be optimized away) account for 
10% of memory loads, 22% of Ll misses, 19% of L2 
misses and 37% of TLB misses. After the elimination 
of the indirections and the references to the run-time 
map, execution time was reduced by 27%, a speedup of 
1.37. The improvement in mesh is even larger. In this 
case, the indirections account for 87% of the loads from 
memory, in part because mesh is written in C and the 
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compiler does not do a good job of optimizing array ref-
erences. Since the excessive number of memory loads
dominates execution time, the compiler optimizations
achieve a similar reduction (82%) in execution time.
The number of loads is increased in magi after the op-
timizations because array alignment transforms 19 more
arrays than the base packing, and not all indirections to
these arrays can be eliminated. Despite the increased
number of memory loads, the cache misses and TLB
misses are reduced by 10% to 33%, and the overall speed

is improved by 8%. For NAS - CG, the compiler rec-
ognizes that matrix entries are accessed in stride-one
fashion and consequently, the compiler replaces the in-
direction accesses with direct stride-one iteration of the
reorganized data array. The transformed matrix-vector
multiply kernel has the equally efficient data access as
the original hand-coded version. As a result, the num-
ber of loads and cache misses is reduced by 23% to 50%.
The TLB working set fits in machine’s TLB buffer after
the optimizations, removing 97% of TLB misses. The
execution time is reduced by 60%, a speedup of 2.47.

6 Related Work

To our knowledge, this work is the first study on the
combination of run-time computation and data trans-
formation to improve cache performance of irregular
and dynamic applications. It is also the first to pro-
vide comprehensive compiler support for run-time data
transformation.

Our work is close in spirit to the run-time paralleliza-
tion work on dynamic applications. The Chaos group,
led by Saltz[10], partitions computation and reorganizes
data at run time in order to balance the computational
load across processors and reduce communication in a
parallel execution. Once computation is partitioned,
the data accessed by each processor are grouped and
placed in its local memory. However, the parallelization
work did not include a general restructuring method to
subsequently improve cache performance.

The Chaos group is also the first to use run-time



computation transformation to improve cache perfor- 
mance. Das et al. used a reverse Cuthill Mcgee order- 
ing to improve locality in a multi-grid computation[9]. 
Another method, domain partitioning, has been used to 
block computation for cache by Tomko and Abraham[21]. 
However, they found no overall improvement by block- 
ing. Building on our work reported in this paper, Mellor- 
Crummey et a1.[18] have employed space-fitting curve 
ordering to block dynamic computation. Domain par- 
titioning and space-curve ordering are more powerful 
than locality grouping because they can block computa- 
tion for a specific cache size, but they are also more ex- 
pansive than locality grouping. In fact, locality group- 
ing works without looking at domain data, i.e. coordi- 
nates of particles. For applications such as mesh, lo- 
cality grouping is able to reduce miss rate to as low as 
0.37%, leaving little room for further improvement with 
more expansive methods. An idea that is similar to lo- 
cality grouping is used by Han and Tseng to improve 
parallel efficiency on a shared-memory machine[l3]. They 
used owner-compute rule and assigned all updates of a 
particle to a single thread to avoid the cost of reduction 
among parallel processors. 

The compiler support for dynamic data packing over- 
comes a serious limitation of all previous run-time meth- 
ods, that is, their reliance on the knowledge of program 
structure and data domain. By comparison, our com- 
piler exploits and optimizes data layout transformation 
without relying on domain knowledge of either the pro- 
gram or data. There has been recent work on hardware- 
based data reorganization by Carter at e1.[6]. Their ap- 
proach can be potentially more efficient because they 
use an additional processor to remap memory. How- 
ever, compiler analysis similar to ours is necessary to 
effectively control such hardware features. 

The goal of improving data reuse has been pursued 
for regular applications by loop and data transforma- 
tions such as cache blocking[5, 221, memory order loop 
permutation[l, 12, 171, and data reshaping[& 3, 151. 
However, static loop and data transformations devel- 
oped for regular applications cannot optimize dynamic 
computations where the data access pattern remains 
unknown until run time and changes during the com- 
putation. 

Various static data placement schemes have been 
used to avoid cache conflicts and to improve spatial 
reuse. Thabit[20] studied data packing to reduce con- 
flicts in cache. He used static program analysis to con- 
struct a proximity matrix and packed simultaneously 
used data into non-conflicting cache blocks. He proved 
that finding the optimal packing using a proximity ma- 
trix is NP-complete. Al-Furaih and Ranka modeled 
irregular data as graph nodes and used edges to link 
the data that are simultaneously accessed[2]. In addi- 
tion, for programs with high-level data structures and 

dynamic memory allocation, profiling information has 
been used to analyze the order of access to both code 
and data. Seidl and Zorn[lS] clustered frequently ref- 
erenced objects, and Calder et a1.[4] reordered objects 
based on their temporal relations. 

Our work differs from such static data layout trans- 
formations in that we apply data packing at run time. 
Efficiently exploiting spatial reuse at run time is criti- 
cal for applications in which data access order changes 
during the execution. For example, in a sparse-matrix 
code, the matrix may be iterated first by rows and then 
by columns. In scientific simulations, the computation 
order changes as the physical model evolves. In these 
cases, a fixed static data layout is not likely to perform 
well throughout the computation. Another difference is 
that our packing method does not explicitly use prox- 
imity or temporal relations of data. It is not yet estab- 
lished whether the data reordering methods based on 
proximity matrices or temporal relation graphs are cost 
effective at run time. The cost of constructing a com- 
plete proximity relationship can be prohibitively high, 
given a large number of data elements involved. The 
third difference is the granularity of the analysis and 
transformation. Profiling-based methods have the fixed 
granularity, i.e. the unit of memory allocation. The 
granularity of our analysis and transformation is indi- 
vidual array elements. In addition, our data transfor- 
mation aligns and merges array elements that are at- 
tributes of the same particle. 

7 Contributions 

We have presented and evaluated three novel program 
and data transformations for improving the memory hi- 
erarchy performance of dynamic applications. The prin- 
cipal contribution of this paper is a demonstration of 
how compiler-generated computation and data reorga- 
nization at run time can improve temporal and spatial 
reuse. We examined two run-time transformations for 
this purpose. 

l Locality grouping brings together all the interac- 
tions involving the same data element. It is inex- 
pensive, yet very powerful, eliminating over 50% 
of cache misses in a full application. Furthermore, 
locality grouping is vital for the subsequent data 
transformation to be effective. 

l Dynamic data packing improves spatial reuse by 
reorganizing the data structures so that data el- 
ements that are used together are close together 
in memory. Since optimal data packing is NP- 
complete, we have explored three different heuristic- 
based packing algorithms and found that simple 
consecutive packing performs extremely well when 
carried out after locality grouping. For all appli- 
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cations tested on SGI Origin2000, dynamic data 
packing reduced the number of L2 misses by 21% 
to 84% and the number of TLB misses by 55% 
to 97%. As a result, it improved overall program 
performance by a factor up to 4.36. 

A second contribution of this paper is a compiler 
strategy for eliminating overhead associated with dy- 
namic data packing. This support has been imple- 
mented in an interprocedural compiler at Rice. The 
compiler uses run-time data maps and data indirections 
to ensure the correctness of any run-time data transfor- 
mation. It then employs two optimizations, pointer up- 
date and array alignment, to eliminate most of the data 
indirections after data reorganization. The compiler op- 
timizations are very effective in removing packing over- 
head for all applications tested, improving performance 
by factors ranging from 1.08 to 5.56. 
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