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Abstract: Programming systems should be both re-
sponsive (to support rapid development) and efficient
(to complete computations quickly). Pure object-ori-
ented languages are harder to implement efficiently
since they need optimization to achieve good perfor-
mance. Unfortunately, optimization conflicts with in-
teractive responsiveness because it tends to produce
long compilation pauses, leading to unresponsive pro-
gramming environments. Therefore, to achieve good
responsiveness, existing exploratory programming en-
vironments such as the Smalltalk-80 environment rely
on interpretation or non-optimizing dynamic compila-
tion. But such systems pay a price for their interactive-
ness, since they may execute programs several times
slower than an optimizing system.

SELF-93 reconciles high performance with responsive-
ness by combining a fast, non-optimizing compiler
with a slower, optimizing compiler. The resulting sys-
tem achieves both excellent performance (two or three
times faster than existing Smalltalk systems) and good
responsiveness. Except for situations requiring large
applications to be (re)compiled from scratch, the sys-
tem allows for pleasant interactive use with few per-
ceptible compilation pauses. To our knowledge, SELF-
93 is the first implementation of a pure object-oriented
language achieving both good performance and good
responsiveness.

When measuring interactive pauses, it is imperative to
treat multiple short pauses as one longer pause if the
pauses occur in short succession, since they are per-
ceived as one pause by the user. We propose a defini-
tion of pause clustering and show that clustering can
make an order-of-magnitude difference in the pause
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1. Introduction

Exploratory programming environments (such as the
Smalltalk programming environment) increase pro-
grammer productivity by giving immediate feedback
for all programming actions. The pause-free interac-
tion allows the programmer to concentrate on the task
at hand rather than being distracted by long pauses
caused by compilation or linking. Traditionally, sys-
tem designers have used interpreters or non-optimiz-
ing compilers in exploratory programming environ-
ments to achieve immediate feedback. For example,
commercial Smalltalk implementations use either in-
terpretation [Dig91] or non-optimizing dynamic com-
pilation [DS84, PP92]. Unfortunately, the overhead of
interpretation, combined with the efficiency problems
created by the high call frequency and the heavy use of
dynamic dispatch in pure object-oriented languages,
slows down execution and can limit the usefulness of
such systems. As a result, computationally intensive
Smalltalk programs can be an order of magnitude
slower [CU91] than programs written in hybrid object-
oriented languages like C++ or conventional lan-
guages like C.

In response to this performance problem, previous
SELF compilers have concentrated on optimization
techniques aimed at reducing the overhead of message
passing. The first-generation SELF compiler [CUL89]
achieved a respectable speedup over standard Small-
talk implementations. The second-generation compiler
[CU91] improved performance even more, bringing
SELF’s performance to within a factor of less than two
relative to C for a set of small integer benchmarks.
However, as larger SELF programs were being written
(for example, a graphical user interface [CU93] con-
sisting of 15,000 lines of SELF code), it became in-
creasingly clear that the existing SELF systems had ne-
glected interactive performance. While many pro-
grams ultimately ran fast, programmers had to endure

229



compile pauses lasting many seconds while their pro-
grams were being optimized. Although turnaround
times were still better than in traditional batch-style
compilation environments, the SELF system was no-
ticeably more sluggish during program development
than commercial Smalltalk systems running on the
same hardware.

Language implementors (and thus, the programmers
selecting a programming environment) are facing the
old dilemma between throughput (execution speed)
and latency (interactive responsiveness). Either they
can use a very responsive interpreted system and ac-
cept inferior execution performance, or they can
choose an optimizing system with good execution per-
formance but sluggish interactive performance. Since
an interactive programming environment is an impor-
tant tool in understanding and developing object-ori-
ented programs, programmers are not willing to give
up interactive performance, and thus accept inferior
execution performance as a given drawback of pure
object-oriented languages.

SELF-93 is a step towards solving this dilemma. It pro-
vides both good interactive responsiveness and good
performance by using a compilation system that dy-
namically recompiles the “hot spots” of an application.
It uses a fast, non-optimizing compiler to generate the
initial code, and then recompiles only the time-critical
parts with a slower, optimizing compiler. Introducing
dynamic recompilation dramatically improves interac-
tive performance, making it possible to combine opti-
mizing compilation with an exploratory programming
environment.

As described elsewhere [HU94], SELF-93 provides ex-
cellent execution-time performance. This paper con-
centrates on the interactive behavior of the system and
shows that it can provide good interactive performance
on current workstations and should provide excellent
interactive performance (i.e., virtually unnoticeable
compile pauses) on future workstations. To the best of
our knowledge, SELF-93 is the first implementation of
any pure object-oriented language that simultaneously
provides high execution performance and good inter-
active behavior.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the SELF-93 system and its
compilation process. Section 3 introduces pause clus-
tering and demonstrates its importance. Section 4 dis-
cusses the compilation pauses occurring during an in-

teractive session, and section 6 the delays incurred
when starting up new programs. (The appendix dis-
cussed the influence of system parameters on perfor-
mance and shows that, by varying these parameters,
one can trade off better pause behavior against better
asymptotic performance.) All of the techniques de-
scribed in this paper are fully implemented and stable
enough to be part of the public SELF distribution. '

2. Background

SELF [US87] is a pure object-oriented language: all
data are objects, and all computation is performed via
dynamically-bound message sends (including accesses
to all instance variables, even those in the receiver ob-
ject). SELF merges state and behavior: syntactically,
method invocation and variable access are indistin-
guishable—the sender of a message does not know
whether the message is implemented as a simple data
access or as a method. Consequently, all code is repre-
sentation independent since the same code can be re-
used with objects of different structure, as long as
those objects correctly implement the expected mes-
sage protocol. SELF’s pure semantics result in very fre-
quent message sends; in this respect, it is even harder
to implement efficiently than Smalltalk.

These implementation difficulties required some un-
usual compilation techniques [CUL89, CU91,
HCU91, HU94]. The following sections briefly review
the important aspects of SELF-93’s implementation.*

2.1 Adaptive optimization

The SELF-93 system uses dynamic compilation
[DS84]. When a source method is invoked for the first
time, it is compiled quickly by a very simple but com-
pletely non-optimizing compiler. Conversely, when-
ever the user changes a source method, all compiled
code depending on the old definition is invalidated. To
accomplish this, the system keeps dependency links
between source and compiled methods [HCU92,
Ch92]. Since there is no explicit compilation or link-
ing step, the traditional edit-compile-link-run cycle is
collapsed into an edit-continue cycle. Programs can be
changed while they are running so that the application
being debugged need not even be restarted.

¥ SELF is available via Mosaic URLs http://www.sun.com/smli and
http://self .stanford.edu, or via ftp from self.stanford.edu. The sys-
tem described here is largely identical to the current public release
(3.0) but contains several performance improvements.

% This description is based on [HU94]; more details can be found in
[Ho6194].
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Figure 1. Compilation in the SELF-93 system

Figure 1 shows an overview of the compilation pro-
cess of the system. In addition to using dynamic com-
pilation to incrementally generate compiled code as
needed, SELF-93 uses adaptive optimization to dynam-
ically discover and optimize the “hot spots” of a pro-
gram. If a method is executed often, it is recompiled
with an optimizing compiler. The remainder of this
section describes the adaptive optimization process in
more detail, outlining how the system discovers meth-
ods to be optimized and how these methods are then
optimized.

when to interrupt a program in order to optimize it by
recompiling some methods. To be successful, the sys-
tem needs to strike a balance between compilation and
execution. If the system recompiles too eagerly, it will
waste time in compilations; if it recompiles too lazily,
it will also waste time because programs spend too
much time in unoptimized code.

SELF-93 uses invocation counts to drive recompila-
tion. Each unoptimized method has its own counter
that is incremented in the method prologue. When the
counter exceeds a certain limit, the recompilation
driver is invoked to decide which method (if any)
should be recompiled. If the method overflowing its
counter isn’t recompiled, its counter is reset to zero.
Counter values decay exponentially with time.

stack
rOWs

A simple recompilation strategy would always recom-
pile the method whose counter overflowed, since it ob-
viously was invoked often. But suppose that the
method just returns a constant. Optimizing this method
would not gain much; rather, the method should be in-
lined into its caller. The next section describes how the
system chooses the method(s) to be recompiled.

2.3 What to recompile

tha ra_
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compilation driver walks up the call chain, inspecting
the callers of the method triggering the recompilation.
A caller that performs many calls to unoptimized or
small methods is recompiled in the hope that these
calls will be eliminated. Similarly, a method creating
many closure objects (blocks) is recompiled in the
hope of eliminating these closure creations.

If a recompilee is found, it is (re)optimized, and the
old code is discarded. Then, the reoptimized method
replaces the corresponding unoptimized methods on
the stack, possibly replacing several unoptimized stack
frames with a single optimized stack frame (see
Figure 2)." Since the system tries to optimize an entire
call chain from the top recompilee down to the current
execution point, recompilation continues until all un-
optimized stack frames below the original recompilee
have been optimized. Usually, the recompiled call
chain is only one or two compiled methods deep, so
that the program’s execution resumes after one or two
compilations. In this way, a program’s execution speed
will gradually improve as more and more of its hot
spots are optimized.

f This process is the reverse of dynamic deoptimization as de-
scribed in [HCU92]; that paper also describes how the compiler
represents the source-level state of optimized code. SELF-93 cannot
always replace unoptimized with optimized frames (see [HU94]);
in such cases, the unoptimized frames are left on the stack until they
return.

downwards o »

The system replaces the old (un- The system continues until
optimized) stack frames with the all of the remaining stack is
frame of the newly compiled optimized. Here, it performs
method. In the example, it re- one more optimization which
places three unoptimized frames replaces the bottom two
with one optimized frame. frames.

The system inspects the
stack to determine which
method to recompile.
Then, it calls the compiler
to generate new code.

counter and triggers
a recompilation

Figure 2. Optimization process

2.2 When to recompile
A dynamic recompilation system needs to decide
A method over-
flows its invocation
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2.4 Type Feedback

When recompiling a method, the system extracts type
information from the previous version of compiled
code and feeds it back to the compiler. (This technique
is called Type Feedback [HU94].) Specifically, the
SELF-93 system uses Polymorphic Inline Caches
(PICs) [HCU91] to record the program’s type profile,
i.e., a list of receiver types (and, optionally, their fre-
quencies) for every single call site in the program.
PICs were originally conceived to speed up dynamic
dispatch, but as observed in [HCU91] they record re-
ceiver types as a side-effect. Therefore, a program’s
type profile is readily available, and collecting the type
feedback data does not incur an execution time over-
head.

Using type feedback, the compiler can optimize any
dynamically-dispatched call (if desired) by predicting
likely receiver types and inlining the call for these
types. For example, suppose a method contains the ex-
pression p x (i.e., send the x message to p) where p is
a graphical object. If the type feedback information
shows that p was a CartesianPoint most of the
time and only infrequently a PolarPoint, the expres-
sion could be compiled as
if (p->type == CartesianPoint) {
// inline CartesianPoint case
<load x instance variable>
} else {
// don’t inline PolarPoint case because method
/1 is too big
// this branch also covers all other receiver types
<send x to p>
}
For cartesianPoint receivers, the above code se-
quence will execute significantly faster since the origi-
nal message send is reduced to a comparison and a
simple load instruction. Inlining not only eliminates
the calling overhead but also enables the compiler to
optimize the inlined code using dataflow information
particular to this call site.

2.5 Performance

Laziness wins in SELF-93: delaying optimization until
needed not only saves compilation time, it also allows
the optimizing compiler to generate better code than if
it had tried to optimize the method right away. With
type feedback, the compiler can inline more message
sends and thus to achieve better performance than pre-
vious compilers. On average, SELF-93 executes a suite
of six large (4,000-15,000 lines) and three medium-

sized (400-1,100 lines) programs 1.5 times faster than
the SELF-91 compiler [HU94]. For the two medium-
sized programs that are also available in Smalltalk,
SELF-93 is about three times faster than ParcPlace
Smalltalk.t

But raw execution performance is not the focus of this
paper. Rather, if focuses on how optimizing compila-
tion influences the interactive behavior of a system.
Since SELF implementations use runtime compilation
because interpretation would be too slow, compile
pauses may impact the interactiveness of the system.
For example, the first time a menu pops up, the code to
draw the menu must be compiled. Runtime compila-
tion can create distracting pauses in such situations.
Similarly, dynamic recompilation (as used in SELF-93)
may introduce pauses during later executions as code
is optimized. The remainder of this paper explores the
severity of such compilation pauses with a variety of
measurements, such as the pauses experienced in an
actual interactive session, the distribution of compile
pauses, and compilation speed.

2.6 Measurement methodology

Unless otherwise mentioned, CPU times were mea-
sured on an otherwise idle SPARCstation-2. Due to
cache-related performance fluctuations, measure-
ments are probably only accurate to within 10-15%.
Because the SPARCstation-2 is considered “low end”
today (Fall 1994), some data is also given for faster
machines. The data in section 4 was obtained using PC
sampling, i.e., by interrupting the program 100 times
per second and inspecting the program counter to de-
termine whether the system was compiling at the time
of the interrupt. The results of these samples were
written to a log file. Instrumentation slowed down the
system by less than 10%.

3. What is a pause?

One of the main goals of this paper is to evaluate
SELF-93’s interactive performance by measuring com-
pile pauses. But what constitutes a compile pause? It is
tempting to measure the duration of individual compi-
lations; however, such measurements would lead to an
overly optimistic picture since compilations tend to

f These measurements represent final performance and do not in-
clude compilation. In the SELF-93 system, programs like these usu-
ally spend less than 20% of their time in unoptimized code [H5194];
in contrast, the SELF-91 system optimizes all code. The system de-
scribed here uses slightly different optimization parameters that the
system measured in [HU94], reducing performance by about 10%.
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occur in clusters. When two compilations occur back-
to-back, they are perceived as one pause by the user
and thus should be counted as a single long pause
rather than two shorter pauses. That is, even if individ-
ual pauses are short, the user may notice distracting
pauses if many compilations occur in quick succes-
sion. Since the goal is to characterize the pause behav-
ior as experienced by the user, “pause” must be de-
fined in a way that correctly handles the non-uniform
distribution of pauses in time.

Pause clustering attempts to define pauses in such a
way. A pause cluster is any time period satisfying the
following three criteria:

1. Acluster starts and ends with a pause.

2. Individual pauses consume at least 50% of the
cluster’s time. Thus, if many small pauses occur in
short succession, they are lumped together into
one long pause cluster as long as the pauses con-
sumes more than half of CPU time during the in-
terval. We believe that a limit of 50% is
conservative since the system is still making
progress at half the normal speed, so that the user
may not even notice the temporary slowdown.

3. A cluster contains no pause-free interval longer
than 0.5 seconds. If two groups of pauses that
would be grouped together by the first iwo rules
are separated by more than half a second, we as-
sume that they are perceived as two distinct pauses
and therefore do not lump them together. (It
seemed clear to us that two events separated by
half a second could be distinguished.)

Figure 3 shows an example. The first four pauses are
clustered together because together they use more than
50% of total execution time during that time period
(rule 2). Similarly, the next three short pauses are
grouped with the next (long) pause, forming a long
pause cluster of more than a second. The two clusters
won’t be fused into one big 2.5-second cluster (even if
the resulting cluster still satisfied rule 2, which it does
not in the example) because they are separated by a
pause-free period of more than 0.5 seconds (rule 3).
|

individual

pauses |[EMES 1mm - m
pause T TS
clusters | A== .
time
|0\ T IOI.SW T \ll T \].;5| T Nél T P(seconds)

Figure 3. Individual pauses
and the resulting pause clusters

This example illustrates that pause clustering is quite
conservative and may overestimate the true pauses ex-
perienced by the user.” However, we believe that
pause clustering is more realistic than measuring indi-
vidual pauses. Furthermore, we hope that this ap-
proach will strengthen our results since the measured
pause behavior is still good despite the conservative
methodology. We also hope that this work will inspire
others (for example, implementors of incremental gar-
bage collectors) to use similar approaches when char-
acterizing pause times.

Figure 4 shows the effect of pause clustering when
measuring compile pauses. The graph shows the num-
ber of compile pauses that exceed a certain length on a
SPARCstation-2. By ignoring pause clustering we
could have reported that only 5% of the pauses in
SELF-93 exceed 10 milliseconds, and that less than 2%
exceed 0.1 seconds. However, with pause clustering
37% of the combined pauses exceed 0.1 seconds.
Clustering pauses makes an order-of-magnitude dif-
ference. Reporting only individual pauses would result
in a distorted picture.

Of course, the parameter values of pause clustering
(CPU percentage and intergroup time) will affect the
results. For example, increasing the pause percentage
towards 100% will make the results more optimistic.
However, our results are fairly insensitive to changes
in the parameter values. In particular, varying the
pause percentage between 35% and 70% does not

100 3

(=]

Ll

“.._combined
*. pauses

vl

% of all compilations
exceeding given length

©
=

individual
pauses
0.01 1 T lllll\| T T |\|I|!‘ T T TIIYH]

0.01 0.1 1 10
pause length (seconds on SPARCstation-2)

Lol

Figure 4. Distribution of individual compile pauses
vs. distribution of combined pauses

' Pause clustering may also be too conservative for compilation
pauses because it ignores execution speed; a SELF interpreter could
be so slow that it causes distracting interaction pauses. For the sake
of simplicity, we assume that an interpreter would be fast enough
for interactive use.
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qualitatively change the results, nor does doubling the
intergroup time to one second.

4. Compile pauses during an
interactive session

We measured the (clustered) compilation pauses oc-
curring during a 50-minute session of the SELF user in-
terface [CU93]. The session involved completing a
SELF tutorial, which includes browsing, editing, and
making small programming changes. During the tuto-
rial, a bug in the tutorial’s cut-and-paste code was dis-
covered, so that the session also includes some “real-
life” debugging. Figure 5 shows the distribution of
compile pauses during the experiment in absolute
terms. Assuming 200 ms as a lower threshold for per-
ceptible pauses, 195 pauses were perceptible on a
SPARCstation-2. Similarly, using one second as the
lower threshold for distracting pauses, there were 21
such pauses during the 50-minute run. Almost two
thirds of the measurable pausesT are below a tenth of a
second, and 97% are below one second.

Pause clustering addresses the short-term clustering of
compile pauses. However, pauses are also non-uni-
formly distributed on a larger time scale. Figure 6 (on
the next page) shows how the same pauses are distrib-
uted over the 50-minute interaction. Each pause is rep-
resented as a spike whose height corresponds to the
(clustered) pause length; the x axis shows elapsed

¥ Since we obtained the data by sampling the system at 100 Hz,
very short compilations were either omitted or counted as a pause
of 1/100 second.

410
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3

Figure 5. Compile pauses during a
50-minute interaction
time. Note that the x axis’ range is much larger than

the y axis’ range (by three orders of magnitude) so that
the graph visually exaggerates both the spikes’ height
and proximity.

During the run, several substantial programs were
started from scratch (i.e., without precompiled code).
The initial peak that includes the highest pause corre-
sponds to starting up the user interface. The next clus-
ter represents the first phase of the tutorial, where
much of the user interface code is exercised for the
first time. The last two clusters correspond to invoking
the SELF debugger after discovering a bug, and in-
specting the state of the tutorial process to find the
cause of the error. The the entire session contains few
substantial “think pauses”; thus, periods with no com-
pilation pauses are not just idle periods.

3.5+
T starting up the system
3.0+
‘:.:‘ 1 using the debugger
2 2.5 to find the bug
g . starting to use tutorial
E E 24 program hits bug:
o | debugger comes up
7
g g 157
'§ ]
g 17
2 i
» | ‘z L
. [T 1R
0 500 1000 1500 2000 2500 3000

elapsed time (seconds)

Figure 6. Distribution of compilation pauses over time
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The system’s pause behavior on the SPARCstation-2
seems adequate. Pauses are rarely distracting and
much shorter than in traditional programming environ-
ments using batch-style compilation. Furthermore, the
measured interaction represents a worst-case scenario
since it starts a large system (with an estimated 20,000
lines of SELF code) from scratch, without any precom-
piled code. During normal usage of the system, most
of the standard system (user interface, debugger, etc.)
is already optimized, and only the application that the

programmer is actively changing needs to be (re)com-
piled.

5. Pauses on faster systems

The practicality of optimizing compilation in an inter-
active system is strongly dependent on CPU speed. A
system significantly slower than the 20-SPECInt92
SPARCstation-2 would probably make pause times
too distracting. That is, our system would have been
impractical on the machines commonly in use when
the Deutsch-Schiffman Smalltalk compiler was devel-
oped, since they were at least an order of magnitude
slower.

On the other hand, the system’s interactive behavior
will improve with faster CPUs. Today’s workstations
and high-end PCs are already significantly faster than
the SPARCstation-2 used for our measurements (see
Table 1) To investigate the effect of faster CPUs, we
reanalyzed our trace with parameters chosen to repre-
sent a current-generation workstation or PC (three
times faster than a SPARCstation-2) and a future
workstation' (ten times faster). Figure 7 compares the
SPARCstation-2 pauses with those on the two simu-

1000
E —— SPARCstation-2

...... "Current” (3x faster)

100 5 "Future" (10x faster)

number of pauses
exceeding given length

1 : T : T T 1
0 0.5 1 1.5 2
pause length (seconds)

Figure 7. Compilation pauses on faster CPUs

System SPECInt92 (higher is faster)

absolute | relative to SS-2

SPARCstation-2 22 1.0

66MHz Pentium PC 65 3.0

80 MHz PowerPC Macintosh 63 29

| SPARCstation-20/61 89 40
1994 high-end workstation 135 6.1

expected in 1995 >200 >0.1

Table 1: Speed of workstation and PCs

lated systems. For each pause length, the graph shows
the number of pauses exceeding that length. Note that
the graph for a faster machine is not just the original
graph shifted to the left, because it may combine com-
pilations that were not combined in the slower system.
For example, if two groups of compilations are 1 sec-
ond apart on the SPARCstation-2, they are only 0.33
seconds apart on the “current” workstation and thus
II‘l-l:lSt De COTTIDII]CU lﬂl() a smglc pause (SG@ Ule I'UICS lﬂ
section 3). However, the overall impact of this effect is
quite small, which confirms our earlier observation
that pause clustering is fairly insensitive to value of

the interpause time parameter.

On the current-generation workstation, only 13 pauses
exceed 0.4 seconds. These numbers confirm our infor-
mal experience of SELF running on current-generation
SPARCstation-10 machines: pauses sometimes are
still noticeable, but they are rarely distracting. The
even faster next-generation workstation will eliminate
virtually all noticeable pauses: only 4 pauses will be
longer than 0.2 seconds. On such a machine, the cur-
rent SELF system should feel like an “optimizing inter-
preter.” (However, pauses may still not be short
enough for real-time animation or video, since the hu-
man eye can spot pauses of less than 0.1 seconds in
such situations.)

Arguments of the kind “with a faster machine, every-
thing will be better” are often misleading, especially if
they assume that everything else (e.g., the problem
size or program size) remains constant. We believe
that our argument escapes this fallacy because the
length of individual compilations does not depend on
program size or program input but on the size of a
compilation unit, i.e., the size of a method (and any
methods inlined into it during optimization). Unless
people’s programming styles change, the average size

 Workstation vendors are expected to announce 200-SPECint
workstations by the end of this year, so that even these “future”
workstations should be available in 1995.
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of methods will remain the same, and thus individual
pauses will become shorter with faster processors.
Furthermore, as already noted above, we did not sim-
ply divide pause times by the speedup factor but rean-
alyzed the trace, combining individual pauses into
longer pauses by correctly accounting for the shorter
inter-pause times. Larger programs may prolong the
time needed for recompilation to settle down (see
section 6.2 below), but our experience is that program
size does not influence the clustering of individual
compilations. In other words, while larger programs
may cause more pauses, they do not lengthen the
pauses themselves. Therefore, we believe that it is safe
to predict the interactiveness of the system as per-
ceived by the user will improve with faster processors,
as shown in Figure 7.

To summarize, one could characterize the compilation
pauses of the SELF-93 system as noticeable but only
occasionally distracting on previous-generation sys-
tems, sometimes noticeable but almost never distract-
ing on current-generation systems, and virtually unno-
ticeable on next-generation systems.

6. Starting new code

A responsive system should be able to quickly start up
new (as yet uncompiled) programs or program parts.
For example, the first time the user positions the cursor
in an editor, the corresponding editor code has to be
compiled. Starting without precompiled code is simi-
lar to continuing after a programming change, since
such a change invalidates previously-compiled code.
For example, if the programmer changes some meth-
ods related to pop-up menus and then tries to test the
change, the corresponding compiled code must be
generated first. Thus, by measuring the time needed to
complete small program parts (e.g., user interface in-
teractions) without precompiled code, one can charac-
terize the behavior of the system during a typical de-
bugging session where the programmer changes
source code and then tests the changed code.

To measure the effect of adaptive optimization, several
systems were used (Table 2). Comparing the standard
SELF-93 system to a version which always optimizes
all code (SELF-93-norecomp) shows the direct effect
of adaptive optimization. The previous SELF system
(SELF-91) was included as a reference point.

System Description |

SELF-91 Chambers’ SELF compiler [Cha92]; all methods ‘
are always optimized from the beginning.

SELF-93 The current SELF system using dynamic recompi-
lation; methods are compiled by a fast non-opti-
mizing compiler first, then recompiled with the

: optimizing compiler if necessary.

SELF-93- Same as SELF-93, but without recompilation; all

norecomp , methods are always optimized from the beginning.

Table 2: Systems used in the study of start-up times
6.1 Starting small programs

In order to evaluate the behavior of start-up situations,
we measured the time taken by a sequence of common
user interactions such as displaying an object or open-
ing an editor. At the beginning of the interaction se-
quence, all compiled code was removed from the code
cache. Table 3 shows the individual interactions of the
sequence. For the measurements, the interactions were
executed in the sequence shown in the table, with no

execution time
(compile + run)
o (seconds on
Description SPARCstation-2)
$-93-
LS9 TR | 593
1| start user interface, display initial 91.9| 422 263
objects
2 | dismiss standard editor window 1.5 47| 1§
3 | dismiss lobby object 08! 07| 05
4 show slot “thisObjectPrints” of apoint | 23. 07] 06
object
5 | open editor on slot’s comment 8.1 32| 24
6 | dismiss editor 02| 04 05
7| sprout x coordinate (the integer 3) 114 44; 2.0
8 | sprout 3’s parent object (traits integer) L 25| 12 24,
9 1 display “+” slot 75] 26| 15
10 | sprout “+” method 118 42| 29
11 | dismiss “+” method 300 15] 1.0
12 open editor on “+” method 46| 22| 17
13, change “+” method (changing the defi- | 82.41 31.0| 13.9
nition of integer addition) |
14| reopen editor on “+” method?® 282 120| 6.9
15 | undo the previous change (changing 820 30.7| 150
the definition of integer addition back 3
to the original definition)
16 | dismiss traits smalllnteger object 98] 40| 10
geometric mean of ratios to SELF-93 340% | 160% | 100% |
median 400% | 160% | 100% )

Table 3: Ul interaction sequence

2 same action as no. 12, but slower because of the preceding change (see text)
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other activities in-between except for trivial actions
such as placing the cursor in the text editor. Although
the sequence starts with an empty code cache, an inter-
action may reuse some code compiled for previous in-
teractions; for example, the first action (starting up the
user interface) will generate code for drawing methods
used by most other interactions. All times are total ex-
ecution times, i.e., the sum of execution time and com-
pile time.

SELF-93 usually executes the interactions fastest; on
average, it is 3.4 times faster than SELF-91 and 1.6
times faster than SELF-93-norecomp (geometric
means; the medians are 4.0 and 1.6). However, there
are fairly large variations: some tests run much faster
with SELF-93 (e.g., number 16 is 9.8 and 4.0 times
faster, respectively), but a few tests (e.g., number 6)
run slower than in the other systems.

Several factors contribute to these results. SELF-93 is
usually fastest because the non-optimizing compiler
saves compilation time. However, dynamic recompila-
tion introduces a certain variability in running times,
slowing down some interactions. This can happen
when recompilation is too timid (so that too much time
is spent in unoptimized code) or when it is too aggres-
sive (so that some methods are recompiled too early
and then have to be recompiled again). SELF-93-nore-
comp is faster than SELF-91 because type feedback al-
lowed its design to be kept simpler without compro-
mising the performance of the compiled code.

Rows 13 to 15 show how quickly the system can re-
cover from a massive change: in both cases, a large
amount (300 Kbytes) of compiled user interface code
needed to be regenerated after the definition of integer
addition had changed. Since the integer addition
method is small and frequently used, it was inlined
into many compiled methods, and all such compiled
methods were discarded after the change. Adaptive re-
compilation allowed the system to recover in less than
15 seconds (the user interface consists of about 15,000
lines of code, not counting general system code such
as collections, lists, etc.). This time included the time
to accept (parse) the changed method, dismiss the edi-
tor, update the screen, and react to the next mouse
click. Compared to SELF-93-norecomp, dynamic opti-
mization buys a speedup of 2 in this case; compared to
SELF-91, the speedup is a factor of 5 to 6. Of course,
subsequent interactions may also be slower as a result
of the change because code needs to be recreated. For

example, opening an editor (row 14) takes four to six
times longer than before the change (row 12).

With adaptive optimization, small pieces of code are
compiled quickly, and thus small changes to a program
can be handled quickly. Compared to the previous
SELF system, SELF-93 incurs significantly shorter
pauses; on average, the above interactions run three to
four times faster.

6.2 Starting large programs

The previous section characterized the pauses caused
by (re-)compiling small pieces of code. This section
investigates what happens when large programs must
be compiled from scratch. Table 4 lists the large appli-
cations used for the study. The programs were started

Benchmark | Size (lines)? | Description
CecilComp 11,500 | Cecil-to-C compiler compiling the
Fibonacci function
Cecillnt 9,000 | interpreter for the Cecil language
[Cha9%3] running a short test program
Typeinf 8,600 | type inferencer for SELF [APS93]
Ull 15,200 ; prototype user interface using anima-
| tion techniques [CU93]°

Table 4: Large SELF applications

2 Excluding blank lines.
Time excludes the time spent in graphics primitives

with an empty code cache and then repeatedly exe-
cuted 100 times. Although the programs are fairly
large, the test runs were kept short, at about 2 seconds
for optimized code. Thus, the first few runs are domi-
nated by compilation time since a large body of code
is compiled and optimized (Figure 8). For example,
Typeinf’s first run takes more than a minute, whereas
the tenth run takes less than three seconds. After a few
runs, the compilations die down and execution time

60+
a i CecilComp
g 50 1
g | — — — —  Cecillnt
L =
g 2 40
R~ 2 I Typeinf
g < 30 |
g & A
22 I un
§ g 20 l
v 3 » q
5 1
g 10+ :l
< *L ’\-/'

T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100
run number

Figure 8. Start-up behavior of large applications



becomes stable for all programs except UL 1 which ex-
periences another flurry of compilation around run 15.

Note that the shape of the graph (i.e., the height of the
initial peak) is strongly influenced by the (asymptotic)
length of the test runs; had we chosen to use ten-sec-
ond test runs, the picture would be quite different.
Figure 9 shows the same data as Figure 8, except that
five successive runs were treated as one, simulating
test runs of about 15 seconds duration. Suddenly, the
initial peak in execution time looks much smaller even
though the system’s behavior has not changed.

140 -
~ CecilCom,
< 120 P
2 100. — — — —  Cecillnt
EQ
; 3{4 804y 0 = Typeinf
S A
292 604% - un
£ o
o % 40_
=
©
g 20+
0 A
5 10 15 20
run number

Figure 9. Alternate view of figure 8

Table 5 characterizes the start-up behavior of the sys-
tem depending on program size and execution time. If
programs are small, so is the start-up time, and thus
the start-up behavior is good. If programs run for a
long time, start-up behavior is good as well, since the
initial compilations are hidden by the long execution
time. However, if large programs execute only for a

program size
small big
execution | short good not good
time long good good

Table 5: Start-up behavior of dynamic compilation

short time, the start-up costs of dynamic compilation
cannot be hidden in the current SELF system. Our
benchmarks all fall in this category because their in-
puts were chosen to keep execution times short.” In
real life, one might expect large programs to run
longer, and thus start-up behavior would be better than
with our benchmarks.

t The benchmarks (and their inputs) were originally chosen to mea-
sure execution performance using an instruction-level simulator,
and most of them run for only one or two seconds on a SPARCsta-
tion-2.

The programs’ start-up time should correlate with pro-
gram size: one would expect larger programs to take
longer to reach stable performance since more code
has to be (re)compiled. Figure 10 shows the “stabiliza-
tion time” of several large SELF programs, piotied
against the programs’ sizes. (The stabilization time is

120 CecilComp
100
3
=]
® 2 80 Typeinf
EZ .
==
S< . un
56 .
z5 PrimMak
P rimMaker
38 40 o U3 Mango .
<] - . . Cecillnt
g . s
204
DeltaBlue
:Richards
0

T T T T T T 1
0 2,500 5,000 7,500 10,000 12,500 15,000 17,500
program size (lines of code)

Figure 10. Correlation between program size and
time to stable performance

the compilation time incurred by a program until it
reaches the “knee” of the initial start-up peak.’:) As ex-
pected, some correlation does exist: in general, larger
programs take longer to start. However, the correlation
is not perfect, nor can it expected to be. For example, a
large program that spends most of its time in a small
inner loop will quickly reach good performance since
only a small portion needs to be optimized.

What exactly causes the first few runs to be so slow?
Figure 11 (on the next page) breaks down the start-up
phase of the programs into compilation and execution.
Most of the initial runs of UI1 consists of non-opti-
mizing compilations and slow-running unoptimized
code; in UI1, optimizing compilation never dominates
execution time.™" To reduce the initial peak in execu-
tion time for UI 1, the non-optimizing compiler would
have to be substantially faster and generate better
code. In contrast, optimizing compilation dominates
the start-up phase of Typeinf and (to a lesser extent)
CecilComp. CecilInt lies somewhere in-be-
tween—optimizing compilation consumes only a mi-

¥ The knee was determined informally since we were interested in
a qualitative picture and not in precise quantitative values.

un spends a relatively high percentage of time in unoptimized
code because it uses dynamic inheritance, a unique SELF feature
that allows programs to change their inheritance structure at run-
time. Dynamic inheritance is currently not handled well by the
recompilation system.

238



S
o

CecilComp

DO W W s
S th & »h S

execution time
(seconds on SPARCstation-2)

—
S v O W

4 5 6

run number

70 Typeinf

execution time
(seconds on SPARCstation-2)

run number

Cecillnt

optimizing compiler

[
(=]

non-optimizing compiler

—
N

other (primitives, GC, etc.)

optmized code

—
o

execution time
(seconds on SPARCstation-2)

O W & N

unoptimized code

0 1 T T T T T
5 6
run number

T
7

i0

execution time
(seconds on SPARCstation-2)

run number

Figure 11. Start-up phase of selected benchmarks

nor portion of the first run but a major portion of the
second run. In summary, the reasons for the high ini-
tial execution time vary from benchmark to bench-
mark, and there is no single bottleneck.

The initial slowdown experienced when starting large
applications need not be a problem when delivering
finished applications to users, since precompiled code
could be stored on disk and loaded on demand. (Only
optimized code needs to be stored since unoptimized
code can be created quickly enough on the fly.) How-
ever, during program development, most of an appli-
cation’s code may be discarded after a significant
change, and thus it is still important that the system
can start up large programs reasonably quickly. On a
SPARCstation-2, a 10,000-line program approaches
stable performance after about one to two minutes in
SELF-93 (see Figure 10), which is adequate.

7. Related work

One of the first people concerned with the implemen-
tation of efficient but flexible programming systems
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was Mitchell [Mit70]. His design (the system was not
actually implemented) mixed interpretation and com-
pilation: code was first interpreted, but subsequent ex-
ecutions used compiled code that was generated as a
side-effect of interpretation.

Hansen [Han74] describes an adaptive compiler for
Fortran. His compiler optimized the inner loops of
Fortran programs at runtime. The main goal was to
minimize the total cost of running a program (which
presumably was executed only once), and programs
were run batch-style. The system tried to allocate com-
pile time wisely in order to minimize total execution
time, i.e. the sum of compile and runtime; being a
batch system, interactive pauses were not an issue.

The Deutsch-Schiffman Smalltalk system [DS84] (and
its commercial successor, ParcPlace Smalltalk [PP92])
were the first object-oriented systems to use dynamic
compilation. Using a very fast non-optimizing com-
piler, the system achieves excellent interactive perfor-
mance; compilation pauses are virtually unnoticeable
on current hardware. Smalltalk is easier to compile



with a non-optimizing compiler than SELF since
Smalltalk *hardwires” important control structures
(such as if and while) whereas SELF doesn’t
[Ho194]. However, compared to SELF-93, unoptimized
Smalltalk code runs roughly three times slower on the
programs measured in [HU94], demonstrating the lim-
its of non-optimizing compilation.

Lisp systems have long used a mixture of interpreted
and compiled code (or optimized and unoptimized
compiled code). However, the user usually has to man-
ually compile programs. Since the transition from un-
optimized (interpreted) code to optimized (compiled)
code is not automatic, such systems cannot directly be
compared to systems using dynamic recompilation.

Some commercial implementations of Eiffel [ISE93]
and C++ [SGI93] can handle the reverse transition
(from compiled to interpreted) automatically. That is,
after a source method is changed, the compiled code is
no longer executed and the method is interpreted until
the programmer recompiles that part of the program.f
Of course, the affected code will run much more
slowly when interpreted, so that this approach is only

practical for code that is not executed too often.

8. Conclusions

Like other languages, object-oriented languages need
both good runtime performance and good interactive
performance. Pure object-oriented languages make
this task harder since they need aggressive optimiza-
tion to run at acceptable speed, thus compromising in-
teractive performance. With adaptive recompilation, a
system can provide both good runtime performance
and good interactive performance, even for a pure ob-
ject-oriented language like SELF. On a SPARCstation-
2, fewer than 200 pauses exceeded 200 ms during a
50-minute interaction with the system, and 21 pauses
exceeded one second. With faster CPUs, compilation
pauses should start becoming unnoticeable: on a next-
generation workstation (likely to be available in 1995),
no pause would exceed 400 ms, and only four pauses
would exceed 200 ms.

When discussing pause times, it is imperative to mea-
sure pauses as they would be experienced by a user.
Pause clustering achieves this by combining consecu-
tive short pauses into one longer pause, rather than just

t The SELF system uses a similar mechanism to provide source-lev-
el debugging of optimized code and to allow the programmer to
change programs while they are running [HCU92].

measuring individual pauses. Applying pause cluster-
ing to the compilation pauses of the SELF-93 system
changes the pause distribution by an order of magni-
tude, emphasizing the importance of pause clustering.
We believe that pause clustering should be used when-
ever pause length is important, for example, when
evaluating incremental garbage collectors.

Adaptive recompilation also helps to improve the sys-
tem’s responsiveness to programming changes. For
example, it takes less than 15 seconds on a SPARCsta-
tion-2 for the SELF user interface to start responding to
user events again after the radical change of redefining
the integer addition method (which invalidates all
compiled code that has inlined integer addition).

In the future, it should be possible to hide compilation
pauses even better than the current SELF-93 system
does. With dynamic recompilation, optimization is
“optional” in the sense that the optimized code is not
needed immediately. Thus, if the system decides that a
certain method should be optimized, the actual opti-
mizing compilation could be deferred if desired. For
example, the system could enter the optimization re-
quests into a queue and process them during the user’s
“think pauses” (similar to opportunistic garbage col-
lection [WM89]). Alternatively, optimizing compila-
tions could be performed in parallel with program exe-
cution on a multiprocessor machine.

Adaptive recompilation gives implementors of pure
object-oriented languages such as Smalltalk a new op-
tion for implementing their systems. With the increas-
ing speed of hardware, interpreters or unoptimizing
dynamic compilers (as used in current Smalltalk sys-
tems) may no longer represent the optimal compro-
mise between performance and responsiveness. Today,
it is practical to push for better performance—thus
widening the applicability of such systems—without
forfeiting responsiveness. We hope that this paper will
encourage implementors of object-oriented languages
to explore a new region in the design space, resulting
in new high-performance exploratory programming
environments for object-oriented languages.
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Appendix. Influence of recompilation
parameters on performance

SELF-93’s recompilation system is governed by sev-
eral configuration parameters that influence how ag-
gressively methods are recompiled and optimized.
This appendix describes two of those parameters
(recompilation limit and half-life time) and shows how
they influence the behavior of the system. By varying
these parameters, it is possible to trade better interac-
tive behavior for execution speed and vice versa.

As mentioned before, unoptimized methods have in-
vocation counters. If a counter exceeds the recompila-
tion limit, the recompilation system is invoked to de-
termine if optimization is necessary. Thus, lower limits
will lead to more aggressive recompilation (since
more methods will reach the limit); the current system
uses a limit of 10,000.

Invocation counters decay exponentially; the decay
rate is given as the half-life time, i.e., the time after
which a counter loses half of its value. Without decay,
every method would eventually reach the invocation
limit and would be recompiled even though it might
not execute more often than a few times per second, so
that optimizing it would hardly bring any benefits. Ex-
ponential counter decay is implemented by periodi-
cally dividing the counters by a constant p; for exam-
ple, if the process adjusting the counters wakes up ev-
ery 4 seconds and the half-life time is 15 seconds, the
constant factor is p = 1.2 (since 1.215%4 = 2). The decay
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process converts the counters from invocation counts
to invocation rates: given invocation limit N and decay
factor p, a method has to execute more often than N *
(1 - 1/p) times per decay interval to trigger a recompi-
lation.

While searching for a good configuration for our stan-
dard system, we experimented with a wide range of
parameter values. Although there appeared to be no
hard rules (i.e., rules without exceptions) to predict the
influence of parameter changes, two clear trends
emerged:

* Letting invocation counts decay significantly re-
duces compile pauses by reducing the number of
recompilations. The closer the half-life time is to
infinity (i.e., no decay), the more variable the exe-
cution times become, and the longer it takes for
performance to stabilize.

* Increasing the recompilation limit (i.e., the invoca-
tion count value at which a recompilation is trig-
gered) lengthens the start-up phase because more
time is spent in unoptimized code. However, it
does not always reduce compile pauses.

Counter decay has the most influence on compile
pauses; in particular, the difference between some de-
cay and no decay is striking. Figure 12 shows the exe-

T Assume a method’s count is C just before the decaying process
wakes up. Its decayed value is C/p, and thus it has to execute C * (/
- 1/p) times to reach the same count of C before the decay process
wakes up again. Since the method eventually needs to reach C = N
to be recompiled, it must execute at least N *(/ - I/p) + I times
during a decay interval. p can be derived from half-life L and decay
interval D (4 seconds) as p = 2 P/,
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Figure 12. Performance variations if invocation counters don’t decay
(thin lines: standard system (15 second half-life), thick lines: system with no decay)
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cution times of 100 repetitions of the programs shown
in Figure 11, comparing the standard system (with a
half-life time of 15 seconds) to a system with no
counter decay. All programs show significantly higher
performance variations if counters do not decay; these
variations are caused by recompilations. Also, several
of the programs do not seem to converge towards a
stable performance level within 100 iterations. Intu-
itively, the reason for this behavior is clear: without
decaying invocation counts, every single method will
eventually exceed the recompilation threshold, and
thus will be optimized. That is, performance only sta-
bilizes when there are few methods left to recompile.

Figure 12 shows another interesting effect: for three of
the four programs, asymptotic performance improves
when counters are not decayed, presumably because
more methods are optimized. To measure this effect,
we varied invocation limit and half-life time and mea-
sured the resulting execution time. For each combina-
tion of parameters, the lowest execution time out of
100 repetitions of a benchmark was chosen and nor-
malized to the best time achieved with any parameter
configuration for that benchmark. That is, the parame-
ter configuration resulting in the best performance for
a particular benchmark receives a value of 100%; a
value of 150% for another parameter combination
would mean that this combination results in an execu-
tion time that is 1.5 times longer than that of the best
parameter combination.

Figure 13 shows the resulting performance profile, av-
eraged over all benchmarks (the data was clipped at z
= 200%; the true value for the worst parameter combi-

160%

re/ative execultion time

Figure 13. Influence of recompilation parameters
on performance

nation is over 1100%). Overall, the two parameters be-
have as expected: increasing the invocation limit and
decreasing half-life both increase execution time be-
cause a smaller part of the application is optimized

since fewer methods are recompiled. However, the

performance profile is “bumpy,” showing that perfor-
mance does not vary monotonically as one parameter
is varied. The bumps are partly a result of measure-
ment errors (recall that variations caused by cache ef-
fects on the SPARCstation-2 can be as high as 15%)
and partly a result of an element of randomness intro-
duced by using timer-based decaying. Since the timer
interrupts governing the counter-decaying routine do
not always arrive at exactly the same points during the
program’s execution, a method may be optimized in
one run (e.g., with a haif-life time of 4 seconds) but
not in another run (with half-life time of 8 seconds)
because there the counters are always decayed in time
before they can trigger a recompilation. This explana-
tion is consistent with the fact that the bumps are not
exactly reproducible (i.e., the bumpiness is reproduc-
ible, but the exact location and height of the bumps is
not).

These measurements show that one can vary the
recompilation parameters within certain bounds with-
out affecting performance too much. Recall that the
point with the best asymptotic performance (e.g., no
counter decay and an invocation limit of 5,000) is not
be the best overall choice since interactive perfor-
mance suffers with such parameters (see Figure 12).
Since the performance profile is fairly flat near the op-
timal asymptotic performance point, it is possible to
trade around 10% execution speed for much better in-
teractive behavior.
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