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Abstract

This paper describes GBURG, which generates tiny,
fast code generators based on finite-state machine
pattern matching. The code generators translate
postfix intermediate code into machine instructions
in one pass (except, of course, for backpatching ad-
dresses). A stack-based virtual machine—known as
the Lean Virtual Machine (LVM)—tuned for fast
code generation is also described. GBURG translates
the two-page LVM-to-x86 specification into a code
generator that fits entirely in an 8 KB I-cache and
that emits x86 code at 3.6 MB/sec on a 266-MHz
P6. Our just-in-time code generator translates and
executes small benchmarks at speeds within a factor
of two of executables derived from the conventional
compile-time code generator on which it is based.

1 Introduction

To execute virtual machine (VM) code on a client
processor typically requires either a VM interpreter
or a just-in-time (JIT) translator. Conventional wis-
dom dictates that the space/time tradeoff favors the
interpreter approach where space is scarce because
interpreters are small and “simple,” but it favors the
presumably larger JIT translators when speed is more
important than size or simplicity. Interpreters typi-
cally give up a factor of 10 in execution speed com-
pared to JIT-translated code. In this paper we will
describe tiny, fast and simple code generators that
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produce native code whose speed including JIT trans-
lation is within 2-4X of typical compiler-generated
code. The factor is less than two when compared
with the conventional compile-time code generator
on which our system is based. Given that our x86
code generator fits in 8 KB and generates code at 3.6
MB/sec., this technology represents a desirable alter-
native to interpretation on even extremely memory-
limited machines (e.g., cellular phones, personal dig-
ital assistants, etc.). Furthermore, our system gener-
ates these code generators from concise machine spec-
ifications, which greatly simplifies retargeting.

Pattern-matching code generators map patterns of
intermediate representation (IR) operators to equiva-
lent target instructions. Tree-pattern matching code
generators often use target-machine instruction costs
to guide the selection towards least-cost (i.e., opti-
mal) mappings via dynamic programming, which re-
quire two tree-walk passes: one bottom-up pass for
dynamic programming, and one top-down pass for
selecting the least-cost match. Other systems, like
gec’s IR-rewriting technology, heuristically search for
better target instructions to emit. Both techniques
do an excellent job of instruction selection but new
applications for code generators—such as load-time
translation of mobile code in embedded computers or
on-the-fly code generators for interpreters, emulators,
or program specializers—might benefit from alterna-
tives that are smaller or faster or both.

This paper explores the other end of the spectrum
of code generation technology, where code genera-
tor size and speed are as important as code qual-
ity. The extreme end of the spectrum is a macro-
expanding code generator that reads every IR instruc-
tion and immediately emits the appropriate target
instructions. This approach, while simple and fast,
misses opportunities to emit more efficient target in-
structions that do the work of multiple IR operations.
For instance, macro expansion of an Add followed by a
Load could not exploit a target machine’s addressing



modes.

We have systematically studied the costs of pre-
vious pattern-matching schemes and eliminated as
much inefficiency as possible while still being able to
generate good local code. Our system, “GBURG,” au-
tomatically generates code generators whose underly-
ing pattern-matching technology is a common finite
state machine. This simplicity results in small, simple
and eflicient code generators that are able to generate
many complex target instructions.

GBURG reads tree grammars and automatically
generates code generators. (GBURG does not oper-
ate on trees, but rather their linearized postfix nota-
tion (i.e., stack code). Furthermore, the code gener-
ators require only one pass over—and thus no buffer-
ing of—the stack code to select instructions. These
one-pass matchers do greedy pattern matching and
cannot guarantee least-cost matches. Based on the
emitted assembly language we’ve examined, however,
the code quality is suitable for many purposes where
fast code generation is important.

GBURG cannot handle arbitrary tree grammars—it
processes grammars that are equivalent in descriptive
power to regular expressions, which allows GBURG to
generate simple finite-state machine pattern match-
ers.

We have designed a new Lean Virtual Machine
(LVM) for our intermediate representation. The
LVM’s instruction set design helps GBURG to generate
good code very quickly.

Qur two-page LVM-to-x86 code generator specifi-
cation generates a code generator that fits entirely in
8 KB. Run on a 266 MHz P6, the code generator is
capable of generating x86 code at 3.6 MB/sec.

2 Background

Generating fast code generators from machine specifi-
cations is not new [GGT78, FHP92b, FHP92a, AGT89,
PW96]. Graham-Glanville code generators parse pre-
fix tree IR to identify large instructions (and ad-
dressing modes) from simpler IR operators. Graham-
Glanville code generators suffer from a “left-bias”
when translating binary operators. The prefix code
for a binary operator’s right operand can be arbi-
trarily many instructions away from the operator—
the left operand separates the two. The Graham-
Glanville code generator cannot defer parsing deci-
sions arbitrarily far because it is based on LR(1) pars-
ing technology, and, therefore, must make code gen-
eration decisions about a left operand prior to know-
ing its sibling, the right operand. Having to make
decisions without complete information can lead to
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sub-optimal code. GBURG suffers from a similar left
bias—although it matches a postfix notation—but
the design of the LVM instruction set compensates
for this problem.

Engler’s VCODE system represents a VM instruc-
tion set and a code generation technology for efficient
dynamic code generation [Eng96]. VCODE includes
complex instructions that anticipate most modern
architectures in terms of addressing modes, which
means that macro-expansion of VCODE into target
code will often use those addressing modes. Like
GBURG’s code generators, VCODE’s code generators
are generated from specifications and are extremely
efficient, but VCODE relies entirely on the design of
the instruction set to allow macro-expansion to rea-
sonable code.

Omniware is a system for distribution of safely-
executable mobile programs [ATLLW96]. Omniware
relies on a machine-independent VM code that can
be efficiently translated into native code via macro-
expansion. Like VCODE, Omniware’s instruction set
design anticipates target machine instruction sets by
including complex addressing modes.

The Free Software Foundation’s GCC compiler uses
a very general tuple-rewriting system for instruction
selection. Based on the PO systermn for rewriting Reg-
ister Transfer Language developed by Davidson and
Fraser, the system is extremely flexible and powerful,
but not known for speed [DF80, DF84].

Tree-pattern matching technologies combined with
dynamic programming yield efficient, optimal local
code generation for tree-based IRs. Previous tree-
pattern matching schemes have used dynamic pro-
gramming combined with sophisticated matching al-
gorithms [HO82, PLG88, Pro95] to produce least-cost
tree matches in time proportional to the size of the
input tree. {The problem is NP-complete for DAG-
based IRs.) All dynamic programming systems re-
quire two passes over the IR: the first pass annotates
the tree with dynamic programming information, and
the second pass selects the optimal match. While gen-
erating provably optimal code from trees, the code
generators do so at the cost of two passes over the
IR. Furthermore, the second pass requires a top-down
tree walk of the IR, which implies a format more com-
plex than a simple postfix stack code. GBURG does
a one-pass pattern match that trades optimality for
instruction selection speed.

Like GBURG, wburg generates “one-pass” tree-
pattern matchers from machine specifications
[PW96]. Wburg’s matchers are based on burg-
generated automata, which means they are relatively
large {Pro95]. Furthermore, wburg’s matchers oper-
ate in one-pass by buffering a small fixed-size stack



of previously seen operations for deferred matches,
which i1s an overhead stripped from GBURG’s
matchers.

Typically, tree-pattern matching code generators
are automatically generated from concise machine
specifications that map IR patterns to target machine
instructions. While the code generators often differ
in pattern-matching algorithms and disambiguation
techniques (e.g., dynamic programming, greedy selec-
tion, etc.), the specifications are quite similar. The
grammars consist of cost-augmented tree-rewriting
rules that associate patterns with nonterminals they
derive and with actions that the code generator must
execute if this rule is chosen. A sample grammar ap-
pears in Figure 1.

Nonterminals appear on the left-hand side of rules.
Terminals are IR language operators. Base rules in-
clude a terminal symbol on the right-hand side of
rules. Chain rules simply derive one nonterminal
from another. Costs appear in parentheses.

3 Lean Virtual Machine

This paper bases IR examples on the Lean Virtual
Machine (LVM), which we are developing as a vehi-
cle for research in code generation and compression.
The LVM is a simple stack-based machine designed
to enable, among other things, efficient translation to
target-machine code. The LVM is “lean” in the sense
that the instruction set eliminates all redundant op-
erations. For instance, the only addressing mode in
the LVM is indirect (i.e., loads and stores find their
target addresses on the evaluation stack). The LVM
includes only two primitive operations for accessing
literal values: one pushes a compile-time constant on
the stack, and the other pushes a link-time constant
on the stack. (These operations come in different sizes
and types, of course.)

The stack-based LVM includes 256 registers. By
convention, these LVM registers may, or may not,
map to specific hardware registers.

The LVM instruction set does not include any in-
structions that assume particular source languages,
calling conventions, or object models. For instance,
the LVM does not include any instructions for pass-
ing arguments, checking types, entering monitors,
etc. Such operations must be built from the prim-
itive LVM operations. By including all the necessary
primitive operations to map any such operations onto
a particular target machine, and by avoiding hard-
wiring a particular language bias into the LVM, it
can function as a universal target for all source lan-
guages.
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The LVM borrows heavily from the 1cc IR [FH95].
It is, by and large, 1cc trees in postfix, with C-specific
operators expanded into a few more primitive opera-
tors and with the operators renamed to be somewhat
more self-explanatory in their new incarnation as in-
struction names.

4 Greedy Pattern Matching

Our code-generator generator, GBURG (Greedy
Bottom-Up Rewrite Generator), generates tiny and
extremely fast code generators that do tree pattern
matching as their way of mapping postfix instructions
into target machine instructions. GBURG forsakes dy-
namic programming and unrestricted tree matching
for a simpler, faster scheme that matches patterns
greedily from a very restricted tree-pattern grammar.
Fortunately, the quality of generated code suffers very
little, while the code generation speed and size im-
prove dramatically.

(GBURG does not traverse trees, but rather it reads
a postfix representation. Let’s use the grammar in
Figure 1 to compare GBURG to other schemes. Con-
sider the following LVM code that represents a simple
load.

PushRegU4[2] PushConstU4[4] AddU4 LoadU4

On a simple RISC target, this would map cleanly into
a load instruction: load rX, 4(r2).

A dynamic programming system would find all le-
gal parses of the tree, and choose the least expensive
for this grammar: load rX, 4(r2). (The code gen-
erator would be responsible for assigning a register to
the implicit temporary rX.)

What problems does a one-pass system have with
this example? Translating the first LVM instruction
(PushRegU4) poses an subtle choice. While there 1s
only one rule that matches PushRegU4, which pro-
duces the reg nonterminal, it is not obvious which
chain rules, if any, should be used. In general, it is im-
possible to know which chain rules should be applied
until subsequent operators are inspected—which is
precisely the reason that dynamic programming sys-
tems require two passes.

Peeking ahead and finding the PushConstU4 in-
struction does help. Examination of the grammar
reveals that all first operands (left children) must be
reg nonterminals, so the code generator knows to ap-
ply the necessary chain rules to reduce the left-child
nonterminal to a reg (which in this case is no rules
at all). Note that if peeking ahead revealed a LoadU4
instruction, then the addr: reg chain rule would be
applied to get the necessary addr nonterminal.



cnsti: PushConstU4[N]
reg: cnsti

reg:  PushRegU4[N]
reg: LoadU4(addr)
reg:  AddU4(reg, reg)

addr: AddU4(reg, cnsti)
addr: reg
addr: cnsti

(0)
(1)
(0)
(1)
(1)
(0)
(0)
(0)

emit ("N")

emit("loadimm $0, $1")
emit ("rN")

emit("load $0, $1;")
emit("addi $0, $1, $2;")
emit ("$2($1)")

emit ("O($1)™)

emit ("$1")

Figure 1: Sample Grammar

What chain rules should be applied after reduc-
ing PushConstU4? Should the PushConstU4 be re-
duced to a cnsti, addr, or a reg? Unfortunately,
this cannot be answered by looking just one instruc-
tion ahead. The required nonterminal depends on
which AddU4 rule should be used, which depends on
yet another instruction—the instruction that uses the
AddU4’s computation. In general, there is no bound
on how far ahead the pattern matcher might need-to
look to determine the best rule(s) to apply.

To avoid looking arbitrarily far ahead, GBURG-
generated pattern matchers greedily match base rules,
and defer applying all chain rules until the very next
instruction is examined. In the example, this means
that PushConstU4 would be reduced to a cnsti by
the only base rule for PushConstU4. Upon encoun-
tering the AddU4, the pattern matcher would attempt
to apply each AddU4 rule, in turn, until one of them
matched (with the possible assistance of chain rules
for the most recently encountered operand) and then
use that rule. So, reg: AddU4(reg,reg) would be
used after forcing the application of a chain rule to
promote the cnsti from the PushConstU4 into a reg.
The AddU4’s reg would in turn be promoted to an
addr when the matcher hit the LoadU4 instruction.

Note that it is impossible for this greedy scheme to
ever use the addr: AddU4(reg,cnsti) rule, which
directly creates an addressing mode. This follows be-
cause a cnsti can always be converted to a reg and,
therefore, anytime the second AddU4 rule is applica-
ble, so is the first. GBURG input grammars have no
concept of costs, so another means is necessary to
overcome this deficiency. Fortunately, it can be over-
come by rewriting the grammar so that the AddU4
rules are reversed.

Unfortunately, some grammars still might require
deferring chain rules for more than one instruction.
Adding the rule root: StoreU4(addr,reg) intro-
duces such a problem. Because addr is the first
operand, and other binary operator rules have reg
nonterminals as their left operand, it would be impos-
sible to know what chain rules should be applied to a
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nonterminal that will be used as a left operand with-
out knowing the parent operator. This rule causes
a left-bias problem. Deferring such decisions would
effectively require a second pass over the input.

Fortunately, there is a simple way out of this
problem: change the StoreU4 instruction in the IR
to take the target address as its right child. For
RISC targets like the SPARC, this eliminates the
left-bias for the translation of a StoreU4. Unfortu-
nately, this StoreU4 definition does not solve a re-
lated code generation problem on the x86. On the
x86, it is possible to store an immediate value into
a target location specified by a complex addressing
mode. Generating this instruction requires a rule
like root: StoreU4(imm, addr). This cannot be
matched in a simple one-pass matcher, and GBURG’s
code will load the constant into a register before stor-
ing it into memory.

5 Code-Generator Generator

5.1 Machine Specifications

GBURG is a 622-line Icon program [GG83] that does
only simple analysis of an input grammar to produce
a code generator in C [KR88]. The input consists of
the following parts:

Token Declarations The specification includes
declarations for all operators in the grammar
including their external encoding. All encodings
must fit in 8 bits.

Constructive Grammar The specification in-
cludes a grammar that describes all legal tree
derivations. GBURG eliminates some case analy-
sis in its pattern matcher when the constructive
grammar is more constrained than the ma-
chine specification grammar. The constructive
grammar also declares how many bytes of
“Immediate value” follow the operator in an
instruction stream (e.g., PushConstU4[4]).



%% // Constructive Grammar

root: StoreU4(int,int)
root: StoreF4(float,int)
int: AddU4(int, int)
int: SubU4(int, int)
float: AddF4(float, float)
float: SubU4(float, float)
int: PushConstU4[4]
float: PushConstF4[4]

int: LoadU4(int)

float: LoadF(int)

%4 // Machine Specification Grammar

root: StoreU4(reg,addr) { printf("root: StoreU4(reg,addr)"); }
root: StoreF4(reg,addr) { printf("root: StoreF4(reg,addr)"); }
reg:  AddU4(reg, cnsti) { printf("reg: AddU4(reg, cnsti)"); 3}
reg:  AddU4(reg, reg) { printf("reg: AddU4(reg, reg)"); }
reg:  SubU4(reg, cnsti) { printf("reg: SubU4(reg, cnsti)"); }
reg:  SubU4(reg, reg) { printf("reg: SubU4(reg, reg)"); }
reg:  AddF4(reg, reg) { printf("reg: AddF4(reg, reg)"); }
reg:  SubF4(reg, reg) { printf("reg: SubF4(reg, reg)"); }
cnsti: PushConstU4 { printf("cnsti: PushConstU4"); }
cnstf: PushConstF4 { printf("cnstf: PushConstF4"); }

reg: LoadU4(addr) { printf("reg: LoadU4(addr)"); }

reg: LoadF4(addr) { printf("reg: LoadF4(addr)"); }

reg:  cnstf { printf("reg: cnstf"); }

reg: cnsti { printf("reg: cnsti"); }

addr: reg { printf("addr: reg"); }

addr: cnsti { printf(“addr: cnsti"); }

Wh
// C code here

Figure 2: Sample Specification

Machine Grammar The specification includes
parsing rules annotated with actions (encoded
in C). A rule includes a left-hand side nonter-
minal, a pattern, and an action. The rules take
two possible forms: a chain rule that has a
nonterminal as its pattern, or a base rule that
has a tree pattern—a terminal for the operator,
and nonterminals as children. The matcher
executes an action when it selects the associated
rule.

Auxiliary C Routines The specification includes
arbitrary C code that compiles and links with
the generated matcher.

GBURG emits a single C function, compile(),
which takes as an argument an array of postfix code
to be matched. Figure 2 contains a sample grammar
that would simply echo its derivation sequence.
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5.2 Generating Matchers

GBURG matchers read stack-based input and perform
actions before and after each operator. Before per-
forming the appropriate action associated with the
operator, it may be necessary to apply chain rule ac-
tions to the preceding nonterminal to enable a match.
To allow a one-pass matcher, chain rules are only ap-
plied to the nonterminal produced by the immediately
preceding operator. For instance, if the preceding op-
erator produced a reg, and if the next operator is a
LoadU4, the rule addr: reg must be applied before
applying the LoadU4 rule. Note that a subtle asym-
metry exists here: chain rules are always applied to
the nonterminal generated by the preceding operator,
whereas base rules are always applied to the current
operator.

As discussed above, the matchers never apply chain
rules to nonterminals other than those generated by
the preceding operator. When a unary or binary op-



erator is encountered, it is simple to determine which
chain rule(s) to apply—use the chain rules necessary
to get the appropriate nonterminal for a match. If
more than one base rule exists for an operator, use
the first rule that can be applied (even if it requires
application of chain rules). This is a greedy matcher.

When a nullary operator (a leaf operator in the
tree) is encountered, what chain rules should be ap-
plied to the previous nonterminal (if one exists)? This
is determined by analysis of the grammar. In the
grammar above, nullary operators will cause appli-
cation of chain rules to derive the reg nonterminal.
GBURG determines this trivially by noting that all
left-child nonterminals in the grammar are regs, and,
therefore, any matches must match this as a reg.
This follows from the observation that in a stack ma-
chine, all values below the top of the stack are only
consumed by binary operators. GBURG allows more
than one nonterminal to appear as the left child of
various binary operators, but GBURG’s analysis must
prove, via a conservative analysis, that this presents
no ambiguity during a match.

The conservative analysis is trivial. First, deter-
mine that all rules for a given operator have the same
nonterminal as their left child. (Otherwise, it might
be impossible to pick a rule based solely on the right
child.) Further, check that no nonterminal can be
derived from two distinct left-child nonterminals via
chain rules. (Otherwise, it would be impossible to
determine what chain rules to apply to the original
nonterminal when “pushing it on the stack.”)

5.2.1 Finite state machine

Because only the immediately preceding nonterminal
can affect the pattern matching process, only that
nonterminal needs to be remembered during matches.
All pattern matching is determined by this single non-
terminal and the current operator. This, of course,
defines a simple finite-state machine in which the last
nonterminal is the state, and the current operator is
the input symbol. Each state corresponds to a nonter-
minal in the machine specification grammar. There-
fore, the machine for the grammar above would have
five states: root, reg, cnsti, cnstf, and addr.

All that is necessary to realize this state machine
in code is a mechanism for performing the appropri-
ate actions (associated with grammar rules) and mak-
ing the appropriate state transitions. Note that for a
given transition there will be zero or more chain rules
applied to the preceding nonterminal (state), and ex-
actly one base rule applied.

Determining which rules should be applied for
a given (nonterminal,operator) pair is easy. First,
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GBURG determines which base rule to apply by greed-
ily trying them in order, allowing as many chain rules
as necessary to be appied to make a match work.
(Hence, GBURG is greedy with respect to base rules,
not chain rules. Given alternative sequences of chain
rules to do the same conversion, GBURG will choose
the shortest, breaking ties arbitrarily.) Given this
analysis, emitting a pattern matcher is easy, although
there are opportunities for optimization.

All of our schemes use a hard-coded matcher,
rather than an interpretive, table-driven matcher.
The hard-coded matchers that we generate avoid any
explicit storage of the last nonterminal by encoding
this in the program’s PC. (This is analagous to a
recursive-descent parser encoding the current nonter-
minal in its execution of a particular procedure.)

5.2.2 Switch Statement

Each nonterminal translates to code for handling an
operator after a reduction to that nonterminal. C’s
switch statement is used to choose actions given the
possible operators. Application of any rule causes ex-
ecution of the associated action, and a transfer to the
code corresponding to the left-hand side of the rule
(i.e., a state transition). Applying a base rule also ad-
vances to the next operator. (The LVM includes an
EndOfProgram operator, whose action returns from
the matching procedure.) For the grammar above,
abbreviated translations for the reg and addr non-
terminals appear in Figure 3.

This code is simple, but it can be improved. Com-
bining identical case arms can decrease its size. For
instance, the addr switch statement is made smaller
by using only one case arm for SubU4 and AddU4, as
in Figure 4.

5.2.3 Operator Propagation

One drawback of the previous scheme is that a given
operator may flow through many switch statements—
in fact, it will execute one switch statement per rule
(chain and base) that it forces. This inefficiency is
easy to eliminate by exploiting the fact that after the
first switch statement, it is known exactly which case
arm of all the subsequent switch statements will be
executed. Therefore, it is simple to transfer control
out of each switch statement directly into the appro-
priate case arm of the next switch statement. Given
state reg and operator LoadU4, it must be the case
that after applying chain rule addr: reg that the
rule reg: LoadU4(addr) will be applied—so it can
be jumped to directly. Optimized in this way, the
switch statements above appear in Figure 5.



reg:

switch (operator) {
case AddU4:
case SublU4:
case LoadU4: { printf("addr: reg");

default:

/* error handling code */
b
addr:
switch (operator) {
case AddU4: { printf("reg: addr");
case SubU4: { printf("reg: addr");

case LoadU4: { printf("reg: LoadU4(addr)"); operator =

default:

{ printf(“reg: AddU4(reg, reg)"); operator =
{ printf("reg: SubU4(reg, reg)"); operator

*PC++; goto reg; }
*PC++; goto reg; }
goto addr; }

goto reg; }
goto reg; }
*PC++; goto reg; }

Figure 3: Simple State Machine

/* error handling code */
}
addr:
switch (operator) {
case AddU4: /* share chain rule with SubU4 */
case SubU4: { printf("reg: addr");

case LoadU4: { printf("reg: LoadU4(addr)"); operator =

default:
}

/* error handling code */

goto reg; }
*PC++; goto reg;

Figure 4: Code Sharing

After this optimization, only base rules transfer
control to a switch statement. Because many chain
rules contain no actions, this optimization introduces
branch chains, which, fortunately, many compilers are
able to eliminate. Unfortunately, the previously de-
scribed case-arm sharing disappears.

5.2.4 Chain Rule Inlining

It is possible to take the previous optimization a
step further and eliminate the intermediate control
transfers altogether. By inlining—in possibly many
locations—chain rules, it is possible to guarantee ex-
actly one control transfer per operator, regardless of
the number of applied chain rules. After inlining, the
code above is transformed into the code in Figure 6

The downside of this transformation is, of course,
code bloat. (Amusingly, a compiler doing a cross-
jumping optimization would re-introduce many of
these eliminated jumps to decrease the bloat.)
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5.2.5 Equivalence Classes

GBURG supports a crude macro-like facility that en-
ables another optimization. GBURG specifications
can group operators that have identical rule and ac-
tion templates. For instance, AddU4 and SubU4 are
nearly identical in the grammar above, and GBURG
supports a grammar specification of the following
form.

[AddU4:123 SubU4:456]
reg: $1(reg,reg) { printf("%d", $2); }

This is shorthand for writing rules for each of the
operators. $1 is a shorthand for the operators in the
equivalence class (the left-hand side of the macro defi-
nitions), and $2 is a shorthand for the right-hand side
of each definition. GBURG restricts the right-hand
side of macro definitions to be integers that will be
stored in a table indexed by the operator (i.e., left-
hand side). Macros make specifications more concise,
and they provide GBURG with another optimization



reg:
switch (operator) {

reg_AddU4:

case AddU4: { printf(“"reg: AddU4(reg, reg)"); operator = *PC++; goto reg; }
reg_SubU4:

case SubU4: { printf("reg: SubU4(reg, reg)"); operator = *PC++; goto reg; }
reg_LoadU4:

case LoadU4: { printf("addr: reg"); goto addr_LoadU4; }
default: /* error handling code */

}

addr:

switch (operator) {

addr_AddU4:

case AddU4: { printf("reg: addr"); goto reg_AddU4; }
addr_SubU4:

case SubU4: { printf("reg: addr"); goto reg_SubU4; }

addr_LoadU4:
case LoadU4: { printf("reg: LoadU4(addr)"); operator = *PC++; goto reg; }

default: /* error handling code */

3

Figure 5: Propagation

reg:
switch (operator) {

case AddU4: { printf('reg: AddU4(reg, reg)"); operator = *PC++; goto reg; }
case SubU4: { printf("reg: SubU4(reg, reg)"); operator = *PC++; goto reg; }
case LoadU4: { printf("addr: reg"); /* NOTE: two rules applied here */

printf("reg: LoadU4(addr)"); operator = *PC++; goto reg; }
default: /% error handling code */
¥
addr:

switch (operator) {

case AddU4: { printf("reg: addr"); /* NOTE: two rules applied here */
printf("reg: AddU4(reg, reg)"); operator = *PC++; goto reg; }

case SubU4: { printf("reg: addr"); /* NOTE: two rules applied here */

printf("reg: SubU4(reg, reg)"); operator = *PC++; goto reg; }
case LoadU4: { printf("reg: LoadU4(addr)"); operator = *PC++; goto reg; }
default: /* error handling code */
}

Figure 6: Inlining
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opportunity. GBURG can create matchers that oper-
ate on operator equivalence classes rather than indi-
vidual operators. Thus, each equivalence class has a
case arm rather than each operator. Of course, this
requires that the associated rules be parameterized
by the macro substitutions. For an extra level of in-
direction, equivalence classes provide a simple tech-
nique for decreasing the size of the specification and
the matcher.

6 LVM Design

The development of GBURG influenced LVM instruc-
tion set design choices. The LVM’s instruction set
avoids, where possible, a left-bias that would yield
inferior code quality. To do this, the left children of
binary operators are those that are unlikely to create
any ambiguity during translation to machine code for
most target machines. Note that left-bias is always
relative to a particular target machine. Therefore,
in designing the LVM to avoid left-bias we must ex-
amine current machines and try to anticipate future
machines.

Commutative operators (e.g., AddU4) provide an in-
teresting challenge. A machine that provides an add-
immediate instruction would likely have the following
symmetric rules.

reg: AddU4(cnsti, reg)
reg: AddU4(reg, cnsti)

These rules introduce a left-bias problem because the
matcher cannot know whether or not a cnsti should
be promoted to a reg when used as a left operand. To
solve this problem, we use only the second rule and
rely on the LVM-generator to produce LVM code in
a canonical form that has all literal values as right
children of commutative operators.

As noted previously, StoreU4 poses a potential left-
bias. Most target machines have some sort of ad-
dressing mode that is more complex than simple indi-
rect (e.g., register+constant, register+register, etc.).
These addressing modes imply a machine specifica-
tion nonterminal for the addressing mode computa-
tion (e.g., addr). If all target machines store only
values from registers, the potential left-bias prob-
lem is avoided by designing the LVM’s StoreU4
instruction to take its target address as its right
operand. Thus, the grammar would have a rule like
root: StoreU4(reg,addr) and there would be no
left bias (assuming reg as a left operand did not cause
a bias). This takes care of the common case on all
architectures.
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A slightly more difficult situation occurs with the
interaction between relational operators and condi-
tional jumps. Relational operators produce a logical
value, and conditional jumps require a logical value
and a jump target. Our original design had relational
operators producing an integer value rather than a
logical one, which created a left-bias in the matcher:
if a literal target address came first, it would be gener-
ated into a register, and if a conditional came first, its
value would be computed into a register. Of course,
this is unacceptible on machines that have condi-
tional jumps to constant targets. The solution was
to have conditional operators produce logical values
that require an explicit operation to convert to an in-
teger value. This requires more LVM instructions to
express value-producing conditional expressions, but
such expressions are rare.

We restrict legal LVM code in a number of ways
to facilitate fast code generation. For instance, we
require that programs be a sequence of completely
formed “trees” (in postfix notation), thus eliminat-
ing complications in a tree-pattern matcher that must
process incompletely formed trees or directed acyclic
graphs (DAGs). This restriction means that the eval-
uation stack is empty at the start and end of each
tree, and, therefore, at the start and end of each ba-
sic block. Such a restriction eliminates the need to do
any sort of control-flow analysis to determine stack
configurations at branch targets. (This is in contrast
to a less restrictive rule in the Java VM [LY97].)

It is actually impossible to create a directed acyclic
graph (DAG) with LVM code because the LVM in-
struction set does not include a Dup instruction that
would create more than one reference to the same
value. Restricting LVM to trees eliminates need-
ing more complicated algorithms for doing pattern
matching in DAGs—a problem known to be much
more complicated. Furthermore, the LVM does not
include a Swap instruction, which would enable the
expression of code that might, for instance, create a
second operand before the first operand of a binary
operator. This restriction enables the LVM design to
avoid, where possible, a left-bias with only a one-pass
pattern match.

Legal LVM code must also be type-consistent. For
instance, it is not legal to use an integer add instruc-
tion on two floating point numbers. This is, however,
a much weaker restriction than Java’s verifiability re-
strictions because we only do typing at a primitive
level (e.g., integers and floats), and memory is com-
pletely untyped. Only the evaluation stack is typed.
Because LVM code is type consistent, the code gen-
erator is spared costly checks.
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GBURG 7.3 5.5 3.6

burg 20.1 2.2 1.4

iburg 25.9 1.8 1.2

Table 1: Code Generator Sizes and Pattern Matching Speeds

Translation System | bubble.c | perm.c | puzzle.c | queens.c | towers.c

(sec.) 1 (sec.) (sec.) (sec.) (sec.)
GBURG 16.5 11.8 48.5 8.0 12.8
lcc 9.2 9.2 33.5 6.0 8.1
MSVC 10.1 8.0 39.2 6.4 6.7
NMQAU /N9 AR R A aoOn K A® AN
L¥LL ¥V / A\ 4 T A R 4 FAVINY ) b SV 1.V

LTiming Ratios } bubble.c i perm.c puzzle‘cw queens.c | towers.c—‘l
GBURG/1cc 1.8 3 1.4 1.3 1.6
GBURG/MSVC 1.6 1.5 1.2 1.3 1.6
GBURG/MSVC/02 3.7 2.2 2.4 1.9 3.2
Table 2: Small Benchmark Timings (1000 executions each)

7 Experimental Results

(GBURG-generated code generators are tiny and
produce good code quickly. A complete x86 code gen-
erator can be as small as 8 KB of x86 code and data,
and it can generate x86 code at 3.6 MB/sec on a 266
MHz P6 machine. (The machine specification for the
x86 is complete—it includes all rules that fit within
the GBURG constraints and it was not abbreviated to
reduce size.) For all our experiments, the ANSI C

compiler lcc generates the LVM code [FH95].

For code generator size and speed tests, we compare
tree-pattern matching code generators created by
GBURG, iburg, and burg. iburg and burg are both
two-pass systems that rely on tree-pattern match-
ing and dynamic programming to select instructions;
they differ in that burg does dynamic programming
at compile-compile time and iburg does it at com-
pile time. Both iburg and burg have been tuned
for speed. Table 1 compares the sizes and speeds
of x86 code generators generated from the same base
grammars. All systems were compiled with Microsoft
Visual C 5.0 with maximum speed optimizations en-
abled. All timings were done on a 266 MHz P6, by
translating 52 KB of LVM code to x86 machine code
1000 times. The code generator sizes include all ini-
tialized text and data attributable to the code gener-
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ators.

To test the conjecture that GBURG’s code genera-
tors can compile and execute programs faster than
typical interpreters, we have compiled and and run a
few programs from the Stanford Benchmark Suite—
programs comnparable in size to small applets. Table 2
compares the run times using four different compi-
lation strategies: using Microsoft Visual C 5.0 with
maximum optimization, using Microsoft Visual C 5.0
with its default options, using lcc, and using the
GBURG-generated LVM-to-x86 translator. The three
compiler systems each generate stand-alone applica-
tions that execute the individual test 1000 times. The
GBURG system reads LVM code from a file and then
translates it to native code and executes it 1000 times.
(Please note that it translates the LVM code for each
iteration—the translation cost is not amortized over
many runs.) lcc generated the LVM, which means
that the GBURG vs. lcc is the closest to an apples-
to-apples comparison.

Even when compared with a highly optimizing
compiler that is charged nothing for its compilation
time, GBURG-generated compiletexecution times are
more than twice as fast as the expected 10X slowdown
from interpretation. Furthermore, when compared
with native programs that are derived from the same
source (i.e., 1cc) as the LVM code, the slowdowns are



a remarkable factor of 2X. Thus, given that these code
generators fit entirely in 8 KB, they are suitable re-
placements for interpreters on space-limited devices.
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