Code Compression

Jens Ernst

William Evans
Christopher W. Fraser
Steven Lucco

Todd A. Proebsting

Abstract

Current research in compiler optimization counts mainly
CPU time and perhaps the first cache level or two. This
view has been important but is becoming myopic, at least
from a system-wide viewpoint, as the ratio of network and
disk speeds to CPU speeds grows exponentially.

For example, we have seen the CPU idle for most of the
time during paging, so compressing pages can increase
total performance even though the CPU must decompress
or interpret the page contents. Another profile shows that
many functions are called just once, so reduced paging
could pay for their interpretation overhead.

This paper describes:

e Measurements that show how code compression can
save space and total time in some important real-world
scenarios.

« A compressed executable representation that is roughly
the same size as gzipped x86 programs and can be in-
terpreted without decompression. It can also be com-
piled to high-quality machine code at 2.5 megabytes
per second on a 120MHz Pentium processor

e A compressed “wire” representation that must be de-
compressed before execution but is, for example,
roughly 21% the size of SPARC code when com-
pressing gcc.

For correspondence: {jens, todd,will}@cs.arizona.edu, Dept
of Computer Science, Gould Simpson Building, Tucson, AZ 85721.
{cwfraser, steveluc}@microsoft.com, One Microsoft Way,
Redmond, WA 98052.

Permission to make digital’hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to

redistribute 1o lists, requires prior specific permission and/or a fee.

PLD! ‘97 Las Vegas, NV, USA
© 19397 ACM 0-89791-907-6/97/0006...$3.50

358

University of Arizona
University of Arizona
Microsoft Research
Microsoft

University of Arizona

Introduction

Computer programs are delivered to the CPU via networks,
disks, and caches, all of which can be bottlenecks. In some
important scenarios, it can be significantly faster to send
compressed code that is then interpreted or decompressed
and executed. This fact is self-evident when delivering
code over 28.8kbaud modems, but it can be true for faster
networks, for paging from disk, and even for cache misses
if the decompressor is fast enough. We consider two im-
portant bottlenecks: transmission and memory.

When transmission is a bottleneck, we want the best possi-
ble compression, and we can afford to expand the com-
pressed program before executing. We call such codes
“wire” codes because a wire is the bottleneck.

When memory is a bottleneck, the code — at least seldom
used code — must be stored and interpreted in compressed
form. Code includes jumps and calls, so we need random
access to at least the basic blocks. If some code must be
compiled to run fast enough, the JIT (just in time) compila-
tion rate must be very high.

When both transmission and memory are bottlenecks, it
may make sense to decompress a wire code into a com-
pressed interpretable form.

The literature on general-purpose data compression [Bell et
al] offers many techniques. Our tasks have been mainly to
find combinations of techniques that suit the specialized
problem of compressing virtual machine (VM) code, and to
determine how to generate compact automata that accu-
rately predict the next VM operator or operand based on the
current context, so that tokens common in the current con-
text can be given the shortest encodings. This paper con-
cerns only VM code, though some of the techniques clearly
apply to machine-specific code as well.

This paper describes two code compressors — the best that
we’ve found for each of our two scenarios. The compres-
sors are quite different, but both gather information about

the common patterns that appear in the code, and both di-
vide the stream of code into several smaller streams, one
holding the operators and one holding the literal operands
for each operator (or class of related operators) that needs a
literal operand. The compressors are:

¢ A wire VM code that yields programs almost one-fifth
the size of SPARC code.

s An interpretable VM code called “Byte-coded RISC”
or “BRISC,” which is roughly 30% larger than the
wire format but still about the same size as non-
interpretable gzipped x86 programs.

We can interpret BRISC code with a typical 12x time pen-
alty while cutting working set size by over 40%. Alter-
nately, we can compile BRISC at over 2.5 megabytes per
second, producing x86 machine code over 100 times faster
than, for example, all commercial JIT compilers known to
us. This high compilation rate permits us to recompile the
program at each execution for clients with no local disk
cache. The delivery time from the network or disk can
mask some or even all of the recompilation time, and the
code runs within 1.08x of the speed of fully optimized ma-
chine code generated by Microsoft Visual C++ 5.0. BRISC
can also trim memory requirements for large desktop appli-
cations and compress programs to fit within the memory
requirements of embedded systems.

Both codes support client-side and server-side compilation.
Server-side compilation is necessary to efficiently deliver
large application programs. For example, existing JIT com-
pilers must atlocate registers on the client, which is expen-
sive and, for the best results, super-linear in the length of
the input program. By performing code optimization be-
fore a program is downloaded, a mobile code system can
dramatically reduce the time necessary to generate machine
code on the client.

Design space

No single code compressor suits all applications. Rather,
there is a “design space” or “solution space” of related
methods. The trade-offs involve addressing the issues listed
below.

« Should one compress using byte-codes, arithmetic
coding [Witten et al], or something between? At one
extreme, byte-codes are the easiest to interpret directly,
and branches naturally target byte boundaries. Nibble
and Huffman codes can be decoded and addressed
analogously, but their units are 4-bit and 1-bit fields, so
the decoding overhead is higher. At the other extreme
are arithmetic codes, which can compress better by
coding for sequences longer than individual symbols,
but complicate direct interpretation. Arithmetic codes
must be expanded before interpretation, though we

359

have used them successfully by decompressing a func-
tion at a time.

Should the compressed representation include a dic-
tionary? Dictionaries allow the compressor to emit a
series of dictionary indices, but the dictionary itself
must be transmitted. Dictionaries can be:

» static, that is, computed exactly once and reused
for all subject programs.

+ semi-static, that is, computed once for each subject
program but then used throughout that program.

e dynamic, that is, updated as the compressor and
decompressor advance through the subject pro-
gram.

Should the dictionary coder (if any) use move-to-front
(MTF) indexing [Bentley et al; Elias]? This technique
starts by replacing sequence elements with their indi-
ces in a table that changes dynamically. The table’s
elements are ordered such that the first element was the
most recently accessed element; after each new access,
the accessed element is moved to the front and all in-
termediate elements are shifted down one place. A se-
quence with high spatial locality tends to yield a se-
quence of small indices, which should compress well.
MTF coders act a bit like caching hardware, so there’s
probably some interaction with register-based interme-
diate codes, since registers can be regarded as a kind of
cache.

Should the compressor partition its input into separate
streams? Operators and operands can benefit from dif-
ferent compression schemes; finer partitionings are
possible.

In programs, one important class of streams can be
separated by patternizing the input [Proebsting; Fraser
and Proebsting]. Patternization accepts an actual pro-
gram and proposes specialized instructions that might
help compress that program. The patterns replace each
combination of operands with wildcards. For example,
the code tree

FetchInt (AddrLocal{4])
generates the patterns

FetchInt (*)
FetchlInt (AddrLocal([*])
FetchInt (AddrLocal [4]}

Regard patterns as specialized instructions. For exam-
ple, the last (degenerate) pattern above is specialized to
fetch the value of the local at frame offset 4. That is, 4
is “burned into” the specialized pattern. The middle
pattern above takes an arbitrary offset, and the first

pattern above gets the address of the cell to fetch by
popping the stack. All three push their result onto the
stack.

Should the coder use finite-context or Markov model-
ing, which uses the last few symbols to predict the next
symbol more precisely? An “order-N” Markov model
uses the last N symbols to predict the next. The degen-
erate order-0 model may use frequencies but no con-
text.

Also, the original representation can influence the effec-
tiveness of the compression techniques. In particular,
should the input VM use registers or a stack? That is,
should the VM resemble a conventional target machine or a
stack machine? Stack machines have no register numbers to
compress, but register machines permit the compiler’s front
end to invest more in, say, global register allocation and
thus produce code that is typically faster and smaller. Some
applications can accept sub-optimal performance, but there
will always exist applications that demand ambitious opti-
mization.

A wire code

We use the term wire-format for codes that need not be
interpreted directly but can be at least partly decompressed
into an interpretable form or even compiled before they are
used. Thus, for example, one can simply gzip a file of in-
termediate or object code, and the result is a wire-format
code. gzip typically compresses code by a factor between
two and three. Yu [Yu] has recently described ways to tune
general-purpose data compressors for use in software dis-
tribution. His compressor outputs an average of 2.61 bits
per input character, a factor of 3.07. Franz reports similar
compressions using his “slim binaries” for load-time code
generation [Franz and Kistler; Franz], though our numbers
are not easily compared because he compresses full execu-
tables, and we compress only code segments.

Our wire-format code achieves a factor of 4.9. We tried a
lot of techniques, but the best to date happens to be very
simple: compile trees of VM code, patternize out all liter-
als, form one stream for all patterns and one for containing
the literal operands associated with each opcode or class of
related opcodes, MTF-code each stream, and gzip the re-
sulting streams in isolation. To demonstrate:

1. Compile the input program into trees. For example, we
compile the C code
int salt(int j, int i) {
if (3 > 0) ¢

pepper(i, j); j--;

return j;

)

360

into the 1cc trees:
ASGNI (ADDRLP8[72],

SUBI (INDIRI (ADDRLP8([72]),CNSTCI[1]))
LEI[1] (INDIRI (ADDRLP8([68]),CNSTC([0])
ARGI (INDIRI (ADDRLP8B{72]))

ARGI (INDIRI (ADDRLP8{68]))
CALLI (ADDRGP [pepper])
ASGNI (ADDRLP8[68],

SUBI (INDIRI (ADDRLP8([68]),CNSTCI[1]))
LABELV
RETI (INDIRI (ADDRLP8(68]))

A full description of the 1cc IR appears elsewhere [Fraser
and Hanson] but is not important to the discussion here. It
suffices to note that the code is stack-based, that square
brackets enclose literal operands, and that the base inter-
mediate code has been augmented with a few operators
with the suffixes 8 and 16 to flag literals that fit in eight or
sixteen bits.

2. Patternize and form one stream holding the nested op-
erator patterns and one for each type of operator that takes
a literal operand. For example, the patternized operator
stream for the sample above is:
ASGNI (ADDRLP8([*],
SUBI (INDIRI (ADDRLP8[*]),CNSTC[*]))
LEI[*) (INDIRI(ADDRLP8[*]),CNSTC{*]})
ARGI (INDIRI (ADDRLP8[*]))
ARGI (INDIRI (ADDRLP8[*]))
CALLI (ADDRGP[*])
ASGNI (ADDRLP8[*],
SUBI (INDIRI(ADDRLPS8[*]),CNSTC[*]))
LABELV
RETI (INDIRI (ADDRLP8[*]))

The ADDRLPS stream is [72 72 68 72 68 68 68 68,

3. Apply move-to-front coding to each stream in isolation.
For example, MTF coding transforms the ADDRLPS8
stream above to , using the table . Zero
denotes a symbol not seen previously.

4. Huffman-code all MTF indices but no MTF tables.

5. gzip to produce the final, fully-compressed version of the
original program. Before applying gzip, all MTF streams
and tables are encoded in 1, 2, or 4-byte values (or strings
for symbolic names), as appropriate. For instance, each
unique instance of a particular tree is encoded as a se-
quence of bytes, one per operator, emitted in prefix order.
char literals are encoded as individual bytes, short literals
as pairs, etc.

The table below compares the size of three conventional
SPARC code segments with our wire code.

Conventional code | Wire code
uncom- | Gzipped
pressed
Icc 315,636 { 75,928 64,475
gec | 1,381,304 | 380,451 287,260
agrep 61,036 | 15936 16,013

So the wire format improves significantly over conven-
tional encodings, dividing the input size by as much as 4.9
And it beats the gzipped version significantly as well, ex-
cept for a small loss on the smallest input. All compilations
above were done with lcc, because it was the source of
the wire byte-codes. A compiler with a more ambitious
optimizer would probably make the conventional code
smaller, but it would probably do likewise for byte-codes
too, if it were adapted to emit them.

An interpretable code

Our wire format achieves unprecedented levels of code
density by organizing semantically similar instruction com-
ponents into separately compressed streams. This method
exploits the insight that byte-stream or word-stream com-
pression techniques such as Lempel-Ziv [Lempel and Ziv;
Ziv and Lempel] will miss the correlation among sub-byte
and sub-word quantities in instructions. Such quantities
include opcodes and various types of operands. For exam-
ple, LZ compression will inefficiently code simple instruc-
tion semantics such as “a call instruction often follows a
move instruction,” because the bits or bytes that represent
opcodes are intermixed with bits or bytes that have other
semantics, such as “the destination register of the move is
n0.”

Our wire format makes those semantics available to LZ
compression by grouping opcodes and various types of
operands into separate streams. Because this strategy uses
LZ compression, it requires linear decompression. Some
applications, such as just-in-time machine code generation
or working set reduction through direct interpretation of
compressed code, require a randomly addressable, compact
program representation. In this section, we describe two
simple techniques, operand specialization and opcode com-
bination, that yield a dense, randomly addressable program
representation called BRISC. These techniques exploit the
same stream-separation insight as the tree compression
method given above. However, instead of physically sepa-
rating streams of instruction information, operand speciali-
zation and opcode combination quantize the representation
of these streams by packing them into a randomly accessi-
ble stream of discrete byte codes. We conclude this section

361

by presenting and analyzing measurements of a production-
quality virtual machine environment (OmniVM). These
measurements demonstrate that BRISC supports just-in-
time code generation at 2.5MB/sec while yielding code
density that is competitive with the best packaged LZ com-
pression programs.

Our system, called Omniware, includes a compiler that
converts high-level language programs into sequences of
instructions for the Omniware virtual machine (OmniVM)
[Lucco, PLDI96]. OmniVM has a RISC instruction set
augmented with macro-instructions for common operations
such as moving and initializing blocks of data. The next
section will describe how this input differs from the lcc
intermediate representation used in the experiments related
above. In brief, one can automatically at code generation
time synthesize OmniVM RISC instructions from lcc IR
and hence the two are interconvertible with respect to com-
pression. However, the OmniVM programs measured in
this section were highly optimized using a commercial
compiler back end and so contain more information, such
as register allocation decisions, than 1cc IR.

The Omniware system compresses fully linked executable
programs containing OmniVM RISC instructions into pro-
grams containing BRISC instructions. A server ships these
across a network to client computers, which contain an
implementation of the OmniVM. The OmniVM either in-
terprets the BRISC instructions directly or converts them to
native machine code. The system works on several plat-
forms, including x86/NT, SPARC/Solaris 2.4,
PowerPC/NT, and PowerPC/MacOS. All measurements in
this section were performed on a Pentium 120MHZ proces-
sor running NT 4.0. The processor was configured with 32
megabytes of memory.

BRISC generation

Because we require BRISC to be interpretable, we con-
strain its design to ensure that instructions occur on byte
boundaries. Hence, where the split-stream compression
techniques described above would use 2-3 bits per opcode,
BRISC will always use 8 or 16 bits per opcode. To make
up for the increased size of its opcodes, BRISC packs more
information into each opcode. It does so through operand
specialization and opcode combination.

Operand specialization

We briefly described operand specialization in the back-
ground section, as “burning in” a particular value for one or
more of the fields of a patternized instruction. We now re-
turn to the subject, describing operand specialization con-
cretely in terms of the Omniware system. Consider the
OmniVM instruction 1d.iw no0, 4 (sp) . The effect of this
instruction is to load the 32-bit word at address sp+4 into

register n0. The . iw suffix on this instruction indicates that
this is the 32-bit integer version of the instruction. As it
turns out, this particular instruction is the most frequently
occurring instruction among our benchmark programs. To
investigate possible specializations of this instruction, we
patternize it into the following set of patterns (ordered from
least to most general):

1. 1d.iw nO,4(sp)

1d.iw *,4(sp)

1d.iw n0,4(*)

1d.iw n0, * (sp)

1d.iw *,4(*)

ld.iw *,*(sp)

1d.iw noO, *(*)

1d.iw *, *(*)

W ~1 O U WD

The most general instruction pattern (8) is part of the base
instruction set. When we write base instructions in patter-
nized form as above, we place asterisks in all field posi-
tions of the instruction, to indicate that the base instruction
pattern can take on any legal field value in any field posi-
tion. For example, writing the base integer register move
instruction as mov.i *,*, indicates that each of the in-
struction’s fields can take on any value legal for the field's
type. In the case of this mov. i instruction, both of its fields
can take on any value from n0 through n15, because the
OmniVM has 16 integer registers.

Since 1d.iw n0,4(sp) is the most frequently occurring
input instruction occurring in our benchmarks, it makes
sense to add to our dictionary of possible instruction pat-
terns some of the specialized forms of this instruction. By
doing so, we avoid explicitly representing common oper-
ands such as n0 or 4. The compression algorithm we de-
scribe below performs operand specialization one field at a
time. For example when the compressor encounters the
specific instruction (1) during an input scan, it generates
instruction patterns (5)-(7) as candidate dictionary entries.
To arrive at a two-operand-specialized instruction pattern
such as 1d.iw n0,4(*), the compressor would first add
1d.iw n0,*(*) or 1d.iw *,4(*) to the dictionary. It
would then modify the input program to reflect the pres-
ence of this new instruction pattern. On a subsequent pass
over the input program, the compressor could add to the
dictionary a more specialized version of this instruction
pattern through incorporation of another field. To denote an
input instruction that has been converted to use an operand-
specialized instruction pattern, we first write the instruction
pattern encased in square brackets followed by a list of the
literal values to be substituted into the unspecified fields
(denoted by asterisks) of the instruction pattern. For exam-
ple, if we have derived instruction pattern (5) from input
instruction (1), then we would re-write the input instruction
as {1d.iw *,4(*)]:n0, sp.

362

Opcode combination

The compressor also generates candidate instruction pat-
terns through opcode combination. In our system, every
adjacent pair of opcodes is a candidate for opcode combi-
nation. For example, if the input program contains the se-
quence of instructions [(1d.iw nO,*(*)]:4,sp; mov.i
n2,n0, the instruction pattern <[1d n0,*(*)], [mov.i
, 1> would become a candidate for addition into the base
instruction set. We denote with angle brackets instruction
patterns resulting from opcode combination.

Because BRISC is quantized, not all instruction combina-
tions make sense. If a combined instruction pattern leaves a
trailing sub-byte operand, the compressor can defer combi-
nation until further specialization has taken place (so that
the combined unspecified operands from the adjacent in-
structions would pack neatly into a whole number of bytes).
The compressor generates as candidate instruction patterns
not only each pair of adjacent instructions <i,j>, but every
possible pair consisting of a zero or one-field operand spe-
cialization of j followed by a zero or one-field operand spe-
cialization of f This ensures that operand specialization
won’t compete with opcode combination by further spe-
cializing an instruction before the combiner has a chance to
consider a less-specialized version.

Opcode combination captures common code generation
idioms. For example, data movement instructions such as
1d.iw and mov.i frequently occur to set up parameters
before call instructions. This results in a quantized version
of the tree construction shown in the previous section.

BRISC generation algorithm

The compressor begins with the base instruction set (cur-
rently 224 instruction patterns) and adds to it to create a
dictionary of frequently occurring instruction patterns. To
find useful instructions to add to the dictionary, the com-
pressor scans the input program several times, generating
candidate instruction patterns and estimating their program
size reduction P and their cost in decompressor memory
usage W (W abbreviates “working set”). The program size
reduction P equals the reduction in compressed program
bytes that would occur if the candidate instruction pattern
were added to the dictionary minus the number of bytes
needed to represent the instruction pattern in the dictionary.
The decompressor for BRISC uses a table of native in-
struction sequences for interpretation or native code gen-
eration, The compressor estimates the decompressor’s
memory usage cost, W, for a dictionary entry by averaging
the size in bytes of decompression table instruction se-
quences for the Pentium and PowerPC 601 chips. The
benefit B of an instruction pattern equals P-W (of course, in
abundant memory situations we can set B equal to P).

The compressor maintains a heap of candidate instructions,
sorted by B. After each pass over the input program, the
compressor removes the K best candidates from the heap
and adds them to the dictionary. Then, the compressor
modifies the input program to reflect the newly available
instruction patterns. It first considers each pair of instruc-
tions that can be combined by a new opcode-combined
instruction pattern. On each pass, there can only be one
new instruction pattern that applies to a particular pair. Af-
ter it performs instruction combination, the compressor
modifies all instructions in the input program that could be
represented more compactly using one of the new instruc-
tion patterns. To avoid undue overhead in updating the in-
put program, the compressor maintains a table that maps
each base instruction pattern to a list of all input program
instructions matching that pattern. Similarly, to avoid gen-
erating candidate instruction patterns that have already
been generated, the compressor maintains a hash table of
previously generated candidates, keyed by base instruction
patterns and specialized field values.

The compressor ceases to hunt for useful patterns after a
pass that doesn’t yield at least K patterns for which B is
positive. Thus the compressor uses a greedy algorithm for
building the dictionary. The optimal algorithm would con-
sider all possible dictionaries and their effect on compres-
sion, but this would be prohibitively time-consuming. To
perform dictionary encoding, the compressor uses an order-
1 semi-static Markov model so that all opcodes fit within 8
bits. In other words, the compressor builds (and the decom-
pressor can build, based on the dictionary) a table for each
possible instruction pattern 7 that enumerates the instruction
patterns that can follow 7 in the input. If more than 256
instructions can follow I, the compressor splits / into two
instruction patterns. For example, the dictionary for the
OmniVM program implementing lcc contains 981 in-
struction patterns. Each instruction pattern has at most 244
instruction patterns that can follow it. There is a special
context in the Markov model for basic block beginnings (of
various types) so that the BRISC program remains inter-
pretable. Once the compressor has created a dictionary, it
outputs the dictionary followed by the modified input pro-
gram that it has compressed during dictionary construction.

A BRISC compression example

The Omniware C++ compiler generates the following se-
quence of OmniVM instructions for the example program
introduced in the wire format discussion above.

enter sp, sp, 24
spill.i n4,16(sp)
spill.i ra,20(sp)
mov.i n4,n0
mov.i n2,nl
ble.i nd, 0, $L56
mov. i nl,n4

363

mov.i nd,n2
call _pepper
SL56:

add.i n0,nd, -1

reload.i n4,16(sp)

reload.i ra,20(sp)

exit sp, sp, 24

rijr ra

For this input program, the initial dictionary is the set of
base instructions it uses: {enter, spill.i, mov.1i,
ble.i, call, add.i, reload.i, exit, and rjr}. Be-
cause this program is small, it affords little opportunity for
useful instruction combination or specialization. However,
we can use it to illustrate some of the steps of BRISC com-
pression. We will consider just the first three instructions of
the program. Applying operand specialization to these three
instructions generates following candidate specializations
in the first pass of the BRISC algorithm:

1. {enter sp,*,*]

{enter *,sp,*]
[enter *,*,24)]

2. [spill.i n4,*(*)]
[spill.i *,16(*)]
[spill.i *,*(sp)]

3. [spill.i ra,*(*))
[spill.i *,20(*))

Note that one candidate specialization of instruction 3,
spill.i *,*(sp), has already been generated by ap-
plying operand specialization to instruction 2. For each
instruction, the set of candidate instructions generated
through operand specialization is called that instruction’s
operand-specialized set. If we add the corresponding base
instruction pattern to the operand-specialized set for a given
input instruction i, we construct the augmented operand-
specialized set of candidate instruction patterns for i. To
apply opcode combination to instructions 1 and 2, we gen-
erate the 16 pairs of instruction patterns that can be formed
by selecting one element from instruction 1's augmented
operand-specialized set of candidates and one element from
instruction 2’s augmented operand-specialized set of candi-
dates:

<{enter sp,*,*},[spill.i n4,*(*)]>
<{enter sp,*,*], [spill.i *,16(*)]>
<[enter sp,*,*),(spill.i *,*(sp)]>
<[enter *,sp,*],[spill.i n4,*(*)]>

etc. Hence the total set of candidate instruction patterns
generated by instructions 1 and 2 for our example program
would be the 16 candidates generated through opcode com-
bination and the 6 candidates generated through opcode
specialization. Because the total set of base instruction
patterns is only 224, however, the total number of candi-
dates generated by a large program remains manageable.
For example, the total number of candidates tested in com-
pressing gce-2.6.3 is 93,211, The final dictionary for gecc-

2.6.3 contains 1232 instruction patterns, including base
instruction patterns.

To illustrate the operation of our cost-benefit metric, we
will apply it to one of our candidate instructions, [enter
sp, *, *1. The file size cost of a dictionary entry for [en-
ter sp,*,*] is 2 bytes, 1 byte to indicate the base in-
struction, enter, 2 bits to indicate which field is special-
ized, and 4 bits to set the specialized value for that field.
The working set cost of a dictionary entry for [enter
sp, *, *] is dominated by the sequence of native instruc-
tions that will be generated by the decompressor to gener-
ate code for this instruction. For just-in-time conversion to
Pentium instructions, the instruction space required is 17
bytes; on a PowerPC 601, the instruction space required is
28 bytes. Averaging these yields W=25 for [enter
sp, *, *1. This instruction pattern saves one byte over the
original input program. One input instruction, [enter
sp, sp, 24] would be represented in 2 bytes instead of 3
bytes, because the remaining field values, sp and 24, can be
compacted into a single operand byte. However, the pro-
gram size reduction P is this 1 byte saved minus the 2 bytes
of dictionary entry. The benefit B=P-W= -26 and hence we
would not add this instruction pattern to the dictionary.

Because of their code-generation/interpretation table cost,
W, none of the candidate instructions are suitable, and the
program, as given, remains. For a large input, in contrast,
the benefits of operand specialization and opcode combi-
nation will outweigh the instruction table costs. To illus-
trate this, we applied the dictionary generated in com-
pressing gcc-2.6.3 to our example program. The resulting

compressed program is listed below.

<[enter_x4 sp,sp.*],
[spill.i_x4 n4,*(sp}],
[spill.i_x4 ra,*(sp)l>: 6,4,5

<[mov.i *,n0}, [mov.i *,nl}>: n4, n2

[ble.i *,0,*}: n4, $L56

<[mov.i n1,n4], [mov.i n0,n2]>

call _pepper

$L5S6:

[sub_1t32.i n0,*,*]: n4, 1

epi

The first instruction spans three lines. As before, angle
brackets indicate opcode combination. Recall from above
that if an instruction contains unspecified fields (denoted by
asterisks), it will be followed by a colon and then a list of
literal values to insert, in order, into the unspecified fields.
The _x4 suffix indicates that immediate values should be
multiplied by four.

The final instruction of this sequence, epi, is a special-case
macroinstruction. Its semantics are to exit the current func-
tion, restoring callee-saved registers, restoring the frame
and returning in the normal fashion (using the rjr instruc-
tion). epi is the only such instruction used in our compres-

364

sor. All other dictionary entries are generated through ei-
ther operand specialization or opcode combination. The
total number of bytes in the original input was 60. The
compressed program totals 17 bytes, 7 bytes for instruction
opcodes and 10 bytes for packed literals. This compression
ratio is better than the average for our benchmark programs
because function prologue and epilogue make up a greater
proportion of this example than in our benchmark pro-
grams.

Results

The table below gives executable program sizes for several
benchmark programs. The code sizes — for X=20 - are
relative to Pentium chip executable programs produced
using Microsoft Visual C++ 5.0 (i.e. the size of the Visual
C++ 5.0 output for each program is normalized to 1.0).
This table shows that BRISC is competitive with gzip in
code size. In addition, the table gives the just-in-time native
code generation speed for each program in megabytes per
second of produced Pentium code. It also shows the run-
time of the program relative to native Pentium code pro-
duced by Microsoft Visual C++ 5.0. The runtimes of the
BRISC programs include the time necessary to generate the
native code. Finally, the table also shows the runtime of
each BRISC program when interpreted, again relative to
Pentium code produced by Microsoft Visual C++ 5.0. The
runtime numbers for Microsoft Word97 are the average of
three metrics: automatic document formatting time for an
issue of Slate magazine, page-through time for Slate, and
cold boot time (program not present in NT 4.0 disk cache).
BRISC compression for Word97 is somewhat less effective
than for the other benchmark programs. This is due to an
unusually large number of 16-bit operations in Word97.

Bench- | BRISC | Gzip | Run- JIT Interpret
mark | size size time speed | time
lcc3.0] 0.54 055 |1.12 2.7 124

Gee 2.6.3 | 0.57 0.59 | 1.09 2.6 9.6

Word97 | 0.69 0.59 | 1.03 2.8 154
agrep | 0.60 0.57 1.11 2.3 14.2
xlisp | 0.59 0.57 | 1.05 24 12.3
espresso | 0.53 0.55 1.08 24 1.6
average | 0.59 0.57 1.08 2.5 12.6

These results demonstrate that the BRISC code compres-
sion algorithm yields programs that are highly suitable for
mobile code. They require no more network bandwidth
than gzipped native code, yet the OmniVM can generate
native code from BRISC programs at over 2.5 megabytes
per second on a Pentium 120MHz processor with 32 mega-
bytes of memory. Hence, in a local area network, BRISC is
a good mobile program representation choice. Over a mo-
dem, the tree compression algorithm given above will do
better at minimizing the latency between when a program is

requested and when the program begins performing useful
work on the client machine.

Reducing RISC abstract machines

RISC designs are “reduced” but rarely minimal. Most have
addressing modes and immediate instructions that are re-
dundant; that is, they could be simulated by simpler forms,
such as load- and store-indirect and load-immediates. The
abbreviations make hardware implementations faster, but
their value in abstract machines is less clear. It amounts to
limited ad hoc code compression, but having two forms for,
say, integer additions — one explicit and the other hidden in
register-displacement addresses — might hurt the code com-
pressor more than it helps. Also, it makes the abstract ma-
chine harder to implement

We ran some experiments to try to answer this question.
We wrote an OmniVM back end for 1cc and then progres-
sively “de-tuned” it by removing:

+ all immediate instructions except for one primitive:
load-immediates, or

» all addressing modes except for two primitives: load-
and store-indirect, or

+ both,

Then we compiled 1cc itself to use the de-tuned compilers
and compressed the results using the methods from the last
section above. The results are:

Abstract machine variant Compressed
size/native size

RISC 0.54

minus immediates 0.56

minus register-displacement | 0.57

minus both 0.59

These results suggest that a minimal abstract machine com-
presses nearly as well as one with typical ad hoc features
for making programs smaller.

Acknowledgments

Todd Proebsting’s work was supported in part by grants from
IBM, the AT&T Foundation. the NSF (CCR-9502397 and CCR-
9415932), and ARPA (N66001-96-C-8518 and DABJ-63-85-C-
0075). John Miller and Gideon Yuval of Microsoft Research pro-
vided helpful background and suggestions.

365

Bibliography

Timothy C. Bell, John G. Cleary, and lan H. Witten. Text Com-
pression. Prentice Hall, 1990.

Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan, and Vic-
tor K. Wei. A locally adaptive data compression scheme. Commu-
nications of the ACM 29(4):520-540, 4/86.

Peter Elias. Interval and recency rank source coding: Two on-line
adaptive variable-length schemes. IEEE Transactions on Infor-
mation Theory IT-33(1), 1987.

M. Franz and T. Kistler. Slim binaries. TR 96-24, Dept of Infor-
mation and Computer Science, University of California, Irvine,

6/96. Also http://www.ics.uci.edu/~oberon/research.html and to
appear in Communications of the ACM.

M. Franz. Adaptive compression of syntax trees and iterative
dynamic code optimization: Two basic technologies for mobile-
object systems. TR 97-04, Dept of Information and Computer
Science, University of California, Irvine, 2/97.

Christopher W. Fraser and David R. Hanson. A Retargetable C
Compiler: Design and Implementation. Addison Wesley Long-
man, 1995.

Christopher W. Fraser and Todd A. Proebsting. Custom instruc-
tion sets for code compression.
http://www.cs.arizona.edu/people/todd/papers/pldi2.ps, 10/95.

T. Kistler and M. Franz. A tree-based alternative to Java byte-
codes; TR 96-58, Dept of Information and Computer Science,
University of California, Irvine, 12/96.

A. Lempel and J. Ziv. On the complexity of finite sequences.
IEEE Transactions on Information Theory 22(1):75-81, 1/76.

Ali-Reza Adl-Tabatabai, Geoff Langdale, Steven Lucco and Rob-
ert Wahbe. Efficient and language-independent mobile programs.
PLDI’96: 127-136, 6/96.

Todd A. Proebsting. Optimizing an ANSI C interpreter with su-
peroperators, POPL95:322-332, 1/95.

Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic
coding for data compression. Communications of the ACM
30(6):520-540, 6/87.

Tong Lai Yu. Data compression for PC software distribution.
Software-Practice & Experience 26(11):1181-1195, 11/96.

J. Ziv and A. Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory
24(5):530-536, 9/78.

