
Predicting Program Behavior Using Real or Estimated Profiles

David W. Wall

Digital Equipment Corporation

Western Research Laboratory

Abstract

There is a growing interest in optimization that
depend on or benefit from an execution profile that tells

where time is spent. How well does a profile from one

run describe the behavior of a different run, and how

does this compare with the behavior predicted by static

analysis of the program? This paper defines two abstract

measures of how well a profile predicts actual behavior.

According to these measures, real profiles indeed do

better than estimated profiles, usually. A perfect profile

from an earlier run with the same data set, however, does

better still, sometimes by a factor of two. Unfortunately,

using such a profile is unrealistic, and can lead to inflated

expectations of a profile-driven optimization.

1. Introduction

Many people have built or speculated on systems

that use a run-time profile to guide code optimization.

Applications include the selection of variables to promote

to registers [7,8], placement of code sequences to

improve cache behavior [3,6], and prediction of common

control paths for optimizations across basic block boun-

daries [2,5].

We can evaluate such a technique by timing the

program, profiling it, optimizing it based on the profile,

timing the optimized version, and finally comparing the

two times. Unfortunately, it is common for researchers

to use the same data set for the profiling run as for the

timing runs. This may give a distorted picture of the

efficacy of the technique, because in practice we will

optimize based on some profiles, and then run the pro-

gram many times on data sets that may not match those

of the profiling runs. If there is considerable difference

in program behavior from one run to another, we might

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for diract commercial

advantage, the ACM copyright notica and tha titla of the publication and

its date appear, and notice ia given thet copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to

republish, requirea a fee and/or specific permission.

@ 1991 ACM 0-89791 -428 -7/91 /0005 /0059 ...$1 .50

find that a real profile is no better than an estimated

profile derived from a static analysis of the program.

Thus two questions arise that are rarely adequately

answered, How well does a profile from one run predict

the behavior of another? And how well can you do with

a statically estimated profile? It is important to answer

these questions in general terms as well as specific. A

profile from a different run may be very useful for one

kind of optimization but nearly useless for another. The

optimization may require finding the specific program

entities that are most used, or it may require only finding

some that are used a lot.

This paper describes a study of how well an

estimated profile predicts real behavior, and how well a

profile from one run predicts the behavior of a different

run.

2. Methodology.

For the purposes of this paper, a projik is a map-

ping from instances of some kind of program entity, like

variables or procedures, into numeric weights. The

weight may be the number of times the program entity

was referenced, or the total cost of all those references,

or something else altogether. We assume that a profile is

sorted in decreasing order of weight.

We will be concerned with five kinds of profiles.

The first is the basic block profile, which is the mapping

from each basic block to the number of times it is exe-

cuted. The second is the procedure entry profile, which

maps each procedure to the number of times it is entered.

The third is the procedure time profile, which maps each

procedure into the number of instructions executed dur-

ing all of its calls.* The fourth is the call profile, which

maps each distinct call site to the number of times it is

executed. The last is the global variable profile, which
.

* This is “time” only in an abstract sense, as it neglects cache misses

and fptr stalk.; nevertheless it estimates a procedure’s rnrttirne beuer than

a count of its invocations does.

Proceedings of the ACM SIGPLAN ‘91 Conference on

Programming Language Design and Implementation.

Toronto, Ontario, Canada, June 26-28, 1991.

59

maps each global variable to the number of times it is

directly referenced.

We might use a global variable profile to decide

which globals to promote to registers. A call profile

might show us which calls are worth expanding inline,

and a procedure profile which procedures are worth

optimizing extra hard. Block profiles are useful for cache

optimization.

We are interested both in real profiles and in

estimated profiles. In either case we construct the profile

by dividing the program into basic blocks, deciding how

many times each basic block is executed, and combining

these counts with static information from the code seg-

ment of the program and its loader symbol table.

For a real profile, we use real basic block counts

obtained by running the program on a particular set of

test data. The pixie tool horn Mips [4] instruments an

executable file with basic block counting; when the

instrumented program is run, it produces a table telling

how many times each basic block was executed. From

this table, in combination with static information from

the uninstrumented executable file, we derive the five

kinds of profiles.

For an estimated profile, we use estimated basic

block counts obtained from a static analysis of the pro-

gram code. We divide the program into basic blocks,

and connect them into procedm-es and flow graphs based

on the branch structure.* We then identify the loops by

computing the dominator relation and finding the back

edges, edges such that the tail dominates the head. A

loop consists of the set of back edges leading to a single

dominator, together with the edges that appem on any

path from the dominator to the head of one of the back

edges [1]. We also build a static call graph by finding all

the direct calls in the program. This graph will not

include calls through procedure variables, but we will

note the presence of such calls so we can identify pro-

cedures that not distant from true leaf procedures,

Given this information, we considered four

different ways of estimating basic blocks counts. Each of

these estimates has one or two parameters. The first is

the loop-only(n) estimate, in which a block’s count is

initially 1 and is multiplied by n for each loop that con-
tains it; this ignores the effects of the call graph. The

second is the leaf-loop(njk} estimate, in which we com-

pute the distance d of each procedure from the most dis-

tant leaf in the call graph, and then multiply the loop-

only(n) count by the larger of 1 and 1024 / @ for the pro-

cedure containing each basic block. The third is the

call-loop(n) estimate, in which the loop-only(n) count is

‘ The Mips code generation is stylized enough that we can recognize

indirect jumps that represent case-statements, and can deduce what the

possible successor blocks are.

multiplied by the static number of direct calls of the

block’s procedure. The fourth is the call+ l-loop(n) esti-

mate, which is the loop-only(n) count multiplied by one

more than the static number of direct calls of the block’s

procedure. The call+ l-loop estimate is like the call-loop

estimate, but procedures that are called only indirectly

will not be shut out altogether; unfortunately procedures

that are never called are also readmitted.

As a reality check, we also computed rantim

profiles in which the items in the profiles are permuted

randomly. If a random profile predicts real behavior as

well as an estimated profile, we know our estimating

technique is not very good.

An optimizer would use a profile by selecting the

heaviest entries in it and doing something special to

them: promoting them to registers, optimizing them extra

hard, or whatever. The question is how well an optimiz-

ing profile, real or estimated, predicts a timing profile

assumed to describe the behavior of a production run we

are hoping will be fast. For this study we considered two

general methods and two specific mentods of evaluating

an optimizing profile.

In the first general method, key matching, we take

the top n entries of the optimizing profile and see how

many of them are also in the top n entries of the timing

profile. For instance, consider the procedure profiles in

Figure 1. If we let n = 8, we see that the first 8 members

of the optimizing profile include 5 of the first 8 members

of the timing profile. Thus the optimizing profile gets a

score of 5/8, or 0.625.

306068 full_row 878373 cdistO

242254 force_lower 245657 dl_order

190252 malloc 138058 force_lower

190250 free 72374 selp_disjoint

126993 set_or 48672 cdistOl

86450 setp_implies 47029 malloc

71835 dl_order 47027 free

60790 set_clear 36491 full_row
. . . ● *.

19131 set_or

15065 set_clear
● **

4792 setp_implies
● . .

Figure 1. Optimizing profile (left) and timing profile.

In the second general method, weight matching,

we take the top n entries of the optimizing profile and

look up their weights in the timing profile, and then com-

pare the total to the total of the top n entries of the tim-

ing profile, For example, taking the profile in Figure 1

and again assuming n = 8, the total of the optimizing

profile’s top 8 entries as recorded in the timing profile is

60

program

bisim

bitv
Udraw
egrep
sed
emacs
yacc
ccom

gccl
eqntott
espresso

globals procs calls blocks

283 1193 4645 16054

383 1384 4650 17565

534 4806 17653 46530

43 72 182 1475

54 73 277 2049

487 1024 3568 15098

66 104 501 2870

170 478 3188 9483

610 1554 8526 40833

55 129 477 2696

73 434 2813 10505

description

multi-level hardware simulator

timing verifier

drawing editor

file searcher

stream editor

Gosling’s text editor

parser generator

Titan C front end

gnu C front end

truth table generator

set operation benchmark

Figure 2, The eleven test programs.

553250, while the total of the timing profile’s top 8

entries is 1513681. By this measure, then, the optimizing

profile gets a score of 553250/1513681, or 0.365. Note

that key matching is symmetric (we get the same score

comparing A to B as comparing B to A), but weight

matching is asymmetric.

For each kind of profile, we will apply this

approach for different values of n, to see how well one

real profile predicts others, and how well an estimated

profile predicts real ones, For each test program and

profile class, we have several different methods of

estimating profiles and several different test runs that pro-

duce real profiles, so we can get a lot of individual scores

of one profile against another. With such a wealth of

data, little of which corresponds to any kind of contin-

uum we can graph, our only choice is to present selec-

tions and averages across several different dimensions.

Key matching and weight matching are fairly

abstract methods, so we also considered two specific

ways of scoring an optimizing profile. In each of these

we assume a hypothetical optimization that depends on a

profile, and compare the improvement in performance

from an optimizing profile to the improvement from

using the timing profile as its own optimizing profile.

One optimization is the promotion of global variables to

registers. The other is intensive optimization of the most

important procedures.

We should note one important limitation of this

approach of this paper. It does not address the stability
of a profile over successive versions of the same program
undergoing development. One would expect that some
kinds of profiles, such as global variable use or procedure
invocation, might be relatively stable even when the pro-
gram is modified. Although a program under develop-

ment might not be run enough times to merit profile-

based optimization, it would still be interesting to know

whether it would be feasible. A thorough study of this

question may be in order, but is not considered here.

3. Programs and data used

Our test suite consists of eleven programs. Two of

them, a text editor and a drawing editor, are interactive,

Two are CAD tools used at WRL. Two are different C

compiler front ends; one is recursive descent, the other

yacc-based. Three of them are SPEC benchmarks. Fig-

ure 2 describes the complete test suite.

Wherever possible, we tried to give the programs

realistic but quite different input data, in the hopes of

maximizing the differences in their behavior, We ran

bisim three different ways: completely high-level simttla-

tion, high-level functional units with a transistor-level

register file, and transistor-level functional units with a

high-level register file. Bitv was run to verify a datapath,

a register file, and a write buffer. The drawing editor was

used to draw schematics and also a home landscape

design. Egrep and sed were run with both simple and

complicated patterns, and with large and small inputs.

Emacs was used to edit source files, English text files,

and very long simulation configuration files. Yacc was

used with a high-level language grammm, an intermedi-

ate language grammar, and a command grammar for a
window manager. The two C compilers were run with

the same four source files, two written by humans and

two generated by the C++ front end. The eqntott and

espresso benchmarks from SPEC were run with different

inputs provided by SPEC.

4. Results

We used both key matching and weight matching

for n = 1, 2,4, 8, 16, 32, 64, and 128. Given a test pro-

gram and a value of n, we proceeded as follows. We

computed estimated profiles nine different ways, includ-
ing the random profile. An estimated profile was scored

against each real profile for the same test program; we

then averaged these scores. Each real profile was scored

against each of the other real profiles, but not against

itsel~ we then averaged all the scores comparing two real

61

call profile

(!)(5000(9(90
m!mmMxm
0(900(!)00(!)
(!)(!)(!)0(9(!)(!)0
cmcmmcmcl
(!)mmc)cm(!)
00(9C)DCIC)C)
0000(!)0(9(9
(9C)C)O(!3C)(9C9
(!)0(!)0(9(!)0(!)
QOQ(B(9Q(B(D

block profile

C’H!mcx?mm!)
(!)(90(900(!)0
(90(9(9(900(!)
(!)00(9000(9
Oc)ooaoao
0C9C)O(9C)(9Q

1 2 48163264128

proc entry profile

(9C)c)c)oc)c)c)
(900(9(900(9
(mcmcm(!m

c)c)mm(!mi!)
00c)c)aooo
(BOQQCB(B(B(3

proc time profile

0QOOQOQ(5
(!)(!)(!)(!)(!)00(!3
(9C)oc)c)c)oo

random
loop-only(3)
Ioop-only(l O)
leaf-loop(3,2)
leaf-loop(10,2)
leaf-loop(3,10)
call-loop(3)
call-loop(l O)
call+l-loop(3)
call+l-Ioop(lO)
other runs

random
loop-only(3)
loop-only(l O)
leaf-loop(3,2)
leaf-loop(10,2)
leaf- loop(3,1 O)
call-Ioop(3)
call-loop(l O)
call+1400p(3)
call+1400p(10)
other runs

random
loop-only(3)
loop-only(l O)
leaf400p(3,2)
leaf-loop(10,2)
Ieaf400p(3,10)
call-loop(3)
call-loop(l O)
call+l-loop(3)

call+l-loop(lO)
other runs

1 248163264128

Figure 3. Average key-matching scores for gccl.

62

call profile

C)oooc)ooa
(WX!M!)C)CH9(3
CNMN!x9cmo
C)Oc)c)ocla(!l
Cmcmoocm
(N!M!m(mcm
C)cmocmem
0(!)(!)(9(.!)(!)(!)0
mmmcmm!l
c!)(!)mx!K9cm
(B(B(MN3Q@@

block profile

Cmcmm!x!m
C)Cmcmcmo
Om!)cx!mcm
Ocmocmcm
Cmcx!mcwo
0(9(900(900
Cmcmcmcm
(3(m’mm9cH9
0(9(!)(!)(!)00(!)

1 2 4 8163264128

globals profile

QCM?K900@@ ‘andom
oCU90CM.BGBe loop-only(s)
() o () o (309 e loop-only(lo)
0 c)o (!9(!9090 leaf-ioop@’2J
0 (900 Q 009 leaf-loop(lo’2)
0 (9o () 000 fit Ieaf-loop(s’l0)
0 (5C!3o (s (itQ e Catl-loop(s)
() o (!3o c)00 e Call-loop(lo)
(3o (3(?!00 Q e Call+l-loop(s)
O (!30 (3(J@@@ call+ l-loop(lO)

@@@@@@@@ other runs

proc entry profile

OC)C)OCM?NHJ ‘andom
0 (!) 000 (500 loop-only(s)
c)0000 Q c)o loop-only(lO)
0 c)00 (900 Q Ieaf-loop(s’z)
0 c)(900 c)00 leaf-loop(lo’z)
00 c)c100 c! o Ieaf-[oop(s}l0)
(9(900 (!9c!)o Q call-loop(s)
000 (3C!Jo (9@ Call-loop(l0)
0 (5O (3(3(J(“J@ call+ l-lo0p(3)
0 (9 00 C3 @ ~ @ call+ l-loop(lo)
@@@@@@@@ other runs

proc time profile

0000O@~~ random
0000000 Q loop-only(s)

00000 Q @ @ loop-only(lO)
(9 CJ 00000 (B leaf-loop(s~p)
00000 () Q o Ieaf-loop(lo’z)
0 c) 00 (!) 000 leaf-loop(s~l 0)
00 e 00 @ (D o cali-loop@)
00000 Q (D @ Call-loop(lo)
0 (9 00 (9 @ ~ @ call+ l-loop(3)
00000 Q @ @ call+ l-loop(lo)
~@@@o@@o other runs

1 24 8163264128

Figure 4. Average key-matching scores.

63

profiles. For each test program and each of the two

matching techniques, this gave us 352 scores: the cross

product of the four profile classes, the eleven profile

acquisition techniques (one random, nine estimated, and

aggregated real profiles), and the eight values of n. As an

example, Figure 3 shows the 352 key-matching scores for

the gccl test. The fraction of the circle filled with black

is the score, so a completely black circle is perfect and a

completely white circle is terrible.

4.L Key matching

We computed the 352 key-matching scores for
each of the test programs, and then averaged these over
all programs, Since the 352 scores are themselves aver-
ages over several program runs, this means we are taking
averages of averages; this gives each program equal
weight even though some had more datasets than others.

The results are shown in Figure 4. We can see that

predicting which globals will be used is fairly easy,

which is unsurprising since there are fewer of them than

of the other profiled entities. (In some cases there are

fewer than 128 globals, which lets even a random profile

get a perfect score.) The call-loop estimates do rather

better than the other estimates. There is relatively little

difference between estimates computed using the same

technique parameterized differently. As we would

expect, actual profiles do considerably better than esti-

mates, but even actual profiles are disappointingly bad at

predicting which basic blocks will be executed most.

Some of the estimates are surprisingly bad, doing

little better than the random profile! The random profile

did so well, in fact, that we suspected that coincidence

had given us an anomously good random order. We

tested this by computing 50 random profiles in each case

and then averaging the resulting scores. These average

scores were about as good as that of our original random

profile, and in many cases even better, so it would seem

that we did not just happen to hit it lucky. The fact that

a random profile comes so close to some of the estimated
profiles suggests that these estimated profiles aren’t really

buying us that much.

4.2. Weight matching

We also computed the 352 weight-matching scores

for each of the test programs, and then averaged these

over all programs. The results are shown in Figure 5.

We were rather more successful at weight matching than

at key matching.* The trends, however, are much the

same: globals are easy to predict, blocks are hard, call-

loop estimates work better than the others, and actual

profiles work best of all.
—

* This is not guaranteed in general: the optimizing profile in Figure 1,

for example, got a better score at key matching.

4.3. Weight matching by percentages

We observed that it was easier to predict globals

and procedures than calls and blocks, at least in part

because there are fewer of them. To see whether there

was more to it, we tried scoring each optimizing profile

for values of n that are percentages of the total number

of entities in the profile’s domain. The results are shown

in Figure 6. Here we see several interesting things. As

one might expect, the random profile gets a score roughly

equal to the percentage of items we tried to predict, more

evidence that these random profiles are not freaks. The

differences between the profile kinds are much smallec

the five rows for real profiles are very similar. On the

other hand, the advantage of globals is not completely

gone: we can predict the top 2% or 10% of globals a bit

more accurately than we can of blocks or even of pro-

cedures. Furthermore, the similarity between the “other

runs” rows does not carry over as well to the rows for

estimated profiles: the estimated profiles get scores

several times better for the top 270 of globals as for the

top 2’%0of calls. Globals really do seem to be easier in

some absolute sense, and not just because the domain is

smaller.

4,4. Differences between test programs

There is a substantial variation in the predictability

of the different programs. Figure 7 shows the average

score for real (not estimated) profiles, using the weight

matching criterion. This figure shows the last rows of

each profile class in Figure 5, broken down by program.

Emacs is astonishingly consistent from one run to

another, perhaps because it is built around a Lisp inter-

preter, so that much of its control logic (and thus much

of its variability) is hidden in the data structure. Unfor-

tunately, this argument would lead us to suppose that

gcc 1, with a table-driven parser, might be more predict-

able than ccom, with a recursive descent parser. But in
fact ccom is noticeably more predictable than gcc 1. The

least predictable programs are egrep, seal, and eqntott,

which is quite surprising because they are also the smal-

lest.

Figure 8 is analogous to Figure 7, but shows the

results for the call-loop(3) estimate instead of for real

profiles. Figures 4 and 5 suggest that this estimate was

the best one we considered. Even this estimate was

rarely much good at predicting the block profile, but it

was quite good at predicting the global profile, particu-

larly for n at least 16. The estimated profile was a bit

more likely than a real profile to make an anomalous

lucky guess, giving a higher score for low n than for

high n. Although emacs was predicted quite well by real

profiles, it is predicted relatively poorly by this estimat~

espresso and bisim, among others, are noticeably better.

64

(xxmocma
Cmcmcxmo

(!)(!)0(90000
@@Qfa@4B@@

block profile

0(!)(!)(!)00(!)(!)
0(9000000
0(3(900(9(!)(!)
Oc)oc)Qaao
00(!)00(9(!)0
C)OOO(9CWH9
00000(9(?)(!)
0(9000(900
C)C)c)o(!)ac)(!)
(Nmc)cmc)c)
(D(J(3@999e

1 2 48163264128

globals profile

oooooo@Q
o(90(J@96Be
QOW3WMD69
CK9(MMPQQ6D
C)acJocB@@e
cmm9QwwiB
eooaaeee
Q(50(9@6DQe
OQQWMMMD
Ooc!(?G#@@@
@@@@@@em

c)ac)D(9QQ(B
c)ac)c)(!9c5@(B

proctime profile

random
loop-only(3)
loop-only(l O)
leaf-loop(3,2)
leaf-loop(10,2)
leaf-loop(3,10)
call-loop(3)
call-loop(l O)
call+l-loop(3)
call+l-loop(lO)
other runs

random
loop-only(3)
loop-only(l O)
leaf-loop(3,2)
leaf-loop(10,2)
leaf-Ioop(3,10)
call-loop(3)
call-loop(lO)
caH+l-loop(3)
call+l-loop(lO)
other runs

random
loop-only(3)
loop-only(l O)
leaf-loop(3,2)
leaf400p(10,2)
leaf400p(3,10)
call-loop(3)
call-loop(lO)
call+l-loop(3)
call+l-loop(lO)
other runs

1 248163264128

Figure 5. Average weight-matching scores.

65

globals profile

00000 ‘andom
00 @ Q 0 loop-only(s)
00 (B Q @ Ioop-oflly(io)
0 @) Q @ @ leaf-loop(3,2)
0 Q 0 @ @ leaf-loop(10,2)
(!9 C!!l Q @ @ leaf-loop(3,10)

0 @ 00 @ call-loop(a)
000 @ 0 call-~oop(lo)
00000 cali+l -loop(s)
o @ 0 @ o Call+l-loop(lo)

@ @ @ @ @ other runs

proc entry profile

00000 ‘andom
00000 loop-@’@)
(!) 00 Q @ loop-only(lO)
00 () Q 0 k=f-loop(a~p)
@ ~ ~ @ @ leaf-loop(l 0,2)

Cl 0 e 00 Ieaf-loop(aJlo)
(!9 (3 0 @ ~ call-loop(3)

00 @ 0 6D Call-loop(lo)
() 000 @ call+l -loop(s)
000 @ o Call+l-loop(lo)
Q @ @ @ @ other runs

2 5 10 25 50% proc time profile

c) 0000 ‘andom
0 (!9 00 @ loop-only(s)
0 Q 00 Q Ioop-only(lo)
000 ~ @J leaf-loop(3,2)

000 (9 0 leaf-loop(l 0J2)
000 (9 0 k=f-loop(a~l o)
0 @ @ @ @ calHoop(3)
0 @ @ @ @ call-loop(lo)
0 (J @ @ @ call+l -loop(3)
(3 (3 @ @ @ call+ l-loop(lo)
@ @ ~ @ ~ other runs

2 5 102550%

Figure 6. Average weight-matching scores for n equal to

a percentage of the number of profile entries.

66

call profile

@o@@Q@@@
● eeaeeee
00999999
aoaQa9@e
● *eeeeee
00(HMHM2Q
QWW39Q99
@cNwxDQ@@
eoQQ@Q@6D
QQwMiMBaiD
● eeeeeee

block profile

CJGDeeeeee
aQo(BaCS(De
9@C#C#@ee@
oQQoQe@e
@e@@a@e@
(9QQooaQ(J
(B(9Q(Bc#@Qe
99999999
(90(saa(,ac)
99999999
(J(9Q(B@e@dD
1 248163264128

global profile

e@Qee9Bee
● oeeeoom
● 0000000
oo(HiBeeae
● *eme*o
● eewbeee
● 0000000
QWB96B4MB6B
00009900
@@GMiMDeae
(D@flDe@e*e

proc entry profile

@ee@@e(De
● eeeaeee
● eeeeeee
eoooeeee
@@eeoeee
000(909690
aCBGB@eee*
9c9C#@99Qe
aoa9Qe*e
@@@@@eee
eaeeeeee

proc time profile

bisim
bitv
ccom
egrep
emacs
eqntott ~
espresso
gccl
sed
udraw
yacc

bisim *
bitv
ccom
egrep
emacs +
eqntott
espresso
gccl
sed
ud raw
yacc

eeeeeeee bitim
C300faeeee bitv
99@@eee$D Ccom
(90000000 ‘grep
Oeooooco ‘mats
Qo@oQeeo eqntott
eeeeeeeo espresso
WB9996MMB gccl
Doaaeaoe ‘ed
C)(BQGBGDeee ‘draw
@@@@@@*@ yacc

1 2 4 8163264128

Figure 7. Average weight-matching scores for real profiles.

67

1 2 4 8163264128

bisim
bitv
cco m
egrep
emacs
eqntott
espresso
gccl
sed
udraw
yacc

Figure 8. Average weight-matching scores for calI-loop(3) estimates.

68

%5. Global register allocation

To apply this technique to a realistic specific exam-

ple, let us suppose that we suddenly have eight registers

available that we can use to promote eight global vari-

ables or constants. They payoff of doing this is that all

the loads and stores of the globals we seleet will be

removed. We can estimate our improvement in perfor-

mance by counting the executions of these loads and

stores and dividing the total by the total number of

instructions executed.* We did this both for a timing

profile (to see how well we could possibly have done)

and for an optimizing profile, in each case computing the

counts using the timing profile,

The results are shown in Figure 9. This optimiza-

tion by itself doesn’t do a lot for performance: even if

magically driven by the counts from the timing profile,

the improvement in performance is only 2.7%. A good

estimated profile gives us about half of the maximum

possible performance improvement, and au actual profile

gives us about 85% of the maximum,

max ratio
random
loop-only(3)
Ioop-only(l O)
leaf-loop(3,2)
Ieaf-loop(l 0,2)
leaf-loop(3,10)
call-ioop(3)
call-loop(l O)
call+l -loop(3)
call+l -Ioop(l O)
other runs

improv
0.6?40
1.370
1.270

1.270

1.270

1.0940
1.2!40
1.3%
1.3!/0
1.270
2.3!Xo

2.7%
2.7%
2.7%
2.7%

2.7%

2.7%

2.7%

2.7%

2.7%

2.7%

2.7%

CJ
()
Q
Q
Q
Q
Q
o
Q
u)
e

Figure 9. Improvement from global register allocation.

4.6. Selective intensive optimization

As a second specific example, let us suppose we

have an excellent but expensive optimization algorithm

that will cut the execution time of any procedure in half,

but that is so expensive that we can apply it only to 5%

of our procedures.

* This does not take pipehne stalts mto account, nor does it consider

cache effects, which are likely to increase the benefit of promotiug

globals to registers. It also assumes that the globals selected are not

ineligible because of aliasing. We are interested only iu rongh numbers

here, as an example.

First we will select as the procedures to optimize

those we believe will be invoked most often, by picking

the first 5% of the entries in the procedure entry profile.

As before, we will do this both for an optimizing profile

and also for a timing profiky we will compute the

improvement in performance using only the counts from

the timing profile.

random
loop-only(3)
Ioop-only(l O)
leaf-loop(3,2)
Ieaf-loop(l 0,2)
leaf-loop(3,10)
call-loop(3)
call-loop(l O)
call+l -loop(3)
call+l -Ioop(l O)
other runs

improv
2.4!Xo
7.470
7.4%
3.7%
3.770
3.770
7.370
7.3940
7.3%
7.3%
24.3%

max
31 .2?4
31.270
31 .2?40
31.270
31 ,2Y0
31.270
31.270

31.270

31.270
31.2%
31 .2!40

ratio

o
()

Figure 10. Improvement from intensive optimization of

procedures selected using procedure entry profile.

The results are shown in Figure 10. This optimiza-

tion would speed up our programs by a third if it were

driven by a perfect profile. A real profile gives us about

three-fourths of that, but even the best estimated profile --

which oddly enough was the simple loop-only estimate --

gives us barely one-fourth. The worst estimates are

hardly better than random profiles,

Picking the procedures to optimize based on how

many times they are called is imprecis~ we are more

likely to want to optimize the procedures where we spend

the most time. Let us do selective intensive optimization

again, this time choosing the top 5~0 of the procedures in

the procedure time profile instead of the procedure entry

profile, Figure 11 shows the results, As one might

expect, applying the optimization in this fashion is better,

giving us a possible improvement of 43.7Yo.t As before,

a real profile from a different run can get about three-

fottrths of that. This time, though, the best estimates give

us nearly half, and the worst are still better than random

profiles. This suggests that procedure times are rather

easier to predict than procedure invocations, at least at
the top 5’%. level. This is borne out by a study of Figure

6; there is somewhat more black ink in the procedure

time profile than in the procedure entry profile.

t So this would be a really great optimization if it existed!

69

References

random

loOp-only(3)
Ioop-only(l O)
teaf-loop(3,2)
loaf-loop(10,2)
leaf-loop(3,10)
caH-loop(3)
call-loop(l O)
Call+l -loop(3)
Wdl+l -Ioop(l o)
other runs

improv
2.0%
14.5%
15.1!40

8.3%
9.470
6.3%
18.4%
19.39”0
18.670
19.3%
34.570

max ratio
43.770 ~
43.7!40 @
43.770 ~
43.7?40 ~
43.770 ~
43.770 ~
43,770 ~
43.770 ~
43.70/0 @
43.770 (J
43.770 @

Figure 11. Improvement from intensive optimization of

procedures selected using procedure time profile.

$. Cohchwions

Real profiles horn different runs worked much

better than the estimated profiles discussed in this paper.

The best estimations were usually those that combined

loop nesting level with static call counts. Basing the esti-

mate on the procedure’s distance from leaves of the call

graph was less effective. The worst estimates were

hardly better than random profiles. There may of course

still be better ways to estimate a profile: this is an

interesting open question both in the general case and in

specitic applications.

Even a real profile was never as good as a perfect

profile from the same run being measured. It was often

quite. close, however, and was usually at least half as

good. Profile-based optimization would seem to have a

future, but we must be careful how we measure it, lest

we expect more than it can really deliver.

Acknowledgements

My thanks to Alan Eustace for goading me into

finally doing this study, to Patrick Boyle, Mary Jo

Doherty, Ramsey Haddad, and Joel McCormack for help-
ing me obtaifi some of the data, to Anita Borg, Joel

McCormack, and Scott McFarling for helpful comments

on the draft, and to Joel Bartlett for the ezd tool that let

me draw the 2508 pie-charts in this paper.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Unman.

Compilers: Prificiples, Techniques, and Tools, pp.

602-605. Addison-Wesley, 1986.

Joseph A. Fisher, John R. Ellis, John C. Rutten-

berg, and Alexaudru Nicolau. Parallel processing:

A smart compiler and a dumb machine. Proceed-

ings of the SIGPLAN ‘84 Symposium on Compiler

Construction, pp. 37-47. Published as SIGPLAN

Nolices 19 (6), June 1984.

Scott McFarling. Program optimization for

instruction caches, Third International Sympo-

sium on Architectural Support for Programming

Languages and Operating Systems, pp. 183-191,

April 1989, Published as Computer Architecture

News 17 (2), Operating Systems Review 23 (spe-

cial issue), SIGPLAN Notices 24 (special issue).

MIPS Computer Systems, Inc. Language

Programmer’s Guide, 1986.

Scott McFarling and John Hennessy. Reducing

the cost of branches. Proceedings of the 13th

Annual Symposium on Computer Architecture, pp.

396-403. Published as Compuler Architecture

News 14 (2), June 1986,

Karl Pettis and Robert C Hansen. Profile guided

code positioning. Proceedings of the SIGPLAN

‘90 Conference on Programming Language

Design and Implementation, pp. 16-27. Published

as SIGPLAN Notices 25 (6), June 1990.

Vatsa Santhanam and Daryl Odnert. Register

allocation across procedure and module boun-

daries. Proceedings of the SIGPLAN ’90 Confer-

ence on Programming Language Design and

Implementation, pp. 28-39. Published as SIG-

PLAN Notices 25 (6), June 1990.

David W. Wall. Global register allocation at

link-time. Proceedings of the SIGPLAN ’86 Sym-

posium on Compiler Construction, pp. 264-275.

Published as SIGPLAN Notices 21 (7), July 1986.

Also available as WRL Research Report 86/3.

70

