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Abstract
This paper presents a novel, history-based, statistical tech-
nique for online battery lifetime prediction. The approach
first takes a one-time, full cycle, voltage measurement of
a constant load, and uses it to transform the partial voltage
curve of the current workload into a form with robust pre-
dictability. Based on the transformed history curve, we
apply a statistical method to make a lifetime prediction.
We investigate the performance of the implementation of
our approach on a widely used mobile device (HP iPAQ)
running Linux, and compare it to two similar battery pre-
diction technologies: ACPI and Smart Battery. We em-
ploy twenty-two constant and variable workloads to ver-
ify the efficacy of our approach. Our results show that
this approach is efficient, accurate, and able to adapt to
different systems and batteries easily.

1 Introduction
Power is a critical resource for battery-powered embedded
systems and mobile devices. As such, battery life must
be monitored and managed within these systems to en-
sure maximum efficiency and effective prioritization on
behalf of system users. While compile-time optimiza-
tion of application code can reduce the battery consump-
tion of individual applications, operating system support
is needed to manage the combined power consumption of
multiple programs executing in concert. Providing this
support at the operating system level requires the ability
to predict, accurately, remaining battery life given a dy-
namically changing system workload.

In this paper, we investigate an on-line statistical ap-
proach to battery lifetime prediction that combines re-
cently observed power dissipation “history” with pre-
computed off-line benchmark measurements. By dynam-
ically incorporating on-line measurements, our approach
is able to make predictions that take into account varying
workloads, the “recovery effect” that batteries experiences
when they are unloaded, and the charging-cycle effect that

changes battery performance as batteries are repeatedly
recharged.

Much of the prior work investigating battery dissipa-
tion and prediction is analytical, simulation based, or
both [4, 5, 1, 10]. These systems attempt to provide ac-
curate dissipation predictions off-line, for use in design
or analytical contexts. Efficient analytical methods such
as [13], and [14] consider the problems of on-line predic-
tion, but do not include the statistical components needed
to rapidly analyze dynamically changing workloads and
operating conditions. While some approaches have con-
sidered statistical characteristics in combination with an-
alytical models, they focus exclusively on battery dissipa-
tion in isolation [12, 15]. To be useful in an operating
system resource management context, however, a battery
lifetime prediction technique must be

• fast enough to make predictions so that real-time or
near real-time decisions can be made,

• power-efficient enough to be run on the battery-
powered device itself,

• dynamically adaptive so that it can take into ac-
count different user workloads, and environmental
operating conditions (e.g. ambient temperature, bat-
tery recharge count, etc.), and

• portable so that a variety of battery and device com-
binations can be supported by the same operating
system.

To address these challenges, our approach treats operat-
ing system power measurements from the battery as com-
ing from a “black box.” We use off-line profiling of the
installed battery to establish a reference signature for its
observed dissipation curve. We then use fast, on-line re-
gression to predict deviations from this signature. Thus,
our method uses benchmark data from the battery (in the
form of a reference signature) to parameterize a statistical
model that we evaluate on-line. Because the system uses
measurements taken in the operating system, it is portable



between devices and batteries. By using immediate on-
line history, the system adapts to dynamic changes in sys-
tem conditions.

We investigate the efficacy of our work by empirically
evaluating our methods using the popular HP iPAQ run-
ning the Linux operating system. All of the necessary
data for our method is obtained through the standard hard-
ware and operating system interfaces provided by Famil-
iar Linux – a version of Linux commonly used in con-
junction with the iPAQ device. We compare our results
to those provided by the native Linux battery lifetime pre-
dictor that is part of the Advanced Power Management
(APM) kernel subsystem. While considered to provide
very rough estimation of battery lifetime, APM nonethe-
less meets the requirements that we describe above. That
is, APM implements a fast, on-line, portable prediction
method at the operating system level. Our method com-
bines these attractive online features of APM with predic-
tion accuracy, and thus constitutes an fast, accurate, and
adaptive prediction mechanism that can be used as the ba-
sis for “power-aware” operating system design.

To describe this work in greater detail, the remainder
of this extended abstract is organized as follows. In Sec-
tion 2, we describe the methodology more completely.
Section 3 provides an empirical evaluation of our method
through direct experimentation and in Section 5 we draw
brief conclusions from our investigation.

2 History-based Battery
Lifetime Prediction

Our methodology consists of three components: a refer-
ence signature from the battery, a curve transformation
function that changes coordinates to make fast prediction
possible, and a fast linear fitting technique that makes pre-
dictions in the transformed space. The baseline obser-
vation that makes this methodology possible is that for
constant but differing workloads, the “shape” of the bat-
tery dissipation curve is similar. Thus, using the trajectory
produced by one workload, the lifetime implied by other
constant workloads, can be predicted accurately. By trans-
forming the coordinate space into one where simple linear
fitting techniques are applicable, the predictions can then
be made using computationally efficient techniques.

2.1 Linearity, Reference Curve and
Voltage Curve Transformation

To determine the reference signature of a battery, we exe-
cute constant-power workloads on a quiescent system. A
constant-power workload consists of repeated executions
of single program instance from full battery charge until

battery expiration. We describe the individual program in-
stances in Section 3, but for the purpose of describing our
methodology, the salient feature is that the power drain
is constant with respect to the application workload, e.g.,
there is only a single program in each workload.

Linux permits application access to the voltage level
reported by the battery on the iPAQ. During each com-
plete benchmark run, the power level is recorded period-
ically to produce a drain trajectory. This trajectory can
be expressed by function F : t → v, mapping time t to
battery voltage level v. v’s value is between the open cir-
cuit voltage (approximately the voltage when the battery
is fully charged) and the cut-off voltage (the voltage when
the battery dies). In Figure 1(left), we show two typical
voltage curves, which are obtained by repeatedly running
benchmark programs (“IMem” – a memory read bench-
mark – and “IMemWC” – a cache-write benchmark – in
this case) on an HP iPAQ until the battery dies. The x-
axis represents the time and y-axis represents the voltage
level. We describe the full experimental setup and bench-
mark information more completely in Section 3.

The voltage curves in the left graph of Figure 1 are
inherently non-linear due to the internal electrochemical
characteristics of the battery. This non-linearity limits
our ability to predict remaining battery life efficiently. If
we treat the trajectories as invertible continuous functions,
however, we can make the observation that

V = F1(t1) = F2(t2) (1)

for voltage V , and dissipation functions F1 and F2. If we
use Γ1,2 to represent the relationship between t1 and t2
under F1 and F2 for any voltage level V , we have:

F1(Γ1,2(t2)) = F2(t2) (2)

Furthermore, we can see that the voltage curves of con-
stant workloads have very similar shapes. Based on
this shape-similarity, we make the further simplifying as-
sumption that the timing relationship Γi,j for any two
constant workloads, Fi and Fj , is a series of functions
with the same form but different parameters, denoted as
Γ(φi,j , t), where φi,j is a specific set of parameters for Fi

and Fj . For the curves in Figure 1, we now have:

F1(Γ(φi,j , t2)) = F2(t2) (3)

So:
Γ(φi,j , t2) = F−1

1 (F2(t2)) (4)

We plot the Γ function for curves F1 and F2 in the right
graph of Figure 1. The x-axis is the time of F2 and the
y-axis is the time of F1. In this graph, the Γ curve ap-
pears very close to a linear function. Our experiments
show that this strong linearity actually exists between any
pair of constant workloads. Figure 2 shows another three
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Figure 1: Timing relationship between two voltage curves of constant workloads. F 1 is the curve of the workload
that is generated by repeatedly running benchmark “IMem”. And F 2 is the curve of benchmark “IMemWC”. The left
graph shows that for some voltage value V , F1 reaches V at time t1 and F2 reaches V at time t2. The right graph
shows the linear relationship between t1 and t2 for any V .
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Figure 2: Timing relationship: Γ function. This graph
plots the Γ functions for three pairs of constant workloads:
“Reg” and “IMem”, “dijkstra” and “IMem”, “video” and
“IMem”. Since “IMem” is common for all three curves,
we can plot them in the same graph.

Γ curves for pairs of constant workloads. The axes are
similar to those in the right graph of Figure 1.

If we use one specific voltage curve of constant work-
load as the reference, denoted as Fref , the Γ function be-
tween any curve F and the reference curve Fref can be
expressed by:

Γ(φ, t) = F−1
ref (F (t)) (5)

Since Γ can be approximated by linear function, let φ =
(a, b), and we have:

F−1
ref (F (t)) = a ∗ t + b (6)

Note that here a and b vary for different constant work-
loads. The Γ function actually shows not only the tim-

ing relationship between two workloads, but also indi-
cates the size of the load: the larger the slope of the curve,
the higher is the power consumption and the shorter does
the battery lifetime extend. We refer to the Γ function as
the transformed voltage curve. Using a reference voltage
curve, we can transform any non-linear voltage curve of
constant workload into a linear form, which is friendly to
fast statistical methods, e.g., linear curve fitting, for re-
maining battery lifetime prediction.

In real life, workloads may not be constant. We can
approximate the power consumption of a variable work-
load with a piecewise constant curve. Such an approx-
imation is reasonable since the tasks of a workload are
composed of consecutive execution of a sequence of op-
erations, whose power consumption can be regarded as
constant. Given this assumption, the transformed voltage
curve for a variable workload should appear as a piece-
wise linear curve under ideal conditions.

However, the actual voltage curve of a variable load
also exhibits the recovery effect. The recovery effect refers
to the phenomenon that a battery regains some capacity
when the load decreases. Through observation, we find
that the recovery effect occurs whenever the load changes.
If the load decreases, the voltage will “jump up” to a
higher value instead of monotonically decreasing. If load
increases, the voltage will “jump down” sharply. On the
transformed curve, the “jumping” direction is inverted be-
cause an advance in time equates to a drop on voltage.
Figure 3 shows the original voltage curve (from top-left to
bottom-right) of a variable workload “real.load.5” and its
transformed curve (from bottom-left to top-right) in the
same graph. Both curves share the same x-axis, which
represents the workload execution time. The left y-axis
shows the voltage level for the voltage curve; the right
y-axis shows the corresponding time for the transformed



voltage curve given the reference curve. Both curves ex-
hibit fluctuations due to the recovery effect.
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Figure 3: Voltage curve and transformed voltage curve for
“real.load.5”

Despite the recovery effect and the use of piecewise lin-
ear estimation, simple statistical methods can still achieve
accurate prediction on the transformed curve for variable
workloads. We present this data as part of our empirical
evaluation in Section 3.

In addition to the recovery effect, our curve transforma-
tion methodology also captures a number of other chal-
lenging battery characteristics that often limit prediction
accuracy performance in other techniques [8], e.g., the
rate capacity effect (when the battery is discharged un-
der different workloads, it registers different capacities)
and the cycle aging effect (battery capacity gradually di-
minishes after repeatedly being discharged).

Our transformation actually is equivalent to a co-
ordination system switch (from (time, voltage) to
(time, time)). Since the reference curve is a one-to-one
function, we don’t lose any information during transfor-
mation. Thus, the transformed curve keeps all of the char-
acteristics of the battery discharge that the original voltage
curve describes. Based on transformed curve, and due to
the nature of the statistical methods we use, our prediction
methods are insensitive to all these non-ideal phenomena
and can still make an accurate prediction.

2.2 Prediction Methods
In the remainder of the paper, we refer to the transformed
voltage curve as the history curve since it provides us with
a history of battery consumption by the system up to the
point at which we make a prediction of remaining bat-
tery life. In addition, to make this prediction, we con-
sidered a number of different methods. We evaluate each
method using the prediction error of each. Assume that
function Pt0 is the function we use to model the history

curve, where t0 is present time. Let ve be the threshold
voltage with which the battery is considered exhausted.
Prediction error can be expressed by:

error =
∣∣∣∣
Lp − L

L

∣∣∣∣ =

∣∣∣∣∣
P−1

t0 (ue) − L

L

∣∣∣∣∣ (7)

where ue = F−1
ref (ve), Lp is the predicted lifetime and L

is the actual measured lifetime. Figure 4 demonstrates the
calculation of prediction error.

ue

transformed voltage
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t0
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Figure 4: Prediction error calculation

The first prediction method that we considered uses the
average power consumption rate of the history curve to
estimate that of the future. According to Equation (6), the
slope at any point of the transformed voltage curve indi-
cates the magnitude of the power consumption rate (the
ratio between P and Pref ). As such, we can model future
power consumption at time t as Pt0(t) = kt0t, where kt0

is the mean slope of the history curve before t0. We refer
to this method as Mean Slope Prediction(MSP). We then
improved this method by making a prediction line that
begins at the current point (t0, G(t0)) instead of (0, 0):
Pt0(t) = kt0t + G(t0) − kt0t0. We call it Mean Slope
Point Prediction(MSPP).

We next considered a model that uses linear Least
Square Fit(LSF)[11]. Assume that klsf and blsf are the
slope and intercept of the linear regression, the predic-
tion function will be Pt0(t) = klsf t + blsf . We call
this method LSF Prediction(LSFP). As we did for Mean
Slope Prediction, we also consider the efficacy of using
LSFP when the prediction line starts at the current time
(as opposed to the beginning of time (0, 0)). We call this
method LSF Point Prediction(LSFPP), and implement it
as Pt0(t) = klsf t + G(t0) − klsf t0.

All four of these methods are computationally effi-
cient. For example, using method LSFPP or LSFP, a
single prediction for a median-sized voltage curve (about
4, 000 readings) takes 250 milliseconds on average on the
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206MHz StrongARM processor of the HP iPAQ; this is
equivalent to about 0.25 joule of energy consumption.
Since MSPP and MSP have lower computational com-
plexity and they can be computed incrementally, they con-
sume even less energy.

Given the history curve and prediction functions, the
final question that we must address concerns the length
of history that is required to make the best prediction. In
Section 3.3, for each prediction method, we empirically
evaluate a range of different history sizes to answer this
question. This study also gives us insight into how well
our techniques perform given a small amount of history.

Figure 5 summarizes the procedure of making a pre-
diction. The current, sampled, voltage curve, which is a
sequence of (t, v) pairs (t is a timestamp, v is voltage),
is transformed using the reference curve. Next, the above
prediction methods are applied to the transformed curve,
which is a sequence of (t, tref ) pairs (tref = F−1

ref (v)),
and a prediction is made. Note that the reference curve
must also be transformed from a sequence of discrete pairs
to a continuous mathematical form using curve fitting or
interpolation. Note also that the on-line part of the pre-
diction procedure includes the computation of the inverse
of reference curve function. We use the Newton-Raphson
method [11] to make the approximation. This method is
also very efficient practically. In our experiment, it takes
about 3 iterations on average to get a result with an error
within 0.001.

3 Evaluation
We evaluated our prediction methods using two models
of HP iPAQ: H3650 and H3835. H3650 is equipped with
a 1000 mAh Danionics DLP 305590 lithium-ion poly-
mer battery and H3835 has a 1400 mAh Danionics DLP
345794 battery [3]. Since the results for these two mod-
els are similar, we only present the H3835 results in this
paper; the trends, however, are the same.

We installed Familiar Linux v0.6.1 [9] and the Opie en-
vironment [9] on the iPAQ to perform all experiments.
Opie provides the graphical user interface and a set of
applications such as games, a media player, and a calen-
dar, that we use as benchmarks. The iPAQ has an internal

voltage sensor reporting accurate battery voltage measure-
ments via Linux “/proc” system. We implemented a log-
ging program that reads the current battery voltage from
“/proc/asic/battery” (not part of APM system) into a file
stored locally. For each benchmark, we first fully charge
the iPAQ battery. We then start the workload benchmark
and the logging program simultaneously. The logging
program runs periodically with an interval of 6 seconds.
We use this empirically selected interval since it is short
enough to catch significant changes in voltage and long
enough to reduce interruption. The benchmark runs con-
tinuously until the battery dies.

3.1 Workload Benchmarks and
Reference Benchmark

We generated the constant workload by repeatedly run-
ning a single benchmark program, for which one-time ex-
ecution time is very short (within 4 minutes). We eval-
uated 14 such programs. They include the benchmarks
that we hand-coded to execute of a single type of instruc-
tion (Reg (register instructions only), IMem(loads, out of
cache), IMemC(loads, in cache), IMemW (stores, out of
cache) and IMemWC (stores, in cache)). In addition, we
included dijkstra, fft, ispell, jpeg, sha and susan, from
the MiBench Suite [6], and three multimedia programs:
audio, video and videoaudio. Each of the MiBench pro-
grams represents one of six application categories: net-
work, telecommunication, office, consumer, security and
automotive, covering a broad range of typical embedded
system applications. The three multimedia programs play
MPEG format audio, video and video with audio respec-
tively. All of these programs exercise many hardware
functions in an embedded or mobile device, e.g., CPU,
memory, flash, audio/video components, and backlight.

We generate part of the variable workloads by simulat-
ing the real usage of a PDA. The simulation program is
composed of a set of hand-held device applications pro-
vided by the Opie toolkit [9] (Table 1). Each application
runs a specified period of time during the simulation. Dif-
ferent patterns of variable workloads are generated by dif-
ferent configurations of the simulation program.

The simu.random workload is generated by randomly



Benchmarks Type Comments
Reg constant: single instruction register instruction ONLY
IMem constant: single instruction memory read instruction, 100% cache miss
IMemC constant: single instruction memory read instruction, 100% cache hit
IMemW constant: single instruction memory write instruction, 100% cache miss
IMemWC constant: single Instruction memory write instruction, 100% cache hit
dijkstra constant: single operation shortest path algorithm benchmark
fft constant: single operation Fast Fourier Transform benchmark
ispell constant: single operation a fast spelling check benchmark
jpeg constant: single operation JPEG encoder/decoder benchmark
sha constant: single operation SHA secure hashing algorithm benchmark
susan constant: single operation image recognition benchmark
audio constant: single operation play a 210-second MP3 audio file with audio

output, back light off
video constant: single operation play a 142-second MPEG1 video file without

audio, back light on
videoaudio constant: single operation play a 142-second MPEG1 video file with

audio output, back light on
simu.random variable simulated random workload, no sleep time
simu.30 variable simulated random workload, 30% probability

to sleep
simu.50 variable simulated random workload, 50% probability

to sleep
simu.70 variable simulated random workload, 70% probability

to sleep
real.load.1 variable 5 real workloads, voltage curve recorded
. . . when PDA is used by people
real.load.5

Table 2: Workload description. IMem is used to generate reference curve exclusively.

Program Name Usage
qpdf PDF file viewing
showimg Image display
textedit Text editing
drawpad Picture drawing
audio Playing music
video Playing video
filebrowser Managing files
datebook Scheduling
clock Time adjusting
addressbook Managing personal information

Table 1: Applications used in the variable workload sim-
ulation program

executing one of these applications in uniform distribu-
tion. The other three workloads (simu.30, simu.50 and
simu.70) are generated in the following way. The simula-
tion program continuously allocates time slots of random
length to either an idle mode or a specific set of appli-
cations that are specialized in similar functions (e.g. au-
dio/video), according to a predefined distribution. Dur-
ing each non-idle time slot, the applications within the
specific set are also executed randomly following a pre-

determined distribution. In this way, simu.30 keeps the
device busy during 70% of the time on average. Simi-
larly, simu.50 and simu.70 have a device usage frequency
of 50% and 30% respectively.

We also obtained 5 real variable workloads, whose volt-
age curves are recorded when users played with the iPAQ
in a common way, e.g., playing games, viewing pictures
and videos, listening to music, and making a schedule us-
ing the calendar. These workloads were obtained by loan-
ing the iPAQ to individual students and then recording the
power dissipation each student induced. Table 2 summa-
rizes the total 23 constant and variable workloads.

Finally, we pick the IMem benchmark to generate the
reference curve. A key contribution of our method is that
any constant-workload benchmark can be used to gener-
ate reference curve; the fluctuations in a variable workload
require smoothing if it is to be used as the reference curve.
The reason for this is that our method relies on similarities
in the shape of the curves; all constant-workload bench-
marks exhibit similar shape, as such, they can be used as
the reference curve with statistically similar results.
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Figure 6: Transformed voltage curve and moving errors
for the Reg, constant workload, benchmark. The left y-
axis is the transformed voltage in terms of reference curve
time. The right one shows the value of errors. We set the
maximum to be 20%.

Since the sampled reference curve is composed of a se-
quence of discrete pairs (time, voltage), we cannot use
it to compute the transformed voltage, F −1

ref (v), since it is
not expressed in terms of v. Instead, we model the ref-
erence curve off-line using a high order polynomial and
polynomial least square fit [11]. The IMem curve can be
fit by a polynomial of order 15 (the coefficient of determi-
nation of the fit, R2, is 0.99955). We then use this polyno-
mial as the reference curve function on-line to make each
prediction.

3.2 Results of Prediction
For Constant Workloads

Given the voltage curve of a constant load, we first gener-
ated the history curve (transformed curve) using the ref-
erence polynomial. Then, for every 50th point (approxi-
mately 5 minutes), we apply each of our prediction meth-
ods, LSFPP, LSFP, MSPP, MSP, to make a prediction. We
next calculate the error for each prediction point using
Equation 7. Finally, we have a sequence of prediction
errors (“moving errors”) for the entire battery lifetime.

Figure 6 shows the history curve (solid line curve) and
the corresponding “moving errors” (marked-line curve)
for the Reg benchmark. Both curves share the same x-
axis, which represents time. The transformed voltage
curve uses the left y-axis that shows the transformed volt-
age in terms of reference curve time. The error curve uses
the right y-axis that shows the error value. As we can see
from the graph, all prediction errors are within 5%.

In Figure 7, we show the average prediction error for
each benchmark and each method. (We omit the standard

deviations of prediction errors in this abstract. We plan to
provide standard deviation data and analysis in the final
paper.) The y-axis is average percentage error.
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Figure 7: Average prediction errors for constant work-
loads

Except for the three media benchmarks (audio, video,
and videoaudio), the predictions for the constant work-
loads have an average error below 5% for all methods.
The predictions for the media benchmarks have average
errors around 10% due to the local fluctuations of power
consumption when they run. Among the four prediction
methods, LSF-based methods perform a slightly better
than MS-based methods. This is because least square fit
provides a better model for linear data than mean slope
does. LSFPP is the best method among all. Overall, the
performance of all the four methods is similar.

3.3 Results of Prediction
For Variable Workloads

We follow the same procedure to make predictions for
variable workloads. A typical voltage curve and trans-
formed voltage curve for variable workload is shown in
Figure 3.

First, we explore how much history we need to make
the best prediction. We tried the four methods using dif-
ferent history lengths: a history window with last 50 sam-
ple points, the last 1/5 , 1/4, 1/3, 1/2 of history, and
all of the history. Figure 8 shows the mean (shown as
the markers), maximum (shown as the top of the bar) and
minimum (shown as the bottom of the bar) of prediction
errors for real.load.5 benchmark. The y-axis shows the
value of prediction errors (percentage) using a log scale.
The data reveals that the prediction based on the entire
history has both the smallest average error and error range
for most methods. We found similar results for all other
benchmarks. This tells us that the methods based on re-



real.load.5 IMemWC
Methods mean % stdev % mean % stdev %
ACPI 60.28 27.70 42.96 71.30
rolling average 60.16 28.36 40.55 71.39
LSFPP 21.29 65.63 3.65 1.67
LSFP 20.76 66.19 4.01 1.22
MSPP 14.19 19.74 3.44 1.96
MSP 14.16 19.85 3.44 1.99

Table 3: Prediction performance of APM method and our
methods based on entire history. The mean and stan-
dard deviation of prediction errors for a variable workload
real.load.5 and a constant workload IMemWC are listed.

cent history are not able to make an accurate prediction of
the future. In the results that follow, we only use the entire
history to make a prediction.
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Figure 8: Prediction performance for different history
size. This figure shows the mean, max and minimum of
“moving errors” of the 4 methods for real.load.5 bench-
mark, using different history size: fixed window, 1/5,
1/4, 1/3, 1/2, all history. Values out of range are clipped.

We next compare the performance of our methods
against that of APM, which is a standard, commonly used,
power management service that estimates remaining bat-
tery life [7, 2]. In Table 3, we show the mean (column 2
and 4) and standard deviation (column 3 and 5) of predic-
tion errors using APM’s remaining battery lifetime esti-
mation and our four methods using the entire history. We
extract the APM estimation via the Linux’s /proc system
at the same time we record the voltage curve of the bench-
mark. Columns 2 and 3 show data for the real.load.5, vari-
able workload, benchmark; columns 4 and 5 show data for
the IMemWC, constant workload, benchmark. Results for
all other benchmarks are similar; each of our four meth-
ods significantly outperforms APM for both constant and
variable workloads.

Figure 9 shows the average prediction errors for all of
the variable workload benchmarks. At the first glance, it
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Figure 9: Average prediction errors for variable work-
loads. y-axis is in log scale.

seems that LSF-based methods perform very poorly for
variable workloads. For example, LSFPP has an average
error of 205.68% for real.load.4.

A detailed analysis shows that the prediction by LSFPP
has some huge spikes in prediction error at the start time
of the experiments when there is little history available.
Figure 10 illustrates the relationship between the trans-
formed voltage curve and the “moving errors”. The axes
have are similar to those in Figure 6. Before time 6000,
there is no program running and the power consumption
is very low creating a line segment with small slope at
the beginning of the transformed voltage curve. The fore-
caster only knows about history and it makes a prediction
that the battery will last for a much longer time than ac-
tual will. Immediately after some process starts to run,
the curve goes up and the forecaster begins to realize the
actual power consumption. As such, the prediction error
also starts to drop. During the remaining time, the predic-
tion error is much smaller.

To isolate this initial noise in the “moving errors”, we
calculate the mean for the last 95% of prediction errors
(we call it the trimmed prediction error). That is, we dis-
card the initial 5% (in terms of time) of the prediction er-
rors to allow each forecaster to calibrate. Figure 11 shows
the mean of the trimmed prediction errors for all variable
workloads; the errors are smaller than without trimming.
For example, the average prediction error of real.load.4
by LSFPP drops to 22.08%. These results indicate that
for variable workloads, MSPP and MSP methods outper-
form LSFPP and LSFP.

Since the least square fit is not symmetric for the x
and y axes (it tries to minimize the sum of distance
squared along the y-axis), we also investigated the effi-
cacy of our methods on the curves with switched x and
y axes. We call the new curves “inverted transformed
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Figure 10: Transformed voltage curve and moving errors
for real.load.4. The left y-axis is the transformed volt-
age in terms of time for reference curve. The right one
shows the value of errors. We set the maximum to be
200% and those larger errors in the early period of time
are not shown.

voltage curve”. Since it is meaningless to average the in-
verse of a slope that represents the power consumption,
we do not apply MSPP and MSP methods to the inverted
curve. We show the results in Figure 12 as average predic-
tion error using variable workloads for both trimmed and
non-trimmed LSF methods using the inverted transformed
voltage curve. The results indicate that the prediction per-
formance using the inverted curve is more stable. In ad-
dition, it does not suffer from the early-stage spikes in the
“moving errors”; as such, it is an alternative to trimming.
In general, LSFPP outperforms LSFP.

In summary, we find that LSF-based methods are
slightly better than MS-based methods for constant work-
loads. For variable workloads, MSPP performs best. In
general, we believe MSPP is the best method for our on-
line battery lifetime prediction. MSPP is cheaper to com-
pute and even though it is slightly less accurate under con-
stant conditions, it is less sensitive to variability in the
measurement history.

4 Related Work
We provide only a brief discussion of the active areas of
research to which our work is related as part of this ex-
tended abstract. In a final paper, should the abstract be
accepted, we will provide more detail about the related
approaches, their similarities, and their differences.

Two areas of related work are model-based simula-
tion methods and efficient analytical models. These tech-
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Figure 11: Average prediction error use a trim of 5% for
variable workloads
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Figure 12: Average prediction errors when we use in-
verted transformed voltage curves. We show results for
both non-trimmed and trimmed errors.

niques are used to guide static and dynamic power man-
agement and to enable analysis of power consumption be-
havior. In the area of model-based simulation, researchers
have developed accurate methods that can be used to con-
struct precise battery discharge models based on the inter-
nal electrochemical processes of battery. Using this infor-
mation, they are able to make lifetime predictions given
an exact load profile [4, 5, 1, 10]. Such techniques are
used to enable efficient simulation and validation of other
battery models. Other researchers have developed analyti-
cal models to estimate remaining battery life [13, 14], and
combine these methods with statistical techniques [12].
All of these related techniques are of limited use for on-
line prediction of battery life since they do not capture
time-sensitive recovery effects, have a high computation
cost and complex parameterization, and require an exact



battery discharge profile.
In the work most related to ours [15], the authors es-

timate battery lifetime by exploiting the linear relation-
ship between the system load and the drain time required
to reach a specified voltage. They then apply statistical
methods to make a prediction. This work differs from
our work in several key ways. First, the linearity they ex-
ploit is between the load and the time until a certain volt-
age level is reached; ours is the linearity between drain
curves of two workloads. Second, the target battery is a
primary lithium battery; we focus on secondary lithium
battery that is commonly use in existing mobile devices.
Finally, this prior work only studies the lifetime estima-
tion for constant workloads; we empirically evaluate our
system under both constant and variable workloads.

5 Conclusions
We investigate battery lifetime prediction using a purely
statistical method and only data that is readily available
from the OS /proc file system. By using a statistical tech-
nique, our approach takes into account variations in work-
load, application profile, and battery charge rates, partic-
ularly those caused by the recovery of the battery during
idle periods. We describe a coordinate transformation that
converts a dynamic voltage curve into a form that enables
more robust prediction of future behavior. We implement
and empirically evaluate two variations of statistical meth-
ods on the transformed curve to make predictions. The
experimental result shows high prediction accuracy under
both constant and variable workloads.

Our approach is simple, efficient, accurate, and flexi-
ble. In addition, it can be easily incorporated into current
operating systems on popular hardware. As part of fu-
ture work, we plan to investigate combinations of differ-
ent prediction methods to achieve even better performance
(error reduction). Since there is not a universal method
that is best for all cases, we are also seeking a way to
leverage the power of different methods.

References
[1] L. Benini, G. Castelli, A. Macii, E. Macii, M. Pon-

cino, and R. Scarsi. A discrete-time battery model
for high-level power estimation. In Proceedings of
Design, Automation and Test in Europe, 2000.

[2] Compaq, Intel, Microsoft, Phoenix, and Toshiba.
Advanced configuration and power interface speci-
fication, 2002.

[3] Danionics lithium-ion polymer battery.
http://www.danionics.com/sw828.asp.

[4] M. Doyle, T. F. Fuller, and J. Newman. Mod-
eling of galvanostatic charge and discharge of the
lithium/polymer/insertion cell. Journal of Elec-
trochem Society, 141(1):1–9, January 1994.

[5] S. Gold. A PSPICE macromodel for lithium-ion bat-
teries. In Proceedings of Annual Battery Confer-
ence on Applications and Advances, pages 215–222,
1997.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A
free, commercially representative embedded bench-
mark suite. IEEE 4th Annual Workshop onWorkload
Characterization, December 2001. Austin, TX.

[7] Intel and Microsoft. Advanced power manage-
ment(apm) bios interface specification, 1996.

[8] D. Linden and T. B. Reddy. Handbook of Batter-
ies(3rd edition). McGraw-Hill, 2002.

[9] Linux for handheld devices.
http://www.handhelds.org.

[10] D. Panigrahi, C. Chiasserini, S. Dey, R. Rao,
A. Raghunathan, and K. Lahiri. Battery life estima-
tion of mobile embedded systems. The 14th IEEE
International Conference on VLSI Design, 2001.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C: The Art of
Scientific Computing (Second Edition). Cambridge
University Press, 2002.

[12] D. Rakhmatov and S. Vrudhula. Time-to-failure es-
timation for batteries in portable electronic systems.
In Proceedings of the International Symposium on
Low Power Electronics and Design, August 2001.

[13] D. Rakhmatov, S. Vrudhula, and D. A. Wallach. Bat-
tery lifetime prediction for energy-aware computing.
In Proceedings of the International Symposium on
Low Power Electronics and Design, August 2002.

[14] P. Rong and M. Pedram. Remaining battery capacity
prediction for lithium-ion batteries. Conference of
Design Automation and Test in Europe, March 2003.

[15] K. C. Syracuse and W. Clark. A statistical approach
to domain performance modeling for oxyhalide pri-
mary lithium batteries. In Proceedings of Annual
Battery Conference on Applications and Advances,
January 1997.


