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ABSTRACT
A future is a parallel programming language construct that
enables programmers to specify potentially asynchronous
computations. We present and empirically evaluate a novel
implementation of futures for Java. Our futures implemen-
tation is a JVM extension that couples estimates of future
computational granularity with underlying resource avail-
ability to enable automatic and adaptive decisions of when
to spawn futures in parallel or to execute them sequentially.
Our system builds from, combines, and extends (i) lazy task
creation and (ii) a JVM sampling infrastructure previously
used solely for dynamic and adaptive compilation. We em-
pirically evaluate our system using different benchmarks,
triggers for automatic spawning of futures, processor avail-
ability, and JVM configurations. We show that our future
implementation for Java is efficient and scalable for fine-
grained Java futures without requiring programmer inter-
vention.
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1 Introduction
As multi-processor computer systems become ubiquitous,
it is becoming increasingly important to effectively support
parallel programming constructs that are easy to use in pop-
ular, high-level languages. One such construct is thefuture.
A future identifies a potentially asynchronous computation
that can be executed in parallel. The construct was first in-
troduced in Multilisp [17], and has been adopted by many
languages including Java J2SE 5.0 [11] and X10 [3]. The
original rationale behind futures is that “the programmer
takes on the burden of identifyingwhat can be computed
safely in parallel, leaving the decision of exactlyhow the
division will take place to the run-time system” [14].

Using this model, a programmer specifiesall code re-
gions thatcan execute in parallel, and the runtime decides
when to do so. For programs that contain fine-grained, in-
dependent computations, it is possible for a programmer to
specify a very large number of futures. It is, therefore, vital
for performance that the runtime implementation of futures
be efficient, and effectively amortize the cost of spawning a
future in parallel, or execute the future sequentially (inline
it into the current context). Naı̈ve future implementations
(e.g. one thread per future or with thread pool support)
can result in significant overhead, and inefficient, even de-

graded, execution. Such future implementations in Java can
quickly bring the system to a halt due to the multiple lay-
ers of abstraction and virtualization in the Java Virtual Ma-
chine (JVM) for the support of system services, such as,
threads, memory management, and compilation.

To limit the number of independent contexts that are
spawned for fine-grained futures, programmers commonly
specify thresholds to identify futures that will perform
enough computation to warrant parallelization. This ap-
proach is time-consuming, and error prone. The thresh-
olds are specific to, and different across applications, inputs
for the same application, available underlying hardware re-
sources, and execution environment, thereby, requiring sig-
nificant effort and expertise by the programmer to iden-
tify optimal, or even efficient settings. Moreover, the re-
quirement that users participate in deciding which futures
to spawn or inline, is inconsistent with the original design
goal of futures of placing a minimal burden on the program-
mer. In this paper, we investigate a runtime implementation
that efficiently supports fine-grained futures without requir-
ing programmer intervention with parallelization decisions.

Prior work proposes several solutions for such sup-
port within functional languages or C++ [13, 14, 23]. In
this paper, we focus on supporting efficient fine-grained fu-
tures in Java. In current Java future APIs [11], futures must
be submitted to a user-definedExecutor for execution.
How a future is dispatched depends on the implementation
of theExecutor. The decision of whether to spawn or
inline futures depends on many factors including the exe-
cution behavior of the future, underlying resource availabil-
ity, as well as the capability of the execution environment.
Unfortunately, the library-basedExecutor model is not
capable of obtaining all of the above information to make
well-informed decisions.

In our work, we follow an alternative, runtime-based,
approach and extend the JVM runtime to effectively sup-
port futures. We do so since the JVM has access to low-
level information about the executing program, and under-
lying resource availability. Our approach, which we call
lazy futures, builds from, combines, and extends (i) lazy
task creation [14] and (ii) a JVM program sampling infras-
tructure (common to many state-of-the-art JVM implemen-
tations) previously used solely for dynamic and adaptive
compiler optimization. We couple these techniques with
dynamic state information from the underlying, shared-
memory, multiprocessor resources, to adaptively identify



Bench- Inputs Total# of CPU 1.60GHz CPU 1.60GHz CPU 2.40GHz CPU 2.40GHz
marks size futures proc#=2(base) proc#=4(base) proc#=2(base) proc#=2(opt)

AdapInt 0-250000 5782389 7000000 8000000 17000000 19000000
FFT 2

18 262143 4096 32768 16384 65536
Fib 38 39088168 30 32 36 33

Knapsack 24 8466646 5 7 6 4
Quicksort 2

24 8384315 131072 131072 131072 524288
Raytracer pics/balls.nff 265409 32 16 32 64

Table 1. Evidence that threshold values vary widely across configurations for the same program and input. We identified these
thresholds empirically from a wide range of threshold values.

when to spawn or inline futures.
We empirically evaluate our system using a number

of Java programs, implementation approaches, and run-
time system configurations. We investigate mechanisms
that trigger automatic spawning of futures that consider es-
timates of future granularity, processor availability, and a
hybrid of both. Our results show that we are able to imple-
ment Java futures in a way that requires no programmer
intervention into the spawning decisions of futures, and
that is scalable and efficient given the available resources
and virtualized execution environment of the JVM. More-
over, our system enables efficient parallel execution of both
coarse and fine grain futures; for fine-grained futures our
system enables performance that is similar to hand-tuned,
threshold-based alternatives.

We organize the rest of the paper as follows. Section 2
describes the design and implementation details of our lazy
futures system. We then empirically compare the various
implementation alternatives and evaluate the overall effi-
cacy of our system in Sections 3 and 4. The remainder of
the paper includes related work (Section 5), and our con-
clusions (Section 6).

2 System Design and Implementation
Lazy futures is a futures implementation for Java that we
propose to support efficient execution of fine-grained fu-
tures. Our goal is to eliminate the need for programmers to
decide when, and how to spawn futures in parallel for ap-
plications with fine-grained futures. For such applications,
programmers commonly specify a computational granular-
ity that amortizes the cost of spawning a future in parallel.

In practice, this threshold is difficult and tedious to
identify, and can have a large impact on performance since
the optimal values vary significantly across applications,
inputs, available underlying hardware resources, and exe-
cution environments. To validate this claim, we empirically
identified the thresholds for optimal performance for six
benchmarks. We present these thresholds in Table 1. We
gathered results on two machines: one with four 1.60GHZ
processors, the other with two 2.40GHZ processors. On the
4-processor machine, we collected data with 2 as well as 4
processors. On the 2-processor machine, we used two dif-
ferent configurations of the same JVM. We provide specific
details of our methodology in Section 3. This data confirms
that the best thresholds vary across different configurations.

Lazy futures free the programmers from the task of thresh-
old specification, and enable the system to decide when and
how to spawn futures in parallel adaptively.

Our implementation of lazy futures is inspired by
the technique proposed by Mohr et al. [14], calledlazy
task creation (LTC). LTC initially implements all futures
as function calls. The system then maintains special data
structures for the computation of future’s parent, the caller
(called a continuation), to be spawned. When there is an
idle processor available, the idle processor steals continua-
tions from the first processor and executes code in parallel
with the future. Similar techniques are employed in many
systems to support fine-grained parallelism [16, 6, 7, 21].

Our system, although similar, is different from these
prior approaches in two ways. First, we combine informa-
tion about computation granularity with resource availabil-
ity. Prior work commonly considers only the latter, since
estimating the computation granularity at runtime is com-
plex, and can introduce significant overhead. Our imple-
mentation is, however, targeted at state-of-the-art JVMs,
which implement a low-overhead runtime profiling system
that the runtime uses to guide adaptive compilation and op-
timization [1, 15, 19, 10]. We exploit this mechanism to
estimate the computational granularity of futures.

The second unique aspect of our implementation is
that we do not employ a worker-based, specialized runtime
system for futures. Systems like LTC typically associate a
worker with each physical processor, and this worker is re-
sponsible for executing the current task, stealing tasks from
other workers, and managing the task queues. Such sys-
tems assume that futures (or special kind of tasks that the
system supports) are the only kind of parallel activity in
the system. In addition, these systems map runtime threads
directly to operating system (OS) threads. Such a setup is
not appropriate for a JVM since this would equate to map-
ping worker threads to Java threads (which are themselves
mapped to OS threads), thereby, adding an additional level
of indirection, and overhead to scheduling. Moreover, a
JVM would need to accommodate varied types of parallel
constructs specified in Java, other than futures.

In our system, we integrate future management with
the existing thread scheduling mechanism in the JVM.
When the system identifies a future to spawn on the runtime
call stack of a thread, the system splits the thread into two
– one that executes the future,and the other that performs
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Figure 1. Overview of lazy future implementation.

the continuation. Both threads are considered Java threads
by the thread scheduler. With this implementation, we take
advantage of the highly-tuned JVM thread scheduler, syn-
chronization, and load-balancing mechanisms, which sig-
nificantly simplify the implementation of futures.

2.1 Implementation overview

Figure 1 overviews our system. All shaded components
identify our extensions to the JVM. After a class is loaded
by the class loader, the method bytecodes are translated
to native code by the Just-in-time (JIT) compiler (non-
optimizing, as well as optimizing). The compiler may in-
sert instrumentation into the native code to collect profiling
information from the program that the compiler can later
use to perform optimizations.

We extend the JIT compilers to insert a small stub at
the entry point and exit point of every future call. Initially,
our system treats every future call as a function call, i.e.,the
system executes the code on the stack of the current thread.
At the same time, we maintain a small side stack for each
thread, called afuture stack (See Figure 2). Every entry in
the future stack has two words, one is the offset of a future
frame on the current stack, the other is the sample count
that holds an estimate of how long the future call has exe-
cuted. The stubs push an entry onto the future stack at the
beginning of a future call, and pop the entry when exiting
the future call. We implemented these stubs carefully in the
JIT compilers, and ensure that they are always inlined, to
avoid unnecessary overhead.

To estimate the computation granularity of futures,
we extend the existing JVM sampling system. In our pro-
totype JVM, light-weight method sampling occurs at every
thread switch (approximately every 10 ms), which incre-
ments sample counts of the top two methods on the cur-
rent stack. Methods with sample counts exceeding a certain
threshold will be identified as hot methods, and recompiled
with higher levels of optimizations. We extend this mech-
anism by also incrementing the sample counts of execut-
ing futures. These sample counts provide our system with
an estimate of how long the futures have executed. Our
scheduling system spawns futures whose sample counts ex-
ceed a particular threshold. This process avoids spawning
short-running futures – the overhead of which cannot be

amortized by the benefits from parallel execution.
The system feeds the future sample counts into thefu-

ture controller, which couples the sample counts with dy-
namic system resource information from the thread sched-
uler, e.g., the number of currently active threads and idle
processors, to adaptively make decisions about splitting fu-
tures, in order to enable additional parallelism.

If the future controller decides that it is beneficial to
split a future, it creates afutureSplitEvent that contains in-
formation about the future, such as the frame offset and
sample counts. The controller forwards the event to thefu-
ture splitter, which splits the current thread into a future
thread and a continuation thread, and places both threads
on the appropriate queue of the thread scheduler for further
execution. Note that both the future controller and future
splitter are services invoked by the current thread, when
the thread yields to enable thread switching. Therefore, we
require no additional synchronization since the system im-
plements this process on a per-thread basis.

2.2 Future splitting triggers

Ideally, we should spawn a future when there is an idle pro-
cessor. We refer to this approachidleProc triggered. In our
system, future splitting is initiated by the running thread,
and only occurs during thread switching. If a processor be-
comes idle during execution, there is a delay before a thread
detects this and makes the splitting decision. There is alsoa
small delay between when a future is spawned, and when it
is scheduled to execute. Thus, the idleProc triggered policy
may not utilize the system resource fully in some cases.

One alternative is to saturate the system with fu-
tures. To implement this policy, we maintain twice as many
threads as processors for futures that the system selects.
That is, if the sample count of a future call on stack exceeds
the threshold, and the current number of active threads is
less than twice the number of processors, the current thread
will be split to make the future call a parallel call. We refer
to this approachsampleCount triggered. This policy helps
to pre-saturate the system if enough parallelism is avail-
able, but imposes a delay for “learning” that a future is
long-running, i.e., the time it takes for the sample count
to exceed the threshold.

Therefore, we consider a hybrid approach, which we
call sample+idle triggered. Note that in all policies, since
the system performs future splitting (spawning) only at
thread switching, it automatically eliminates futures with
granularity of less than 10 ms from spawning.

2.3 Future splitter

Figure 2 overviews our process for splitting futures. In
the figure, the current thread has three future calls on its
stack. At some point, the future controller decides that it
is worthwhile to spawn the oldest future call with sample
count 10 for parallel execution. The dark line identifies the
split point on the stack. The future splitter then creates a
new thread for the continuation of the spawned future call,
copies the stack frames below the future frame, which cor-
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Figure 2. A future is lazily created.

responds to the continuation, restores the execution context
from the stack frames, and resumes the continuation thread
at the return address of the spawned future call. Note that
we choose to create a new thread for the continuation in-
stead of the spawned future, so that we do not need to setup
the execution contexts for both threads. The spawned fu-
ture call becomes the bottom frame of the current thread.
The system deletes the future stack entry so that it is no
longer treated as potential future call.

2.4 Optimizing synchronizations

If the result of a future is used by its parent, the system will
check whether or not the result is available. If it is not, the
parent blocks until the future completes. This synchroniza-
tion process can be avoided if the future is not spawned.
In this case, the result of the future is ready at the time the
future call returns to its parent, and thus, will always be
ready at its usage points. To optimize this case, we add a
onStack flag to each future object. We initialize the flag to
true and set it to false if the future splitter spawns the fu-
ture. When the result of a future is requested, if its onStack
flag is true, the system returns the result directly, otherwise,
we synchronize the process with its future execution.

3 Experimental methodology
We implemented lazy futures in the open source Jikes Re-
search Virtual Machine (JikesRVM) [9] (x86 version 2.4.2)
from IBM Research. To evaluate the efficacy of our ap-
proach, we also implemented two other alternatives to sup-
port futures in Java: one that spawns a thread for every
future and another that uses a variable-length thread pool
to execute futures. We refer to these implementations as
singleThread (ST), thread Pool (TP), respectively.

To investigate the impact of lazy futures on differ-
ent application types, we developed two sets of bench-
marks. The first set includesCrypt, MonteCarlo, Series
andSparseMatmult, which is a subset of the multithreaded
version of Java Grande Benchmark Suite [18]. These four
benchmarks are chosen because there is no mutual depen-
dency between spawned parallel tasks in these benchmarks,
which makes them suitable to be expressed by futures. The
structure of these benchmarks is similar: the main thread

spawns several futures to compute subtasks, and then it
waits for all futures to finish. The number of futures to
spawn can be specified by users on the command-line op-
tion, and is usually set to the number of processors avail-
able. This kind of applications represents coarse-grained
parallelism. The singleThread implementation is usually
sufficient to handle such applications. We use this set of
benchmarks to evaluate the overhead introduced by our
lazy future implementation.

The second set of benchmarks includesAdapInt, FFT,
Fib, Knapsack, QuickSort, Raytracer. All of the programs
employ a divide and conquer model. We adopt them from
the examples provided by the Satin system [22]. The recur-
sive nature of these benchmarks results in excessive num-
ber of futures with very different granularities. We use this
set of benchmarks to evaluate whether our lazy future im-
plementation can make effective future splitting decisions
automatically and adaptively.

We conduct our experiments on a dedicated 4-
processor box (Intel Pentium 3(Xeon) xSeries 1.6GHz,
8GB RAM, Linux 2.6.9) with hyper-threading enabled.
Thus, we report results for up to 8 processors. We ex-
ecute all benchmarks repeatedly and present the mini-
mum. For each set of experiments, we report results
for two JVM configurations respectively: one with the
non-optimizing (baseline) compiler and the other with the
highly-optimizing (opt) compiler. For the optimizing con-
figuration, we use the adaptive setting [1] which opti-
mizes frequently executed methods only. To eliminate
non-determinism, we use the pseudo-adaptive configura-
tion [2], which mimics the adaptive compiler in a determin-
istic manner by applying the optimizing compiler to code
according to an advice file that we generate offline. We in-
clude results for both JVM configurations to show how well
our future implementation identifies long-running futures.
Unoptimized futures will execute for a longer duration than
the optimized versions, and consequently, our system will
automatically adapt to the code performance and execution
environment, and make different spawning decisions.

Finally, we use a sample count of 5 as the splitting
threshold for the sampleCount policy in our results. We
selected this value empirically from a wide range of val-
ues that we experimented with. We found that this value,
across benchmarks, imposed only a small “learning” delay,
and effectively identifies futures for which the overhead of
spawning is amortized by parallel execution.

4 Results
In this section, we first evaluate the efficacy of different
future splitting triggers. Then we analyze the performance
impact of our lazy future implementation in detail for all
benchmark sets.

4.1 Comparison of Splitting Triggers

As we discussed in section 2.2, in our system, future split-
ting can be triggered by either available idle processors or
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Figure 3. Comparison of future splitting triggers.

high future sample count, or both. In this section, we com-
pare performance of all three triggers.

Figure 3 shows the execution time for all benchmarks
with different splitting triggers. We normalize the data rel-
ative toidleProc for easy comparison. The first four bench-
marks are from the JavaGrande suite, and the rest are from
our divide and conquer suite. Graph (a) shows the results
when we use the baseline compiler and graph (b) shows
results with the pseudo adaptive optimization setup.

The data indicates that for applications with few
coarse-grained futures (the first four benchmarks), thesam-
pleCount triggered policy is less effective than theidleProc
policy. This is due to the delay required to “learn” whether
a future will be short or long running by thesampleCount
policy – when there are several idle processors available.

For applications with a large number of fine-grained
futures (the remaining benchmarks), thesampleCount trig-
ger outperforms theidleProc trigger in most cases since it
helps saturate the system with qualified futures to utilize the
system better. This trend is more apparent when the base-
line compiler is used. This is because the baseline compiler
produces unoptimized code for both the system and the ap-
plication, which makes the process of detecting idle pro-
cessors, splitting and scheduling futures take longer. Thus,
pre-saturating the system using the sampleCount trigger
makes a bigger difference. In summary, by combining both
triggers, the hybridsample+idle policy achieves the best
performance among all triggers. All results in further sec-
tions use the hybrid trigger.

4.2 JavaGrande Performance

In this section, we evaluate the performance impact of our
lazy future implementation on the four JavaGrande bench-
marks. This set of benchmarks represents applications with
a small number of coarse-grained futures.

Figure 4 shows the average speedup over the sequen-
tial version of each benchmark. The x-axis is the number
of processors used. Note that the 8-processor case is ac-
tually the 4-processor case with hyper-threading. We set
the number of futures in the applications to the number of
processors used. We present three implementation alterna-
tives: one thread per future (singleThread), variable-length
thread pool (threadPool), and our lazy future implementa-
tion (lazy). Graph (a) and (b) are results for the baseline
compiler and the optimizing compiler, respectively.

The data shows that with baseline compiler, all three
implementations produce similar average performance: 1%
overhead with one processor and around 2x speedup with
two processors. When there are more processors available
and more futures created, the threadPool implementation
starts show a small improvement over the singleThread im-
plementation. Our lazy futures implementation is compet-
itive with the other alternatives, and outperforms them on
average as the processor count increases. Note that lazy
futures require a “learning time” of at least 10ms (time for
one thread switching) for each future spawned to decide if
the computation time warrants parallelization. The other
two alternatives do not require a learning time.
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Figure 4. Average speedups: JavaGrande benchmarks.
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Figure 5. Individual JavaGrande benchmark speedups
when we employ 8 processors.

To investigate these results in greater detail, we
present speedup of the individual benchmark in Figure 5
for the 8 processor data. Graph (a) and (b) are the results
with the baseline compiler and the optimizing compiler re-
spectively. This figure shows that the lazy future imple-
mentation does introduce some overhead (< 2%) for two
benchmarks (Crypt, SparseMatmult) due to the learning
delay. However, for the other two benchmarks, especially
Series, this slight splitting delay actually improves perfor-
mance significantly. We believe that in this case, the slight
slowdown of future creations of our system reduces the
contentions of system resources, such as cache conflicts,
comparing to the other alternatives.

The average speedup with 8 processors is 5.0x for
singleThread, 5.1x for threadPool, 5.9x for lazy when the
baseline compiler is used. With the optimizing compiler,
the average speedup is 4.2x forsingleThread, 4.4x for
threadPool, and 5.4x forlazy. In both configurations, our
lazy future system outperforms the other two on average.

4.3 Divide and Conquer Performance

We next evaluate the performance impact of our lazy fu-
ture implementation for the divide and conquer benchmark
suite. We compare our approach to the singleThread and
threadPool alternatives above using a hand-tuned granular-
ity threshold. We identify the best performing thresholds
experimentally for our various configurations and bench-
marks. These two alternatives represent the case where the
programmer specifies the threshold for spawning given per-
fect knowledge of the underlying system. This in practice is
not feasible for all inputs, operating and runtime systems,
and processor configurations, and it introduces a tremen-
dous burden on the programmer. Our lazy future system
requires only that the programmer specify which code re-
gions can execute in parallel. Comparing our lazy future
system to the singleThread and threadPool with the best,
hand-tuned thresholds indicates the degree to which our
system makes the appropriate spawning decisions.

We consider an additional configuration in our result
set for these benchmarks. Using the current Java Concur-
rency Utilities [11], the system will create a future object
for each future regardless of whether it is executed inlined
or in parallel. In the hand-tuned alternatives, we do not cre-
ate future objects if the future computational granularityis
below the threshold. To investigate and report the overhead
of this object allocation and to show the overhead inherent
in doing so, we also include configurations of the hand-
tuned alternatives that create future objects forall future
instances even those that are below the threshold; however,
we only spawn those above the threshold.

Figure 6 shows the average speedup over the sequen-
tial version for our divide and conquer benchmarks (fine-
grain parallelism). The x-axis is the number of proces-
sors that we used for each experiment. The first two bars
are results for the singleThread (ST) implementation with
hand-tuned (HT-) thresholds, the middle two bars are re-
sults for the threadPool (TP) implementation with hand-
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Figure 6. Average speedups: Divide and conquer bench-
marks.

tuned (HT-) thresholds. The last two bars are results for the
lazy (LAZY) implementation, without and with optimizing
synchronizations (-OPT) (Section 2.4). We use “-WO” to
identify the configurations that we create wrapper objects
for all future instances for the hand-tuned alternatives.

The data indicates that the overall speedup for this
benchmark set is less than that of the JavaGrande bench-
marks due to the fine-grained nature of these programs.
Our lazy future implementation produces comparable, in
some case better, performance than the hand-tuned thresh-
olds – when we exclude the overhead of object allocation
(HT-ST-WO and HT-TP-WO). The better performance is
due to the fact that thresholds specified by programmers
are static, and thus do not adapt to resource availability as
our lazy future implementation does.

The differences between HT-ST-WO and HT-ST, or
HT-TP-WO and HT-TP show that the extra unnecessary
object allocation has significant performance impact on ap-
plications with fine-grained futures, although an optimiz-
ing compiler reduces the differences to some degrees (see
Figure 6(b)). These differences imply that there is a large
potential performance gain for our lazy futures implemen-
tation if the system is able to avoid creating future objects
for future calls executed inlined. To achieve this, we be-
lieve that the language constructs ([17, 3]) as opposed to li-
brary constructs (e.g., the Java Future API) will provide the
JVM more flexibility and opportunities of optimizations,
and thus, enable more efficient support of fine-grained fu-
tures. We plan to investigate this hypothesis in depth in our
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Figure 7. Individual divide and conquer benchmark
speedups for 4 processors.

future work.

Since these benchmarks almost always saturate the
system with a large number of futures, hyper-threading
does not help to improve the performance. Therefore, we
show individual speedups with 4 processors for this set of
benchmarks in Figure 7 to enable a more detailed analysis.
This figure shows as more futures are created (more than
5 million for four benchmarks, see the second column of
Table 1), the larger is the difference between HT-ST and
HT-ST-WO. The Fib benchmark represents the worst case
by creating almost 40 million futures object. The optimiz-
ing compiler is able to reduce the overhead primarily by
inlining object allocation and initialization; however, the
overhead is still significant.

Finally, to show the frequency of future spawning, we
present Table 2. The table lists the number of Java threads
created by each implementation alternatives with 4 proces-
sors. Since the “-WO” configurations have same thread
number as its corresponding non-WO version and LAZY
and LAZY-OPT also have similar counts, we only show
numbers for HT-ST, HT-TP, and LAZY. “base” stands for
the baseline compiler, and “opt” stands for the optimiz-
ing compiler. Note that each configuration has different
threshold, so the specific values are incomparable. Instead,
the data shows the efficacy of our lazy future system by
comparing the thread number created by the LAZY imple-



Bench- HT-ST HT-TP LAZY
marks base opt base opt base opt

AdapInt 227 230 70 62 52 42
FFT 18 29 14 26 43 36
Fib 31 29 158 17 66 50

Knapsack 137 44 77 144 105 29
Quicksort 150 77 103 55 103 76
Raytracer 266 29 30 20 100 48

Table 2. Number of Java threads spawned.

mentation to the number of futures created by these appli-
cations (see the second column of Table 1). In summary,
our lazy future system is able to make intelligent future
inlining/spawning decisions automatically and adaptively,
based on dynamic information of system resource avail-
ability and future granularity.

5 Related Work
Load-based inlining [13] was the first approach proposed
to address the fine-grained future problem. The idea is to
make spawning decision at the creation time based on the
system load. A future is computed parallelly if there is
enough available resource. Otherwise, it is inlined. One
major drawback of this approach is that the decision is not
revocable: once a future is inlined, it cannot be parallelized
anymore. Task starvation may occur due to imbalance work
load and bursty task creation.

Lazy task creation (LTC) [14] is a more elaborate
scheme to support fine-grained futures. In this approach,
all futures are initially evaluated like a sequential call.But
the system maintains minimum information to spawn the
continuations of futures retroactively if a future is blocked,
or a computation resource becomes available. This prin-
ciple of sequential first, parallel retroactively if necessary,
can be found in many systems that target fine-grained par-
allelism [16, 7, 6, 20], each with its own contexts and re-
finements. Our system follows the laziness principle as
well. However, we believe that our system is the first
effort to support fine-grained futures in a Java Virtual Ma-
chine. Our system is built upon the general thread schedul-
ing system in the JVM and is incorporated with the sam-
pling system which was previously used for dynamic com-
pilation solely. This enables our system to exploit both sys-
tem resource availability and futures’ computation granu-
larity while making inline decisions. While in the previous
system, splitting is triggered only by a blocked task or an
idle processor. The task granularity is not monitored and
considered.

Another effort to support fine-grained futures is called
leapfrogging [23]. Leapfrogging is a workcrew-style im-
plementation. A task object is created for a future invoca-
tion and is put into a task pool. A worker takes a task from
the pool and works on them one by one. When a worker
is blocked due to some unfinished future, it steals a task
that the current task is dependent on and starts to execute
the stolen task on top of the current stack. Leapfrogging

can be expressed in C’s stack frame management mecha-
nism, and thus, it is easier to implement and more portable
comparing to LTC. Comparing to our approach, however,
it does not consider the granularity of futures, and it has the
queue management overhead introduced by its workcrew-
style implementation.

There are several previous works related to our syn-
chronization optimization. For example, in [6], there are
two clones of each procedure: a fast clone used while the
procedure is invoked locally and a slow clone that is used
while the procedure is stolen by another processor. In the
fast clone, allsync operations are translated tonoop to
avoid unnecessary synchronization. Our system is slightly
different in that we do not keep two clones of a method.
Instead, we use theonStack flag which is set dynamically
by the future splitter to eliminate unnecessary synchroniza-
tion. In [5], static analysis is used to eliminate redundant
touch operations for futures, which is complementary to
our dynamic approach.

Profiling has been used to choose the best parame-
ters of parallel optimizations [4] or the optimal number of
threads to use given available system resources [12], etc.
In most of these systems, it is assumed that one computa-
tion will be invoked repeatedly and the execution will last
for a long time. Therefore the system can use several ini-
tial runs for learning before making a decision. Our system,
however, targets at fine-grained futures, most of which have
very short execution time, and usually are not invoked re-
peatedly. Thus, we use sampling to monitor how long a
future has been executed, and to make splitting decision
for the current future, instead of its later invocation. We
plan to investigate the possibility of exploiting profilingfor
repeatedly invoked computation as part of future work.

Safe futures proposed in [24] enforce the semantic
transparency of futures automatically using object version-
ing and task revocation so that programmers are freed from
reasoning about the side-effects of future executions to en-
sure correctness of programs. This is complementary to our
system and we plan to investigate the performance impact
of lazy futures in combination with safe futures as part of
future work.

The concept of futures is also employed in distributed
environments to optimize task scheduling [8]. Data futures
are created to refer to data products that have not yet been
created. Their system is similar to our system in the sense
of dynamic future scheduling based on cost/benefit estima-
tion. But it is at a much more coarse-grained level with
different cost/benefit tradeoffs.

6 Conclusions
As multi-core systems become ubiquitous, we increasingly
require programming language constructs that ease paral-
lel programming for developers.Futures [17] are one such
construct that programmers can use to identify potentially
asynchronous computation that can be executed in paral-
lel. Recently, futures have been made available in modern,
high-level languages such as Java [11]. However, to ensure



wide-spread use of futures, their implementation must en-
able efficient and scalable parallel program execution. In
addition, avoiding the need for user participation in the de-
cision about when to spawn futures in parallel, and when to
execute them sequentially, is critical.

In this paper, we investigate an efficient implementa-
tion of futures for Java that automatically, and adaptively
decides when and how to spawn futures. Our implemen-
tation is the first JVM runtime implementation of futures
that couples estimates of future computational granularity
(gathered by a low overhead JVM program sampling in-
frastructure) with underlying resource availability. We
refer to our implementation as lazy futures. We empiri-
cally evaluate lazy futures using a wide-range of bench-
marks, triggers for automatic spawning of futures, proces-
sor counts, and JVM configurations. We show that we are
able to implement futures for Java in a way that requires
no programmer intervention into the spawning decisions of
futures and that is scalable and efficient (i.e., comparableto
hand-tuned alternatives) for use with fine-grained futuresin
Java programs.
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