
More E�cient Object Serialization

Michael Philippsen and Bernhard Haumacher

University of Karlsruhe, Germany
phlipp@ira.uka.de and hauma@ira.uka.de

http://wwwipd.ira.uka.de/JavaParty/

Abstract. In current Java implementations, Remote Method Invoca-
tion is too slow for high performance computing. Since Java's object
serialization often takes 25%{50% of the time needed for a remote in-
vocation, an essential step towards a fast RMI is to reduce the cost of
serialization.
The paper presents a more e�cient object serialization in detail and
discusses several show-stoppers we have identi�ed in Sun's o�cial se-
rialization design and implementation. We demonstrate that for high
performance computing some of the o�cial serialization's generality can
and should be traded for speed. Our serialization is written in Java, can
be used as a drop-in replacement, and reduces the serialization overhead
by 81% to 97%.

1 Introduction

From the activities of the Java Grande Forum [2, 9] and from early compar-
ative studies [1] it is obvious that there is growing interest in using Java for
high-performance applications. Among other needs, these applications frequently
demand a parallel computing infrastructure. Although Java o�ers appropriate
mechanisms to implement Internet scale client/server applications, Java's remote
method invocation (RMI) is too slow for environments with low latency and high
bandwidth networks, e.g., clusters of workstations, IBM SP/2, and SGI Origin.
Explicit socket communication { the only reasonable alternative to RMI { is not
object-oriented, too low level, and too error-prone to be seriously considered by
a broad user community.

Since Java's current object serialization often takes at least 25% and up to
50% of the time needed for a remote invocation, an essential step towards a fast
RMI is to reduce the cost of serialization as far as possible.

1.1 Basics of Object Serialization

Object serialization [8] is a signi�cant functionality needed by Java's RMI imple-
mentation. When a method is called from a remote JVM, method arguments are
either passed by reference or by copy. For objects and primitive type values that
are passed by copy, object serialization is needed: The objects are turned into
a byte array representation, including all their primitive type instance variables



and including the complete graph of objects to which all their non-primitive in-
stance variables refer. This wire format is unpacked at the recipient and turned
back into a deep copy of the graph of argument objects. The serialization can
copy even cyclic graphs from the caller's JVM to the callee's JVM; the serializa-
tion keeps and monitors a hash-table of objects that have already been packed
to avoid repetition and in�nite loops. For every single remote method invoca-
tion, this table has to be reset, since part of the objects' state might have been
modi�ed.

In general, programmers do not implement marshaling and unmarshaling.
Instead, they rely on Java's reection mechanisms (dynamic type introspection)
to automatically derive an appropriate byte array representation. However, pro-
grammers can provide routines (writeObject or writeExternal) that do more
speci�c operations. These routines are invoked by the serialization mechanism
instead of introspection. Similar routines must be provided for the recipient.

From the method declaration, the target JVM of a remote invocation knows
the declared types of all objects expected as arguments. However, the concrete
type of individual arguments can be any subtype thereof. Hence, the byte stream
representation needs to be augmented with type information.

Any implementation of remote method invocation that passes objects by
value will have to implement the above functionality.

In the remainder of this paper, the term \serialization" refers to the function-
ality of writing and reading byte array representations in general. The o�cial
implementation of serialization that is available in the JDK is called \JDK-
serialization". Our implementation is called \UKA-serialization".

1.2 Cost of JDK-Serialization

We have done measurements demonstrating that Java's current object serializa-
tion takes 25%{50% of the cost of a remote method invocation.

�s per object 32 int 4 int, 2 null tree(15)

RMI ping(obj) 4620 100% 3220 100% 6170 100%
Socket send(obj) 3290 71% 1820 56% 4720 76%
Serialize(obj) 1756 38% 765 24% 3081 50%

Table 1. Ping times (�s) of RMI (=100%), socket communication, and just JDK-
serialization. The argument object obj has either 32 int values, 4 int values plus 2
null pointers, or it is a balanced binary tree of 15 objects each of which holds 4 ints.

On two Suns (300 MHz Sun Ultra 10 (Sparcs IIi), running Solaris 2.6) we
have used JDK 1.2beta3 (JIT enabled) on some RMI benchmarks.1 Table 1 gives

1 The JDK-serialization o�ers two wire protocols. Although protocol 2 is default, RMI
uses protocol 1 because it is slightly faster. Our comparisons use protocol 1 as well.



the results. For three di�erent types of objects we measured the time of a remote
invocation of void ping(obj). In addition, we have taken the time needed for
the communication over existing Java socket connections. This includes serial-
ization. Finally, we measured the time needed for the JDK-serialization of the
argument. It can easily be seen that the serialization takes at least 25% of the
time. The cost of serialization grows with growing object structures up to 50% in
our measurements. Benchmarks conducted by the Manta team [11] show similar
results.

1.3 Organization of this paper

The rest of the paper is organized as follows. Section 2 summarizes the related
work. Section 3 looks at speci�c performance problems of the JDK-serialization
and discusses benchmark results that quantify them. Section 4 sketches the de-
sign of the UKA-serialization, our more e�cient drop-in replacement for the
JDK-serialization. In section 5 we give a detailed performance analysis of the
UKA-serialization.

2 Related Work

Some groups have published their ideas on improving the JDK-serialization.

{ At Illinois University, an improved remote method invocation has been im-
plemented that is based on an alternative object serialization, see [10]. The
authors experimented with explicit routines to write and read an object's
instance variables.
In our work, we use explicit routines as well but show that close interaction
with the bu�er management can further improve the performance.

{ Henri Bal's group at Amsterdam is currently working on the compiler project
Manta [11]. Manta has an e�cient remote method invocation (35 �s for a re-
mote null invocation, i.e., without serialization) on a cluster of workstations
connected by Myrinet. To achieve this result, Manta compiles a subset of
Java to native code. The implementation of serialization involves the auto-
matic generation of marshaling routines which avoid dynamic inspection of
the object structure and make use of the fact that Manta knows the layout
of the objects in memory. The paper does not mention performance numbers
on serialization of general objects, i.e., graphs.
Similar to this work, we use explicit marshaling routines and recommend
that the JNI (Java native interface) exploits its knowledge of memory lay-
out. However, our work sticks to Java, avoids native code, and can handle
polymorphism and subtyping in arguments.

{ There are other approaches to Java computing on clusters, where object
serialization is not an issue. For example, in Java/DSM [12] a JVM is imple-
mented on top of Treadmarks [4]. Since no explicit communication is neces-
sary and because all communication is handled by the underlying DSM, no
serialization is necessary.



However, although this approach has the conceptual advantage of being
transparent, there are no performance numbers available to us.

{ An orthogonal approach is to avoid object serialization by means of object
caching. Objects that are not sent will not cause any serialization overhead.
See [5] for the discussion of a prototype implementation of this idea and
some performance numbers.

Whereas the impact of serialization performance on Grande applications is obvi-
ous, object serialization will as well become relevant for the Corba world in the
future. While Corba currently cannot pass objects by copy, OMG [6] is work-
ing with Sun and others to add value classes. Future versions of IIOP (Internet
inter-ORB protocol) are likely to apply object serialization techniques [7].

In addition to parallel computing, object serialization is a critical issue in
the area of persistent object storage. Since in that area the life time of objects
is much longer than in high-performance computing, object recovery needs to
be feasible even from newer versions of the JDK and from programs that do not
have access to the appropriate ByteCode �les. Therefore, this area needs other
optimization strategies than the ones discussed below.

3 Improving JDK-Serialization Performance

The JDK-serialization has mainly been designed to implement persistent objects
and to send and receive objects in typical client-server applications. These goals
have strongly inuenced some design and implementation decisions.

3.1 Explicit Marshaling instead of Reection

For regular users of object serialization, it is a nice feature that the JDK o�ers
general code that can do the marshaling and unmarshaling automatically by
dynamic inspection of the object. For high performance computing however,
better performance can be achieved.

Explicit marshaling is much faster when JDK-serialization is used, as a com-
parison of the full bars from Figure 1 (� 346 �s and � 1410 �s) and Figure 2
(� 120 �s and � 490 �s) shows. In Figure 1, dynamic type introspection is used,
whereas in Figure 2, the programmer has provided explicit marshaling and un-
marshaling routines. Explicit marshaling is still much faster when all applicable
optimization of the UKA-serialization are switched on, as a comparison of sizes
of the white boxes show.

The following sections 3.2 to 3.4 will discuss the patterned areas of the bars of
Figure 2. The UKA-serialization can avoid all of them and even achieves better
latency hiding.

3.2 Slim Encoding of Type Information

Persistent objects that have been stored to disk must be readable even if the
ByteCode that was originally used to instantiate the object is no longer available.



Standard Marshaling by Means of 
Dynamic Type Inspection

0

200

400

600

800

1000

1200

1400

1600

Write Read

µs
/O

bj
ec

t

Slim type information (section 3.2)

UKA serialization

The bars show the times needed
by the JDK-serialization to
write/read an object with 32 int

values by means of dynamic type
introspection.

By switching to a slim type
encoding, the UKA-serialization
can save the time shown as
patterned area. Moreover, with
UKA-serialization writing and
reading take about the same time.

Fig. 1. JDK-serialization with dynamic type inspection and the e�ect of all applicable
optimizations of the UKA-serialization.

For example, a new version of the class might have a di�erent layout of its
instance variables. To cope with these situations, the complete type description
is included in the stream of bytes that represents the state of an object being
serialized.

For parallel Java programs on clusters of workstations and DMPs this is not
required. The life time of all objects is shorter than the runtime of the job. When
objects are being communicated it is safe to assume that all nodes have access
to the same ByteCode, for example through a common �le system. Hence, there
is no need to completely encode and decode the type information in the byte
stream and to transmit that information over the network.

The UKA-serialization uses a textual encoding of class names and package
pre�xes. Even shorter representations are possible. Simplifying type information
has improved the performance of serialization signi�cantly. See the patterned
areas of the bars of Figures 1 and 2 that are marked 3.2.

3.3 Two types of Reset

To achieve copy semantics, every new method invocation has to start with a
fresh hash-table so that objects that have been transmitted earlier will be re-
transmitted with their current state.2 The current RMI implementation achieves

2 As we have mentioned in the Related Work section, caching techniques could be used
to often avoid retransmission of objects whose states have not changed.



Explicit Marshaling Routine

0

200

400

600

Write Read

µs
/O

bj
ec

t

Slim type information (section 3.2)
Internal buffering (section 3.4a)
Buffer accessibility (section 3.4b)
Keeping type information on reset (section 3.3)
UKA serialization

The full bars show the times
needed by the JDK-serialization
to write/read an object with 32
int values with explicit marshaling
routines.

The patterned areas show the
individual savings due to the opti-
mizations discussed in sections 3.2
to 3.4. Slim type encoding has
more e�ect when dynamic type
inspection is used (see Figure 1);
but techniques 3.3 and 3.4 can only
be used with explicit marshaling.

By switching on all optimiza-
tions in the UKA-serialization,
only the times of the lower white
boxes remain. These are much
smaller than what can be achieved
with dynamic type inspection.

Fig. 2. JDK-serialization with explicit marshaling and the e�ect of all applicable op-
timizations of the UKA-serialization.

that e�ect by creating a new JDK-serialization object for every method invoca-
tion. An alternative implementation could probably call the serialization's reset
method instead.

The problem with both approaches is that they not only clear the information
on objects that have already been transmitted. But in addition, they clear all
the information on types.

To alleviate this problem, the UKA-serialization o�ers a new reset routine
that only clears the object hash-table but leaves the information on types un-
changed. The dotted area of the bars of Figure 2 that are marked with 3.3 show
how much improvement the UKA-serialization can achieve by providing a second
reset routine. (Unfortunately, the current o�cial RMI implementation does not
use it.)

3.4 Better Bu�ering

The JDK-serialization has two problems with respect to bu�ering.

a) External versus Internal Bu�ering. On the side of the recipient, the
JDK-serialization does not implement bu�ering strategies itself. Instead,
it uses bu�ered stream implementations (on top of TCP/IP sockets). The
stream's bu�ering is general and does not know anything about the byte



representation of objects. Hence, its bu�ering is not driven by the number
of bytes that are needed to marshal an object.
The UKA-serialization handles the bu�ering internally and can therefore ex-
ploit knowledge about an object's wire representation. The optimized bu�er-
ing strategy reads all bytes of an object at once.

b) Private versus Public Bu�ers. Because of the external bu�ering used by
the JDK-serialization, programmers cannot directly write into these bu�ers.
Instead, they are required to use special write routines.
UKA-serialization on the other hand implements the necessary bu�ering
itself. Hence, there is no longer a need for this additional layer of method
invocations. By making the bu�er public, explicit marshaling routines can
write their data immediately into the bu�er. Here, we trade the modularity
of the original design for improved speed.
Because it is cumbersome to deal with bu�er overow conditions in the
explicit marshaling routines, we are working on a tool that automatically
generates proper routines.

The patterned area marked 3.4a in Figure 2 shows the e�ect of external bu�ering.
The patterned area marked 3.4b indicate the additional gain that can be achieved
by having the explicit marshaling routines write to and read from the bu�er
directly.

3.5 Reection Enhancements

Although we haven't implemented it in the UKA-serialization because of our
pure-Java approach, some benchmarks clearly indicate that the JNI (Java native
interface) should be extended to provide a routine that can copy all primitive-
type instance variables of an object into a bu�er at once with a single method
call. For example, class Class could be extended to return an object of a new
class ClassInfo:

ClassInfo getClassInfo(Field[] fields);

The object of type ClassInfo then provides two routines that do the copying
to/from the communication bu�er.

int toByteArray(Object obj, int objectoffset,

byte[] buffer, int bufferoffset);

int fromByteArray(Object obj, int objectoffset,

byte[] buffer, int bufferoffset);

The �rst routine copies the bytes that represent all the instance variables into the
communication bu�er (ideally on the network interface board), starting at the
given bu�er o�set. The �rst objectoffset bytes are left out. The routine returns
the number of bytes that have actually been copied. Hence, if the communication
bu�er is too small to hold all bytes, the routine must be called again, with
modi�ed o�sets.

Some experiments indicate that the e�ect of accessible bu�ers, see Fig-
ure 2(3.4a), would increase if such routines were made available in the JNI.



3.6 Handling of Floats and Doubles

In scienti�c applications, oats and arrays of oats are used frequently (the same
holds for doubles). It is essential that these data types are packed and unpacked
e�ciently.

The conversion of these primitive data types into a machine-independent byte
representation is (on most machines) a matter of a type cast. However, in the
JDK-serialization, the type cast is implemented in a native method called via JNI
(Float.floatToIntBits(float)) and hence requires various time consuming
operations for check-pointing and state recovery upon JNI entry and JNI exit.
We therefore recommend that JIT-builders inline this method and avoid crossing
the JNI barrier.

:ULWH REMHFWV ZLWK IORDW DUUD\V

�

����

����

����

����

�����

� ��� ��� ��� ��� ����

�IORDWV�DUUD\

WL
P
H�
R
E
MH
FW

��
V�

IORDW>@ ZULWH

IORDW>@�QDWLYH ZULWH

5HDG REMHFWV ZLWK IORDW DUUD\V

�

����

����

����

����

�����

� ��� ��� ��� ��� ����

�IORDWV�DUUD\

WL
P
H�
R
E
MH
FW

��
V�

IORDW>@ UHDG

IORDW>@�QDWLYH UHDG

Fig. 3. Serialization of oat arrays (same benchmark setup).



Moreover, the JDK-serialization of oat arrays (and double arrays) currently
invokes the above-mentioned JNI-routine for every single array element. We have
implemented fast native handling of whole arrays with dramatic improvements,
as shown in Figure 3. This, however, cannot be done in pure Java and is left for
JVM vendors to �x.

4 Design

An important characteristic of the UKA-serialization is that it only improves
the performance for objects that are equipped with explicit marshaling and
unmarshaling routines discussed in section 3. We call these objects UKA-aware
objects. For UKA-unaware objects, the UKA-serialization does not help. Instead,
standard JDK-serialization is used. Therefore, the JDK-serialization code must {
in some way or another { still be present in any design of the UKA-serialization.

In the sections below, we discuss in a increasingly detailed way why straight-
forward approaches fail and why subclassing the JDK-serialization imposes ma-
jor problems. Section 4.5 then shows a design that works.

4.1 CLASSPATH approach fails

The necessary availability of standard JDK-serialization code rules out a design
that is based on CLASSPATH modi�cations.

The straightforward approach to develop a drop-in replacement for the JDK-
serialization is to implement all the improvements directly in a copy of the exist-
ing serialization classes (java.io.ObjectOutputStream and ...InputStream).
The resulting classes must then shadow the JDK classes in the CLASSPATH so
that the original classes will no longer be loaded.

The advantage of this approach is that existing code that uses serialization
functionality need not be changed in any way. By simply modifying the CLASS-
PATH, one can switch from the JDK-serialization to a drop-in serialization.

The disadvantage of this approach is that it is not maintainable. Unfortu-
nately, the source code of the JDK-serialization keeps changing signi�cantly from
version to version and even from beta release to beta release. Keeping the drop-in
implementation current and re-implementing all the improvements in a changing
code base is quite a lot of work, especially since existing JDK-serialization needs
to survive.

Another straightforward CLASSPATH approach fails: it is impossible to sim-
ply rename the JDK-serialization classes and put UKA-classes with the original
names into the CLASSPATH. This idea does not work, since the renamed classes
can no longer access some native routines because the JNI encodes class names
into the names of native methods.

Since for early versions of the UKA-serialization we have su�ered under quick
release turn-over we decided that the maintainability problem is more signi�cant
than the advantages gained by this approach. Therefore, UKA-serialization is
designed as subclasses of JDK-serialization classes.



4.2 Consequences of Subclassing the JDK-Serialization

Designing the UKA-serialization by subclassing the JDK-serialization causes two
general disadvantages.

First, existing code that uses serialization functionality has to be modi�ed
in two ways: (a) the UKA-subclass needs to be instantiated wherever a JDK-
parent-class has been created before. Additionally (b), every existing user-de�ned
subclass of a JDK-class needs to become a subclass of the corresponding UKA-
class, i.e., the UKA-classes need to be properly inserted into the inheritance
hierarchy. These modi�cations are su�cient since the UKA-serialization objects
are type compatible with the standard ones due to the subclass relationship.

Even if the source of existing code is not available, the class �les can be
retro�tted to work with the UKA-serialization. Our retro�tting tool modi�es
the class �le's constant table accordingly. After retro�tting, a precompiled class
creates instances of the new serialization instead of the original one.

Using the retro�tting trick we were able to use the UKA-serialization in
combination with RMI although most of the RMI source code is not part of the
JDK distribution.3

The second general disadvantage is that the security manager must be set
to allow object serialization by a subclass implementation. There is no way to
avoid a check by the security manager because it is done in the constructor of
JDK's ObjectOutputStream.

For using the UKA-serialization from RMI, this is not a big problem, since
the RMI security manager allows serialization by subclasses anyway.

4.3 Problems when Subclassing the JDK-serialization

Unfortunately, after subclassing the JDK-serialization, the standard implemen-
tation can no longer be used. This is due to a very restrictive design that prevents
reuse.

Since writeObject is �nal in ObjectOutputStream it cannot be overridden
in a subclass. The API provides an alternative, namely a hook method called
writeObjectOverride that is transparently invoked in case a private boolean
ag (enableSubclassImplementation ) is set to true. This ag is true only if the
parameter-less standard constructor of the JDK-serialization is used for creation,
i.e., only if the serialization is implemented in a subclass. The standard construc-
tor however does (intentionally) not properly initialize ObjectOutputStream's
data structures and thus prevents using the original serialization implementa-
tion.4

There are two approaches to cope with that problem. The �rst approach uses
delegation in addition to subclassing. Although the existing code of the JDK-
serialization is not touched, the necessary code gets quite complicated. Moreover,

3 Only three RMI classes needed retro�tting, namely java.rmi.MarshalledObject,
sun.rmi.server.MarshalInputStream, and ...MarshalOutputStream.

4 The reason for this design is that it allows the security manager to check permissions.
However, the same checks could be done with other designs as well.



for certain constellations of instanceof-usage this approach does not work at
all. See section 4.4 for the details.

The implementation of the UKA-serialization does not use the delegation
approach. Instead we moderately and maintainably changed the existing JDK-
serialization classes to enable reuse. This is more \dirty" but results in a cleaner
overall design. See section 4.5.

4.4 Subclassing plus Delegation

The only way out without touching the implementation of the JDK-serialization
is to allocate an additional ObjectOutputStream delegate object within the
UKA-serialization. Its writeObject() method is invoked whenever a UKA-
unaware object is serialized. Since the delegate object can be created lazily,
it does not introduce any overhead unless UKA-unaware objects are serialized.

Subclassing plus delegation has two disadvantages. First, it is not as sim-
ple as it appears. But more importantly, it does not work correctly under all
circumstances.

With respect to simplicity it must be noted, that for the delegate object an-
other subclass of the JDK-serialization is needed for cases where existing code
itself is using subclasses of the JDK-serialization. (RMI for example does it.) In
addition to the hook method mentioned above, the JDK-serialization has sev-
eral other dummy routines which can be overridden in subclasses. Therefore, if
a standard JDK-serialization stream would be used as delegate, it's dummy rou-
tines would be called instead of the user-provided implementations. To solve this
problem, the delegate is a subclass of the JDK-serialization and provides imple-
mentations for all methods that can be overridden in the JDK-implementation.
The purpose of the additional methods is to forward the call back to the UKA-
serialization and hence to the implementation provided by the user's subclass.

There is no guarantee, that subclassing plus delegation works correct in
cases where existing code itself is using subclasses of the JDK-serialization and
where UKA-unaware objects provide explicit marshaling routines that use the
instanceof operator to �nd out the speci�c type of a current serialization ob-
ject. (RMI for example does it.) Since the objects are UKA-unaware they are
handled by the delegate. Therefore, the instanceof operator does no longer
signal type compatibility to the serialization subclasses provided by the code.

Since RMI does exactly this (there are subclasses of the JDK-serialization,
and the code uses explicit marshaling routines that check the type of a serial-
ization stream object), subclassing plus delegation does not work correctly with
RMI. Especially painful are problems with the distributed garbage collector that
are hard to track down due to their indeterministic nature. (However, subclass-
ing plus delegation does work correctly with \well-behaved" users of serialization
functionality.)



4.5 Subclassing plus Source Modi�cation

We now present an approach that works. Being based on subclassing the JDK-
serialization, it has the general disadvantages discussed in section 4.2.

The idea is to moderately modify the source code of existing JDK-serial-
ization classes to enable reusing the existing functionality from subclasses. The
modi�cation is kept small enough to not a�ect maintainability.

Three simple changes are su�cient in every JDK release: First, the code of
ObjectOutputStream's regular constructor is copied into an additional initial-
ization method init(OutputStream). Second, to switch between the subclass
and the standard serialization, the access modi�er of the above-mentioned ag
enableSubclassImplementation is relaxed from private to protected.5 And
third, the final modi�er of writeObject(Object) is removed to override the
method directly and to save an unnecessary call of the hook method.

Since these modi�cations are simple they can easily be applied to updated
versions of the JDK without too much thought. Because no additional serializa-
tion object is introduced, the UKA-serialization works �ne, even with RMI.

We hope that Sun will incorporate the ideas of the UKA-serialization in
future releases of the JDK so that this \dirty" source code modi�cation will not
be necessary for ever.

5 Results

We have designed the UKA-serialization according to the approach sketched in
section 4.5. The implementation includes the optimizations that are discussed
in sections 3.1 to 3.4. Further optimizations would need help from the JVM
vendors.

5.1 Improvement of Serialization

Section 3 has discussed the individual problems of the JDK-serialization and has
provided solutions. Because of all the details, the quantitative result might have
passed unnoticed.

Instead of 1410 �s for reading (JDK-serialization of a certain type of object
by means of dynamic type inspection) the UKA-serialization takes just 39 �s,
which amounts to an improvement of about 97%. For writing, the improvement is
in the order of 90%. See the bold line of Table 2. Similar improvements occur for
di�erent types of objects. The second column of Table 2 shows the measurements
(in �s) for an object with four ints and two null pointers. The last column
presents the measurements for a balanced binary tree of 15 objects each of

5 Javasoft recently released a beta version of RMI-IIOP. This software uses an extended
serialization that is compatible with Corba's IIOP. This extension faces the same
problems as ours. But instead of modifying the access modi�er, the authors provide
a native library routine to toggle the ag. We consider this to be even more \dirty"
than our approach since it is no longer platform independent.



which holds four ints. Note that reading and writing now often take about
the same time and therefore allow for balanced overlapping and hence better
object transfer times. Overlapping is only relevant for large object graphs that
are sent in several packets.

32 int 4 int, 2 null tree(15)
�s per object

w r w r w r

JDK serialization 346 1410 169 596 1192 1889
UKA-serialization 35 39 19 28 201 354

improvement % 90 97 89 95 83 81

explicit marshaling 228 920 81 308 396 647
slim type encoding 19 187 16 159 72 213
internal bu�ering 0 159 6 19 0 330
bu�er accessibility 48 65 30 49 502 291
two types of reset 16 40 17 33 21 54

Table 2. Improvements for several types of objects.

While for at objects about 90% or more of the serialization overhead can be
avoided, for the tree of objects the improvement is in the range of 80%. This is
due to the fact that the work needed to deal with potential cycles in the graph
of objects cannot be reduced signi�cantly.

The lower half of the table shows the contributions of the individual improve-
ment techniques.

5.2 Improvement of RMI

To use the UKA-serialization with RMI, we have applied the retro�tting tool to
Sun's RMI class �les. Wherever a regular ObjectOutputStream has been created
in the original code, the upgraded versions used the corresponding UKA-objects.
Due to latency hiding e�ects the improvement (36%{51%) is even better than
expected. See Table 3.

�s per object 32 int 4 int, 2 null tree(15)

RMI ping(obj) 4193 100% 2890 100% 5330 100%
Socket send(obj) 2790 67% 1541 53% 3990 75%
Serialize(obj) 1756 42% 765 26% 3081 58%

RMI with UKA 2043 1840 2900 %
improvement % 51 % 36 % 46 %

Table 3. Ping times (�s) of RMI, socket communication, and JDK-serialization.



6 Conclusion

The UKA-serialization demonstrates that it is possible to implement object se-
rialization in Java with improved performance by at least a factor 5. Some ad-
ditional help from the JVM vendors could speed things up even further. The
UKA-serialization which is pure Java and freely available [3] can be used as a
drop-in replacement for the JDK-serialization. A retro�tting tool is provided that
upgrades existing class �les to work with the UKA-serialization classes. When
used with RMI, our synthetic benchmarks improve by 36% to 51%. Benchmark
results with full applications will follow.

In the future, we will work on a tool that automatically generates the explicit
marshaling routines that right now must be provided by hand. Moreover, we are
attacking the remaining cost of a remote method invocation by using high speed
networks and by optimizing the RMI layer.

Acknowledgments

We would like to thank the JavaParty team. Matthias Jacob did excellent work
on the performance comparison (Java versus Fortran) on a geophysics applica-
tion. Christian Nester and Matthias Gimbel su�ered through the beta-testing.
The Java Grande Forum and Siamak Hassanzadeh from Sun Microsystems pro-
vided the opportunity and some �nancial support to �nd and discuss shortcom-
ings of the JDK-serialization.

References

1. Matthias Jacob, Michael Philippsen, and Martin Karrenbach. Large-scale parallel
geophysical algorithms in Java: A feasibility study. Concurrency: Practice and
Experience, 10(11{13):1143{1154, September{November 1998.

2. Java Grande Forum. http://www.javagrande.org.
3. JavaParty. http://wwwipd.ira.uka.de/JavaParty/.
4. P. Keleher, A. L. Cox, and W. Zwaenepoel. Treadmarks: Distributed shared mem-

ory on standard workstations and operating systems. In Proc. 1994 Winter Usenix
Conf., pages 115{131, January 1994.

5. Vijaykumar Krishnaswamy, Dan Walther, Sumeer Bhola, Ethendranath Bomma-
iah, George Riley, Brad Topol, and Mustaque Ahamad. E�cient implementations
of Java Remote Method Invocation (RMI). In Proc. of the 4th USENIX Conference
on Object-Oriented Technologies and Systems (COOTS'98), 1998.

6. OMG. http://www.omg.org.
7. OMG. Objects by Value Speci�cation, January 1998.

ftp://ftp.omg.org/pub/docs/orbos/98-01-18.pdf.
8. Sun Microsystems Inc., Mountain View, CA. Java Object Serialization Speci�ca-

tion, November 1998. ftp://ftp.javasoft.com/docs/jdk1.2/serial-spec-JDK1.2.pdf.
9. George K. Thiruvathukal, Fabian Breg, Ronald Boisvert, Joseph Darcy, Geo�rey C.

Fox, Dennis Gannon, Siamak Hassanzadeh, Jose Moreira, Michael Philippsen,
Roldan Pozo, and Marc Snir (editors). Java Grande Forum Report: Making Java



work for high-end computing. In Supercomputing'98: International Conference on
High Performance Computing and Communications, Orlando, Florida, November
7{13, 1998. panel handout.

10. George K. Thiruvathukal, Lovely S. Thomas, and Andy T. Korczynski. Reective
remote method invocation. Concurrency: Practice and Experience, 10(11{13):911{
926, September{November 1998.

11. Ronald Veldema, Rob van Nieuwport, Jason Maassen, Henri E. Bal, and Aske
Plaat. E�cient remote method invocation. Technical Report IR-450, Vrije Uni-
versiteit, Amsterdam, The Netherlands, September 1998.

12. Weimin Yu and Alan Cox. Java/DSM: A platform for heterogeneous computing.
Concurrency: Practice and Experience, 9(11):1213{1224, November 1997.


