
15

The Single-Referent Collector: Optimizing
Compaction for the Common Case

MICHAL WEGIEL and CHANDRA KRINTZ

University of California, Santa Barbara

Compactors that move or copy objects need to adjust pointers. In extant compactors, pointer ad-
justment involves inspecting every pointer in the heap and computing the target address for each
pointer. At the same time, in modern Managed Runtime Environments (MREs), only a fraction
of pointers in the heap changes during compaction. This is because state-of-the-art MREs do not
compact the prefix of the heap that contains few dead objects, allowing gaps between live objects
and tolerating small space overhead.

We describe the design and implementation of the Single-Referent Collector (SRC), a new com-
pactor that reduces the cost of pointer manipulation by avoiding inspection and adjustment of
pointers that do not change. SRC exploits the fact that in modern applications, most live objects
have only one incoming pointer. For such objects, SRC stores the address of the referent in the
object header. Only objects that move have their referent inspected and adjusted. The remaining
pointers in the heap are not processed. SRC uses an overflow table to handle objects with multiple
incoming pointers.

We investigate a number of standard benchmarks and open-source applications to substantiate
key statistical observations that underlie the design of SRC. We implement SRC in the HotSpot JVM
as part of a generational collection system and compare it empirically with the Lisp2 compactor.
We find that, by decreasing the cost of pointer processing, SRC enables significant reduction in
pause times and improves application throughput.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Memory
Management (Garbage Collection)

General Terms: Design, Performance, Experimentation, Algorithms

Additional Key Words and Phrases: Compaction, garbage collection, virtual machines

ACM Reference Format:
Wegiel, M. and Krintz, C. 2009. The single-referent collector: Optimizing compaction for the com-
mon case. ACM Trans. Architec. Code Optim. 6, 4, Article 15 (October 2009), 26 pages. DOI =
10.1145/1596510.1596513 http://doi.acm.org/10.1145/1596510.1596513

1. INTRODUCTION

Managed Runtime Environments (MREs) for object-oriented, type-safe pro-
gramming languages, such as Java or C#, implement automatic memory

Authors’ address: mwegiel@cs.ucsb.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1544-3566/2009/10-ART15 $10.00
DOI 10.1145/1596510.1596513 http://doi.acm.org/10.1145/1596510.1596513

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:2 • M. Wegiel and C. Krintz

management (garbage collection, GC) to provide memory safety and sim-
plify software development. Among extant GC algorithms, compacting collec-
tors [Jones 1996] are one of the most commonly used in existing production
MREs. This is because compactors eliminate heap fragmentation, improve mu-
tator locality, and enable simple and efficient linear (bump-pointer) object allo-
cation [Wilson 1992].

The key limitation of extant compactors is suboptimal pointer adjustment.
Most state-of-the-art compactors move some objects in the heap and, therefore,
need to adjust pointers. Reducing the amount of copying/moving has been the
subject of many studies. As a result, many collectors move only part of a heap,
for example, the Pauseless GC [Click et al. 2005] and Immix [Blackburn and
McKinley 2008] perform block-based partial evacuation, while Lisp2 [Jones
1996] and the HotSpot GC [HotSpot JVM GC] use a dense prefix to limit sliding
compaction only to the region with many dead objects. However, existing GCs
still process all the pointers in the heap, despite the fact that typically only
few pointers change (as many objects do not move). This processing can be
expensive [Wegiel and Krintz 2008] because of numerous memory accesses (and
its impact on memory hierarchy performance) and the computation [Kermany
and Petrank 2006] that accompanies determining the new value of each pointer.

Herein, we investigate how to reduce the cost of pointer adjustment to nearly
optimal. We design a new compactor that iterates only over the pointers that
need to be updated. To date, this problem has received relatively little attention.

Extant collectors perform pointer adjustment either through forwarding
pointers (e.g., Lisp2) or with the help of a marking bitmap and an offset
table (e.g., the Compressor [Kermany and Petrank 2006] and the HostSpot
GC [HotSpot JVM GC]). In the former approach, a new value of a pointer is
retrieved from the header of the target object, which contains a forwarding
pointer. The latter technique is more complex, as it computes the new pointer
value by traversing a small fragment of a marking bitmap (bounded by a block
size) and summing up the total size of live objects in a given block and in the
preceding blocks (using an offset table). Forwarding pointers are simpler and
faster but require an additional pass over the heap (to install forwarding point-
ers). A marking bitmap eliminates the need for an additional pass, but for each
pointer update, a time-bounded but complex and relatively expensive process-
ing needs to be done. Clearly, reducing the number of pointer updates is more
beneficial for collectors using a marking bitmap. However, our evaluation shows
that even when forwarding pointers are used (e.g., in Lisp2), the performance
gain due to the avoidance of processing of all pointers can also be significant
(over 10% execution time).

The key idea in the single-referent collector (SRC) that we contribute herein
is to reverse the direction of pointers in the object graph, similarly to the way
Jonkers performs pointer threading [Fisher 1974; Morris 1978; Jonkers 1979].
Instead of iterating over all pointers in the heap and looking for pointers that
need to be updated, we first identify objects that move and then adjust their
referents. SRC can be parallel and used in a generational GC [Lieberman and
Hewitt 1981] system. The ideas underlying SRC can be applied to other GC

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:3

algorithms to optimize pointer adjustment. The design of SRC is based on three
statistical observations.

—Most live objects in modern applications have only one referent [Deutsch and
Bobrow 1976; Dieckmann and Hölzle 1998; Blackburn et al. 2006].

—A large part of the heap is not moved during compaction in state-of-the-art
MREs. This is because MREs aim at avoiding low-yield compactions that do
not free enough space to justify the cost of object moving [Wegiel and Krintz
2009]. Thus, at the cost of small space overhead, controlled by a command-line
parameter, they compute a dense prefix, a heap region that contains mostly
live objects, and do not compact it. A special treatment of dense blocks is also
reported in Kermany and Petrank [2006].

—Most MREs reserve a machine word for an object header, which contains
such information as locking state and hash code (among others). The vast
majority of object headers remain unused during program execution (as most
objects are unlocked at any given point in time). Thus, most headers are
available for reuse by GC (for forwarding pointers or, like in SRC, for pointer
reversal).

During marking, SRC reuses object headers to reverse as many pointers as
possible in place (i.e., without any space overhead). For all live objects that have
exactly one referent, SRC stores the address of the referent in the object header.
Objects with more than one referent, use an overflow table—one referent is
stored in the object header and the addresses of the remaining referents are
remembered in the overflow table for later processing. Once marking is done,
SRC determines the target location for each object. As soon as the target location
is known, the referent is updated if the object in question changes its address.
Since most objects do not move, most pointers are not updated. SRC imposes a
small space overhead, due to the overflow table, but its overhead can be bounded
by a fallback to Lisp2 (determined dynamically).

In summary, we make the following contributions:

—Comprehensive empirical analysis of modern benchmarks and compaction
strategies that provides evidence for the key statistical observations that we
build upon when designing SRC.

—Discussion of how extant compactors can optimize for the common object
graph shape. State-of-the-art compactors do not exploit the single-referent
property. Extant GC systems strive to reduce the cost of compaction by moving
only part of the heap; however, all pointers still need to be processed.

—Design of SRC, a compactor that reduces the cost of pointer processing/
manipulation to nearly optimal. Unlike extant compactors, SRC almost never
processes (where processing includes reading the current and computing the
new value of) pointers that do not change. To date, optimization of pointer
manipulation has received little attention.

—Implementation of SRC in the HotSpot JVM in a generational collection
framework. Empirical evaluation of SRC based on standard benchmarks and

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:4 • M. Wegiel and C. Krintz

open-source applications demonstrating that SRC improves performance and
responsiveness compared to the Lisp2 algorithm while being simpler.

In the sections that follow, we discuss the background (Section 2), describe
the design and implementation of SRC (Sections 3 and 4), and present the
results of its experimental evaluation (Section 5).

2. BACKGROUND

In the following text, we provide a detailed background on two compactors:
Lisp2, as we compare SRC with it, and Jonkers, as SRC reverses the object
graph, a technique also employed by Jonkers. In addition, we discuss other
state-of-the-art compactors in the context of how they perform pointer adjust-
ment, which is the focal point of SRC.

In our description of the algorithms, we assume that objects are ordered in
the heap from left to right. Therefore, if object o precedes object p in a sequential
scan over the heap, object o is to the left of p. A backward pointer originating
from object o points to an object to the left of o. Similarly, a forward pointer
located in object p points to an object to the right of p. Note also that a forward-
ing pointer is a pointer stored in an object header and pointing to a location to
which the object moves. We often use the terms pointer threading and pointer
reversal interchangeably—they both refer to the process of associating a list of
incoming pointers with an object.

An overview of several classic compaction algorithms for uniprocessors can
be found in Cohen and Nicolau [1983]. Table-based compactors operate in three
phases but have the worst-case complexity of O(nlogn). This is because pointer
readjustment is done based on a binary search in a table that stores sorted
offsets to the clusters of live objects. Among linear-time serial compactors, the
most important ones are Lisp2 and the Jonkers algorithm. The serial Lisp2
collector is suitable for client-side desktop machines (e.g., the HotSpot JVM uses
it for full-heap compacting garbage collection in the client mode). Lisp2 has a
parallel version that targets multiprocessors [Flood et al. 2001]. Both Lisp2 and
the Jonkers algorithm are serial stop-the-world sliding mark-compact collectors
that preserve object order and compact all live objects into a single contiguous
area in the (lower part of the) heap.

2.1 Lisp2

Lisp2 is a four-phase compactor. The goal of the first phase (called marking)
is to find all live objects by following the object graph starting from the roots.
The second phase is a sequential scan over the heap that installs forwarding
pointers in the headers of live objects. Each forwarding pointer determines
the target location for a particular object after compaction. A target location
for an object x is computed as the total size of live objects that precede x.
The third phase amounts to a sequential traversal over the heap and pointer
adjustment. Each pointer is set to the value stored in the header of the object
that it currently points to. The fourth phase involves moving subsequent live
objects to the locations specified by their forwarding pointers.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:5

OBJECT A

NULL

OBJECT X

OBJECT B

OBJECT X

OBJECT A

OBJECT A

OBJECT X

OBJECT B

(a) Original object graph

(b) Pointer threading in Jonkers

overflow table

(c) Pointer threading in SRC

OBJECT B

Fig. 1. Comparison of pointer threading (reversal) in the Jonkers GC (b) and in SRC (c) for an
example object graph (a). Note that SRC does not overwrite any pointers, while the Jonkers algo-
rithm overwrites all pointers. Outgoing object pointers are shaded light gray and object headers
are shaded dark gray.

2.2 Jonkers

The Jonkers algorithm has three phases. Similar to Lisp2, the first phase is
devoted to computing the transitive closure of the root set. The second phase is
a sequential scan over the heap that performs pointer threading and partial-
pointer adjustment. Pointer threading is a technique that chains together point-
ers that reference a single object. Figures 1(a) and 1(b) shows an example ob-
ject graph before and after pointer threading. In the Jonkers collector, pointer
threading is done in-place, meaning that it does not require any additional
memory. In the second phase, the GC threads all pointers as it encounters
them during the sequential scan of the heap. In addition, the system adjusts
incoming forward pointers that have been threaded so far. When an object x
is reached, all forward pointers that reference x have already been threaded
by the algorithm and can, therefore, be updated (and unthreaded). By the end

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:6 • M. Wegiel and C. Krintz

of the second phase, the system has threaded all backward pointers (forward
pointers were threaded too, but they are already updated and unthreaded). The
third phase updates only incoming backward pointers. When the pointers are
updated, the algorithm moves the currently processed object (at which point it
is guaranteed that its fields are not part of any chain). Since object headers are
occupied by pointers to chains, the algorithm must compute the target location
for each object in both Phases 2 and 3 (as forwarding pointers are not used). The
Jonkers collector requires only three phases but proves expensive in practice
due to its extensive pointer manipulation.

2.3 Pointer Processing

All extant compactors process all pointers in the heap, regardless of whether
a particular pointer changes. State-of-the-art compactors that move objects es-
sentially use two techniques for pointer adjustment, one based on forwarding
pointers and the other based on a marking bitmap.

Compactors employing forwarding pointers, such as Lisp2 and SRC, use the
object header to store the address to which a particular object moves. Pointer
adjustment in such a setting is simple and efficient—it amounts to reading the
value of a forwarding pointer and updating the referent. The disadvantage is
that forwarding pointer installation requires a separate pass over the heap.

Recent compactors, such as the Compressor and the HotSpot compactor, use a
marking bitmap for pointer adjustment. The marking bitmap reserves 1 bit per
heap word. During object graph tracing, GC sets bits in the bitmap to indicate
locations of live objects. The heap is divided into blocks. GC computes per-block
liveness statistics (i.e., how many bytes are live in a given block). Object moving
and pointer updating are done simultaneously. For each pointer, its new value
is computed using the per-block statistics and traversing a small fragment of
the marking bitmap—the GC sums up the total size of live data before a specific
block and within that block up to some object. Thus, in bitmap-based compactors
pointer adjustment is relatively expensive; however, this cost is amortized by
the avoidance of one pass over the heap.

The Pauseless GC uses a hash table (side arrays) for storing forwarding
pointers for the currently relocated virtual pages. A hash table look-up is nec-
essary to compute the new value of a pointer. Such a look-up executes as part
of a read barrier.

3. COMPACTOR DESIGN

SRC exploits the widely known statistical property that in modern programs,
most live objects in the heap have exactly one referent. Our empirical analysis
of Java benchmarks and applications, as described in detail in Section 5, shows
that across 25 programs, 91% of live objects in the heap have only one incoming
pointer.

The key idea behind the SRC algorithm is that it reverses the direction of
pointers during marking and subsequently uses the reversed object graph to
update the pointers to the objects that change their location. Because of the
single-referent property, pointer reversal can be done nearly in-place (almost

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:7

without space overhead). SRC reuses the object header to store the address of
one (and in most cases the only) referent for each object. State-of-the-art MREs
employ object headers to implement object locking, store object hash codes,
GC mark bits, and forwarding pointers. At any given moment, most objects
have their header in a canonical state (i.e., unlocked and unforwarded); and
therefore, very few headers need to be preserved when GC occurs.

Pointer reversal takes place during marking so that SRC can exploit ref-
erence locality and avoid introducing memory accesses that might result in a
cache miss. An additional advantage of piggybacking on marking is that there
is no need for a dedicated pass over the heap. Thus, pointer reversal can be
implemented with small overhead.

SRC reverses the object graph to avoid processing for pointers that are not
adjusted. Once a new location of an object is known, the referent can be properly
updated. There is no need to traverse all pointers to identify those that need
adjustment.

SRC employs an overflow table to handle popular objects (i.e., those with
more than one referent). In the object header, the address of one referent is
stored. The remaining referents are appended to the overflow table during
marking. Since there are few popular objects, the imposed space overhead is
small in practice (we evaluate it in detail).

A key observation underlying SRC is that extant MREs rarely compact the
whole heap. For example, the HotSpot JVM finds a dense prefix, a region at
the beginning of the heap that contains few dead objects, and excludes it from
compaction. The rationale is avoidance of low-yield and expensive compactions.
In the dense prefix, dead objects are not reclaimed, and the resulting gaps
incur space overhead. This overhead is controlled by an MRE parameter, which
specifies what percentage of the heap can be designated for the unused dead
space. Our empirical evaluation of Lisp2 in the HotSpot JVM shows that across
the benchmarks that we use, and for the allowed dead space of 5%, 72% of objects
do not move.

The goal of SRC is to reduce the cost of pointer adjustment to nearly opti-
mal so that the pointers referring to nonmoving objects are not processed at
all. Existing compactors always process all pointers (i.e., read each pointer and
compute its new value) despite the fact that most objects do not move. Pointer
processing can be expensive, even when pointer forwarding is used, not to men-
tion marking bitmaps.

SRC comprises three phases: marking/threading, object forwarding/pointer
adjustment, and object moving. Lisp2 has four phases because it needs a dedi-
cated phase to process all the pointers in the heap and update those that change.
SRC is simpler and more efficient.

3.1 Phase I: Pointer Threading

SRC performs pointer threading during the marking phase (unlike the Jonkers
algorithm) for simplicity and locality of reference. SRC threads all pointers,
regardless of whether the incoming reference belongs to an object in the heap
(i.e., is a reference field) or lies outside of the heap (i.e., is a root). The only

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:8 • M. Wegiel and C. Krintz

Table I. Marking and Pointer
Threading (Phase I)

1: save headers with locking/hash code
2: pending ← root set
3: while pending �= ∅ do
4: r ← pending .extract()
5: if object(r) is not marked then
6: mark(object(r))
7: object(r).header ← r
8: for p in references(object(r)) do
9: pending.insert(p)

10: end for
11: else
12: e ← new entry (overflow table)
13: e.reference ← r
14: end if
15: end while

exception to this rule is the class pointer that points to an object that encap-
sulates the metadata that defines the object type. This exception applies only
to JVMs that treat objects and metadata in a uniform way (i.e., classes are
represented as objects in the heap, which leads to several levels of metadata
hierarchy ending with a circular dependency). The rationale for excluding class
pointers from threading is that a particular metaobject is always pointed to by
all objects of the type that it represents. Metaobjects, therefore, are referred
to by a large number of other objects, and as such, are not good candidates for
pointer threading due to the space overhead they would cause in the overflow
table.

While tracing the object graph (typically using depth-first search) and mark-
ing the reachable objects, SRC reverses pointers. Object headers are used to
store the addresses of referents. In case of multiple referents, SRC employs the
dynamically expanded overflow table. An example object graph and its threaded
representation are shown in Figure 1(a) and (c).

Table I lists the pseudocode for Phase I. The set of addresses of pointers to be
processed is kept in pending, which in practice is a stack or a queue. We extract
subsequent addresses of pointers (r in the procedure code) from the pending
set (by calling extract) and dereference each pointer address twice to obtain
an object address (our notation for this operation is object(r)). Objects visited
for the first time are marked, and their headers are used to store the address of
the referent (r). In case of already-marked objects, the address of the referent
is appended to the overflow table. Given the single-reference property that is
common to Java programs, we expect to require very few entries in the overflow
table. Accessing this table imposes both space and time overhead (it degrades
locality during tracing).

3.2 Phase II: Pointer Forwarding

At the start of the second phase, in the header of all live objects is an address
of one of their referents. Pointers not recorded in the object headers are in the

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:9

Table II. Object Forwarding and
Pointer Adjustment (Phase II)

1: o ← first live object
2: while o �= nil do
3: h ← o.header
4: f ← forward(o)
5: o.header ← f
6: if o is relocated then
7: referent(h) ← f
8: end if
9: o ← next live object

10: end while
11: for e in entries(overflow table) do
12: p ← e.reference
13: f ← p.header
14: address(p) ← f
15: end for

overflow table. As detailed in Table II, we iterate over subsequent objects (o is
the address of the current object) and compute a forwarding pointer for each
live object (we call the forward function to accomplish the latter). To compute
the next live object, we sequentially skip over dead objects until we find the next
marked object. The forward function computes the location an object will occupy
after compaction. If a particular object moves, we overwrite the pointer whose
address has been stored in the object header (h) with the object’s destination
address (f). Once the referent (h) is updated, we use the object header to store
the value of the object’s forwarding pointer (f). SRC needs forwarding pointers
to properly update pointers that overflowed (i.e., those from the overflow table).
The last step in Phase II is iterating over the overflow table and adjusting
the subsequent pointers. At this point, all object headers contain forwarding
pointers.

SRC handles class pointers specially—they are not threaded and SRC up-
dates them using forwarding pointers. In consequence, Phase II must be first
completed for all metaobjects (so that forwarding pointers are installed) before
we start Phase II for regular objects. SRC updates each class pointer by reading
the forwarding pointer from the header of the instance of the class. This is a
method similar to the one used in the Lisp2 algorithm for all pointers.

Unlike Lisp2, SRC need not identify and traverse individual reference fields
of each object in Phase II. The information that SRC gathers during marking is
sufficient to adjust the pointers. This obviates the need for accessing metadata
for each object (in Phase II) to determine which fields have reference types
(what makes Phase II very efficient).

3.3 Phase III: Object Moving

After SRC identifies the target locations for the objects that must be moved
and adjusts the relevant pointers, SRC moves the objects to the left end of
the heap (Table III shows the pseudocode). SRC copies each object (o) to
the location specified by the forwarding pointer that is stored in the object

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:10 • M. Wegiel and C. Krintz

Table III. Object Moving (Phase III)

1: o ← first live object
2: while o �= nil fo
3: if o needs to be relocated then
4: move and clear header(o, o.header)
5: else
6: clear header(o)
7: end if
8: o ← next live object
9: end while

10: restore saved headers

header (o.header). Objects in the dense prefix do not move. All objects in
the heap have their headers cleared (forwarding pointers are removed). Once
moving completes, the headers that contained locking state or hash codes
are restored. A separate table is used to store such headers. Typically, few
headers need saving before GC, so this does not impose large time/space
overhead.

3.4 Space-Bounded SRC

SRC can fall back to Lisp2 to guarantee a specific space overhead bound. The
overflow table is filled during marking; therefore, fallback is possible starting
from Phase II. When SRC reaches the limit on the number of entries in the over-
flow table, threading is suspended, marking proceeds until it is finished, and
the collector continues its operation as Lisp2. The implementation is straight-
forward as the output of marking expected for Lisp2 is the subset of what SRC
generates in Phase I.

3.5 Generational SRC

SRC can be implemented in MREs with heaps consisting of multiple genera-
tions. For example, our implementation uses three generations: young, old, and
permanent. In addition, the young generation consists of three memory regions:
eden, from space, and to space.

As described previously, SRC’s correctness requires metadata to be processed
first in Phase II. In configurations with a dedicated generation for metadata
(which is typically called a permanent generation), Phase III also must be com-
pleted in the metageneration before the compactor can move on to the remaining
generations. This is because once class pointers are updated in Phase II, they
point to incorrect locations until metaobjects are actually moved in Phase III.
Regular generations can be processed in any order as long as the metagenera-
tion is traversed first in both Phases II and III.

Note that metaobjects also have class pointers (which point to metametaob-
jects). However, class pointers in the metageneration always point to the left.
The reason for this is that whenever we allocate a metaobject the correspond-
ing metametaobject must have been already allocated. Assuming left-to-right
allocation, all class pointers in the metageneration point to the left. In conse-
quence, a sequential traversal (accompanied by moving) from the left to the

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:11

right end in Phase III guarantees that the class pointer of the currently pro-
cessed metaobject is always correct.

An important advantage of scanning the metadata generation first in
Phase II is that by the time we start traversing regular generations, we know
whether any metaobject has been moved. If no objects have been relocated in
the metageneration (which in our empirical configuration is always the case),
then it is not necessary to forward class pointers in Phase II, which translates
to considerable reduction of work, as every object has a class pointer.

SRC can be used with different heap configurations, consisting of multiple
memory regions (either generations or moving and nonmoving spaces, such as
large object spaces). Except for the previously described ordering constraints
pertaining to the metageneration, the remaining spaces can be processed in
any order, and there are no additional requirements on their number, size, and
object moving strategy (i.e., whether a particular space is compacted).

3.6 Parallel SRC

We have extended SRC to support multiple GC threads in order to scale on
multicore and multiprocessor systems. Parallel SRC comprises three phases.

The first phase, marking, can be parallelized in a way similar to Lisp2 [Flood
et al. 2001]. Parallel GC threads maintain thread-local overflow tables to avoid
synchronization and interthread contention. While computing the transitive
closure of the objects reachable from the roots, GC threads strive to load bal-
ance the available work. We employ dynamic work stealing for this purpose.
A GC thread acquires an object reference either from its local queue, or by
retrieving an entry from a queue that belongs to another thread. Marking is
terminated after all GC threads declare that they are idle. Object marking and
pointer threading require an atomic compare-and-swap operation on an un-
marked object header when the object is visited by multiple racing GC threads
at the same time. The GC thread that wins the race marks the object and stores
the referent address in the header. Since parallel SRC uses per-thread overflow
tables, pointer reversal does not introduce any additional synchronization to
marking. We do not use a marking bitmap.

Similarly to the parallel HotSpot compactor, we divide the heap into fixed-
size blocks. Marking computes basic per-block statistics, that is, how many
bytes are live in the block and an offset of the first live object in the block. In
the second phase, GC threads divide the heap into several chunks, as many as
GC threads. Each chunk comprises multiple blocks and covers similar amount
of live data. Each GC thread forwards objects and updates referents stored in
the headers in its own chunk. After all GC threads finish object forwarding, they
execute a barrier (join point), and each GC thread proceeds to adjust pointers
in its own per-thread overflow table.

In the third phase, GC threads claim available blocks atomically and fill them
with live objects in parallel. A block becomes available when all its objects have
been evacuated (it is empty, i.e., its live data counter is zero) or it has been
compacted onto itself. Filling a block involves identifying the source block(s)
and copying the objects destined for the block until the block is full or no more

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:12 • M. Wegiel and C. Krintz

live objects are left. Per-block statistics are updated as blocks are filled (live
data counter is decreased, the first live object offset advances to the right).
Initially, the first block in the heap gets compacted. Then, it becomes available
and is a filling target for potentially many other blocks. Compaction starts off
single-threaded and gradually increases its degree of parallelism as multiple
blocks become available for claiming by GC threads.

4. IMPLEMENTATION

We have implemented SRC in HotSpot [OpenJDK], an open-source (GPL),
production-quality, high-performance Java Virtual Machine from Sun Mi-
crosystems written in C/C++ (source code version 7-ea-b10, released on
3/21/2007). SRC is a serial mark-compact collector that is invoked during major
(full-heap) collections that involve compaction of all generations.

4.1 HotSpot Memory Management

HotSpot uses handleless objects, meaning that all object references are direct
pointers (there is no level of indirection). Every object has a two-machine-word
header. SRC reuses this header and does not require any additional header
space. The first word (called mark) contains object age bits, identity hash
code, as well as synchronization/locking bits. The lowest two bits are set to
1 to indicate the fact the an object is marked. The mark word is also used to
store a forwarding pointer during mark-compact GC. The second word (called
class pointer) points to an instance that contains reflective metadata. HotSpot
uniformly represents metadata as objects and maintains a self-referential
three-level metadata hierarchy where the root object describes its own type.
Arrays contain an additional (third) compulsory word to store the array
length.

HotSpot uses a generational heap layout. There are three generations: per-
manent, tenured (old), and young. The young generation is further subdivided
into eden and two equally sized survivor spaces (called from-space and to-
space). Objects are initially allocated in the eden (if their size does not permit
that, the allocation is done directly in the tenured generation). Within the young
generation, a copying collector (called scavenger) is used. The scavenger evac-
uates live objects from eden-space and from-space to to-space and promotes
objects that survived several minor collections to the tenured generation. To
reduce synchronization costs, the system assigns each thread a thread-local
allocation buffer (TLAB) from the eden space.

The HotSpot old generation supports several different garbage collectors. In
the client mode, by default, it uses a standard four-phase Lisp2 mark-compact
collector. The system performs stop-the-world collection by a dedicated thread
upon memory exhaustion by the application and after reaching a safepoint at
which all mutator threads are suspended. The marking phase involves travers-
ing all reachable objects (across all generations) in a depth-first order and mark-
ing them (i.e., setting the least-significant two bits of the mark word to 1). The
GC saves object headers that contain active locking state or a nonzero hash
code prior to full collection and restores them afterward (to avoid overwriting

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:13

by a forwarding pointer). The GC preserves relevant headers in a dedicated
dynamic array the length of which is extended on demand.

4.2 Pointer Threading and the Overflow Table

Prior to marking, SRC secures space for the reversed pointers to objects that
have more than one incoming reference. The key advantage of the overflow table
over the Jonkers approach is that it enables SRC to avoid many pointer manip-
ulations. SRC employs a dynamic array for this purpose, following the design of
existing auxiliary data structures (e.g., the marking stack). The overflow table
does not require a contiguous memory region, its functionality is essentially
a set of linked-list operations. SRC can grow the array one chunk at a time
or exponentially (we use the latter option). SRC stores the overflow table out-
side of the heap. The table contains addresses of pointers that point to objects
with more than one referent. To bound the space overhead introduced by this
auxiliary data structure, SRC falls back to Lisp2 compaction. In our empiri-
cal evaluation, however, such fallbacks are never necessary by the benchmarks
that we study, and space overhead is small.

In HotSpot, objects are aligned at word boundaries. Therefore, on 32-bit
machines, the lowest 2 bits of each pointer are always cleared. HotSpot (like
other JVMs) exploits this property to fit both marking bits and a forwarding
pointer into the object header.

SRC makes use of the object alignment in a similar manner. After the mark-
ing phase, the headers of live objects point to locations of pointers in the heap,
which are guaranteed to be word aligned. SRC overflows root pointers because
in HotSpot roots (which include C heap pointers and operand stack entries) are
not necessarily word aligned.

A potential improvement over this strategy would be to dynamically check
at runtime whether a particular root is word aligned. However, we have not
evaluated the impact of such an optimization experimentally.

SRC performs pointer threading in all generations. In the permanent gen-
eration, however, class pointers are not threaded since doing so would create
significant space overhead. Class pointers are adjusted during Phase II via
forwarding pointers.

5. EVALUATION

We compare SRC against the serial four-phase mark-compact Lisp2 collector
that is employed by the HotSpot JVM by default in the client-compiler mode for
full-heap (major) collections that compact all generations. For minor collections,
HotSpot uses a serial copying collector in the young generation. SRC is imple-
mented in all generations (i.e., the young, old, and permanent). Both Lisp2 and
SRC take one parameter: dead space ratio, which determines the maximum
allowed percentage of free space in the old generation (this parameter does not
apply to the young and permanent generations). Higher values of the dead space
ratio result in a larger dense prefix and a smaller number of moved objects.

We evaluate SRC’s impact on execution time and full GC pause times, as well
as investigate its space overhead. We analyze 25 benchmarks in the context

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:14 • M. Wegiel and C. Krintz

of the statistical properties that SRC exploits (nonmoving objects and single-
referent objects). In addition to summarizing our experimental results across
the heap sizes, we present more detailed empirical data for six selected bench-
marks (three that perform well with SRC and three that only moderately benefit
from SRC).

5.1 Methodology

Our experimental platform, is a dedicated dual-core Intel Core 2 Duo (Conroe
B2) machine clocked at 2.66GHz with the unified 4M 16-way L2 cache and 32K
8-way L1 cache, 2GB main memory, running Debian GNU/Linux 3.0 configured
with the 2.6.17 kernel. We use OpenJDK 1.6 and HotSpot version 7-ea-b10
compiled with GCC 3.2.3, in the optimized client-compiler (C1) mode.

For each experiment, we use a fixed size heap. The heap comprises three
generations: the young, old, and permanent. When reporting heap size, we sum
up the size of all three generations. We investigate five heap sizes for each
benchmark/application ranging from the minimum heap size (and high GC
activity) to the heap size with medium/minor GC frequency. We repeat each
experiment seven times and report average values (arithmetic mean) along
with standard deviation.

The young generation is 25% of the old generation. Survivor spaces (the
from-space and to-space) occupy 33% of the young generation (the remainder
is used by the eden). The permanent generation is 12MB (HotSpot default). We
disable all explicit GC invocations and adaptive generation resizing.

During full collections, SRC compacts all three generations. In the young
generation, no dead space is allowed (perfect compaction always takes place),
while in the permanent generation, we allow any amount of dead space (objects
are never moved). In the old generation, we vary the dead space ratio between
0% and 10% (via the SRC command-line parameter).

Our evaluation is based on 25 Java programs, which include standard
Java benchmarks and open-source Java applications [GPLJava]. We use all
DaCapo [Blackburn et al. 2006] and SPEC JVM’98 benchmarks. In addition,
we employ SPEC PseudoJBB’00 [SPEC] and VolanoMark [VolanoMark] as well
as five GPL applications. Individual benchmarks are described in Table IV
where we also report performance data obtained using the Lisp2 collector for
the 5% dead space ratio in the old generation (HotSpot default). In subsequent
columns, we show heap size ranges, execution times, and GC cost for full-heap
collections. We do not report any statistics for minor (young generation) collec-
tions as SRC is implemented for full-heap collections only and does not impact
minor GC.

We run the default variants of the DaCapo benchmarks and use the in-
put size of at least 100 for JVM’98. We execute VolanoMark with 42 chat
rooms for 100 iterations and SPEC PseudoJBB with 5 warehouses for 105

iterations.
We evaluate SRC and Lisp2 using common metrics of GC performance: ap-

plication throughput and maximum/average pause times. In addition, we in-
vestigate the number of incoming references for objects in the heap, as well as

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:15

Table IV. Baseline Statistics for the Java Benchmarks that we use Obtained Using the
Lisp2 Compactor

Benchmark Heap Execution Full GC Full GC Full GC Program
Program Size [MB] Time [s] Time [s] Count Cost [%] Description

DaCapo’06 Benchmarks
antlr 14–18 2.2 0.2 13 7.0 parser generator
bloat 14–18 7.2 0.1 6 1.4 bytecode analyzer
chart 27–31 6.2 0.6 15 9.2 graph plotter

eclipse 34–42 26.7 1.1 16 4.0 IDE tester
fop 19–23 11.5 9.7 237 83.8 XSL parser

hsqldb 94–102 9.8 6.8 18 69.5 in-memory database
jython 14–18 6.4 0.1 6 1.6 Python interpreter
luindex 15–19 7.6 0.4 34 4.7 document indexer
lusearch 14–18 5.4 0.1 7 1.5 text search engine

pmd 29–33 6.1 1.7 34 27.4 source analyzer
xalan 31–39 6.7 1.8 58 27.4 XML converter

JVM’98 Benchmarks
compress 33–37 2.7 0.1 13 3.0 LZW packer

db 23–27 8.1 1.0 33 12.6 in-memory database
jack 14–18 1.8 0.0 8 2.7 parser generator
javac 23–27 5.7 3.4 89 58.8 Java compiler
jess 14–18 1.2 0.0 2 1.5 expert shell system
mtrt 22–26 2.7 1.7 65 63.2 parallel raytracer

raytrace 14–18 3.7 3.0 194 81.5 3D renderer
GPL Applications

beautyj 63–67 4.0 2.3 18 57.6 source transformer
findbugs 63–71 30.5 19.5 114 64.1 bug detector

jaranalyzer 14–18 4.6 0.1 8 1.6 JAR analyzer
javaguard 19–23 4.2 0.8 24 17.8 bytecode obfuscator
jdepend 31–35 13.1 1.7 34 13.1 dependency analyzer

Other Benchmarks
psjbb 110–122 47.4 29.1 192 61.3 3-tier DB system

volano 29–33 41.1 8.6 138 21.0 chat server

We group benchmarks based on the suite/category they belong to. For each benchmark, we report the heap-sized
range in Col. 2 (we use 5 regularly-spaced heap sizes across this range for each benchmark; heap size includes
all generations: young, old, and permanent). Next, in Cols. 3–6, we present per-benchmark performance data
for the minimum heap sizes: total execution time, total full GC time (minor collection are not included as SRC
is implemented only for full-heap collections), the number of full GCs per run, and total full GC time relative
to total execution time. The last column provides a brief description of each benchmark. We report arithmetic
mean from 7 runs.

report the percentage of moved objects depending on the dead space ratio. For
SRC, we also measure space overhead.

5.2 Object Graph

The efficacy of SRC, both in terms of its space overhead and pause time re-
duction, depends mostly on the single-referent property. In Table V, we report
basic statistics for the object graph shape for each benchmark. All the measure-
ments have been obtained for the old generation. Across the benchmarks, the
percentage of objects with exactly one incoming pointer (second column) aver-
ages at 91%. Although the maximum (of the maxima) of referents to live objects
(Column 4) is occasionally high, the expected number of incoming pointers
(Column 3) is 1.1.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:16 • M. Wegiel and C. Krintz

Table V. Per-Benchmark Statistics Related to the Live Object Graph

Benchmark Single Average Maximum Space
Program Referent [%] Incoming Incoming Overhead [%]

antlr 90.0 1.3 772 3.0
bloat 91.2 1.3 788 4.2
chart 99.8 1.0 86 3.9

eclipse 91.5 1.3 2,614 6.3
fop 77.8 3.5 11 4.4

hsqldb 100.0 1.0 1 8.4
jython 95.1 1.2 3,040 5.9
luindex 94.1 1.1 15 2.7
lusearch 99.3 1.0 11 2.8

pmd 98.9 1.0 18 6.1
xalan 97.1 1.1 54 2.8

compress 98.6 1.0 14 0.7
db 99.8 1.0 84 1.1

jack 99.3 1.0 8 1.8
javac 97.5 1.3 1,843 5.6
jess 49.2 1.9 654 1.8
mtrt 78.5 4.2 21 1.4

raytrace 100.0 1.0 1 2.3
beautyj 84.7 1.4 8,919 8.1
findbugs 96.0 1.3 15,052 11.2

jaranalyzer 92.8 1.1 1,643 2.3
javaguard 52.5 3.0 10 3.2
jdepend 100.0 1.0 1 1.4

psjbb 99.6 1.0 6,686 1.8
volano 99.1 1.0 52 3.8

summary 91.3 1.4 15,052 3.9

In Column 2, we show the percentage of live objects with exactly one referent, av-
eraged across the heap sizes. Next, in Column 3, we report the average number of
incoming pointers for live objects across the heap sizes. Column 4 presents the maxi-
mum number of incoming pointers across the heap sizes (we report the maximum of
the maxima that we observe). The last column shows the space overhead imposed by
SRC relative to the heap size (we report average across the heap sizes). This space
overhead depends on the object graph (the number of objects with more than one
referent) and the number of unaligned root references.

5.3 Pause Times

Tables VI through VIII compare average and maximum pause times for Lisp2
and SRC across the benchmarks. Subsequent tables correspond to the 0%, 5%,
and 10% dead space ratio, respectively. We report average values that we have
obtained across the heap sizes. For the 5% dead space ratio, SRC reduces maxi-
mum pause times by up to 23% and by 12%, on average, and decreases average
pause times by up to 23% and by 13%, on average. The biggest performance im-
pact is seen in benchmarks in which the dense prefix tends to be large (objects
do not die at the beginning of the heap) and few objects have more than one
referent. Higher dead space ratio results in shorter pause times, but within the
range between 0% and 10% pause time reduction does not change significantly.

Figure 2 shows average GC pause times for Lisp2 and SRC across the
heap sizes for selected benchmarks (representative of our benchmark set). We

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:17

Table VI. Performance Data Obtained for SRC and Lisp2 for the Dead Space
Ratio in the Old Generation Set to 0%

Benchmark Throughput Avg. Pause Max. Pause Nonmoving
Program Increase [%] Decrease [%] Decrease [%] Objects [%]

raytrace 14.8 18.7 15.7 98.6
psjbb 12.6 19.3 14.8 84.7
fop 11.5 11.6 11.4 65.4

findbugs 9.7 13.5 11.9 32.3
hsqldb 9.2 13.2 13.5 1.6
javac 8.1 12.1 12.8 37.3

beautyj 7.0 12.2 12.2 12.3
mtrt 5.6 20.4 15.8 83.3

average 9.1 15.7 14.0 50.7
jdepend 3.1 20.5 18.3 41.2

db 2.7 20.1 18.1 23.5
pmd 2.5 9.3 8.7 80.4

volano 2.2 9.7 7.5 78.9
javaguard 1.7 12.6 8.1 85.6
lusearch 1.4 10.9 12.2 15.6
eclipse 1.3 10.7 10.3 21.5
xalan 1.1 10.1 10.0 23.6
chart 0.7 13.5 14.0 16.0

luindex 0.6 9.6 9.3 24.7
antlr 0.5 7.6 8.1 33.1

jaranalyzer 0.4 12.5 14.6 17.7
compress 0.3 5.9 4.5 78.4

jack 0.2 7.9 6.6 15.2
jython 0.1 10.6 12.4 7.5

jess −0.1 8.6 9.5 1.9
bloat −0.3 8.8 8.9 10.5

average 3.9 12.4 11.6 39.6

In Column 2, we report throughput increase due to SRC (relative to Lisp2) for minimum
heap sizes. Benchmarks are listed in descending order according to throughput increase.
In Columns 3 and 4, we show the percentage decrease in average (Column 3) and maximum
(Column 4) full GC pause times—we compare SRC and Lisp2 across the heap sizes here.
The last column presents the percentage of live objects that do not move in SRC (average
across the heap sizes). We summarize the eight benchmarks whose execution time benefits
most from SRC (the top average row), as well as all benchmarks (the bottom average row).

present the results obtained for the dead space ratio of 5%. SRC consistently
reduces full GC pauses, thus increasing minimum mutator utilization (MMU)
and consequently improving application throughput.

5.4 Application Throughput

SRC reduces full-heap GC time and thus improves program performance.
Throughput impact is proportional to the amount of GC activity, that is, it
is the most significant for the minimum heap sizes. In Tables VI through VIII,
we report throughput increase due to SRC, relative to Lisp2, for the 0%, 5%,
and 10% dead space ratio, and the minimum heap sizes. Average performance
improvement across benchmarks is better for higher values of the dead space
ratio: 3.9% for 0%, 4.6% for 5%, and 5.5% for 10%. Several benchmarks, how-
ever, do not trigger sufficient GC to benefit from SRC in terms of their execution

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:18 • M. Wegiel and C. Krintz

Table VII. Performance Data Obtained for SRC and Lisp2 for the Dead
Space Ratio in the Old Generation Set to 5%

Benchmark Throughput Avg. Pause Max. Pause Nonmoving
Program Increase [%] Decrease [%] Decrease [%] Objects [%]

mtrt 16.6 20.3 15.5 99.1
raytrace 15.2 18.7 18.0 100.0
hsqldb 13.3 19.6 15.9 100.0

findbugs 12.6 15.5 12.8 70.2
fop 11.4 12.8 8.9 100.0

beautyj 9.0 14.2 11.7 51.8
javac 8.3 13.5 14.1 43.0
psjbb 7.3 19.7 14.7 90.2

average 10.8 16.0 13.6 83.2
pmd 3.9 9.7 11.1 94.3

jdepend 3.0 23.4 22.8 100.0
volano 2.8 10.1 8.7 95.6

db 2.6 22.5 19.6 78.2
xalan 2.3 10.1 9.1 60.2
antlr 2.1 7.6 8.2 54.4

eclipse 1.3 10.7 11.4 51.3
javaguard 0.9 12.4 10.5 99.9

chart 0.7 13.4 14.6 25.5
jack 0.5 8.0 7.9 67.1

jython 0.4 10.2 11.6 49.0
jess 0.3 9.0 9.9 82.5

luindex −0.0 8.8 10.1 44.4
bloat 0.0 9.7 8.2 65.8

jaranalyzer −0.1 13.0 14.7 36.5
lusearch −0.2 11.5 11.7 65.4
compress −0.2 6.0 3.6 81.6

average 4.6 13.2 12.2 72.2

In Column 2, we report throughput increase due to SRC (relative to Lisp2) for minimum
heap sizes. Benchmarks are listed in descending order according to throughput increase.
In Columns 3 and 4, we show the percentage decrease in average (Column 3) and maximum
(Column 4) full GC pause times—we compare SRC and Lisp2 across the heap sizes here.
The last column presents the percentage of live objects that do not move in SRC (average
across the heap sizes). We summarize the eight benchmarks whose execution time benefits
most from SRC (the top average row) as well as all benchmarks (the bottom average row).

time. When we consider the 8 benchmarks with the highest GC activity for each
configuration, SRC increases throughput, on average, by 9% for 0%, 11% for 5%,
and 13% for 10%.

Figure 3 presents execution time curves for Lisp2 and SRC across the heap
sizes for selected benchmarks. The dead space ratio is set to 5%. For these
benchmarks, SRC improves performance across the heap sizes (not only for the
minimum ones).

5.5 Space Overhead

SRC imposes space overhead because of the overflow table. In the last col-
umn in Table V, we report the size of the overflow table, relative to the heap
size, for each benchmark across the heap sizes. Space overhead in SRC de-
pends on the object graph and not on the dead space ratio. Space overhead

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:19

Table VIII. Performance Data Obtained for SRC and Lisp2 for the Dead
Space Ratio in the Old Generation Set to 10%

Benchmark Throughput Avg. Pause Max. Pause Nonmoving
Program Increase [%] Decrease [%] Decrease [%] Objects [%]

mtrt 21.1 20.3 15.2 99.4
raytrace 14.9 18.1 18.0 100.0

psjbb 14.1 19.9 14.0 95.5
fop 13.2 13.0 8.1 100.0

beautyj 12.8 15.9 14.6 61.2
findbugs 12.0 16.2 12.3 78.2
hsqldb 11.6 21.0 16.4 100.0
javac 9.8 13.2 9.8 51.8

average 12.8 16.4 13.1 83.2
xalan 5.5 10.1 9.8 62.4
pmd 3.6 9.7 10.2 94.1

javaguard 3.6 12.6 10.6 100.0
jdepend 3.1 23.4 22.6 100.0
volano 2.7 10.1 9.3 96.9

db 2.6 23.8 19.6 94.4
jess 1.4 9.0 9.9 86.5

luindex 1.3 8.0 8.7 47.7
chart 1.1 13.3 14.3 28.4
antlr 1.0 7.6 8.2 58.9

compress 0.9 6.3 4.8 84.6
bloat 0.9 9.8 9.5 80.3
jack 0.7 8.0 7.9 67.9

eclipse 0.3 9.6 8.8 59.7
jaranalyzer 0.2 12.8 14.3 32.8

jython 0.1 10.4 11.0 54.4
lusearch -0.5 11.5 12.0 75.5

average 5.5 13.3 12.0 76.4

In Column 2, we report throughput increase due to SRC (relative to Lisp2) for minimum
heap sizes. Benchmarks are listed in descending order according to throughput increase.
In Columns 3 and 4, we show the percentage decrease in average (Column 3) and maximum
(Column 4) full GC pause times—we compare SRC and Lisp2 across the heap sizes here.
The last column presents the percentage of live objects that do not move in SRC (average
across the heap sizes). We summarize the eight benchmarks whose execution time benefits
most from SRC (the top average row), as well as all benchmarks (the bottom average row).

is highest in benchmarks where many pointers end up in the overflow table,
that is, those with many objects with multiple referents as well as those with
many roots (roots overflow by default due to the lack of word alignment). Thus,
space overhead not always fully correlates with the average number of incom-
ing pointers—the number of roots has an impact on the overflow table size too.
On average, across benchmarks, space overhead is 3.9%.

As we mentioned previously, SRC can fall back to Lisp2 to guarantee a par-
ticular space bound. For these results, however, no fallback is needed, since
space overhead is small.

5.6 Dense Prefix

Both Lisp2 and SRC do not compact the prefix of the heap to avoid low-yield
yet expensive collections. The size of this prefix is controlled by the dead space

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:20 • M. Wegiel and C. Krintz

 140

 145

 150

 155

 160

 165

 170

 175

 63 64 65 66 67 68 69 70 71

A
v
e

ra
g
e

 P
a

u
s
e

 [
m

s
]

Heap Size [MB]

findbugs

Lisp2
SRC

 160
 180
 200
 220
 240
 260
 280
 300
 320
 340

 94 95 96 97 98 99 100 101 102

A
v
e

ra
g
e

 P
a

u
s
e

 [
m

s
]

Heap Size [MB]

hsqldb

Lisp2
SRC

 95

 100

 105

 110

 115

 120

 63 63.5 64 64.5 65 65.5 66 66.5 67

A
v
e

ra
g
e

 P
a

u
s
e

 [
m

s
]

Heap Size [MB]

beautyj

Lisp2
SRC

 27
 27.5

 28
 28.5

 29
 29.5

 30
 30.5

 31
 31.5

 32

 31 32 33 34 35 36 37 38 39

A
v
e

ra
g
e

 P
a

u
s
e

 [
m

s
]

Heap Size [MB]

xalan

Lisp2
SRC

 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 27 27.5 28 28.5 29 29.5 30 30.5 31

A
v
e

ra
g
e

 P
a

u
s
e

 [
m

s
]

Heap Size [MB]

chart

Lisp2
SRC

 40

 42

 44

 46

 48

 50

 52

 54

 29 29.5 30 30.5 31 31.5 32 32.5 33

A
v
e

ra
g
e

 P
a

u
s
e

 [
m

s
]

Heap Size [MB]

pmd

Lisp2
SRC

Fig. 2. Full GC pause times in milliseconds for SRC and Lisp2 across the heap sizes for six
selected benchmarks. For each benchmark, we report the average values across runs (data points)
and standard deviation (error bars).

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 63 64 65 66 67 68 69 70 71

E
x
e

c
u
ti
o
n
 T

im
e

 [
s
]

Heap Size [MB]

findbugs

Lisp2
SRC

 3

 4

 5

 6

 7

 8

 9

 10

 11

 94 95 96 97 98 99 100 101 102

E
x
e

c
u
ti
o
n
 T

im
e

 [
s
]

Heap Size [MB]

hsqldb

Lisp2
SRC

 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2
 4.4
 4.6

 63 63.5 64 64.5 65 65.5 66 66.5 67

E
x
e

c
u
ti
o
n
 T

im
e

 [
s
]

Heap Size [MB]

beautyj

Lisp2
SRC

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 31 32 33 34 35 36 37 38 39

E
x
e

c
u
ti
o

n
 T

im
e

 [
s
]

Heap Size [MB]

xalan

Lisp2
SRC

 5.95

 6

 6.05

 6.1

 6.15

 6.2

 6.25

 27 27.5 28 28.5 29 29.5 30 30.5 31

E
x
e

c
u
ti
o

n
 T

im
e

 [
s
]

Heap Size [MB]

chart

Lisp2
SRC

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 29 29.5 30 30.5 31 31.5 32 32.5 33

E
x
e

c
u
ti
o
n
 T

im
e

 [
s
]

Heap Size [MB]

pmd

Lisp2
SRC

Fig. 3. Execution time in seconds for SRC and Lisp2 across the heap sizes for six selected bench-
marks. For each benchmark, we report the average values across runs (data points) and standard
deviation (error bars).

ratio. Tables VI through VIII (last column) show the percentage of objects that
do not move during compaction for each benchmark. On average, it is 40% for
0%, 72% for 5%, and 76% for 10%. Thus, by default in HotSpot (i.e., for 5%),
most objects do not move and most pointers do not need to be processed.

Figure 4 lends insight into how the size of the dense prefix depends on the
heap size. We report the percentage of nonmoving live objects as a function

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:21

 55

 60

 65

 70

 75

 80

 85

 63 64 65 66 67 68 69 70 71

N
o

n
-m

o
v
in

g
 o

b
je

c
ts

 [
%

]

Heap Size [MB]

findbugs

 99

 99.5

 100

 100.5

 101

 94 95 96 97 98 99 100 101 102

N
o

n
-m

o
v
in

g
 o

b
je

c
ts

 [
%

]

Heap Size [MB]

hsqldb

 48

 50

 52

 54

 56

 58

 60

 63 63.5 64 64.5 65 65.5 66 66.5 67

N
o

n
-m

o
v
in

g
 o

b
je

c
ts

 [
%

]

Heap Size [MB]

beautyj

 52

 54

 56

 58

 60

 62

 64

 66

 31 32 33 34 35 36 37 38 39

N
o
n
-m

o
v
in

g
 o

b
je

c
ts

 [
%

]

Heap Size [MB]

xalan

 21

 22

 23

 24

 25

 26

 27

 28

 27 27.5 28 28.5 29 29.5 30 30.5 31

N
o
n
-m

o
v
in

g
 o

b
je

c
ts

 [
%

]

Heap Size [MB]

chart

 92
 92.5

 93
 93.5

 94
 94.5

 95
 95.5

 96
 96.5

 97

 29 29.5 30 30.5 31 31.5 32 32.5 33

N
o
n
-m

o
v
in

g
 o

b
je

c
ts

 [
%

]

Heap Size [MB]

pmd

Fig. 4. Percentage of live objects that do not move in SRC as a function of heap size for six selected
benchmarks. For each benchmark, we report the average values across collections (data points)
and standard deviation (error bars).

of heap size for selected benchmarks. We use the 5% dead space ratio. The
percentage of nonmoving objects typically stays the same or decreases as
heap size increases. This is because for larger heaps, GC is less frequent
and more objects become unreachable between subsequent GCs. As a result,
large dead regions are more likely to appear in the heap and necessitate
moving.

6. RELATED WORK

SRC employs pointer threading, a technique used by the Jonkers com-
pactor [Jonkers 1979]. The Jonkers algorithm has been shown by Cohen and
Nicolau [1983] to introduce potentially significant overhead for pointer manip-
ulation. Lisp2 [Jones 1996], despite comprising four phases, is favored over the
three-phase Jonkers GC due to its simplicity and superior performance (e.g., the
HotSpot JVM implements Lisp2 instead of Jonkers). SRC has three phases, like
the Jonkers GC, but SRC performs few pointer updates, while in the Jonkers
algorithm the whole object graph is first reversed and then restored.

The compaction algorithm described in Martin [1982], reverses the object
graph during marking, but unlike SRC, does not take into account the single-
referent property and does not use the overflow table. The Martin algorithm
does not assume dedicated object headers and reserves a bit per pointer for
a flag indicating if a pointer is reversed. Space efficiency of the Martin GC
depends on the object graph—the algorithm needs additional space for each to-
the-right pointer that points to an object that has outgoing pointers. In contrast,
SRC’s space efficiency depends on the number of incoming pointers. The Martin
algorithm always reverses the whole object graph and later restores it while
SRC strives to keep pointer manipulation to a minimum.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:22 • M. Wegiel and C. Krintz

Since SRC employs stop-the-world collection, it reduces pause times with-
out adding significant complexity to the collector and without negatively im-
pacting throughput. The trade-off between throughput and pause times has
also been addressed in Blackburn and McKinley [2003] where the authors
introduce a hybrid collector (called URC) that combines copying and refer-
ence counting to achieve low pause times without significant performance
(throughput) penalties. Unlike SRC, URC does not exploit any behavioral
patterns in Java programs and uses reference counting (SRC is a tracing
GC).

An alternative approach to reducing pause times is using incremental, con-
current, and parallel collection [Dijkstra et al. 1976; Steele 1975; Yuasa 1990;
Doligez and Leroy 1993; Lang and Dupont 1987; Larose and Feeley 1998; Fu-
rusou et al. 1991; Detlefs et al. 2004]. Such systems can achieve lower pause
times than those that we report herein, but do so (i) for a different application
domain than the one we target and (ii) at the cost of both simplicity, applica-
tion throughput, and memory footprint. Concurrent and real-time GCs target
specialized systems with a large number of processors (e.g., servers and clus-
ter systems) and applications with short response time requirements (e.g., hard
and soft real-time systems, server applications). Most deskside (client) general-
purpose machines today (the domain on which we focus) have a single or small
number of processors. Concurrent GC systems (non-stop-the-world collectors)
necessarily reduce application throughput since GC and mutator activity are
interleaved and must be coordinated. In addition, concurrent collectors often re-
quire operating system support to arbitrate conflicts between the mutator and
collector threads (e.g., the Compressor [Kermany and Petrank 2006], Pauseless
GC [Click et al. 2005], and Mapping Collector [Wegiel and Krintz 2008]).

Recent and important examples of concurrent GC systems include the
mostly concurrent collection algorithm [Boehm et al. 1991], its implemen-
tations, and extensions. With mostly concurrent GC, marking primarily oc-
curs concurrently with the application execution. The system does so by em-
ploying a write barrier to alert the GC to concurrent mutations to the heap
by the program. This reduces the pause time required during the stop-the-
world phase of the collector, since most marking has been previously com-
pleted. The system also reduces application throughput and uses thread pri-
orities to trade off throughput for pause time. Printezis and Detlefs [2000]
describe an implementation of this system for the old generation of a gen-
erational GC system. The implementation piggy backs on the write barriers
required for mostly concurrent collection on those for capturing old-to-young
generation references. Ossia et al. [2002] present and implement a mostly
concurrent GC for multithreaded, large-scale, server applications that em-
ploy very large heaps. The collector combines incremental and priority-aware
concurrent GC and achieves effective load balancing of parallel GC threads.
On-the-fly GC [Domani et al. 2000; Azatchi et al. 2003], is a generational
mark-sweep collector that eliminates the need for a system-wide safepoint,
that is, it never stops all mutator threads at the same time. In Levanoni
and Petrank [2006], the authors present on-the-fly reference counting GC for
multiprocessors.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:23

The concurrent GC systems that are most closely related to ours, however,
are those that employ compaction or copying to eliminate heap fragmentation.
Ossia et al. [2004] present a mostly concurrent compaction approach for mark-
sweep garbage collection to reduce pause times. The system updates refer-
ences to new locations concurrently and employs incremental compaction, as
described earlier. The authors extend incremental compaction so that the GC
selects regions to compaction depending on the behavior of the previous mark
and sweep phases.

An improvement over earlier mostly concurrent GC techniques [Ossia
et al. 2002; Printezis and Detlefs 2000; Boehm et al. 1991] was described
in Barabash et al. [2003] where the authors improve application through-
put by reducing repetitive GC work by undirtying cards with no traced
objects.

Although the GC described in Hosking [2006] is not a mark-compact collector,
it performs concurrent mostly copying collection to enable short pause times and
to avoid fragmentation. MC2 [Sachindran et al. 2004] is a incremental copying
garbage collector, targeted for memory-constrained devices, which divides the
heap into fixed-sized windows and uses write barriers and remembered sets to
implement incremental marking and per-window evacuation. In contrast, SRC
is a sliding mark-compact GC.

The Compressor [Kermany and Petrank 2006] is a concurrent, incremental,
and parallel compaction algorithm that compacts the heap in two phases (mark-
ing and compacting). The Compressor manipulates virtual memory mapping
and compacts objects into a separate area in the process address space. The
compactor preserves object order while reducing pause times significantly by
requiring a single pass of the heap for compaction. In prior work [Wegiel and
Krintz 2008], we improve upon this approach by eliminating copying of objects
altogether through the use of virtual memory mapping. MarkCopy [Sachindran
and Moss 2003] leverages virtual memory mapping to reduce the space over-
head of a copying collector—it does not require a copy reserve, since it maps
and unmaps consecutive pages as copying progresses. SRC provides a simpler
approach to reducing the overhead of compaction without compacting objects
using a separate area in the virtual address space and without relying on op-
erating system support for virtual memory manipulation by the JVM (which is
more complex and less portable).

Abuaiadh et al. [2004] describe a parallel compaction strategy. The main
drawback of this strategy is its fix-up phase that must iterate over all pointers,
and for each pointer, it needs to perform constant-time, but nontrivial, calcula-
tions. SRC does not iterate over pointers that do not need to be changed and for
those that do, SRC performs updates without any calculations (via forwarding
pointers).

Many other collectors employ multiple threads during garbage collection to
spread the GC workload across multiple processors [Abuaiadh et al. 2004; Ben-
Yitzhak et al. 2002; Kermany and Petrank 2006]. This parallel collection, in
general, reduces pause times when multiple processors are available for use
by the GC. Our system is amenable to parallelization, and we overview the
algorithm for enabling parallel mark-compact in Section 3.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:24 • M. Wegiel and C. Krintz

7. CONCLUSIONS

We contribute SRC, a new compactor that exploits two statistical observations
to significantly reduce the cost of pointer adjustment. First, most objects in
modern programs have exactly one incoming pointer. Second, state-of-the-art
MREs do not move a large part of the heap during compaction. The key idea
in SRC is to reverse the direction of pointers in the heap without large space
overhead by reusing object headers. Pointer reversal is done during marking
and enables SRC to avoid processing of all pointers in the heap—SRC iter-
ates only over pointers that change. SRC has three phases and supports both
single-threaded and parallel compaction. We implement SRC in the HotSpot
JVM as a full-heap collector that compacts all generations. We evaluate SRC
using 25 Java programs in terms of GC pause times and application through-
put. In addition, we provide measurement results that support the statistical
properties that underlie SRC. The key design feature of SRC is simplicity. Our
experiments demonstrate that SRC outperforms the Lisp2 algorithm while in-
troducing modest space overhead, which can be bounded by a fallback to Lisp2.

REFERENCES

ABUAIADH, D., OSSIA, Y., PETRANK, E., AND SILBERSHTEIN, U. 2004. An efficient parallel heap com-
paction algorithm. In Proceedings of the ACM Conference on Object-Oriented Systems, Languages
and Applications (OOPSLA’04). ACM, New York.

AZATCHI, H., LEVANONI, Y., PAZ, H., AND PETRANK, E. 2003. An on-the-fly mark and sweep garbage
collector based on sliding view. In Proceedings of the ACM Conference on Object-Oriented Systems,
Languages and Applications (OOPSLA’03). ACM, New York.

BARABASH, K., OSSIA, Y., AND PETRANK, E. 2003. Mostly concurrent garbage collection revisited.
In Proceedings of the ACM Conference on Object-Oriented Systems, Languages and Applications
(OOPSLA’03). ACM, New York.

BEN-YITZHAK, O., GOFT, I., KOLODNER, E., KUIPER, K., AND LEIKEHMAN, V. 2002. An algorithm for
parallel incremental compaction. In Proceedings of the 3rd International Symposium on Memory
Management (ISMM’02). ACM, New York, 100–105.

BLACKBURN, S., GARNER, R., MCKINLEY, K. S., DIWAN, A., GUYER, S. Z., HOSKING, A., MOSS, J. E. B., AND

STEFANOVIC, D. 2006. The DaCapo benchmarks: Java benchmarking development and analysis.
In Proceedings of the ACM Conference on Object-Oriented Systems, Languages and Applications
(OOPSLA’06). ACM, New York.

BLACKBURN, S. M., GARNER, R., HOFFMANN, C., KHANG, A. M., MCKINLEY, K. S., BENTZUR, R., DIWAN,
A., FEINBERG, D., FRAMPTON, D., ET AL. 2006. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proceedings of the ACM Conference on Object-Oriented Systems,
Languages and Applications (OOPSLA’06). ACM, New York.

BLACKBURN, S. M. AND MCKINLEY, K. S. 2003. Ulterior reference counting: Fast garbage collection
without a long wait. In Proceedings of the ACM Conference on Object-Oriented Systems, Languages
and Applications (OOPSLA’04). ACM, New York.

BLACKBURN, S. M. AND MCKINLEY, K. S. 2008. Immix: A mark-region garbage collector with space
efficiency, fast collection, and mutator performance. In Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI’08). ACM, New York.

BOEHM, H.-J., DEMERS, A. J., AND SHENKER, S. 1991. Mostly parallel garbage collection. ACM SIG-
PLAN Notices 26, 6, 157–164.

CLICK, C., TENE, G., AND WOLF, M. 2005. The pauseless GC algorithm. In Proceedings of the Inter-
national Conference on Virtual Execution Environments. ACM, New York.

COHEN, J. AND NICOLAU, A. 1983. Comparison of compacting algorithms for garbage collection.
ACM Trans. Program. Lang. Syst. 5, 4, 532–553.

DETLEFS, D., FLOOD, C., HELLER, S., AND PRINTEZIS, T. 2004. Garbage-first garbage collection. In
Proceedings of the 4th International Symposium on Memory Management. ACM, New York.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

The Single-Referent Collector • 15:25

DEUTSCH, L. P. AND BOBROW, D. G. 1976. An efficient incremental automatic garbage collector.
Comm. ACM 19, 9, 522–526.

DIECKMANN, S. AND HÖLZLE, U. 1998. A study of the allocation behavior of the SPECjvm98 Java
benchmarks. In Proceedings of 12th European Conference on Object-Oriented Programming
(ECOOP98).Springer-Verlag, Berlin, 92–115.

DIJKSTRA, E. W., LAMPORT, L., MARTIN, A. J., SCHOLTEN, C. S., AND STEFFENS, E. F. M. 1976. On-the-
fly garbage collection: An exercise in cooperation. Lecture Notes in Computer Science, vol. 46.
Springer-Verlag, Berlin.

DIWAN, A., ED. 2004. Proceedings of the 4th International Symposium on Memory Management.
ACM Press.

DOLIGEZ, D. AND LEROY, X. 1993. A concurrent generational garbage collector for a multi-threaded
implementation of ML. In Proceedings of the 12th Annual ACM Symposium on Principles of
Programming Languages. ACM, New York, 113–123.

DOMANI, T., KOLODNER, E., AND PETRANK, E. 2000. A generational on-the-fly garbage collector for
Java. In Proceedings of SIGPLAN Conference on Programming Languages Design and Imple-
mentation. ACM, New York.

FISHER, D. A. 1974. Bounded workspace garbage collection in an address order preserving list
processing environment. Inform. Process. Lett. 3, 1, 25–32.

FLOOD, C., DETLEFS, D., SHAVIT, N., AND ZHANG, C. 2001. Parallel garbage collection for shared mem-
ory multiprocessors. In Proceedings of the Usenix Java Virtual Machine Research and Technology
Symposium (JVM ‘01).

FURUSOU, S., MATSUOKA, S., AND YONEZAWA, A. 1991. Parallel conservative garbage collection with
fast allocation. In Proceedings of the ACM Conference on Object-Oriented Systems, Languages
and Applications (OOPSLA’91). ACM, New York.

GPLJAVA. Open Source Java Software. http://java-source.net.
HOSKING, A. L. 2006. Portable, mostly-concurrent and mostly-copying garbage collection for

multiprocessors. In Proceedings of the 4th International Symposium on Memory Management
(ISMM’06). ACM, New York, 40–51.

HOTSPOT JVM GC. HotSpot JVM GC. http://java.sun.com/javase/technologies/hotspot/gc/index.jsp.
JONES, R. E. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory Management.

Wiley, New York. (With a chapter on Distributed Garbage Collection by R. Lins.)
JONKERS, H. B. M. 1979. A fast garbage compaction algorithm. Inform. Process. Lett. 9, 1, 25–30.
KERMANY, H. AND PETRANK, E. 2006. The Compressor: Concurrent, incremental and parallel com-

paction. In Proceedings of SIGPLAN Conference on Programming Languages Design and Imple-
mentation. ACM, New York, 354–363.

LANG, B. AND DUPONT, F. 1987. Incremental incrementally compacting garbage collection. In Pro-
ceedings of the Symposium on Interpreters and Interpretive Techniques (SIGPLAN’87). ACM,
New York, 253–263.

LAROSE, M. AND FEELEY, M. 1998. A compacting incremental collector and its performance in
a production quality compiler. In Proceedings of the 1st International Symposium on Memory
Management (ISMM’98).ACM, New York, 1–9.

LEVANONI, Y. AND PETRANK, E. 2006. An on-the-fly reference counting garbage collector for Java.
ACM Trans. Program. Lang. Syst. 28, 1.

LIEBERMAN, H. AND HEWITT, C. E. 1981. A real-time garbage collector based on the lifetimes of
objects. AI Memo 569a, MIT, Cambridge, MA.

MARTIN, J. J. 1982. An efficient garbage compaction algorithm. Comm. ACM 25, 8, 571–581.
MORRIS, F. L. 1978. A time- and space-efficient garbage compaction algorithm. Comm. ACM 21,

8, 662–5.
OPENJDK. Open Source J2SE. http://openjdk.java.net.
OSSIA, Y., BEN-YITZHAK, O., GOFT, I., KOLODNER, E. K., LEIKEHMAN, V., AND OWSHANKO, A. 2002. A

parallel, incremental and concurrent GC for servers. In Proceedings of the SIGPLAN Conference
on Programming Languages Design and Implementation. ACM, New York, 129–140.

OSSIA, Y., BEN-YITZHAK, O., AND SEGAL, M. 2004. Mostly concurrent compaction for mark-sweep
GC. In Proceedings of the 4th International Symposium on Memory Management (ISMM’04).
ACM, New York.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

15:26 • M. Wegiel and C. Krintz

PRINTEZIS, T. AND DETLEFS, D. 2000. A generational mostly-concurrent garbage collector. In Pro-
ceedings of the 2nd International Symposium on Memory Management (ISMM’00). ACM, New
York.

SACHINDRAN, N. AND MOSS, E. 2003. MarkCopy: Fast copying GC with less space overhead. In
Proceedings of the ACM Conference on Object-Oriented Systems, Languages and Applications
(OOPSLA’03). ACM, New York.

SACHINDRAN, N., MOSS, J. E. B., AND BERGER, E. D. 2004. MC2: High-performance garbage collection
for memory-constrained environments. In Proceedings of the ACM Conference on Object-Oriented
Systems, Languages and Applications (OOPSLA’04). ACM, New York.

SPEC. SPEC Java Benchmarks. http://www.spec.org.
STEELE, G. L. 1975. Multiprocessing compactifying garbage collection. Comm. ACM 18, 9, 495–

508.
VOLANOMARK. The VolanoMark Benchmark. http://www.volano.com/benchmarks.html
WEGIEL, M. AND KRINTZ, C. 2008. The Mapping Collector: Virtual memory support for genera-

tional, parallel, and concurrent compaction. In Proceedings of the Symposium on Architectural
Support for Programming Languages and Operating Systems. ACM, New York.

WEGIEL, M. AND KRINTZ, C. 2009. Dynamic prediction of collection yield for managed runtimes.
In Proceedings of the Symposium on Architectural Support for Programming Languages and
Operating Systems. ACM, New York.

WILSON, P. R. 1992. Uniprocessor garbage collection techniques. In Proceedings of International
Workshop on Memory Management. Springer-Verlag, Berlin.

YUASA, T. 1990. Real-time garbage collection on general-purpose machines. J. Syst. Softw. 11, 3,
181–198.

Received April 2008; revised September 2008, January 2009, April 2009; accepted June 2009

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 15, Pub. date: October 2009.

