
Automatic Inference of Models for
Statistical Code Compression

Christopher W. Fraser

Microsoft Research
One Microsoft Way,

Redmond, WA 98052 USA

CWFraser@microsoft.com

ABSTRACT
This paper describes experiments that apply machine learning to
compress computer programs, formalizing and automating
decisions about instruction encoding that have traditionally been
made by humans in a more ad hoc manner. A program accepts a
large training set of program material in a conventional compiler
intermediate representation (IR) and automatically infers a
decision tree that separates IR code into streams that compress
much better than the undifferentiated whole. Driving a
conventional arithmetic compressor with this model yields code
30% smaller than the previous record for IR code compression,
and 24% smaller than an ambitious optimizing compiler feeding
an ambitious general-purpose data compressor.

Keywords

Abstract machines, code compaction, code compression, compiler
intermediate languages and representations, data compression,
decision trees, machine learning, statistical models, virtual
machines.

MOTIVATION
Compressing code can reduce important bottlenecks in current
computer systems, including:

• Network transmission time, especially for downloads over
conventional telephone lines, but faster networks may benefit
as well.

• Load time from disk during application start-up.

• ROM for embedded computers.

For example, most software delivered via the Internet is already
compressed; OS-level disk compression implicitly reduces load
time; and handheld computers routinely compress the applications
in ROM. For many such scenarios, memory or transmission time
is much scarcer than processor cycles, and the "cost" of any

Copyright © 1999 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept,
ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

reasonable incremental decompression can be negative. That is,
saving even a few percent in size frees up more than enough
resources to implement the decompressor. Some scenarios —
particularly those that require direct interpretation of the
compressed code — do not fit these requirements, but many do.

This paper's principal focus is not the details of the actual
encoding but rather the more basic problem of statistical models
that reduce entropy, because such models lead directly to a variety
of compact encodings. The entropy of English text, for example,
has been studied for decades [Shannon] with results including a
good understanding of the limits on text compression. Now that
compiled code accounts for so much of the data transmitted
between and stored on many computer systems, its entropy and
limits merit similar study.1

BACKGROUND: DATA COMPRESSION
Current general-purpose data compressors follow a statistical
modeler with a coder [Bell, Cleary, and Witten]. LZ coders
[Lempel and Ziv, Ziv and Lempel] can be modeled by such
systems, but the converse is not true, so it suffices to focus on
statistical modelers.

As the input is compressed or decompressed, the modeler tracks
some context and identifies a probability distribution that the
coder (e.g., an arithmetic coder) uses to encode the next token.
For example, when compressing English text, the letter Q is often
followed by the letter U, so a good modeler responds to a Q by
switching to a distribution that assigns a high probability to a U
and thus encodes it in less space.

Markov models use the last N tokens to help predict and compress
the next token. That is, for an alphabet A, an order-N Markov
model uses up to |A|N probability distributions, one for each
combination of the last N tokens. PPM (Prediction by Partial
Matching) modelers blend or switch on the fly between several
Markov models, preferring more history when the recent context
has been seen often and backing off to use less history when it has
less experience with the current context.

Whatever the method, the objective is to build a model that
assigns a non-zero probability to every valid message, and high
probabilities to messages that resemble those in some

1 The subject of this research is code compression, so it is

assumed throughout this paper that the data segment — that is,
initialized data and out-of-line literals — are handled separately,
perhaps by a general-purpose data compressor.

representative training set S. The higher the probability assigned
to a message M=m1 m2 … mN, the shorter its minimum code-
length, which is expressed by its entropy and equals

−N⋅Σ P(mi) ⋅log2(P(mi))
where P(x) denotes the model’s estimate of the probability of the
symbol x. Typically P(x) is approximated using frequencies from
the training set S organized within the model's structure. For
example, an order-0 Markov model estimates P(x) with freq(x)/|S|,
where freq(x) denotes the number of times that x appears in the
training set S.

The partition of the compression problem into modeling plus
coding is a programming abstraction: the modeler knows nothing
about the encoding, and the coder's only knowledge of the input
comes from the probability distributions. Coders are usefully left
to experts in data compression, but statistical models can benefit
from experience with possible sources of redundancy in the data
being compressed, here compiler IR code.

BACKGROUND: MACHINE LEARNING OF

DECISION TREES
One way to identify good contexts is to propose a large number of
predictors that might be worth tracking and then automatically
inferring a decision tree that sifts through them. For example,
consider the problem of compressing a postfix compiler IR code.
Predictors might include the stack height, the last few operators
and a bit that records if the next input is an opcode or literal data.
An inferred decision tree might be:

if height = 0 then use distribution1
else if inLiteral then use distribution2
else use distribution3

In this example, one predictor (the last operator) has not been
used, and the stack height has been found more useful than the
literal indicator.

The input to algorithms that infer such decision trees is a training
set S (in the application at hand, a large set of compiler IR code)
and a set of predictors associated with each token in S (e.g., the
last few symbols, the stack height, the types of the elements on the
stack). The output is a decision tree that tests some of the
predictors and, at each leaf, yields a probability distribution that
suits the context defined by those tests.

The standard algorithm operates as follows:

• For each predictor P, and for each value VP assumed by P in
the training set S, perform a trial partition of the sample into
two parts: those for which P equals VP, and those for which
P equals something else. Compute the entropy in bits of each
part and the sum of the two entropies. Let Emin denote the
minimal such sum for all values of P and VP.

• If Emin is less than entropy(S), then add to the decision tree a
node that compares the predictor and value associated with
Emin. Partition the sample based on this comparison and
recursively infer a decision tree for each half of the partition.

• Otherwise, return a decision-tree leaf, namely the probability
distribution of the sample S.

This process converges because eventually the decision tree forms
sub-samples with only one distinct value, for which the entropy is
zero.

For example, a typical run from the measurements below includes
a subsample with entropy of 91 bits. The decision-tree learning
algorithm discovers, however, that splitting the sample by
comparing one of the predictors with one of its values yields sub-
samples with entropies 65 bits and zero bits (because the latter
partition includes only one distinct value). No other predictor
yields a more promising partition for this sample, so the algorithm
commits to this particular comparison and recursively tries the
smaller partitions, though the second bottoms out immediately.

The research presented below has used two different programs to
infer decision trees: a straightforward implementation of the
textbook algorithm above [Langley] partly tailored to code
compression, and a more statistically sophisticated, general-
purpose system [Chickering, Heckerman, and Meek], which
produces better decision trees and can produce “decision dags,”
which allow similar contexts or partitions to share frequency
distributions. The general-purpose system produced the
measurements presented below, but the special-purpose
implementation has been useful for simple experiments and may
prove necessary to compress larger inputs.

This inference process is expensive but not prohibitive. This
research typically used 20-50 predictors drawn from a space of
about 100 values and generated decision trees in 10-20 minutes
on a 300MHz P2 with 256MB of RAM. These costs are currently
too high for routine compression, but not for the definition of
compressed instruction set nor for compressing code for delivery
via constrained media such as ROM or slow networks.

IR PREDICTORS
IR code is full of material that can help predict what’s coming
next. For example, after a comparison instruction, conditional
branches are far more common than anything else. Otherwise,
why would the programmer and compiler place the comparison
there? Compressors can exploit this fact by using an especially
short opcode for the branch in this special context, or by
compressing with an equivalent probability distribution.

Opcodes can also help predict elements of the operand stream. For
example, programs are much more likely to add 1 than 3, and a
load into register R tends to increase the probability that the next
instruction or two reads R.

Thus the probability distribution of opcodes is different after
comparisons, and likewise the probability distribution of operands
is different after adds and loads. The problem at hand is
identifying a set of distributions that compresses typical programs
efficiently. The approach presented here proposes a large number
of potentially useful predictors and applies a machine-learning
algorithm to identify the predictors and contexts that prove useful
in a large training set.

This research uses three kinds of predictors:

• The last few (typically 10-20) tokens seen. Such “Markov”
predictors capture idioms such as the compare-branch and
add-1 patterns above. The predictors give the modeler access
to the information tracked by both Markov and PPM
modelers.

• Computed predictors such as the stack height (the IR is
postfix) and datatype — integer, real, or pointer — of the top
few stack elements. Computed predictors encode domain-

specific knowledge that is not explicitly available to general-
purpose compressors.

• Reduced predictors, which project a set of related predictors
(e.g., the opcodes EQ, NE, GT, GE, LT, LE) onto a singleton
(e.g., REL), which naturally occurs more often and thus
allows the machine-learning phase to arrive at useful
frequency distributions more quickly. The reduced predictors
do not replace the original, unreduced predictors; rather, both
the reduced and unreduced predictors are made available to
the machine-learning algorithm, which is free to choose
whichever works best in each context. Reduced predictors,
like computed predictors, also add domain-specific
knowledge.

In principle, a good decision-tree generator and data compressor
should be able to do without computed and reduced predictors,
given enough training data, but the extra heuristic data is easy to
provide and helps the system find a useful decision tree much
sooner.

Predictors vary widely in expected value:

• When the stack is empty, binary operators are syntactically
invalid, so their probabilities are zero, and the coder should
waste no coding bits on them. Indeed, in this context, there is
no need to code for any but null-ary or leaf opcodes.

• When the top of the stack holds an address, an indirection
opcode typically has a higher than average probability, and
floating-point opcodes, for example, are invalid.

• When the previous opcodes leave integers on top of the
stack, the probability distribution is surely skewed somewhat
— for example, ADD is typically more probable than DIV —
but it is less skewed and thus less profitable than the two
partitions discussed just above.

THE RAW INPUT
For the measurements below, lcc was adapted [Fraser and
Hanson] to emit a linearized, postfix rendition of its IR code
stream, which roughly resembles code for a stack VM. For
example, it transforms the C statement i=j into the first column
below:

ADDRGP i push the address of global j

ADDRGP j push the address of global i

INDIRI
pop an address and push the int at that
address

ASGNI
pop an address and int and store the
latter at the former

Next, all trivially inferrable IR data-types and sizes — for
example, lcc's distinct integer and real addition opcodes are
gratuitous when the stack-type predictors uniquely identify the
opcode's type qualifier — are removed, which reduced2 lcc’s 119

2 Reducing the operator set is not to be confused with reduced

predictors. Reducing the operator set effects predictees and can
discard only information that can be reconstructed from context.
Reducing predictors effects only predictors and can discard any
information, though the machine-learning system is likely to
find little use for predictors that discard too much (or, for that
matter, too little) information.

opcodes to 56. Given enough data and time, the decision-tree
inference algorithm should, of course, be able to replicate this
trick automatically, but this transformation was an easy way to
save time.

Ignoring the literals — for example, the addresses i and j — for
the time being, the next step generates the predictors that are
available just before each of the opcodes at hand, e.g.,

predictee
stack
height

tyTop prev prev2 …

ADDRG 0 None None None …
ADDRG 1 addr ADDRG None …

INDIRI 1 addr ADDRG ADDRG …
ASGNI 2 int INDIRI ADDRG …

The result is a large, two-dimensional table. It has one row for
each token that lcc emits. Its first column holds those tokens, and
the remaining columns hold the predictors available (i.e., the
context or state) at that site, which is just before that predictee was
seen. The predictors comprise the state that is available to help
predict the predictee. They are the raw material for the contexts or
partitions that are automatically inferred and represented as a
decision tree.

The instruction stream also includes material other than operators,
namely:

• Immediate constants.

• Global identifiers.

• Offsets of locals and formals.

• Label definitions and references.

All of these streams are folded into the opcode stream, in order to
make them available as both predictors and predictees. Modest
preprocessing is performed to make them more useful in these
roles and to avoid gratuitous bloat:

• Immediate constants are represented by the corresponding
string of decimal digits. For example, the IR that pushes 14
onto the stack is represented with three bytes: the lcc IR
opcode CNST, the ASCII digit 1, and the ASCII digit 4. A
more conventional fixed-width representation for constants
did not compress as well, presumably because the extra
zeroes diluted the more useful predictors. This representation
effectively adds eleven “opcodes” — one for each of the ten
decimal digits, plus one for the minus sign — to the 56
described above.

• References to globals are separated by segment (code versus
data) and passed through a MTF coder3. The resulting
integers are coded just like the constants above, and the
escaped string names are moved to a separate string table,
which is compressed by a conventional text compressor.

3 A move-to-front or MTF coder maintains a buffer, which starts

empty. The coder then repeatedly reads the next input token X.
If X is in the buffer, then the coder emits the number of the
position in which X appears and moves X to the head of the
buffer. Otherwise, the coder emits an escape code followed by
X and inserts X at the head of the buffer.

• References to locals and formals are also MTF-coded, but
their respective MTF buffers are naturally cleared between
procedures.

• Labels are renumbered consecutively — thus obviating the
need to include a label number with each label definition —
and label references are delta-coded (i.e., made relative to the
number implicit in the last label definition).

The three cases immediately above add five opcodes — one to
flag the head of a new procedure and one for each of the four
MTF escape codes — which brings the number of “opcodes” to
72. That is, the lcc back end employed in this research emits
output that uses an alphabet of 72 different symbols.

The methods above, of course, do some compression themselves,
but the literal and constant data have to be represented somehow,
and it is arguable that the encodings above are natural for the
material in question: delta-coding is the obvious choice for label
numbers that grow steadily during compilation, and MTF-coding
is the natural expression in this context of the well-known
principle of temporal locality.

EXPERIMENTAL MEASUREMENTS
Table 1 compares the method of this paper with several other
compressors. The compressee is the GNU C compiler, gcc. That
is, the code being compressed is the IR code generated by lcc for
gcc. The IR code is represented as described in the previous
section.

Gzip [Gailly and Adler] is version 1.2.4 of the currently
ubiquitous GNU compression utility, and Bzip2 [Seward] is a
Burrows-Wheeler compressor [Burrows and Wheeler]. Azip is an
arithmetic compressor that uses a single frequency distribution
computed during a pre-scan of the input; that is, it uses a memory-
less or order-zero Markov model.

Bytes Compressor
1,015,495 uncompressed

589,393 azip

295,588 gzip

287,260 “wire-code" [Ernst]
249,165 bzip2

195,236 this research

Table 1. Comparison of IR code compressors.

The compressed string names for the global symbols add another
6,554 bytes, which is necessary for a fair comparison with the
"wire code" row in Table 1 but not for comparisons with any other
values in Tables 1-3, which count only the code segment and do
not include symbolic information.

The present method’s result is 30% smaller than the “wire code”
in Table 1 [Ernst et al], which appears to be the previous record
for the compression of comparable data. The cited paper starts
with a larger encoding of the lcc IR, namely 1,381,304 bytes
uncompressed and 380,351 bytes after gzip. It thus seems likely
that the wire code would benefit from starting with the new
representation above, particularly its representation of literal and
constant data, but it is not possible to quantify this speculation
without repeating the work on the wire code.

Ideally, Table 1 would also include comparisons with Franz’s
“slim binaries” for Oberon [Franz; Franz and Kistler] and the
emerging Java class-file compressors [Horspool and Corless], but
these methods require different source languages, so no direct
comparisons are possible.

Table 2 compares the compression of lcc’s IR and x86 code. The
IR code compresses considerably better. It starts off only about
10% smaller, but this margin widens with all of the tested
compressors.

lcc’s IR code lcc’s x86 code Compressor

1,015,495 1,122,991 uncompressed

589,393 786,096 azip

287,260 370,257 gzip

249,165 304,922 bzip2

195,236 NA this research

Table 2. Compressing IR versus machine code.

When the goal of compression is the efficient delivery of an
executable via some bottleneck, the measurements in Table 2
suggest that it can be effective to transmit IR code and generate
code on the receiver, although the methods described in this paper
are being adapted to compress conventional executables, so this
trade-off might change.

Table 3 shows the effect of vigorous optimization. It parallels
Table 2 but with x86 code from the Microsoft Visual C/C++
compiler, which was configured to minimize space usage (namely,
option “/O1”).

lcc’s IR code MSVC /O1 Compressor

1,015,495 623,581 uncompressed

589,393 447,563 azip

287,260 299,430 gzip

249,165 255,440 bzip2

195,236 NA this research

Table 3. Compressing IR vs. optimized machine code.

Despite the handicap of a much larger starting point, aggressive
IR compression yields a result 24% smaller than aggressively
optimized (CISC) machine code fed to the best of the general-
purpose data compressors in this trial.

The decision dag generated for compressing gcc has 854 nodes
but only 66 leaves. That is, the input is divided into 855 streams
but many are similar enough that they compress well with only 66
distinct frequency distributions. A straightforward representation
of the decision dag compresses to 9022 bytes and could be
included with the compressed data, but the machine-learning
software takes precautions to avoid overfitting the decision dag to
its input, so the dag should be useful for many compressees, and
thus many applications would amortize the cost of transmitting or
storing the dag over many uses.

RELATED WORK
The literature on code compression is large [van de Wiel], though
much of it concerns methods that either require no decompression

(e.g., synthesizing procedures from replicated codes) or can be
decompressed in hardware, which currently requires techniques
that are simpler than this one, so a full review of the literature
would be neither germane nor fair.

Closer in spirit to the present research are compressors that work
on compiler IR or VM code [Ernst et al; Franz; Franz and Kistler;
Fraser and Proebsting; Horspool and Corliss; Proebsting]. In
general, these compressors divide their input into manually
identified streams or exploit repeated pairs or trees or both.

The present method was designed to subsume these two methods
with a single, more general method. The leaves of the decision
tree partition the input into streams of similar data, but the
partitioning is now automatic, and the streams are far finer than is
practical with manual identification. The predictors reach back far
enough to catch all but the largest juxtapositions, but the method
is not obliged to use all predictors and can include patterns with
“holes” in them. The system also has access to computed and
reduced predictors that have no clear analogues in the previous
work, and it is easily extended by adding new predictors.

Indeed, this research can be regarded as the next step in a
progression toward increasing automation of code compression:

• Much early work on statistical modeling of program code
was done as part of a manual instruction set design. The
designers picked some or all of their compressed instruction
sets by eyeballing opcode frequencies. They identified the
heuristics or patterns to use — for example, all pairs — and
then they also identified the pairs that looked best [Sweet].

• More recent efforts reduce the manual component by having
a program identify the best patterns (e.g., opcode-opcode and
opcode-literal pairs in BRISC [Ernst et al] or the opcode
trees in the previous record-holding "wire code" [Ernst et
al]). This automation helps, but it became clear that different
heuristics suit different contexts: sometimes pairs are best,
sometimes triples, sometimes using a destination register to
predict a subsequent source register, etc.

• This paper reduces manual effort still further. The human
identifies not the heuristics or patterns, but rather identifies a
set of heuristics that might help in some contexts. The
software then selects the combinations that yield good
results.

ACKNOWLEDGMENTS
Max Chickering, David Heckerman, David Hovel, and Chris
Meeks supplied the general-purpose decision-dag generator and
were generous with their time answering my questions and
adapting their code. The author is also grateful for suggestions
and support from Suzanne Bunton, Will Evans, Bill Gates, Dave
Hanson, Steve Lucco, John Miller, Nathan Myhrvold, Todd
Proebsting, and Rick Rashid.

REFERENCES
[1] Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text

Compression. Prentice Hall, 1990.

[2] M. Burrows and D. J. Wheeler. A block-sorting lossless data
compression algorithm. Digital SRC research report 124,
5/10/94.

[3] D. Chickering, D. Heckerman, and C. Meek. A Bayesian
approach to learning Bayesian networks with local structure.
Proceedings of the Thirteenth Conference on Uncertainty in
Artificial Intelligence, Morgan Kaufman, 8/97.

[4] Jens Ernst, William Evans, Christopher W. Fraser, Steven
Lucco, and Todd A. Proebsting. Code compression.
PLDI’97:358-365, 6/97.

[5] M. Franz and T. Kistler. Slim binaries. TR 96-24, Dept of
Information and Computer Science, University of California,
Irvine, 6/96.

[6] M. Franz. Adaptive compression of syntax trees and iterative
dynamic code optimization: Two basic technologies for
mobile-object systems. TR 97-04, Dept of Information and
Computer Science, University of California, Irvine, 2/97.

[7] Christopher W. Fraser and David R. Hanson. A Retargetable
C Compiler: Design and Implementation. Addison Wesley
Longman, 1995.

[8] Christopher W. Fraser and Todd A. Proebsting. Custom
Instruction Sets For Code Compression. Unpublished
manuscript, http://research.microsoft.com/~toddpro/papers/
pldi2.ps, 10/95.

[9] Free Software Foundation. GCC – The GNU C Compiler.
http://www.gnu.org/software/gcc, 8/13/98.

[10] Jean-Loup Gailly and Mark Adler. The gzip home page.
http://w3.gzip.org. 1/21/99.

[11] Pat Langley. Elements of Machine Learning. Morgan
Kaufmann, 1996.

[12] R. Nigel Horspool and Jason Corless. Tailored compression
of Java class files. Software — Practice and Experience
28(12):1253-1268, 10/98.

[13] A. Lempel and J. Ziv. On the complexity of finite sequences.
IEEE Transactions on Information Theory 22(1):75-81,
1/76.

[14] Todd A. Proebsting. Optimizing an ANSI C interpreter with
superoperators. POPL’95: 322-332, 1/95.

[15] Julian Seward. The bzip2 and libbzip2 home page.
http://www.muraroa.demon.co.uk, 2/11/99.

[16] C. E. Shannon. Prediction and entropy of printed English.
Bell System Technical Journal 30:50-64, 1/51.

[17] Richard E. Sweet. Empirical analysis of the Mesa instruction
set. ASPLOS’82:158-166. 3/82.

[18] Rik van de Wiel. Code compaction bibliography.
http://www.win.tue.nl/cs/pa/rikvdw/bibl.html, 2/3/99.

[19] Tong Lai Yu. Data compression for PC software distribution.
Software-Practice & Experience 26(11):1181-1195, 11/96.

[20] J. Ziv and A. Lempel. Compression of individual sequences
via variable-rate coding. IEEE Transactions on Information
Theory 24(5):530-536, 9/78.

