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ABSTRACT

This paper describes experiments that apply machine learning to
compress computer programs, formalizing and automating
decisions about instruction encoding that have traditionally been
made by humans in a more ad hoc manner. A program accepts a
large training set of program materia in a conventional compiler
intermediate representation (IR) and automaticaly infers a
decision tree that separates IR code into streams that compress
much better than the undifferentiated whole. Driving a
conventional arithmetic compressor with this model yields code
30% smaller than the previous record for IR code compression,
and 24% smaller than an ambitious optimizing compiler feeding
an ambitious general -purpose data compressor.
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MOTIVATION
Compressing code can reduce important bottlenecks in current
computer systems, including:

*  Network transmission time, especialy for downloads over
conventiona telephone lines, but faster networks may benefit
aswell.

*  Load time from disk during application start-up.
*  ROM for embedded computers.

For example, most software delivered via the Internet is aready
compressed; OS-level disk compression implicitly reduces load
time; and handheld computers routinely compress the applications
in ROM. For many such scenarios, memory or transmission time
is much scarcer than processor cycles, and the "cost" of any

reasonable incremental decompression can be negative. That is,
saving even a few percent in size frees up more than enough
resources to implement the decompressor. Some scenarios —
particularly those that require direct interpretation of the
compressed code — do not fit these requirements, but many do.

This paper's principal focus is not the details of the actual
encoding but rather the more basic problem of statistical models
that reduce entropy, because such models lead directly to a variety
of compact encodings. The entropy of English text, for example,
has been studied for decades [8tan] with results including a
good understanding of the limits on text compression. Now that
compiled code accounts for so much of the data transmitted
between and stored on many computer systésmntropy and
limits merit similar study.

BACKGROUND: DATA COMPRESSION

Current general-purpose data compressors follow a statistical
modeler with a coder [Bell, Cleary, and Witten]. LZ coders
[Lempel and Ziv, Ziv and Lempel] can be modeled by such
systems, but the converse is not true, so it suffices to focus on
statistical modelers.

As the input is compressed or decompressed, the modeler tracks
some context and identifies a probability distribution that the
coder (e.g., an arithmetic coder) uses to encode the next token.
For example, when compressing English text, the letter Q is often
followed by the letter U, so a good modeler responds to a Q by
switching to a distribution that assigns a high probability to a U
and thus encodes it in less space.

Markov models use the last N tokens to help predict and compress
the next token. That is, for an alphabet A, an order-N Markov
model uses up to [A|probability distributions, one for each
combination of the last N token®PM (Prediction by Partial
Matching) modelers blend or switch on the fly between several
Markov models, preferring more history when the recent context
has been seen often and backing off to use less history when it has
less experience with the current context.
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representative training set S. The higher the probability assigned For example, a typical run from the measurements below includes
to a message M=m; m, ... my, the shorter its minimum code- a subsample with entropy of 91 bits. The decision-tree learning
length, which is expressed by @stropy and equals algorithm discovers, however, that splitting the sample by
~-NIX P(m) Dbg,(P(m)) comparing one of the predictors with one of its values yields sub-
where P(x) denotes the model’'s estimate of the probability of thesamples with entropies 65 bits and zero bits (because the latter
symbol x. Typically P(x) is approximated using frequencies from partition includes only one distinct value). No other predictor
the training set S organized within the model's structure. For Yields a more promising partition for this sample, so the algorithm

example, an order-0 Markov model estimates P(x) fré(x)/|S|, commits to this particular comparison and recursively tries the
wherefreq(x) denotes the number of times that x appears in the Smaller partitions, though the second bottoms out immediately.
training set S The research presented below has used two different programs to

The partition of the compression problem into modeling plus infer decision trees: a straightforward implementation of the
coding is a programming abstraction: the modeler knows nothingtextbook algorithm above [Langley] partly tailored to code
about the encoding, and the coder's only knowledge of the inputcompression, and a more statistically sophisticated, general-
comes from the probability distributions. Coders are usefully left purpose system [Chickering, Heckerman, and Meek], which
to experts in data compression, but statistical models can benefiproduces better decision trees and can produce “decision dags,”
from experience with possible sources of redundancy in the datawhich allow similar contexts or partitions to share frequency

being compressed, here compiler IR code. distributions. The general-purpose system produced the

measurements presented below, but the special-purpose
BACKGROUND: MACHINE LEARNING OF implementation has been useful for simple experiments and may
DECISION TREES prove necessary to compress larger inputs.

One way to identify good contexts is to propose a large number ofThis inference process is expensive but not prohibitive. This
predictors that might be worth tracking and then automatically research typically used 20-50 predictors drawn from a space of
inferring a decision tree that sifts through them. For example, about 100 values and generated decision trees in 10-20 minutes
consider the problem of compressing a postfix compiler IR code.on a 300MHz P2 with 256MB of RAM. These costs are currently
Predictors might include the stack height, the last few operatorstoo high for routine compression, but not for the definition of
and a bit that records if the next input is an opcode or literal data.compressed instruction set nor for compressing code for delivery
An inferred decision tree might be: via constrained media such as ROM or slow networks.

if height = 0 then use distributionl
else if inLiteral then use distribution2
else use distribution3

IR PREDICTORS

IR code is full of material that can help predict what's coming
next. For example, after a comparison instruction, conditional
In this example, one predictor (the last operator) has not beerpranches are far more common than anything else. Otherwise,
used, and the stack height has been found more useful than th@hy would the programmer and compiler place the comparison
literal indicator. there? Compressors can exploit this fact by using an especially

The input to algorithms that infer such decision trees is a trainingShort opcode for the branch in this special context, or by
set S (in the application at hand, a large set of compiler IR code)compressing with an equivalent probability distribution.

and a set of predictors associated with each token in S (e.g., th@®pcodes can also help predict elements of the operand stream. For
last few symbols, the stack height, the types of the elements on th@xample' programs are much more likely to add 1 than 3, and a
stack). The output is a decision tree that tests some of thejoad into register R tends to increase the probability that the next
predictors and, at each leaf, yields a probability distribution that instruction or two reads R.

suits the context defined by those tests. Thus the probability distribution of opcodes is different after

The standard algorithm operates as follows: comparisons, and likewise the probability distribution of operands

«  For each predictor P, and for each valyeagsumed by P in 1S different after adds and loads. The problem at hand is
the training set S, perform a trial partition of the sample into |de_n_t|fy|ng a set of distributions that compresses typical programs
two parts: those for which P equals, \and those for which  €fficiently. The approach presented here proposes a large number
P equals something else. Compute the entropy in bits of eactPf po_tentlally use_ful predlctqrs and applies a machine-learning
part and the sum of the two entropies. Lgf, Benote the _algorlthm to _|d_ent|fy the predictors and contexts that prove useful
minimal such sum for all values of P and V in a large training set.

e If Enn is less than entropy(S), then add to the decision tree a1 S research uses three kinds of predictors:
node that compares the predictor and value associated withe  The last few (typically 10-20) tokens seen. Such “Markov”
Enin. Partition the sample based on this comparison and predictors capture idioms such as the compare-branch and
recursively infer a decision tree for each half of the partition. add-1 patterns above. The predictors give the modeler access
to the information tracked by both Markov and PPM

*  Otherwise, return a decision-tree leaf, namely the probability
modelers.

distribution of the sample S.

This process converges because eventually the decision tree forms ~ Computed predictors such as the stack height (the IR is

sub-samples with only one distinct value, for which the entropy is ~ POstfix) and datatype — integer, real, or pointer — of the top
zero. few stack elements. Computed predictors encode domain-



specific knowledge that is not explicitly available to general-
puUrpose COmpressors.

*  Reduced predictors, which project a set of related predictors
(e.g., the opcodes EQ, NE, GT, GE, LT, LE) onto asingleton
(e.g., REL), which naturally occurs more often and thus
allows the machine-learning phase to arrive at useful
frequency distributions more quickly. The reduced predictors
do not replace the original, unreduced predictors; rather, both
the reduced and unreduced predictors are made available to
the machine-learning algorithm, which is free to choose
whichever works best in each context. Reduced predictors,
like computed predictors, aso add domain-specific
knowledge.

In principle, a good decision-tree generator and data compressor
should be able to do without computed and reduced predictors,
given enough training data, but the extra heuristic data is easy to
provide and helps the system find a useful decision tree much
sooner.

Predictors vary widely in expected value:

+  When the stack is empty, binary operators are syntactically
invalid, so their probabilities are zero, and the coder should
waste no coding bits on them. Indeed, in this context, thereis
no need to code for any but null-ary or leaf opcodes.

*  When the top of the stack holds an address, an indirection
opcode typicaly has a higher than average probability, and
floating-point opcodes, for example, are invalid.

«  When the previous opcodes leave integers on top of the
stack, the probability distribution is surely skewed somewhat
— for example, ADD is typically more probable than DIV —

opcodes to 56. Given enough data and time, the decision-tree
inference algorithm should, of course, be able to replicate this
trick automatically, but this transformation was an easy way to

save time.

Ignoring the literals — for example, the addressaadj — for
the time being, the next step generates the predictors that are
available just before each of the opcodes at hand, e.g.,

stack

predictee height tyTop prev prev2
ADDRG 0 None None None
ADDRG 1 addr ADDRG None
INDIRI 1 addr ADDRG ADDRG
ASGNI 2 int INDIRI  ADDRG

The result is a large, two-dimensiona table. It has one row for
each token that |cc emits. Its first column holds those tokens, and
the remaining columns hold the predictors available (i.e., the
context or state) at that site, which isjust before that predictee was
seen. The predictors comprise the state that is available to help
predict the predictee. They are the raw material for the contexts or
partitions that are automatically inferred and represented as a
decision tree.

The instruction stream also includes material other than operators,
namely:

¢ Immediate constants.

Global identifiers.

Offsets of locals and formals.

Label definitions and references.

All of these streams are folded into the opcode stream, in order to

but it is less skewed and thus less profitable than the twomake them available as both predictors and predictees. Modest

partitions discussed just above.

THE RAW INPUT

For the measurements below, lcc was adapted [Fraser and

Hanson] to emit a linearized, postfix rendition of its IR code
stream, which roughly resembles code for a stack VM. For
example, it transforms the C statemémjt into the first column
below:

ADDRGP i  push the address of global j
ADDRGP j push the address of global i
pop an address and push the int at that
I NDI R address
pop an address and int and store the
ASGN latter at the former
Next, all trivially inferrable IR data-types and sizes — for

example, lIcc's distinct integer and real addition opcodes are

gratuitous when the stack-type predictors uniquely identify the
opcode's type qualifier — are removed, which redfidezis 119

2 Reducing the operator set is not to be confused with reduced

predictors. Reducing the operator set eff@ctslictees and can
discard only information that can be reconstructed from context.
Reducing predictors effects onpyedictors and can discard any
information, though the machine-learning system is likely to
find little use for predictors that discard too much (or, for that
matter, too little) information.

preprocessing is performed to make them more useful in these
roles and to avoid gratuitous bloat:

Immediate constants are represented by the corresponding
string of decimal digits. For example, the IR that pushes 14
onto the stack is represented with three bytes: the Icc IR
opcode CNST, the ASCII digit 1, and the ASCII digit 4. A
more conventional fixed-width representation for constants

did not compress as well, presumably because the extra
zeroes diluted the more useful predictors. This representation
effectively adds eleven “opcodes” — one for each of the ten
decimal digits, plus one for the minus sign — to the 56
described above.

References to globals are separated by segment (code versus
data) and passed through a MTF cddéfhe resulting
integers are coded just like the constants above, and the
escaped string names are moved to a separate string table,
which is compressed by a conventional text compressor.

3 A move-to-front or MTF coder maintains a buffer, which starts
empty. The coder then repeatedly reads the next input token X.
If X is in the buffer, then the coder emits the number of the
position in which X appears and moves X to the head of the
buffer. Otherwise, the coder emits an escape code followed by
X and inserts X at the head of the buffer.



»  References to locals and formals are also MTF-coded, but
their respective MTF buffers are naturaly cleared between
procedures.

e Labes are renumbered consecutively — thus obviating the
need to include a label number with each label definition —

Ideally, Table 1 would also include comparisons with Franz's
“slim binaries” for Oberon [Franz; Franz and Kistler] and the
emerging Java class-file compressors [Horspool and Corless], but
these methods require different source languages, so no direct
comparisons are possible.

and label references are delta-coded (i.e., made relative to thdable 2 compares the compression of Icc’s IR and x86 code. The

number implicit in the last label definition).

The three cases immediately above add five opcodes — one t
flag the head of a new procedure and one for each of the fou
MTF escape codes — which brings the number of “opcodes” to
72. That is, the lcc back end employed in this research emits

output that uses an alphabet of 72 different symbols.

(0]
r

IR code compresses considerably better. It starts off only about
10% smaller, but this margin widens with all of the tested

The methods above, of course, do some compression themselves,
but the literal and constant data have to be represeotasthow,

and it is arguable that the encodings above are natural for the
material in question: delta-coding is the obvious choice for label

compressors.
Icc’'s IR code| lcc’s x86 code  Compresso
1,015,495 1,122,991 | uncompresseq
589,393 786,096 | azip
287,260 370,257 | gzip
249,165 304,922 | bzip2
195,236 NA | this research

numbers that grow steadily during compilation, and MTF-coding
is the natural expression in this context of the well-known
principle of temporal locality.

EXPERIMENTAL MEASUREMENTS

Table 1 compares the method of this paper with several other,

Table 2. Compressing IR ver sus machine code.

When the goal of compression is the efficient delivery of an
executable via some bottleneck, the measurements in Table 2
suggest that it can be effective to transmit IR code and generate

compressors. The compressee is the GNU C compiler, gcc. Tha[:odeon the receiver, although the methods described in this paper

is, the code being compressed is the IR code generated by Icc fo

Lre bei ng adapted to compress conventional executables, so this

gcc. The IR code is represented as described in the previou%ad(_loff might change

section.

Gzip [Gailly and Adler] is version 1.2.4 of the currently
ubiquitous GNU compression utility, and Bzip2 [Seward] is a

Table 3 shows the effect of vigorous optimization. It paralels
Table 2 but with x86 code from the Microsoft Visual C/C++
compiler, which was configured to minimize space usage (namely,

Burrows-Wheeler compressor [Burrows and Wheeler]. Azip is an option “/017).

arithmetic compressor that uses a single frequency distribution
computed during a pre-scan of the input; that is, it uses a memory-

less or order-zero Markov model.
Byteg Compressor
1,015,495 uncompressed
589,393 azip
295,588 gzip
287,26
249,165
195,236

D “wire-code" [Ernst]
bzip2
this research

Table 1. Comparison of IR code compressors.

The compressed string names for the global symbols add another
6,554 bytes, which is necessary for a fair comparison with the
"wire code" row in Table 1 but not for comparisons with any other
values in Tables 1-3, which count only the code segment and do
not include symbolic information.

Icc’s IR code MSVC /01 Compressor
1,015,495 623,581 | uncompressed
589,393 447,563 | azip
287,260 299,430 | gzip
249,165 255,440 | bzip2
195,236 NA | this research

Table 3. Compressing IR vs. optimized machine code.

Despite the handicap of a much larger starting point, aggressive
IR compression yields a result 24% smaller than aggressively
optimized (CISC) machine code fed to the best of the general-
purpose data compressors in thistrial.

The decision dag generated for compressing gcc has 854 nodes
but only 66 leaves. That is, the input is divided into 855 streams
but many are similar enough that they compress well with only 66
distinct frequency distributions. A straightforward representation
of the decision dag compresses to 9022 bytes and could be

The present method’s result is 30% smaller than the “wire code”included with the compressed data, but the machine-learning
in Table 1 [Ernst et al], which appears to be the previous recordsoftware takes precautions to avoid overfitting the decision dag to
for the compression of comparable data. The cited paper startdts input, so the dag should be useful for many compressees, and
with a larger encoding of the lcc IR, namely 1,381,304 bytes thus many applications would amortize the cost of transmitting or
uncompressed and 380,351 bytes after gzip. It thus seems likelytoring the dag over many uses.

that the wire code would benefit from starting with the new

representation above, particularly its representation of literal and

RELATED WORK

constant data, but it is not possible to quantify this speculation The literature on code compression is large [van de Wiel], though

without repeating the work on the wire code.

much of it concerns methods that either require no decompression



(e.g., synthesizing procedures from replicated codes) or can be [2] M. Burrows and D. J. Wheeler. A block-sorting lossless data
decompressed in hardware, which currently requires techniques compression algorithm. Digital SRC research report 124,
that are simpler than this one, so a full review of the literature 5/10/94.

wold be neither germane nor fair. [3] D. Chickering, D. Heckerman, and C. Meek. A Bayesian

Closer in spirit to the present research are compressors that work approach to learning Bayesian networks with local structure.
on compiler IR or VM code [Ernst et a; Franz; Franz and Kistler; Proceedings of the Thirteenth Conference on Uncertainty in
Fraser and Proebsting; Horspool and Corliss; Proebsting]. In Artificial Intelligence, Morgan Kaufman, 8/97.

genera, these compressors divide their input into manualy

identified streams or exploit repeated pairs or trees or both [4] Jens Ernst, William Evans, Christopher W. Fraser, Steven

Lucco, and Todd A. Proebsting. Code compression.
The present method was designed to subsume these two methods PLDI’97:358-365, 6/97.

with a single, more general method. The |eaves of the decision [5] M. Franz and T. Kistler. Slim binaries. TR 96-24, Dept of

tree partition the input into streams of similar data, but the Inf i qc ter Sci Uni itv of Californi
partitioning is now automeatic, and the streams are far finer than is nformation and Lomputer Science, LUniversity of Lalifornia,

practical with manual identification. The predictors reach back far Irvine, 6/96.
enough to catch al but the largest juxtapositions, but the method [6] M. Franz. Adaptive compression of syntax trees and iterative
is not obliged to use all predictors and can include patterns with dynamic code optimization: Two basic technologies for

“holes” in them. The system also has access to computed and  mobile-object systems. TR 97-04, Dept of Information and
reduced predictors that have no clear analogues in the previous = Computer Science, University of California, Irvine, 2/97.

work, and it is easily extended by adding new predictors. [7] Christopher W. Fraser and David R. HansAtRetargetable
Indeed, this research can be regarded as the next step in a C Compiler: Design and Implementation. Addison Wesley
progression toward increasing automation of code compression: Longman, 1995.

+  Much early work on statistical modeling of program code [8] Christopher W. Fraser and Todd A. Proebsting. Custom
was done as part of a manual instruction set design. The  Instruction Sets For Code Compression. Unpublished
designers picked some or all of their compressed instruction ~ manuscript, http://research.microsoft.com/~toddpro/papers/
sets by eyeballing opcode frequencies. They identified the pldi2.ps, 10/95.

heuristics or patterns to use — for example, all pairs — and 9] Free Software Foundation. GCC — The GNU C Compiler.
then they also identified the pairs that looked best [Sweet]. http://www.gnu.org/software/gcc, 8/13/98.
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al]). This automation helps, but it became clear that different Kaufmann, 1996.
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sometimes triples, sometimes using a destination register to of Java class filesSoftware — Practice and Experience
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