
Automatic Inference of Models for 
Statistical Code Compression 

 
Christopher W. Fraser 

Microsoft Research 
One Microsoft Way,  

Redmond, WA 98052 USA 

 

CWFraser@microsoft.com 

 

ABSTRACT 
This paper describes experiments that apply machine learning to 
compress computer programs, formalizing and automating 
decisions about instruction encoding that have traditionally been 
made by humans in a more ad hoc manner. A program accepts a 
large training set of program material in a conventional compiler 
intermediate representation (IR) and automatically infers a 
decision tree that separates IR code into streams that compress 
much better than the undifferentiated whole. Driving a 
conventional arithmetic compressor with this model yields code 
30% smaller than the previous record for IR code compression, 
and 24% smaller than an ambitious optimizing compiler feeding 
an ambitious general-purpose data compressor.  
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MOTIVATION 
Compressing code can reduce important bottlenecks in current 
computer systems, including: 

• Network transmission time, especially for downloads over 
conventional telephone lines, but faster networks may benefit 
as well. 

• Load time from disk during application start-up. 

• ROM for embedded computers. 

For example, most software delivered via the Internet is already 
compressed; OS-level disk compression implicitly reduces load 
time; and handheld computers routinely compress the applications 
in ROM. For many such scenarios, memory or transmission time 
is much scarcer than processor cycles, and the "cost" of any 
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reasonable incremental decompression can be negative. That is, 
saving even a few percent in size frees up more than enough 
resources to implement the decompressor. Some scenarios — 
particularly those that require direct interpretation of the 
compressed code — do not fit these requirements, but many do. 

This paper's principal focus is not the details of the actual 
encoding but rather the more basic problem of statistical models 
that reduce entropy, because such models lead directly to a variety 
of compact encodings. The entropy of English text, for example, 
has been studied for decades [Shannon] with results including a 
good understanding of the limits on text compression. Now that 
compiled code accounts for so much of the data transmitted 
between and stored on many computer systems, its entropy and 
limits merit similar study.1 

BACKGROUND: DATA COMPRESSION 
Current general-purpose data compressors follow a statistical 
modeler with a coder [Bell, Cleary, and Witten]. LZ coders 
[Lempel and Ziv, Ziv and Lempel] can be modeled by such 
systems, but the converse is not true, so it suffices to focus on 
statistical modelers. 

As the input is compressed or decompressed, the modeler tracks 
some context and identifies a probability distribution that the 
coder (e.g., an arithmetic coder) uses to encode the next token. 
For example, when compressing English text, the letter Q is often 
followed by the letter U, so a good modeler responds to a Q by 
switching to a distribution that assigns a high probability to a U 
and thus encodes it in less space. 

Markov models use the last N tokens to help predict and compress 
the next token. That is, for an alphabet A, an order-N Markov 
model uses up to |A|N probability distributions, one for each 
combination of the last N tokens. PPM (Prediction by Partial 
Matching) modelers blend or switch on the fly between several 
Markov models, preferring more history when the recent context 
has been seen often and backing off to use less history when it has 
less experience with the current context. 

Whatever the method, the objective is to build a model that 
assigns a non-zero probability to every valid message, and high 
probabilities to messages that resemble those in some 
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assumed throughout this paper that the data segment — that is, 
initialized data and out-of-line literals — are handled separately, 
perhaps by a general-purpose data compressor. 



representative training set S. The higher the probability assigned 
to a message M=m1 m2 … mN, the shorter its minimum code-
length, which is expressed by its entropy and equals 

−N⋅Σ P(mi) ⋅log2(P(mi)) 
where P(x) denotes the model’s estimate of the probability of the 
symbol x. Typically P(x) is approximated using frequencies from 
the training set S organized within the model's structure. For 
example, an order-0 Markov model estimates P(x) with freq(x)/|S|, 
where freq(x) denotes the number of times that x appears in the 
training set S. 

The partition of the compression problem into modeling plus 
coding is a programming abstraction: the modeler knows nothing 
about the encoding, and the coder's only knowledge of the input 
comes from the probability distributions. Coders are usefully left 
to experts in data compression, but statistical models can benefit 
from experience with possible sources of redundancy in the data 
being compressed, here compiler IR code. 

BACKGROUND: MACHINE LEARNING OF 

DECISION TREES 
One way to identify good contexts is to propose a large number of 
predictors that might be worth tracking and then automatically 
inferring a decision tree that sifts through them. For example, 
consider the problem of compressing a postfix compiler IR code. 
Predictors might include the stack height, the last few operators 
and a bit that records if the next input is an opcode or literal data. 
An inferred decision tree might be: 

if height = 0 then use distribution1 
else if inLiteral then use distribution2 
else use distribution3 

In this example, one predictor (the last operator) has not been 
used, and the stack height has been found more useful than the 
literal indicator. 

The input to algorithms that infer such decision trees is a training 
set S (in the application at hand, a large set of compiler IR code) 
and a set of predictors associated with each token in S (e.g., the 
last few symbols, the stack height, the types of the elements on the 
stack). The output is a decision tree that tests some of the 
predictors and, at each leaf, yields a probability distribution that 
suits the context defined by those tests. 

The standard algorithm operates as follows: 

• For each predictor P, and for each value VP assumed by P in 
the training set S, perform a trial partition of the sample into 
two parts: those for which P equals VP, and those for which 
P equals something else. Compute the entropy in bits of each 
part and the sum of the two entropies. Let Emin denote the 
minimal such sum for all values of P and VP. 

• If Emin is less than entropy(S), then add to the decision tree a 
node that compares the predictor and value associated with 
Emin. Partition the sample based on this comparison and 
recursively infer a decision tree for each half of the partition. 

• Otherwise, return a decision-tree leaf, namely the probability 
distribution of the sample S. 

This process converges because eventually the decision tree forms 
sub-samples with only one distinct value, for which the entropy is 
zero. 

For example, a typical run from the measurements below includes 
a subsample with entropy of 91 bits. The decision-tree learning 
algorithm discovers, however, that splitting the sample by 
comparing one of the predictors with one of its values yields sub-
samples with entropies 65 bits and zero bits (because the latter 
partition includes only one distinct value). No other predictor 
yields a more promising partition for this sample, so the algorithm 
commits to this particular comparison and recursively tries the 
smaller partitions, though the second bottoms out immediately. 

The research presented below has used two different programs to 
infer decision trees: a straightforward implementation of the 
textbook algorithm above [Langley] partly tailored to code 
compression, and a more statistically sophisticated, general-
purpose system [Chickering, Heckerman, and Meek], which 
produces better decision trees and can produce “decision dags,” 
which allow similar contexts or partitions to share frequency 
distributions. The general-purpose system produced the 
measurements presented below, but the special-purpose 
implementation has been useful for simple experiments and may 
prove necessary to compress larger inputs. 

This inference process is expensive but not prohibitive. This 
research typically used 20-50 predictors drawn from a space of 
about 100 values and generated decision trees in 10-20 minutes 
on a 300MHz P2 with 256MB of RAM. These costs are currently 
too high for routine compression, but not for the definition of 
compressed instruction set nor for compressing code for delivery 
via constrained media such as ROM or slow networks. 

IR PREDICTORS 
IR code is full of material that can help predict what’s coming 
next. For example, after a comparison instruction, conditional 
branches are far more common than anything else. Otherwise, 
why would the programmer and compiler place the comparison 
there? Compressors can exploit this fact by using an especially 
short opcode for the branch in this special context, or by 
compressing with an equivalent probability distribution. 

Opcodes can also help predict elements of the operand stream. For 
example, programs are much more likely to add 1 than 3, and a 
load into register R tends to increase the probability that the next 
instruction or two reads R.  

Thus the probability distribution of opcodes is different after 
comparisons, and likewise the probability distribution of operands 
is different after adds and loads. The problem at hand is 
identifying a set of distributions that compresses typical programs 
efficiently. The approach presented here proposes a large number 
of potentially useful predictors and applies a machine-learning 
algorithm to identify the predictors and contexts that prove useful 
in a large training set. 

This research uses three kinds of predictors:  

• The last few (typically 10-20) tokens seen. Such “Markov” 
predictors capture idioms such as the compare-branch and 
add-1 patterns above. The predictors give the modeler access 
to the information tracked by both Markov and PPM 
modelers. 

• Computed predictors such as the stack height (the IR is 
postfix) and datatype — integer, real, or pointer — of the top 
few stack elements. Computed predictors encode domain-



specific knowledge that is not explicitly available to general-
purpose compressors. 

• Reduced predictors, which project a set of related predictors 
(e.g., the opcodes EQ, NE, GT, GE, LT, LE) onto a singleton 
(e.g., REL), which naturally occurs more often and thus 
allows the machine-learning phase to arrive at useful 
frequency distributions more quickly. The reduced predictors 
do not replace the original, unreduced predictors; rather, both 
the reduced and unreduced predictors are made available to 
the machine-learning algorithm, which is free to choose 
whichever works best in each context. Reduced predictors, 
like computed predictors, also add domain-specific 
knowledge. 

In principle, a good decision-tree generator and data compressor 
should be able to do without computed and reduced predictors, 
given enough training data, but the extra heuristic data is easy to 
provide and helps the system find a useful decision tree much 
sooner. 

Predictors vary widely in expected value: 

• When the stack is empty, binary operators are syntactically 
invalid, so their probabilities are zero, and the coder should 
waste no coding bits on them. Indeed, in this context, there is 
no need to code for any but null-ary or leaf opcodes.  

• When the top of the stack holds an address, an indirection 
opcode typically has a higher than average probability, and 
floating-point opcodes, for example, are invalid. 

• When the previous opcodes leave integers on top of the 
stack, the probability distribution is surely skewed somewhat 
— for example, ADD is typically more probable than DIV — 
but it is less skewed and thus less profitable than the two 
partitions discussed just above. 

THE RAW INPUT 
For the measurements below, lcc was adapted [Fraser and 
Hanson] to emit a linearized, postfix rendition of its IR code 
stream, which roughly resembles code for a stack VM. For 
example, it transforms the C statement i=j into the first column 
below: 

ADDRGP i push the address of global j 

ADDRGP j push the address of global i 

INDIRI 
pop an address and push the int at that 
address 

ASGNI 
pop an address and int and store the 
latter at the former 

Next, all trivially inferrable IR data-types and sizes — for 
example, lcc's distinct integer and real addition opcodes are 
gratuitous when the stack-type predictors uniquely identify the 
opcode's type qualifier — are removed, which reduced2 lcc’s 119 
                                                                 
2 Reducing the operator set is not to be confused with reduced 

predictors. Reducing the operator set effects predictees and can 
discard only information that can be reconstructed from context. 
Reducing predictors effects only predictors and can discard any 
information, though the machine-learning system is likely to 
find little use for predictors that discard too much (or, for that 
matter, too little) information. 

opcodes to 56. Given enough data and time, the decision-tree 
inference algorithm should, of course, be able to replicate this 
trick automatically, but this transformation was an easy way to 
save time. 

Ignoring the literals — for example, the addresses i and j — for 
the time being, the next step generates the predictors that are 
available just before each of the opcodes at hand, e.g., 

predictee 
stack 
height 

tyTop prev prev2 … 

ADDRG 0 None None None … 
ADDRG 1 addr ADDRG None … 

INDIRI 1 addr ADDRG ADDRG … 
ASGNI 2 int INDIRI ADDRG … 

The result is a large, two-dimensional table. It has one row for 
each token that lcc emits. Its first column holds those tokens, and 
the remaining columns hold the predictors available (i.e., the 
context or state) at that site, which is just before that predictee was 
seen. The predictors comprise the state that is available to help 
predict the predictee. They are the raw material for the contexts or 
partitions that are automatically inferred and represented as a 
decision tree.  

The instruction stream also includes material other than operators, 
namely: 

• Immediate constants. 

• Global identifiers. 

• Offsets of locals and formals. 

• Label definitions and references. 

All of these streams are folded into the opcode stream, in order to 
make them available as both predictors and predictees. Modest 
preprocessing is performed to make them more useful in these 
roles and to avoid gratuitous bloat: 

• Immediate constants are represented by the corresponding 
string of decimal digits. For example, the IR that pushes 14 
onto the stack is represented with three bytes: the lcc IR 
opcode CNST, the ASCII digit 1, and the ASCII digit 4. A 
more conventional fixed-width representation for constants 
did not compress as well, presumably because the extra 
zeroes diluted the more useful predictors. This representation 
effectively adds eleven “opcodes” — one for each of the ten 
decimal digits, plus one for the minus sign — to the 56 
described above. 

• References to globals are separated by segment (code versus 
data) and passed through a MTF coder3. The resulting 
integers are coded just like the constants above, and the 
escaped string names are moved to a separate string table, 
which is compressed by a conventional text compressor. 
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empty. The coder then repeatedly reads the next input token X. 
If X is in the buffer, then the coder emits the number of the 
position in which X appears and moves X to the head of the 
buffer. Otherwise, the coder emits an escape code followed by 
X and inserts X at the head of the buffer. 



• References to locals and formals are also MTF-coded, but 
their respective MTF buffers are naturally cleared between 
procedures. 

• Labels are renumbered consecutively — thus obviating the 
need to include a label number with each label definition — 
and label references are delta-coded (i.e., made relative to the 
number implicit in the last label definition). 

The three cases immediately above add five opcodes — one to 
flag the head of a new procedure and one for each of the four 
MTF escape codes — which brings the number of “opcodes” to 
72. That is, the lcc back end employed in this research emits 
output that uses an alphabet of 72 different symbols. 

The methods above, of course, do some compression themselves, 
but the literal and constant data have to be represented somehow, 
and it is arguable that the encodings above are natural for the 
material in question: delta-coding is the obvious choice for label 
numbers that grow steadily during compilation, and MTF-coding 
is the natural expression in this context of the well-known 
principle of temporal locality.  

EXPERIMENTAL MEASUREMENTS 
Table 1 compares the method of this paper with several other 
compressors. The compressee is the GNU C compiler, gcc. That 
is, the code being compressed is the IR code generated by lcc for 
gcc. The IR code is represented as described in the previous 
section.  

Gzip [Gailly and Adler] is version 1.2.4 of the currently 
ubiquitous GNU compression utility, and Bzip2 [Seward] is a 
Burrows-Wheeler compressor [Burrows and Wheeler]. Azip is an 
arithmetic compressor that uses a single frequency distribution 
computed during a pre-scan of the input; that is, it uses a memory-
less or order-zero Markov model. 

Bytes Compressor 
1,015,495 uncompressed 

589,393 azip 

295,588 gzip 

287,260 “wire-code" [Ernst] 
249,165 bzip2 

195,236 this research 

Table 1. Comparison of IR code compressors. 

The compressed string names for the global symbols add another 
6,554 bytes, which is necessary for a fair comparison with the 
"wire code" row in Table 1 but not for comparisons with any other 
values in Tables 1-3, which count only the code segment and do 
not include symbolic information. 

The present method’s result is 30% smaller than the “wire code” 
in Table 1 [Ernst et al], which appears to be the previous record 
for the compression of comparable data. The cited paper starts 
with a larger encoding of the lcc IR, namely 1,381,304 bytes 
uncompressed and 380,351 bytes after gzip. It thus seems likely 
that the wire code would benefit from starting with the new 
representation above, particularly its representation of literal and 
constant data, but it is not possible to quantify this speculation 
without repeating the work on the wire code. 

Ideally, Table 1 would also include comparisons with Franz’s 
“slim binaries” for Oberon [Franz; Franz and Kistler] and the 
emerging Java class-file compressors [Horspool and Corless], but 
these methods require different source languages, so no direct 
comparisons are possible. 

Table 2 compares the compression of lcc’s IR and x86 code. The 
IR code compresses considerably better. It starts off only about 
10% smaller, but this margin widens with all of the tested 
compressors. 

lcc’s IR code lcc’s x86 code Compressor 

1,015,495 1,122,991 uncompressed 

589,393 786,096 azip 

287,260 370,257 gzip 

249,165 304,922 bzip2 

195,236 NA this research 

Table 2. Compressing IR versus machine code. 

When the goal of compression is the efficient delivery of an 
executable via some bottleneck, the measurements in Table 2 
suggest that it can be effective to transmit IR code and generate 
code on the receiver, although the methods described in this paper 
are being adapted to compress conventional executables, so this 
trade-off might change. 

Table 3 shows the effect of vigorous optimization. It parallels 
Table 2 but with x86 code from the Microsoft Visual C/C++ 
compiler, which was configured to minimize space usage (namely, 
option “/O1”).  

lcc’s IR code MSVC /O1 Compressor 

1,015,495 623,581 uncompressed 

589,393 447,563 azip 

287,260 299,430 gzip 

249,165 255,440 bzip2 

195,236 NA this research 

Table 3. Compressing IR vs. optimized machine code. 

Despite the handicap of a much larger starting point, aggressive 
IR compression yields a result 24% smaller than aggressively 
optimized (CISC) machine code fed to the best of the general-
purpose data compressors in this trial. 

The decision dag generated for compressing gcc has 854 nodes 
but only 66 leaves. That is, the input is divided into 855 streams 
but many are similar enough that they compress well with only 66 
distinct frequency distributions. A straightforward representation 
of the decision dag compresses to 9022 bytes and could be 
included with the compressed data, but the machine-learning 
software takes precautions to avoid overfitting the decision dag to 
its input, so the dag should be useful for many compressees, and 
thus many applications would amortize the cost of transmitting or 
storing the dag over many uses. 

RELATED WORK 
The literature on code compression is large [van de Wiel], though 
much of it concerns methods that either require no decompression 



(e.g., synthesizing procedures from replicated codes) or can be 
decompressed in hardware, which currently requires techniques 
that are simpler than this one, so a full review of the literature 
would be neither germane nor fair. 

Closer in spirit to the present research are compressors that work 
on compiler IR or VM code [Ernst et al; Franz; Franz and Kistler; 
Fraser and Proebsting; Horspool and Corliss; Proebsting]. In 
general, these compressors divide their input into manually 
identified streams or exploit repeated pairs or trees or both.  

The present method was designed to subsume these two methods 
with a single, more general method. The leaves of the decision 
tree partition the input into streams of similar data, but the 
partitioning is now automatic, and the streams are far finer than is 
practical with manual identification. The predictors reach back far 
enough to catch all but the largest juxtapositions, but the method 
is not obliged to use all predictors and can include patterns with 
“holes” in them. The system also has access to computed and 
reduced predictors that have no clear analogues in the previous 
work, and it is easily extended by adding new predictors. 

Indeed, this research can be regarded as the next step in a 
progression toward increasing automation of code compression:  

• Much early work on statistical modeling of program code 
was done as part of a manual instruction set design. The 
designers picked some or all of their compressed instruction 
sets by eyeballing opcode frequencies. They identified the 
heuristics or patterns to use — for example, all pairs — and 
then they also identified the pairs that looked best [Sweet]. 

• More recent efforts reduce the manual component by having 
a program identify the best patterns (e.g., opcode-opcode and 
opcode-literal pairs in BRISC [Ernst et al] or the opcode 
trees in the previous record-holding "wire code" [Ernst et 
al]). This automation helps, but it became clear that different 
heuristics suit different contexts: sometimes pairs are best, 
sometimes triples, sometimes using a destination register to 
predict a subsequent source register, etc.  

• This paper reduces manual effort still further. The human 
identifies not the heuristics or patterns, but rather identifies a 
set of heuristics that might help in some contexts. The 
software then selects the combinations that yield good 
results. 

ACKNOWLEDGMENTS 
Max Chickering, David Heckerman, David Hovel, and Chris 
Meeks supplied the general-purpose decision-dag generator and 
were generous with their time answering my questions and 
adapting their code. The author is also grateful for suggestions 
and support from Suzanne Bunton, Will Evans, Bill Gates, Dave 
Hanson, Steve Lucco, John Miller, Nathan Myhrvold, Todd 
Proebsting, and Rick Rashid. 

REFERENCES 
[1] Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text 

Compression. Prentice Hall, 1990. 

[2] M. Burrows and D. J. Wheeler. A block-sorting lossless data 
compression algorithm. Digital SRC research report 124, 
5/10/94. 

[3] D. Chickering, D. Heckerman, and C. Meek. A Bayesian 
approach to learning Bayesian networks with local structure. 
Proceedings of the Thirteenth Conference on Uncertainty in 
Artificial Intelligence, Morgan Kaufman, 8/97. 

[4] Jens Ernst, William Evans, Christopher W. Fraser, Steven 
Lucco, and Todd A. Proebsting. Code compression. 
PLDI’97:358-365, 6/97. 

[5] M. Franz and T. Kistler. Slim binaries. TR 96-24, Dept of 
Information and Computer Science, University of California, 
Irvine, 6/96. 

[6] M. Franz. Adaptive compression of syntax trees and iterative 
dynamic code optimization: Two basic technologies for 
mobile-object systems. TR 97-04, Dept of Information and 
Computer Science, University of California, Irvine, 2/97. 

[7] Christopher W. Fraser and David R. Hanson. A Retargetable 
C Compiler: Design and Implementation. Addison Wesley 
Longman, 1995. 

[8] Christopher W. Fraser and Todd A. Proebsting. Custom 
Instruction Sets For Code Compression. Unpublished 
manuscript, http://research.microsoft.com/~toddpro/papers/ 
pldi2.ps, 10/95. 

[9] Free Software Foundation. GCC – The GNU C Compiler. 
http://www.gnu.org/software/gcc, 8/13/98. 

[10] Jean-Loup Gailly and Mark Adler. The gzip home page. 
http://w3.gzip.org. 1/21/99. 

[11] Pat Langley. Elements of Machine Learning. Morgan 
Kaufmann, 1996. 

[12] R. Nigel Horspool and Jason Corless. Tailored compression 
of Java class files. Software — Practice and Experience 
28(12):1253-1268, 10/98. 

[13] A. Lempel and J. Ziv. On the complexity of finite sequences. 
IEEE Transactions on Information Theory 22(1):75-81, 
1/76. 

[14] Todd A. Proebsting. Optimizing an ANSI C interpreter with 
superoperators. POPL’95: 322-332, 1/95. 

[15] Julian Seward. The bzip2 and libbzip2 home page. 
http://www.muraroa.demon.co.uk, 2/11/99. 

[16] C. E. Shannon. Prediction and entropy of printed English. 
Bell System Technical Journal 30:50-64, 1/51. 

[17] Richard E. Sweet. Empirical analysis of the Mesa instruction 
set. ASPLOS’82:158-166. 3/82. 

[18] Rik van de Wiel. Code compaction bibliography. 
http://www.win.tue.nl/cs/pa/rikvdw/bibl.html, 2/3/99. 

[19] Tong Lai Yu. Data compression for PC software distribution. 
Software-Practice & Experience 26(11):1181-1195, 11/96.  

[20] J. Ziv and A. Lempel. Compression of individual sequences 
via variable-rate coding. IEEE Transactions on Information 
Theory 24(5):530-536, 9/78.  

 


