Measurement and Analysis of
Runtime Profiling Data for Java Programs

Jane Horgah James Power and John Waldfon
Department of Computer Science,
National University of Ireland, Maynooth

Date: February 2001

Technical Report: NUIM-CS-TR-2001-04

Key words: Java bytecode, dynamic analysis, software metrics

Abstract. In this paper we examine a procedure for the analysis of data based
on the dynamic profiling of Java programs. In particular, we describe the issues
involved in dynamic analysis, propose a metric for discrimination between the

resulting data sets, and examine its application over different test suites and com-
pilers.

! Computer Applications, Dublin City University, Dublin 9, Ireland.
2 Dept. of Computer Science, Trinity College, Dublin 2, Ireland.

1 Introduction

The Java paradigm for executing programs is a two stage process. First the source is
converted into a platform independent intermediate representation [5], consisting of
bytecode and other information stored in class files. Second, hardware-specific conver-
sions are performed, followed by the execution of the code on the Java Virtual Machine
(IVM).

The problem addressed by this research is that while there exist static tools such as
class file viewers to look at this intermediate representation, this does not provide full
information on the dynamic profile of the program. For large programs the dynamic
data can easily involve the execution of billions of bytecodes, so ad hoc approaches to
analysis can quickly run into difficulty. This paper seeks to contribute to the study of
Java and the JVM by outlining a process, and a related metric, for the investigation of
such data.

1.1 Background

The increasing prominence of Internet technology, and the widespread use of the Java
programming language has given the Java Virtual Machine (JVM) a unique position
in the study of compilers and related technologies. To date, much of this research has
concentrated on the performance of the bytecode interpreter, yielding techniques such
as Just-In-Time (JIT) and hotspot-centered compilation [2].

However, the production of bytecode for the JVM is no longer limited to a single
Java-to-bytecode compiler, but can involve any of a number of different compilers,
working from source languages as diverse and Eiffel, Scheme or Prolog. In previous
work we have informally studied the impact of the choice of source language on the
dynamic profiles of programs running on the JVM [6]. In this paper we seek to provide a
scientific framework within which such analysis can take place, and to use it to examine
the importance of the choice of Java compiler on dynamic execution data.

1.2 Dynamic Bytecode-Level Analysis

The static bytecode frequency, which is the number of times a bytecode appears in a
class file or program has been studied in [1] and [4] where a wide difference was found
between the bytecodes appearing in different class files. Speed comparisons of bench-
mark suites using different Java Platforms have been performed [3] and differences in
execution times have been found, but it is difficult to apportion responsibility for these
between the compiler, virtual machine or underlying architecture.
Thedynamidrequency of an instruction is the number of times it is executed during
a program run and can provide valuable information for profiling of programs and for
the design and implementation of virtual machines. However, such study involves large
quantities of data, and is not readily assessed using standard software metrics. To this
end we propose a metric designed to measure the dissimilarity between two sets of
dynamic frequency data.

1.3 Normalised Mean Square Contingency Measure

Supposen; = (nk;) andn; = (ng;) are variablegk = 1,2,...,m) describing the
instruction count for two applicationsand j (or for one application under different
circumstances, e.g. under a change of compiler) We can form #tfematrix (n; n;) =
(nke) whose columns are given by andn;; in all casesn is less than or equal to 202,
the number of usable bytecode instructions.

As a measure of the similarity of the two applications we could write

(i 1) = e(ni ng) > =D (e — e nj)e)?, (1)
ke
where
e(n; nj) = (nk.n.in nk.n.j)7 2

the m x 2 matrix whose columns are multiples of the sum of the two columns of
(n; nj) = (nge) by the sum of the column elements. We can thinke@f; n;) as

the expected values;, under the assumption of statistical independence between
andn;. As a measure of the association between the instruction count of the two appli-
cations we consider the chi-square coefficient

v 3y e b, ®

.
f=ij k=1 i)k

If this is small, then the count distributions of the two applications are similar, and
if it is large, the distributions differ. We observe that, after division of the expression
(3) by ne., the result lies between 0 and 1. Thus we define a normalised mean-square

contingency measure
2
B, = Xij
1] — T
Tei + noj

wheren,; is the total number of bytecodes executed for progiaandn,; is the
total number of bytecodes executed for progranas a measure of the relationship
between instruction usage of compilémnd;.

1.4 The Test Suite

In order to study dynamic bytecode usage it was necessary to modify the source code of
a Java Virtual Machine. Kaffe [8] is an independent implementation of the Java Virtual
Machine which comes with its own standard class libraries; version 1.0.5 was used for
these measurements.

A Grandeapplication is one which uses large amounts of processing, I/O, network
bandwidth or memory. The Java Grande Forum Benchmark Suite [3] is intended to
be representative of such applications, and thus to provide a basis for measuring and
comparing alternative Java execution environments.

Four Grande applications were used in our study:

1609 |-_

1e08

1e07

1e06

No. of bytecodes

1e05

1e04

100 P) !
1 10 100

Rank

Fig. 1. Distribution of the Dynamic DataThis graph shows the bytecode count for each instruc-
tion plotted against its corresponding rank on a log-log scale.

eul, a benchmark that solves a set of equations using a fourth order Runge-Kutta
method

mol, a translation of a Fortran program designed to model the interaction of molec-
ular particles

ray, which measures the performance of a 3D ray tracer rendering a scene contain-
ing 64 spheres

seg which solves a game of connect-4 ofi a 7 board using alpha-beta pruning.

A fifth application from this suite dealing with montecarlobenchmark failed by a

large amount when interpreted on Kaffe, and hence does not form part of our study.
The Kaffe JVM was instrumented to count each bytecode executed, and the standard

test suites were run for each application.

2 Dynamic Bytecode Execution Frequencies

In this section we present a more detailed view of the dynamic profiles of the Grande
programs studied by examining the size and distribution of the data. In this section, all
the programs were compiled using Suja'gac compiler, from version 1.3 of the JDK,
and the data reflects only the non-API bytecodes executed.

Table 1 summarises the data collected. As can be seen, all data sets are of the order
of 10'°, spread over roughly 100 bytecodes in each case. This spread is far from even,
however, with a relatively high standard deviation. This is demonstrated by Figure 1,

which shows a high concentration of instruction usage in a few instructions, with a sharp
tailing off of use among the remaining instructions. There is a slight variance between
application here, wittmol showing the greatest concentration of usage in high-ranking
bytecodes, andeashowing a slightly less uneven distribution.

Table 1. Summary of the Dynamic Dat&lote that the average and standard deviation are for
usedbytecodes only.

eul | mol | ray | sea
Total bytecode count11,394,409,84%,599,606,438.1,706,547,24(7,103,719,93
No. of bytecodes used 97 95 107 112
Average count 44,509,414 | 29,685,963| 45,728,700 | 27,748,906
Std. Deviation 3.6% 3.8% 3.3% 2.0%

Table 2. Static and Dynamic Dissimilarity between Grande Applicatioftsis table shows the
values of®, giving the differences between instruction usage in the four Grande applications.

Static Differences Dynamic Differences

eul mol ray sea eul mol ray sea
eul 0.0000.3570.4300.665 eul 0.0000.7510.6500.735
mol 0.3570.0000.3990.699 mol 0.7510.0000.7830.896
ray 0.430 0.399.0000.623 ray 0.650 0.783.0000.821
sea 0.665 0.699 0.623000 sea 0.735 0.896 0.821000

The differences between applications are further demonstrated by Table 2, which
shows the results of applying the mean square contingency measure to both the static
and dynamic profiles of bytecode usage. It is interesting to note that sgaldemon-
strates a higher degree of static dissimilarity with the other programs, this is reduced
in the dynamic profile. Presumably, high dynamic dissimilarity figures are desirable in
test suites designed to exercise different aspects of the JVM, and the Grande suite has
succeeded in this respect at least.

Table 3.Comparing the static and dynamic profiles of the Grande Applicatibhis table shows
the values ofp, reflecting the dissimilarity between the static and dynamic bytecode counts for
each application.

Static vs. Dynamic
eul | mol | ray | sea
0.2030.4640.2130.175

Table 3 shows the comparison between the static and dynamic profiles for each ap-
plication, which measures the degree to which a static analysis can reflect the dynamic

profile of the applications. As can be seen from the taldleahas the lowest dissimi-
larity, whereas the static figures forol are the least useful for predicting its dynamic
behaviour.

A consideration of the instruction usage, ranked by frequencies give a good overall
view of the nature of the operations being tested by each appliéafisinas been noted
for other programs in [7], load and store instructions, which data between the operand
stack and the local variable array, account for a significant proportion of the instructions
used in all cases. Some differences can also be noted

— The use of arrays of objects @ul is reflected in its high usage of object-load and
field-access instructions

— mols dependence on double-precision floating-point values is reflected in the promi-
nence ofdload anddstore instructions over their integer counterparts

— ray'’s profile reflects its usage of objects through the high frequency of field access,
as well as thaload _O instruction, which retrieves thiis -pointer in a method.

— seashows the widest distribution of instruction usage, although this is chiefly based
around integer-related operations.

In all cases method calls, as reflected byitheke instructions, are relatively infre-
quent compared to stack and field accesses.

3 Comparison across different compilers

In this section we consider the impact of the choice of Java compiler on the dynamic
bytecode frequency data. For the purposes of this study we used seven different Java
compilers:

- borland Borland Compiler for Java, version 1.2.006

- gcj The GNU Compiler for Java, version 2.95.2

-jdk12 Blackdown Java for Linux version pre-release 2

-jdk13 SUN's javac compiler, (JDK build 1.3.0-C)

- jikes IBM Jikes Compiler, version 1.06 (17 Sep 99)

- kopi KOPI Java Compiler Version 1.3C

- pizza Pizza version 0.39g, 15-August-98

Table 4. Dynamic bytecode usage count differences for Grande Applications using different com-
pilers. The figures show the difference in bytecode counts between each of the six compilers and
jdk13 expressed as a percentage increase ovgdki&figures.

|borland gcj jdk12 jikes kopi pizza
eu| 03 101 00 00 95 0.3
mol 14 14 00 00 00 14
ray|] 1.8 09 00 00 0.0 18
seal 3.1 6.0 04 04 40 29

% These are listed in Table 6 in the appendices

The four Grande applications were compiled using each of the seven compilers, and
data collected for the dynamic behaviour of each. The first indications of differences
can be gleaned from Table 4, which shows the difference between the total dynamic
bytecode count for each compiler, compared with that forjik@3 Both jikes and
jdk12 are very similar tgdk13 with gcj reflecting the greatest increase, although this
is unevenly distributed through the applications.

To gain a greater insight into the nature of the compiler differences, the mean square
contingency measure between the compilers was calculated for each application, and
the results are summariseith Table 5. Three of the compileriikes jdk12 andjdk13
are very similar, showing only a minor dissimilarity for teeaapplication. Also, the
pizzaandborlandcompilers appear to be quite similar to each other for all applications.
Both thekopiandgcj compilers exhibit the highest dissimilarities, wéhl highlighting
the differences fogcj, andmol highlighting kopi's differences.

Table 5. Comparing compilers against jdk1Bhis table summarises the compiler differences, by
showing the value of for each when compared against the jdk 1.3

borland gcj jdk12 jikes kopi pizza

eul | 0.071 0.367 0.000 0.000 0.103 0.071
mol| 0.147 0.147 0.000 0.000 0.202 0.147
ray| 0.159 0.187 0.000 0.000 0.101 0.159
sea| 0.179 0.166 0.038 0.045 0.086 0.174
ave| 0.134 0.210 0.016 0.019 0.118 0.134

3.1 Compiler Differences

Having gained some insight into the overall compiler differences, it is possible to make
one more use of the mean square contingency measure. Tables 8 through 11 in the
appendices show the differences in bytecode usage between each compjtki&nd
itemised by bytecode instruction. To aid analysis each table is sorted in decreasing
order of dissimilarity, calculated on a per-instruction basis. Below we summarise the
main differences exhibited in these tables.

— Eliminating Unnecessary Jumpiisis notable that foiseathe jdk13 has fewer un-
conditionalgoto s than other compilers. This results from a small optimisation for
nested if-statements where the target of go® statement is anothgoto . This
difference appears insignificant from a static analysis of the code, but shows up
clearly when the dynamic figures are studied.

— Loop Structurd-or each usage of tlie _cmplt instruction bykopiandjdk13there
is a corresponding usage gbto andif _cmpge by pizza gcj andborland This
can be explained by a more efficient implementation of loop structurdsoply
andjdk13 ensuring that each iteration involves just a single test. A simple static

4 full details are shown in Table 7 in the appendices

analysis would regard these as similar implementations, but the dynamic analysis
clearly shows the savings resulting from #epijdk13approach.

— Specialisedoad Instructions
gcj gives a significantly lower usage of the geneélimd instruction relative to
all other compilers, and a corresponding increase in the more spiaéfiit _2
andiload _3 instructions showing that this compiler is attempting to optimise the
programs for integer variables. Howevaol andray make greater use afou-
ble s and objects respectively, and the differenceioiad instructions are not
significant here.

— Common subexpression elimination
There is a dramatic difference in the usedop instructions betweepizza jdk13
andborlandversuskopiandgcj. The former exploit the usage of operators such as
+= by duplicating the operands on the stack; the latter do not, and show a corre-
sponding increase in the usagesafifad , aaload andgetfield instructions
as the expression is re-evaluated.

— Comparisons with 0 andull
Java bytecode has specialised instructions for comparison with zerauind

includingifeq ,ifne andifnull . borl andpizzado not use these instructions,
and the counts for the corresponding constant-load and comparison instructions are
thus higher.

— Constant Propagation
Thegcj compiler does not do as much constant propagation as the other compilers
and this is evidenced particularly &ul, which uses a number of constant fields.
Thus there is a drop ildc2w instructions, and a corresponding increase in the
number ofgetfield instructions.

4 Conclusions

This paper defines and demonstrates a process, and associated metric, for the inves-
tigation of data collected from dynamic Java Virtual Machine analysis. This type of
analysis, of course, does not look in any way at hardware specific issues, such as JIT
compilers, interpreter design, memory effects or garbage collection which may all have
significant impacts on the eventual running time of a Java program, and is limited in
this respect. It has been shown above however that useful information about a Java pro-
grams can be extracted at the intermediate representation level, which can be partly used
to understand their ultimate behaviour on a specific hardware platform. The technique
has also been shown to help in the design of Java to bytecode compilers.

References

1. D. Antonioli and M. Pilz. Analysis of the Java class file format. Technical Report 98.4, Dept.
of Computer Science, University of Zurich, April 1988.

2. E. Armstrong. Hotspot: A new breed of virtual machidava World March 1998.

3. M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. Benchmarking Java Grande appli-
cations. InSecond International Conference and Exhibition on the Practical Application of
Java Manchester, UK, April 2000.

. T. Cohen and Y. Gil. Self-calibration of metrics of java methodsTéehnology of Object-
Oriented Languages and Systemages 94-106, Sydney, Australia, November 2000.

. T. Lindholm and F. Yellin.The Java Virtual Machine SpecificatioAddison Wesley, 1996.

. J. Waldron. Dynamic bytecode usage by object oriented Java prograniechtinology of
Object-Oriented Languages and SysteNancy, France, June 1999.

. J. Waldron and O. Harrison. Analysis of virtual machine stack frame usage by Java methods.
In Third IASTED Conference on Internet and Multimedia Systems and Applicalassau,
Grand Bahamas, Oct 1999.

. T.J. Wilkinson.KAFFE, A Virtual Machine to run Java Codezwww.kaffe.org>, 2000.

10

A Proof that the Mean Square Contingency Measure is
Normalised

Theorem If n; = (ng;) and n; = (ny;) are m-tuples of positive numbers and n =
(n; nj)) € R™*? then

Z ((ni nj)ke — e(ni mj)ke)? < anz = Nei + Nej = Nee-

it e(ni nj) e it
Proof. We compute
ki = R (ay —)
Z e T Tkatie;
k Nee k Nee

2 2
o Z nocnki - nkonoi) + Z (noonkj - nko”oj)

NieTle; X NieTlej

e
_ Z (NejTki — NigjTie;)? . Z (NeiNkj — NkiMej)?

5 Nkellei 5 Nkellej
2
_ 1 + 1 Z (n.jnki — ’I’ijn.i)
Tei Nej A Nke
2

_ Tee (NajTiki — MkjTei)
-)

Neillej L Nke

which we claim is< n2,: for we have

2 2 2,2
E (nojnki + noinkj) H Nire < NeillejNes ano .

k k' £k k

Indeed we count:-2m?-2"~ 1 = m32™ terms on the left angh-m-2m-2™ = m32m+1
terms on the right, and can pick off a match on the right for each term on the left

11

B Bytecode Usage Frequencies for each of the Grande
Applications

Table 6. Dynamic bytecode usage frequencies by Grande applications compiled using SUN'’s
javac compilerThe top 35 instructions are presented.

eul mol ray sea
iload 20.8|dload 33.3|getfield 26.3|iload 13.2
aaload 19.9|iload 7.0|laload0 16.1j|aload0 8.6
getfield 17.0|dstore 6.8||laload1 10.9|getfield 7.3
aloadO 9.0||dcmpg 5.5||dmul 6.6 ||istore 5.4
dadd 4.1 ||dsub 4.7 ||dadd 4.7 |liaload 5.4
dmul 4.1 ||getfield 4.3 ||dsub 3.7|lishl 4.3
iconst1 2.9||getstatic 4.3 ||putfield 3.0||bipush 3.8
putfield 2.8||dmul 4.3 ||aload?2 2.8|lilload 1 3.6
dload 2.7 ||aaload 4.2||dload 2 1.9 |liadd 3.5
dup 2.0|ifle 4.1 |liload 1.9||iand 3.5
aload3 1.9|ifge 4.1 ||invokestatic 1.9|/iload.-2 2.6
isub 1.9|/dcmpl 4.1 |linvokevirtual 1.9|/iload.3 25
daload 1.8||/dneg 4.1 ||dreturn 1.9}|iconst1 2.3
iload_3 1.4||dadd 3.4||aload 1.2}ior 2.3
dstore 1.1|if Licmplt 1.4||dload 1.1}|iconst2 2.1
ldc2w 1.1 ||ifgt 1.4 ||dstore 1.0||dup 2.0
iadd 1.0}iinc 1.4|ifge 1.0|iinc 1.7
dsub 1.0||dload 1 1.0{|dcmpg 1.0}|ifeq 1.6
ddiv 0.7 ||aload0 0.1||dstore2 0.9||iastore 15
aload2 0.4 ||putfield 0.1||astore 0.9|liconst5 14
dload 1 0.3||lconst0 0.0||aaload 0.9||iconst4 14
if _icmplt 0.3||fadd 0.0||aconstnull 0.9||if Licmplt 14
iinc 0.3||ladd 0.0 ||ifnull 0.9 ||if icmple 1.3
dastore 0.2|liadd 0.0 ||arraylength 0.9||dup2 1.0
dstore3 0.2 ||swap 0.0||return 0.9 ||invokevirtual 1.0
dstorel 0.2 ||dup2x2 0.0 ||areturn 0.9 ||if Licmpgt 0.9
aloadl 0.2 ||dup2x1 0.0 ||if _icmplt 0.9 |lisub 0.9
dload3 0.2||dup2 0.0||dconst0 0.9 |listore 3 0.8
dconst0 0.2 ||dupx2 0.0 [Jiinc 0.9|/ldc1 0.8
aload 0.1||dupx1 0.0||dload 1 0.2 |listorel 0.7
new 0.1 |liconst5 0.0 (|dup 0.1 |liconst0 0.7
invokespecial | 0.1||dup 0.0 |liconst0 0.1 ||putfield 0.7
Iconst0 0.0||pop2 0.0 |{ldc2w 0.1 |ifne 0.7
fadd 0.0 ||pop 0.0 ||invokespecial | 0.1 ||imul 0.7
ladd 0.0 ||sastore 0.0||goto 0.1 |liconst3 0.6

12

C Mean Square Contingency Measure for Each Compiler

Table 7.Here the value of is shown for each pair of compilers, for each of the four applications.
Since the relation is symmetric, the upper-left half of each table has been included for reference
purposes only.

eul
borland gcj jdk12 jdk13 jikes kopi pizza
borland 0.000 0.3610.0710.0710.0710.1250.001
acj 0.361 0.0000.367 0.3670.3670.3510.361
jdk12 0.071 0.3670.000 0.0000.0000.1030.071
jdk13 0.071 0.367 0.00@.0000.0000.1030.071
jikes 0.071 0.367 0.000 0.0000000.1030.071
kopi 0.125 0.351 0.103 0.103 0.1030000.125
pizza 0.001 0.361 0.071 0.071 0.071 0.12500
mol
borland gcj jdk12 jdk13 jikes kopi pizza
borland 0.000 0.0070.147 0.1470.1470.2490.007
acj 0.007 0.0000.147 0.1470.1470.2490.001
jdk12 0.147 0.1470.000 0.0000.0000.2020.147
jdk13 0.147 0.147 0.00@.0000.0000.2020.147
jikes 0.147 0.147 0.000 0.000.0000.2020.147
kopi 0.249 0.249 0.202 0.202 0.2020000.249
pizza 0.007 0.001 0.147 0.147 0.147 0.24900
ray
borland gcj jdk12 jdk13 jikes kopi pizza
borland 0.000 0.1790.159 0.1590.1590.1890.000
acj 0.179 0.0000.187 0.1870.1870.2120.179
jdk12 0.159 0.187.000 0.0000.0000.1010.159
jdk13 0.159 0.187 0.00®.0000.0000.1010.159
jikes 0.159 0.187 0.000 0.0000000.1010.159
kopi 0.189 0.212 0.101 0.101 0.1010000.189
pizza 0.000 0.179 0.159 0.159 0.159 0.18900
sea
borland gcj jdk12 jdk13 jikes kopi pizza
borland 0.000 0.1980.1710.1790.1720.1870.035
acj 0.198 0.0000.167 0.1660.1690.1600.194
jdk12 0.171 0.167.000 0.0380.0240.0780.166
jdk13 0.179 0.166 0.038.0000.0450.0860.174
jikes 0.172 0.169 0.024 0.04%0000.0820.168
kopi 0.187 0.160 0.078 0.086 0.0820000.183
pizza 0.035 0.194 0.166 0.174 0.168 0.18300

13

D Detailed Compiler differences

Table 8. Bytecode count differences agaifdk13 for the four Grande applications compiled
with thekopi compiler

kopi
Bytecode eul mol ray seq X
dcmpl 7680Q 419532800 115462653 0]45289
dcmpg -76800Q0-419532800-115462653 0]|23131
dup -217907207 -429110 -11647666-3258470915085
aaload 432537600 0 0| 114084 9084
iload 425984000 0 0| 51487721 8911
aloadO 217907231 429130 11480702 99752692 7917
dup2 0 0 0|-67053779 7827
getfield 216268800 0 -6| 67167863 5726
iconstml 3 2 3| 14705226 5121
goto 0 0 0| 27761330 4888
ifne 0 0 0| 30050302 4391
iadd 0 0 0| 58631678 3695
iconst5 0 0 0| 29284324 2917
ifeq 0 0 0|-30050302 2801
iload_3 6553604 2 3| 22065279 1725
iload_1 0 0 0| 23013320 1443
iconst1 2 1 0[-14705178 1156
aload?2 3 2 0| 1050012 1024
baload 0 0 0| 1050011 282
iand 0 0 0| 1050011 66
bipush 4 6 0| 1050151 64
aload 0 0 167106 228168 37|
iconst3 0 0 0| 114094 18
iaload 0 0 0| 342252 17
istore 0 0 0 0 22 15
ior 0 0 0| 114084 8
isub 0 0 0 -63044 7
ishl 0 0 0| 114084 6
iload_0 0 0 0 22 2
lookupswitch -1 -1 -1 -1 2
tableswitch 1 1 1 1 2
dconstl 2 0 0 0 2
iastore 2 2 0 112 1
iconst2 1 1 0 19 1
newarray 1 1 0 2 1

14

Table 9.Bytecode count differences foorland and pizza compared againgtlk13

borland
Bytecode eul mol ray sed X
if_acmpeq 0 0| 104200128 0[52100064
if_icmpge | 37820501 105338117 108412568 7086963114897083
goto 36685299 105132895104302178 75573244 333656
if icmpeq 0 0 0| 113780021 33762
iconst0 25600 315015 3181466 138273519 26414
if icmplt |-37820501-10533811}1-108412568 -64225544 17125
aconstnull 0 0| 105053966 0 10353
ifnull 0 0[-104200128 0| 10207
ifeq 0 0 0|-107455075 10017
if icmpgt 0 7744 0| 54584526 6684
if icmple 0 0| 318146% -51720439 6235
i2d 25600 307200 0 0 4310
i2l 0 0 1| 12969033 3557
ldc2w 0 0 0| -6644087 2577
ifge 0 0 0| -6644087 2577
Iconst0 0 0 -1| -632494¢ 2514
ifne 0 -69 0| -14985324 2190
ifle 0 0| -3181465 -2864087 1980
if_icmpne 0 69 0| 8660374 1368
ifnonnull 0 0| -853834 0 924
Idcl 0 0 0| 6644087 877
dconst0 -2560Q -30720(0 0 303
pizza
Bytecode eul mol ray sed X
if_acmpeq 0 0| 104200128 0/52100064
if_icmpge | 37820501 105338117 108412568 7086963114897083
goto 36685299 105132895104302178 75573244 333654
if_icmpeq 0 0 0| 113780021 33767
iconst0 0 7815 318146%1319485783 18149
if icmplt |-37820501-105338111-108412568 -64225544 17125
aconstnull 0 0| 105053966 0| 10353
ifnull 0 0[-104200128 0| 10207
ifeq 0 0 0[-107455075 10017
if _icmpgt 0 7746 0| 54584526 6686
if icmple 0 0| 318146% -51720439 6235
ifge 0 0 0| -6644087 2577
ifne 0 -69 0| -14985324 219(Q
ifle 0 0| -3181465 -2864087 1980
if_icmpne 0 69 0| 8660374 1368
ifnonnull 0 0| -853834 0 924

15

Table 10. Bytecode count differences agaijit13 for the four Grande applications compiled
with thegcj compiler These figures reflect the greatest dissimiliarity among all the compilers,
both in size and spread

gcj
Bytecode eul mol ray sed X
iload_2 1140583000 0 0| 61682701304833629
if icmpgel 37820501 105338117 108412568 64225544 14897079
iload_1 173824000 0 0|-41211794 13371077
aload3 0 0 0| 42830635 7138439
astore3 0 0 0| 7321072 2767104
goto 36685299 105133696 10430217882484994 333709
dconstl 256002 0 0 0 256002
istore.1 153600 0 0/|-32299878 108714
iload_3 812595003 2 3| 6624134 64949
iload -1694464400 0 0| -7077327 34815
istore 2 10300¢ 0 0| 27382781 28236
dload 52428900 6945 212557630 0 19091
if icmplt | -37820501-105338111-10841256864225544 17125
dup -217907204 -3074 -11647662 -5759734 14826
dload?2 0 0[-216715004 0 14611
dstore 52428800 3873 100042754 0 10432
dstore2 0 0[-104200128 0 10207
aaload 432537600 0 0 51031 9084
aload0 245456234 3094 11480699 57109447 800§
aload 0 0| -7395465-4272860% 6565
dup2 0 0 0|-51298562 5988
getfield 243817800 0 0| 51349593 5975
dload 1 -29491200 -6945 0 0 5388
dstorel -27852800 -3873 0 0 5234
iconstm1 3 2 3| 14705226 5121
dload3 -22937700 0| 4157374 0 4948
dstore3 -24576000 0| 4157374 0 4799
if icmpgt 0 0 0| 37677442 4615
ifne 0 0 0/|-2662169 3890
if_icmple 0 0 0|-3767744 3865
iand 0 0 0| 6058638 3859
jadd 0 0 0| 5863165 3695
lload_3 0 0 0]-1328817 3645
bipush 4 6 0| 5612741 3435
iconst5 0 0 0| 2928432 2917
astore 0 0 0| -732107 2705
Istore.3 0 0 0| -664408 2577
Idc2w -27395293 3 0 0 2500
ifeq 0 0 0| 2662169 2481
iconst1 2 1 0|-1470517 1154
int2byte 0 0 0| 199766 1144
getstatic 0 0 0| 445909 1029
istore -25640(0 0| 763187 518
aload?2 4 3| 756257§ 2 419
istore.3 -200 0 0| -271477 350
isub 0 0 0| -111305 138
ddiv 153600 0 0 0 17|
dsub 153600 0 0 0 14
iconst3 0 0 0 5104 8
iaload 0 0 0| 15309 7

16

Table 11.Bytecode count differences agaildit13 for the four Grande applications compiled
with thejikes andjdk12 compiler As can be seen from these figures, the only significant differ-
ence is in the number of extgoto s executed by each.

jikes
Bytecode [eullmol[ray sed x
goto 0| 0] 0| 293981785176
ifne 0 0] 0] 300503024391
sipush 0| 0] 0| -79448392818
ifeq 0| 0] 0]-300503022801
Idcl 0 0] 0| 79448391049
lookupswitch| -1| -1] -1 -1 2
tableswitch 1 1] 1 1 2

jdk12
Bytecode eullmol{ray sed x
goto 0 0] 0] 277613304888
ifne 0| 0] 0| 300503024391
sipush 0o 0 O o O
ifeq 0 0] 0]-300503022801
Idcl of 0 O o o
lookupswitch| -1| -1 -1 -1 2
tableswitch 1 1] 1 1] 2

