
Measurement and Analysis of
Runtime Profiling Data for Java Programs

Jane Horgan1, James Power and John Waldron2

Department of Computer Science,
National University of Ireland, Maynooth

Date: February 2001

Technical Report: NUIM-CS-TR-2001-04

Key words: Java bytecode, dynamic analysis, software metrics

Abstract. In this paper we examine a procedure for the analysis of data based
on the dynamic profiling of Java programs. In particular, we describe the issues
involved in dynamic analysis, propose a metric for discrimination between the
resulting data sets, and examine its application over different test suites and com-
pilers.

1 Computer Applications, Dublin City University, Dublin 9, Ireland.
2 Dept. of Computer Science, Trinity College, Dublin 2, Ireland.



2

1 Introduction

The Java paradigm for executing programs is a two stage process. First the source is
converted into a platform independent intermediate representation [5], consisting of
bytecode and other information stored in class files. Second, hardware-specific conver-
sions are performed, followed by the execution of the code on the Java Virtual Machine
(JVM).

The problem addressed by this research is that while there exist static tools such as
class file viewers to look at this intermediate representation, this does not provide full
information on the dynamic profile of the program. For large programs the dynamic
data can easily involve the execution of billions of bytecodes, so ad hoc approaches to
analysis can quickly run into difficulty. This paper seeks to contribute to the study of
Java and the JVM by outlining a process, and a related metric, for the investigation of
such data.

1.1 Background

The increasing prominence of Internet technology, and the widespread use of the Java
programming language has given the Java Virtual Machine (JVM) a unique position
in the study of compilers and related technologies. To date, much of this research has
concentrated on the performance of the bytecode interpreter, yielding techniques such
as Just-In-Time (JIT) and hotspot-centered compilation [2].

However, the production of bytecode for the JVM is no longer limited to a single
Java-to-bytecode compiler, but can involve any of a number of different compilers,
working from source languages as diverse and Eiffel, Scheme or Prolog. In previous
work we have informally studied the impact of the choice of source language on the
dynamic profiles of programs running on the JVM [6]. In this paper we seek to provide a
scientific framework within which such analysis can take place, and to use it to examine
the importance of the choice of Java compiler on dynamic execution data.

1.2 Dynamic Bytecode-Level Analysis

The static bytecode frequency, which is the number of times a bytecode appears in a
class file or program has been studied in [1] and [4] where a wide difference was found
between the bytecodes appearing in different class files. Speed comparisons of bench-
mark suites using different Java Platforms have been performed [3] and differences in
execution times have been found, but it is difficult to apportion responsibility for these
between the compiler, virtual machine or underlying architecture.

Thedynamicfrequency of an instruction is the number of times it is executed during
a program run and can provide valuable information for profiling of programs and for
the design and implementation of virtual machines. However, such study involves large
quantities of data, and is not readily assessed using standard software metrics. To this
end we propose a metric designed to measure the dissimilarity between two sets of
dynamic frequency data.



3

1.3 Normalised Mean Square Contingency Measure

Supposeni = (nki) andnj = (nkj) are variables(k = 1, 2, . . . ,m) describing the
instruction count for two applicationsi and j (or for one application under different
circumstances, e.g. under a change of compiler) We can form them×2 matrix(ni nj) =
(nk`) whose columns are given byni andnj ; in all casesm is less than or equal to 202,
the number of usable bytecode instructions.

As a measure of the similarity of the two applications we could write

‖(ni nj)− e(ni nj)‖2 =
∑
k`

(nk` − e(ni nj)k`)2, (1)

where

e(ni nj) =
(nk•n•i nk•n•j )

n••
, (2)

the m × 2 matrix whose columns are multiples of the sum of the two columns of
(ni nj) = (nk`) by the sum of the column elements. We can think ofe(ni nj) as
the expected valuesnk` under the assumption of statistical independence betweenni
andnj . As a measure of the association between the instruction count of the two appli-
cations we consider the chi-square coefficient

χ2
ij =

∑
`=i,j

m∑
k=1

(nk` − e(ni nj)k`)2

e(ni nj)k`
. (3)

If this is small, then the count distributions of the two applications are similar, and
if it is large, the distributions differ. We observe that, after division of the expression
(3) byn••, the result lies between 0 and 1. Thus we define a normalised mean-square
contingency measure

Φij =

√
χ2
ij

n•i + n•j
,

wheren•i is the total number of bytecodes executed for programi andn•j is the
total number of bytecodes executed for programj, as a measure of the relationship
between instruction usage of compilersi andj.

1.4 The Test Suite

In order to study dynamic bytecode usage it was necessary to modify the source code of
a Java Virtual Machine. Kaffe [8] is an independent implementation of the Java Virtual
Machine which comes with its own standard class libraries; version 1.0.5 was used for
these measurements.

A Grandeapplication is one which uses large amounts of processing, I/O, network
bandwidth or memory. The Java Grande Forum Benchmark Suite [3] is intended to
be representative of such applications, and thus to provide a basis for measuring and
comparing alternative Java execution environments.

Four Grande applications were used in our study:



4

1 10 100

Rank

100

1e04

1e05

1e06

1e07

1e08

1e09

N
o.

 o
f 

by
te

co
de

s

eul
mol
ray
sea

Fig. 1. Distribution of the Dynamic Data. This graph shows the bytecode count for each instruc-
tion plotted against its corresponding rank on a log-log scale.

– eul, a benchmark that solves a set of equations using a fourth order Runge-Kutta
method

– mol, a translation of a Fortran program designed to model the interaction of molec-
ular particles

– ray, which measures the performance of a 3D ray tracer rendering a scene contain-
ing 64 spheres

– sea, which solves a game of connect-4 on a6× 7 board using alpha-beta pruning.

A fifth application from this suite dealing with amontecarlobenchmark failed by a
large amount when interpreted on Kaffe, and hence does not form part of our study.

The Kaffe JVM was instrumented to count each bytecode executed, and the standard
test suites were run for each application.

2 Dynamic Bytecode Execution Frequencies

In this section we present a more detailed view of the dynamic profiles of the Grande
programs studied by examining the size and distribution of the data. In this section, all
the programs were compiled using Sun’sjavaccompiler, from version 1.3 of the JDK,
and the data reflects only the non-API bytecodes executed.

Table 1 summarises the data collected. As can be seen, all data sets are of the order
of 1010, spread over roughly 100 bytecodes in each case. This spread is far from even,
however, with a relatively high standard deviation. This is demonstrated by Figure 1,



5

which shows a high concentration of instruction usage in a few instructions, with a sharp
tailing off of use among the remaining instructions. There is a slight variance between
application here, withmol showing the greatest concentration of usage in high-ranking
bytecodes, andseashowing a slightly less uneven distribution.

Table 1. Summary of the Dynamic Data. Note that the average and standard deviation are for
usedbytecodes only.

eul mol ray sea
Total bytecode count11,394,409,8447,599,606,43511,706,547,2477,103,719,939
No. of bytecodes used 97 95 107 112
Average count 44,509,414 29,685,963 45,728,700 27,748,906
Std. Deviation 3.6% 3.8% 3.3% 2.0%

Table 2. Static and Dynamic Dissimilarity between Grande Applications. This table shows the
values ofΦ, giving the differences between instruction usage in the four Grande applications.

Static Differences Dynamic Differences
eul mol ray sea

eul 0.0000.3570.4300.665
mol 0.3570.0000.3990.699
ray 0.430 0.3990.0000.623
sea 0.665 0.699 0.6230.000

eul mol ray sea
eul 0.0000.7510.6500.735
mol 0.7510.0000.7830.896
ray 0.650 0.7830.0000.821
sea 0.735 0.896 0.8210.000

The differences between applications are further demonstrated by Table 2, which
shows the results of applying the mean square contingency measure to both the static
and dynamic profiles of bytecode usage. It is interesting to note that whileseademon-
strates a higher degree of static dissimilarity with the other programs, this is reduced
in the dynamic profile. Presumably, high dynamic dissimilarity figures are desirable in
test suites designed to exercise different aspects of the JVM, and the Grande suite has
succeeded in this respect at least.

Table 3.Comparing the static and dynamic profiles of the Grande Applications. This table shows
the values ofΦ, reflecting the dissimilarity between the static and dynamic bytecode counts for
each application.

Static vs. Dynamic
eul mol ray sea

0.2030.4640.2120.175

Table 3 shows the comparison between the static and dynamic profiles for each ap-
plication, which measures the degree to which a static analysis can reflect the dynamic



6

profile of the applications. As can be seen from the tables,seahas the lowest dissimi-
larity, whereas the static figures formol are the least useful for predicting its dynamic
behaviour.

A consideration of the instruction usage, ranked by frequencies give a good overall
view of the nature of the operations being tested by each application3. As has been noted
for other programs in [7], load and store instructions, which data between the operand
stack and the local variable array, account for a significant proportion of the instructions
used in all cases. Some differences can also be noted

– The use of arrays of objects ineul is reflected in its high usage of object-load and
field-access instructions

– mol’s dependence on double-precision floating-point values is reflected in the promi-
nence ofdload anddstore instructions over their integer counterparts

– ray’s profile reflects its usage of objects through the high frequency of field access,
as well as theaload 0 instruction, which retrieves thethis -pointer in a method.

– seashows the widest distribution of instruction usage, although this is chiefly based
around integer-related operations.

In all cases method calls, as reflected by theinvoke instructions, are relatively infre-
quent compared to stack and field accesses.

3 Comparison across different compilers

In this section we consider the impact of the choice of Java compiler on the dynamic
bytecode frequency data. For the purposes of this study we used seven different Java
compilers:

- borland Borland Compiler for Java, version 1.2.006
- gcj The GNU Compiler for Java, version 2.95.2
- jdk12 Blackdown Java for Linux version pre-release 2
- jdk13 SUN’s javac compiler, (JDK build 1.3.0-C)
- jikes IBM Jikes Compiler, version 1.06 (17 Sep 99)
- kopi KOPI Java Compiler Version 1.3C
- pizza Pizza version 0.39g, 15-August-98

Table 4.Dynamic bytecode usage count differences for Grande Applications using different com-
pilers.The figures show the difference in bytecode counts between each of the six compilers and
jdk13, expressed as a percentage increase over thejdk13figures.

borland gcj jdk12 jikes kopi pizza
eul 0.3 10.1 0.0 0.0 9.5 0.3
mol 1.4 1.4 0.0 0.0 0.0 1.4
ray 1.8 0.9 0.0 0.0 0.0 1.8
sea 3.1 6.0 0.4 0.4 4.0 2.9

3 These are listed in Table 6 in the appendices



7

The four Grande applications were compiled using each of the seven compilers, and
data collected for the dynamic behaviour of each. The first indications of differences
can be gleaned from Table 4, which shows the difference between the total dynamic
bytecode count for each compiler, compared with that for thejdk13. Both jikes and
jdk12 are very similar tojdk13, with gcj reflecting the greatest increase, although this
is unevenly distributed through the applications.

To gain a greater insight into the nature of the compiler differences, the mean square
contingency measure between the compilers was calculated for each application, and
the results are summarised4 in Table 5. Three of the compilers,jikes, jdk12and jdk13
are very similar, showing only a minor dissimilarity for theseaapplication. Also, the
pizzaandborlandcompilers appear to be quite similar to each other for all applications.
Both thekopiandgcj compilers exhibit the highest dissimilarities, witheulhighlighting
the differences forgcj, andmolhighlightingkopi’s differences.

Table 5.Comparing compilers against jdk13. This table summarises the compiler differences, by
showing the value ofΦ for each when compared against the jdk 1.3

borland gcj jdk12 jikes kopi pizza
eul 0.071 0.367 0.000 0.000 0.103 0.071
mol 0.147 0.147 0.000 0.000 0.202 0.147
ray 0.159 0.187 0.000 0.000 0.101 0.159
sea 0.179 0.166 0.038 0.045 0.086 0.174
ave 0.134 0.210 0.016 0.019 0.118 0.134

3.1 Compiler Differences

Having gained some insight into the overall compiler differences, it is possible to make
one more use of the mean square contingency measure. Tables 8 through 11 in the
appendices show the differences in bytecode usage between each compiler andjdk13,
itemised by bytecode instruction. To aid analysis each table is sorted in decreasing
order of dissimilarity, calculated on a per-instruction basis. Below we summarise the
main differences exhibited in these tables.

– Eliminating Unnecessary JumpsIt is notable that forseathe jdk13 has fewer un-
conditionalgoto s than other compilers. This results from a small optimisation for
nested if-statements where the target of onegoto statement is anothergoto . This
difference appears insignificant from a static analysis of the code, but shows up
clearly when the dynamic figures are studied.

– Loop StructureFor each usage of theif cmplt instruction bykopiandjdk13there
is a corresponding usage ofgoto andif cmpge by pizza, gcj andborland. This
can be explained by a more efficient implementation of loop structures bykopi
and jdk13, ensuring that each iteration involves just a single test. A simple static

4 full details are shown in Table 7 in the appendices



8

analysis would regard these as similar implementations, but the dynamic analysis
clearly shows the savings resulting from thekopi/jdk13approach.

– Specialisedload Instructions
gcj gives a significantly lower usage of the genericiload instruction relative to
all other compilers, and a corresponding increase in the more specificiload 2
andiload 3 instructions showing that this compiler is attempting to optimise the
programs for integer variables. Howevermol and ray make greater use ofdou-
ble s and objects respectively, and the differences iniload instructions are not
significant here.

– Common subexpression elimination
There is a dramatic difference in the use ofdup instructions betweenpizza, jdk13
andborlandversuskopiandgcj. The former exploit the usage of operators such as
+= by duplicating the operands on the stack; the latter do not, and show a corre-
sponding increase in the usages ofaload , aaload andgetfield instructions
as the expression is re-evaluated.

– Comparisons with 0 andnull
Java bytecode has specialised instructions for comparison with zero andnull ,
including ifeq , ifne andifnull . borl andpizzado not use these instructions,
and the counts for the corresponding constant-load and comparison instructions are
thus higher.

– Constant Propagation
Thegcj compiler does not do as much constant propagation as the other compilers
and this is evidenced particularly ineul, which uses a number of constant fields.
Thus there is a drop inldc2w instructions, and a corresponding increase in the
number ofgetfield instructions.

4 Conclusions

This paper defines and demonstrates a process, and associated metric, for the inves-
tigation of data collected from dynamic Java Virtual Machine analysis. This type of
analysis, of course, does not look in any way at hardware specific issues, such as JIT
compilers, interpreter design, memory effects or garbage collection which may all have
significant impacts on the eventual running time of a Java program, and is limited in
this respect. It has been shown above however that useful information about a Java pro-
grams can be extracted at the intermediate representation level, which can be partly used
to understand their ultimate behaviour on a specific hardware platform. The technique
has also been shown to help in the design of Java to bytecode compilers.

References

1. D. Antonioli and M. Pilz. Analysis of the Java class file format. Technical Report 98.4, Dept.
of Computer Science, University of Zurich, April 1988.

2. E. Armstrong. Hotspot: A new breed of virtual machine.Java World, March 1998.
3. M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. Benchmarking Java Grande appli-

cations. InSecond International Conference and Exhibition on the Practical Application of
Java, Manchester, UK, April 2000.



9

4. T. Cohen and Y. Gil. Self-calibration of metrics of java methods. InTechnology of Object-
Oriented Languages and Systems, pages 94–106, Sydney, Australia, November 2000.

5. T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Addison Wesley, 1996.
6. J. Waldron. Dynamic bytecode usage by object oriented Java programs. InTechnology of

Object-Oriented Languages and Systems, Nancy, France, June 1999.
7. J. Waldron and O. Harrison. Analysis of virtual machine stack frame usage by Java methods.

In Third IASTED Conference on Internet and Multimedia Systems and Applications, Nassau,
Grand Bahamas, Oct 1999.

8. T.J. Wilkinson.KAFFE, A Virtual Machine to run Java Code. <www.kaffe.org>, 2000.



10

A Proof that the Mean Square Contingency Measure is
Normalised

Theorem If ni = (nki) and nj = (nkj) are m-tuples of positive numbers and n =
(ni nj )) ∈ Rm×2 then

∑
k`

((ni nj)k` − e(ni nj)k`)2

e(ni nj)k`
≤
∑
k`

nk` = n•i + n•j = n••.

Proof. We compute

n••

(∑
k

(nki − nk•n•i
n••

)2

nk•n•i
n••

+
∑
k

(nkj − nk•n•j
n••

)2

nk•n•j
n••

)

=
∑
k

(n••nki − nk•n•i)2

nk•n•i
+
∑
k

(n••nkj − nk•n•j)2

nk•n•j

=
∑
k

(n•jnki − nkjn•i)2

nk•n•i
+
∑
k

(n•inkj − nkin•j)2

nk•n•j

=
(

1
n•i

+
1
n•j

)∑
k

(n•jnki − nkjn•i)2

nk•

=
n••

n•in•j

∑
k

(n•jnki − nkjn•i)2

nk•
,

which we claim is≤ n2
••: for we have∑

k

(
n2
•jn

2
ki + n2

•in
2
kj

) ∏
k′ 6=k

nk′• ≤ n•in•jn••
∏
k

nk• .

Indeed we countm·2m2·2m−1 = m32m terms on the left andm·m·2m·2m = m32m+1

terms on the right, and can pick off a match on the right for each term on the left•



11

B Bytecode Usage Frequencies for each of the Grande
Applications

Table 6. Dynamic bytecode usage frequencies by Grande applications compiled using SUN’s
javac compiler.The top 35 instructions are presented.

eul mol ray sea
iload 20.8 dload 33.3 getfield 26.3 iload 13.2
aaload 19.9 iload 7.0 aload0 16.1 aload0 8.6
getfield 17.0 dstore 6.8 aload1 10.9 getfield 7.3
aload0 9.0 dcmpg 5.5 dmul 6.6 istore 5.4
dadd 4.1 dsub 4.7 dadd 4.7 iaload 5.4
dmul 4.1 getfield 4.3 dsub 3.7 ishl 4.3
iconst1 2.9 getstatic 4.3 putfield 3.0 bipush 3.8
putfield 2.8 dmul 4.3 aload2 2.8 iload 1 3.6
dload 2.7 aaload 4.2 dload2 1.9 iadd 3.5
dup 2.0 ifle 4.1 iload 1.9 iand 3.5
aload3 1.9 ifge 4.1 invokestatic 1.9 iload 2 2.6
isub 1.9 dcmpl 4.1 invokevirtual 1.9 iload 3 2.5
daload 1.8 dneg 4.1 dreturn 1.9 iconst1 2.3
iload 3 1.4 dadd 3.4 aload 1.2 ior 2.3
dstore 1.1 if icmplt 1.4 dload 1.1 iconst2 2.1
ldc2w 1.1 ifgt 1.4 dstore 1.0 dup 2.0
iadd 1.0 iinc 1.4 ifge 1.0 iinc 1.7
dsub 1.0 dload1 1.0 dcmpg 1.0 ifeq 1.6
ddiv 0.7 aload0 0.1 dstore2 0.9 iastore 1.5
aload2 0.4 putfield 0.1 astore 0.9 iconst5 1.4
dload1 0.3 lconst0 0.0 aaload 0.9 iconst4 1.4
if icmplt 0.3 fadd 0.0 aconstnull 0.9 if icmplt 1.4
iinc 0.3 ladd 0.0 ifnull 0.9 if icmple 1.3
dastore 0.2 iadd 0.0 arraylength 0.9 dup2 1.0
dstore3 0.2 swap 0.0 return 0.9 invokevirtual 1.0
dstore1 0.2 dup2x2 0.0 areturn 0.9 if icmpgt 0.9
aload1 0.2 dup2x1 0.0 if icmplt 0.9 isub 0.9
dload3 0.2 dup2 0.0 dconst0 0.9 istore3 0.8
dconst0 0.2 dup x2 0.0 iinc 0.9 ldc1 0.8
aload 0.1 dup x1 0.0 dload1 0.2 istore1 0.7
new 0.1 iconst5 0.0 dup 0.1 iconst0 0.7
invokespecial 0.1 dup 0.0 iconst0 0.1 putfield 0.7
lconst0 0.0 pop2 0.0 ldc2w 0.1 ifne 0.7
fadd 0.0 pop 0.0 invokespecial 0.1 imul 0.7
ladd 0.0 sastore 0.0 goto 0.1 iconst3 0.6



12

C Mean Square Contingency Measure for Each Compiler

Table 7.Here the value ofΦ is shown for each pair of compilers, for each of the four applications.
Since the relation is symmetric, the upper-left half of each table has been included for reference
purposes only.

eul
borland gcj jdk12 jdk13 jikes kopi pizza

borland 0.000 0.361 0.071 0.071 0.0710.1250.001
gcj 0.361 0.000 0.367 0.367 0.3670.3510.361
jdk12 0.071 0.3670.000 0.000 0.0000.1030.071
jdk13 0.071 0.367 0.0000.000 0.0000.1030.071
jikes 0.071 0.367 0.000 0.0000.0000.1030.071
kopi 0.125 0.351 0.103 0.103 0.1030.0000.125
pizza 0.001 0.361 0.071 0.071 0.071 0.1250.000

mol
borland gcj jdk12 jdk13 jikes kopi pizza

borland 0.000 0.007 0.147 0.147 0.1470.2490.007
gcj 0.007 0.000 0.147 0.147 0.1470.2490.001
jdk12 0.147 0.1470.000 0.000 0.0000.2020.147
jdk13 0.147 0.147 0.0000.000 0.0000.2020.147
jikes 0.147 0.147 0.000 0.0000.0000.2020.147
kopi 0.249 0.249 0.202 0.202 0.2020.0000.249
pizza 0.007 0.001 0.147 0.147 0.147 0.2490.000

ray
borland gcj jdk12 jdk13 jikes kopi pizza

borland 0.000 0.179 0.159 0.159 0.1590.1890.000
gcj 0.179 0.000 0.187 0.187 0.1870.2120.179
jdk12 0.159 0.1870.000 0.000 0.0000.1010.159
jdk13 0.159 0.187 0.0000.000 0.0000.1010.159
jikes 0.159 0.187 0.000 0.0000.0000.1010.159
kopi 0.189 0.212 0.101 0.101 0.1010.0000.189
pizza 0.000 0.179 0.159 0.159 0.159 0.1890.000

sea
borland gcj jdk12 jdk13 jikes kopi pizza

borland 0.000 0.198 0.171 0.179 0.1720.1870.035
gcj 0.198 0.000 0.167 0.166 0.1690.1600.194
jdk12 0.171 0.1670.000 0.038 0.0240.0780.166
jdk13 0.179 0.166 0.0380.000 0.0450.0860.174
jikes 0.172 0.169 0.024 0.0450.0000.0820.168
kopi 0.187 0.160 0.078 0.086 0.0820.0000.183
pizza 0.035 0.194 0.166 0.174 0.168 0.1830.000



13

D Detailed Compiler differences

Table 8. Bytecode count differences againstjdk13 for the four Grande applications compiled
with thekopi compiler.

.

kopi
Bytecode eul mol ray sea χ

dcmpl 76800 419532800 115462653 0 45289
dcmpg -76800-419532800-115462653 0 23131
dup -217907207 -429110 -11647666-3258470915085
aaload 432537600 0 0 114084 9084
iload 425984000 0 0 51487721 8911
aload0 217907231 429130 11480702 99752692 7917
dup2 0 0 0 -67053779 7827
getfield 216268800 0 -6 67167863 5726
iconstm1 3 2 3 14705226 5121
goto 0 0 0 27761330 4888
ifne 0 0 0 30050302 4391
iadd 0 0 0 58631678 3695
iconst5 0 0 0 29284324 2917
ifeq 0 0 0 -30050302 2801
iload 3 6553603 2 3 22065279 1725
iload 1 0 0 0 23013320 1443
iconst1 2 1 0 -14705178 1156
aload2 3 2 0 1050012 1024
baload 0 0 0 1050011 282
iand 0 0 0 1050011 66
bipush 4 6 0 1050151 64
aload 0 0 167106 228168 37
iconst3 0 0 0 114094 18
iaload 0 0 0 342252 17
istore0 0 0 0 22 15
ior 0 0 0 114084 8
isub 0 0 0 -63044 7
ishl 0 0 0 114084 6
iload 0 0 0 0 22 2
lookupswitch -1 -1 -1 -1 2
tableswitch 1 1 1 1 2
dconst1 2 0 0 0 2
iastore 2 2 0 112 1
iconst2 1 1 0 19 1
newarray 1 1 0 2 1



14

Table 9.Bytecode count differences forborland andpizzacompared againstjdk13

borland
Bytecode eul mol ray sea χ

if acmpeq 0 0 104200128 0 52100064
if icmpge 37820501 105338117 108412568 7086963114897083
goto 36685299 105132895 104302178 75573244 333656
if icmpeq 0 0 0 113780021 33762
iconst0 25600 315015 3181466 138273519 26414
if icmplt -37820501-105338117-108412568 -64225544 17125
aconstnull 0 0 105053966 0 10353
ifnull 0 0 -104200128 0 10207
ifeq 0 0 0 -107455075 10017
if icmpgt 0 7746 0 54584526 6686
if icmple 0 0 3181465 -51720439 6235
i2d 25600 307200 0 0 4310
i2l 0 0 1 12969033 3557
ldc2w 0 0 0 -6644087 2577
ifge 0 0 0 -6644087 2577
lconst0 0 0 -1 -6324946 2514
ifne 0 -69 0 -14985324 2190
ifle 0 0 -3181465 -2864087 1980
if icmpne 0 69 0 8660378 1368
ifnonnull 0 0 -853838 0 924
ldc1 0 0 0 6644087 877
dconst0 -25600 -307200 0 0 303

pizza
Bytecode eul mol ray sea χ

if acmpeq 0 0 104200128 0 52100064
if icmpge 37820501 105338117 108412568 7086963114897083
goto 36685299 105132895 104302178 75573244 333656
if icmpeq 0 0 0 113780021 33762
iconst0 0 7815 3181465 131948573 18149
if icmplt -37820501-105338117-108412568 -64225544 17125
aconstnull 0 0 105053966 0 10353
ifnull 0 0 -104200128 0 10207
ifeq 0 0 0 -107455075 10017
if icmpgt 0 7746 0 54584526 6686
if icmple 0 0 3181465 -51720439 6235
ifge 0 0 0 -6644087 2577
ifne 0 -69 0 -14985324 2190
ifle 0 0 -3181465 -2864087 1980
if icmpne 0 69 0 8660378 1368
ifnonnull 0 0 -853838 0 924



15

Table 10.Bytecode count differences againstjdk13 for the four Grande applications compiled
with thegcj compiler. These figures reflect the greatest dissimiliarity among all the compilers,
both in size and spread

.

gcj
Bytecode eul mol ray sea χ

iload 2 1140583000 0 0 61682701304833629
if icmpge 37820501 105338117 108412568 64225544 14897079
iload 1 173824000 0 0 -41211794 13371077
aload3 0 0 0 42830635 7138439
astore3 0 0 0 7321072 2767105
goto 36685299 105133696 104302178 82484994 333709
dconst1 256002 0 0 0 256002
istore1 153600 0 0 -32299878 108714
iload 3 812595003 2 3 66241340 64949
iload -1694464400 0 0 -7077327 34815
istore2 103000 0 0 27382781 28236
dload 52428900 6945 212557630 0 19091
if icmplt -37820501-105338117-108412568-64225544 17125
dup -217907204 -3074 -11647662 -5759734 14826
dload2 0 0 -216715004 0 14611
dstore 52428800 3873 100042754 0 10432
dstore2 0 0 -104200128 0 10207
aaload 432537600 0 0 51031 9084
aload0 245456234 3094 11480699 57109447 8008
aload 0 0 -7395465-42728605 6565
dup2 0 0 0 -51298562 5988
getfield 243817800 0 0 51349593 5975
dload1 -29491200 -6945 0 0 5388
dstore1 -27852800 -3873 0 0 5234
iconstm1 3 2 3 14705226 5121
dload3 -22937700 0 4157374 0 4948
dstore3 -24576000 0 4157374 0 4799
if icmpgt 0 0 0 37677442 4615
ifne 0 0 0 -26621698 3890
if icmple 0 0 0 -37677442 3865
iand 0 0 0 60586387 3859
iadd 0 0 0 58631656 3695
lload 3 0 0 0 -13288174 3645
bipush 4 6 0 56127412 3435
iconst5 0 0 0 29284324 2917
astore 0 0 0 -7321073 2705
lstore3 0 0 0 -6644087 2577
ldc2w -27395293 3 0 0 2500
ifeq 0 0 0 26621698 2481
iconst1 2 1 0 -14705178 1156
int2byte 0 0 0 1997661 1144
getstatic 0 0 0 4459094 1029
istore -256400 0 0 7631872 518
aload2 4 3 7562578 2 419
istore3 -200 0 0 -2714775 350
isub 0 0 0 -1113055 138
ddiv 153600 0 0 0 17
dsub 153600 0 0 0 14
iconst3 0 0 0 51041 8
iaload 0 0 0 153093 7



16

Table 11.Bytecode count differences againstjdk13 for the four Grande applications compiled
with thejikes and jdk12 compiler. As can be seen from these figures, the only significant differ-
ence is in the number of extragoto s executed by each.

jikes
Bytecode
goto
ifne
sipush
ifeq
ldc1
lookupswitch
tableswitch

eul mol ray sea χ

0 0 0 293981785176
0 0 0 300503024391
0 0 0 -79448392818
0 0 0 -300503022801
0 0 0 79448391049

-1 -1 -1 -1 2
1 1 1 1 2

jdk12
Bytecode
goto
ifne
sipush
ifeq
ldc1
lookupswitch
tableswitch

eul mol ray sea χ

0 0 0 277613304888
0 0 0 300503024391
0 0 0 0 0
0 0 0 -300503022801
0 0 0 0 0

-1 -1 -1 -1 2
1 1 1 1 2


