
As-If-Serial Exception Handling Semantics for

Java Futures

Lingli Zhang

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052-6399

Chandra Krintz ∗

Computer Science Dept.

University of California

Santa Barbara, CA 93106

Abstract

Exception handling enables programmers to specify the behavior of a program when
an exceptional event occurs at runtime. Exception handling, thus, facilitates soft-
ware fault tolerance and the production of reliable and robust software systems.
With the recent emergence of multi-processor systems and parallel programming
constructs, techniques are needed that provide exception handling support in these
environments that is intuitive and easy to use. Unfortunately, extant semantics of
exception handling for concurrent settings are significantly more complex to reason
about than their serial counterparts.

In this paper, we investigate an similarly intuitive semantics for exception han-
dling for the future parallel programming construct in Java. Futures are used by
programmers to identify potentially asynchronous computations and to introduce
parallelism into sequential programs. The intent of futures is to provide some per-
formance benefits through the use of method-level concurrency while maintaining
as-if-serial semantics that novice programmers can easily understand – the seman-
tics of a program with futures is the same as that for an equivalent serial version
of the program. We extend this model to provide as-if-serial exception handling
semantics. Using this model our runtime delivers exceptions to the same point it
would deliver them if the program was executed sequentially. We present the design
and implementation of our approach and evaluate its efficiency using an open source
Java virtual machine.
Key words: Java, exception handling, concurrent programming, futures

∗ Corresponding Author.
Email addresses: Lingli.Zhang@microsoft.com (Lingli Zhang),

ckrintz@cs.ucsb.edu (Chandra Krintz).

Preprint submitted to Science of Computer Programming 29 June 2008



1 Introduction

As multi-processor computer systems increase in popularity and availability, so
to has the focus of the programming language community to provide support
for easy extraction of parallelism from programs [8,9,2,23,26]. One language
construct that has emerged from these efforts is the future. A future is a
simple and elegant construct that programmers can use to identify potentially
asynchronous computations and to introduce parallelism into serial programs.
The future was first introduced by the progenitors of Multilisp [17], and is
available in many modern languages including Java [23] and X10 [9].

The goal of the future is to provide developers, particularly novices, average
programmers, and those most familiar with sequential program development,
with a way to introduce concurrency into their serial programs incrementally,
easily, and intuitively. In our recent work [40], we present the design and im-
plementation of futures for the Java programming language that achieves this
goal by providing programmers with a directive (“@future”) that they can use
to annotate method calls that can safely be executed concurrently (i.e. those
that have no side effects). Our system, called Directive-Based Lazy Futures
(DBLFutures), automates the spawning of such calls on separate threads so
that programmers need not concern themselves for when these methods should
be spawned concurrently. A DBLFutures JVM makes spawning decision adap-
tively by efficiently sampling both the underlying processor availability and the
computation granularity of the call and only spawns potential future methods
when doing so is likely to improve performance.

DBLFutures also simplifies future programming and facilitates intuitive par-
allel program understanding. First, a sequential version of a Java program is
the same program textually as the parallel future version with annotations
elided. Second, DBLFutures enforces as-if-serial semantics for futures. That
is, the semantics of the parallel future version is the same that of the sequen-
tial version. Our goal with this DBLFutures programming model is to ease
the transition of sequential Java programmers to parallel programming by
providing support for incrementally adding concurrency to Java programs.

In this paper, we investigate how to extend this as-if-serial approach to excep-
tion handling in Java programs that employ futures. An exception handling
mechanism is a program control construct that enables programmers to specify
the behavior of the program when an exceptional event occurs [10]. Exception
handling is key for software fault tolerance and enables developers to produce
reliable, robust software systems. Many languages support exception handling
as an essential part of the language design, including CLU [27], Ada95 [18],
C++ [34], Java [15], and Eiffel [29]. Unfortunately, many languages do not
support exception handling in concurrent contexts or violate the as-if-serial

2



property that futures provide – making exception handling verbose, difficult
to use, and error prone for developers. The Java J2SE Future API [23] is one
example of a future implementation that violates the as-if-serial property: ex-
ceptions from future method executions are propagated to the point in the
program at which future values are queried (used), and thus require try-catch
blocks to encapsulate the use of the result of a method call rather than the
method call itself.

To provide as-if-serial semantics for exception handling for Java futures, we
present an alternative approach to J2SE 5.0 futures. First, we employ the DBL-
Futures system to provide as-if-serial semantics of futures that is annotation-
based and thus easier to use (with less programmer effort). DBLFutures also
automates future scheduling and spawning and provides an efficient and scal-
able implementation of futures for Java. We extend DBLFutures with excep-
tion handling semantics that is similarly easy to use and reason about.

Our as-if-serial exception handling mechanism delivers exceptions to the same
point at which they are delivered if the program is executed sequentially. An
exception thrown and uncaught by a future thread in a DBLFutures sys-
tem, will be delivered to the invocation point of the future call instead of the
use point of the future value. Our approach enables programmers to use the
same exception handling syntax for a concurrent, future-based version, as they
would for their serial equivalent. Our system guarantees serial semantics via
novel ordering and revocation techniques within the DBLFutures JVM.

In addition, we investigate the implementation of as-if-serial side effect seman-
tics for DBLFutures and the implementation of exception handling semantics
of futures within this context. DBLFutures alone requires that programmers
only annotate methods that have no side effects, i.e., that only communicate
program state changes through their return values. To relieve the programmer
of this burden, i.e., to enable the programmer to annotate any method as a
future, we extend DBLFutures with safe future [37] functionality. Safe futures
guarantee that the observable program behavior (i.e. the side effects intro-
duced by updates to shared data by the future method or its continuation) is
the same as that for the serial execution.

In our design and implementation of Safe DBLFutures (SDBLFutures), we
extend this functionality with novel techniques that simplify and extend prior
work on safe futures and significantly improve safe future performance through
intrinsic JVM support. Our extensions also facilitate the use of arbitrary levels
of future nesting and provides exception handling support for safe futures.
We find that integration of as-if-serial exception handling support and side
effect semantics is straightforward since the two have similar functionality
and requirements.

3



We implement DBLFutures and SDBLFutures in the Jikes Research Virtual
Machine (JikesRVM) from IBM Research and evaluate its overhead using a
number of community benchmarks. Our results show that our implementa-
tion introduces negligible overhead for applications without exceptions, and
guarantees serial semantics for exception handling for applications that throw
exceptions.

In the sections that follow, we first overview the state-of-the-art in the design
and implementation of the future construct for the Java programming lan-
guage. We describe both the J2SE 5.0 library-based approach to futures as
well as the DBLFutures systems which we extend in this work. In Section 3,
we present our as-if-serial exception handling mechanism. We detail its im-
plementation in Section 4. We then detail our as-if-serial side effect semantics
for exception handling (Section 5) and evaluate the overhead and scalability
of the system (Section 6). Finally, we present related work (Section 7), and
conclude (Section 8).

2 Background

We first overview the state-of-the-art in Java Future support and implemen-
tation. We begin with a description of the Future APIs in Java J2SE 5.0, and
then present directive-based lazy futures (DBLFutures) [40].

2.1 Java J2SE 5.0 Future APIs

Java J2SE 5.0 support futures in Java via a set of APIs in the java.util.concur-
rent package. The primary APIs include Callable, Future, and Executor.
Figure 1 shows code snippets of these interfaces.

public interface Callable<T>{

T call() throws Exception;

}

public interface Future<T>{

...

T get() throws InterruptedException,

ExecutionException;

}

public interface ExecutorService extends Executor{

...

<T> Future<T> submit(Callable<T> task)

throws RejectedExecutionException,

NullPointerException;

}

Fig. 1. The java.util.concurrent futures API

4



public class Fib implements Callable<Integer>

{

ExecutorService executor = ...;

private int n;

public Integer call() {

if (n < 3) return n;

Future<Integer> f = executor.submit(new Fib(n-1));

int x = (new Fib(n-2)).call();

try{

return x + f.get();

}catch (ExecutionException ex){

...

}

}

...

}

Fig. 2. The Fibonacci program using J2SE 5.0 Future API

Using the J2SE 5.0 Future APIs, programmers encapsulate a potentially par-
allel computation in a Callable object and submit it to an Executor for exe-
cution. The Executor returns a Future object that the current thread can use
to query the computed result later via its get() method. The current thread
immediately executes the code immediately after the submitted computation
(i.e., the continuation) until it invokes the get() method of the Future ob-
ject, at which point it blocks until the submitted computation finishes and
the result is ready. The J2SE 5.0 library provides several implementations
of Executor with various scheduling strategies. Programmers can also imple-
ment their own customized Executors that meet their special scheduling re-
quirements. Figure 2 shows a simplified program for computing the Fibonacci
sequence (Fib) using the J2SE 5.0 Future interfaces.

There are several drawbacks of the J2SE 5.0 Future programming model.
First, given that the model is based on interfaces, it is non-trivial to convert
serial versions of programs to parallel versions since programmers must reorga-
nize the programs to match the provided interfaces, e.g., wrapping potentially
asynchronous computations into objects. Secondly, the multiple levels of en-
capsulation of this model results in significant memory consumption and thus
needless memory management overhead.

Finally, to achieve high-performance and scalability, it is vital for a future im-
plementation to make effective scheduling decisions, e.g., to spawn futures only
when the overhead of parallel execution can be amortized over a sufficiently
long running computation. Such decisions must consider the granularity of
computation and the underlying resource availability. However, in the J2SE
5.0 Future model, the scheduling components (Executors) are implemented at
the library level, i.e., outside and independent of the runtime. As a result, these
components do not have access to accurate information about computation
granularity or resource availability that is necessary to make effective schedul-
ing decisions. Poor scheduling decisions can severely degrade performance and
scalability, especially for applications with fine-grained parallelism.

5



public class Fib

{

public int fib(int n) {

if (n < 3) return n;

@future int x = fib(n-1);

int y = fib(n-2);

return x + y;

}

...

}

Fig. 3. The Fibonacci program using DBLFutures

2.2 Overview of DBLFutures

To reduce programmer effort and to improve performance and scalability of
futures-based applications in Java, we present a new implementation of fu-
tures in Java, called Directive-based Lazy Futures (DBLFutures) in [40]. In
the DBLFutures model, programmers use a future directive, denoted as a new
Java annotation, @future, to specify safe, potentially concurrent, computa-
tions within a serial program, and leave the decisions of when and how to exe-
cute these computations to the Java virtual machine (JVM). The DBLFuture-
aware JVM recognizes the future directive in the source and makes an effective
scheduling decision automatically and adaptively by exploiting its runtime ser-
vices (recompilation, scheduling, allocation, performance monitoring) and its
direct access to detailed, low-level knowledge of system and program behavior
that are not available at the library level.

Programmers use the future directive to annotate local variables that are
place-holders of results that are returned by calls to potentially concurrent
functions. If a function call stores its return value into an annotated local
variable, the DBLFuture system identifies the call as an invocation of a future.

Figure 3 shows a version of Fib that uses this model. One way that DBL-
Futures simplifies concurrent programming is by requiring significantly fewer
lines of code. The use of DBLFutures also enables programmers to develop a
parallel version of a program by first developing the serial version and then
adding future annotations onto a subset of local variable declarations. Pro-
grammers using DBLFutures focus their efforts on the logic and correctness
of a program in the serial version first, and then introduce parallelism to the
program gradually and intuitively. Note that such a methodology is not ap-
propriate for all concurrent programs or for expert parallel programmers. It is,
however, a methodology that enables programmers who are new to concurrent
programming to take advantage of available processing cores efficiently and
with little effort.

To exploit the services and knowledge of the execution environment that are
not available at the library level, and to relieve programmers of the burden of
future scheduling, we implemented DBLFutures as an extension to the Java

6



Future call

future
stack

sample
count

Future
frame 
offset

1

4

10

Stack

Future call

Future call

Future call

…

…

…

…

…

Stack

…

…

future
stack

…
future
stack

1

4

Stack

Future call

Future call

…

…

…

…

Current thread
Future thread

Continuation thread

Fig. 4. DBLFutures creates futures lazily and spawns the continuation only when
it identifies that doing so is profitable. Compiler support enables stack splitting
of Java runtime stack threads, continuation spawning at the correct point in the
instruction stream, and managing the return value of the future method efficiently.

Virtual Machine (JVM). We provide a complete description of the DBLFu-
tures implementation in [40] and [42]. In summary, our DBLFutures system
facilitates:

• Lazy spawning. Similar to Mohr et al. [30], our system always treats a
future function call the same as a normal call initially, i.e., the JVM executes
it sequentially (in-line), on the current thread stack. The system spawns the
continuation of the future using a new thread only when it decides that it is
beneficial to do so. Note, that in this implementation, the scope of a future
call is the method in which it is implemented. Moreover, the continuation
is the execution of the current method following the future method call up
to point at which the return value from the future method is used. The
laziness of DBLFutures is key to efficiently and scalable execution of fine-
grained futures.

• Low-overhead performance monitoring. Our system leverages the sam-
pling system that is common to JVMs for support of adaptive compiler
optimization, to extract accurate and low-level program (e.g. long running
methods) and system information (e.g. number of available processors) with
low overhead. Such information facilitates effective scheduling decisions by
a DBLFutures JVM.

• Efficient stack splitting for the implementation of future spawning.
Figure 4 overviews how a DBLFutures JVM spawns threads for continua-
tions of future method calls. Our system maintains a shadow stack that
holds metadata (sample count and reference to return value location) for
each sequentially executed future on the stack. The dark line identifies the
split point on the stack. The future splitter creates a new thread (or takes
one from a thread pool) for the continuation of the future call, copies the
stack frames below the future frame, which corresponds to the continua-
tion, restores the execution context from the stack frames, and resumes the
continuation thread at the return address of the spawned future call. Note

7



that we choose to create a new thread for the continuation instead of the
spawned future, so that we need not setup the execution contexts for both
threads. The spawned future call becomes the bottom frame of the current
thread. The system deletes the future stack entry so that it is no longer
treated as potential future call.

• Volunteer stack splitting. As opposed to the commonly used work-
stealing approach [30,13], a thread in our DBLFutures system voluntarily
splits its stack and spawns its continuation using a new thread. The system
performs such splits at thread-switch points (method entries and loop back-
edges), when the monitoring system identifies an unspawned future call as
long-running (“hot” in adaptive-optimization terms). The current thread
(to which we refer to as the future thread) continues to execute the future
and its method invocations as before; the system creates a new continua-
tion thread, copies all the frames prior to the future frame from the future
thread’s stack to the stack of the new thread. The system then initiates
concurrent execution of the new thread, as if the future call had returned.
The system also changes the return address of the future call to a special
stub, which stores the return value appropriately for use (and potential syn-
chronization) when the future call returns on the future thread. With the
volunteer stack splitting mechanism, we avoid the synchronization overhead
incurred by work-stealing, which can be significant in a Java system [11].

• Compatibility with the Java thread system. Instead of using the pop-
ular worker-crew approach, i.e., a fixed number of special workers execute
queued futures one by one, our system executes futures directly on the cur-
rent Java execution stack and relies on stack splitting to generate extra
parallelism. Each volunteer stack split results in two regular Java threads,
the future and the continuation, both of which are then handed to the in-
ternal JVM threading system for efficient scheduling. This feature makes
futures compatible with Java threads and other parallel constructs in our
system.

• Low memory consumption. In the J2SE 5.0 Future model, the system
must always generate wrapper objects (Future, Callable, etc.) even if the
future is not spawned to another thread since the object creation is hard-
coded in the program. In contrast, the simple and annotation-based specifi-
cation of DBLFutures provide greater flexibility to the JVM. In our system,
the JVM treats annotated local variables as normal local variables until
the corresponding future is split, at which point a Future object is created
and replaces the original local variable adaptively. We thus, avoid object
creation which translates into significant performance gains.

In summary, our DBLFutures implementation is efficient and scalable since
it exploits the powerful adaptivity of the JVM that is enabled by its run-
time services (recompilation, scheduling, allocation, performance monitoring)
and its direct access to detailed, low-level, knowledge of system and program
behavior.

8



3 As-if-serial Exception Handling

Exception handling in Java enables robust and reliable program execution
and control. In this work, we investigate how to implement this feature in
coordination with Java futures. Our goal is to identify a design that is both
compatible with the original language design and that preserves our as-if-serial
program implementation methodology.

In our prior work [40], we focused on the efficient implementation of DBL-
Futures without regard for exception handling. We provide an initial inves-
tigation into the study of extending this system with as-if-serial exception
handling semantics in [41]. We extend this work with additional details herein
and with an investigation of its support within a DBLFutures system that pro-
vides as-if-serial side effect semantics (Section 5). In this section, we describe
how we can support exception handling in the DBLFutures system.

One way to support exception handling for futures is to propagate exceptions
to the use point of future’s return value, as is done in the J2SE 5.0 Future
model. Using the Java 5.0 Future APIs, the get() method of the Future in-
terface can throw an exception with type ExecutionException (Figure 1). If
an exception is thrown and not caught during the execution of the submit-
ted future, the Executor intercepts the thrown exception, wraps the exception
in an ExecutionException object, and saves it within the Future object.
When the continuation queries the returned value of the submitted future
via the get() method of the Future object, the method throws an exception
with type ExcecutionException. The continuation can then inspect the ac-
tual exception using the Throwable.getCause() method. Note that the class
ExecutionException is defined as a checked exception [15, Sec. 11.2] [23].
Therefore, the calls to Future.get() are required by the Java language spec-
ification to be enclosed by a try-catch block (unless the caller throws this
exception). Without this encapsulation, the compiler raises a compile-time er-
ror at the point of the call. Figure 2 includes the necessary try-catch block in
the example.

We can apply a similar approach to support exceptions in the DBLFutures
system. For the future thread, in case of exceptions, instead of storing the
returned value into the Future object that the DBLFutures system creates
during stack splitting and then terminating, we can save the thrown and un-
caught exception object in the Future object and then terminate the thread.
The continuation thread can then extract the saved the exception at the use
points of the return value (the use of the annotated variable after the future
call). That is, we can propagate exceptions from the future thread to the
continuation thread via the Future object.

9



public int f1() {

@future int x=0;

try{

x = A();

}catch (Exception e){

x = default;

}

int y = B();

return x + y;

}

public int f1() {

@future int x;

x = A();

int y = B();

try {

return x + y;

}catch (Exception e){

return default + y;

}

}

(a) (b)

Fig. 5. Examples for two different approaches to exception handling for DBLFutures

One problem with this approach is that it compromises one of the most impor-
tant advantages of the DBLFutures model, i.e., that programmers code and
reason about the logic and correctness of applications in the serial version first,
and then introduce parallelism incrementally by adding future annotations. In
particular, we are introducing inconsistencies with the serial semantics when
we propagate exceptions to the use-point of the future’s return value. We
believe that by violating the as-if-serial model, we make programming with
futures less intuitive.

For example, we can write a simple function f1() that returns the sum of
return values of A() and B(). The invocation of A() may throw an exception,
in which case, we use a default value for the function. In addition, A() and B()

can execute concurrently. In Figure 5 (a), we show the corresponding serial
version for this function, in which the try-catch clause wraps the point where
the exception may be thrown. Using the aforementioned future exception-
handling approach in which the exceptions are received at the point of the
first use of the future’s return value, programmers must write the function as
we show in Figure 5(b). In this case, the try-catch clause wraps the use point of
return value of the future. If we elide the future annotation from this program
(which produces a correct serial version using DBLFutures without exception
handling support), the resulting version is not a correct serial version of the
program due to the exception handling.

To address this limitation, we propose as-if-serial exception semantics for
DBLFutures. That is, we propose to implement exception handling in the same
way as is done for serial Java programs. In particular, we deliver any uncaught
exception thrown by a future function call to its caller at the invocation point
of the future call. Moreover, we continue program execution as if the future
call has never executed in parallel to its continuation.

We use the example in Figure 6 to illustrate our approach. We assume that
the computation granularity of B() is large enough to warrant its parallel
execution with its continuation. There are a number of ways in which execution
can progress:

10



1 public int f2() {

2 @future int x=0;

3 int w=0, y=0, z=0;

4 try{

5 w = A();

6 x = B(); // a future function call

7 y = C();

8 }catch (Exception1 e){

9 x = V1;

10 }catch (Exception2 e){

11 y = V2;

12 }

13 z = D();

14 return w + x + y + z;

15 }

Fig. 6. A simple DBLFutures program with exceptions

case 1: A(), B(), C(), and D() all finish normally, and the return value of
f2() is A()+B()+C()+D().

case 2: A() and D() finish normally, but the execution of B() throws an ex-
ception of type Exception1. In this case, we propagate the uncaught exception
to the invocation point of B() in f2() at line 6, and the execution continues
in f2() as if B() is invoked locally, i.e., the effect of line 5 is preserved, the
control is handed to the exception handler at line 8, and the execution of line
7 is ignored regardless whether C() finishes normally or abruptly. Finally the
execution is resumed at line 13. The return value of f2() is A()+V1+0+D().

case 3: A(), B(), and D() all finish normally, but the execution of C() throws
an exception in type Exception2. In this case, the uncaught exception of C()
will not be delivered to f2() until B() finishes its execution and the system
stores its return value in x. Following this, the system hands control to the
exception handler at line 10. Finally, the system resumes execution at line 13.
The return value of f2() is A()+B()+V2+D().

Note that our current as-if-serial exception semantics for DBLFutures is as-
if-serial in terms of the control flow of exception delivery. True as-if-serial
semantics requires that the global side effects of parallel execution of a DBL-
Futures program be consistent with that of the serial execution. For example,
in case 2 of the above example, any global side effects of C() must also be
undone to restore the state to be the same as if C() is never executed (since
semantically C()’s execution is ignored due to the exception thrown by B()).
However, this side effect problem is orthogonal to the control problem of ex-
ception delivery. We describe how to employ software transactions to enable
as-if-serial side effect semantics in Section 5. Prior to this however, we present
the implementation of as-if-serial exception handling without this support.
That is, when we assume that the programmer only annotates variables that
store the return value of side-effect-free futures.

11



4 DBLFutures Implementation of Exception Handling Semantics

To implement exception handling for DBLFutures, we extend a DBLFuture-
aware Java Virtual Machine implementation that is based on the Jikes Re-
search Virtual Machine (JikesRVM) [22]. In this section, we detail this imple-
mentation.

4.1 Total ordering of threads

To enable as-if-serial exception handling semantics, we must track and main-
tain a total order on thread termination across threads that originate from
the same context and that execute concurrently. We define this total order as
the order in which the threads would terminate if the program was executed
using a single processor (serially). Such ordering does not prohibit threads
from executing concurrently, it simply enables our system to control the order
in which threads complete, i.e. return their results (commit). As mentioned
previously, we assume that futures are side-effect-free in this section. We detail
how we make use of this ordering in Section 4.3.

To maintain this total order during execution, we add two new references,
futurePrev and futureNext, to the virtual machine thread representation
with which we link related threads in an acyclic, doubly linked list. We es-
tablish thread order at future splitting points, since future-related threads are
only generated at these points. Upon a split event, we set the predecessor of the
newly created continuation thread to be the future thread, since sequentially,
the future will execute and complete prior to execution of the continuation. If
the future thread has a successor, we insert the new continuation thread into
the linked list between the future thread and its successor.

Figure 7 exemplifies this process. Stacks in this figure grow upwards. Orig-
inally, thread T1 is executing f(). The future function call A() is initially
executed on the T1’s stack according to the lazy spawning methodology of
our system. Later, the system decides to split T1’s stack and to spawn a new
thread T2 to execute A()’s continuation in parallel to A(). At this point, we
link T1 and T2 together. Then, after T2 executes the second future function
call (B()) for a duration long enough to trigger splitting, the system performs
splitting again. At this point, the system creates thread T3 to execute B()’s
continuation, and links T3 to T2 (as T2’s successor).

One interesting case is when there is a future function call within A() (D()
in our example) that has a computation granularity that is large enough to
trigger splitting again. In this case, T1’s stack is split again, the system creates
a new thread, T4, to execute D()’s continuation. Note that we must update

12



public int f() {

@future int x=0, y=0;

int z;

try{

x = A(); //split point 1

y = B(); //split point 2

}catch(Exception1 e){

...

}

z = C();

return x + y + z;

}

public int A()

throws Exception1{

@future int u;

int v;

u = D(); //split point 3

v = E();

return u + v;

}

Fig. 7. Example of establishing a total ordering across threads.

T2’s predecessor to be T4 since, if executed sequentially, the rest of A() after
the invocation point of D() is executed before B().

The black lines in the figure denote the split points on the stack for each
step. The shadowed area of the stack denotes the stack frames that are copied
to the continuation thread. These frames are not reachable by the original
future thread once the split occurs since the future thread terminates once it
completes the future function call and saves the return value.

4.2 Choosing a Thread to Handle the Exception

One important implementation choice that we encounter is which thread con-
text should handle the exception. For example, in Figure 7, if A() throws an
exception with type Exception1 after the first split event, we can handle the
exception in T1 or T2.

13



Intuitively, we should choose T2 as the handling thread since it seems from the
source code that, after splitting, everything after the invocation point of A()
is handed to T2 for execution, including the exception handler. The context
of T1 ends just prior to the return point of A(), i.e., the point at which the
value returned by the future is stored into the local variable.

The problem is that the exception delivery mechanism in our JVM is syn-
chronous, i.e., whenever an exception is thrown, the system searches for a
handler on the current thread’s stack based on the PC (program counter) of
the throwing point. T2 does not have the throwing context, and will only syn-
chronize with T1 when it uses the value of x. Thus, we must communicate the
throwing context on T1 to T2 and request that T2 pause its current execution
at some point to execute the handler. This asynchronous exception delivery
mechanism is very complex to implement correctly.

Fortunately, since our system operates on the Java stack directly and always
executes the future function call on the current thread’s stack and spawns
the continuation, we have a much simpler implementation option. Note that
the shadowed area on T1’s stack after the first split event is logically not
reachable by T1. Physically, however, these frames are still on T1’s stack. As
a result, we can simply undo the splitting as if the splitting never happened
via clearing the split flag of the first shadowed stack frame (the caller of A()
before splitting), to make the stack reachable by T1 again. With this approach,
our system handles the exception in T1’s context normally using the existing
synchronous exception delivery mechanism of the JVM.

This observation significantly simplifies our implementation and is key to the
efficiency of our system. In this scenario, we abort T2 and all threads that
originate from T2 as if they were never generated. If any of these threads have
thrown an uncaught exception, we simply ignore the exception.

4.3 Enforcing Total Order on Thread Termination

In section 4.1, we discuss how to establish a total order across related future
threads. In this section, we describe how we use this ordering to preserve as-
if-serial exception semantics for DBLFutures. Note that these related threads
execute concurrently, our system only allows them to commit (return their
result) in serial-execution order.

First, we add a field, called commitStatus, to the internal thread representa-
tion of the virtual machine. This field has three possible values: UNNOTIFIED,
READY, and ABORTED. UNNOTIFIED is the default and initial value of this field.
A thread checks its commitStatus at three points: (i) the future return value
store point, (ii) the first future return value use point, and (iii) the exception

14



void futureStore(T value) {

if (currentThread.futurePrev != null) {

while (currentThread.commitStatus == UNNOTIFIED){

wait;

}

} else {

currentThread.commitStatus = READY;

}

Future f = getFutureObject();

if (currentThread.commitStatus == ABORTED){

currentThread.futureNext.commitStatus = ABORTED;

f.notifyAbort();

clean up and terminate currentThread;

} else {

currentThread.futureNext.commitStatus = READY;

f.setValue(value);

f.notifyReady();

terminate currentThread;

}

}

Fig. 8. Algorithm for the future value storing point

T futureLoad() {

Future f = getFutureObject();

while (!f.isReady() &&

!currentThread.commitStatus == ABORTED){

wait;

}

if (currentThread.commitStatus == ABORTED){

if (currentThread.futureNext != null) {

currentThread.futureNext.commitStatus

= ABORTED;

}

clean up and terminate currentThread;

} else {

return f.getValue();

}

}

Fig. 9. Algorithm for the future return value use point

delivery point.

Figure 8 shows the pseudocode of the algorithm that we use at point at which
the program stores the future return value. The pre-condition of this function is
that the continuation of the current future function call is spawned on another
thread, and thus, a Future object is already created as the place-holder that
both the future and continuation thread have access to.

This function is invoked by a future thread after it completes the future func-
tion call normally, i.e., without any exceptions. First, if the current thread
has a predecessor, it waits until its predecessor finishes either normally or
abruptly, at which point, the commitStatus of the current thread is changed
from UNNOTIFIED to either READY or ABORTED by its predecessor. If
the commitStatus is ABORTED, the current thread notifies its successor to
abort. In addition, the current thread notifies the thread that is waiting for
the future value to abort. The current thread then performs any necessary

15



void deliverException(Exception e) {

while (there are more frames on stack){

if (the current frame has a split future) {

while (currentThread.commitStatus == UNNOTIFIED){

wait;

}

if (currentThread.commitStatus == ABORTED){

if (currentThread.futureNext != null) {

currentThread.futureNext.commitStatus = ABORTED;

}

clean up and terminate currentThread;

}

}

search for a handler for e in the compiled method

on the current stack;

if (found a handler) {

jump to the handler and resume execution there;

// not reachable

}

if (the current frame is for a future function call

&& its continuation has been spawned) {

if (currentThread.futurePrev != null) {

while (currentThread.commitStatus == UNNOTIFIED){

wait;

}

} else {

currentThread.commitStatus = READY;

}

currentThread.futureNext.commitStatus = ABORTED;

Future f = getFutureObject();

f.notifyAbort();

if (currentThread.commitStatus == ABORTED){

clean up and terminate currentThread;

}else{

reset the caller frame to non-split status;

}

}

unwind the stack frame;

}

// No appropriate catch block found

report the exception and terminate;

}

Fig. 10. Algorithm for the exception delivery point

clean up and terminates itself. Note that a split future thread always has a
successor. If the commitStatus of the current thread is set to READY, it
stores the future value in the Future object, and wakes up any thread waiting
for the value (which may or may not be its immediate successor), and then
terminates itself.

The algorithm we perform at the first use of the return value from a future
(Figure 9) is similar. This function is invoked by a thread when it attempts
to use the return value of a future function call that is executed in parallel.
The current thread will wait until either the future value is ready or until it
is informed by the system to abort. In the former case, this function simply
returns the available future value. In the latter case, the current thread first
informs its successor (if any) to abort also, and then cleans up its resources
and terminates.

16



The algorithm for the exception delivery point is somewhat more complex.
Figure 10 shows the pseudocode of the existing exception delivery process in
our JVM augmented with our support to as-if-serial semantics. We omit some
unrelated details for clarity. The function is a large loop that searches for an
appropriate handler block on each stack frame, from the newest (most recent)
to the oldest. If we fail to find a handler in the current frame, we unwind the
stack by one frame and repeat this process until we find the handler. If we do
not find the handler, we report the exception to the system and terminate the
current thread.

To support as-if-serial exception semantics in DBLFutures, we make two mod-
ifications to this process. First, at the beginning of each iteration, the current
thread checks whether the current stack frame is for a spawned continuation
that has a split future. If this is the case, the thread checks whether it should
abort, i.e., its predecessor has aborted. If the predecessor has aborted, the
current thread also aborts and instead of delivering the exception, it notifies
its successor (if there is any) that it should also abort, cleans up, and then
terminates itself. Note that the system only does this checking for threads
with a spawned continuation frame. If a handler is found before reaching such
a spawned continuation frame, the exception will be delivered as usual since
in that case, the exception is within the current thread’s local context.

The second modification to exception delivery is to stack unwinding. The
current thread checks whether the current frame belongs to a future function
call that has a spawned continuation. In this case, we must roll back the
splitting decision, and reset the caller frame of the current frame to be the next
frame on the local stack. This enables the system to handle the exception on
the current thread’s context (where the exception is thrown) as if no splitting
occurred. In addition, the thread notifies its successor and any thread that
is waiting for the future value to abort since the future call finishes with an
exception. The thread must still must wait for the committing notification
from its predecessor (if there is any). In the case for which it is aborted,
it cleans up and terminates, otherwise, it reverses the splitting decision and
unwinds the stack.

Note that our algorithm only enforces the total termination order when a
thread finishes its computation and is about to terminate, or when a thread
attempts to use a value that is asynchronously computed by another thread,
at which point it will be blocked regardless since the value is not ready yet.
Therefore, our algorithm does not prevent threads from executing in parallel
in any order.

17



5 Safe Future Support in DBLFutures

In the previous sections, we assume that the programmer determines which
future methods are safe to execute concurrently, i.e., identifies methods for
which there are no side effects (for which the only change in program state
as a result of method execution that is visible outside of the method, is the
method’s return value, if any). In this section, we consider how to support as-if-
serial exception handling for a DBLFutures JVM that guarantees correct (as-
if-serial) execution of concurrent methods with side effects, i.e., safe futures,
automatically. We first overview prior work on safe futures, an extension of
DBLFutures that facilitates similar safety, and how as-if-serial is supported in
such a system.

5.1 Overview of Safe Futures

Safe futures for Java [37] is an extension to J2SE 5.0 futures (although it does
not, in general, require this programming model). Safe futures guarantee that
the observable program behavior (i.e. the side effects introduced by updates to
shared data by the future method or its continuation) is the same as that for
the serial execution. This semantics is stronger than those for lock-based syn-
chronization and transactional memory since they guarantee the update order
of shared data (program state). Although this guarantee may limit parallelism,
it provides significant programmer productivity benefits: the concurrent ver-
sion is guaranteed to be correct once the programmer completes a working
serial version, without requiring that the programmer debug a concurrent ver-
sion.

The safe future implementation extends the J2SE 5.0 library implementation
with a SafeFuture class that implements the J2SE 5.0 Future interface. To
spawn a computation as a future, programmers first wrap the computation
in a class that implements the Callable interface. At the spawning point,
programmers create a SafeFuture object that takes the Callable object as a
parameter, and then call the frun() method of the SafeFuture object. Upon
the invocation of the frun() method, the system spawns a new thread to
evaluate the computation enclosed by the SafeFuture object. At the same
time, the current thread immediately continues to execute the code immedi-
ately after the call site of the frun() method (i.e., the continuation), until it
attempts to use the value computed by the future, when the get() method is
invoked. The current thread blocks until the value is ready.

To preserve the as-if-serial side effect semantics, the safe future system di-
vides the entire program execution into a sequence of execution contexts. Each

18



Fig. 11. Tree structure of execution contexts

context encapsulates a fragment of computation that is executed by a single
thread. There is a primordial context for the code that invokes the future, a
future context for the future computation, and a continuation context for the
continuation code. Safe futures spawn a new thread for the future context and
use the thread of the primordial context (which it suspends until the future
and continuation contexts complete), for the continuation context. These exe-
cution contexts are totally ordered by the system based on their logical serial
execution order.

The safe future system couples each future-continuation pair, and defines two
data dependency violations for each pair:

• Forward dependency violation: The continuation context does not observe
the effects of an operation performed by its future context.

• Backward dependency violation: The future context does observe the effect
of an operation performed by its continuation.

The system tracks every read or write to shared data between the pair of
contexts via a compiler-inserted barrier that records both activities. The sys-
tem checks for forward dependency violations using two bitmaps per context,
one for reads and one for writes, to shared data. When a continuation con-
text completes, the system checks the read bitmap against the write bitmap
of its future context once it completes. If there is no violation, the continua-
tion commits and ends. Otherwise, the runtime revokes the changes that the
continuation has made and restarts the continuation from the beginning.

The system performs revocation via copy-on-write semantics for all writes to
shared data and prevents backward dependencies using versioning of shared
data. When the continuation writes to shared data, the system makes a copy of
it for subsequent instructions to access. This ensures that the future does not
access any shared data modified by the continuation. A context validates and
commits its changes only once all contexts in its logical past have committed.
If a context is revoked by the system, all contexts in its logical future that are
awaiting execution are aborted (or revoked if executing, when finished).

19



5.2 Implementing Safe Future Semantics in the DBLFutures System

The extant approach to safe futures in Java imposes a number of limitations
on the JVM, and program performance. First, it employs the library approach
to futures since it builds upon the J2SE 5.0 future implementation, which, as
we have discussed previously, introduces significant overhead and tedious pro-
gram implementation. Second, there is no support for future nesting – the safe
future system assumes a linear future creation pattern, i.e., only the primor-
dial/continuation context can create a future. This is a significant limitation
since it precludes future method calls in future methods and thus, divide-and-
conquer, recursive, and other parallel algorithms. Third, context management
in the safe future system is implemented without compiler support (and op-
timization). The extant approach uses bytecode rewriting and manages revo-
cation and re-execution through Java’s exception handling mechanism. Such
an approach imposes high-overhead (memory, bytecode processing, compila-
tion), is error prone, not general, and severely limits compiler optimization
and support of futures.

These restrictions (no nesting or compiler support) force the implementation
of safe futures to be ad-hoc and redundant, and to impose high overhead.
For example, when a context commits, the system must compare its read and
write bitmaps against all of its logical predecessors even when it has already
compared predecessors against predecessors.

To address these limitations, we have designed and implemented Safe DBL-
Futures (SDBLFutures): safe future support within the DBLFutures system.
SDBLFutures extends and is significantly different from prior work on safe
futures [37]. Our extensions include dependency violation tracking and pre-
vention, execution contexts, data-access barriers, read/write bit-maps, version
list maintenance from the safe future implementation, and support for excep-
tion handling semantics. Moreover, SDBLFutures provide as-if-serial side ef-
fect semantics for any level of future nesting, thereby supporting a much larger
range of concurrent programs, including divide-and-conquer for fine-grained,
method-level parallelism. By modifying a Java virtual machine to provide safe
future support significantly simplifies the implementation of as-if-serial side
effect semantics. We avoid all bytecode rewriting by associating execution
context creation with stack splitting. We avoid redundant local state saving
and restoring by accessing context state directly from Java thread stacks. Fi-
nally, we simplify context revocation and provide an efficient implementation
for exception handling for futures.

Key to enabling arbitrary future nesting, is a novel hierarchical approach to
context identifier assignment. Context identifiers (IDs) must preserve the log-
ical order of contexts to guarantee the total serial order among, potentially

20



concurrently, executing threads. Our context IDs are four-byte binary num-
bers. We use the two least-significant bits to indicate whether the value is an
ID or a pointer to a more complex ID-structure (our JVM aligns objects so the
last two bits are free for us to use). We use the remaining 30 bits of the value
in pairs, called nesting levels, from left to right, to assign new context IDs.
Each level has one of three binary values: 00, 01, and 10, which corresponds
to the primordial context, the future context, and the continuation context of
that nesting level, respectively. We unset all unused levels. If a program re-
quires more than 15 levels, we encode an address in place of the ID that refers
to an ID-structure that encapsulates additional layers. Except for the initial
primordial (starting program) context whose ID is 0x00000001, all contexts
are either a future context or a continuation context relative to a spawning
point in the program. The same future or continuation context can be the
primordial context of the next level, when there is nesting.

Using bits from high to low significance enables all sub-contexts spawned by
a future context to have context IDs with smaller values than those of all sub-
contexts spawned by the continuation context. This property is preserved for
the entire computation tree using this model. Therefore, the values of context
IDs are consistent with the logical order of execution contexts, which facilitates
simple and fast version control.

We employ a new context organization for SDBLFutures to facilitates efficient
access to contexts. This organization uses a tree structure that maintains
the parent-child relationships of the nesting levels, that avoids false conflicts
between contexts, and that intelligently accumulates shared state information
for fast conflict checking (addressing all of the limitations of the current safe
future approach).

Figure 11 depicts a simple example of future code in Java using our context
tree organization. Each node in the tree is marked with our context IDs in base-
4 (with intermediate 0’s removed). In this structure, the primordial context
is the parent of the future and continuation contexts. The structure handles
primordial context suspension in a straightforward way. The system suspends
the context at the point of the future spawn and resumes it after the future and
continuation complete. Thus, when the system commits a primordial context,
then it has committed the entire subtree of computation below the context.

Upon a context commit, our system merges the metadata for all shared data
from a child context into the parent. This merging significantly simplifies the
conflict detection process and requires many fewer checks than in the original
safe future implementation (which uses a linked list of contexts). Specifically,
the SDBLFutures system merges (takes the intersection of) the read/write
bitmaps of the child and parent contexts. In addition, for an object version
created by the child context, if the parent context also has a private version for

21



the same object, we replace that version with the child’s version; otherwise,
we tag the child’s version with parent’s context ID and record it as an object
version created by the parent context. Note that a continuation context ini-
tiates a commit only if its corresponding future context commits successfully.
Therefore, our system requires no synchronization for merging.

With such information aggregation and layout, we need only check for contexts
against the root of a subtree as opposed to all nodes in a subtree, when
checking conflicts for contexts that occur logically after the root. In addition,
our approach requires no synchronization for any tree update since all are now
thread-local.

Moreover, the laziness of context creation (future spawning) in SDBLFutures
avoids unnecessary context management overhead. This laziness means that
the spawn point of a future will be later in time than the function entry
point of the future. Any shared data access (shared with the continuation)
that occurs in the future prior to spawning is guaranteed to be safe since the
system executes the future prior to the continuation and sequentially. Thus,
our learning delay also has the potential for avoiding conflicts and better
enables commits in a way not possible in prior work (which triggers all futures
eagerly).

The SDBLFutures system also handles context revocation naturally and in a
much simpler way since it has direct access to the runtime stack frames of Java
threads. In our model, the system stores the local state of the continuation
on the future’s stack even after splitting. Since we have access to both stacks,
we need not duplicate work to save or restore these states. To revoke the
continuation, we need only to reset the split flag of the caller frame of the
future call. This causes the future call to return as a normal call, and the
current thread continues to execute the code immediately following the future
call – which implements the revocation of the continuation context.

5.3 SDBLFutures Implementation of Exception Handling Semantics

As-if-serial exception handling semantics preserve the exception handling be-
havior of a serially executed application, when we execute the application with
concurrent threads. To enable this, we preserve all side effects caused by com-
putations that occur earlier in the logical (serial) order than the exception
being handled, and discard all side effects that occur in the logical future. We
can guarantee this semantics using the as-if-serial side effect support provided
by the SDBLFutures system.

As we detailed previously, we maintain a total ordering on thread termina-
tion across threads that originate from the same future spawning point and

22



execute concurrently. In SDBLFutures, maintaining this total thread order is
not necessary since we can derive the required ordering information of threads
from their associated execution contexts, which are totally ordered based on
their logical serial execution order. Therefore, all extra data structures that we
have introduced previously including new fields of the internal thread objects
(futurePrev, futureNext, and commitStatus) are not needed if the JVM
provides safe future support.

Without safe future support, we augment the futureStore and futureLoad al-
gorithms in the DBLFutures system. This additional logic enables the current
thread that is waiting for the previous thread in the total ordering to finish
and clean up (if aborted), before performing the real actions of both functions
(see Figure 8 and Figure 9). This augmentation is necessary to preserve the
total ordering on termination of threads.

However, in SDBLFutures, this logic is already part of the algorithms of future-
Store and futureLoad to preserve the as-if-serial side effect semantics, except
that we use execution contexts instead of threads. This means that the extra
work in futureStore and futureLoad that was required to support as-if-serial
exception handling now comes for free in the SDBLFutures system. Moreover,
the clean-up-on-abort that we perform in SDBLFutures includes removal of all
private object versions that the aborted context created. Since the side effects
of an execution context are kept as private object versions of that context that
are not visible until the context commits, the clean up process reverts all side
effects of the computation associated with the aborted context completely.
Such a process is not possible without as-if-serial side effect support.

The only additional algorithm required for support of as-if-serial exception
handling in the SDBLFutures system is the exception delivery algorithm. This
algorithm is similar to that of the delivery process in Figure 10. However,
we implement total ordering using execution contexts instead of threads. We
present this new exception delivery algorithm in Figure 12.

Compared to the normal exception delivery algorithm in the unmodified vir-
tual machine, this exception delivery algorithm has two extra parts. The first
part is executed before searching for a handler in the compiled method of the
current frame (line 3 ∼ 11 in Figure 12). This part ensures that an exception
thrown by a continuation context, but that is not handled within the contin-
uation context before it unwinds to the splitting frame, will not be handled
unless the current context commits successfully.

Successfully committing the current context indicates that all side effects of
the concurrently executed contexts up to this point are guaranteed to be same
as if the program is executed sequentially. Therefore, we can proceed to search
for a handler in the current method as we do for serial execution. If the current

23



1 void deliverException(Exception e) {

2 while (there are more frames on stack){

3 if (the current frame has a split future) {

4 // a frame for a continuation context

5 currentContext = currentThread.executionContext;

6 try to globally commit currentContext;

7 if (currentContext is aborted

|| currentContext will be revoked){

8 clean up currentContext;

9 terminate currentThread;

10 }

11 }

12 search for a handler for e in the compiled

method on the current stack;

13 if (found a handler) {

14 jump to the handler and resume execution there;

15 // not reachable

16 }

17 if (the current frame is for a future function call

18 && its continuation has been spawned) {

19 currentContext = currentThread.executionContext;

20 try to globally commit currentContext;

21 if (currentContext is aborted) {

22 clean up currentContext;

23 terminate currentThread;

24 }else{

25 abort continuationContext;

26 reset the caller frame to non-split status;

27 }

28 }

29 unwind the stack frame;

30 }

31 // No appropriate catch block found

32 report the exception and terminate;

33 }

Fig. 12. Algorithm for the exception delivering point within the SDBLFutures sys-
tem

context is aborted or revoked, which indicates that the current exception would
not have existed if the program was executed sequentially, the current context
is cleaned up and the current exception is ignored. Note that a continuation
context usually ends and commits at the usage point of the future value, but
in case of exceptions, it ends and commits at the exception throwing point.

The second extra part in this algorithm (line 17 ∼ 28 in Figure 12) occurs
when we are unable to find a handler in the current frame before we unwind
the stack to the next frame. Similar to the first part, this part ensures that
an exception thrown by a future context, but that is not handled locally even
when the system unwinds the stack the stack frame of the future call, will not
be handled unless the future context commits successfully. When a context
aborts, we clean up the context and ignore the exception (as in the first part).
If the future context successfully commits, to handle the thrown exception
on the current stack as if the future call is a normal call as we describe in
Section 4.2, the system resets the split flag of the caller frame to revert the
stack split. The system also aborts the continuation context, which recursively
aborts all contexts in the logical future of the current context. This process

24



also reverts all side effects caused by these contexts since they would not have
occurred had we executed the program sequentially to this point. Finally, the
system unwinds the stack and repeats the process for the next stack frame.

In summary, supporting as-if-serial exception handling and preserving as-if-
serial side effect semantics have many similar requirements and can share many
common implementations. Therefore, integrating the support of as-if-serial ex-
ception handling support into the SDBLFutures system is simple and straight-
forward. Moreover, with the underlying support for preserving as-if-serial side
effects in the SDBLFutures system, the complete as-if-serial exception han-
dling semantics, which also defines the program behavior in the presence of
exceptions, is now available.

6 Performance Evaluation

We implement DBLFutures, the safe future extensions (SDBLFutures), and as-
if-serial exception handling support for both, in the popular, open-source Jikes
Research Virtual Machine (JikesRVM) [22] (x86 version 2.4.6) from IBM Re-
search. We conduct our experiments on a dedicated 4-processor box (Intel Pen-
tium 3(Xeon) xSeries 1.6GHz, 8GB RAM, Linux 2.6.9) with hyper-threading
enabled. We report results for 1, 2, 4, and 8 processors – 8 enabled virtu-
ally via hyper-threading. We execute each experiment 10 times and present
performance data for the best-performing. We report data for the adaptively
optimizing JVM configuration compiler [3] (with pseudo-adaptation [4] to re-
duce non-determinism).

The benchmarks that we investigate are from the community benchmark suite
provided by the Satin system [36]. Each implements varying degrees of fine-
grained parallelism. At one extreme is Fib which computes very little but
creates a very large number of potentially concurrent methods. At the other
extreme is FFT and Raytracer which implement few potentially concurrent
methods, each with large computation granularity.

We present the benchmarks and their performance characteristics in Table 1.
Column 2 in the table is the input size that we employ and column three
is the total number of potential futures in each benchmark. In the final two
columns of the table, we show the execution time in seconds for the serial
(single processor) version using the J2SE 5.0 implementation. For this version,
we invoke the call() method of each Callable object directly instead of
submitting it to an Executor for execution.

25



Bench- Inputs future# Ex. Time

marks size (106) (secs)

FFT 218 0.26 8.27

Raytracer balls.nff 0.27 20.41

AdapInt 0-250000 5.78 28.84

Quicksort 224 8.38 8.77

Knapsack 24 8.47 11.88

Fib 40 102.33 29.09

Table 1
Benchmark characteristics

6.1 DBLFutures Performance

We first overview the performance benefits that we achieve using the DBL-
Future approach to Java futures. Table 2 shows the speedup of DBLFutures
over the state-of-the-art library based approach. Our compiler support is im-
plemented in the JikesRVM optimizing compiler which optimizes hot methods
dynamically. We experiment with 5 recursive benchmarks and future-ize all of
the functions that implement the algorithms. The number of dynamic futures
in these programs range from 0.26 to 8.47 million futures. We investigate the
use of different numbers of 1.6GHz processors for these programs. Our results
show that DBLFutures is 1.3 to 1.6 times faster (without Fib since it is an
extreme case) than the current state-of-the-art. The benefits come from more
intelligent spawning decisions and from significantly less memory management.

For Safe DBLFutures (SDBLFutures), our system introduces overhead for
state tracking (not shown here) that is similar to that of the original safe
future system [37]. However, since we introduce this support within DBLFu-
tures, and the original safe future system builds upon library-based, J2SE 5.0
Future for its implementation, the gains shown are also what we achieve when
we compare SDBLFutures against the original implementation of safe futures.

Table 3 presents our evaluation of the overhead and scalability of DBLFutures.
Ti is the execution time of the program with i processors. Ts for the execution
time of the corresponding serial version (column 2 in seconds). In this study,
we use a serial version that employs our annotation-based system without
splitting – i.e. it does not employ the J2SE 5.0 library implementation (due
to its high overhead). It therefore is a much faster baseline that reveals the
overhead that DBLFutures imposes. Ts/T1 is our overhead metric.

The difference between T1 (single processor) and Ts reveals three sources of
overhead: (1) the bookkeeping employed to maintain the shadow future stack,

26



Bench- Processor Count

marks 1 2 4 8

AdapInt 1.23 x 1.18 x 1.26 x 1.47 x

FFT 1.08 x 1.12 x 1.01 x 1.00 x

Fib 4.46 x 6.64 x 12.42 x 18.17 x

Knapsack 1.31 x 1.57 x 1.76 x 1.86 x

QuickSort 1.87 x 2.10 x 2.27 x 2.72 x

Raytracer 1.01 x 1.01 x 1.00 x 1.01 x

Avg 1.83 x 2.27 x 3.29 x 4.37 x

Avg(w/o Fib) 1.30 x 1.40 x 1.46 x 1.61 x

Table 2
DBLFutures performance: speedup of the directive-based approach over the library
approach.

Benchmarks Ts/T1 T1/T2 T1/T4 T1/T8

AdapInt 0.93 x 1.73 x 3.43 x 5.24 x

FFT 0.99 x 1.60 x 1.99 x 1.88 x

Fib 0.34 x 1.98 x 3.94 x 4.02 x

Knapsack 0.96 x 1.84 x 2.76 x 2.58 x

QuickSort 0.88 x 1.90 x 3.01 x 3.44 x

Raytracer 0.99 x 1.90 x 3.22 x 3.84 x

Avg 0.85 x 1.83 x 3.06 x 3.50 x

Avg (w/o Fib) 0.95 x 1.79 x 2.88 x 3.40 x

Table 3
DBLFutures performance: the overhead and scalability of DBLFutures.

(2) the activities of the future profiler, controller, and compiler, and (3) the
conditional processing required by DBLFutures for storing and first use of the
value returned by a potential future call. The JVMs perform no splitting in
either case. DBLFutures, although unoptimized introduces little overhead and
extracts performance from parallelism to enable the speedups shown.

6.2 Performance of As-if-serial Exception Handling Support

Although the as-if-serial exception handling semantics are very attractive for
programmer productivity since it significantly simplifies the task of writing
and reasoning about DBLFutures programs with exceptions, it is important

27



that it does not introduce significant overhead. In particular, it should not
slow down applications for programs that throw no exceptions. If it does so,
it compromises the original intent of our DBLFutures programming model
which is to introduce parallelism easily, and to achieve better performance
when there are available computational resources.

In this section, we provide an empirical evaluation of our implementation
to evaluate its overhead. We present our results in the tables in Figure 13.
We measure the overhead of exception handling support in the DBLFutures
system.

Figure 13 has three subtables, for 1, 2, and 4 processors, respectively. The
second column of each subtable is the mean execution time (in seconds) for
each benchmark in the DBLFutures system without exception handling sup-
port (denoted as Base in the table). We show the standard deviation across
runs in the parentheses. The third column is the mean execution time (in sec-
onds) and standard deviation (in parentheses) in the DBLFutures system with
the as-if-serial exception handling support (denoted as EH in the table). The
fourth column is the percent degradation (or improvement) of the DBLFuture
system with exception handling support.

To ensure that these results are statistically meaningful, we conduct the inde-
pendent t-test [14] on each set of data, and present the corresponding t values
in the last column of each section. For experiments with sample size 20, the
t value must be larger than 2.093 or smaller than -2.093 to make the differ-
ence between Base and EH statistically significant with 95% confidence. We
highlight all overhead numbers that are statistically significant in the table.

This table shows that our implementation of the as-if-serial exception handling
support for DBLFutures introduces only negligible overhead. The maximum
percent degradation is 3.5%, which occurs for Fib when one processor is used.
The overhead is in general, less than 2%

These results may seem counterintuitive since we enforce a total termination
order across threads to support the as-if-serial exception semantics. However,
our algorithm only does so (via synchronization of threads) at points at which
a thread either operates on a future value (stores or uses) or delivers an ex-
ception. Thus, our algorithm delays termination of the thread, but does not
prevent it from executing its computation in parallel to other threads. For
a thread that attempts to use a future value, if the value is not ready, this
thread will be blocked anyway. Therefore, our requirement that threads check
for an aborted flag comes for free.

Moreover, half of the performance results show that our EH extensions actually
improve performance (all negative numbers). This phenomenon is common in
the 1-processor case especially. It is difficult for us to pinpoint the reasons for

28



Benchs Base EH Diff T

AdapInt 29.36 (0.09) 27.96 (0.18) -4.8% -31.79

FFT 7.89 (0.03) 7.78 (0.03) -1.5% -11.49

Fib 16.47 (0.13) 17.04 (0.06) 3.5% 17.81

Knapsack 11.27 (0.04) 10.79 (0.03) -4.3% -41.78

QuickSort 8.11 (0.04) 8.01 (0.03) -1.3% -9.20

Raytracer 21.22 (0.09) 20.91 (0.07) -1.4% -12.12

(a) With 1 processor

Benchs Base EH Diff T

AdapInt 15.02 (0.25) 15.40 (0.81) 2.5% 1.97

FFT 4.92 (0.08) 5.03 (0.10) 2.2% 3.78

Fib 8.34 (0.09) 8.48 (0.06) 1.7% 5.94

Knapsack 6.36 (0.16) 6.35 (0.14) -0.2% -0.22

QuickSort 4.31 (0.08) 4.28 (0.04) -0.5% -1.07

Raytracer 11.18 (0.10) 11.28 (0.14) 0.9% 2.56

(b) With 2 processors

Benchs Base EH Diff T

AdapInt 8.47 (1.01) 8.67 (1.35) 2.4% 0.53

FFT 4.24 (0.09) 4.18 (0.10) -1.6% -2.33

Fib 4.26 (0.02) 4.33 (0.04) 1.6% 6.47

Knapsack 4.40 (0.19) 4.40 (0.15) 0.1% 0.07

QuickSort 2.52 (0.03) 2.54 (0.03) 0.9% 2.34

Raytracer 6.26 (0.07) 6.33 (0.07) 1.1% 3.27

(c) With 4 processors

Fig. 13. Overhead and scalability of the as-if-serial exception handling for DBL-
Futures. The Base and EH column list the mean execution time (in seconds) and
standard deviation (in parentheses) in the DBLFutures system without and with
the as-if-serial exception handling support. The Diff column is the difference be-
tween Base and EH (in percent). The last column is the T statistic that we compute
using data in the first three columns. We highlight the difference numbers that are
statistically significant with 95% confidence.

29



the improved performance phenomenon due to the complexity of JVMs and
the non-determinism inherent in multi-threaded applications. We suspect that
our system slows down thread creation to track total ordering and by doing
so, it reduces both thread switching frequency and the resource contention to
improve performance.

In terms of scalability, our results show that as the number of processors
increase our overhead does not increase. Although we only experiment with
up to 4 processors, given the nature of our implementation, we believe that
the overhead will continue to be low for larger machines.

7 Related work

Many early languages that support futures (e.g. [17,6]) do not provide concur-
rent exception handling mechanisms among the tasks involved. This is because
these languages do not have built-in exception handling mechanisms, even for
the serial case. This is also the case for many other parallel languages that
originate from serial languages without exception handling support, such as
Fortran 90 [12], Split-C [24], Cilk [5], etc.

For concurrent programming languages that do support exception handling,
most provide exception handling within thread boundaries, but have limited
or no support for concurrent exception handling. For example, for Java [15]
threads, exceptions that are not handled locally by a thread will not be au-
tomatically propagated to other threads, instead, they are silently dropped.
The C++ extension Mentat [16] does not address how to provide exception
handling. In OpenMP [31], a thrown exception inside a parallel region must be
caught by the same thread that threw the exception and the execution must
be resumed within the same parallel region.

Most recent languages that support the future construct (e.g. [23,9,1]) pro-
vide concurrent exception handling for futures to some extent. For example,
in Java 5.0, when a program queries a return value from a future via the
Future.get() method, an ExecutionException is thrown to the caller if the
future computation terminates abruptly[23]. Similar exception propagation
strategy is used by the Java Fork/Join Framework [25], which facilitates the
divide-and-conquer parallel programming methodology for Java programs. In
Fortress [1], the spawn statement is conceptually a future construct. The par-
ent thread queries the value returned by the spawned thread via invoking its
val() method. When a spawned thread receives an exception, the exception
is deferred. Any invocation of val() then throws the deferred exception. This
is similar to the J2SE 5.0 Future model (Figure 1).

30



X10 [9] proposes a rooted exception model: If activity A is the root-of ac-
tivity B, and A is suspended at a statement awaiting the termination of B,
then exceptions thrown in B are propagated to A at that statement when
B terminates. Currently, only the finish statement marks code regions as a
root activity. We expect that future versions of the language will introduce
additional, similar statements, including force(), which extracts the value of
a future computation.

The primary difference between our as-if-serial exception handling model for
futures and the above approaches is the point at which exceptions are prop-
agated. In these languages, exceptions raised in the future computation that
cannot be handled locally are propagated to the thread that spawns the com-
putation when it attempts to synchronize with the spawned thread, such as
upon use of the value that the future returns. Our model propagates asyn-
chronous exceptions to the invocation point of the future function call as if
the call is executed sequentially. In this sense, the exception handling mech-
anism for the Java Remote Method Invocation model [21] is similar to our
approach since it propagates remote execution exceptions back to the context
of the caller thread at the remote method call invocation site. However, an
RMI calls typically block while future calls are non-blocking.

JCilk [26,11] is most related to our work. JCilk is a Java-based multithreaded
language that enables a ”Cilk-like” parallel programming model in Java. It
strives to provide a faithful extension of the semantics of Java’s serial exception
mechanism, that is, if we elide JCilk primitives from a JCilk program, the
resulting program is a working serial Java program. In JCilk, an exception
thrown and uncaught in a spawned thread is propagated to the invocation
context in the parent thread, which is the same as our model.

There are several major differences between JCilk and our work. First, JCilk
does not enforce ordering among spawned threads before the same sync state-
ment. If multiple spawned threads throw exceptions simultaneously, the run-
time randomly picks one to handle, and aborts all other threads in the same
context. In our model, even when there are several futures spawned in the
same try-catch context, there is always a total ordering among them, and
our system selects and handles exceptions in their serial order. In this sense,
JCilk does not maintain serial semantics to the same degree as our model
does. Second, JCilk requires a spawn statement surrounded by a special cilk
try construct if exceptions are possible. In our model, only the traditional
Java try clause is sufficient. Finally, since JCilk is implemented at library
level, it requires very complicated source level transformation, code genera-
tion, and runtime data structures to support concurrent exception correctly
(e.g., catchlet, finallet, try tree, etc.). Our system is significantly sim-
pler that JCilk since we modify the Java Virtual Machine and thus, have direct
access to Java call stacks and perform stack splitting.

31



A small number of non-Java, concurrent object-oriented languages have built-
in concurrent exception handling support, e.g., DOOCE [35] and Arche [20,19].
DOOCE addresses the problem of handling multiple exceptions thrown con-
currently in the same try block by extending the catch statement to take mul-
tiple parameters. Also, DOOCE allows multiple catch blocks to be associated
with one try block. In case of exceptions, all catch blocks that match thrown
exceptions, individually or partially, are executed by the DOOCE runtime. In
addition, DOOCE supports two different models for the timing of acceptance
and the action of exception handling: (1) waiting for all subtasks to complete,
either normally or abruptly, before starting handling exceptions (using the
normal try clause); (2) if any of the participated objects throws an exception,
the exception is propagated to other objects immediately via a notification
message (using the try noti clause). In addition to the common termination
model ( [33], i.e., execution is resumed after the try-catch clause), DOOCE
supports resumption via the resume or retry statement in the catch block,
which resumes execution at the exception throwing point or at the start of
the try block.

Arche proposes a cooperation model for exception handling. In this model,
there are two kinds of exceptions: global and concerted. If a process termi-
nates exceptionally, it signals a global exception, which the system propagates
to other processes with which it communicates synchronously. For multiple
concurrent exceptions, Arche enables programmers to define a customized res-
olution function that takes all exceptions as input parameters and returns a
concerted exception that can be handled in the context of the calling object.

Other prior work (e.g. [32,28,7,33,39]) focus on general models for exception
handling in distributed systems. These models usually assume that processes
participating in a parallel computation are organized in a coordinated fashion
in a structure, such as a conversation [32] or an atomic action [28]. Processes
can enter such a structure asynchronously, but must exit the structure syn-
chronously. When one process throws an exception, the runtime informs all
other processes which in turn invoke an appropriate handler. When multiple
exceptions occur concurrently, the runtime employs exception resolution [7]
in which it coalesces multiple exceptions into a single one based on different
resolution strategies. Example strategies include the use of an exception res-
olution tree [7], an exception resolution graph [38], or user defined resolution
functions [20].

Our exception handling model for DBLFutures is different this work in that
the we preserve serial semantics grants. By doing so, we are able to greatly
simplify our model and its implementation. For example, the exception reso-
lution strategy of our model selects the exception that should occur first given
serial semantics. In addition, although our model organizes threads in a struc-
tured way (a double linked list), one thread does not need to synchronize with

32



all other threads in the group before exiting, as is required by conversation
and atomic actions. Instead, threads in our system only communicate with
their predecessors and successors, and exit according to a total order defined
by the serial semantics of the program.

Finally, an initial version of this work is described in [41]. In this paper, we
extend the description and provide additional details on our approach that we
were unable to in this initial study due to space constraints. Moreover, in this
paper, we investigate how to provide as-if-serial exception handling semantics
in a DBLFutures system that supports as-if-serial side effect semantics. Such
side effect semantics for futures was first proposed for Java in [37], as Safe
Futures, as an extension to the J2SE 5.0 Future library-based support.

Safe Futures for Java uses object versioning and task revocation to enforce
the semantic transparency of futures automatically so that programmers are
freed from reasoning about the side effects of future executions and ensuring
correctness. This transaction style support is complementary to our as-if-serial
exception handling model. We note that the authors of this prior work mention
that an uncaught exception thrown by the future call will be delivered to the
caller at the point of invocation of the run method, which is similar to our as-if-
serial model. However it is unclear as to how (or if) this has been implemented
this since the authors provide no details on their design and implementation
of such a mechanism.

8 Conclusions

In this paper, we propose an as-if-serial exception handling mechanism for
DBLFutures. DBLFutures is a simple parallel programming extension of Java
that enables programmers to use futures in Java [40]. Our as-if-serial exception
handling mechanism delivers exceptions to the same point as they are delivered
when the program is executed sequentially. In particular, an exception thrown
and uncaught by a future thread will be delivered to the invocation point of the
future call. In contrast, in the Java 5.0 implementation of futures exceptions
of future execution are propagated to the point in the program at which future
values are queried (used).

We show that the as-if-serial exception handling mechanism integrates easily
into the DBLFutures system as well as into a DBLFutures system that provides
side effect guarantees, and preserves serial semantics so that programmers can
intuitively understand the exception handling behavior and control in their
parallel Java programs. With DBLFutures and as-if-serial exception handling,
programmers can focus on the logic and correctness of a program in the serial
version, including its exceptional behavior, and then introduce parallelism

33



gradually and intuitively.

We detail the implementation of DBLFutures with as-if-serial side effects and a
number of novel extensions that we provide for their efficient implementation.
This system to which we refer to as Safe DBLFutures (SDBLFutures) employ
a technique similar to that of software transactions within a Java Virtual Ma-
chine (JVM) to guarantee correct execution (relative to the serial execution of
the program) of future methods with side effects. We integrate this semantics
with that for as-if-serial exception handling to simplify the implementation of
the latter and to complete our as-if-serial JVM support.

We implement and evaluate exception and side effect semantics for futures
in Java through an extension to our DBLFutures framework for the Jikes
Research Virtual Machine from IBM Research. Our results for the implemen-
tation of our exception handling semantics show that our system introduces
negligible overhead for applications without exceptions, and guarantees serial
semantics of exception handling for applications that throw exceptions. Our
evaluation of the Safe DBLFutures systems (SDBLFutures) indicates that with
JVM modification, SDBLFutures eliminates the significant memory manage-
ment overhead of the Safe Future system from prior work (which employs a
library-based approach to future implementation). The overheads that SDBL-
Futures imposes to guarantee correctness via software transactions is the same
as that of the Safe Future system.

Acknowledgments

We sincerely thank the reviewers of this article for providing use with very
detailed and thoughtful suggestions for its improvement. This work was funded
in part by Microsoft and NSF grants CCF-0444412 and CNS-0546737.

References

[1] E. Allan, D. Chase, V. Luchangco, J. Maessen, S. Ryu, G. Steele, S. Tobin-
Hochstadt, The Fortress language specification version 0.785, Tech. rep., Sun
Microsystems (2005).
URL http://research.sun.com/projects/plrg/

[2] E. Allan, D. Chase, V. Luchangco, J. Maessen, S. Ryu, G. Steele, S. Tobin-
Hochstadt, The Fortress language specification version 0.954, Tech. rep., Sun
Microsystems (2006).
URL http://research.sun.com/projects/plrg/

34



[3] M. Arnold, S. Fink, D. Grove, M. Hind, P. Sweeney, Adaptive Optimization
in the Jalapeño JVM, in: ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2000.

[4] S. M. Blackburn, A. L. Hosking, Barriers: friend or foe?, in: International
symposium on Memory management, 2004, pp. 143–151.

[5] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, Y. Zhou, Cilk:
An efficient multithreaded runtime system, in: ACM Conference on Principles
of Programming Languages, 1995, pp. 207–216.

[6] D. Callahan, B. Smith, A future-based parallel language for a general-purpose
highly-parallel computer, in: Selected papers of the second workshop on
Languages and compilers for parallel computing, 1990, pp. 95–113.

[7] R. Campbell, B. Randell, Error recovery in asynchronous systems, IEEE Trans.
Softw. Eng. 12 (8) (1986) 811–826.

[8] B. L. Chamberlain, D. Callahan, H. P. Zima, Parallel programmability and
the chapel language, International Journal of High Performance Computing
Applications 21 (3) (2007) 291–312.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, V. Sarkar, X10: an object-oriented approach to non-uniform
cluster computing, in: ACM conference on Object oriented programming
systems languages and applications, 2005, pp. 519–538.

[10] F. Cristian, Exception handling and software fault tolerance, IEEE Transactions
on Computers 31 (6) (1982) 531–540.

[11] J. Danaher, The JCilk-1 Runtime System, Master’s thesis, MIT Department of
Electrical Engineering and Computer Science (Jun. 2005).

[12] T. Ellis, I. Phillips, T. Lahey, Fortran 90 Programming, 1st ed., Addison Wesley,
1994.

[13] M. Frigo, C. Leiserson, K. Randall, The Implementation of the Cilk-5
Multithreaded Language, in: ACM Conference on Programming Language
Design and Implementation (PLDI), 1998, pp. 212–223.

[14] G. Hill, ACM Alg. 395: Student’s T-Distribution, Communications of the ACM
13 (10) (1970) 617–619.

[15] J. Gosling, B. Joy, G. Steel, G. Bracha, The Java Language Specification Second
Edition, 2nd ed., Addison Wesley, 2000.

[16] A. Grimshaw, Easy-to-use object-oriented parallel processing with mentat,
Computer 26 (5) (1993) 39–51.

[17] R. Halstead, Multilisp: a language for concurrent symbolic computation, ACM
Trans. Program. Lang. Syst. 7 (4) (1985) 501–538.

35



[18] Intermetrics (ed.), Information Technology - Programming Languages - Ada,
ISO/IEC 8652:1995(E), 1995.
URL http://www.adaic.org/standards/95lrm/html/RM-TTL.html

[19] V. Issarny, An exception handling model for parallel programming and its
verification, in: Conference on Software for citical systems, 1991, pp. 92–100.

[20] V. Issarny, An exception handling mechanism for parallel object-oriented
programming: Towards reusable, robust distributed software, Journal of Object-
Oriented Programming 6 (6) (1993) 29–39.

[21] Java Remote Method Invocation Specification,
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/.

[22] IBM Jikes Research Virtual Machine (RVM),
http://www-124.ibm.com/developerworks/oss/jikesrvm.

[23] JSR166: Concurrency utilities, http://java.sun.com/j2se/
1.5.0/docs/guide/concurrency.

[24] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta, T. von
Eicken, K. Yelick, Parallel programming in split-c, in: ACM/IEEE conference
on Supercomputing, 1993, pp. 262–273.

[25] D. Lea, A Java Fork/Join Framework, in: ACM Java Grande, 2000, pp. 36–43.

[26] I. Lee, The JCilk Multithreaded Language, Master’s thesis, Massachusetts
Institute of Technology Department of Electrical Engineering and Computer
Science (Aug. 2005).

[27] B. Liskov, A. Snyder, Exception handling in CLU, IEEE Transactions on
Software Engineering SE-5 (6) (1979) 546–558.

[28] D. B. Lomet, Process structuring, synchronization, and recovery using atomic
actions, in: ACM conference on Language design for reliable software, 1977, pp.
128–137.

[29] B. Meyer, Eiffel: The Language, 2nd ed., Prentice Hall, 1992.

[30] E. Mohr, D. A. Kranz, J. R. H. Halstead, Lazy task creation: A technique for
increasing the granularity of parallel programs, IEEE Trans. Parallel Distrib.
Syst. 2 (3) (1991) 264–280.

[31] OpenMP specifications., http://www.openmp.org/specs.

[32] B. Randell, System structure for software fault tolerance, in: International
conference on Reliable software, 1975, pp. 437–449.

[33] A. Romanovsky, J. Xu, B. Randell, Exception handling and resolution in
distributed object-oriented systems, in: International Conference on Distributed
Computing Systems (ICDCS ’96), IEEE Computer Society, Washington, DC,
USA, 1996, p. 545.

36



[34] B. Stroustrup, The C++ Programming Language, 2nd ed., Addison Wesley,
1991.

[35] S. Tazuneki, T. Yoshida, Concurrent exception handling in a distributed object-
oriented computing environment, in: International Conference on Parallel and
Distributed Systems: Workshops, IEEE Computer Society, Washington, DC,
USA, 2000, p. 75.

[36] R. van Nieuwpoort, J. Maassen, T. Kielmann, H. Bal, Satin: Simple and efficient
Java-based grid programming, Scalable Computing: Practice and Experience
6 (3) (2005) 19–32.

[37] A. Welc, S. Jagannathan, A. Hosking, Safe futures for Java, in: ACM conference
on Object oriented programming systems languages and applications, 2005, pp.
439–453.

[38] J. Xu, A. Romanovsky, B. Randell, Coordinated exception handling in
distributed object systems: From model to system implementation, in:
International Conference on Distributed Computing Systems, IEEE Computer
Society, Washington, DC, USA, 1998, p. 12.

[39] J. Xu, A. Romanovsky, B. Randell, Concurrent exception handling and
resolution in distributed object systems, IEEE Trans. Parallel Distrib. Syst.
11 (10) (2000) 1019–1032.

[40] L. Zhang, C. Krintz, P. Nagpurkar, Language and Virtual Machine Support for
Efficient Fine-Grained Futures in Java, in: International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2007.

[41] L. Zhang, C. Krintz, P. Nagpurkar, Supporting Exception Handling for
Futures in Java, in: International Conference on Principles and Practice on
Programming in Java (PPPJ), 2007.

[42] L. Zhang, C. Krintz, S. Soman, Efficient Support of Fine-grained Futures
in Java, in: International Conference on Parallel and Distributed Computing
Systems (PDCS), 2006.

37


