
Tracking Performance Across Software Revisions

Nagy Mostafa Chandra Krintz
Computer Science Department

University of California, Santa Barbara
{nagy,ckrintz}@cs.ucsb.edu

ABSTRACT

Repository-based revision control systems such as CVS, RCS, Sub-
version, and GIT, are extremely useful tools that enable software
developers to concurrently modify source code, manage conflict-
ing changes, and commit updates as new revisions. Such systems
facilitate collaboration with and concurrent contribution to shared
source code by large developer bases. In this work, we investigate
a framework for “performance-aware” repository and revision con-
trol for Java programs. Our system automatically tracks behavioral
differences across revisions to provide developers with feedback
as to how their change impacts performance of the application. It
does so as part of the repository commit process by profiling the
performance of the program or component, and performing auto-
matic analyses that identify differences in the dynamic behavior or
performance between two code revisions.

In this paper, we present our system that is based upon and ex-
tends prior work on calling context tree (CCT) profiling and per-
formance differencing. Our framework couples the use of precise
CCT information annotated with performance metrics and call-site
information, with a simple tree comparison technique and novel
heuristics that together target the cause of performance differences
between code revisions without knowledge of program semantics.
We evaluate the efficacy of the framework using a number of open
source Java applications and present a case study in which we use
the framework to distinguish two revisions of the popular FindBugs
application.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version control; D.2.5 [Software Engineering]: Test-
ing and Debugging—Debugging aids; C.4 [Performance of Sys-

tems]: Performance attributes
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1. INTRODUCTION
Software developers world-wide employ revision control (RC)

systems for managing a vast diversity of open-source and propri-
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etary software code bases. RC systems facilitate and support dis-
tributed, collaborative, and incremental contribution to shared source
code via storage repositories and tools that provide, among other
things, access to files, management, tracking, and branching of re-
visions, automatic resolution of conflicts, and feedback to develop-
ers when automatic conflict resolution fails or when events occur
by other developers.

Client-server RC systems include CVS, RCS, Subversion, and
the Visual Studio Team System (VSTS); popular RC systems that
implement distributed local repositories include GIT, Fossil, Mer-
curial, and Codeville. Although these RC systems are stand-alone
applications (the focus of our work), support for revision control
can be and is integrated into other applications such as word pro-
cessors, spreadsheets, and databases. Some RC systems provide
additional services such as automatic testing (Visual Studio Team
System (VSTS)) and defect or issue tracking (e.g. Codeville, Fos-
sil, VSTS).

In this work, we are interested in providing a new service for
RC systems: tracking of revision performance and dynamic behav-
ior differences. To enable this, we have designed and implemented
Performance-Aware Revision Control Support (PARCS), a service
that provides feedback to developers as to how a change that they
have committed affects the behavior and performance of the over-
all application. Given the complexity of hardware and software
and the popularity of collaborative development, such tools are key
to helping developers understand the behavior of large applications
and how local and incremental modifications impact overall perfor-
mance over time.

PARCS is a program profiling and analysis framework that exe-
cutes a program using test inputs when a new source code revision
is checked into an RC repository. PARCS builds upon and extends
prior work on calling context tree (CCT) profiling [2, 16, 6, 4, 19]
and performance differencing [18], but is unique in that it targets
two different revisions of the same program with the same input
on the same platform. Prior work has focused on identifying per-
formance differences across two executions of the same program
using different inputs or underlying platforms [18]. PARCS in-
struments the program and generates a precise CCT during offline
(background) execution. PARCS annotates the CCT with a num-
ber of different performance metrics and can store CCTs for later
comparison across revisions.

To find CCT differences, PARCS first compares the trees using
common tree matching that we extend with feedback from changes
that developers have made to the code and simple relaxation tech-
niques. As a result, PARCS incrementally identifies topological
differences in the CCTs of two revisions. PARCS then classifies
these differences into categories that distinguish a likely reason
behind the performance differences: method addition/deletion, di-
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rect code modification, indirect code modification effect, and non-
determinism. PARCS excises all subtrees rooted at nodes where
these differences originate.

The CCTs that result after this pruning are topologically iden-
tical. PARCS analyzes these trees for differences in the perfor-
mance metrics that annotate their nodes. For this step, PARCs em-
ploys simple weight matching and performs an iterative algorithm
to identify pairs of nodes with weight differences that are signif-
icant, i.e., that are larger than the differences that are typical of a
non-deterministic effect. Finally, PARCS attributes each topolog-
ical and weight difference to a set of probable code changes and
reports its findings back to the developer.

We implement a PARCS prototype for Java programs via exten-
sions to the OpenJDK JVM from Sun Microsystems. We empiri-
cally evaluate the efficacy of PARCS using a number of open source
Java programs and employ PARCS to identify behavioral differ-
ences between two revisions of these applications. We describe a
detailed case study that we perform to attribute behavioral and per-
formance differences to changes made between revisions using a
single input for the popular FindBugs application [10]. Overall,
we find that PARCS is easy to use and highly effective at helping
to identify the cause of revision-based behavioral and performance
differences in Java programs.

We next provide background on the techniques that PARCS builds
upon and extends. We then detail the PARCS design and imple-
mentation (Section 3) and present a case study on our use of PARCS
for revisions of the popular FindBugs application (Section 4). In
Section 5, we empirically evaluate PARCS using a number of dif-
ferent open source applications. We then discuss related work (Sec-
tion 6) and present our conclusions and plans for future work in
Section 7.

2. PARCS
PARCS is performance-aware repository control support that iden-

tifies dynamic behavioral and performance differences that result
from changes to source code from revision to revision. To enable
this, PARCS employs a dynamic calling context tree (CCT) for
collection and evaluation of dynamic program behavior. PARCS
compares two software revisions by identifying the topological and
weight-based differences between the CCTs of the two revisions.
We overview the background on CCTs and CCT topological differ-
encing in the subsections that follow. We detail the PARCS imple-
mentation of weight-based differencing in Section 3.

2.1 Performance Profiling and Representation
PARCS collects, manipulates, and compares the dynamic behav-

ior of a program using a data structure called calling context tree
(CCT) [2]. Given a method call stack, the calling context is the list
of methods that are resident on the stack at any particular time. A
CCT captures the calling context of each dynamic method invoca-
tion that occurs during program execution. All activations of the
same method that execute from the same calling context are ag-
gregated into a single node. An edge X→Y represents a call from
method X to method Y. The calling context of node Y, thus, is cap-
tured by the series of nodes from the root of the tree down-to node
Y. A CCT edge can be annotated with various execution metrics of
the call it represents, such as invocation count, average execution
time, ..., etc.

Figure 1 illustrates an example of a CCT for a program with
methods A through F. Assuming that A is the entry method, (a)
shows the CCT for a particular execution of the program. The num-
bers on the edges are invocation counts. For example, the invoca-
tion count on the edge B→D is 2, which means that D is called

public void A(){

1: B();

...

5: C();

...

9: B();

}

public void B(){

1: D();

...

5: E();

}

public void C(){

1: F();

}

public void D(){}

public void E(){}

public void F(){}

Figure 1: Code snippet with the corresponding CCT. (a) The

corresponding CCT with no call-site information included. (b)

The equivalent tree with call-site information shown as sub-

scripts

twice from the context A→B.
PARCS employs CCTs for its profile collection. However, we

extend its implementation to distinguish call-sites (prior work con-
siders all calls to a method Y within the same activation of method
X to have the same context [18]). In our CCTs, PARCS records a
method Y that is called from two different call-sites within method
X independently from each other. Figure 1 (b) shows the CCT
with call-site information (shown as subscripts). Distinguishing
based on call-site information increases the size of the CCT but pro-
vides more details about the execution that are useful to developers
for identifying behavioral and performance differences across revi-
sions. Call-site information can also be used for measuring code
coverage and anomaly detection [8]. We evaluate the trade-off
between size and accuracy of employing call-site information for
identifying performance differences in Section 5.

The call-site CCT serves as a suitable data structure for com-
paring performance across program revisions as it captures con-
text information which helps programmers better understand per-
formance and correlate it to the program semantics. Context in-
formation expressed as stack traces are still the most widely used
means of describing program points of failure. Moreover, CCTs
provide a good trade-off between size and accuracy compared to
dynamic call trees (DCTs) and dynamic call graphs (DCGs) [2].

PARCS instruments each method entry and exit of the program
to collect the CCT. Since PARCS is employed by a revision con-
trol system off-line (in the background), we do not consider the
overhead of exhaustive profiling of the calling contexts. Exhaus-
tive profiling is important for PARCS since it is able to capture
all calling context behavior. PARCS annotates the collected CCTs
with other profile information such as total and average execution
time and invocation count. The PARCS framework is extensible
enabling researchers to investigate its efficacy using other perfor-
mance metrics (e.g. cache misses, branch mispredictions).

2.2 Identifying Topological Differences
PARCS compares two CCTs to identify the topological differ-

ences between them. In the subsections that follow, we consider
two well known topological tree matching algorithms: tree trans-

163



Operations: (1) Rename B to M, (2) Rename C to N

Figure 2: Example of tree transformation. Two rename opera-

tions needed to transform the left tree to the right one.

formation and common tree matching. We then present relaxed
common tree matching, the algorithm that PARCS employs to iden-
tify topological differences.

2.2.1 Tree Transformation

Shasha et al. [1] propose a tree comparison algorithm for ordered
trees; they employ dynamic programming for its implementation.
An ordered tree is a tree in which the children of each node have
total order. Given two trees, the algorithm finds a sequence of op-
erations that, when applied to one tree, transforms it to the other.
The algorithm is proven optimal in the number of transformation
operations used (the edit distance) and has a time complexity of
O(|CCT1| × |CCT2|). The transformation operations used are:

1. Delete X: delete node X and move its children to its parent
Y; the children are inserted at the same position in the child
order of Y at which X was positioned.

2. Insert X, Y, P: add node X to be a child of node Y at posi-
tion P in the children order of Y. X gets a consecutive sub-
sequence of Y’s children.

3. Rename X, Y: rename node X to Y.

Although this algorithm was originally designed for abstract trees,
Zhuang et. al employ it to compare two CCTs for the same pro-
gram that they execute on different platforms or with different in-
puts [18]. The authors in this prior work use the number of op-
erations required to transform CCT1 to be CCT2, as a difference

metric with which they compare two trees.
Figure 2 shows two CCTs with topological difference and the

minimum sequence of operations that transforms the left CCT to
the right one. After applying the transformation the two CCTs be-
come identical. All nodes that are not involved in any transforma-
tions are matched nodes. The dotted arrows in Figure 2 shows the
matching.

There are two drawbacks, however, that discourage us from adopt-
ing this algorithm for PARCS. First, the way the algorithm matches
nodes relies solely on the node label and its post-order in the tree.
It ignores the context of the node (path from root to the node) and
hence may match nodes with the same method name but different
contexts. For example, in Figure 2, unless C was renamed to N
as part of code modification, method X called by C has a different
semantic than X called by N. Considering the two to be equivalent
could be misleading to performance analysts. Since in PARCS we
are comparing two revisions of a program, these inaccuracies are
more likely to occur more often since the code is different across
revisions. Inaccuracies in PARCS lead to incorrect identification of
differences and attribution of differences to code changes. Second,

Figure 3: Common tree matching examples. (a) Strict common

tree matching. (b) Relaxed common tree matching. Subscripts

are call-sites. Shaded nodes form the common tree found in

each case

using dynamic programming incurs quadratic time and space over-
head. While this is tolerable for small CCTs, it becomes hindering
for larger ones. Since we rely on call-site CCTs for more accurate
differencing, using this algorithm becomes infeasible. For exam-
ple, the call-site CCT of FindBugs has 185,960 nodes on average.
Thus a matrix of over than 34 billion entries is needed. Empiri-
cally, the algorithm runs out of memory for 80% of our test cases.
For the above reasons, we investigate an alternative approach to
CCT matching that is more semantically aware and suitable for
large CCTs.

2.2.2 Common Tree Matching

Common tree matching is a well-known, simple technique for
comparing two trees. The algorithm traverses the tree level-by-
level, comparing nodes. Each node in the tree has an order. The
order of n (n.order) is the position of n amongst its siblings. For
example, in Figure 3 (a), the order of nodes A, B and F are 1, 1 and
2, respectively.

We define equivalence of two nodes recursively as follows:

Definition 1. Node Equivalence (≡):
Given n1 ∈ CCT1 and n2 ∈ CCT2, n1 ≡ n2 iff

1. n1.method_name = n2.method_name and

2. n1.order = n2.order and

3. n1.parent ≡ n2.parent

This definition implies that equivalent nodes always have the same
context. Moreover, if a node has no equivalence, we consider the
subtree rooted at it a topological difference.

Figure 3 (a) illustrates a common tree matching example (sub-
scripts are call-sites). First, we compare root nodes, since they are
equal, we proceed to the second level (A’s children). On the second
level, the first node B exists in both trees, thus we consider it on the
common tree and will process all of its children once we move to
the third level. The second node C in the left tree corresponds to F
in the right, which is a mismatch; we report both C and F and their
subtrees as a topological difference. We do the same thing (apply a
mismatch) for node C in the right tree. We proceed similarly for the
last level. The shaded nodes constitute the resulting common-tree.

The problem with common-tree matching is that it follows a very
conservative definition of equivalence. In the right tree of Figure 3
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(a), method A seems to have been modified to call method F be-
fore it calls C shifting C one step to the right. If this is the case,
we should report C as part of the common-tree. Because of the
definition of equivalence, we report C in the right tree as a mis-
match. To overcome this limitation and to capture such changes to
source code, we relax the definition above to use the relative order-
ing among matched nodes instead. Our definition of equivalence
then becomes:

Definition 2. Relaxed Node Equivalence(≡R):
Given n1, p1 ∈ CCT1 and n2, p2 ∈ CCT2.
Let L1 and L2 be the set of left siblings of n1 and n2, respectively.
Let (p1,p2) be the last pair of equivalent nodes found (if any).
Then n1 ≡R n2 iff

1. n1.method_name = n2.method_name and

2. n1.parent ≡R n2.parent and

3. p1 ∈ L1 ⇔ p2 ∈ L2 and

4. p1.call_site < n1.call_site ⇔ p2.call_site < n2.call_site

We refer to the version of the algorithm that employs this defini-
tion of equivalence as relaxed common-tree matching. Using this
algorithm, equivalent nodes still have the same context (Rule 2).
The difference is that they do not have the exact child order. This
is relaxed by Rules 3 and 4. Rule 3 means that for each pair of
equivalent nodes, a common subsequence of nodes is found from
the two sequences representing their ordered children. This takes
care of cases where extra calls shift nodes among their siblings.
Rule 4 adds the constraint that the relationship (< or >) between
two consecutive children call-sites in the two sequences must be
identical (note that no two different nodes can have the same par-
ent and equal call_site). This ensures that actual shifting of nodes
has taken place and that we are not matching to a wrong node that
happens to have the same method name.

Figure 3 (b) illustrates how the relaxed common tree matching
works. Despite having the same sibling order, nodes I10 and I2 are
not matched merely because the call site of I10 is greater than that
of H5 which is not the case for I2 and H4. This means that although
the subtree at C has been shifted due to code modification (the call
to F), the two invocations of I are different. On the other hand,
node C is matched despite of the different sibling order and the
subtree rooted at F is reported as a difference. We employ relaxed
common-tree matching within PARCS to identify topological dif-
ferences between two CCTs (program revisions). We will quantify
in Section 5 the improvement in matching accuracy that relaxed
common tree matching achieves over conventional common tree
matching.

3. PARCS IMPLEMENTATION
Figure 4 overviews the PARCS process. We employ PARCS for

revisions of Java programs in our current prototype. We start by
checking out the source code of the two revisions of interest from
a code repository (e.g. CVS). We then compile the source code
to bytecode. Next, we run the two revisions using the same test
input via a modified Java Virtual Machine that builds CCTs from
the execution. We can generate the CCTs of earlier revisions on-
the-fly, in parallel, or store them in the repository. Developers can
specify the input that PARCS uses to generate CCTs; PARCS can
evaluate multiple inputs and CCT pairs concurrently.

In addition, PARCS performs a fast, static bytecode comparison
on the revisions to extract method-level changes. PARCS feeds

the CCTs and the bytecode change-list into the incremental topo-
logical comparator. After this component removes all topological
differences from the CCTs, PARCS performs weight matching on
the resulting trees to identify nodes with the largest differences in
performance metrics. We detail each of these steps in the following
subsections.

3.1 CCT Collection
The PARCS system generates CCTs by exhaustively recording

all application methods calls and returns. For this study, we record
only application methods and ignore calls to the Java runtime and
library code to keep CCT sizes small and CCT processing fast. We
can easily extend PARCS to include library calls if necessary. Our
CCTs, as described earlier, distinguish contexts for each call-site
invoked. The performance metrics with which we annotate CCTs
include invocation count, and the average and standard deviation
of execution time. We store all CCTs in a relational database for
future analysis.

3.2 Method-level Bytecode Comparison
We perform bytecode comparison to generate a list of all added,

deleted, modified, and renamed methods. The process starts by
compiling source files from each revision code base to get the set of
class files. The class files therefore belong to either the application
or any local Java modules it uses. We do not consider class files that
are dynamically downloaded over a network or created at runtime.

We have chosen to implement this comparison on the Java virtual
machine intermediate representation (bytecode) rather than source
code because of its compact and readily available format as op-
posed to manipulating the diff files of a repository. Also, some
source code changes are useless to PARCS since they have no ef-
fect on the program semantics (e.g. variable declaration relocation
within a method, variable renaming, replacing a for-loop with a
while-loop, ... etc.). Most of these changes are not reflected on the
bytecode and hence are automatically ignored. The same argument
holds for any other virtual machine intermediate form.

We match the class files from the two revisions according to their
package and class names. For each matched pair of class files, we
generate a list of methods that each class file contains. By compar-
ing the two lists, we build the following method sets:

1. Added Methods: methods present in the new revision but not
in the old one.

2. Deleted Methods: methods present in the old revision but not
in the new one.

3. Modified Methods: methods present in both revisions with
everything identical except for the code body.

4. Renamed Methods: methods present in both revision with
everything identical except for the method name.

We compare methods by their fully qualified names and code bod-
ies. A fully qualified method name consists of the full package
name, class name, and method signature. The method signature
consists of method name, number and type of parameters, and re-
turn type. We consider a method modified, if only its code body
has been changed. Renamed methods have only changed method
names.

3.3 Incremental Topological Comparison
There are four primary reasons for topological differences be-

tween two revisions:

• Reason 1 Addition/Deletion of Methods: any calls to such
methods introduces a topological difference.
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Figure 4: PARCS process. rev1 and rev2 refer to old and new revisions, respectively. bc1 and bc2 are the corresponding bytecodes.

• Reason 2 Direct Modification: code modification that ex-
plicitly enables/disables or adds/deletes a call to a method
existing in both revisions.

• Reason 3 Indirect Modification: a change in the program
that has a side effect. For example, a global variable update
or a configuration file change that affects which methods are
called. Also, some modifications may have hidden effect on
another method execution time, such as the effect of cache
thrashing.

• Reason 4 Non-determinism: Any randomness in execution.

Using the code change information that we obtain from the byte-
code comparison, we label CCT nodes as “added”, “deleted”, “mod-
ified” or “renamed”. This mapping of code change to the dynamic
CCT enables topological differencing to proceed incrementally. Us-
ing these reason categories, we apply the relaxed common-tree match-
ing technique that we describe in Section 2.2.2, incrementally in
three stages:

Stage 1. We excise all subtrees rooted at added and deleted nodes
and log each change for later attribution (Reason 1).

Stage 2. We identify topological differences that are most likely
due to direct modification (Reason 2). Given the set of modified
nodes, we identify the modified nodes that are highest dominators
in the tree. X is a dominator of Y, if the path from the CCT root
to Y contains X. A highest dominator is a modified node with no
modified dominators (i.e. highest in the tree). Using this definition,
we match highest dominators across the two CCTs by method sig-
natures and contexts. We ignore unmatched dominators for now as
we handle them in Stage 3. For each pair of matched highest domi-
nators, we perform relaxed common-tree matching on the subtrees
rooted at them and excise the subtrees afterwards as they become
identical. We report all differences found as potentially resulting
from direct modification since they are dominated by at least one
modified node. Although this is the most likely cause (and is the
most common in our experience), it is possible that the differences
we identify result from side-effects or non-determinism.

Stage 3. Finally, we conduct a global topological comparison for
what remains of the two CCTs and excise unmatched subtrees.
These subtrees are present either due to side effects or non-determin-
ism (Reasons 3 and 4) as they are not dominated by any modified
nodes. In other words, none of their callers is a modified method,
so the reason they are present in one revision and not the other is
either they were enabled by an indirect effect of code modification
or due to randomness of execution. We excise (and report) all un-
matched subtrees.

Figure 5: Weight matching example. Common trees with iden-

tical topology and different weights.

3.4 Identifying Weight Differences
With all topological differences reported and omitted from the

two CCTs, the parts remaining are identical in topology but they
may vary in performance metrics. PARCS performs weight match-
ing to identify the differences in weights across CCTs. Weight
differencing is a key component of PARCS since it identifies dif-
ferences that are due to changes to the code made by the devel-
opers that change functionality without changing the method call
behavior. In addition, weight matching identifies behavioral and
performance differences due to modification side effects (and non-
determinism).

The PARCS weight matching algorithm quantifies the degree of
similarity between the two trees in terms of their annotated per-
formance data using an overlap metric defined and used in prior
work [9, 5, 6, 18]. We define overlap in our setting as:

overlap(CCT1, CCT2) =
X

ni∈CCT1

nj∈CCT2

ni≡Rnj

min(pweight(ni, CCT1), pweight(nj , CCT2))

where ni ≡R nj means that ni in CCT1 is equivalent, under re-
laxed equivalence definition, to nj in CCT2 (the two nodes match).
We define pweight(n, CCT ) as the percentage that the weight of
node n constitutes out of the total weight of all nodes in CCT .
The degree of overlap ranges from 0% to 100% and indicates how
much of the performance of CCT1 is similar to that of CCT2, i.e.
how much of CCT2’s performance is covered by CCT1. 100%
overlap indicates perfectly identical CCTs. Note that since there is
non-determinism and noise in performance data, it is likely that two
CCTs generated by two different runs of the same program on the
same platform with the same input, do not have 100% overlap. For
example, the latest revision of the popular FindBugs application,
has a 99.3% overlap in execution time between two identical runs.
Figure 5 illustrates the common-trees from Figure 3 that PARCS
has annotated with absolute node weights and pweights (shown in
parenthesis). The overlap of the two CCTs is 76%.
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To identify the pairs of nodes that constitute the most significant
performance difference, we employ this overlap metric as part of
an iterative weight matching algorithm based upon that employed
in [18]. The algorithm performs weight adjustments to improve
the overlap up to a pre-defined threshold, the nodes adjusted are
the ones with most significant weight difference. The algorithm is
parameterized by an overlap threshold and/or number of nodes of
interest. We automate generation of the overlap threshold value by
computing the overlap percentage of two CCTs for the latest re-
vision – the same program, on the same platform, using the same
input, that we execute twice. This overlap value captures the dif-
ference that we expect from noise and non-determinism. Develop-
ers can set this threshold to a different value, to investigate other
weight difference pairs, if so desired. Alternatively, developers can
specify the number of nodes they are interested in investigating.
The nodes that PARCS returns are the methods responsible for the
greatest contribution to the overall weight difference between the
two revisions.

3.5 Attributing Differences
In our current prototype of PARCS, we report each difference

with an ordered list of methods that most likely contain the code
change(s) that caused the difference. We also report supporting
evidence and data for each method (context, performance metrics,
...etc.). In addition, PARCS presents the context information (anno-
tated subtrees, complete CCTs with highlighted node differences,
...etc.) to developers in graphical format for easy viewing and
investigation. The exact attribution of a difference to a specific
change proceeds by hand – however with PARCS support (described
below). We walk through an example of this process in the next
section for two revisions of the FindBugs application.

To identify the most likely methods causing each difference that
PARCS identifies, we employ a simple heuristic. For Stage 1 dif-
ferences, we report the parents of the excised subtrees (callers to
added/deleted methods). For subtree excised in Stage 2, we report
the list of modified nodes on the path from the subtree root to the
CCT root starting from the closest modified dominator upwards.
For Stage 3 and weight matching, we report the differences along
with their context.

4. USAGE EXAMPLE: FINDBUGS
In this section we demonstrate, by example, how we apply these

heuristics to identify the reason for topological and weight differ-
ences. To enable this, we compare the CCTs of two revisions of
FindBugs [10], a Java tool to find bugs statically in Java code.

First, we execute Stage 1 of the algorithm to remove all subtrees
rooted at added/deleted nodes and Stage 2 to find differences dom-
inated by modified nodes. Figure 6 visualizes a subset of the CCT
from the latest FindBugs revision. We only show node ID’s for con-
venience and we draw the modified methods as rectangular nodes.
The nodes in gray are those that Stage 2 identifies as a difference
from the CCT of the earlier revision. These are the nodes that Stage
2 removes. Stage 2 returns the list of all modified nodes between
the subtree root and the CCT root for all excised subtrees. PARCS
orders the list from the modified node nearest to the subtree to the
farthest. For the subtree rooted at node 29748, PARCS returns the
list {29744, 19913}.

For this case study, we first investigate the reason behind the
topological differences in the three subtrees rooted at 29745, 29747
and 29748 which correspond to methods:
Item.init(), Item.makeCrossMethod() and Item.equals(), in the Find-
Bugs application, respectively. As we described earlier, there are
three potential reasons behind these differences. The first and most

likely reason is direct code modification that introduced/enabled
these calls. In such cases, the modified method nodes will be one
of the ancestors of the subtrees roots (in this case nodes 29744 and
19913) that Stage 2 returns. The second reason is a side effect of
some modification that indirectly induces the subtrees. Finally, the
reason may be non-determinism during execution.

We begin by investigating the methods that correspond to the
nodes that Stage 2 reports (29744 then 19913): FieldSummary.set-
Complete() and FindBugs2.analyzeApplication, respectively. Us-
ing the differences in the source code of these methods reported
by the source code repository (or our bytecode analysis tool), we
find that the modified method FieldSummary.setComplete(), inserts
these three calls in the latest revision but not in the former.

We repeat the same procedure to find the cause for the different
subtrees rooted at nodes 130194 and 130190. The ordered list of
candidate methods that Stage 2 reports is {78182, 19913}. Again,
we start by the node closest to the subtree root which corresponds to
method FindUnrelatedTypesInGenericContainer.analyzeMethod()

which implements a source code change that inserts the two calls.
After removing all topological difference during Stage one and

two, the only topological differences remaining, if any, will be due
to either indirect modification or non-determinism of execution. By
running stage three of the algorithm, we find one tree removed from
each CCT both rooted at method JavaVersion.clinit (not shown in
the figure). This method is the class initializer for the class JavaVer-
sion. Analyzing the method’s caller, we find that non-determinism
is the reason. In particular, the use of the Java data structure Hash-

Set makes no guarantee to the iteration order of the set. The order
by which the items in the HashSet are processed dictates when the
class initializer of JavaVersion is invoked to cause topological dif-
ference.

Finally, we investigate the reason for the total execution time
difference between the two CCTs (with topological differences ex-
cised). We find that the node with the highest difference in pweight

is of the method PreorderVisitor.visitCode(). PARCS reports that
both the execution time and invocation count have changed in the
new revision. The invocation count drops from 8469 in the old re-
vision to 5427 in the new one. PARCS reports that this method in-
vokes a call to OpCodeStackDetector.visitCode() that was removed
in the new revision and added to the caller of PreorderVisitor.visitCo
de() instead. This change causes a drop in the invocation count of
that method which decreases its total execution time.

5. EXPERIMENTAL EVALUATION
Our experimental platform is a dual-core Intel Core 2 Duo ma-

chine clocked at 2.4 GHz with 4M of L2 cache and 2GB of main
memory running Linux-2.6.24. The Java virtual machine used is
HotSpot version 13.0-b02 within OpenJDK 1.7.0 with our exten-
sions for collection of performance statistics and context profiles.

App. Name Description

checkstyle Code style checker for Java. SVN revisions 2090 and 2100
doctorj Javadoc analysis tool. Versions 5.1.1 and 5.1.2
findbugs Bug detector for java. CVS commits on 21st and 25th Aug. 2008
jaranalyzer Jar files dependency analyzer. Versions 1.1. and 1.2
java2html Java to Html convertor. Versions 4.1 and 4.2
jruby Java implementation of Ruby. Versions 1.1.2 and 1.1.3
jython Java implementation of Python. SVN revisions 4899 and 4981
pmd Java code checker. SVN revisions 6399 and 6421

Table 1: Description of applications studied.

Table 1 describes the eight open-source Java applications that we
use to evaluate PARCS empirically along with the revisions/versions
used. For each application, we use PARCS to compare the dy-
namic behavior of two close revisions of the code running with the
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Figure 6: Visualization of topological differences between two Findbugs revisions. The shaded substrees are a subset of those subtrees

removed by Stage 2. Rectangular nodes represent modified methods.

App. Name Average Node Count Average Depth
old new old new

checkstyle 1448937.6 1449183.6 31.76 31.81
doctorj 390814.2 390816.4 30.87 29.94
findbugs 185960.2 183552.2 19.85 19.74
jaranalyzer 569.6 565 16.58 16.28
java2html 2886.6 1075.4 10.73 10.29
jruby 321365.2 304357.6 34.54 31.95
jython 145700.4 145896.2 21.3 21.26
pmd 676247.4 676248.4 53.5 53.28

Table 2: Applications average CCT sizes and average stack

depth for two revisions.

same test input. Revisions were chosen to be no more than ten
days apart. For four applications (doctorj, jaranalyzer, java2html
and jruby) we compare releases instead of revisions because we
did not have access to the revision control system. We used doc-
torj, findbugs, jaranalyzer, java2html and PARCS itself as inputs
for checkstyle, java2html and pmd. For jruby and jython, we used
five microbenchmarks: binarytrees, nsievebits, fannkuch, mandel-
brot and nsieve from The Computer Language Benchmarks Game
[14]. For findbugs, we used checkstyle, java2html, PARCS and two
other java projects. And finally for jaranalyzer, we used checkstyle,
findbugs, jruby, jython and an orchestrated test case.

Table 2 shows the average CCT size, in number of nodes, and
time-weighted average stack depth of the old and new revisions for
each application over five inputs. The numbers are close indicating
the high similarity of the revisions.

5.1 Bytecode Comparison
We used Apache Byte Code Engineering Library (BCEL) [7] to

perform method-level bytecode comparison of revisions. We quan-
tify the results the comparison in Table 3. Columns two and three
show the number of class files from each application code base.
Columns four and five show the number of methods in the old and

App. Name OF NF OM NM DM AM MM RM

checkstyle 1386 1386 11948 11953 3 8 11 0
doctorj 226 226 3934 3937 2 5 4 0
findbugs 3570 3569 27424 27415 12 3 11 0
jaranalyzer 413 423 3397 3486 26 115 587 0
java2html 121 132 819 873 138 192 302 0
jruby 4156 4259 25514 26653 773 1912 1592 0
jython 1819 1820 15487 15520 0 33 39 0
pmd 923 923 11336 11336 4 4 6 0

Table 3: Parameters and results of bytecode comparison.

OF:old files, NF:new files, OM:old methods, NM:new meth-

ods, DM:deleted methods, AM:added methods, MM:modified

methods, RM:renamed methods

new revisions, respectively. Columns six to nine contain the dif-
ference in terms of methods deleted, added, modified and renamed.
The highest numbers belong to jaranalyzer, java2html and jruby,
for which we use releases instead of revisions. PARCS finds no re-
named methods for any of the applications. This is because of the
strict definition of a renamed method that we adopt in which only
the method name should change. During our tests, we have found
that a method name change is always accompanied by a change in
the signature or the containing class, which we classify as a method
removal then addition (Section 3.2).

5.2 Topological Difference
To evaluate the common-tree matching algorithm that PARCS

employs, we quantify the total number of subtrees and nodes that
PARCS removes from both trees at each stage. We also measure
the size of the common-tree obtained for each application for each
input.

We show the results in Table 4. The third columns is the common-
tree size as percentage of the CCT size of the old revision. Six
of the eight applications show high common tree coverage (above
85%). Pmd shows the highest common tree ratio as only one node
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App. common common deleted added modified side effects
Name tree size tree size (%) subtrees nodes subtrees nodes subtrees nodes subtrees nodes

checkstyle 1105139 99.9 157 994 159 1217 31 83 18 148
1633395 99.86 248 2172 266 2639 59 157 2 2
1856117 99.9 308 1615 318 2014 56 139 16 104
630763 99.97 137 137 137 137 0 0 16 68

2009773 99.8 473 3745 509 4483 86 222 18 156

doctorj 393342 99.99 1 13 7 20 5 15 0 0
609205 100 0 0 2 2 4 14 0 0
108601 99.99 0 0 3 3 6 21 0 0
207495 100 0 0 0 0 0 0 0 0
635365 100 1 14 6 20 5 15 0 0

findbugs 135149 86.96 19 19856 6 17970 38 436 0 0
129333 87.55 18 18079 6 16235 38 350 0 0
187604 86.86 20 27824 6 25779 40 587 0 0
189830 87.88 20 25610 6 23565 38 596 1 1
168807 86.71 20 25039 6 23339 36 850 0 0

jaranalyzer 507 97.31 0 0 11 14 11 14 0 0
567 97.09 0 0 11 14 11 14 2 6
558 97.55 0 0 11 14 11 14 0 0
586 97.5 0 0 11 14 12 15 0 0
534 93.68 0 0 11 14 11 14 8 22

java2html 216 7.48 9 2671 11 853 3 7 0 0
218 7.55 9 2671 11 853 3 7 0 0
224 7.74 9 2671 11 853 3 7 0 0
216 7.48 9 2672 11 853 3 7 0 0
203 7.06 9 2671 11 853 3 7 0 0

jruby 100385 7.21 37189 884560 81821 941162 69716 661326 0 0
9884 18.75 282 34619 578 42306 1752 10816 0 0
9221 17.08 220 41268 459 46603 1706 4823 0 0
9616 18.92 227 35403 453 41565 1794 7380 0 0
9982 17.39 223 42545 486 49768 1779 6294 0 0

jython 486326 98.54 0 0 760 6830 1512 7615 10 192
40951 85.08 0 0 755 6799 1510 7557 6 163
54603 88.38 0 0 756 6799 1512 7613 6 163
53554 88.08 0 0 764 6866 1511 7562 14 224
56948 88.63 0 0 771 6923 1522 7673 16 240

pmd 526553 100 0 0 1 1 0 0 0 0
931798 100 0 0 1 1 0 0 0 0
826271 100 0 0 1 1 0 0 0 0
817248 100 0 0 1 1 0 0 0 0
279367 100 0 0 1 1 0 0 0 0

Table 4: Subtrees and nodes removed at each stage of topological differencing.

is reported as a topological difference. As we mention previously,
we compare releases for jaranalyzer, java2html and jruby. As ex-
pected, java2html and jruby show low common tree coverage, while
jaranalyzer shows high coverage between its releases.

The other columns show the number of subtrees and the equiv-
alent number of nodes that PARCS removes at each stage. The
columns titled “added” and “deleted” contain data about subtrees
removed due to being rooted at added or deleted nodes (Section
3.2). The one titled “modified” contains trees that have at least one
modified node as a dominant node. “Side effects” are unmatched
subtrees that cannot be classified as any of the above.

Figure 7 shows the amount of overlap obtained by PARCS for
each test case using two overlap metrics: average execution time (a)
and invocation count (b). The results are all high for both (above
82%). As expected, the overlap is less using average execution
time due to noise in measurement. High overlap, however, does not
mean a good match. For example, java2html shows nearly perfect
overlap for both metrics yet, as Table 4 shows, it yields around 7%
common tree. Hence, overlap alone can be misleading as it tends
to be high if the common tree is small.

To better measure the matching accuracy, we define the follow-
ing matching score metric:

score(CCT1, CCT2) =

(
Y

oi∈O

oi(CCT1, CCT2)) ×
|CT |

|CCT1|
×

|CT |

|CCT2|
× 100

where |CT | is the common tree size and O is the set of overlap
metrics used. In our case, we use three overlap metrics: invoca-
tion count, average execution time, and total execution time. In-
formally, a match with high score is a match whose common tree
covers high percentage of the CCT and has high overlaps as well.
Figure 8 shows the scores for all applications and all inputs. 6
out of 8 apps exhibit very high score (above 70%). Since we are
comparing versions for jruby and java2html, they show very poor
matching scores (below 4%). This demonstrates that PARCS is
highly tailored for close revisions comparison where code modifi-
cations are incremental. Nevertheless, for jaranalyzer the score is
surprisingly high even though we are comparing releases.

We next compare matching scores of relaxed common tree match-
ing against strict matching. Figure 9 shows the average scores over
all inputs for each application. Relaxed common tree matching
shows significant improvement over strict matching for jaranalyzer,
jython, findbugs and jruby. For the remaining cases, there is still
slight improvement.

We also studied the benefit of using CCTs with call-site infor-
mation. To assess the additional differences revealed via call-site
CCTs, we have compared the number of nodes removed as topolog-
ical differences using both types of CCTs. Higher number of nodes
removed means more differences that PARCS discovers. Table 5
shows the average number of nodes removed for each application
over five inputs. For most applications, the difference is significant.
For example, checkstyle has 2404 nodes removed which gets nearly
doubled when using call-site CCT. jruby shows drastic increase in
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Figure 7: Overlap for two metrics: (a) Average execution time.

(b) Invocation count.
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Figure 8: Matching scores
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Figure 9: Comparison of matching scores between relaxed and

strict common tree matching

App. Name nodes removed nodes removed
w call-site w/o call-site

checkstyle 4046.4 2404.4
doctorj 27.4 26.4
findbugs 45223.2 23007.8
jaranalyzer 33.8 22.6
java2html 3531.2 440.4
jruby 570087.6 46527.2
jython 14643.8 2621
pmd 1 1

Table 5: Total nodes excised using CCTs with and without call-

site information.

node count due to its recursive nature.
The tradeoff that we make for this increase in detail (and thus

understanding of program behavior) is in the CCT size. In Table
6, we quantify this overhead for both revisions of our applications.
Columns two and three show the CCT size as the number of nodes,
with and without call-site information. The fourth column is the
percent increase in CCT size due to using call-site information.
The old revision of jruby shows the highest increase while jaran-
alyzer’s new revision shows the lowest. The average increase is
nearly 300%. From our experience, recursion is the primary rea-
son for CCT size explosion when call-site information is included.
To reduce the CCT size, a threshold can be placed on its depth
which can be tuned based on the amount of tree comparison detail
required.

6. RELATEDWORK
In [3, 11, 12, 13], algorithms for syntactical, semantic, and struc-

tural comparison of software versions are proposed. All of these
approaches, however, operate statically. This is different from our
approach, since we rely on dynamic profile (CCT) generated by
test runs of the application. Relying on dynamic profile can expose
unforeseen effects of code modifications that are hard to identify
using only static analysis. Our approach thus complements these
efforts.

Zhang et al. propose a technique to match entire execution histo-
ries of two program versions running with the same input [17]. The
execution history contains control flow taken, values produced, ad-
dresses referenced and data dependences. This is different from our
technique since these prior works assume semantically equivalent
versions (e.g. optimized and unoptimized) while we compare dif-
ferent revisions of a program that can include functional upgrades.

The work most similar to ours is described by Zhuang et al. in
[18]. They have developed a framework for comparing CCTs of the
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App. Name nodes nodes difference (%)
w call-site w/o call-site

checkstyle_old 1448937.6 385136.8 276.21
checkstyle_new 1449183.6 385294.0 276.12
doctorj_old 390814.2 273867.6 42.70
doctorj_new 390816.4 273868.8 42.70
findbugs_old 185960.2 120527.6 54.29
findbugs_new 183552.2 118694.6 54.64
jaranalyzer_old 569.6 462.0 23.29
jaranalyzer_new 565.0 459.4 22.99
java2html_old 2886.6 344.8 737.18
java2html_new 1075.4 265.2 305.51
jruby_old 321365.2 25902.6 1140.67
jruby_new 304357.6 32369.4 840.26
jython_old 145700.4 28075.6 418.96
jython_new 145896.2 27695.4 426.79
pmd_old 676247.4 527235.6 28.26
pmd_new 676248.4 527236.6 28.26

Avg = 294.93%

Table 6: Comparison of CCT sizes with and without call-site

information.

same program when running on different platforms or with differ-
ent inputs. The CCTs they used, however, do not include call-sites
which keeps the CCT size reasonable and enables them to use the
tree transformation algorithm proposed in [1] to perform the com-
parison efficiently. While this approach is useful to quantify the
difference in execution on different platforms or when using dif-
ferent inputs, it is not suitable for comparing functionally different
versions of the program as information gets blurred in the CCT.
Furthermore, due to the nature of the tree transformation technique
they adopt, the nodes matched from both trees are not necessarily
semantically equivalent. We have discussed this limitation further
in Section 2.2.1.

Our work is the first, to our knowledge, to focus on revision-
based dynamic behavior and performance differences with support
of source code repository systems.

7. CONCLUSION AND FUTUREWORK
In this paper, we present PARCS, an offline analysis tool that au-

tomatically identifies differences between the execution behavior
of two revisions of an application. PARCS collects program be-
havior and performance characteristics via profiling and generation
of calling context trees (CCTs). We annotate CCTs with call-site
information and performance metrics to facilitate identification of
differences in CCT topology (changes in the calling patterns of the
program) and in overall program performance (via weight differ-
encing). We overview our techniques for identifying differences in
CCTs and demonstrate how we use PARCs to attribute differences
in execution behavior and performance to specific changes in the
source code.

We have presented an empirical evaluation of PARCS using a
number of well-known Java applications. We present what sup-
ports the use of call-site information to expose additional topologi-
cal differences than conventional CCTs. We also quantify topolog-
ical and weight differences between two revisions of each applica-
tion. Moreover, we developed a scoring metric to assess matching
accuracy and have shown that PARCS is best applied to revisions
comparison to track and gain a better understanding of how soft-
ware updates impact overall behavior and performance.

As future work, we are investigating the impact of test inputs on
performance differences revealed. In addition, we are considering
coupling PARCS with program slicing techniques [15] to reveal
semantic details about the program to aid in automatic attribution
of performance differences to source code changes.
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