A Secure Implementation of Java
Inner Classes

By
Anasua Bhowmik and William Pugh
Department of Computer Science
University of Maryland

More info at:
|http://www.cs.umd.edu/~pugh/javal

Motivation and Overview

m Present implementation of Java inner classes
provides a security hole in order to allow inner
classes access the private fields of the outer class
and vice versa

m We designed a secure technique for allowing access
to private fields and methods

= No need to change the JVM

m Very little overhead

m Developed a byte code transforming tool which
modify the class files and make the inner classes
safe

Java Inner Classes

m Inner class is a new feature class A {
added in Java 1.1 private a;

m Inner classes are classes classB {
defined as member of other private b;
class void f() {

b = a+a; // accessing pvt. var of A

m [nner classes are allowed to)
access the private members public g(}{
of the enclosing class and B myObj = new B();
vice versa myObj.f(0;

m For each instance of an int x = myObj.b; // accessing pvt. var
outer class there is a of A
corresponding instance of }
the inner classes }

Inner Classes Aren’t Understood By
JVMs

m Inner classes are implemented as a compiler
transformation

m JVM do not need to understand inner classes
— code willrunon 1.0 JVM’s

m JVM prohibits access to private members from
outside the class

m Compiler transforms the class, containing inner
classes, to a number of non-nested classes

Implementation of Inner Classes

class A

private int m;
public void g() {

A$B ob = new A$B();
private int ob.f();

class A

int access$0() {
After compilation return m;

— |

class A$B

public void g(){
B ob = new B();
l;b-f():)

« Access$0() of class A has package level visibility.
« The class A$B also has package level visibility

Security Threats with Present Implementation

m The private data members of classes get exposed through
access functions

m Other classes belonging to the same package can call the
access functions and tamper the private data member

Class C Class A

Undesired
access Lprivate int m;

fun(} public void g() {

Aa =newA(): AS$B ob = new A$B();

ob.f();

int x = a.access$0 (¥~
int access$0() {
) retum m;

}
}

== Class C and A belongs to the same
package

http://www.cs.umd.edu/~pugh/java

Is This A Problem?

m Lots of Java code uses inner classes

m Using new 1.2 security model, all privileged code is put in inner
classes

m Still requires attacker get inside package
m One security barrier down
— Prefer defense in depth

m Ed Felton recommends against using current version of inner
classes

New Implementation of Inner Classes

m The access to the private members are restricted only to the
intended classes
= The new implementation is built on top of the current
implementation
— class files are rewritten
= No need to change the JVM
m A secret key is shared between all the classes that need access
to each others private data members
— Class B wants to access a class A’s private member m
— invokes A’s access function
— Bpasses it's shared secret key to A’s access function
— A verifies whether B's secret key and A’s secret key are the same
object
- if yes, give access to its private variable m
« otherwise, throw a security exception

New Implementation of Inner Classes

m The secret key is an object allocated dynamically during run
time.

m Class A allocates an object in its static initializer and stores it in
its own private static field A.sharedSecret

m Class A passes down the secret key by invoking the
receiveSecretKey(A.sharedSecret) of class B

m InreceiveSecretKey(Object) B stores A’s secret key init's own
private static field, B.sharedSecret

m Whenever B tries to access A’s private field it passes it's shared
secret key for authentication

New Implementation of Inner Classes

Initialization Phase

A passes the secret key
object to B

A allocates a new
object and stores
itin A.sharesSecret

B stores the secret
key passed by A
in B.sharedSecret

A throws security
éxception if secret ke

B wants to access A’s private
Field

B invokes A’s
access method with
B.sharedSecret as an
argument

B passes the secret
key for verification

In access methd A
verifies B's secret key

A grants access if B's
secret key matches with A's

Class A{
static private final Object sharedSecret = new Object();
static { A$B.receiveSecretForA(sharedSecret); }
private int x;
int access$1(Object secretForA) {
if (secretForA !=sharedSecret) throw
new SecurityException();
return x;
}
}
Class A$B {
private A this$0;
static private Object sharedSecret;
static void receiveSecretForA(Object secretKey) {
if (sharedSecret != null) throw new VerifyError();
sharedSecret = secretKey;

}
... invoke this$0.access$1(sharedSecret)...
}

Advantages of the New Implementation

Access is permitted only to the desired classes

No need to change the existing JVMs

The secret key value is a pointer to memory,

allocated dynamically

— Absolutely impossible to forge

m The additional overhead for initialization and
validation of the secret keys are small

m Very small increase in the size of the class files

Overhead Due to Modification

m For each class allowing/needing access
— One static field
m For each set of objects needing mutual access
— One object created
m All initializations are done in static initializer
m One additional argument in each access$ method
m Few additional instructions are executed for each
access call to
— pass the extra argument
— verify the secret key

A Rewriting Tool For Jar Files

Developed a tool to transform the byte codes

Takes a jar file, examines the class files and finds

out the sets of classes which need mutual access

m modify all the class files which are either defining
access$ methods or invoking access$ methods

m All the classes in the jar file are made safe in the
presence of inner classes

m Used our tool to modify several jar files - rt.jar,

swing.jar etc.

Experimental Result for swing.jar

Static Evaluation:
% increase in the code size -2.9%
of class files in swing.jar - 1498
of inner classes - 898
of inner classes needing access - 139
of objects created - 53
of new fields added - 195
of access methods - 145
of places access methods are invoked - 439

Experimental Result for swing.jar

Runtime Performance
For a trial run of SwingSet demo, which tests all the
functionalities
Total number of calls to access$ functions - 46,638
Total user time - 59.44 sec
Total system time - 3.91 sec

Note: The user and system times are comparable when we run
the demo with original swing.jar file. Although it is not possible to
run the demo exactly the same way and compare precisely

Even Better Security

m Before A gives the secret to A$B
— Check signatures on A$B imply the signatures on A

m Prevents situation where an attacker tries to
combine a signed version of A with a modified (and
unsigned) version of A$B

Conclusion

m Designed a new implementation for inner classes to
fix the security hole of the current implementation

m Little additional overhead
— regarding both code size and execution time

= Implemented a byte code rewriter to incorporate the
changes by transforming the byte code

m Can be implemented in the compiler

m Can extend this idea to have friend classes like C++

