
1

A Secure Implementation of Java
Inner Classes

By

Anasua Bhowmik and William Pugh

Department of Computer Science
University of Maryland

More info at:
http://www.cs.umd.edu/~pugh/java

Motivation and Overview

n Present implementation of Java inner classes
provides a security hole in order to allow inner
classes access the private fields of the outer class
and vice versa

n We designed a secure technique for allowing access
to private fields and methods

n No need to change the JVM
n Very little overhead

n Developed a byte code transforming tool which
modify the class files and make the inner classes
safe

Java Inner Classes

n Inner class is a new feature
added in Java 1.1

n Inner classes are classes
defined as member of other
class

n Inner classes are allowed to
access the private members
of the enclosing class and
vice versa

n For each instance of an
outer class there is a
corresponding instance of
the inner classes

class A {
 private a;

 class B {

 private b;
 void f() {

 b = a+a; // accessing pvt. var of A

 }
 public g(){

 B myObj = new B();

 myObj.f();
 int x = myObj.b; // accessing pvt. var

 of A

 }
}

Inner Classes ArenÕt Understood By
JVMs

n Inner classes are implemented as a compiler
transformation

n JVM do not need to understand inner classes
Ð code will run on 1.0 JVMÕs

n JVM prohibits access to private members from
outside the class

n Compiler transforms the class, containing inner
classes, to a number of non-nested classes

Implementation of Inner Classes

class A

private int m;

private class B {
 private int x ;
 void f(){ x = m; }
 }

public void g(){
 B ob = new B();
 ob.f();}

 }

After compilation

private int m;
public void g() {
 A$B ob = new A$B();
 ob.f();
 }
int access$0() {
 return m;
 }
}

A this$0;
private int x;
void f(){
 x = this$0.access$0();
 }
}

class A

class A$B

¥ Access$0() of class A has package level visibility.
¥ The class A$B also has package level visibility

Security Threats with Present Implementation

n The private data members of classes get exposed through
access functions

n Other classes belonging to the same package can call the
access functions and tamper the private data member

private int m;
public void g() {
A$B ob = new A$B();
ob.f();
}
int access$0() {
return m;
}
}

Class A

 fun(){
 A a = new A();
 ..
 int x = a.access$0();

}

Class C
Undesired

access

Class C and A belongs to the same
 package

http://www.cs.umd.edu/~pugh/java

2

Is This A Problem?

n Lots of Java code uses inner classes

n Using new 1.2 security model, all privileged code is put in inner
classes

n Still requires attacker get inside package

n One security barrier down

Ð Prefer defense in depth
n Ed Felton recommends against using current version of inner

classes

New Implementation of Inner Classes

n The access to the private members are restricted only to the
intended classes

n The new implementation is built on top of the current
implementation

Ð class files are rewritten

n No need to change the JVM
n A secret key is shared between all the classes that need access

to each others private data members

Ð Class B wants to access a class AÕs private member m

Ð invokes AÕs access function

Ð B passes itÕs shared secret key to AÕs access function

Ð A verifies whether BÕs secret key and AÕs secret key are the same
object

¥ if yes, give access to its private variable m

¥ otherwise, throw a security exception

New Implementation of Inner Classes

n The secret key is an object allocated dynamically during run
time.

n Class A allocates an object in its static initializer and stores it in
its own private static field A.sharedSecret

n Class A passes down the secret key by invoking the
receiveSecretKey(A.sharedSecret) of class B

n In receiveSecretKey(Object) B stores AÕs secret key in itÕs own
private static field, B.sharedSecret

n Whenever B tries to access AÕs private field it passes itÕs shared
secret key for authentication

New Implementation of Inner Classes
Initialization Phase

A allocates a new
object and stores

it in A.sharesSecret

A passes the secret key
object to B

B stores the secret
key passed by A

in B.sharedSecret
B wants to access AÕs private
Field

B invokes AÕs
access method with

B.sharedSecret as an
argument

B passes the secret
key for verification

In access method A
verifies BÕs secret key

A grants access if BÕs
secret key matches with AÕs

A throws security
exception if secret keys

 not match

Class A {
static private final Object sharedSecret = new Object();
static { A$B.receiveSecretForA(sharedSecret); }
private int x;
int access$1(Object secretForA) {

if (secretForA !=sharedSecret) throw
 new SecurityException();

 return x;
}

}
Class A$B {

private A this$0;
static private Object sharedSecret;
static void receiveSecretForA(Object secretKey) {

if (sharedSecret != null) throw new VerifyError();
 sharedSecret = secretKey;
}

É invoke this$0.access$1(sharedSecret)É
}

Advantages of the New Implementation

n Access is permitted only to the desired classes
n No need to change the existing JVMs

n The secret key value is a pointer to memory,
allocated dynamically
Ð Absolutely impossible to forge

n The additional overhead for initialization and
validation of the secret keys are small

n Very small increase in the size of the class files

3

Overhead Due to Modification

n For each class allowing/needing access
Ð One static field

n For each set of objects needing mutual access
Ð One object created

n All initializations are done in static initializer

n One additional argument in each access$ method
n Few additional instructions are executed for each

access call to
Ð pass the extra argument

Ð verify the secret key

A Rewriting Tool For Jar Files

n Developed a tool to transform the byte codes

n Takes a jar file, examines the class files and finds
out the sets of classes which need mutual access

n modify all the class files which are either defining
access$ methods or invoking access$ methods

n All the classes in the jar file are made safe in the
presence of inner classes

n Used our tool to modify several jar files - rt.jar,
swing.jar etc.

Experimental Result for swing.jar

Static Evaluation:
 % increase in the code size - 2.9%

 # of class files in swing.jar - 1498

 # of inner classes - 898

 # of inner classes needing access - 139

 # of objects created - 53
 # of new fields added - 195

 # of access methods - 145

 # of places access methods are invoked - 439

Experimental Result for swing.jar

Runtime Performance

 For a trial run of SwingSet demo, which tests all the
functionalities

 Total number of calls to access$ functions - 46,638
 Total user time - 59.44 sec

 Total system time - 3.91 sec

 Note: The user and system times are comparable when we run
the demo with original swing.jar file. Although it is not possible to
run the demo exactly the same way and compare precisely

Even Better Security

n Before A gives the secret to A$B
Ð Check signatures on A$B imply the signatures on A

n Prevents situation where an attacker tries to
combine a signed version of A with a modified (and
unsigned) version of A$B

Conclusion

n Designed a new implementation for inner classes to
fix the security hole of the current implementation

n Little additional overhead
Ð regarding both code size and execution time

n Implemented a byte code rewriter to incorporate the
changes by transforming the byte code

n Can be implemented in the compiler

n Can extend this idea to have friend classes like C++

