
ABSTRACT
Data-layout optimizations rearrange fields within objects,

objects within objects, and objects within the heap, with the goal of
increasing spatial locality. While the importance of data-layout
optimizations has been growing, their deployment has been limited,
partly because they lack a unifying framework. We propose a
parameterizable framework for data-layout optimization of general-
purpose applications. Acknowledging that finding an optimal layout
is not only NP-hard, but also poorly approximable, our framework
finds a good layout by searching the space of possible layouts, with
the help of profile feedback. The search process iteratively proto-
types candidate data layouts, evaluating them by “simulating” the
program on a representative trace of memory accesses. To make the
search process practical, we develop space-reduction heuristics and
optimize the expensive simulation via memoization. Equipped with
this iterative approach, we can synthesize layouts that outperform
existing non-iterative heuristics, tune application-specific memory
allocators, as well as compose multiple data-layout optimizations.

1. INTRODUCTION
The goal of memory optimizations is to improve the effective-

ness of the memory hierarchy [18]. The memory hierarchy, typi-
cally composed of caches, virtual memory, and the translation-
lookaside buffer (TLB), reduces the memory access time by exploit-
ing the execution’s locality of reference. The opportunity for the
optimizer is to help the memory hierarchy by enhancing the pro-
gram’s inherent locality, either temporal or spatial, or both.

To alter the temporal locality, one must modify the actual algo-
rithm of the program, which has proved possible for (stylized) sci-
entific code, where transformations such as loop tiling and loop
interchange can significantly increase both temporal and spatial
locality [4, 14, 26]. However, when the code is too complex to be
transformed—a situation common in programs that manipulate
pointer-based data structures—one must resort to transforming the
layout of data structures, improving spatial locality. Many data-lay-
out optimizations have been proposed [3, 4, 7, 8, 9, 11, 15, 16, 21,

23, 24], with their specific goals ranging from reordering structure
fields [7] to object inlining [11].

Data-layout optimizations synthesize a layout with good spatial
locality generally by (i) attempting to place contemporaneously
accessed memory locations in physical proximity (i.e., in the same
cache block or main-memory page), while (ii) ensuring that fre-
quently accessed memory cells do not evict each other from caches.
It turns out that these goals make the problem of finding a “good”
layout not only intractable but also poorly approximable [20]. The
key practical implication of this hardness result is that it may be dif-
ficult to develop data-layout heuristics that are both robust and
effective (i.e., able to optimize a broad spectrum of programs con-
sistently well).

The hardness of the data-layout problem is also reflected in the
lack of tools that static program analysis offers to a data-layout opti-
mizer. First, there appears to be no static models for predicting the
dynamic memory behavior of general-purpose programs that are
both accurate and scalable (as was shown possible for scientific
code [5]), although initial successes have been achieved for small C
programs [1, 13]. Second, while significant progress has been made
in deducing shapes of pointer-based data structures [22], in order to
create a good layout, one is likely to have to understand also the
temporal nature of accesses to these shapes. This problem appears
beyond current static analyzers (although a combination of [1] and
[22] may produce the desired analysis power).

The insufficiency of static analysis information has been recog-
nized by existing data-layout optimizations, which are all either pro-
file-guided or exploit programmer-supplied application knowledge
[3, 7, 8, 9, 11, 15, 16, 21, 23, 24]. Although many of these tech-
niques manage to sidestep the problem of analyzing the program’s
memory behavior by observing it at run-time, they are still funda-
mentally limited by the hard problem of synthesizing a good layout
for the observed behavior [20]. Typically based on greedy profile-
guided heuristics, these techniques provide no guarantees of effec-
tiveness and robustness. Indeed, our experiment show that some-
times their optimization is far from optimal (not effective), and that
some programs are actually impaired (not robust).

In this paper, we propose a framework that enables effective and
robust data-layout optimizations. Our framework finds a good data
layout by searching the space of possible layouts, using profile feed-
back to guide the search process. A naive approach to profile-
guided search may transform the program to produce the candidate
data layout, then recompile and rerun it. Clearly, such a search cycle
is uninformative and too slow (or cumbersome) to be practical.

Indeed, to avoid this tedious cycle our framework evaluates a
candidate layout by simulating its fault rate (e.g., cache-miss rate or
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page-fault rate) on a representative trace of memory accesses. Sim-
ulation is more informative than rerunning since it allows us not
only to measure the resulting miss rates of the candidate data lay-
outs, but also to identify the objects that are responsible for the poor
memory performance. We use this information to narrow the layout
search space by (a) determining which levels of memory hierarchy
need to be optimized, (b) selecting optimizations (and thus layouts)
that may influence the affected levels of memory hierarchy, and
finally by (c) excluding infrequently accessed objects from consid-
eration.

Trace-based fault-rate simulation is not only more informative
but it is also faster than editing, recompiling and rerunning the pro-
gram. To simulate the program without re-compilation, we “pre-
tend” the program was optimized by remapping the original
addresses of data objects to reflect the candidate data layout. To
make the iterative search even more practical, we speed up the sim-
ulation by compressing the trace as a context-free grammar, which
in turn allows us to develop algorithms for memoized simulation.

This paper makes the following contributions:

• We present a framework for data-layout optimization of gen-
eral-purpose programs that permits composing multiple optimiza-
tions. Unifying existing profile-based data-layout optimizations, the
framework operates by first heuristically selecting a space of profit-
able layouts, and then iteratively searching for a good layout, using
profile-guided feedback. (Section 3).

• We develop techniques for efficiently evaluating a candidate
layout optimization using a trace of memory references. These
techniques, based on memoization, miss-based trace compaction,
and on-demand simulation, make the framework’s iterative data
layout search efficient enough to be practical (Section 4).

• Using the framework, we re-implement two existing data-lay-
out optimizations: Field Reordering and Custom Memory Alloca-
tion. The experimental results show that our iterative-search
versions outperform the existing single-pass heuristic optimizations
(Section 5).

2. RELATED WORK
In this section we describe previous work on profile-driven data-

layout optimization. First, we discuss general concepts that apply to
all optimizations. Next, we illustrate the optimization steps com-
mon to all, and finally, we summarize existing optimizations and
highlight their unique features.

2.1 Common Optimization Concepts
Data-layout optimization aims to improve a program’s memory

performance. Usually, memory performance is characterized in
terms of the fault rates a program incurs on various memory
resources. Memory resources are hardware or software elements
that are part of the memory sub-system: all levels of the processor
cache, the translation lookaside buffer (TLB), and the virtual-mem-
ory page table [18, 19]. The fault rate is the fraction of references
not found in the cache/TLB/page table.

To reduce fault rate, data-layout optimizations attempt to find a
good data layout for a program’s data objects. Data objects are the
optimization’s “building blocks”. For example, structure fields rep-
resent the data objects for Field Reordering and Class Splitting opti-
mizations [7], while structure instances are data objects for
Linearization and Custom Memory Allocation [8, 21, 23]. A data
layout is a placement of data objects in memory, namely it is a map

from data objects to their memory locations. A good memory lay-
out is one that improves a program’s memory performance.

Finding an optimal memory layout is intractable [20]. Indeed,
existing data-layout optimizations use heuristic methods to produce
a good memory layout. The heuristics are usually based on two
simple objectives. First, optimizations such as Class Splitting [7],
Coloring [8], and Custom Memory Allocation [23] attempt to pre-
vent having highly referenced data being evicted from the cache by
infrequently accessed data. Second, optimizations such as Field
Reordering [7, 15, 24], Linearization [8, 9, 16, 21], Global Variable
Positioning [3], and Custom Memory Allocation try to increase the
implicit prefetch that cache blocks provide, by packing contempo-
raneously accessed data in the same cache block.

Most optimizations target only specific types of data objects.
For example, Global Variable Positioning targets global variables,
Field Reordering targets structures that are larger than the cache
block size, and Custom Memory Allocation targets heap objects
that are smaller than the virtual-memory page size.

Most optimizations use profile information to guide the heuristic
layout techniques. A profile is a map from a set of data objects to a
set of attributes. For example, the Field Pair-wise Affinity profile
maps a pair of fields to the number of pre-defined intervals in which
they are both referenced. A field reordering heuristic can then use
this pair-wise profile to place fields according to their temporal
affinity [7, 15].

2.1.1 Common Optimizations Steps
The first optimization step is to identify the memory resources

that limit program performance, which we call bottlenecks. This
step is usually done manually, using profiling tools such as Intel
Vtune [25] that measures a program’s memory performance (e.g.,
its cache miss rate). The next step is to select, out of many available
optimizations, one that can potentially improve the bottleneck’s
performance. Selecting a “good” optimization requires a deep
understanding of the program memory behavior, and is typically
done by a programmer familiar with the program. Then, the
selected optimizer is invoked and the automatic phase of the opti-
mization begins.

The optimizer first identifies the data objects it intends to target.
For example, the target objects can be the structure fields that
should be reordered, the classes that should be split, or the global
variables that should be repositioned in memory. Next, it chooses a
heuristic method to construct a new data layout for the target
objects. The choice of heuristic is often tied to the profile informa-
tion used to drive the optimization. For example, the Fields Access
Frequency profile can be used to identify the “splitting point”
between highly referenced and rarely accessed member fields of a
class.

Finally, the program must be modified to produce the new data
layout. This step is often done manually. The program is re-written
to generate the new layout, then re-compiled and re-executed to
measure the performance benefit. In most cases, the initial benefit is
small and the optimization must be tuned further. This tuning often
requires using a different profile and/or a different heuristic to pro-
duce the optimized layout. In the worst, though not uncommon,
case the new layout may not yield the expected results despite best
tuning efforts, and the entire process must be repeated with a differ-
ent optimization.



2.2 Existing Data-Layout Optimizations
To the best of our knowledge, all previous work on (implicit)

profile-driven data-layout optimization [3, 7, 8, 11, 15, 16, 21, 23,
24] follows the process described above. Three features distinguish
the optimizations: the memory resources targeted, the heuristic
method used to construct a new layout, and the profile information
used to guide the heuristics. Table 1 summarizes these features for
existing data-layout optimizations.

However, prior work does not directly address several key issues
such as systematic identification of bottlenecks, optimization selec-
tion, profile and heuristic selection, and, perhaps most importantly,
tuning the optimization to the program being optimized. Our data-
layout optimization framework, described in the next sections, uses
profile feedback and an iterative search process to address these
issues.

3. NEW DATA-LAYOUT OPTIMIZATION
PROCESS

We now present the overall structure of our data-layout optimi-
zation process. First, we give a general description of the process,
then describe each step in detail.

3.1 Process Overview
Figure 1 shows the overall structure of the process. The goal of

the process is to find a data layout that improves the program’s
memory performance. Since efficiently computing even an approx-
imation of an optimal layout is intractable [20], our process is based
on a search in the space of data layouts. We define this space, infor-

mally, to be all possible layouts that can result from applying any
data-layout optimization in any order. Because the layout space is
too large and an exhaustive search is usually not practical, we pro-
pose two techniques to increase the search feasibility: analyses to
narrow the search space, and the possibility to use a hill climbing to
guide the search into more “promising” areas.

The goal of the first three steps is to narrow the search space. In
the Bottleneck Identification step the process identifies the memory
resources (e.g., cache, TLB) that limit the program memory perfor-
mance. Then, for each resource bottleneck the process finds the
data objects that mostly influence its memory behavior by perform-
ing the Data Objects Analysis step. Last, it selects optimizations
that affect the memory behavior of these “critical” objects (Select
Optimizations step). By selecting these optimizations, the process
effectively narrows the search space only to layouts that have the
potential to improve the bottleneck’s memory behavior.

The Build Profiles step computes profile information for the
selected optimizations. Next, a search to find better layouts begins
(Apply Optimizations and Evaluation steps): Starting with the origi-
nal program layout, the process may evaluate a large number of
candidate layouts, incrementally improving the best layout it has
found so far. The Apply Optimizations step provides the next candi-
date data layout, by applying (possibly simultaneously) the optimi-
zations chosen in the Select Optimization step. The Evaluate step
evaluates the candidate layout and provides feedback that can guide
a hill-climbing search.

Table 1. data-layout optimizations

Memory Resources and Data Objects
Targeted

Profile Information Used Heuristic Objective and Methods

Field Reordering [7, 15, 24].
Increases cache block utilization.
Targets structures that have more
than two fields and are larger than the
cache block size.

Two profiles are commonly used:
1. Fields Pair-wise Affinity:

!count. Maps pairs of fields to

their temporal affinity. The fields tem-
poral affinity is the number of inter-
vals in which they were both
referenced, for a given length of a time
interval.
2. Fields Access Frequency: f1!count.

Maps a single structure field to the
number of its references.

Objective: place fields that are concurrently accessed in the same
cache block. The heuristic uses the profile to build the “affinity
graph” of fields: nodes are fields, arcs represent the affinity between
them. Based on graph clustering algorithms [12], the optimization
clusters fields with high temporal affinity into the same cache block.

Class Splitting [7, 24]. Increases
cache utilization. Targets data objects
whose collection of hot fields are
smaller than the cache block size.

Objective: Avoid bringing rarely accessed data into the cache. The
heuristic uses the Frequency profile to split classes into “hot” and
“cold” parts. Hence, when accessing the “hot” part, the “cold” part is
not brought into the cache, leaving more space for other “hot” data.

Global Variable Positioning [3].
Reduces cache conflicts among glo-
bal variables. Targets globals.

Similar to the Field Reordering optimization.

Coloring [8]. Reduces cache con-
flicts. Usually targets dynamically
allocated objects.

The two profiles mentioned above, but
at an object granularity. Alternatively,
an implicit profile based on knowledge
of data structure topology.

Objective: to prevent frequently referenced data being evicted from
the cache by rarely accessed data. Using the Frequency profile, or
programmer knowledge, the heuristic distributes the objects among
the cache sets, so that frequently accessed objects do not conflict with
rarely accessed objects.

Linearization, Clustering [7, 8, 11,
16, 21]. Increases cache-block utili-
zation. Targets recursive data struc-
tures with elements smaller than the
cache block size.

Objective: to increase the locality of reference among structure nodes
(e.g., link list nodes). The heuristic usually exploits the topology of
data structure nodes to re-position them in memory. For example, the
optimization clusters two linked list nodes that are linked via the
‘next’ pointer into the same cache block.

Custom Memory Allocation [23].
Increases virtual-memory utilization.

Heap Object Lifetime profile: x!l.
Where x is a heap object, l is an
attribute describing its lifetime behav-
ior. Previous work used four attributes:
(i) highly referenced, (ii) rarely refer-
enced, (iii) short lived, and (iv) other.

Objective: to increase heap object reference locality by allocating
objects with the same lifetime behavior within the same memory
region. Two heuristic methods are used. First, the programmer heu-
ristically defines the “correct” lifetime attributes to use (e.g., one for
“hot” and one for “cold” objects). Second, the optimizer heuristically
partitions the objects into memory regions, according to their lifetime
behavior (see Section 5.1 for more details).

f1 f2×



3.2 Process Steps
We now describe each process step in detail. All steps use the

data objects trace which is the sequence of data objects (and their
addresses) referenced by the program during execution. Each can-
didate optimization must provide the following inputs: the memory
resources the optimization targets, a Build Profile function that
builds the profile(s) the optimization requires, an Optimization
Predicate which specifies the data objects the optimization targets,
and a Next Layout function that iterates over different layouts the
optimization may produce. The formal definitions of these inputs,
together with other definitions, are found in Table 3; the formal pro-
cess is described in Table 4.

1. Bottleneck Identification. This step identifies the memory
resources that limit program performance. The process defines a
memory resource as a bottleneck if its miss rate is higher than a
pre-defined threshold (e.g., L1 miss rate higher than 2%). To cal-
culate the miss rate for a specific memory resource, the process
uses the Simulate function (see Table 4) that simulates the resource
memory behavior on the data-objects trace.

2. Data Objects Analysis. For each bottleneck, the Data-Objects
Analysis identifies critical data objects. Critical objects are those
objects that are responsible for “most” of the faults. Finding the
critical objects helps narrow the search space to layouts that affect
the placement of these objects.

The Bottleneck Critical Objects set contains two type of objects:
(i) The faulting objects that frequently miss in the given resource.
These objects are critical since changing their layout can reduce
the resource’s memory faults. (ii) The hot objects are the fre-
quently referenced data objects. These objects are critical because
introducing too many new memory faults in them will degrade
performance.

To find the bottleneck critical objects, the process uses the Bot-
tleneck Critical Objects function (BCO in Table 4). This function
traverses the data objects trace and uses two parameters, k and j,
to identify the frequently faulting and frequently referenced
objects. Ideally, the function should return the smallest set of
objects that covers at least k% of the misses and j% of the refer-
ences. Since finding the smallest set is difficult, the process finds a
larger set that has the desired coverage. The BCO function builds
this set by adding the frequently referenced and frequently missed
objects incrementally, until the set satisfies the coverage require-
ments. Our empirical results (Section 5.2) show that setting
k=j=80% usually yields a small critical set (typically 10% of the
total number of data objects) that covers both 90% of the refer-
ences and 90% of the misses.

3. Select Optimization. The goal of the Select Optimization step is
to narrow the search to those optimizations (and their resulting lay-
outs) that can potentially improve the bottleneck’s memory perfor-
mance.

Since critical data objects affect bottleneck performance, the
process looks for optimizations that target these objects. To this
end, the process builds, for each optimization, the Optimization
Target Objects set: the set of critical objects that are also targets for
the given optimization. Optimizations with a non-empty Target
Objects set have the potential to improve program performance.
To quantify the optimization potential, the process calculates the
Target Objects set coverage, which is the fraction of the trace
accounted for by references to objects in the set. Larger coverage
implies greater optimization potential.

To build the Target Objects set, the process uses the Optimiza-
tion Target Objects function (OTO function in Table 4). For a
given bottleneck and optimization, this function places Bottleneck
Critical Objects that satisfy the optimization predicate into the
Optimization Target Objects set. The optimization predicate deter-
mines if a data object is likely to benefit from the optimization. For
example, field reordering benefits structures that are larger than
the cache block size and have more than two fields. Table 2 lists
the optimization predicates the process uses, which were selected
based on previous work [3, 7, 8, 11, 15, 16, 21, 23, 24], and our
experience with these data-layout optimizations.

From this point on, the search focuses only on optimizations
with the potential to improve program performance.

4. Build Profile. For each optimization selected, the process uses
the Build Profile function (see Table 3) to build the profile(s)
needed for that optimization. The profiles are needed for the next
step (Apply Optimization).

At this point the process begins its search process.

5. Apply Optimizations. In this step the process produces a new
candidate data layout for the program data objects. It uses the Lay-
out Selector function (LS in Table 4) to iterate over the space of
possible layouts. Each time the function is called, it returns a valid
data layout, or a null value. When the function returns a null, the
process terminates. When the function returns a data layout, the
process continues to the next step where the layout is evaluated
and feedback is provided to guide the search (if desirable).

Figure 1. Overall Process Structure

Build Profiles

Apply Optimizations

Evaluation

Data Objects Analysis

Select Optimizations

Bottleneck Identification

Narrowing the
search space

Hill climbing
search

Table 2. Optimization Predicates. Return true iff the object
is a suitable target for the optimization

Field Reordering [7, 15, 24]. (i) Structure size is larger than the
cache block size, and (ii) the structure has more than two fields.

Class Splitting [7, 24]. (i) Some structure fields are accessed more
frequently than others, and (ii) the set of frequently accessed structure
fields is smaller than the cache block size.

Global Variable Positioning [3]. A global variable (data object) that
is smaller than the cache block.

Linearization, Clustering [8, 9, 11, 21]. a node of a recursive data-
structure (e.g., a node of a link list) that is smaller than the cache
block size.

Coloring [8]. All data objects that incur cache conflicts.

Custom memory allocation [23]. A dynamically allocated data
object that is smaller than the page size.



Table 3. Process Definitions

1. A data object x is an elementary piece of data, such as an object, a global variable of a basic type, a field in an instance of a class type, or an array. A

trace T is a sequence of references to data objects. O is the set of all data objects in the trace T. The coverage of is the sub-trace length induced by S

objects, divided by the length of T.

2. Let M be the set of all memory addresses (locations) available for the program. A data layout is a map DL: .

3. Memory Resource is a pair: r=(SimulationFunction, Threshold) where

• Simulation_Function: . A function that returns the fault rate (e.g., cache miss rate on T) of r on trace T.

• Threshold is a fault rate above which a resource is defined as a bottleneck.

For a resource r, the Resource Critical Objects Set, , contains data objects that are responsible for most of the misses in resource r. R is the set of

all memory resources.

4. A Profile is a map P: .The profile attributes used are optimization specific.

5. Optimization is a tuple opt = (resources, ep, bp, nl).

• is a set of memory resources the optimization targets to improve.

• ep is the Optimization Predicate: ep: which holds if the optimization targets the given data objects. (The trace, T is an input since some

predicates need to calculate the miss rate).

• is the Optimization Target Objects Set for resource r. = { | ep(T,x)}.

• bp is the Build Profile function: bp: . It returns a set of possible profiles needed to drive the optimization.

• nl is the Next Layout function: nl: . The function is used to iterate over possible layouts of the optimization. It returns the

‘next’ layout from the set of possible layouts for this optimization. misc. is miscellaneous information needed to create a legal layout (e.g., order of allo-
cations of heap objects).

Table 4. The Framework data-layout optimization Process

Process input: (i) Optimizations: a set of available optimizations (ii) Resources: a set of memory resources to optimize. (iii) T: the program memory
reference trace. (iv) restrictions: information needed to build a legal data layout (e.g., heap objects allocation order). (v) k, j: coverage percentages for
the BTO function. The defaults are k=j=80% and were determined by the experimental results (see Section 5.2).

Step Procedural Description Functions Used

Initialization double benefit=0, best_benefit=0;
pr: an empty vector; // optimization profiles
CS: a map from resources to Critical Sets.
TS: a map from <optimization,resource> to Target Sets
SO: an empty set; // selected optimizations

Simulate(trace T, Resource r) !!!! MRR

The Simulate function returns the miss rate of resource r on trace T.
BCO(trace T, resource r, double k, double j) !!!! CSr

The Bottleneck Critical Objects function returns the critical data object

set, , for the resource r. CSr covers more than k% of T, and more

than j% of memory faults incurred at resource r.

OTO(trace T, Optimization o, critical set CSr)!!!!

The Optimization Target Objects (OTO) function calculates the Optimi-
zation Target Objects set. Using the optimization predicate, ep the func-
tion filters out only the critical objects that are targeted by the
optimization.

LS(trace T, Optimization[] v, Profile[] p, Target Objects T,
double benefit, restrictions m) !!!! DL

The Layout Selector function uses the Next Layout function of the
selected optimizations to return the next data layout the process should
evaluate. It can use the benefit variable, which indicates the perfor-
mance benefit of the last layout returned, to guide its decision about
which data layout to return.

Evaluate(trace T, data-layout DL)!!!! benefit
Tnew is a trace defined by assigning to each data object, x, its address:

DL(x). The function returns the performance benefit of the layout Tnew.

The benefit is defined as .

Wr is the ‘weight’ of the resource r: the number of machine cycles it

takes to access r.
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for each resource do {

TS[o,r]=OTO(T, o, CS[o.r]);
if (| TS[o,r] | > 0 ) do

Build Profile. pr = pr + o.bp(T, TS[o,r]);
SO = SO + o;

}}}

Apply Optimi-
zations

while ((DL= LS(T, SO, pr, TS,
benefit, restrictions) != NULL) do {

Evaluation benefit = Evaluate(T,DL);
if (benefit > best_benefit) do {
best_benefit = benefit;
BestDL = DL;

}}
return BestDL; // the selected layout
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The goal of the LS function is to guide the search towards more
“promising” layouts. Unfortunately, selecting good layouts is a
difficult task, especially when applying several optimization
simultaneously. For example, it is not known what is the best order
in which to apply Field Reordering and Class Splitting together
with a Custom Memory Allocation. Ideally, the LS function should
synthesize a layout by combining several optimizations. However,
we considered only one (described next) simple approach to pro-
duce new layouts.

The Layout Selector presented in the paper applies each optimi-
zation separately, starting with the optimization whose target set
has the largest coverage. The LS function uses the optimization’s
Next Layout function (see Table 3), to return a new layout that has
not yet been evaluated. If feasible, the optimization’s Next Layout
function can simply iterate over all possible layouts, as we did suc-
cessfully for the Field Reordering optimization in Section 5.5.1. If
such an approach is too time consuming, the Next Layout function
can use heuristics to limit the search, as we did for the Custom
Memory Allocation optimization in Section 5.5.2.

6. Evaluate Optimization. To evaluate the optimization, the pro-
cess uses the Evaluate function (see Table 4) that returns the per-
formance benefit (i.e., the difference in memory resource fault
rates) of the data layout obtained in the Apply Optimizations step.

Previous work on data-layout optimization [3, 7, 23] evaluates a
layout using a tedious, manual, cycle of editing the program, re-
compiling it, and re-executing it. By contrast, in the process imple-
mentation presented in Section 4, the Evaluate step uses the trace to
perform the evaluation in an extremely efficient, automatic way:
The Evaluate function simulates the data objects trace, but, instead
of using the original object addresses, it uses the new addresses
from the data layout being evaluated. This efficiency is crucial to
making the iterative search feasible.

4. EFFICIENT FRAMEWORK FOR DATA-
LAYOUT OPTIMIZATION

The previous section described a process for profile-based data-
layout optimization at a fairly abstract level. This section presents a
concrete instantiation of such a process and describes how it can be
efficiently implemented in a general framework for data-layout
optimizations. The section begins with the description of the frame-
work components, continues with algorithms needed for efficient
process implementation, and ends with quantitative measurements
of the framework efficiency. The general structure of the frame-
work is presented in Figure 2.

4.1 Major Framework Components
As described in Section 3, all process phases require profiling

information; in most cases the data objects trace. In this section we
describe this trace in more detail, along with how the framework
compacts it to facilitate process efficiency.

Figure 2. Framework for data-layout optimization

4.1.1 Data Objects Trace
The data objects trace is an extension of the program data-refer-

ence trace. Each entry in the trace contains not only the address that
was referenced, but also a unique identifier (a symbolic name) of

the referenced data object1. For example, assume a program refer-
ences a global variable c, and two dynamically allocated instances,
a and b, of the same structure type foo, where foo has two fields: x
and y. Assume that the program references these objects in the fol-
lowing order <a.x, b.y, b.x, c, a.x>. Then, the data objects trace is
the following sequence of pairs: <(A1,a.x), (A2,b.y), (A3,b.x), (A4,c),

(A1,a.x)> where A1, A2, A3, and A4 are the addresses of the sym-

bolic names a.x, b.y, b.x, and c, respectively.

The data objects trace contains more information than the data-
reference trace. For example, in the reference trace one cannot
always distinguish between instances of dynamically allocated
objects (or stack variables) since two objects can share the same
address at two different points in the program execution. However,
in the data objects trace one can always distinguish between such
cases.

This unique feature of the data objects trace enables one of the
framework’s novel capabilities; it enables the framework to evalu-
ate the future effects of a candidate data layout without program re-
execution. As described in Table 3, a data layout is a map from data
objects to memory locations. Hence, to evaluate the memory per-
formance of a candidate data layout, the Evaluate function in
Table 4 uses the data layout to assign to each data object its new
memory location, then, it simulates the trace with the new addresses
to measure the new memory behavior.

Evaluating a new layout without re-execution is not the only
feature that enables an efficient search process. To increase effi-
ciency further, the framework uses additional two methods. First, to
enable fast trace traversal, it compresses the trace, so that the trace
resides entirely in memory rather than on disk. Second, to enable
fast memory simulation, the framework uses novel simulation tech-
niques that exploit the internal structure of the compressed trace.
The following sections describe the compressed trace representa-
tion and our efficient simulation techniques.

1. Unique object id’s can be generated by techniques presented in [3, 23].
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4.1.2 Compact Trace Representation
For most programs, the data objects trace is very large, com-

posed of about 100M memory accesses, or about a few GBytes of
data [6]. Since the trace is used in all process phases, it is important
to compactly represent it. Compact representation enables the
framework to place the trace in physical memory so it can be easily
analyzed (for example by the Simulate and the Evaluation func-
tions).

Our compression scheme is based on Nevill-Manning's SEQUI-
TUR algorithm, which represents the trace as a context-free gram-
mar that derives a single string—the original trace [6]. In the
SEQUITUR representation, the grammar terminals represent the
program data objects, and non-terminals represent sub-traces of the
original trace. Figure 3b illustrates how SEQUITUR compresses
the trace in Figure 3a. The compression is possible because sub-
traces 24, 25, and 2525 are repeated. These sub-traces are repre-
sented with non-terminals A, B, and C, respectively. The SEQUI-
TUR context-free grammar is internally represented as a directed
acyclic graph (DAG), as in Figure 3c. Internal nodes are non-termi-
nals and leaf nodes are the terminals. Outgoing edges are ordered
and connect a non-terminal with the symbols of its grammar pro-
duction. The grammar's start symbol is the root of this DAG. Given
the DAG representation, which is called Whole Program Streams
(WPS), the original trace can be regenerated by traversing the DAG
in depth-first order, visiting children of a node left to right, and
repeatedly visiting each shared sub-DAG. Chilimbi describes this
process in more detail [6].

4.2 Efficient Algorithms for Profile Analysis
and Optimization Evaluation

Compact trace representation is the first method the framework
uses to achieve the efficiency that facilitates the iterative data-lay-
out search. The iterative process requires efficient methods to
implement the Build Profile, Evaluate, and the Bottleneck-Identifi-
cation functions (see Table 4). This section describes three tech-
niques to obtain this vital efficiency.

4.2.1 Memoization-Based Profile Analysis
Our memoization technique exploits the SEQUITUR grammar

structure to increase the computation efficiency of profile analysis.
To illustrate the memoization technique, assume we want to calcu-
late the length of the trace represented by the grammar in Figure 3.
In a brute-force grammar traversal, each edge is traversed

paths(X)1 times (e.g., the edge is traversed 3 times). How-
ever, if we memoized the length of a rule after we traverse its sub-
dag (e.g., the memoization value of the rule (sub-dag) is 2),
then during the memoized-length computation each edge is tra-
versed only once. Although the memoization speed-up depends on
SEQUITUR representation’s compression ratio (which is trace
dependent), empirical results (Section 4.3) show that the benefits
from memoization in terms of the computation time can be an order
of magnitude.

For a more realistic example, we describe the memoization val-
ues needed for memoizing cache simulation of a fully-associative
cache with a Least Recently Used (LRU) replacement policy.

Figure 3. SEQUITUR Compression Scheme

Assume a cache with K blocks. For each grammar rule we per-
form cache simulation on the string defined by the rule, starting
simulation with an empty cache. During simulation of the rule, we
will compute the LRU state which is composed of 3 summary val-
ues:

1. The CompulsoryList. This list keeps the first K compulsory
misses—defined as the first access to a cache block—that occur
during simulation.

2. The LRUcontext which is the context of the LRU queue at the
end of the simulation. The LRU queue is a list of cache blocks
ordered by accessed time: the most recent access at the head, the
oldest access at the tail of the queue.

3. The misses variable, which gives the total number of cache
misses that occurred during the simulation.

To understand why these three values are sufficient to memoize
the total number of cache misses in the trace, let us consider a sim-
ple example. Assume that T is a data-reference trace that is divided
to two consecutive sub-traces T1, and T2. Assume that we have

already computed (using cache simulation starting with an empty
cache) the above summary values for these two sub-traces. Since
we simulated T2 starting with an empty cache, some of the cache

misses we counted would not have been occurred if we started sim-
ulation with the LRU queue state at the end of the simulation of T1.

We call these cache misses false misses. To obtain the number of
false misses, we compare T2.CompulsoryList and T1.LRUcontext.

Each reference that is found in both of these lists is a false miss.

Now let us consider how to obtain the final LRU context of T by
composing the summary values of T1 and T2. Since the cache policy

is LRU, all references in T2 are “newer” than the references in T1.

Hence, to obtain T.LRUcontext, we keep the first K entries in the
concatenation of [T2.LRUcontext] and [T1.LRUcontext \ T2.LRU-

context]2.

1. The total number of paths from the start non-terminal S to X.

X Y→

A 2→

A 24→

2. T1.LRUcontext \ T2.LRUcontext means T1.LRUcontext after removing

elements that appear in T2.LRUcontext.
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Figure 4 presents the algorithm for producing the summary
value of a trace T when T is divided to two consecutive sub-traces.
To obtain the cache simulation result for a trace that is split into
more than two sub-traces (e.g., the WPS representation), we com-
pute summary values for all rules traversing the grammar structure
in a bottom-up manner and recursively composing the memoized-
rule values.

In practice the memoization algorithm (Figure 4) has two disad-
vantages: (i) It is not suitable for simulation of large LRU caches
since such caches have a large number of blocks (e.g., 512 blocks
for a typical L1 cache), which causes the LRUcontext to become
quite long. Long lists increase the overhead of memoization (espe-
cially the set operations in lines 3, 4 and 5 in Figure 4); (ii) It is dif-
ficult to use the same algorithm when we simulate a D-way set-

associative cache1 since we need to keep recently used lists for
every cache-set.

To overcome these overhead problems, the framework simulates
large caches using a more compact trace representation, the Whole
Program Misses (WPM) described in the next section. In addition,
we describe an on-demand cache simulation technique
(Section 4.2.3) that enables yet more efficient simulation for mea-
surement of the effect of small data layout changes on the cache
miss rate.

4.2.2 Miss-Based Compaction
Although the grammar already significantly compresses the

trace (about 10-fold), the resulting grammar can be compressed fur-
ther. In [6], Chilimbi describes several ways to further compress the
SEQUITUR grammar. Here we extend this work and present a new
compression scheme, the Whole Program Misses (WPM) represen-
tation. From our framework’s perspective, the WPM representation
offers an advantage over the WPS representation and previous
work: It is a more compact trace representation and enables more
efficient cache simulation in cases where memoization is less effec-
tive. It preserves the number of cache misses in the program and
consequently, the accuracy of cache simulation. The WPM repre-
sentation retains the ability to remap all program data objects to
new addresses, so it is also useful for evaluating of the impact of an
optimization. In addition, the WPM representation is easy to build

directly from the trace or from the WPS.

The WPM contains only memory references that may cause a
memory fault. In other words, the representation omits references
that can never suffer any memory fault. For example, consider the
reference sequence ‘abba’, where a and b are two different data
objects in the original trace. Regardless of the cache (or TLB or
page table) configuration, the second reference to b never causes
any cache miss. Hence, this reference can be omitted from the trace
(and also from its SEQUITUR representation) without affecting the
total number of misses. Furthermore, for a specific cache configura-
tion, it is easy to determine that the second reference to a will
always hit in the cache (even if we re-map a and b to different
addresses). For example, since we have only one unique access
between the two consecutive references to a, the second reference
to a will never suffer a cache miss if the cache is at least 2-way set-
associative, each set has at least two entries, and each set is man-
aged using the LRU policy. To retain the original reference behav-
ior, we never omit the first reference to a data-object. This
maintains the ability of the framework to perform accurate cache
simulation even if the addresses of all symbols are changed.

To build the WPM, we traverse the trace and keep a list of the
last K data-objects seen (K depends on the particular cache configu-
ration, see below). When processing a new reference, we compare
it to the references in the list to see if it never causes a cache miss,
and if so, we ignore the reference. Although this technique depends
on our cache configuration, a single WPM can be used for a several
cache configurations. For example, a WPM built for a fully-associa-
tive LRU cache with 4 entries can be used with any fully-associa-
tive LRU-cache with more than 4 entries, or in any cache that is N-
way set associative cache where .

4.2.3 On-Demand Cache Simulation
The goals of the on-demand cache simulation are: (i) Calculate

the number of cache misses that result from ‘small’ changes to the
original memory layout (e.g, changing the locations of a few global
variables); (ii) Perform such simulation faster than whole-trace re-
simulation. Such fast simulation capability is especially useful for
optimizations such as global variables positioning [3], where the
optimization needs to determine the effect of alternative layouts on
the cache miss rate. We describe such an algorithm for a D-way set-
associative cache with K sets.

On demand set-associative cache simulation is based on the
observation that it can be accomplished by simulating each cache

// K is the number of blocks in the cache
// input: LRU state after simulation of two consecutive sub-traces T1, T2, starting with an empty cache.
// output: LRU state after simulation of T1 followed by T2.

1. Compose(LRU T1, LRU T2) {

2. LRU ANSWER;

3. ANSWER.misses=T1.misses+T2.misses-

4. ANSWER.LRUcontext=head(concat(T2.LRUcontext,[T1.LRUcontext\T2.LRUcontext]),K);

5. ANSWER.CompulsoryList=
head(concat( ,K)

6. return ANSWER

7. }

Figure 4. Memoization Algorithm for a Fully-Associative LRU Cache with K Blocks

T1.LRUcontext T2.CompulsoryList∩

T1.CompulsoryList T2.CompulsoryList\ T1.LRUcontext T1.CompulsoryList∪{ }{ },

1. A D-way set associative cache is a cache that is divided into sets, each
set containing D lines. Each memory block can reside in only one cache
set. The replacement policy inside each set is LRU.

N 4≥



set separately1, and later summing up the number of misses and the
number of references to obtain the overall cache misses. More for-
mally, let missi denote the number of cache misses to the ith cache

set, then the total number of cache misses can be computed by

. Hence re-mapping a single data object from set m

to set n only affects the number of misses and the number of refer-
ences of those sets. Let us denote the new number of misses in sets
n and m as missNewn and missNewm, then the new number of

misses is calculated by:

Since the total number of references in the new layout is the
same as in the original layout the new miss rate is easily obtained
from the last equation.

The above discussion implies that for small data layout changes
we need to simulate only two or a small number of cache sets.
Unfortunately, to simulate two sets we need to traverse the whole
trace (or the equivalent representative grammar) to reveal where
these two sets are referenced, so it would appear that the benefits
from this approach are minimal. However, given the hierarchical
structure of the SEQUITUR grammar, we can use memoization to
avoid the linear trace traversal. After the first traversal of a sub-
trace (a rule in the grammar, see Section 4.1.2) we record a single
boolean value indicating whether set m or set n are referenced in
this sub-trace. If m or n are not referenced in the sub-trace, subse-
quent traversals of this sub-dag are unnecessary.

4.3 Evaluation of Framework Efficiency
This section presents empirical results for evaluating the frame-

work’s efficiency based on the three methods discussed (i.e.,
memoization, miss-based compaction, and on-demand cache simu-
lation). To evaluate how the WPM representation and the memoiza-
tion technique improve the efficiency of TLB simulation, we

perform the following experiment. First, we simulate a TLB with
32 entries and LRU replacement policy on the two grammar types,
using a complete linear grammar traversal. Second, we apply the
simulation again, this time using the memoization algorithm
(Figure 4) to avoid the linear traversal.

In a different experiment we evaluate the effectiveness of the on-
demand simulation method using a 4-way set-associative 64Kb
cache with 512 sets (i.e., each cache-block is 32 bytes). First, we
perform a full cache simulation of the two trace representation (i.e.,
WPS and WPM). Second, for the same cache we performed cache
simulation of only two sets. Table 5 presents the results from these
two experiments (all times are average of three runs), and shows
that these techniques can improve simulation efficiency by over an
order of magnitude.

The results in Table 5 serve as a summary for this section. We
present algorithms that form the basis of the framework’s effi-
ciency. The memoization, compaction, and on-demand cache simu-
lation algorithms are used to efficiently implement the functions
required by the process (Table 4). They are especially useful for the
implementation of the Bottlenecks Identification function and Eval-
uation functions. Table 5 shows that incorporating these methods
into the framework enables it to evaluate the future optimization
effect, in most cases, within seconds. This efficiency enables the
iteration that is necessary for our data-layout optimization process.
Indeed, as presented in Section 5.5, this efficient iterative process
enables us to develop new types of iterative search-based optimiza-
tions.

5. FRAMEWORK APPLICATION TO
OPTIMIZE PROGRAM DATA LAYOUT

This section describes the process of using our data-layout opti-
mization framework to apply two optimizations: Field Reordering
and Custom Memory Allocation. First, we define the goals of the
two optimizations and then detail how the optimizations interact
with the framework at each step.

1. In such a cache, each address can be mapped to a single, unique set.
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Table 5. Framework Efficiency (all times measured on 500-Mhz 20164-Alpha machine)

Benchmark Number of
heap
references in
tracea

TLB simulation using complete
grammar traversal (sec.)

TLB simulation using
memoization (sec.)

Cache Simulation times
(sec.)

On demand
cache
simulation
(simulating
two cache
sets)

Whole
Program
Streams

Whole
Program
Misses

Whole
Program
Streams

Whole
Program
Misses

Whole
Program
Streams

Whole
Program
Misses

espresso 13,604,108 5.7 1.2 2.6 1 4.74 1.11 0.74

boxsim 36,157,141 25.8 12.3 1.4 1.4 17.69 8.9 0.51

twolf 41,354,395 22.7 12.5 1.4 1.3 17.3 10.82 0.45

perl 38,171,324 25.8 11.2 2.6 1.3 18.87 8.63 0.74

gs 82,872,046 60.7 22.3 11.0 5.0 40.64 16.1 3.44

lp_solve 28,050,510 19.2 7.1 1.2 0.5 14.39 5.6 0.42

Average speed up 1 2.62b 11.1b 18.2b 1 2.22c 18.0c

a. Since our main interest lies in data-layout optimizations for heap-intensive programs, our grammars contain only heap references. How-
ever, grammars for all program references can be built easily.

b. Speed up over TLB simulation using complete grammar traversal when using Whole Program Streams.
c. Speed-up over full cache simulation using Whole Program Streams.



5.1 Optimization Description
The goal of Field Reordering is to reduce the number of cache

misses by reordering the fields of a structure type [7, 15, 24]. The
cache miss rate is reduced by increasing cache block utilization,
which is achieved by grouping fields with high temporal affinity in
the same cache block.

Existing Field Reordering heuristics use the Pair-wise Affinity
profile (see Table 1) to identify fields with high temporal affinity
[7, 15]. Starting with the “hottest” pair, the heuristic incrementally
builds a layout by appending a field that maximizes the temporal
affinity with the fields already in the layout.

First proposed by Seidl and Zorn [23], the Custom Memory Allo-
cation (CMA) optimization aims to improve virtual memory perfor-
mance (i.e., page faults, TLB faults, memory consumption) by
increasing memory page utilization. To achieve this goal, CMA
attempts to place heap objects with high temporal affinity in the
same memory page.

CMA decomposes the optimization task into two sub-problems:
(i) finding a layout for heap objects that improves virtual memory
performance, and (ii) defining an allocation policy that enforces
this layout at runtime. An example of an allocation policy might be
to cluster all objects that were allocated in a procedure foo in a sep-
arate memory region. Typically, the allocation policy is based on
predictors [2], which are runtime attributes associated with each
allocated object (e.g., the call-stack context at object allocation
time).

Seidl and Zorn solved the two sub-problems separately [23].
First, using a heap-object lifetime behavior, they defined a “good”
layout based on four pre-defined memory regions corresponding to
four object lifetime behaviors: the highly referenced objects region,
the rarely referenced objects region, the short-lived objects region,
and the other objects region. Then, they proposed a set of run-time
predictors (i.e., the object size and allocation call stack context) that
could enforce an approximation of their desired layout.

5.1.1 Optimization Instantiation
Table 6 presents the parameters for the two optimizations that

permit them to be instantiated in our framework. For both optimiza-
tions, the Next Layout functions encapsulate the main difference
between previous work and our implementation of these optimiza-
tions. The Field Reordering Next Layout function drives an exhaus-
tive search in the data layout space to find a good layout for each
structure (as described in Section 5.5.1). The CMA Next Layout
function drives a hill climbing search to find a good allocation pol-
icy (as described in Section 5.5.2). Our search based approaches
inherently differ from the heuristic approaches used in the past.
Since heuristics are based on certain assumptions to construct a new
layout (e.g., reordering fields according to their temporal affinity
improves cache behavior), if an assumption does not hold for a par-
ticular program this may result in a layout that actually degrades
performance (as in the case of Field Reordering for perl in
Table 10). In contrast, our search will never find a layout that low-
ers performance since our framework commits to a data layout only
if it is proven better—through simulation on the whole program
trace—than the original layout.

.

Another difference from previous work arises in the way we
measure the performance benefit of CMA. Workstations today have
large physical memories (e.g., at least 512MB), that accommodate
the data set of most programs. Hence, most programs suffer only a
few compulsory page faults (i.e., faults resulting when a page is
first referenced) when running in isolation on a machine. Thus, we
measure the benefit of CMA using a program’s Average Working
Set size—the average number of virtual memory pages the program
uses [10]—rather than its page fault rate. Improving this perfor-
mance metric allows more applications to concurrently run on a
machine without paging to disk.

As discussed in Section 3, the framework requires a threshold
for each memory resource to identify bottlenecks. Selecting the
“correct” threshold is a difficult task that requires experience and
tuning. For a 16KB directed mapped cache, miss rates lower than
2% appear “normal” behavior for well tuned programs (see page
391 in [18]). For the virtual memory system, we use our own esti-
mation that a program using less than 10 pages (each page is 8Kb)
is not limited by its virtual memory performance.

5.2 Bottleneck Analysis
The process starts with Bottleneck Identification which finds the

memory resources that limit the program’s memory performance
(see Section 3). Table 7 presents the cache miss rates and the work-
ing set sizes for our six benchmarks. Using the resource thresholds
presented in Table 6, all programs except espresso suffer from L1
cache and virtual memory bottlenecks.

Table 6. Optimization Parameters

Field Reordering Custom Memory
Allocation

Optimized
resource

L1 cache:
r=(CS, 0.02). CS is a Cache
Simulator function that
returns the miss rate of r on
the trace T.

Virtual Memory
r=(WSS, 10). WSS is a
Working Set Simulator
function that returns the
average working set size
of the trace T.

Optimiza-
tion Predi-
cate

see Table 2

Build
Profile
function

Field Frequency Profile:

, maps fields

to their access frequencies.

Heap Objects Profile:

.

maps objects to runtime
attribute (see
Section 5.5.2).

Next
Layout
function

Exhaustive search for a
candidate layout. In case
this search is too costly,
perform an exhaustive
search only using fre-
quently accessed fields (see
Section 5.5.1).

Recursively partition the
objects into memory
regions (see
Section 5.5.2).

objects real→ objects attribute set→



We compute these metrics, and all further results in this section,
only for heap references for the following reasons. First, in “general
purpose” programs (and also in our benchmarks as the percentage
of heap references demonstrates), heap objects have a large influ-
ence on overall memory performance [3]. Hence, improving the
memory behavior of these objects is important for good overall
memory performance. Second, both optimizations mainly target
heap objects—structure fields or structure instances [7, 23]—by
clustering them into the same memory unit—a cache block or a
memory page—to increase utilization. Since other objects, such as
global or stack variables cannot be clustered together with heap
objects, their presence in the trace does not affect the decision of
which objects to cluster together.

As mentioned in Table 4, the process continues with Data
Objects Analysis, which builds the critical set for each bottleneck.
Since the bottleneck memory behavior is mostly influenced by the
critical objects, the process uses them, in the next step, to narrow
the search only to those optimization that target these objects. Our
L1-cache critical set covers at least 80% of both the cache misses
and data references (i.e., k=j=80% in function CO in Table 4). It
turns out that the virtual memory critical set is almost identical to
the L1-cache critical set, since both sets contain objects that cover
at least 80% of data references.

Table 8 presents critical set sizes and their coverage rates for all
benchmarks. For completeness, we show the results even for cases
where the framework does not actually perform the calculation for a
given program (espresso in Table 8); these results are in strike-
through text. Table 8 suggests an analogy between code optimiza-
tion and data-layout optimization. Similar to the commonly used
rule-of-thumb that 10% of the code is executed 90% of the time,
Table 8 suggests that 10% of data-objects cover 90% of all memory
references and (almost) 90% of cache misses. Indeed, some data-
layout optimizations such as Field Reordering and Class Splitting
do optimize only the highly referenced objects [7]. However,
whether other optimizations such as CMA can derive almost all
their benefit from placing only critical objects requires further
investigation.

5.3 Select Optimizations
To narrow the search, the process selects optimizations that pro-

duce layouts with the potential to influence bottleneck behavior. To
achieve this, the process computes the Optimization Target Objects
set for each candidate optimization. The set is computed by apply-
ing the optimization predicate (presented in Table 2) to the critical
objects, retaining only those that qualify as optimization targets.

Table 9 shows the target sets coverage rates for our two optimi-
zations. The coverage rate, which is the fraction of the trace cov-
ered by the set, measures the potential of the optimization to affect
the program memory behavior; the higher the rate, the higher the
potential (see Section 3 for a more formal definition of these con-
cepts). The process eliminates optimizations whose target sets are

empty1; these optimizations have very little potential to improve the
bottleneck performance. In our case, Field Reordering is eliminated
for espresso, lp_solve, and ghostscript.

5.4 Build Profile
The Build Profile step builds the profile information needed to

drive the optimizations. As we will shortly discuss in Section 5.5,
our Field Reordering optimization is based on an exhaustive search

Table 7. Memory Bottlenecksa

a. A bold number indicates that this resource is a bottleneck for that
benchmark.

Bench-
mark

Number and per-
centage of heap
references.

Cache miss

rateb

b. 16KB direct-mapped cache.

Working set size

(pages)c

c. Average number of pages touched every 100,000 heap references.
The size of each page is 8Kb.

espresso 13,604,108 (65%) 0.67% 8.27

boxsim 36,157,141 (36%) 7.70% 60.04

twolf 41,354,394 (44%) 9.31% 17.35

perl 38,171,324 (37%) 3.21% 25.90

gs 82,072,046 (45%) 8.22% 128.30

lp_solve 28,050,510 (58%) 13.80% 26.30

Table 8. Critical Objectsa

a. We present data for all benchmarks even if no bottlenecks were iden-
tified. Such data is marked with strike-through text.

Bench-
mark

Total # of
objects

Critical set

Sizeb

b. Percentage of all data objects.

Reference
coverage

Cache-miss
coverage

espresso 131,326 9.6% 86% 85%

boxsim 99,881 5.2% 96% 90%

twolf 16,287 10.3% 90% 96%

perl 108,552 11.7% 91% 85%

gs 368,205 14% 88% 85%

lp_solve 19,928 13.7% 84% 84%

Average 10.70% 89.1 87.5%

1. The framework can be easily changed so that it eliminates optimizations
with target sets below a preset threshold.

Table 9. Target Objects Set Coverage Rate

Coverage Rates Selected Optimizations

Field
Reorder-
ing

CMA Field
Reorder-
ing

CMA

espresso 0% 71% no yes

boxsim 27% 18% yes yes

twolf 42% 45% yes yes

perl 22% 33% yes yes

gs 0% 2.5% no yes

lp_solve 0% 11% no yes



in the space of field layouts. However, when the exhaustive search
is too time consuming, the optimization uses the Field Frequency
profile (see Table 6) to narrow the search space. First, the optimiza-
tion groups fields into pairs according to their frequency, and then
iterates over all possible field-pair permutations.

To build an allocation policy, which maps sets of heap object
attributes to memory regions, the CMA requires a profile of all the
heap objects allocated during the sample execution with each object
annotated with the values of its runtime attributes. For this purpose,
we used an annotated allocation trace. The allocation trace is the
history of all program allocations and de-allocations. Each entry in
the trace corresponds to one physical dynamically allocated data
object, and each entry is annotated with the values of seven runtime
attributes: the last three procedures on the stack, the sizes of the last
three allocated objects, and the current allocated object size. The
values of these attributes are recorded at the entry point of the allo-
cation routine (e.g., C malloc).

5.5 Iterative Profile-Feedback Search
To find a better memory layout, the process continues with an

iterative search process. Starting with the optimization that has the
highest potential (i.e., the highest coverage rate for the optimization
target set), our framework applies a separate hill climbing search
for each selected optimization; each search process starts with the
resulting layout of the optimization applied previously.

In this section, we describe the search for each of our example
optimizations. The search combines two process steps: The Apply
Optimizations step, which uses the Next Layout function to produce
a candidate data layout, and the Evaluate step, which provides the
necessary profile-feedback by measuring the performance benefit
of the candidate data layout.

5.5.1 Field Reordering Exhaustive Search
Since finding the optimal structure layout is intractable [20], our

Field Reordering Next Layout function iterates over all possible
layouts (i.e., over field permutations) for each targeted structure
type. As specified in Table 2, Field Reordering targets data struc-
tures with more than two fields that are larger than the cache block
size. Starting with the most frequently referenced structure, we iter-
ate over all field permutations within each target structure, commit-
ting the best layout produced. This exhaustive search strategy finds
“almost optimal” layouts for each structure. The layout is “almost
optimal” since it depends on the order in which we iterate over the
structures themselves.

If the number of the structure fields is too large and iteration
over all possible structure layouts becomes too time consuming—
in our current framework implementation if the number of layouts
exceed one thousand—we narrow the exhaustive search using the
“field pairs” technique. Since the cache miss rate is mostly influ-
enced by the distribution of fields among cache blocks rather than
the order of fields inside a cache block, our goal is to quickly
explore the set of fields that should reside in the same cache block
rather than their order within the block. Consequently, we first
order the fields according to their access frequency. Then, we group
the fields into pairs according to this order (such that the most fre-
quently accessed field is paired with the second most frequently
accessed, the third with the forth, and so on). Last, we iterate over
all the layouts resulting from all pair permutations. For example, a
structure with 12 fields that originally requires evaluation of 12!
layouts, now requires the evaluation of only 6! layouts. Indeed, our

results show that the difference between full iteration and the “field
pairs” approach is negligible (less that 0.1% reduction in miss rate).

5.5.2 CMA Hill Climbing Search
As mentioned, Seidl and Zorn’s CMA solves one sub-problem at

a time: First they find a “good” memory layout using a predefined
number of memory regions, and then they build, using runtime pre-
dictors (attributes), an allocation policy to enforce it at runtime.
This decomposition has a drawback: the desired layout may not be
enforceable by the set of predictors, so the actual layout enforced at
runtime may not yield the expected performance benefit. We tackle
this difficulty by combining the two problems into one classifica-
tion problem: given a set of attributes, find an allocation policy that
classifies the objects into different memory regions such that the
resulting memory layout has “good” memory behavior. Solving the
this classification problem yields an enforceable layout that should
improve performance.

We adopt a simple approach to solving the classification prob-
lem: we synthesize an allocation policy by building a decision tree
from a given set of attributes [17]. Our CMA Next Layout function
synthesizes an allocation policy by incrementally partitioning the
heap objects into different regions. Starting with all objects in a sin-
gle memory region, the function works as follows. Given a memory
layout with n regions, it produces all possible layouts with n+1
regions. To obtain a layout with n+1 regions the function divides a
region into two sub-regions by using a single attribute to distinguish
between the objects in the original region. After evaluating all pos-
sible layouts with n+1 regions, the function selects the layout with
the highest performance benefit. If there is no additional benefit
from this partitioning, the function returns null.

5.5.3 Evaluation Step
The evaluation step is similar for both optimizations. The frame-

work “pretends” that the optimization was applied by substituting
the address of each data object in the data object trace with its new
address from the candidate data layout. After the addresses are re-
mapped, the framework uses the Simulate function (see Table 4) to
evaluate the new trace.

5.6 Optimizations Results
This section presents the results of our two example optimiza-

tions. We also discuss the cost and effectiveness of the iterative
approach.

5.6.1 Field Reordering Results
We have compared our iterative approach with other existing

methods for Fields Reordering. First, we ordered fields according to
their frequency profile, starting with the fields with the highest fre-
quencies [24]. Second, we ordered the fields according to their pair-
wise affinity profile, as discussed in Section 5.1 [7]. Last, we iter-
ated over the fields layout space, exhaustively exploring many pos-
sible layouts, as described in Section 5.5.1.

Table 10 presents the results for the three version of the Field
Reordering optimization. The frequency-based approach and the
affinity approach reduced the cache miss rate by 19.3% and 16%
respectively, while the exhaustive search reduced the miss rate by
25.6%. The exhaustive search is consistently better than both the
frequency and affinity profiles.



When using the “field pair” heuristic (see Section 5.5.1), the
search was completed in less than an hour. Although this may seem
costly, both the Frequency and Affinity approaches require a time
consuming effort, (i.e., instrumenting the program, building the
profile, etc.). Furthermore, Field Reordering is usually applied
rarely, towards the end of the application development cycle.

5.6.2 CMA Results
We have measured the working set size of our benchmarks both

with the “train” input, which was used to learn the allocation policy,
and a “test” input, which was used to measure how well the alloca-
tion policy behaves on an unfamiliar input.

Table 11 presents the results for these two inputs. On average,
our CMA reduces the working set size on “test” inputs by 6.1%. We
compared the iterative approach to a “static approach” in which the
allocation policy uses a predefined number of memory regions. We
built a Custom Memory Allocation that uses two regions: the “hot”
region for frequently accessed heap objects, and the “cold” region
for rarely accessed objects. Using this allocator, only perl and box-
sim showed a reduction in the working set size; and we obtained
these results only after we manually tuned the definition of hot
objects for each program. We believe that because the iterative pro-
cess adapts the number of regions to the program under consider-
ation, it can build a better CMA than the static approach.

The allocation policy learning method requires more layouts to
be evaluated than the Field Reordering case (i.e., thousands vs. hun-
dreds), and the learning is completed in a few hours. As in the case
of Field Reordering, we do not consider this too costly. Previous
work on CMA requires almost the same effort [23], and CMA is
usually applied once at the end of the development process.

Table 11 presents another interesting observation. Although the
virtual memory was not identified as a bottleneck for espresso, it
shows considerable reduction in the working set size. Note that,
eliminating a memory resource as a bottleneck does not imply that
its memory behavior can not be improved; it just questions the
necessity of doing so. In fact, Table 9 shows that the CMA target set

of espresso covers 71% of the trace, indicating the high potential of
the optimization to reduce the working set size.

6. CONCLUSIONS
We present a generalized process for profile-driven data-layout

optimization. Unlike prior work on data-layout optimization, the
process is based on a profile-guided iterative search in the data lay-
out space. Profile-feedback is used both to narrow the data layout
search space and to select among many candidate layouts. The pro-
cess unifies all existing data-layout optimizations and permits com-
posing multiple layout optimizations. In addition, it enables
selection, application, and tuning of the more profitable optimiza-
tions for the program under consideration. We implement the pro-
cess in an efficient framework. The framework efficiency stems
from new techniques for fast memory simulation: memoization-
based profile analysis, miss-based profile compaction, and on-
demand cache simulation. These techniques, together with the abil-
ity to evaluate a data layout without program re-execution, drive the
iterative search. Using the framework, we instantiate two example
optimizations: Field Reordering and Custom Memory Allocation.
Our Field Reordering technique, based on an exhaustive search,
outperforms existing non-iterative techniques and reduces the cache
miss rate by 25%. Our Custom Memory Allocation is based on a
hill climbing search that classifies heap objects according to their
runtime attributes rather than a pre-defined partition of program
data objects. Without our new data-layout optimization framework
and its efficient implementation, development of this allocator
would not have been possible.
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Table 10. Field Reordering Resultsa

a. The results were obtained using the “train” input — the input that
is used to build the grammar and drive the search. Results for the
test input are not available yet because some of the layouts require
considerable code modifications to unfold nested structures into
the “containing” structure. However, previous work [3, 7] indi-
cates that there is high correlation between the train and test
inputs.

Original
miss rate

Reduction in cache miss rate

Iteration Affinity
Profile

Frequency
Profile

boxsim 7.70% 18% 10% 7%

twolf 9.31% 42% 39% 38%

perl 3.21% 17% -1% 13%

Average
reduction in
miss rate

25.6% 16% 19.3%

lp_solve,gs,
espresso

Less than 0.01% reduction in cache miss
rate

Table 11. Custom memory allocation - results

Benchmar
ks

Input Original
Working
Set Sizea

a. Average number of pages touched every 100,000 references.

New
Working
Set size

Improv
ement

Number
of

Regions
Usedb

b. The number of memory regions used is also the number of sets in the
partition that the decision tree found.

espresso
mlp4 8.27 7.97 3.65%

2
largest 19.81 16.51 16.6%

boxsim
N 2 T 250 60.04 57.22 4.7%

8
N4 T 500 71.16 61.52 13.5%

twolf

spec 2000
test

17.35 14.14 18.5%

5
spec2000
ref

114.7 112.8 1.6%

perl
recurse 25.9 24.4 6.0%

5
scrabble 35.4 30.5 7.9%

gs
intro 128.3 120.7 5.9%

10
report 121.4 115.8 4.6%

lp_solve
etamacro 26.3 23.8 9.4%

6
fit1p 52.6 50.8 3.2%

Average reduction in working set size (measured
only on test input without espresso).

6.1%
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