Online Verification of Offline Escape Analysis

Michael Franzt™* Vivek Haldart Chandra Krintz' Christian Stork™

TDept. of Information and Computer Science 'Dept. of Computer Science
Univ. of California, Irvine Univ. of California, Santa Barbara

Abstract

Dynamic compilation often comes at the price of reduced code quality since there
is not enough time available to perform expensive optimizations. One solution to this
problem has been the addition of annotations by the code producer that enable an
annotation-aware dynamic code generator on the code consumer’s side to shortcut
certain analysis and optimization steps. However, code annotation often creates a new
problem in that most annotations are unsafe—if they become corrupted during transit,
the safety of the target system is jeopardized.

In this paper, we consider annotations that transport escape-analysis information
for Java programs. This information can be highly beneficial, not only for enabling
stack allocation instead of costly heap allocation, but also for reducing synchronization
overhead. The traditional solution of annotating allocation sites, however, is unsafe
and cannot be verified without repeating the complete analysis.

Our solution consists of annotating variables rather than allocation sites, parti-
tioning them into two classes. This annotation can be verified in linear time. It is

a conservative annotation and less precise than annotating allocation sites, i.e., some

*Authors in alphabetical order.

optimization opportunities get lost in the process. However, our benchmarks suggest
that the optimization potential that is actually lost in practice is close to zero.

An interesting consequence of our annotation method is that it can be integrated
with an inherently safe program encoding that makes it impossible to represent illegal
programs in the first place. Adding our safe annotations actually increases encoding
density since it reduces the number of valid choices that need to be represented, so

that the addition of the annotations comes at almost no space cost.

1 Introduction

Many common compilation techniques are time consuming, due to the complexity of pro-
gram analysis and optimization algorithms. This becomes a problem when code is generated
on-the-fly while a user is waiting for execution to commence. Because the available time is
limited, just-in-time compilation systems often don’t make use of the best possible optimiza-
tion algorithms.

Annotation-guided optimization [19, 3, 18, 22, 14, 24| offers a solution to this problem:
analysis is performed off-line and communicated to the compilation system as program an-
notations. Annotations reduce just-in-time compilation overhead and enable optimizations
that are too time consuming to perform on-line. An example of such an analysis is escape
analysis [27, 8, 4], a technique that identifies objects that can be allocated on the stack
as opposed to on the heap. Escape analysis can also reveal when objects are accessed by a
single thread. This information can then be used to eliminate unnecessary synchronization

overhead.

Escape analysis is both time- and space-consuming since it often requires interprocedural
analysis, fixed-point convergence, and graph representations for each method in the program.
However, existing escape analysis implementations indicate that its use offers substantial
performance gains [27, 8, 4]. Ideally, we wish to annotate programs with escape analysis
information that can then be transported with the program and exploited by an annotation-
aware just-in-time compilation system at the target site.

However, there are two primary drawbacks to the use of such annotations: they intro-
duce transfer overhead (extra bytes now need to be transferred with the program) and their
use is unsafe in the case of escape analysis. That is, if someone accidentally or maliciously
changed the escape-analysis result that is recorded for an allocation site from “heap allo-
cated” to“stack allocated”, then the memory safety of the whole target system would be in
jeopardy.

Hence, one either needs to trust such annotations or needs to verify them, similar to the
way that the Java bytecode itself is verified. Verification, however, potentially introduces an
overhead that is as complex as performing the analysis itself. In the case of traditional escape
analysis annotations of allocation sites, one would essentially have to repeat the complete
analysis, negating the original objective of reducing the workload on the target computer.

In this paper, we describe a new approach to escape analysis annotation that makes it
possible to verify the results in linear time and without the need to maintain any additional
data structures beyond the annotations proper. Rather than annotating allocation sites, we
partition the variables in the program into those that are guaranteed not to escape, and

those that might escape. As a result of this change in focus, some optimization potential

will be lost, but our benchmarks show that in practice this is negligible.

On the other hand, the benefits are considerable, because with the small loss in pre-
cision, we can now verify this information efficiently. This makes it possible to integrate
escape-analysis information into a mobile-code format that can provably represent only valid
programs and annotations and hence provide safety by construction. We know of no other
technique for communicating escape-analysis results safely. All published annotation-based
solutions [3, 18, 22] are unsafe, i.e., they are never verified at the target machine.

In the following, we briefly describe escape analysis and then introduce our variable
partitioning scheme and its impact on the precision of the analysis (Section 2). The issue of
precision is quantified in Section 3. The next two sections then describe the basic concepts
behind grammar-based encoding (Section 4), and how this leads to safety by construction
(Section 5). In Section 6, we articulate how we integrate our novel escape annotations
with our encoding technique to enable a very dense encoding of both program code and
annotations. We also explain how this encoding guarantees that the annotations are valid
when decoded at the target site. Empirical results on this part of our work are presented in
Section 7. Finally, we present related work (Section 8) and future work (Section 9) and then

conclude the paper.

2 Escape Analysis

Escape analysis identifies captured objects, i.e. objects with lifetimes that do not exceed
that of the method in which they are allocated. Captured object identification enables two

optimizations: Firstly, captured objects can be allocated on the stack avoiding the overhead

of garbage collection. Secondly, all synchronization of captured objects can be eliminated
since only a single thread can ever access a captured object. Both optimizations have been
shown to significantly improve program performance [27, 8, 4].

Commonly, escape analysis is realized by constructing a graph (called points-to graph),
which models object lifetimes and assignments at runtime. Based on this model, the analysis
indicates which objects are captured by the method in which they are allocated. Whaley and
Rinard’s escape analysis described in [27], follows this approach. We initially implemented
their algorithm for an investigation of safe encoding of potentially dangerous annotations.
In doing so, we discovered that most captured objects can be identified by a much simpler
approach.

Often it is unnecessary to model objects as separate entities. It suffices to consider the
variable that the newly created object is assigned to. If this variable is not returned from the
method nor passed into some other method (where it might escape) and it is not assigned to
an escaping variable, then the object is captured. This simple intuition translates into the

following invariants.

10 Captured variables are not returned as results.
I1 Captured variables are only assigned to other captured variables.

I2 Captured variables are only passed into methods and constructors as arguments of cap-
tured parameters. When calling an instance method this applies also to the instance’s
this reference.

With these invariants in mind, we annotate variable declarations as either captured or
escaping. We write this annotation as a type modifier, captured. Our notion of capturedness
only refers to variable references and not to objects. A variable can be captured whereas

5

the object it refers to escapes—the type modifier merely restricts the operations that are
possible on the variable. Hence, a variable that is marked as captured may at times refer
to objects that escape.

More specifically, we annotate the following language constructs as captured or escaping

(the default).

Local Variables We annotate all locally declared variables of reference types, i.e. references
to objects or arrays. For variables of primitive types (like int or double) this annotation
doesn’t make sense. For the purpose of our analysis we assume that primitive variables
escape.

Method Parameters We annotate each declared parameter, including the self-reference
this of instance methods. Note that we don’t annotate the method’s return parameter.

Constructor Parameters We annotate each declared parameter, including the implicit
return parameter this.

Note that we don’t annotate class or instance variables, array components, or exception-
handler parameters. We assume that they escape.!

Our invariants I0 through I2 guarantee that no object escapes via a captured variable
because captured variables can only be assigned to other captured variables and none of the
permitted actions let the referenced object of a captured variable escape directly.

In order to guarantee I2, we need to show that, for each method call site where captured
variables are passed, the corresponding formal parameters of all method implementations
that are accessible due to dynamic method lookup are captured. This is trivial in case of
static or final methods or if the creation of the dispatching object is within the scope of our
analysis so that we know its exact runtime type. In general, this requires a global type anal-

ysis, which considers all the relevant implements and extends relationships. Intuitively, each

! This is a simple and crude approximation of a real escape analysis.

overriding method needs to have the same or more captured parameters as the overridden
method.

Note that none of the rules rely on the fact that captured variables actually refer to
captured objects in order to ensure the capturedness of other variables. It is perfectly legal
to pass escaped references into captured parameters or to assign an escaping variable to a

captured one. In short:

esc; /* allowed */
cap; /* not allowed */

cap
esc

Capturedness of actual objects is identified at allocation sites. If the constructor’s self-
reference is captured and the newly created object reference is assigned to a captured variable
or passed as a captured parameter then this object is captured.?

Newly constructed arrays that are assigned to captured variables or passed as captured
parameters are captured. As mentioned before, the array’s components are not captured.
Therefore multidimensional arrays are only “captured in their first dimension”.

Online verification of our annotations proceeds as follows. Firstly, the code consumer
receives the type hierarchy including method and constructor signatures. It verifies that
overriding methods capture at least the same parameters as the methods they override.?
Secondly, the receiver traverses the classes verifying the invariants 10, I1, and I2. Any
assumptions about annotations of classes outside the set of transmitted classes is matched

against the installed libraries.

2For the purpose of this analysis, if a constructor body does not begin with an explicit constructor
invocation we consider the implicit constructor call as part of the constructor body. This ensures that no
escaping this goes unnoticed in one of the implicitly invoked constructors.

3This step is actually overly conservative since we might be able to show that the relevant method calls
cannot be overridden and therefore overriding methods do not matter.

Annotations for a set of classes can be constructed as follows: Mark every target vari-
able/parameter of a constructor assignment as captured. This is the minimal set of profitable
annotations. Minimal in the sense that no additional annotation would allow to find more
captured objects. From now on the analysis only undoes captured annotations. First mark
every returned variable as escaping. Next perform the validation of the classes until it either
finishes successfully or until it breaks either invariant I1 or I2. In the latter case, if I1 was
broken, mark the offending variable as escaping and redo the last step; if 12 was broken,
undo the parameter annotation and ensure that the overriding methods are still compatible,

then redo the validation step.

3 Quantifying Annotation Precision

To evaluate the efficacy of our encoding of escape annotations, we performed the analysis
for a number of benchmarks. The benchmarks we selected are a subset of the applications
developed by the JavaGrande Forum [11]. The following is a list of these benchmarks and a

brief description of their fuctionality:

Euler: Computational fluid dynamics

MolDyn: Molecular dynamics simulation

Montecarlo: Monte Carlo simulation

Raytracer: 3-dimensional ray tracer

Search: Alpha-beta pruned search

Table 1 shows the number of static allocation sites that allocate captured objects (over the

total number of allocation sites). Objects allocated at these sites can be stack-allocated, and

synchronization performed on these objects can be removed. The type declarations of each
stack-allocatable object as well as occurrences in method signatures of method parameters
that do not escape inside are annotated with captured. On average, 34% of the static
allocation sites are such sites. These results are in line with those presented in prior work [27].

Surprisingly, our variable-partitioning based escape analysis was able to cover all captured

allocation sites identified by the much more complex analysis.

Program Captured / Total | Percent Captured
Euler 16 / 48 33%
MolDyn 5/9 55%
Montecarlo 34 /105 32%
Raytracer 17 / 57 29%
Search 13 /29 44%
Avg 17 / 50 34%

Table 1: Escape Analysis Results for Whaley and Rinard’s escape analysis; our method can
cover every single allocation site.

4 Grammar-Based Compression

Grammar-based compressors encode sentences that are known to fully conform to the given
grammar (i.e., there are no syntax errors). It is fairly easy to construct such an encoder
simply by numbering the available choices whenever there is an alternative in a production
of the grammar, and transmitting the language sentence as a sequence of choice designators.
Since the decoder has the same grammar specification available to it, it is able to reconstruct
the sentence based only on these choices; in particular, sequences with no choices require no

extra communication at all.

For example, consider the following excerpt from a very simple grammar given in extended

Backus-Naur form:

statement ::=
| ¢‘LET’’ identifier ‘‘:=’’ expression ‘¢;’’
| ¢‘WHILE’’ expression ‘‘D0’’ { statement } ‘‘END’’
| “‘IF’’ expression ‘‘THEN’’ { statement } ‘‘END’’
| ¢ ‘REPEAT’’ { statement } ‘‘UNTIL’’ expression ‘¢;’’

To encode a statement in this grammar, we need to communicate which of the four
choices (assignment, while-statement, if-statement, repeat-statement) we are dealing with.
However, once we have selected a choice, we do not need to send additional information until

we arrive at another choice. Take the program fragment

IF ex1 THEN
REPEAT S1 UNTIL ex2;
LET i := j;

END

Assume that the encoding of ex! yields the choice sequence choices-ex1, that the encoding
of S1 yields the choice sequence choices-S1, etc., the choices in statement are numbered (1,
2, 3, 4), and that the END and UNTIL choices are numbered zero, then the above sentence

can be encoded as:

3 choices-exl
4 choices-S1 O choices-ex2
1 choices-i choices-j
0

Hence, in particular, we do not need to explicitly encode the facts that there is a THEN
in the if-statement, nor that there is an “:=" in the assignment. Note how the above encoding

corresponds to the depth-first traversal of the program’s abstract syntaxt tree.

10

5 Safety By Construction

Intuitively, one senses that compression and safety must be complementary to each other—if
we design an encoding that can represent only a subset of all possible programs (the “legal”
ones, according to some statically decidable analysis) then there are fewer alternatives to
encode and hence the encoding should be denser. This merely takes the idea of grammar-
based encoding one step further: A grammar-based compressor encodes only those character
sequences that are valid sentences of its grammar; now we are further limiting ourselves to
those sentences of the grammar that conform to some additional static semantic constraints.

As an example of such semantics, we could design an encoding that implicitly enforces
some of the typing rules of a programming language. Take the following Java program

fragment:

class Basic {...};
class Extended extends Basic {...};

static void sample() {
Basic b1, b2; Extended x1 ,x2;

Now consider which assignments can be written down inside method sample: some of
these assignments are illegal under Java’s type system, while certain others, although legal,
are pointless because they assign a variable to itself. In this particular example, only half of
all possible assignments are actually simultaneously legal and useful.

In a type-unaware encoding, each assignment between two variables represents one choice
out of 16 (four possible left sides and four possible right sides), which might be encoded by
using two bits each for each variable, for a total of 4 bits. Conversely, an encoding that

11

Assignments
useful illegal | pointless
bl := b2 | x1 := bl | bl := bl
bl :=x1 | x1 := b2 | b2 := b2
bl :=x2 | x2:=bl | x1 :=x1

b2 :=bl | x2:=Db2 | x2 :=x2
b2 :=x1
b2 := x2
x1 = x2
x2 :=x1

incorporates static semantics might enumerate all eight useful assignments and simply use
the index of the appropriate assignment in this enumeration to communicate the choice—this
would require only 3 bits. Hence, incorporating the type semantics into the encoding results
in a greater encoding density since there are only half as many assignments to choose from*.

More importantly, the type-aware encoding is inherently immune to malicious modifi-
cations that would undermine type safety, since programs that violate the assignment com-
patibility rule cannot be represented in the first place. Hence, unlike programs expressed in
bytecode, which need to be checked in a separate verification pass upon arrival, a type-aware
decoder performs this verification implicitly by maintaining the assignment compatibility via
the construction of alternatives to choose from.

In practice, of course, the set of valid choices in an assignment might be infinite, since
it may contain expressions other than simple variables. For example, when working with
dynamically linked data structures we might need to encode the statement

1.next = 1.next.next

4Effectively, adding the type rules “squeezes some entropy out of the encoding domain”. Hence, the
resulting coding density should always be greater or equal, even if one uses a more intelligent encoding for
communicating the actual choice than simply using log(#choices) bits.

12

However, as we explained in Section 4 above, our type-aware encoding works in conjunction
with a grammar-based encoding that already possesses the capability of encoding these
choices.

A further requirement is that the decompressor needs to be able to reconstruct the valid
choices using the information available to it; i.e., based only on some static rules and the
information already transmitted. In the example above, this means that the variables used

in the program, as well as their types, need to be transmitted before the actual statements.

6 Encoding Escape Analysis Safely—By Construction

In the previous section, we explained how one can design an encoding that provides safety
by construction, by restricting the domain of “what can be encoded” to apply only to “legal”
programs in the first place. The interesting point is that the same idea can extended to the
specific variant of escape analysis annotations that we developed in Section 2.

In particular, we have designed an inherently safe encoding that integrates the transport
of the results of escape-analysis. By this we mean that if a program can be encoded in our
format at all, then its escape-analysis annotations are guaranteed to be correct. Stated the
other way around, it is impossible to even hand-craft a program in our representation that
contains references marked as “non-escaping” that do escape.

The main idea is surprisingly similar to the encoding described in Section 5: we extend
the underlying type system by the additional dimension representing “capturedness”. The
task of the encoding then becomes to disallow all assignments between variables that could

possibly allow a captured reference to escape. For example, consider the following Java

13

program fragment:

static void sample2 () {
captured Object capl, cap2; Object ol, 02;

The annotation “captured” in the declaration of variables capl and cap2 indicates that an
analysis in the compiler front-end has determined that these variables will never be involved
in an assignment that would let the referenced objects escape. As a consequence, assignments
from captured to other variables must not be representable in the encoding. The following
table summarizes the assignments that would be allowed or prohibited in method sample2

under the capturedness type rules:

Assignments
legal illegal pointless
capl := cap2 | ol := capl | capl := capl
capl := o0l | ol := cap2 | cap2 := cap2
capl ;=02 | 02 := capl ol :=ol
cap2 := capl | 02 := cap2 02 := 02

|

cap2 := ol
cap2 := 02
ol:= 02
02 := ol

Using the method described in Section 5, the capturedness property can therefore be
transported in a fully safe manner. If an adversary were to change the annotation of an
escaping variable to erroneously claim that it was captured, then our encoding would not be
able to encode any assignment that would let the variable escape. Conversely, if one were
to change the annotation of a captured variable to escaping, then that would simply mean

that a potential for optimization had been lost, without making the program any less safe®.

5Note that the additional “capturedness” type dimension needs to be considered during linking. Hence,

14

Hence, our method overcomes a major drawback of existing approaches to using annota-
tions with mobile code, namely that corrupted annotation information could undermine the
safety of the system. In previous approaches [3, 18, 22|, annotations were generally unsafe
because there would have been no way of verifying their correctness at the code consumer’s
site other than by repeating the analysis they were targeting to avoid. Using our method, any
object that at its creation time is marked “captured” is guaranteed to be stack-allocatable.
No verification is required at the destination to ensure that the annotations we encode are

safe to use.

7 Implementation and Measurements

Interestingly enough, because the escape-analysis annotations limit legal choices in the
inherently-safe encoding itself, fewer bits are required to transport this information “on
the inside” of the encoding in this manner than would any other method of transporting it
“on the outside”.

In the following, we present our encoding relative to four different compression techniques:
Jar, Pack, Gzip, and Bzip. The Java archive (jar) format is the most common tool for
collecting (archiving) and compressing Java application files [17]. The format is based on
the standardized PKWare zip format [21] and enables archiving of various components of
Java applications (class, image, and sound files).

Pack [23] is a jar file compression tool from the University of Maryland. This utility

if an adversary modifies a class in transit, changing the annotation of an imported reference in a method
signature from captured to escaping, then that would be detected during link-time signature matching. In
our current solution, if one changes the implementation of a library method in such a manner that it effects
the capturedness of any parameter in its signature, then all clients of the library should be recompiled.

15

defines a compact representation of class file information and substantially reduces redun-
dancy by exploiting the Java class file representation, and by sharing information between
class files. The compression ratios achieved by this tool are far greater than any other
compression utility for Java applications.

Gzip and bzip are both standard compression utilities, commonly used on UNIX operating
system platforms. Gzip does not consider domain specific information and uses a simple,
byte-oriented algorithm to compress files. As such, gzip has very fast decompression times
but does not achieve the compression ratios of pack. Bzip is a freely available, high-quality
data compression utility [6] that makes use of the Burrows-Wheeler method for compression.

Table 2 shows the size in bytes of bytecode programs encoded using jar, pack, gzip, and
bzip compression (columns 2-5, respectively). The last two columns show the sizes (in bytes)
of the programs when we use our encoding, which we call Compressed Abstract Syntax Trees
(CAST), on the Java source files. The encoding results for our format are given for the cases
where escape analysis annotations are included (ACAST) and omitted (CAST). No escape

analysis annotations are included in the results presented for the non-CAST encodings.

Table 3 quantifies the amount of annotation information that is actually transported in
our encoding. All numbers are given in bytes. The first column shows the size of the actual
Java class file, the second shows the amount of annotation information one would need to
add in order to transport the results of escape analysis using the annotation format of the
annotation-aware Open Runtime Platform (ORP) [9] described in [19]. The third column
gives the size of our CAST format without annotation information encoded, and the last
column gives the delta between our ACAST format (including annotations) and CAST.

The size overhead for incorporating annotations into ASTs is smaller than that for doing

16

Source ByteCode Compressed AST
Program Text | Gzip | Bzip2 Jar | Pack | Gzip | Bzip | ACAST CAST
euler 31689 | 5251 | 5015 | 10250 | 4108 | 9978 | 10460 4171 4111
moldyn 10732 | 2920 | 2910 | 6533 | 2346 | 6305 | 6804 2290 2260
montecarlo | 37210 | 6465 | 5992 | 20496 | 5340 | 19191 | 19718 5241 5065
raytracer 15690 | 4141 | 3922 | 12038 | 3079 | 11008 | 11493 2881 2773
search 11011 | 3247 | 3234 | 7146 | 2833 | 6797 | 7296 2754 2647
section3 216707 | 27786 | 23997 | 62243 | 15561 | 57436 | 58008 15944 15504

Table 2: CAST compared to compressed source and bytecode formats. For each benchmark,
we show the size in bytes. The source columns show the sizes of the Java source files without
compression, and when compressed with gzip or bzip2. The bytecode columns show the sizes
when compressed using jar, pack, gzip, and bzip compression. The final two columns show the
sizes of the programs when we use our encoding, both including annotations communicating
the results of escape analysis (ACAST) as well as without (CAST). The section3 benchmark
is the combination of all of the preceding benchmarks.

the same for Java class files in all but one case. Evidently, beyond the advantage of being safe,
our method is also quite space effective. This is important: annotation transport size should
be small so as not to negate the benefit in execution time with transfer delay—especially
in a wireless networking environment. Past annotation frameworks have reported file size

increases ranging from 7% to 97% [22, 18, 16].

8 Related Work

The initial research on syntax-directed compression was conducted in the 1980s primarily to
reduce the storage requirements for source text files. Cameron [7] introduced a combination
of arithmetic coding with an encoding scheme similar to ours. And more recently Tarhio [26]
suggests the application of PPM variants to the compression of parse trees. For a more
detailed bibliography on compressing ASTs see [25]. None of these techniques attempt to

represent the program’s semantic content in a way that is well-suited for further processing

17

Java With Annotations Compressed AST
Program bytecode Annotation | ACAST | ACAST-CAST
euler 10250 85 4171 60
moldyn 6533 51 2290 30
montecarlo 20496 193 5241 176
raytracer 12038 125 2881 108
search 7146 71 2754 80
sectiond 62243 525 15944 454

Table 3: Amount of annotation information implicit in ACAST. The bytecode column shows
the size of Java class file and the annotation column shows the size of additional annotation
information had it been encoded as annotations in the Java classfile format. The third
column shows the sizes of the programs when we use our encoding without annotation, and
the final column the delta that is added (in bytes) when annotations are incorporated into
our encoding.

such as dynamic code generation or interpretation. Franz [12, 13] was the first to use a tree
encoding for transporting (executable) mobile code. He uses a dictionary-based encoding to
compress the abstract syntax tree of Oberon programs.

Necula [20] uses a technique very similar to tree compression in order to compress PCC
proofs. Rather than transmitting the entire proof, only those points in the proof are trans-
mitted where a choice must be made among alternative paths.

Java, currently the most prominent mobile code platform, has attracted much attention
with respect to compression. Horspool and Corless [15] compress Java class files to roughly
36% of their original size using a compression scheme specifically tailored towards Java class
files. In a follow-up paper Bradley, Horspool, and Vitek [5] further improve the compression
ratio of their scheme and extend its applicability to Java archives (jar-files). An even better
compression scheme for jar-files was proposed by Pugh [23]. His format is typically 1/2 to

1/5 of the size of the corresponding compressed jar-file (1/4 to 1/10 the size of the original

18

class files). Pugh offers his tool for free evaluation.

All of the above Java compression schemes start out with the bytecode of Java class files.
Eck, Changsong, and Matzner [10] employ a compression scheme similar to Cameron’s and
apply it to Java source programs. They report compression down to around 15% of the

original source file, although more detailed information is needed to assess their approach.

9 Future Work

We are currently working on encoding the full Java type semantics in using the technique
described in Section 5, which would give us a safe mechanism for transporting Java programs
that would reduce the need for separate code verification passes. (Of course, link-time
matching of method signatures across class boundaries is still necessary.) Unfortunately,
this turned out to be far trickier than we expected, and we weren’t able to finish debugging
by the paper submission deadline.

In order to extend the reach of our escape analysis, we are exploring ways to integrate
mulidimensional arrays, instance fields, and array components into our notion of captured-
ness while at the same time maintaining easy verifiability. Currently, if a variable is used in
different roles — once holding an escaping reference and, at a different location in the code,
holding a captured reference — then we have to mark it as escaping. Maybe it warrants the
6

effort to look for such cases and split the variable in two with two different annotations.

We are currently also investigating other annotation-based optimizations, including in-

6 A more comprehensive approach would be to change the representation of Java programs to use single
static assignment (SSA) form, i.e. to replace variables by values.

19

lining, optimization filtering [19], and register allocation. For the latter, complex algorithms
are currently required to effectively allocate registers for Java programs. The use of such
techniques in a dynamic compilation setting is infeasible due to the compilation delay im-
posed. However, register allocation, like escape analysis and other compilation techniques
become viable if performed off-line and communicated via annotation. Since our encoding
methodology eliminates major drawbacks previously associated with mobile code annota-
tion (transfer size and safety) we hope to enable highly optimized as well as highly-compact

encodings and safe execution of mobile programs.

10 Conclusion

Previously, escape analysis in mobile code contexts had to be performed at the code consumer
side, or be transported as unsafe annotations. We have solved the problem of how such anno-
tations can be transported in a safe manner. Our method is independent of any intermediate
representation used, and could for example be used for annotating JVM bytecode.
However, in conjunction with grammar-based compression, our approach can be taken
one step further, arriving at an intermediate representation in which all escape-analysis anno-
tations are inherently correct by construction. Interestingly enough, because the annotations
are used to limit choices in the encoding itself, adding the annotations “on the inside” in

this manner requires fewer bits than adding them “on the outside”.

20

References

[1] Proceedings of the ACM SIGPLAN’00 Conference on Programming Language Design
and Implementation (PLDI), Vancouver, British Columbia, 18-21 June 2000. SIGPLAN
Notices 35(5), May 2000.

[2] Proceedings of the ACM SIGPLAN ’01 Conference on Programming Language Design
and Implementation, Snowbird, Utah, June 20-22, 2001. SIGPLAN Notices, 36(5), May
2001.

[3] A. Azevedo, A. Nicolau, and J. Hummel. Java Annotation-Aware Just-In-Time Com-
pilation System. In ACM Java Grande Conference, pages 142-151, June 1999.

[4] J. Bogda and U. Hoélzle. Removing unnecessary synchronization in Java. In ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA), 1999.

[6] Q. Bradley, R. N. Horspool, and J. Vitek. JAZZ: An efficient compressed format for
Java archive files. In Proceedings of CASCON’98, pages 294-302, Toronto, Ontario,
Nov. 1998.

[6] Bzip2 compression utility.

[7] R. D. Cameron. Source encoding using syntactic information source models. [EEE
Transactions on Information Theory, 34(4):843-850, July 1988.

[8] J. Choi, M. Gupta, M. Serrano, V. Shreedhar, and S. Midkiff. Escape analysis for Java.
In ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), Nov. 1999.

[9] M. Cierniak, G.-Y. Lueh, and J. N. Stichnoth. Practicing JUDO: Java under dynamic
optimizations. In Proceedings of the ACM SIGPLAN’00 Conference on Programming
Language Design and Implementation (PLDI) [1], pages 13-26. SIGPLAN Notices
35(5), May 2000.

[10] P. Eck, X. Changsong, and R. Matzner. A new compression scheme for syntactically
structured messages (programs) and its applications to Java and the Internet. In Data
Compression Conference, page 542, 1998.

[11] J. G. Forum. The Java Grande Forum benchmark suite.

[12] M. Franz. Code-Generation On-the-Fly: A Key to Portable Software. PhD thesis, ETH
Zurich, Mar. 1994.

[13] M. Franz and T. Kistler. Slim Binaries. Communications of the ACM, 40(12):87-94,
December 1997.

21

[14] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. Dyc: An expressive
annotation—directed dynamic compiler for c. Technical Report Tech Report UW-CSE-
97-03-03, University of Washington, 2000.

[15] R. N. Horspool and J. Corless. Tailored compression of Java class files. Software—Prac-
tice and Experience, 28(12):1253-1268, Oct. 1998.

[16] J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau. Annotating the Java Bytecodes in

Support of Optimization. In Journal Concurrency:Practice and Ezperience, Vol. 9(11),
Nov. 1997.

[17] S. M. Inc. The Java ARchive utility. http://java.sun.com/products/jdk/1.1/
docs/tooldocs/solaris/jar.html.

[18] J. Jones and S. Kamin. Annotating Java class files with virtual registers for performance.
Concurrency: Practice and Experience, 12(6):389-406, May 2000.

[19] C. Krintz and B. Calder. Using annotations to reduce dynamic optimization time. In
Proceedings of the ACM SIGPLAN ’01 Conference on Programming Language Design
and Implementation [2], pages 156-167. SIGPLAN Notices, 36(5), May 2001.

[20] G. C. Necula. A scalable architecture for proof-carrying code. In Fifth International

Symposium on Functional and Logic Programming, Waseda University, Tokyo, Japan,
7-9 Mar. 2001.

[21] PKWare Inc. http://www.pkware.com/. PKZip format discription:
ftp://ftp.pkware.com/appnote.zip.

[22] P. Pominville, F. Qian, R. Vallee-Rai, L. Hendren, and C. Verbrugge. A Framework for
Optimizing Java Using Attributes. In Sable Technical Report No. 2000-2, 2000.

(23] W. Pugh. Compressing Java class files. In Proceedings of the ACM SIGPLAN’99
Conference on Programming Language Design and Implementation (PLDI), pages 247—
258, Atlanta, Georgia, 1-4 May 1999. SIGPLAN Notices 34(5), May 1999.

[24] F.Reig. Annotations for portable intermediate languages. In N. Benton and A. Kennedy,
editors, FElectronic Notes in Theoretical Computer Science, volume 59. Elsevier Science
Publishers, 2001.

[25] C. H. Stork, V. Haldar, and M. Franz. Generic adaptive syntax-directed compression
for mobile code. Technical Report 00-42, Department of Information and Computer
Science, University of California, Irvine, Nov. 2000. revised April 2001.

[26] J. Tarhio. On compression of parse trees. In Proc. of Eigth Symposium on String
Processing and Information Retrieval (SPIRE 2001). IEEE, 2001.

[27] J. Whaley and M. Rinard. Compositional pointer and escape analysis for java programs.
In ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), Nov. 1999.

22

