Automatic Program Specialization for Java

ULRIK P. SCHULTZ
University of Aarhus
JULIA L. LAWALL
University of Copenhagen
CHARLES CONSEL
INRIA/LaBRI

The object-oriented style of programming facilitates program adaptation and enhances program
genericness, but at the expense of efficiency. We demonstrate experimentally that state-of-the-art
Java compilers fail to compensate for the use of object-oriented abstractions in the implementation
of generic programs, and that program specialization can eliminate a significant portion of these
overheads. We present an automatic program specializer for Java, illustrate its use through detailed
case studies, and demonstrate experimentally that it can significantly reduce program execution
time. Although automatic program specialization could be seen as being subsumed by existing
optimizing compiler technology, we show that specialization and compiler optimization are in fact
complementary.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimiza-
tion; 1.2.2 [Artificial Intelligence]: Automatic Programming—Program transformation

General Terms: Design, Experimentation

Additional Key Words and Phrases: Automatic program specialization, object-oriented languages,
partial evaluation, Java, optimization

1. INTRODUCTION

Object-oriented languages encourage a style of programming that facilitates
program adaptation. Encapsulation enhances code resilience to program mod-
ifications and increases the possibilities for direct code reuse. Method invoca-
tion allows program components to communicate without relying on a specific

Based on work done in the Compose Group at IRISA/INRIA, Rennes France; supported in part by
Bull. Julia Lawall was also supported in part by NSF Grant EIA-9806718.

Authors’ addresses: U. P. Schultz, DAIMI, University of Aarhus, Aabogade 34, DK-8200 Aarhus
N, Denmark; email: ups@daimi.au.dk; J. L. Lawall, DIKU, Universitetsparken 1, DK-2100
Copenhagen @, Denmark; email: julia@diku@dk; C. Consel, ENSEIRB, 1 avenue du docteur Albert
Schweitzer, Domaine Universitaire-BP 99, 33402 Talence Cedex, France; email: consel@labri.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-
lish, to post on servers, to redistribute to lists, or to use any component of this work in other
works requires prior specific permission and/or a fee. Permissions may be requested from Publi-
cations Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or
permissions@acm.org.

© 2003 ACM 0164-0925/03/0700-0452 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003, Pages 452-499.

Automatic Program Specialization for Java . 453

implementation. The use of these object-oriented abstractions in well-tested
object-oriented designs (such as design patterns [Gamma et al. 1994]) leads
naturally to the development of generic program components.

This program genericness is achieved, however, at the expense of efficiency.
Encapsulation isolates individual program parts and increases the cost of data
access. Method invocation is implemented using virtual dispatching; a virtual
dispatch obscures program control flow and blocks traditional hardware and
software optimizations. Compiler optimizations can eliminate some of these
overheads [Agesen et al. 1993; Chambers and Ungar 1989; Dean et al. 1995;
Detlefs and Agesen 1999; Grove et al. 1995; Holzle and Ungar 1994; Ishizaki
et al. 2000; Plevyak and Chien 1994; Sundaresan et al. 2000]. Nevertheless,
invariants that can trigger optimizations may not be available to a compiler,
or may not satisfy the compiler’s optimization strategy, which must balance
the cost of optimizations against the expected benefit across a wide variety of
programs.

In many cases, the overheads due to genericness can be eliminated using
program specialization. Program specialization is a software engineering tech-
nique that adapts a program to a given execution context. Information about
this execution context can be provided by the programmer or derived from
invariants present in the code. In contrast to compiler optimizations, pro-
gram specialization is explicitly initiated by the programmer, and thus can
adopt a very aggressive strategy for propagating such information. Specifically,
within the object-oriented paradigm, program specialization simplifies the in-
teractions that take place between program objects. The effect is to eliminate
virtual calls, bypass encapsulation in a safe manner, and simplify invariant
computations.

This paper presents an automatic program specializer for Java, named
JSpec. JSpec combines interprocedural static analyses with aggressive global
optimizations, which allows it to automatically eliminate overheads due to the
use of object-oriented abstractions in generic programs. We describe the com-
plete specialization process implemented by JSpec, including a novel use of
aspect-oriented programming to represent specialized programs, and charac-
terize the strengths and limitations of both automatic program specialization
and the current implementation of JSpec. We then demonstrate experimen-
tally that program specialization gives significant speedups when combined
with state-of-the-art Java compiler technology.

Earlier work has (1) addressed the declaration of what to specialize, in
the form of specialization classes [Volanschi et al. 1997], (2) described an
early prototype of JSpec that generated specialized programs in C rather
than Java [Schultz et al. 1999], (3) addressed the issue of selecting where to
specialize, in the form of specialization patterns [Schultz et al. 2000], and (4)
formalized specialization of programs in a small Java-like language [Schultz
2001]. As a next step in developing automatic program specialization for
object-oriented languages, we present a complete Java-to-Java specialization
process and our implementation, JSpec. Furthermore, we demonstrate ex-
perimentally the advantages of program specialization on a wide selection of
generic programs. Lastly, we argue that automatic program specialization is

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

454 . U. P. Schultz et al.
abstract class Binary { class Power {
abstract int eval(int x,int y); int exp; Binary op;
abstract int neutral();
} Power (int exp,Binary op) {
this.exp = exp;
class Add extends Binary { this.op = op;
int eval(int x,int y) { }
return x+y;
} int raise(int base) {
int neutral() { return 0; } int result = op.neutral();
} int e = exp;
while(e-- > 0)
class Mult extends Binary { result = op.eval(result,base);
int eval(int x,int y) { return result;
return x*y; ¥
} }
int neutral() { return 1; }
}

Fig. 1. Binary operators and a power function.

Power L Client Power Mult

A
raise(x) J_

Concrete class
Abstract class

1
raise (base) neutral ()

| loop(...d . | || llllro .
int ex]
P —= reference

<>—> aggregation
—{>— inheritance

Binary

eval (x,y) (x) method invocation

neutral ()

v
’i‘ ___________ < - - - - method return

Mult Add ~TTTT R

eval(x,y) | | eval(x,y) W &
neutral () | | neutral ()

Fig. 2. Generic interaction with Power object.

not subsumed by existing optimizing compiler technology, but instead that the
two are complementary.

Example. Toillustrate how program specialization works, we use a small ex-
ample written using the Strategy design pattern [Gamma et al. 1994]. Figure 1
shows a collection of four classes: Binary, Add, Mult, and Power. The abstract
class Binary is the superclass of the two concrete binary operators Add and
Mult (the strategies). The Power class can be used to apply a Binary operator a
number of times to a base value, as illustrated by the following expression:

(new Power(y, new Mult())).raise(x)

which computes x¥. The object diagram of this program is shown on the left
side of Figure 2.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 455

Client

P Obj Power

raise_cube (x)

Power

raise (base)
| loop(...) .
int exp=3

Mult

eval (x,y)
neutral ()

Fig. 3. Specialized interaction with Power object.

Consider the computation of x3, illustrated on the middle of Figure 2. In-
voking the method raise(x) of the Power object gives rise to a series of object
interactions between the Power object and the Mult object that results in the
return value x*xx*x. To optimize for this case, we can manually enable the Power
object to produce the result x*x*x directly. Specifically, we can add a method

int raise_cube(int base) {
return base * base * base;

3

to the class Power, and clients can use this new method to compute the result
more efficiently. The object state on which this specialization is based and the
resulting interaction are shown in Figure 3. Automatic program specialization
can derive such a specialized method automatically, using constant propaga-
tion, loop unrolling, and virtual dispatch elimination.

The unspecialized program is also amenable to compiler optimizations. Be-
cause the Power object in the code above is only applied to a single kind of
binary operator, standard compiler optimizations typically suffice to eliminate
the virtual dispatch. When multiple operators are used with a given Power ob-
ject, however, compilers generally do not remove the virtual dispatch to the
eval method. Furthermore, an optimizing compiler does not usually propagate
a constant value from an object field in order to perform loop unrolling, as done
above. Indeed, as shown in the experiments reported in Section 6, specializing
for the case where the Power object is used to compute a more complex expression
(e.g., 5x3) produces a speedup of 4-11 times when compiled using state-of-the-
art Java compilers. Specialization of other, larger, programs performs similar
transformations and obtains comparable speedups (see Sections 5 and 6).

Overview. First, Section 2 gives an overview of automatic program special-
ization. Then, Section 3 describes how object-oriented programs can be special-
ized automatically, and Section 4 outlines the JSpec implementation. Section 5
presents two case studies showing how generic programs can be specialized us-
ing automatic program specialization. Section 6 describes a set of benchmark
programs and presents the result of applying JSpec to these programs. Last,
Section 7 discusses related work, and Section 8 presents our conclusion and
discusses future work.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

456

U. P. Schultz et al.

Terminology. The terminology used in the areas of object-oriented program-
ming and program specialization overlap. In the area of object-oriented pro-
gramming, class fields and class methods are sometimes referred to as static
fields and static methods. The word “static” is however used in program spe-
cialization to indicate information known during the specialization phase. We
thus always use the terms “class field” and “class method” rather than “static
field” and “static method.” In addition, a subclass is often said to “specialize”
its superclass. To avoid confusion, we refer to the relation between a subclass
and its superclass in terms of inheritance (the subclass inherits from the su-
perclass) or in terms of the subclass/superclass relation (one class is a subclass
of some other class, or one class is the superclass of some other class).

2. BACKGROUND: AUTOMATIC PROGRAM SPECIALIZATION

Program specialization is a program transformation technique that optimizes
a program fragment with respect to information about a context in which it is
used, by generating an implementation dedicated to this usage context. One
approach to automatic program specialization is partial evaluation, which per-
forms aggressive inter-procedural constant propagation of values of all data
types, and performs constant folding and control-flow simplifications based on
this information [Jones et al. 1993]. Partial evaluation thus adapts a program to
known (static) information about its execution context, as supplied by the user
(the programmer). Only the program parts controlled by unknown (dynamic)
data are reconstructed. Partial evaluation has been extensively investigated
for functional languages [Bondorf 1990; Consel 1993], logic languages [Lloyd
and Shepherdson 1991], and imperative languages [Andersen 1994; Baier et al.
1994; Consel et al. 1996].

In this paper, we only consider off-line partial evaluation [Jones et al. 1993].
This form of partial evaluation begins with an analysis known as binding-time
analysis, which identifies the static and dynamic computations in a program
based on information about which inputs can be considered static in the ex-
ecution context. Based on the results of the binding-time analysis, the par-
tial evaluator can specialize the program with respect to any concrete context
that provides values for the static inputs. Specialization amounts to executing
the static program parts on the known data, and reconstructing the dynamic
constructs.

In contrast with most optimizing compilers, partial evaluation does not im-
pose any bounds on the amount of computation that can be used to optimize a
program. Specialization is not guaranteed to terminate, which frees the partial
evaluator from making conservative choices to guarantee its termination. For
example, a method invocation with all its arguments known is normally com-
pletely reduced during specialization. Nevertheless, partial evaluation relies on
the user to direct the specialization process towards the program parts that con-
tain worthwhile specialization opportunities, in order to avoid overspecializa-
tion (code explosion) and underspecialization (no benefit from specialization).

Because of the need for user control and because partial evaluation relies on
complex analyses, in practice it often cannot be applied to complete programs.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 457

Instead, one typically extracts a specific slice from a program, specializes it,
and then re-inserts it into the original program [Consel et al. 1996]. An ab-
stract description of the parts outside of the program slice must be given to
ensure correct treatment by the binding-time analysis. For an object-oriented
program, the program parts to specialize and a description of the specialization
context can be declared using the specialization class framework [Volanschi
et al. 1997]. Furthermore, for a program written using design patterns, spe-
cialization patterns [Schultz et al. 2000] provide useful knowledge about how
the program can be specialized. Section 5 illustrates the use of specialization
classes and specialization patterns; specialization patterns for the visitor and
iterator design patterns are included in the appendix.

3. THE SPECIALIZATION OF OBJECT-ORIENTED PROGRAMS

We now describe our approach to automatic specialization of object-oriented
programs. First, we explain how specialization transforms a program, then we
address the issue of how to express a specialized program. Afterwards, we char-
acterize those features of a program specializer that are essential for treating
realistic programs, compare specialization to optimization, and last, compare
specialization to inheritance.

3.1 The Specialization Process

The execution of an object-oriented program can be seen as a sequence of in-
teractions between the objects that constitute the program. Specifying partic-
ular parts of the program context can fix certain parts of this interaction. Pro-
gram specialization simplifies the object interaction by evaluating the static
interactions, leaving behind only the dynamic interactions. We refer to pro-
gram specialization for object-oriented languages as object-oriented-program
specialization.

Because objects interact by invoking methods, object-oriented program spe-
cialization is based on the specialization of method invocations. Such special-
ization optimizes the possible callees based on any static arguments, including
the this argument. Conceptually, specialized methods are introduced into the
receiver object under a new name. This transformation enables the object to
respond to invocations of a new virtual method that can be used from other
(specialized) methods.

Specializing a method optimizes the use of encapsulated values, virtual dis-
patches, and imperative computations:

Encapsulation. Data that are encapsulated inside an object can control com-
putations elsewhere in the program. When such data are considered static
by the specializer, they can be propagated to wherever they are used, and
computations that depend on these data can be reduced. Specialization also
eliminates the indirect memory references needed to access the data.

Virtual dispatching. The callee selection that takes place implicitly in a vir-
tual dispatch can be seen as a decision over the type of the this argument.
When the this argument is static, the decision of which method to invoke

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

458

U. P. Schultz et al.

can be made during specialization. The callee method can then be special-
ized based on information about its calling context. Eliminating the virtual
dispatch removes an indirect jump, which in turn simplifies the control flow
of the program, and improves traditional compiler optimizations, as well as
the branch prediction and pipelining performed by the processor. When the
this argument is dynamic, each potential receiver method can be specialized
speculatively on the assumption that it was chosen: each method is special-
ized to any static arguments but to a dynamic this argument. In this case,
specialization generates a virtual dispatch to the specialized methods.

Imperative computations. Methods are specialized using transformations
common to program specializers for imperative languages, such as constant
propagation (of all data types), constant folding, conditional simplification,
and loop unrolling. Specializing imperative computations is essential; in the
Java specialization experiments reported in Section 6, most specialization
scenarios require treating a mix of virtual dispatches, encapsulation, and
imperative constructs.

In addition to the basic transformations outlined above, a program special-
izer can make further changes to the program, based on partially static data.
For example, a partially static object (i.e., an object with a mix of static and
dynamic fields) can in some cases be merged into its usage context. Such an
object can be reduced to a set of local variables, similar to arity raising [Jones
et al. 1993] and structure splitting [Andersen 1994], or reduced to fields of some
enclosing object, similar to object inlining [Dolby and Chien 1998, 2000]. When
the objects stored in an array have the same type, the array can be split so that
each field is stored in a separate array [Budimli¢ and Kennedy 2001]. While
transformations for optimizing the representation of partially static data can be
essential for specializing some kinds of programs [Budimlié¢ and Kennedy 1999,
2001; Veldhuizen 2000], they are not required for the experiments reported in
this paper, and we consider the extension of our specialization process to include
such transformations as future work.

3.2 The Specialized Program

To complete the specialization process, the specialized methods must be rein-
tegrated into the existing class hierarchy. This reintegration must make each
specialized method available at the call sites for which it was generated, and
allow the specialized method to access any needed encapsulated data, without
breaking encapsulation invariants.

One approach is to add each specialized method to its original class (i.e.,
the class defining its unspecialized counterpart) and to give the specialized
method the original method’s access modifiers. In this case, the receiver ob-
ject also keeps its original class, which is sufficient to ensure that the receiver
object contains the specialized method. This approach, however, has the un-
desirable effect of making the specialized method accessible to the rest of the
program. Because specialization can eliminate safety checks, the use of a spe-
cialized method from unspecialized code can break encapsulation invariants.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 459

Furthermore, syntactically combining unspecialized and specialized methods
in a single class definition obfuscates the appearance of the source program and
complicates maintenance.

Specialized methods can be separated from existing methods by collecting
the specialized methods derived from a single class in a new subclass, or by
defining all of the specialized methods as methods of a single new class. The
former approach implies that the receiver object of the specialized method call
must be instantiated as an object of the new subclass; this transformation is
not possible if the instantiation site is not part of the specialized program.
The latter approach implies that the receiver object must be passed to the
specialized method, essentially as an explicit this argument rather than an
implicit one. This approach is also unusable when speculative specialization of
avirtual dispatch is residualized as a virtual call, because virtual calls cannot be
expressed using methods contained in a single class. Most importantly, neither
of these approaches permits access to the private fields and methods of the
original defining class.

A solution that separates the specialized method definitions syntactically
from the source program but inserts these definitions into the right scope at
compilation time is to express the specialized program as an aspect-oriented
program. Aspect-oriented programming is an approach that allows logical units
that cut across the program structure to be separated from other parts of
the program and encapsulated into a separate module, known as an aspect
[Kiczales et al. 1997]. We encapsulate the methods generated by a given spe-
cialization of an object-oriented program into an aspect, and weave the methods
into the program during compilation. Access modifiers can be used to ensure
that specialized methods can only be called from specialized methods encap-
sulated in the same aspect, and hence always are called from a safe context.
Furthermore, the specialized code is cleanly separated from the generic code,
and can removed from the program simply by deselecting the aspect.

3.3 The Power Example Revisited

Having outlined the specialization process, let us revisit the Power example of
the introduction. In this example, the Power object is static, as are all of its
fields. We can declare this specialization context using a specialization class. A
specialization class provides specialization information about a given class, by
indicating what fields are static and what methods to specialize. The special-
ization class Cube shown in Figure 4a declares that the fields of Power are static
(the this argument is considered static by default), provides specific values for
these fields, and indicates that the method raise should be specialized. Based on
this information, specialization evaluates the invocation of the neutral method,
unrolls the loop inside the method raise, and reduces the virtual dispatches
to the method eval. The result of specialization is the aspect Cube, shown in
Figure 4b (we use Aspectd syntax [Kiczales et al. 2001; XEROX 2000]). The
aspect Cube declares the specialized method raise_cube using an introduction
block; an introduction block specifies the name of a class and a list of meth-
ods to introduce into the class. Direct calls in raise_cube have been eliminated

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

460

U. P. Schultz et al.

specclass Cube specializes Power {
op: Mult; exp==3;
@specialize: int raise(int base);

}
(a) Exponent and operator declared static.

aspect Cube {

introduction Power {
int raise_cube(int base) {
return basexbasex*base;
}

}

}

(b) Result of specializing for Cube.

Fig. 4. Specialization of Power for exponent and operator static.

using method inlining, which is performed during the postprocessing phase of
specialization.

We can also specialize the class Power for a context in which all fields are
dynamic and the parameter base is static, as declared by the specialization class
Power0fTwo shown in Figure 5a. In this case, the eval methods are specialized
speculatively with respect to the base value; the result after method inlining is
the aspect Power0fTwo shown in Figure 5b. (Figure 5b shows a simplified result;
in Section 4 we describe the actual result of specialization in the presence of
abstract methods.)

3.4 Essential Program Specializer Features

In an offline partial evaluator, the set of constructs determined to be static by
the analysis phase directly determines the benefit achieved by partial evalu-
ation. In general, a more precise analysis can detect more static constructs.
Nevertheless, extra precision also increases the complexity of the analysis, to
the point that partial evaluation of some programs becomes infeasible. Thus,
we must consider the ways in which values are typically used in object-oriented
programs, to determine what degree of analysis precision is actually useful.
One aspect of the precision of an analysis is its granularity: what kinds of
values are given individual binding times. Object-oriented programming is cen-
tered around the manipulation of objects, which are structured collections of
values and methods. Because it is not possible for a static analysis to distin-
guish between all run-time objects, some approximation is needed. An option
is to assign the same binding time to all instances of a given class, but because
objects that are instances of the same class can play different roles in a pro-
gram, this very coarse-grained strategy does not provide enough precision. We
have found that an adequate solution is to assign a single description to the
set of objects created at each constructor call site, a feature that we name class
polyvariance. An object itself typically contains multiple data values, and these
values may play different roles within the program. Thus, rather than giving
an object a single binding time, we use a compound one that contains a separate

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 461

specclass PowerOfTwo specializes Power {
@specialize: int raise(int base),
where base==2;

}
(a) Base value declared static.

aspect PowerOfTwo {
introduction Binary {
abstract int eval_2(int x);

}

introduction Add {
int eval_2(int x) { return x+2; }

}

introduction Mult {
int eval_2(int x) { return x*2; }

}

introduction Power {
int raise_pow2() {
int result = op.neutral(), e = exp;
while(e-- > 0) result = op.eval_2(result);
return result;
}
}
}

(b) Result of specializing for Power0fTwo.

Fig. 5. Specialization of Power for base value static.

binding-time description of each of the fields. The granularity of the analysis
also affects the analysis of methods and constructors. To maintain encapsula-
tion invariants, object fields are often accessed using method invocations. Class
polyvariance implies that a given method parameter can be bound to objects
with different binding times. Thus, to realize the benefits of class polyvariance,
each method invocation should also be analyzed individually, a feature that we
name method polyvariance.

As an example of the need for this level of granularity, consider the definition
of a vector and a dot-product operation shown in Figure 6a. The class Vec defines
a vector of floating-point numbers. The class VecOp defines the method dotP
that calculates the dot product of two objects of class Vec. Both classes are
used in some context where the dotP method is passed two vectors, x and y.
The vector x is initialized using static information, whereas the vector y is
initialized using dynamic information. Only when these two instances of the
same class are assigned separate binding times, can the static information in x
can be exploited during specialization to yield the specialized program shown
in Figure 6b. Moreover, since the data stored in the vectors is accessed using the
get method, this method must be analyzed independently at each invocation.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

462 . U. P. Schultz et al.
class Vec { class VecOp {
float[] v; static float dotP(Vec x,Vec y) {
Vec(float[] w) { v=w; } float res = 0.0;
float get(int i) { return v[il; } for(int i=0; i<x.size(); i++)
void set(int i,float d) { v[il=d; } res += x.get(i)*y.get(i);
int size() { return v.length; } return res;
} }
}

float[] fs = { 1.0, 0.0, 3.0 };
Vec x = new Vec(fs), y = ...; // x static, y dynamic
float r = VecOp.dotP(x,y);

(a) Vectors, a dot product operation, and a usage context.

aspect Vec_1_0_3 {

introduction VecOp {

static float dotP_1_0_3(Vec y) { return y.get_0() + 3.0*y.get_2(0); }
}

introduction Vec {

float get_0() { return v[0]; }

float get_2() { return v[2]; }

¥

Vecy = ...;
float r = VecOp.dotP_1_0_3(y);

(b) Specialization with x static and y dynamic.

Vec x = ..., y= ... // x static, y dynamic.
System.out.println(x+" and "+y); // dynamic usage context
float r = VecOp.dotP(x,y); // static usage context

(c) Use of static vector in dynamic and static context.
Vecx = ..., y=...; // x still initialized
System.out.println(x+" and "+y); // x used
float r = VecOp.dotP_1_0_3(y); // specialized; only y passed

(d) Specialization with x static-and-dynamic.

Fig. 6. Specializing the vector dot-product operation.

Binding-time analyses for languages with imperative features typically use
an alias analysis to determine the locations that are read or written at each
program point [Andersen 1994]. Since objects are heap-allocated, and thus need
to be tracked by an alias analysis, the granularity of the alias analysis limits
the granularity of the binding-time analysis. To produce the specialized pro-
gram shown in Figure 6b, the alias analysis must consider each instance of the
class Vec to be an individual heap location and must analyze the get method
independently for each of these locations.

Another aspect of the precision of an analysis is the number of descriptions
assigned to each analyzed value. A single object can be used in both static and
dynamic contexts within a program. Such a situation occurs, for example, when

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 463

a static object is used both as an argument to an external method and within
static expressions in the program slice to be specialized. This situation also
commonly occurs when there are references to both static and dynamic fields
of a static object. In both cases, the existence of a dynamic reference to the
object implies that the object must be residualized in the specialized program,
and thus considered dynamic. But giving the object the binding time dynamic
makes it impossible to optimize the static uses. The solution is to give the ob-
ject a compound binding time, static and dynamic, if the uses of the object
warrant it, a feature known as use sensitivity [Hornof and Noyé 2000]. Individ-
ual references to the object are annotated static or dynamic according to their
usage. Specialization creates one representation of the object for use during
simplification of static constructs and another to residualize in the specialized
program.

The benefit of giving an object both a static and dynamic binding time is
illustrated by the slightly modified version of the dot product example shown
in Figure 6¢. Here, the object x is printed before it is passed to the dot-product
operation. We do not want printing to take place during specialization, hence
the argument x must still be available in the residual program and thus have a
dynamic binding time. By considering the object x to be static-and-dynamic, the
binding-time analysis can assign each use of x a static or dynamic binding time
as needed, and the specialized program shown in Figure 6d can be produced.
Here, the dot-product operation is specialized as before, even though x is needed
in the residual program.

3.5 Specialization vs. Compilation

Automatic program specialization and compilation rely on similar optimiza-
tions. However, compilers perform optimizations not considered in automatic
program specialization, and automatic program specialization performs opti-
mizations that are not performed by a typical compiler. Program specializa-
tion and compiler optimizations are thus complementary, and can even be
synergistic.

Automatic program specialization uses type information to eliminate vir-
tual dispatches; this technique is also often employed by aggressive compil-
ers for object-oriented languages. Customization [Chambers and Ungar 1989],
selective argument specialization (a generalization of customization) [Dean et al.
19951, and concrete type inference [Agesen et al. 1993; Dean et al. 1995a; Plevyak
and Chien 1994; Wang and Smith 2001] all propagate type information about
the this argument and the formal parameters of a method throughout the pro-
gram, and can use the information to introduce new specialized methods into
existing classes. The approaches differ, however, in how type information is
obtained when it is not actually explicit in the program. Customization and
selective argument specialization can be used in conjunction with profiling to
determine frequently occurring method argument types. Concrete type infer-
ence determines such information from static program analysis. In contrast,
automatic program specialization relies on programmer-supplied invariants
and aggressive static propagation of the information. Compiler techniques are

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

464

U. P. Schultz et al.

Table I. Comparison of Techniques

® = yes Selective Concrete Automatic
O =no Argument type program
@ = partially specialization | inference | specialization
Optimizes megamorphic call points =) O)
Generally applicable [] (] (@]
Specializes imperative parts o O []
User control @) (@))
Bounded resources [[] (@)
Applicable at run time ® of o
Whole-program assumption (@] [] =)
Verifiable result @) O [

f: For example, when using a technique such as CHA.
*: Not supported currently by JSpec—see Section 8.

useful when the programmer supplied information is insufficient, but automatic
program specialization can exploit invariants that depend on an external usage
context and are thus difficult to identify by automatic means.

Automatic program specialization also differs from compiler techniques in
the degree to which it propagates inferred information. Program specializa-
tion propagates values of any type, including partially known objects, through-
out the program and reduces any computation that is based solely on known
information; no resource bound restricts the amount of simplification to be
performed. Thus, a program specializer can achieve more pervasive optimiza-
tion based on knowledge of a small set of configuration parameters than can
a typical compiler. This degree of pervasiveness is justified by the fact that
the programmer has determined that optimization with respect to this infor-
mation is likely to be beneficial, and is tempered by the fact that the only
optimization performed by automatic program specialization is the simplifica-
tion of constructs that depend only on constants that can be determined dur-
ing specialization. Compilers apply optimizations in a more restricted manner,
with the goal of producing a program that performs well in a normal usage
context, but apply a wider range of optimizations, such as copy propagation
and loop invariant removal that do not necessarily depend on statically deter-
mined constants. Program specialization is thus dependent on a compiler for
traditional intra-procedural optimizations such as copy propagation, common
subexpression elimination, loop invariant removal, and so on that are essential
for good performance. Furthermore, optimizations that are not expressible at
the language level, such as register allocation and array bounds check elimina-
tion, cannot be performed by a program specializer, and must be handled by a
compiler.

The characteristics of selective argument specialization, concrete type infer-
ence, and automatic program specialization are summarized in Table I. The
first part of the table analyzes the overall applicability of each technique: what
can be optimized, where the optimization technique is applicable, and whether
the technique optimizes imperative as well as object-oriented constructs. As we
have described, program specialization is less generally applicable than com-
piler optimization techniques, but is also more aggressive. The second part of

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 465

the table assesses the degree of user interaction required. Partial evaluation
is particularly distinguished from the other techniques in that the user can
both control the information on which optimization is based, and inspect the
result of the optimization (in the form of binding-time annotations and special-
ized source code) to verify whether this information was exploited in a useful
manner.

To further improve object-oriented-program specialization, it is likely that
ideas from selective argument specialization and concrete type inference can
be integrated into the specialization process. For example, automatic program
specialization can perform concrete type inference during specialization [Braux
and Noyé 2000], which could be used to reduce virtual dispatches with a dy-
namic this. We leave such improvements as future work.

3.6 Specialization vs. Inheritance

As mentioned in the introduction, program specialization is different from the
object-oriented notion of inheritance. Where inheritance (normally) adds new
state and new behavior, specialization of a program makes state constant and
simplifies behavior. Furthermore, inheritance refines one or more classes into
a single new class, which is ill-suited to expressing the specialization of an
entire program. Last, inheritance describes compile-time relations between the
classes of the program, whereas program specialization is based on execution
of parts of the program.

4. THE JSPEC SPECIALIZER

JSpec is an automatic program specializer for Java that has been implemented
according to the principles presented in the previous section. We now give an
overview of JSpec, describe how JSpec specializes features specific to Java, and
last characterize the limitations of JSpec.

4.1 Overview of JSpec

JSpec is an off-line automatic program specializer for the Java language that
integrates a wide range of state-of-the-art analyses and specialization features,
and offers several input and output language options:

—JSpec treats the entire Java language, excluding exception handlers, reflec-
tion and finally regions. It takes as input Java source code, Java bytecode,
and native functions.

—The JSpec binding-time analysis is context-sensitive, class-polyvariant
(each object creation site is assigned a binding time individually), use-
sensitive [Hornof et al. 1997], and flow-sensitive.

—Specialized programs can be generated either as Java source code encapsu-
lated in an Aspectd aspect [Kiczales et al. 2001; XEROX 2000], as C source
code for execution in the Harissa environment [Muller and Schultz 1999],
or as binary code generated at run time for direct execution in the Harissa
environment.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

466

U. P. Schultz et al.

(Generic_])logram in Java)

Java-to-C compiler

Partial evaluator for C

Dedicated back-translator

(Specia]'@d program in Aspect] J

Compiler/weaver

(Specialized program in Java bytecodej

Fig. 7. JSpec specialization process.

—JSpec can be applied to a user-selected program slice, which allows time-
consuming analyses and aggressive transformations to be directed towards
critical parts of the program.

In this paper we only consider Java-to-Java specialization; we refer to earlier
work [Schultz et al. 1999] and the first author’s PhD dissertation [Schultz 2000]
for more information on using C as the input or output language.

JSpec has been designed with an emphasis on re-use of existing technology.
In particular, JSpec uses C as an intermediate language and uses a specializer
for C programs, named Tempo [Consel et al. 1996], as its partial evaluation
engine. This approach allows us to take advantage of the advanced features
found in a mature partial evaluator.

Figure 7 illustrates the complete specialization process. To specialize a Java
program, the Java-to-C compiler Harissa [Muller and Schultz 1999] is first used
to translate the program into C. The program is then specialized using Tempo,
and a dedicated back-translator named Assirah maps the C representation of
the specialized Java program back into Java. Finally, Aspectd is used to weave
the specialized Java program with the original program to produce a complete,
specialized program.

C is used as an intermediate language as follows. Java objects are repre-
sented as C structures with a compatible layout between a class and its super-
class. Thus, an object field access becomes a C structure field access. A virtual
dispatch becomes an indirect C function call through a virtual table accessible
as a special object field. After specialization, auxiliary information that de-
scribes how Java fields and methods are named in the C program is used to
map the residual C code back into Java code.

4.2 Specialization of Object-Oriented Features

Specialization consists of propagating static values across method and construc-
tor calls, performing simplifications according to these values, and construct-
ing a specialized program consisting of the constructs that depend on dynamic

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 467

information. The processes of propagating static values and performing sim-
plifications can be carried out for Java programs in a manner similar to that
used for specializing imperative programs. Constructing the specialized pro-
gram is complicated by the fact that Java has a richer set of “procedures” than
imperative languages, including methods declared in concrete classes, methods
declared in abstract classes or interfaces, and constructors. In treating these
cases, some care must be taken to respect the constraints of the Java language.

We first consider the treatment of an instance method declared in a concrete
class. In the intermediate C representation used by JSpec, a Java instance
method is represented as a procedure having the receiver object as its first ar-
gument. The strategy for translating a specialized variant of such a method
back to Java is determined both by the specialization of the method defini-
tion and by the specialization of the receiver object. There are several cases,
depending on how much is known about the receiver object at specialization
time.

If the receiver object is known at specialization time and the specialized
method is independent of any dynamic data contained in the receiver object,
then specialization eliminates the receiver object argument. Because the spe-
cialized method does not refer to any instance variables of the class in which
its original definition appears, its definition is added, using an aspect, to this
class as a class method, and the specialized call is implemented as a call to this
class method.

If the receiver object is known at specialization time, but contains some
dynamic data that is referenced by the specialized method definition, then the
specialized method definition is added, using an aspect, to the class of the source
method as an instance method. This approach provides the specialized method
definition with access to the data in each runtime instance of the receiver ob-
ject. For efficiency, we would also like to inform the compiler that the specialized
definition of the method is the only one that will exist at run time, thus allowing
the compiler to implement the call as a direct call rather than as a virtual call.
For this purpose, the specialized method is declared as a final method, which
cannot be overridden, and a downward cast is used at the call site to coerce
the receiver object to the class declaring the specialized method. This strategy
replaces the cost of a virtual call by the cost of a type cast. A similar strategy
has been taken in the context of object-oriented compilers that perform opti-
mizations based on type feedback or Class Hierarchy Analysis (CHA) [Aigner
and Holzle 1996; Dean et al. 1995a; Hélzle and Ungar 1994]. Because the Java-
to-C translator, Harissa, used by JSpec contains a CHA, this strategy is also
applied whenever Harissa determines that only one method definition can be
referenced by a virtual call, even when the receiver object is dynamic.

If the receiver object is dynamic and there is more than one possible callee,
then JSpec creates a specialized variant of each possible method definition.
Each specialized method is added, using an aspect, to the class of its corre-
sponding original definition, and the virtual call is reconstructed in the special-
ized program. In this case, if the source program declares the original method
as an abstract method of an abstract class or in an interface, the specialized
method must be additionally declared in the same manner. If the specialized

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

468

U. P. Schultz et al.

abstract class Op { abstract int f(int i,int j); }

class Add extends Op { int f(int i,int j) { return i+j; } }
class Mul extends Op { int f(int i,int j) { return ix*j; } }
class Use { int apply(Op p,int x,int y) { return p.f(x,y); }

(a) Generic program.

aspect ZeroArgument {

introduction Op { int £_0(int i) { throw new JSpecExn(); } }
introduction Add { int f_0(int i) { return i+0; } }
introduction Mul { int f£_0(int i) { return i*0; } }
introduction Use { int apply_O(Op p,int x) { return p.f_0(x); }
}

(b) Specialized program.

Fig. 8. Specialization in the presence of abstract methods.

method is to be declared in an abstract class, several solutions are possible. In
the example of Section 3 (Figure 5), we declare the specialized method eval_2
as an abstract method. This solution, however, requires that all concrete sub-
classes define the specialized method, including those that are not part of the
program slice to be specialized. A less restrictive solution, which JSpec uses,
is to define a concrete method that always generates an error in the abstract
class. Specialized variants of the method then override this definition. If the
specialized method is to be declared in an interface, the solution of using a con-
crete method is not applicable. Because inheritance from multiple interfaces is
possible, however, we simply define a new interface declaring the specialized
method, and extend the possible classes of the receiver object to implement the
new interface. The receiver object is then cast to the new interface type at the
call to the specialized method.

Figures 8 and 9 use a small hierarchy of binary operators to illustrate the
treatment of abstract classes and interfaces. In both cases, the method £, which
computes the result of applying a binary operator to two integer inputs, is
specialized with respect to a dynamic Op object as the receiver object and a static
value (0) of the argument y. In Figure 8b, the specialized program introduces
a new specialized method £ 0 into the Op abstract class and its subclasses;
the method in the Op class always gives an error, whereas the methods that
override it use the specialized definitions. In Figure 9b, the specialized program
introduces a new interface IxI2I 0 and uses introduction blocks to add the
interface to the appropriate class declarations.

Following the same strategy as is used for a specialized method, a specialized
constructor is added, using an aspect, to the class defining the original construc-
tor. Because a class can only define multiple constructors through overloading,
JSpec creates a new, empty class for each specialized constructor, and adds
a dummy argument of this type to the constructor, to distinguish it from the
other constructors of the class. Specialization must also preserve the chain of
superclass constructor calls. The constructors in such a chain are either all ac-
cessible to the specializer, and thus all specializable, or the chain terminates
in a constructor that is external to the targeted program slice. Specialization

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 469

interface IxI2I { int f(int x,int y); }

class Add implements IxI2I { int f(int x,int y) { return x+y; } }
class Mul implements IxI2I { int f(int x,int y) { return x*y; } }
class Use { int apply(IxI2I p,int x,int y) { return p.f(x,y); } }

(a) Generic program.

aspect ZeroArgument {
interface IxI2I_0 extends IxI2I { int f_O(int x); }

introduction Add {
implements IxI2I_0; int f_0(int x) { return x+0; }
}

introduction Mul {
implements IxI2I_O; int f_0(int x) { return x*0; }
}

introduction Use {

int apply_O(IxI2I p,int x) { return ((IxI2I_O)p).f_0(x); }
}
}

(b) Specialized program.

Fig. 9. Specialization of interface calls.

generates a parallel chain of constructors, terminating with an invocation of an
external constructor, if any.

4.3 Limitations of JSpec

JSpec is a partial evaluator, and is thus limited by the inherent restrictions
of partial evaluation. For partial evaluation to optimize a program, it must
be possible to separate the program execution context into static and dynamic
parts such that the overheads caused by genericness can be considered static.
Furthermore, throughout the parts of the program that are to be specialized,
dynamic and static values must remain clearly separated, so that the static
values do not become dynamic. In practice, programs often must be modified
to ensure this separation [Jones et al. 1993]. Alternatively, programs can be
written with specialization in mind; specialization patterns can be followed to
ensure that the finished program specializes well.

Java offers non-object features, such as exceptions, multi-threading, dynamic
loading, and reflection. These features are treated in a minimal way by JSpec.
JSpec does not support exception handlers in the program slice being special-
ized, and therefore considers a throw statement to terminate the program.
JSpec only specializes a single thread of control, and speculatively evaluates
code inside synchronized regions; while not appropriate in all situations, this
approach offers a simple and predictable behavior. Dynamic loading is essen-
tially orthogonal to JSpec. JSpec requires that all of the classes that are ref-
erenced by the code slice be included in the code slice itself or be considered

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

470 U. P. Schultz et al.

external code and be described abstractly. How such classes become available
at run time is irrelevant. JSpec does not support reflection in the program slice
being specialized, and relies on the programmer to describe the side effects that
can be performed using reflection in the external code.

The alias analysis in JSpec is monovariant, which implies that the binding-
time analysis is performed using alias information that has been merged for all
invocations of each method. The use of a monovariant alias analysis can thus
reduce the precision of the binding-time analysis and impede the specializa-
tion of object-oriented programs, as was explained in Section 3.4. Nevertheless,
a polyvariant alias analysis would often generate large numbers of alias vari-
ants of methods that have identical binding-time properties and thus specialize
identically. Ideally, alias variants should be generated on-the-fly to match dif-
ferent binding times, similarly to procedure cloning [Cooper et al. 1992]. As a
simple solution, JSpec relies on user-supplied information to identify classes
that contain methods for which a high degree of precision is needed, and clones
such methods for each call site.

The current implementation of JSpec does not automatically generate the
code needed for transparent reintroduction of specialized code into a program.
Specialization classes allow transparent reintroduction of code, but only in sim-
ple cases [Volanschi et al. 1997]; an extension of specialization classes to treat
more complex cases, as used in this paper, is currently under development. For
this reason, the call to the specialized entry point needs to be created manually.

5. CASE STUDIES

We now present two case studies that illustrate how object-oriented programs
can be specialized using automatic program specialization. We first describe
the specialization of a program written using the visitor pattern [Gamma et al.
1994], and then the specialization of a part of the OoLaLA object-oriented linear
algebra library [Lujan et al. 2000]. In both cases we use specialization patterns
and specialization classes to identify and describe specialization opportuni-
ties, and in both cases automatic program specialization leads to significant
speedups (experimental results are reported in the next section).

In addition to the case studies presented in this section, previously pub-
lished work describes the specialization of programs written using an image
processing framework [Schultz et al. 1999], a set of programs written us-
ing the builder, bridge and strategy design patterns [Schultz 2000; Schultz
et al. 2000], programs written using a GUI framework in the style of the Java
JDK 1.1 AWT [Schultz 2000], and programs written using a checkpointing li-
brary [Lawall and Muller 2000].

5.1 The Visitor Design Pattern

The visitor design pattern is a way of specifying an operation to be performed
on the elements of an object structure externally to the classes that define this
structure [Gamma et al. 1994]. In a language without multi-dispatching, such
as Java, the visitor design pattern is implemented using a technique referred
to as double-dispatching, where the first dispatch selects the kind of object

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 471

structure element to operate on, and the second dispatch selects the visitor to
use. Given a specific visitor, the second virtual dispatch becomes fixed, and thus
can be removed by specialization.

As an example of a use of the visitor design pattern, we implement a simple
binary tree structure, and use the visitor pattern to implement operations on
the tree structure. Figure 10a shows the class diagram for this example. The
class Tree is the abstract superclass of the concrete classes Leaf (which holds
an integer value) and Node (which has two children). The class TreeVisitor is
the abstract superclass of the concrete visitors that operate on the tree; in the
example, we use the subclass FoldBinOp, which folds an operator of class Binary
(from Section 1) over the tree. Excerpts of the implementation are shown in
Figure 10b. Figure 10c illustrates parts of the interaction between a Fo1dBinOp
visitor and a tree that consists of a node and two leaves.

The visitor specialization pattern (see Appendix) suggests that when the
choice of the visitor is fixed, automatic program specialization can eliminate
the double dispatching that takes place between the visitor and the objects
that it traverses. We use a specialization class to declare the specialization
context of the program:

specclass FoldPlus specializes Client {
@specialize: int processTree(Tree t,TreeVisitor v),
where v: FoldWithPlus;

b

specclass FoldWithPlus specializes FoldBinOp {
op: Plus;

X

The specialization class FoldPlus declares that specialization should begin
at the processTree method of the class Client. The second argument of
processTree is declared to be specialized according to the FoldWwithPlus special-
ization class, which indicates that v is a FoldBinOp object in which the op field,
representing the operator to apply, is a Plus object. Specialization simplifies
the virtual dispatches inside the accept methods of the Node and Leaf classes
into direct calls, speculatively specializes any calls to accept inside the visit
methods (with Node and Leaf as potential receivers), and reduces the virtual
dispatch to the binary operator. Figure 11a shows a fragment of the special-
ized program after method inlining. Specialization simplifies the interactions
shown in Figure 10b into the interactions shown in Figure 11b.

In the simple case where the program uses only a single visitor, a compiler
can usually perform similar optimizations. However, when multiple visitors
are used, the virtual dispatches to the visitNode and visitLeaf methods in-
side the Node and Leaf classes have multiple receivers, and cannot easily be
removed.

5.2 The OoLaALa Linear Algebra Library

The OoLaLa linear algebra library has been designed according to an object-
oriented analysis of numerical linear algebra [Lujan et al. 2000]. Compared

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

472 J U. P. Schultz et al.
Client |— TreeVisitor
int visitLeaf (Leaf x)
int visitNode (Node n)
-
FoldBinOp
int visitLeaf (Leaf x)
int visitNode (Node n)
| Tree
int accept(TreeVisitor v)
| $ | left,
ight
Leaf Node o=
int getval() Tree getLeft ()
int accept(TreeVisitor v) Tree getRight ()
: int accept(TreeVisitor v)
int val
(a) Class diagram.
class Client { class FoldBinOp extends TreeVisitor {
int processTree(Tree t, .
TreeVisitor v) { int visitNode(Node n) {
return t.accept(v); return this.op.eval(
} n.getLeft () .accept (this),
} n.getRight () .accept (this));
}
class Node extends Tree { }
int accept(TreeVisitor v) {
return v.visitNode(this);
}
}
(b) Extracts of the source code.
Client Node Leaf FoldBinOp Add
A
accept (v) L yisitnode (this)
getLeft ()
[J accept (this)
| getRight ()
EI] accept (this)
-

(c) Interaction diagram.

Fig. 10. Visitor, generic program.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 473

aspect FoldPlus {
introduction Client {
. t.accept_bp()

}

introduction Node {
int accept_bp() {
return this.left.accept_bp() + this.right.accept_bp();
}

}

}

(a) Specialized program.
Client Node Leaf

accept_bp () £ bo()
accept_bp
= =

accept_bp ()

(b) Specialized interaction.

Fig. 11. Visitor, specialized program.

to traditional linear algebra libraries, OoLaLa is a highly generic, yet simple
and streamlined, implementation. However, as the designers point out, the
genericness comes at a cost in terms of performance. In this section, we use
automatic program specialization to map matrix operations implemented at a
high level of abstraction to an efficient implementation.!

In the OoLaLa library, matrices are classified by their mathematical prop-
erties, for example dense or sparse upper-triangular. A matrix is represented
using three objects from different class hierarchies, as illustrated in Figure 12a.
The class Matrix acts as an interface for manipulating matrices, by delegating
all behavior specific to mathematical properties to an aggregate object of class
Property. Subclasses of the abstract class Property define, for example, how
iterators traverse matrix elements (e.g., by skipping zero elements in sparse
matrices). The Property classes delegate the representation of the matrix
contents to an object of class StorageFormat. The concrete subclasses of
the abstract class StorageFormat all store the matrix elements in a one-
dimensional array, and define a mapping from ordinary matrix coordinates to an
index in this array. This decoupling of a single matrix into three objects from
separate class hierarchies is a use of the bridge design pattern [Gamma et al.
1994].

1Because the source code of the OoLaLa library is not available, we have reimplemented parts
of this library for our experiments. The implementation follows the description of OoLaLa
found in Lujan, Freeman and Gurd’s paper [Lujan et al. 2000] and in Lujan’s Master’s Thesis [Lujan
1999].

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

474

U. P. Schultz et al.

class Matrix {

static double normi_IA(Property p) {
double sum;
double max = 0.0;

fmt p.setColumnWise() ;

Matrix k>2 .| Proper StorageFormat
perty — = & p.begin();
element (i,J) element (i,3) element (i,3) . n 3 e
assign(i,], elm) assign(i,j,elm) assign(i,j,elm) while(!p.isMatrixFinished()) {
. S index (k) sum=0.0;
setColumnWise () nextElement () .
e tRowNioe () currentElement () int numColumns p.nextVector();
nextElement () int numRows while(!p.isVectorFinished()) {
currentElement () StorageFormat fmt p.nextElement () ;
o1 1a o sum+=Math.abs (p.currentElement ()) ;
= }
P t:
roperty p A if (sum>max) max=sum;

——————— }

return max;

[DenseProperly ‘ [UpperTriangularProperty‘ }
ffffff }

[DenseFormat | [PackedFormat | class DenseProperty extends Property {

void nextElement() {
this.current+=this.stride;
this.minorCounter--;

}

(a) Structure of generic program. (b) Source code for generic program.

Fig. 12. Generic version of a fragment of the OoLaLa library.

Figure 12b shows the implementation of the matrix operation norml, writ-
ten || - ||;. For a matrix A, the matrix operation |A|; computes the maximum
of the norms of the column vectors of the matrix A. This operation is easily
implemented using matrix iterators, as shown by the method norm1_IA of class
Matrix. The method first calls a.setColumnWise () to select column-based iter-
ation. The outer loop then extracts each column vector, which is traversed by
the inner loop.

Figure 12b also shows part of the definition of the class DenseProperty, specif-
ically the method nextElement, which is used to implement iteration over the
elements of a dense matrix. An iterator can traverse the matrix either by row
or by column. In the case of dense matrices, column-based traversal means that
the underlying one-dimensional array is traversed with increments of 1, and
row-based traversal means that the underlying array is traversed with incre-
ments equal to the height of the matrix. The increment used in the traversal is
referred to as the stride [Blount and Chatterjee 1999], and is stored in a field
of DenseProperty.

The bridge specialization pattern [Schultz 2000] suggests that when the rep-
resentation is known, automatic program specialization can eliminate virtual
dispatches between the interface object and the representation object. Further-
more, the iterator specialization pattern (see Appendix) suggests that when the
structure that the iterator traverses is known and the program manipulates
the iterator in a fixed way, then automatic program specialization can replace
uses of the iterator method by direct manipulation of the structure. Again,
we use specialization classes to declare the specialization context of the

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 475

aspect DenseNorm {
introduction Matrix {

static double normi_IA_dense(Property p) {
double sum;
double max = 0.0;

DenseProperty d=(DenseProperty)p;

d.setColumnWise_dense();

d.begin_dense_col();

nextElement_dense_col () while(!d.isMatrixFinished_dense_col()) {

currentElement_dense_col() sum=0.0;

c d.nextVector_dense_col();

while(!d.isVectorFinished_dense_col()) {
d.nextElement_dense_col();

Matrix K>P

norml_IA dense_col(p)

DenseProperty sum+=Math.abs(d.currentElement_dense_col());
. b

nextElement_dense col () if (sum>max) max=sum;

currentElement dense col() }

return max;

}
}

introduction DenseProperty {

final void nextElement_dense_col() {
this.current+=1;
this.minorCounter--;

}

¥

(a) Structure of specialized program. (b) Source code for specialized program.

Fig. 13. Specialized version of a fragment of the OoLaLA library.
method norm1 IA:

specclass DenseNorm specializes Matrix {
@specialize: void norml_IA(Property a),
where a: DenseWithDense;

}

specclass DenseWithDense specializes DenseProperty {
fmt: DenseFormat;

}

These classes declare that the Property argument to the norm operation is a
dense matrix that uses the dense representation format.

Specialization simplifies the virtual dispatches inside the norm1_IA method
into direct calls, simplifies the virtual dispatches inside the methods of class
DenseProperty into direct calls, and optimizes the iterator to perform only
column-based traversal. Figure 13a illustrates the structure of the specialized
program. A specialized norm1 operation and specialized iterator methods have
been added to the classes of the program. As an example of how the iterator
methods are optimized for column-based traversal, the specialized nextElement
method no longer accesses the field stride, but directly increments the field
current. Figure 13b shows the specialized source code; to enhance readability,
the Property object is cast once to the type DenseProperty, rather than at each

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

476

U. P. Schultz et al.

use as is actually the case. JSpec does not redeclare the fields p and fmt to have
the more specific types indicated in the specialization classes DenseNorm and
DenseWithDense, respectively. Thus, type casts are inserted in the specialized
code whenever the contents of these fields are accessed.

As was the case for the visitor pattern example, in the simple case where
the program uses only a single kind of matrix representation, a compiler can
usually perform similar optimizations. However, when the program uses multi-
ple matrix representations, virtual dispatches from Matrix objects to Property
objects and from Property objects to StorageFormat objects cannot easily be re-
moved. In addition, optimizing the iterator methods for column-based traversal
goes beyond the optimizations normally performed by a compiler.

6. EXPERIMENTAL STUDY

In this section, we compare the execution time of generic programs to the exe-
cution time of specialized programs. With the exception of the benchmark pro-
grams classified as “imperative” below, the programs are written using object-
oriented abstractions wherever appropriate. The programs are compiled using a
selection of state-of-the-art Java compilers. Our goal is to show that optimizing
compilers at most only partially eliminate the genericness of these benchmark
programs; propagation of specific invariants, as performed by program special-
ization, is needed to more completely optimize a generic program for a given
usage context.

6.1 Benchmark Programs

To assess the performance improvements due to partial evaluation, we consider
a wide selection of benchmark programs written in a generic style, as summa-
rized in Table II. We do not use standard benchmarks, because programs from
standard benchmark suites (e.g., SpecJVM98 [SPEC 1998]) usually either con-
tain no opportunities for specialization or are structured in a way that is in-
compatible with specialization. The programs are grouped by the primary kind
of specialization opportunity they expose, namely imperative, object-oriented,
or mixed. All benchmark programs are computationally intensive. They do not
perform a large amount of I/O, do not allocate a large amount of memory, and
do not contain multi-threaded code. The size of the program slice targeted with
JSpec ranges from roughly 25 lines (Power) to roughly 1100 lines (ChkPt) of
Java source code.

Imperative opportunities. Some object-oriented programs are primarily im-
perative in nature, although they may benefit from object-oriented constructs
to provide structuring or data encapsulation. In each program, part of the
primitive-type data in the execution context is static.

FFT: Computes a one-dimensional Fast-Fourier Transform on data stored
in an array; the benchmark is taken from the Java Grande benchmark
suite [Java Grande Forum 1999]. The algorithm is parameterized by the
radix size. For specialization, the radix size is static, and the transformed
data is dynamic. We specialize for three different radix sizes, 16, 32,

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

477

Automatic Program Specialization for Java

10jesedo ogroads 10jesedo esim-[oxid Jo @o10yd 901] QLG q 896 Sursseooad aSewt ABarens
anfeA [eIjnau
s1ojeuwresed ogooads ‘guouodxe ‘Tojerodo Suikrea gg dq 86 uorpenduwod somod Jamod
suorjouny Jo uonisodurod suorjouny o[qesodurod A[9d1) 16 d8LT uoryisodurod uorouny adid
uoreIMIYU0d s300([qo orIeUes
XLIjew oyads woay pesodwod sedLIjeW GLE d 299 Areaqr] uorjeinduod XLrjeur eJe1o00
uonyisodwrod e[y ogyads s1o)[y oSewt o[qesodwod A[@a1} 28 d v16¥ 1omouretj Jurssadord-aSewr abew|
soryradoxd $9IN30NIIS
aanjongs 399[qo 190[qo0 Aremiqre syurodsoeyd gyl d 6897 aunnoa Jurjurod{oayd dLIouss 1AYD
Tojeadrojur
uo1ssa.Idxe 979.10U09 uorssordxe Aue sojen[ess GG dq 091 UO01SSa.IdXe-0ToW) LIB WYy (poxTur)
uorjerado Jo 9310YD JI0}ISIA ySnoay) suorjesado Sutkrea 0T q 9285 901} A1RUIq B U0 Suorjerado JOMNSIA
uonjejuswaTdut UOT}09SIS)UL pUB
aInjonags eyep SUIAIepuUn eInjonijs-eyep Suikrepun Sulkies GOg q L1L digysiequour 398 101e19)|
wyjLogdre uoryedrdmnu
uorjejuasardoa juepuedepur-uorjejusserder ggg q e9¥%1 seoLIjew asIeds pue esusp Jsp|ing (300[q0)
7 ‘SUOI}RISII JO JoquINU SUOTJRINII JO JoquINUu SUILIBA ()G qvLL uorjerSojur Srequoy Biaquioy
¥9 ‘GE ‘9T :9ZIS XIpRl ozIs XIpel Julkiea QyT dS16 ULIOJSUR.L], JOLINOJ-1SB 144 (eanyeradur)
ndur o178 SSOUILIOUSY) soury opodelfg uonydrroseq owreN
9ZTS 9I1[S

Arewwng yrewyouag ‘I 9[qeBl,

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

478

U. P. Schultz et al.

and 64. Specialization unrolls all loops and eliminates all trigonometric
computations.

Romberg: Romberg integration approximates the integral of a function on an
interval using estimations. The algorithm is parameterized by the number
of iterations, the interval characteristics, and the function. For specializa-
tion, the number of iterations used in the approximation is static, and all
other data is dynamic. Specialization unrolls loops and eliminates numerical
computations.

Compilers normally do not perform aggressive optimizations over primitive-
type values, and thus do not perform optimizations similar to those performed
by program specialization for these programs.

Object opportunities. The adaptive behavior of some object-oriented pro-
grams is controlled completely through object-oriented mechanisms; such pro-
grams can be said to provide pure object-oriented specialization opportunities.
Propagation of type information and simplification of virtual dispatches is suf-
ficient to specialize these programs. In each of our benchmarks, the object com-
position is fixed in the program, as is all configuration information, meaning
that we do not provide the specializer with any information that a compiler
could not deduce by statically analyzing the program.

Builder: Matrices with a dense or sparse representation are created using the
builder design pattern and subsequently exponentiated. Both matrix creation
and matrix multiplication are done independently of the representation. For
specialization, the choice of concrete builder is static, and the matrix dimen-
sions and contents are dynamic. After specialization, all operations directly
access the concrete matrix representation [Schultz et al. 2000].

Iterator: A set data structure is implemented over an underlying primitive data
structure (array or linked list). The iterator design pattern is used to imple-
ment the membership and intersection operations independently of the im-
plementation of the underlying data structure. For specialization, the choice
of the underlying data structure is static, and the manipulated data is dy-
namic. After specialization, the counter stored in the iterator object and the
values stored in the data structure are accessed directly.

Visitor: Operations are applied to a binary tree of integers, as in Section 5.1.
The functions are implemented using the visitor design pattern. New oper-
ations can be added without modifying the binary tree implementation. For
specialization, the choice of visitors is static, and the tree structure being
traversed is dynamic. After specialization, the specialized visitor operations
are defined as methods in the tree structure.

Compilers for object-oriented languages are geared towards optimizing these
kinds of programs well, and so we expect only limited gains due to program
specialization.

Mixed opportunities. In many object-oriented programs, a mixture of object-
oriented mechanisms and imperative constructs controls the adaptive behavior.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 479

In each program, both primitive-type data and object data in the execution
context are static.

Arithint: A simple arithmetic-expression interpreter is used to compute the max-
imal value of a function on a given interval. For specialization, the arithmetic
expression is static, and the values stored in the environment are dynamic.
We specialize the interpreter with respect to a function mapping integer pla-
nar coordinates into an integer value. Specializing the interpreter produces
a Java arithmetic expression equivalent to the function.

ChkPt: A generic checkpointing routine is used to periodically save the state of
a binding-time analysis implemented for a small C-like language. The check-
pointing routine can (recursively) checkpoint any object that implements a
checkpointing interface. The checkpointing routine can be specialized to ob-
ject composition properties specific to each phase of the binding-time anal-
ysis [Lawall and Muller 2000]. Specialization and benchmarking are done
for one phase only. The specialized checkpointing routine only traverses data
structures that are modified during this phase. Due to implementation limi-
tations in JSpec, the ChkPt benchmark requires patching after specialization.

Image: A generic image-filtering framework is used to perform standard image-
manipulation operations. In this framework, the image representation and
the filter to apply are abstracted using design patterns [Schultz et al. 1999].
Complex filtering operations can be performed by composing simpler, basic
filter objects such as convolutions and noise reduction. Specialization is done
for blurring convolution filters of size 3 x 3 and 5 x 5. After specialization,
image datais accessed directly, and image filtering is optimized for the chosen
convolution matrix.

OoLala: The norml operation is computed over matrices having a generic rep-
resentation, as in Section 5.2. The norml operation written using iterators
is specialized for several concrete representations, namely dense and sparse
upper-triangular. After specialization, matrix data is accessed directly, and
the matrix iterator is optimized for a specific mode of traversal.

Pipe: A sequence of simple mathematical functions is composed together to form
a pipe, and then applied to a single input value. The function composition can
be changed freely at run time. For specialization, the function composition
is static, and the value input to the function pipe is dynamic. Specializa-
tion compiles the arithmetic expression represented by the function into an
equivalent Java arithmetic expression.

Power: Exponents are computed, as in the power example from Section 1. The
exponent, operator and neutral values are static, and the base value is dy-
namic. Specialization is done for two objects of class Power with different
operators.

Strategy: A number of single-pixel image operators (e.g., pixel brightness mod-
ification) are applied to an image. Each pixel operator is encapsulated into
a separate object by using the strategy design pattern [Schultz et al. 20001,
so that the choice of image operator can be modified at run time. For spe-
cialization, the choice of operators is static, and the image data is dynamic.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

480 U. P. Schultz et al.
After specialization, the image operators are applied directly to the image
data.

Although standard compilers for object-oriented languages can optimize ob-
ject interactions in these programs, they do not specialize computations over
primitive-type values nor completely reduce megamorphic call points. Thus, we
expect significant gains from program specialization.

6.2 Methodology

Experiments are performed on two different machines, a SPARC and an x86.
The SPARC machine is a Sun Enterprise 450 running Solaris 2.8, with four
400 MHz Ultra-SPARC processors (all benchmarks use only a single thread)
and 4 Gb of RAM. The x86 machine runs Linux 2.4, and has a single 1.3 GHz
AMD Athlon processor and 512 Mb of RAM.

The aspects resulting from specialization are compiled to Java source code us-
ing Aspectd version 0.6b2. We compile Java source code to Java bytecode using
Sun’s JDK 1.3 javac compiler with optimization selected. We compile the re-
sulting bytecode using JIT, adaptive, and off-line compilers: Sun’s JDK 1.2.2 JIT
compiler for SPARC (referred to as ExactVM) [Sun Microsystems, Inc. 1999],
Sun’s JDK 1.4.0 HotSpot compiler running in “client” and “server” compila-
tion modes on both SPARC and x86 [Sun Microsystems, Inc. 2002] (“server”
compilation mode is more aggressive than the default “client” mode), IBM’s
JDK 1.3.1 JIT compiler for x86 [IBM 2001], the Jikes Research VM for x86 [IBM
2002], version 2.1.0 with configuration OptOptSemispace and optimization level
3 selected? (Jikes is the open-source version of the Jalapefio system [Alpern
et al. 1999]), and the Harissa off-line bytecode compiler [Muller and Schultz
1999] with optimization level E03,? using Sun’s commercial C compiler version
5.3 on SPARC and gcc version 2.95 on x86. The maximal heap size was set to
120 Mb for all systems except Harissa, which does not provide any means of
limiting the amount of memory allocated by the program.

Each benchmark program performs ten iterations of the benchmark routine,
and discards the first five to allow adaptive compilers to optimize the program.
With the adaptive compilers, the first one or two iterations were slower than the
remaining ones, suggesting that dynamic optimizations were being performed
during these iterations. All execution times are reported as wall-clock time mea-
sured in milliseconds using java.util.Date, and the problem size is adjusted
to ensure that each main iteration runs long enough to give consistent time
measurements, typically between one second and one minute. All benchmarks
compute and print a checksum value that is threaded through the computa-
tion of each iteration of the benchmark, to prevent compiler optimizations from
removing the code that is being benchmarked.

2For the Strategy benchmark, optimization level 1 was selected to prevent the compiler from
crashing.

3For the ChkPt benchmark, optimization level E01 was selected to limit resource consumption
during compilation.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 481

6
5 Standard
JVM deviation
4 HotSpot 1.4 (client) 3.8
o = D HotSpot 1.4 (client) HotSpot 1.4 (server) 5.3
2 = & HotSpot 1.4 (server) IBM JIT 4.2
g 3 B NIBMJIT Jikes RVM 2.1
) = Jikes RVM Harissa 2.4
= & Harissa
2+ B
1H B
0 {1 =N
Arithmetic mean Median Geometric mean
Fig. 14. Speedup analysis, x86.
6
5 4
Standard
JVM deviation
41 HotSpot 1.4 (client) 5.2
2 O HotSpot 1.4 (client) HotSpot 1.4 (server) 7.6
23l B HotSpot 1.4 (server) ExactVM 1.5
8 H ExactVM Harissa 3.0
(7] s B Harissa
2+ 3
>0
3:
3
1 =
3.
0:
3.
0 41
Arithmetic mean

Fig. 15. Speedup analysis, SPARC.

6.3 Results

We now present the benchmark results first by architecture, then by benchmark
type, and last individually for each benchmark. The results are assessed in
Section 6.4.

Figures 14 (x86) and 15 (SPARC) summarize the overall speedup due to
specialization. A value of 2.0 for a given compiler/architecture combination
indicates that the specialized programs are on average twice as fast as the
generic programs for this specific compiler/architecture combination. Overall
speedups are computed as the arithmetic mean, the median, and the geomet-
ric mean of the individual speedups. The geometric mean is included because
it is less affected by extreme values than the arithmetic mean. For x86, the
geometric mean ranges from 2.4 in the case of Harissa to 2.7 in the case of
HotSpot in client mode. For SPARC, the geometric mean ranges from 2.0 in
the case of ExactVM to 3.5 in the case of HotSpot in server mode. The stan-
dard deviation is reported for each set of values. For both architectures, the

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

482 J U. P. Schultz et al.
Table III. Speedup Comparison by Benchmark Type
and Architecture
Geometric mean |Standard deviation
Benchmark type | x86 SPARC x86 SPARC
Imperative 3.1 3.2 3.1 4.9
Object-oriented | 1.7 1.8 0.4 0.9
Mixed 2.8 2.5 4.7 5.9
Overall 2.6 2.6 3.7 4.7
14.4 ! 231 177 10.3
10 i — :
_ ! : :
/ : ' OHotSpot 1.4 (client) .
9 ’ H | B HotSpot 1.4 (server) .
/ i i RIBMJIT .
8+ i i BJikes RVM |
: i 1 B Harissa .
1 1 : o
71+ ; : !
V] H H !
’ ' ! :
61—V L 1 .
' 1 1 o
s /" H H .
® 518 : ;
2 o ' ! . :
@ b 1 1 " !
Il : LI ;
e - — ¥ :
1
3 : g : : : -
: : ; i :
iy 1 : . M .
el Iy —p A :
: VA v i M (N, Hr H :
NG i i . o [HM e o :
" AT T T THATE
o : : ‘MEL:
ol ENY] /: . /! W | H Vel [H
IS o © & & ¢ S S & L L a2)
QQ& Qé QQ« Qpé“oz /' %\§\ \\z‘{b KN4 /' V‘(\'& C}‘\“~ \@QQ \&’bo" Oo\"b ro\(b@

Fig. 16. Detailed speedup comparison (generic time/specialized time), x86.

standard deviation is relatively high, and is the highest for HotSpot in server
mode.

Table III breaks down the overall geometric mean and standard deviation of
the speedups by benchmark type. For both architectures, the highest speedups
are achieved for the imperative benchmarks, the lowest for the object-oriented
benchmarks, and the overall speedup is 2.6 times. The standard deviation is
high for both the imperative and mixed benchmarks, and the overall standard
deviation is higher for SPARC than for x86.

Figures 16 (x86) and 17 (SPARC) show the speedup due to specialization for
each benchmark program. The speedup is computed as the execution time of
the generic program divided by the execution time of the corresponding special-
ized program. Absolute execution times are shown in the Appendix. No results
are shown for IBM’s JIT on the Image benchmarks, because a runtime error

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 483

21.4 33.3 11.5

10 . !
! 1
! 1 —
1
i H
9 i 1 OHotSpot 1.4 (client)
i H BHotSpot 1.4 (server)
1 H M ExactVM
8 : : BHarissa
i E
! 1
7 1 H :
! 1
1
i i
1
61 . ' : =,
. - : :
1
_§' I 1 : :
1
i s : . :
1
’ : ! : :
= [1 : .
4 4 = 1 1
: : : E : : "
= =)
= : = 1 : N Ak
= N = 1 1 . H D
1 z 2 : : » E.-:'
B = | 1 m e
= = ! 1 o B
= ! 1 = ERe
- n 1 1 o =My
2 E + o =My
= m 1 1 of :N.I
= . ' H . | e
= . H H | B
- m 1 1 - :H.I
11 = T T el
o 1] | Eae
: : H : =My
m ! H u E:':
=. /"
0 = /J - B[E
\J v > © ‘ C S S ’ & < > bl > L & S
N el © A . & xC 3§ ’ N & & N] & S
A A A & L N @ & . S & & & @ < 5 g
& & E & e &S T E & < o0

Fig. 17. Detailed speedup comparison (generic time/specialized time), SPARC.

was (incorrectly) generated when running these benchmarks on this system.
Similarly, no results are shown for Jikes on the ChkPt benchmarks, because a
stack overflow error occurred, and no means of increasing the stack size could
easily be determined.

On both architectures, there are high speedups for the imperative bench-
marks FFT (for most variants) and Romberg, and for the mixed benchmarks
Arithint, Power, and Pipe. On SPARC, there are also high speedups for the object-
oriented benchmarks Builder and Visitor, and for the mixed benchmark Strategy.
Also, on both architectures there are significant speedups for the mixed bench-
marks Oolala and Image-3, and on x86 there are significant speedups for the
object-oriented benchmarks Builder and Visitor as well as the mixed benchmarks
ChkPt, Image-3, and Strategy. Slowdowns are observed for OoLala on x86 with
HotSpot in server mode, and for FFT-64 on SPARC with all systems except
HotSpot in server mode.

The standard deviation for each benchmark across compilers is shown in
Table IV. The standard deviation is high for Romberg, Arithint, and Power across
both architectures, and relatively high for FFT:16 on x86 and for most variants
of FFT on SPARC. When measured across architectures, the standard devia-
tion is bounded by the maximal standard deviation for either architecture, but
remains high for FFT:16, Romberg, Arithint, and Power.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

484 U. P. Schultz et al.

Table IV. Detailed Standard
Deviation Comparison

Benchmark | x86 SPARC | Both
FFT:16 2.8 1.1 2.5
FFT:32 1.1 1.9 1.4
FFT:64 0.7 1.5 1.1
Romberg 5.5 9.2 7.0
Builder 0.3 1.1 0.7
Iterator 0.2 0.2 0.2
Visitor 0.4 0.8 0.6
Arithint 8.1 14.2 104
ChkPt 0.6 0.1 0.5
Image:3 0.5 0.5 0.4
Image:5 0.2 0.4 0.3
Pipe 0.8 0.7 0.9
Power 2.5 2.9 2.6
Strategy 0.7 0.8 0.9
OolLalLa 0.7 0.5 0.6

Table V. Comparison of the Number of Runtime Virtual

Calls and Class Casts
Virtual calls Class cast checks
generic specialized | generic specialized

FFT:16 11 21 0 0
FFT:32 11 21 0 0
FFT:64 11 21 0 0
Romberg 111 111 0 0
Builder 19K 7.7K 0 12K
Iterator 720K 510K 20 210K
Visitor 36K 15K 9 9
Arithint 111 101 0 0
Image:3 56M 2.8M 56M 110M
Image:5 140M 2.8M 140M 270M
Pipe 181 111 0 30
Power 431 101 0 0
Strategy 2.4M 171 0 10
OolLala 160K 2.7K 0 150K

Because Harissa is simply a translator to C code, it can easily be instru-
mented to generate code that counts the number of virtual calls and class cast
checks. Table V compares the number of virtual calls and class cast checks
performed in the targeted program slice when running the generic and special-
ized versions of each benchmark program using Harissa. The number of virtual
dispatches is reduced by the intra-procedural CHA used by Harissa, similarly
to the behavior of most standard compilers, whereas the number of class cast
checks is not reduced by any Harissa optimizations. As expected, specialization
can drastically reduce the number of virtual calls, particularly in the case of
Strategy, but can also drastically increase the number of class cast checks, as
in Iterator.

With the current implementation of JSpec, specialization always increases
the program size, since new methods are added to the program and no methods

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 485

Table VI. Size of Bytecode of Targeted
Program Slice

Generic Specialized | Ratio
FFT:16 915 1668 1.8
FFT:32 915 3766 4.1
FFT:64 915 8550 9.3
Romberg 774 1149 1.5
Builder 1463 2140 1.5
Iterator 717 1224 1.7
Visitor 2326 3267 14
Arithint 160 290 1.8
ChkPt 2689 3732 14
Image:3 4914 7985 1.6
Image:5 4914 12451 2.5
Pipe 178 341 1.9
Power 98 498 5.1
Strategy 968 1403 14
Oolala 667 1101 1.7

are removed. Table VI shows the size of the bytecode of the program slice tar-
geted in each benchmark before and after specialization. The size increase due
to specialization ranges from 1.4 times in the case of Strategy and Romberg to
over 9 in the case of FFT:64.

Inlining is an essential optimization in automatic program specialization
for functional and imperative languages (e.g., in program specializers such as
Similix [Bondorf 1990] and Tempo [Consel et al. 1996]). In Java, however, inlin-
ing across class boundaries cannot easily be performed at the source level due to
access modifiers. Nonetheless, our benchmark programs do not use access mod-
ifiers, which allows us to examine the effect of source-level inlining on perfor-
mance. The benchmark results with inlining are shown in the Appendix. These
results show that inlining by JSpec provides no advantage in most cases, and
thus that the inlining performed by the compilers included in our study in most
cases is sufficient. In some cases, inlining is even detrimental to performance.

6.4 Assessment

The geometric mean of the speedups gained by specialization across all compil-
ers is 2.6 on both SPARC and x86, although the standard deviation is higher
on SPARC than on x86. As was predicted in Section 6.1, higher speedups are
observed on average for the imperative and mixed benchmarks than for the
object-oriented benchmarks, although significant speedups are observed for all
types of benchmarks. We observe that, with the exception of the ChkPt bench-
mark, the benchmarks with the lowest speedups are also those with the high-
est increase in class cast checks (see Table V). Class cast checks are usually
relatively expensive operations, and their high number is thus a significant
overhead. Thus, we expect that modifying the representation of dynamic data,
as mentioned in Section 3.1, will reduce the number of class casts and thus im-
prove the performance of the specialized programs where the number of class
casts increases with specialization.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

486 U. P. Schultz et al.

For the OoLalLa benchmark, specialization results in a significant slowdown
with Hotspot 1.4.0 in server mode on x86. Given the speedup obtained with
IBM’s JIT and Jikes, together with the speedup of 1.8 with HotSpot 1.3.1 in
server mode (see Appendix for HotSpot 1.3.1 results), we attribute this slow-
down to a conflict between specialization and some specific optimization in the
HotSpot 1.4.0 server compiler. As for the FFT-64 benchmark on SPARC, slow-
downs were observed in all cases except HotSpot 1.4.0 in server mode, where a
3.1 times speedup was observed. Further experimentation is needed to deter-
mine the cause of these slowdowns.

The standard deviation for each compiler is relatively high for both architec-
tures, because the speedup that can be gained from specialization depends on
the structure of the program, and thus is specific to each benchmark program.
The only general exception is the object-oriented benchmarks where a low stan-
dard deviation is observed, which we attribute to the fact that smaller speedups
are observed overall here than for the imperative and mixed benchmarks. The
standard deviation for each individual benchmark is low in most cases across
both architectures, but is very high in a few cases, namely FFT:16, Romberg,
Arithint, and Power. Further experimentation is needed to determine the cause
of these strong variations in speedup.

Based on our experiments, we observe that specialization significantly opti-
mizes programs beyond the capabilities of the compilers included in this study.
Thus, we conclude that program specialization and compiler optimization are
complementary, as was argued informally in Section 3.5. Nonetheless, the high
variation in speedups also leads us to conclude that when using JSpec to spe-
cialize programs, the choice of Java virtual machine may need to be taken into
account when deciding how to specialize a program.

7. RELATED WORK

The work presented in this paper relates to other work in program specializa-
tion based on partial evaluation, other program specialization techniques for
object-oriented languages, compilers for object-oriented languages, and aspect-
oriented programming. We discuss each of these in turn.

7.1 Program Specialization Based on Partial Evaluation

Run-time specialization for a subset of Java without object-oriented features
has been investigated by Masuhara and Yonezawa [2002], and subsequently
extended to include object-oriented features by Affeldt et al. [2002]. Specializa-
tion generates bytecode that is contained within a single method encapsulated
in a new class, and this class is dynamically loaded by the JVM and compiled us-
ing the resident JIT compiler. Their experiments show that JIT compilation of
run-time generated code gives equivalent performance to statically generated
code, but with a high amortization cost. Compared to JSpec, the most notable
differences are that the binding-time analysis is method monovariant, and that
the specialized code is residualized using a single method defined in a separate
class. As noted in Section 3.2, the use of a method defined in a separate class

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 487

implies that only public fields can be accessed and that speculative evaluation
of virtual dispatches is not possible.

Marquard and Steensgaard developed an on-line partial evaluator for a sub-
set of the object-based language Emerald [Jones et al. 1993; Marquard and
Steensgaard 1992; Raj et al. 1991]. Their work focuses on problems particular
to on-line specialization. There is no consideration of how partial evaluation
should transform an object-oriented program, and virtually no description of
how their partial evaluator handles object-oriented features.

Fujinami [1998] showed that objects in a C++ program can be specialized
at run time based on their state. The programmer annotates member methods
that are to be specialized. Each method is specialized based on the values of
selected private, protected, and const fields that are are not modified by the
method. Specialization uses standard partial evaluation techniques for impera-
tive languages, and replaces virtual dispatches through static object references
by direct method invocations. During specialization, if a virtual call through a
static object reference refers to a method that is tagged as inline, this method is
inlined into the caller method and is itself specialized. This approach to partial
evaluation for an object-oriented language concentrates on specializing indi-
vidual objects. On the contrary, we specialize the interaction that takes place
between objects based on their respective state, resulting in a more complete
specialization of the program.

Veldhuizen [1999] used C++ templates to perform partial evaluation. By
combining template parameters and C++ const constant declarations, arbitrary
computations over primitive values can be performed at compile time. This
approach is more limited in its treatment of objects than what we have proposed.
For example, objects cannot be dynamically allocated and virtual dispatches
cannot be eliminated. Furthermore, the program must be written in a two-level
syntax, thus implying that binding-time analysis must be performed manually,
and functionality must be implemented twice if both generic and specialized
behaviors are needed.

All parts of the specialization process can be done while a program is running,
using dynamic partial evaluation, as defined by Sullivan [2001] in the context of
avirtual machine supporting reflection and object-oriented constructs. With dy-
namic partial evaluation, specialization is done as a side-effect of normal evalu-
ation. Specialization invariants are manually specified (using a syntax similar
to specialization classes), and specialized methods are generated at run-time
and automatically selected when appropriate using multi-dispatching. Thus,
dynamic partial evaluation can be seen as a cross between traditional partial
evaluation and dynamic compiler optimizations. Although potentially more ag-
gressive than standard compilation, dynamic partial evaluation is harder to
control than standard partial evaluation.

7.2 Other Program Specialization Techniques

The OoLaLa case study presented in Section 5.2 was carried out in greater de-
tail by Lujan et al. [2001] using manual specialization techniques. A similar
study was performed by Budimli¢ and Kennedy for the OwlPack linear library

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

488

U. P. Schultz et al.

using an automatic program specialization tool named JaMake [Budimlié et al.
1999; Budimli¢ and Kennedy 2001]. In both cases, the specialized program is
compared to an implementation written without the use of object-oriented ab-
stractions, and the overheads due to the use of objects are almost eliminated.
Lujan et al. characterize the matrix properties and representations for which
a set of standard program transformations can eliminate such overheads. The
transformations considered by Lujan et al. include virtual dispatch elimination
and object inlining, but also transformations not normally not included in par-
tial evaluators, such as induction variable elimination. The JaMake tool uses
a combination of transformations that essentially derive new classes in which
aggressive object inlining has been performed [Budimli¢ and Kennedy 1999].
Whereas JSpec concentrates on optimizing a program by simplifying its control
flow, JaMake concentrates on simplifying its data representation. Hence, these
tools are to some extent orthogonal, and each could benefit from incorporating
the techniques used in the other.

Java programs can be specialized by transforming the class hierarchy ac-
cording to a specific usage scenario, as demonstrated by Tip et al. [1999] with
the tool Jax. Given a set of classes that are needed in a specific usage scenario,
Jax eliminates unnecessary classes, methods, and fields, merges classes and in-
terfaces when possible, and performs other operations to reduce the size of the
resulting Java program. JSpec on the other hand increases the program size
since specialization can increase the size of a method, and specialized methods
are simply added to the original program. Nonetheless, specialization also re-
moves static code and can remove dependencies between classes by reducing
field access and virtual dispatches, so specialization combined with Jax could
give a greater reduction in code size than Jax alone.

7.3 Compilers

The compiler optimization techniques most directly related to our work are
customization, selective argument specialization, and concrete type inference;
these were compared to program specialization in Section 3.5. Another similar
technique is polymorphic inline caching, which allows a compiler to replace a
virtual call with an explicit selection between direct calls to the most common
callees [Grove et al. 1995; Holzle and Ungar 1994]. Nevertheless, this opti-
mization must be guided with profile information to avoid code explosion, and
retains the cost of a runtime decision.

Sreedhar et al. [2000] describe a static analysis that, given a set of Java
classes forming a “closed world,” partitions the references in the program into
two categories: references that only point to objects instantiated from classes
in the closed world, and references that may include objects instantiated from
classes that have been dynamically loaded. This analysis, referred to as extant
analysis, can be used to automatically determine what side-effects can be per-
formed by dynamically loaded code. JSpec currently requires the programmer
to manually specify such side-effects as part of the specialization context, but
extant analysis could be used to automate this aspect of the specialization pro-
cess. The results of the extant analysis could be refined when the program slice

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 489

targeted by specialization is contained within a sealed package. (A sealed pack-
age is a Java package stored in a single jar file to which no new classes can be
added.) Such an approach would be similar to the work by Zaks et al. [2000],
where the precision of a class hierarchy analysis is improved by taking sealed
packages into account.

Cooper et al. [1992] showed that procedure cloning with respect to a set of
values considered to be of interest improves the results of various optimizations
by giving a higher degree of polyvariance. A cloned procedure can be optimized
for its usage context, but can still be shared between call sites with similar usage
contexts, and hence causes less code growth than inlining. Both the analysis
and specialization phase of JSpec uses techniques similar to procedure cloning.
JSpec uses a polyvariant binding-time analysis that shares method variants for
each unique combination of binding times at method call sites. Similarly, during
specialization, methods that are specialized for identical contexts are shared
between call sites. However, unlike procedure cloning, which limits the number
of procedure variants, the number of generated method variants depends on
the static information, and thus depends on the static values provided by the
programmer.

Automatic object inlining significantly reduces the number of object alloca-
tions and operations on fields thereby improving overall runtime performance,
as shown by Dolby and Chien [1998, 2000]. Optimizations similar to object
inlining are still considered future work for JSpec. Nonetheless, since special-
ization with JSpec simplifies the control flow of the program, we expect that
specialization would improve the opportunities for automatic object inlining
optimization.

A JIT compiler can be designed as an open-ended framework rather than a
closed component, as shown by Ogawa et al. [2000] with the OpendIT system.
The openness of OpendIT implies that run-time specialization could be added
directly into the compilation process. At this level, new methods can be added
directly into existing classes, thus circumventing the restrictions of the Java
language.

7.4 Aspect-Oriented Programming

Irwin et al. [1997] have shown that sparse matrix code can be implemented
efficiently using aspect-oriented programming. Orthogonal issues such as data
representation, permutations of rows and columns, and operator fusion are
specified in separate aspects, which are then combined by a compiler that
generates low-level, optimized code. In the OoLALA case study presented in
Section 5.2, we showed how JSpec can specialize a generic matrix library im-
plementation into a single aspect that contains an implementation optimized
for the specified representation. Thus, whereas the aspect-oriented approach
is to combine multiple aspects into a single implementation, JSpec combines
specialized code generated from multiple classes into a single aspect.

The Aspectd language enables both static and dynamic crosscutting [Kiczales
et al. 2001]. Static crosscutting enables method combination (e.g., before, after,
around) over existing methods and the introduction of new methods into classes.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

490

U. P. Schultz et al.

Dynamic crosscutting enables method combination at programmer-specified
points in the dynamic control flow of the program. JSpec uses static crosscutting
to introduce specialized methods encapsulated in an aspect into the existing
program.

8. CONCLUSION AND FUTURE WORK

The use of frameworks and generic software components is a growing trend in
software development; however, this trend comes at the expense of performance.
Program specialization can instantiate such frameworks and components for
a specific usage context, thus producing efficient implementations. We argue
that program specialization is a key technology to reconcile genericness and
performance.

In this paper, we have identified overheads intrinsic to generic object-
oriented programs. We have demonstrated that such overheads can be au-
tomatically reduced by program specialization, and have presented the tech-
niques used to specialize object-oriented programs. To validate our approach,
we have developed a program specializer for Java, named JSpec. Using JSpec,
we have evaluated the benefits of program specialization by conducting an ex-
perimental study on a variety of Java programs. This study has shown not
only that JSpec can produce significant speedups (a geometric mean of 2.6 on
our benchmarks), but also that JSpec is complementary to optimizing Java
compilers.

In future work, we plan to optimize the representation of dynamic data (as
outlined in Section 3.1) and to fully support exception handlers in JSpec. In
addition, we are considering run-time specialization for the full Java language,
but without the restrictions incurred by the approach of Affeldt et al. [2002] (see
Section 7 for details). Nonetheless, changes to our specialization approach are
needed to enable run-time specialization while complying with the restrictions
of the Java virtual machine.

Availability
JSpec is publicly available at http://compose.labri.fr/prototypes/jspec/

APPENDIX
A. SPECIALIZATION PATTERNS

This appendix describes specialization patterns for the visitor and iterator
design patterns. A specialization pattern describes the overheads intrinsic in
using a particular design pattern, and documents how to use specialization
to eliminate these overheads [Schultz et al. 2000]. In addition, a specializa-
tion pattern can refer to other specialization patterns, to describe how multiple
design patterns can be specialized together. Specialization patterns not only
guide specialization after a program has been written, but can also help the
programmer structure the program so that subsequent specialization will be
beneficial.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 491

Name. The name of the associated design pattern.

Description. A short description of the design pattern.

Extent. The program slice that is relevant when optimizing a use of the design pattern.
Owverhead. Possible overheads associated with use of the design pattern.

Compiler. Analysis of when these overheads are eliminated by standard compilers.

Approach. Specialization strategies that eliminate the identified overheads.

Condition. The conditions under which the specialization strategies can be effectively exploited.
Specialization class. Guidelines for how to write the needed specialization classes, and how to
most effectively apply them.

Applicability. A rating of the overall applicability of specialization to a use of the design pattern,
using the other information categories as criteria.

Example. An example of the use of specialization to eliminate the identified overhead; the example
may include specialization classes or textual descriptions.

Fig. 18. Specialization pattern template.

We use the standard specialization pattern template shown in Figure 18,
with a brief entry for each item; this level of detail allows us to concisely convey
the essence of each specialization pattern.

A.1 Visitor Specialization Pattern
Name. Visitor pattern.

Description. The visitor pattern allows an operation to be performed on the
elements of an object structure to be specified externally to the classes that
define this structure. Each element of the object structure defines an accept
method that calls a matching method in the visitor.

Extent. Specialization is applied to the concrete visitors and the object
structure that they traverse.

Overhead. Double-dispatching through the accept methods is used to
select visitor methods based on the concrete type of the object that is currently
being visited.

Compiler. When only a single visitor is used, a compiler can normally elim-
inate the double dispatching. When multiple visitors are used, a compiler nor-
mally cannot predict the program control flow, and hence cannot eliminate the
double dispatching.

Approach. By specializing the object structure for the visitor argument,
speculative specialization can generate specialized versions of each accept
method, where the visitor methods are directly invoked. Moreover, if the ob-
ject structure is known, all traversal can be completely eliminated.

Condition. Ifthe choice of visitor is fixed, and the visitor argument is passed
directly through the accept methods, then the object structure can be special-
ized to the visitor. If the object structure is invariant, and is accessed in a fixed
way, then all traversal can be specialized away.

Specialization class. The specialization class should fix the type of the visi-
tor. If the object structure is known, the specialization class should also declare
this fact.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

492

U. P. Schultz et al.

Applicability. High when the object structure is invariant, medium when
only the visitor is known but the amount of work done in each node is limited,
low otherwise.

Example. See Section 5.1.

A.2 Iterator Specialization Pattern

Name. Iterator pattern.

Description 'The iterator pattern allows the traversal of a structure to be
expressed in terms of a standard interface; a client need only know the iterator
interface to enumerate the elements of a structure.

Extent. Specialization is applied to the iterator and the structure on which
it operates.

Overhead. Decoupling of the client from the structure that it manipulates.

Compiler. When multiple structures are manipulated through different it-
erators, a compiler normally cannot resolve the virtual calls used to access
structure elements.

Approach. A client that is given an iterator can be specialized to the type of
this iterator and optionally to its state. A client that accesses a given structure
through an iterator obtained from the structure can be specialized to the type of
this structure and optionally to its state. Specialization will in both cases make
access to the underlying structure explicit, and may simplify each iteration
step.

Condition. The iterator or the structure that is iterated must be known,
and the iterator must be manipulated in a fixed way throughout the parts of
the client that access the structure.

Specialization class. The specialization class should either fix the type of
the iterator or fix the type of the underlying structure.

Applicability. High when many elements are used, low when the traver-
sal algorithm is complex and cannot be simplified by specialization, medium
otherwise.

Example. See Section 5.2.

B. DETAILED BENCHMARK RESULTS

Tables VII through XVI present the execution times and speedup factors for the
benchmarks presented in Section 6. Results for x86 are presented first, followed
by results for SPARC. In each table, the column T, gives the execution time
of the generic version of the program, the column T, gives the execution time
of the specialized version of the program, the column SF gives the speedup
factor of the specialized version over the generic version (obtained by dividing
the execution of the former by that of the latter), the column Tg.; gives the
execution time of the specialized, inlined version of the program (no value in
this column indicates that the specialized code does not contain any function

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 493

Table VII. Results for x86 HotSpot 1.4 (Client)

Name TGen TspeC SF TS+I SF+[
Arithint 8.34 0.85 9.8 1.08 7.7
Pipe 2.98 0.9 3.3 0.88 3.4
Power 11.02 1.32 8.3 1.37 8.1
Romberg | 48.39 337 144 N/A N/A
Builder 4.62 3.32 14 3.52 1.3
Iterator 7.56 4.95 1.5 5.74 1.3
Strategy 2.29 1.61 14 1.3 1.8
Visitor 4.12 1.8 2.3 N/A N/A
FFT-16 2.87 0.93 3.1 N/A N/A
FFT-32 5.56 2.4 2.3 N/A N/A

FFT-64 11.49 5.09 2.3 N/A N/A
Image-3 1.02 0.75 1.4 0.67 1.5

Image-5 2.2 1.73 1.3 2251 0.1
OolLalLa 17.86 15.07 1.2 18.0 1.0
ChkPt 13.86 6.68 2.1 N/A N/A
Average 3.7 3.5

Table VIII. Results for x86 HotSpot 1.4 (Server).

Name TGen TSpec SF TS+I SF+I
Arithint 4.0 0.17 23.1 0.18 226
Pipe 1.93 0.46 4.2 0.46 4.2
Power 4.22 0.63 6.7 0.62 6.8
Romberg 4.71 1.42 3.3 N/A N/A
Builder 2.92 1.36 2.1 0.86 3.4
Iterator 3.19 2.66 1.2 2.27 14
Strategy 1.81 0.78 2.3 0.76 2.4
Visitor 3.05 1.22 2.5 N/A N/A
FFT-16 3.48 1.51 2.3 N/A N/A
FFT-32 6.04 3.28 1.8 N/A N/A

FFT-64 11.01 7.18 1.5 N/A N/A
Image-3 1.45 0.64 2.3 0.61 24
Image-5 1.93 1.14 1.7 2185 0.1
OolLala 1192 16.26 0.7 16.92 0.7
ChkPt 8.11 5.59 1.5 N/A N/A
Average 3.8 3.8

Table IX. Results for x86 IBM JIT

Name TGen Tspec SF Ts,1 SF.y;
Arithint 5.43 0.31 17.7 0.39 14.0
Pipe 1.54 0.34 45 034 4.5
Power 3.2 0.63 50 0.67 4.8
Romberg 3.89 2.08 1.9 NA NA
Builder 3.96 2.2 1.8 215 1.8
Iterator 3.23 2.79 1.2 252 1.3
Strategy 1.31 0.63 21 0.62 2.1
Visitor 2.15 1.32 1.6 N/A N/A
FFT-16 1.34 0.39 3.4 N/A N/A
FFT-32 2.48 0.87 28 N/A N/A
FFT-64 4.66 2.14 22 N/A N/A
Image-3 0.71 N/A N/A N/A NA
Image-5 141 N/A N/A N/A N/A
Oolala 6.22 2.81 22 214 2.9
ChkPt 33.25 18.67 1.8 N/A N/A
Average 3.7 3.5

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

494

U. P. Schultz et al.

Table X. Results for x86 Jikes RVM

Name TGen TSpec SF TS+I SF+I
Arithint 6.5 1.32 4.9 0.82 8.0
Pipe 193 0.79 2.4 0.7 2.8
Power 4.11 1.03 4.0 0.95 4.3
Romberg 937 759 12 NA N/A
Builder 3.78 1.69 2.2 1.63 2.3
Iterator 462 3.02 1.5 2.96 1.6
Strategy 2.03 1.39 1.5 1.44 1.4
Visitor 2.69 141 19 NA NA
FFT-16 525 0.55 9.6 N/A N/A
FFT-32 7.46 1.66 4.5 N/A N/A
FFT-64 11.19 4.62 2.4 N/A N/A
Image-3 093 0.59 1.6 0.56 1.7
Image-5 1.99 1.27 1.6 1.45 14
OolLalLa 9.36 3.73 2.5 4.18 2.2
ChkPt N/A N/A NA NA N/A
Average 3.0 3.2

Table XI. Results for x86 Harissa

Name TGen TSpec SF TS+I SF+I
Arithint 17.84 3.64 49 226 7.9
Pipe 4.53 1.25 3.6 146 3.1
Power 6.21 0.6 10.3 1.13 5.5
Romberg 2.71 1.15 24 N/A NA
Builder 3.93 3.68 1.1 3.28 1.2
Iterator 8.22 6.67 1.2 7.05 1.2
Strategy 1.64 0.94 1.8 0.98 1.7
Visitor 2.96 1.61 1.8 NA N/A
FFT-16 145 0.27 54 N/A NA
FFT-32 2.77 0.69 40 N/A N/A
FFT-64 5.44 1.59 34 NA NA

Image-3 2.05 1.78 1.1 1.29 1.6
Image-5 3.98 3.34 1.2 1.77 2.2
OolalLa 13.3 9.34 14 9.85 1.3
ChkPt 15.97 11.0 1.5 NA N/A
Average 3.0 2.9

Table XII. Results for x86 HotSpot 1.3 (Server)

Name TGe,, TSpec SF TS+I SF+1
Arithint 6.01 0.39 15.6 0.39 15.6
Pipe 1.89 0.54 3.5 0.43 4.4
Power 3.99 0.62 6.4 0.63 6.4
Romberg 458 142 32 NA N/A
Builder 3.06 1.39 2.2 1.09 2.8
Iterator 5.09 2.83 1.8 2.64 19
Strategy 1.78 091 2.0 0.76 2.3
Visitor 3.12 1.26 2.5 N/A N/A
FFT-16 439 149 3.0 N/A N/A
FFT-32 7.24 3.27 2.2 N/A N/A

FFT-64 1234 7.1 1.7 N/A N/A
Image-3 091 0.58 1.6 0.53 1.7
Image-5 199 112 1.8 2184 0.1
OolalLa 1248 6.88 1.8 6.53 1.9
ChkPt 8.67 6.03 1.4 N/A N/A
Average 3.4 3.4

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java

Table XIII. Results for SPARC HotSpot 1.4

(Client)
Name TGen TSpec SF TS+I SF+I
Arithint 21.29 4.41 4.8 4.77 4.5
Pipe 7.77 3.57 2.2 3.85 2.0
Power 30.7 3.2 9.6 3.23 9.5
Romberg | 146.28 6.83 214 N/A N/A
Builder 14.35 14.77 1.0 14.65 1.0
Iterator 29.25 21.95 1.3 24.52 1.2
Strategy 4.31 2.18 2.0 2.09 2.1
Visitor 15.02 5.59 2.7 N/A N/A
FFT-16 7.26 3.09 24 N/A N/A
FFT-32 14.13 8.15 1.7 N/A N/A
FFT-64 27.77 33.08 08 NA N/A
Image-3 3.18 3.0 1.1 2.36 14
Image-5 7.35 7.5 1.0 64.21 0.1
OolalLa 57.76 44.71 1.3 385 1.5
ChkPt 37.39 26.04 1.4 N/A N/A
Average 3.6 3.6
Table XIV. Results for SPARC HotSpot 1.4
(Server)
Name TGen Tspec SF TS+I SF+I
Arithint 15.99 0.48 33.3 2.06 7.7
Pipe 7.54 2.28 3.3 2.26 3.3
Power 15.62 2.98 5.2 3.27 4.8
Romberg | 11.31 3.03 3.7 NA N/A
Builder 13.59 3.85 3.5 4.0 3.4
Iterator 14.94 1201 1.2 10.85 14
Strategy 3.49 1.01 34 1.02 3.4
Visitor 14.11 4.14 3.4 N/A N/A
FFT-16 5.22 0.73 7.2 N/A N/A
FFT-32 8.09 2.01 4.0 N/A N/A
FFT-64 13.48 4.36 31 NA N/A
Image-3 2.17 1.08 2.0 0.89 2.4
Image-5 5.05 2.93 1.7 65.59 0.1
OolLala 47.84 21.23 2.3 19.98 2.4
ChkPt 28.03 21.0 1.3 N/A N/A
Average 5.2 34
Table XV. Results for SPARC ExactVM
Name TGen Tspec SF Ts.1 SF.;
Arithint 19.51 5.11 3.8 3.93 5.0
Pipe 7.45 3.84 1.9 3.49 2.1
Power 21.73 339 64 3.07 7.1
Romberg | 15.63 6.19 25 N/A N/A
Builder 1296 1044 1.2 11.7 1.1
Iterator 23.64 220 1.1 20.33 1.2
Strategy 4.82 2.3 2.1 2.44 2.0
Visitor 13.45 481 2.8 N/A N/A
FFT-16 9.5 194 49 NA N/A
FFT-32 16.31 569 29 NA N/A
FFT-64 29.27 36.77 08 N/A N/A
Image-3 3.35 2.89 1.2 2.26 1.5
Image-5 7.93 8.88 0.9 7.29 1.1
OolalLa 48.88 4326 1.1 3544 14
ChkPt 66.15 4337 1.5 N/A N/A
Average 2.3 2.5

495

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

496 U. P. Schultz et al.

Table XVI. Results for SPARC Harissa

Name TGen TSpec SF TS+I SF+[
Avrithint 21.73 3.34 6.5 3.1 7.0
Pipe 6.63 1.99 3.3 1.95 3.4

Power 23.54 2.05 115 2.09 11.3
Romberg 9.47 3.32 29 NA N/A
Builder 15.39 7.97 1.9 7.64 2.0
Iterator 30.59 23.65 1.3 23.86 1.3
Strategy 3.15 0.83 3.8 0.82 3.8

Visitor 8.11 5.32 1.5 N/A N/A
FFT-16 4.07 0.52 7.8 N/A N/A
FFT-32 6.78 1.11 6.1 N/A N/A

FFT-64 12.58 12.82 1.0 N/A N/A
Image-3 6.99 6.27 1.1 3.96 1.8
Image-5 12.95 13.88 0.9 9.3 14
OolLala 60.6 34.52 1.8 37.23 1.6
ChkPt 16.4 11.92 14 N/A N/A
Average 3.5 3.6

calls, and thus inlining is irrelevant), and the column gives the speedup factor
of the specialized, inlined version over the generic version (obtained as for SF).
Times are measured in seconds. Averages are computed using the arithmetic
mean.

The results for Sun’s JDK 1.3.1 HotSpot compiler running in server mode
for x86 are included in Table XII; these results are not included in the general
discussion of Section 6 but are compared to the results of Sun’s JDK 1.4.0
HotSpot compiler in Section 6.4.

ACKNOWLEDGMENTS

We are grateful to Peter Chang, Neetu Nangia, and Miguel A. de Miguel, who
contributed greatly to the implementation of JSpec. We are also grateful to Ole
L. Madsen, Lars Bak, and the TOPLAS reviewers, who helped improve the
presentation of this paper.

REFERENCES

AFFELDT, R., MASUHARA, H., Sumit, E., AND YoNEzZAWA, A. 2002. Supporting objects in run-time byte-
code specialization. ACM Press, Aizu, Japan. In the Proceedings of Asia-PEPM 2002.

AGESEN, O., PALSBERG, dJ., AND SCHWARTZBACH, M. 1993. Typeinference of SELF. In Proceedings of the
European Conference on Object-oriented Programming (ECOOP’93). Lecture Notes in Computer
Science, vol. 707. Springer-Verlag, Kaiserslautern, Germany, 247—-267.

AIGNER, G. anD Horzie, U. 1996. Eliminating virtual calls in C++ programs. In Proceedings of
ECOOP ’96. Springer-Verlag, Linz, Austria.

ALPERN, B., AtTaANASIO, C., CoccHr, A., LieBeR, D., SmitH, S., Nco, T., BarToN, J., HUMMEL, S., SHEPERD,
dJ., AND MERGEN, M. 1999. Implementing Jalapefio in Java. In Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA99). ACM SIGPLAN Notices, vol. 34(10), L. Meissner, Ed. ACM Press, Denver, CO,
314-324.

ANDERSEN, L. 1994. Program analysis and specialization for the C programming language. Ph.D.
thesis, Computer Science Department, University of Copenhagen. DIKU Technical Report 94/19.

BaIER, R., GLUCK, R., AND ZOCHLING, R. 1994. Partial evaluation of numerical programs in Fortran.
In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 497

(PEPM’94). Technical Report 94/9, University of Melbourne, Australia, Orlando, FL, USA, 119—
132.

Brount, B. AND CHATTERJEE, S. 1999. An evaluation of Java for numerical computing. Scientific
Programming 7(2), 97-110. Special Issue: High Performance Java Compilation and Runtime
Issues.

Bonporr, A, 1990. Self-applicable partial evaluation. Ph.D. thesis, DIKU, University of Copen-
hagen, Denmark. Revised version: DIKU Report 90/17.

Braux, M. anp Novg, J. 2000. Towards partially evaluating reflection in Java. In ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM’00). ACM
Press, Boston, MA, USA.

Bupmiri¢, Z. anp KenneDy, K. 1999. Prospects for scientific computing in polymorphic, object-
oriented style. In Proceedings of the Ninth SIAM Conference of Parallel Processing in Scientific
Computing. SIAM, San Antonio.

BubpmMLi¢, Z. anp KeEnNEDY, K. 2001. JaMake: a Java compiler environment. In Third International
Conference on Large Scale Scientific Computing. Number 2179 in Lecture Notes in Computer
Science. Springer-Verlag, Sozopol, Bulgaria, 201-209.

Bupmiri¢, Z., Kennepy, K., aND PrpER, J. 1999. The cost of being object-oriented: A preliminary
study. Scientific Computing 7, 2, 87-95.

CHaAMBERS, C. AND UNGAR, D. 1989. Customization: Optimizing compiler technology for SELF, A
dynamically-typed object-oriented programming language. In Proceedings of the SIGPLAN °89
Conference on Programming Language Design and Implementation (PLDI °89), B. Knobe, Ed.
ACM Press, Portland, OR, USA, 146-160.

ConseL, C. 1993. A tour of Schism: a partial evaluation system for higher-order applicative lan-
guages. In Partial Evaluation and Semantics-Based Program Manipulation (PEPM’93). ACM
Press, Copenhagen, Denmark, 66-77.

ConseL, C., HorNoF, L., No&L, F., Novg, J., AND VoLanscHI, E. 1996. A uniform approach for compile-
time and run-time specialization. In Partial Evaluation, International Seminar, Dagstuhl Castle,
0. Danvy, R. Gliick, and P. Thiemann, Eds. Number 1110 in Lecture Notes in Computer Science.
Springer-Verlag, Dagstuhl Castle, Germany, 54-72.

CoOPER, K., HALL, M., AND KENNEDY, K. 1992. Procedure cloning. In Proceedings of the 1992 Inter-
national Conference on Computer Languages. IEEE Computer Society Press, Oakland, CA, USA,
96-105.

DEaN, J., CHAMBERS, C., AND GROVE, D. 1995. Selective specialization for object-oriented languages.
In Proceedings of the ACM SIGPLAN °95 Conference on Programming Language Design and
Implementation (PLDI'95). ACM SIGPLAN Notices, 30(6), La Jolla, CA USA, 93-102.

DEaN, J., GRovE, D., AND CHAMBERS, C. 1995a. Optimization of object-oriented programs using
static class hierarchy analysis. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP’95), W. G. Olthoff, Ed. Lecture Notes in Computer Science, vol. 952.
Springer-Verlag, Aarhus, Denmark, 77-101.

DETLEFS, D. AND AGESEN, O. 1999. Inlining of virtual methods. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP’99). Lecture Notes in Computer Science,
vol. 1628, R. Guerraoui, Ed. Springer-Verlag, Lisbon, Portugal, 258-278.

DoiBy, J. aND CHIEN, A. 1998. An evaluation of automatic object inline allocation techniques.
In OOPSLA97 Conference Proceedings. ACM SIGPLAN Notices. ACM Press, ACM Press,
Vancouver, Canada, 1-20.

Dotgy, J. anD CHIEN, A. 2000. An automatic object inlining optimizations and its evaluation. In
Proceedings of the 1999 ACM SIGPLAN’00 Conference on Programming Language Design and
Implementation (PLDI’00), M. Lam, Ed. Vancouver, British Columbia, Canada, 345-357.

Fusinamr, N, 1998. Determination of dynamic method dispatches using run-time code generation.
In Proceedings of the Second International Workshop on Types in Compilation (TIC’98), X. Leroy
and A. Ohori, Eds. Lecture Notes in Computer Science, vol. 1473. Springer-Verlag, Kyoto, Japan,
253-271.

Gamma, E., HELM, R., JoHNSON, R., AND VLISSIDES, J. 1994. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

GROVE, D., DEAN, J., GARRETT, C., AND CHAMBERS, C. 1995. Profile-guided receiver class prediction.
In OOPSLA95 Conference Proceedings. ACM Press, Austin, TX, USA, 108-123.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

498 U. P. Schultz et al.

Hovzie, U. anp Uncar, D. 1994. Optimizing dynamically-dispatched calls with run-time type
feedback. In Proceedings of the ACM SIGPLAN °94 Conference on Programming Language De-
sign and Implementation (PLDI'94). ACM SIGPLAN Notices, 29(6), New York, NY, USA, 326-
336.

Hornor, L. anp Novg, J. 2000. Accurate binding-time analysis for imperative languages: Flow,
context, and return sensitivity. Theoretical Computer Science (TCS) 248, 1-2, 3-27.

Hornor, L., Novg, J., anD ConsiL, C. 1997. Effective specialization of realistic programs via use
sensitivity. In Proceedings of the Fourth International Symposium on Static Analysis (SAS’97),
P. Van Hentenryck, Ed. Lecture Notes in Computer Science, vol. 1302. Springer-Verlag, Paris,
France, 293-314.

IBM. 2001. IBM JDK 1.3.1. http://www.ibm.com/java/jdk.

IBM. 2002. Jikes RVM 2.1.0. http://www.ibm.com/developerworks/oss/jikesrvm/.

IRWIN, J., LOINGTIER, J., GILBERT, J., KiczALES, G., LAMPING, J., MENDHEKAR, A., AND SHPEISMAN, T. 1997.
Aspect-oriented programming of sparse matrix code. In Proceedings of the First International
Conference on Scientific Computing in Object-Oriented Parallel Environments (ISCOPE’97),
Y. Ishikawa, R. Oldehoeft, J. Reynders, and M. Tholsburn, Eds. Lecture Notes in Computer
Science, vol. 1343. Springer-Verlag, Marina del Rey, CA, USA, 249-256.

Isnizaki, K., Kawaniro, M., Yasug, T., Komatsu, H., AND Nokatani, T. 2000. A study of devirtualiza-
tion techniques for a Java Just-In-Time compiler. In OOPSLA00 Conference Proceedings. ACM
SIGPLAN Notices, M. Rosson and D. Lea, Eds. ACM Press, Minneapolis, MN, 294-310.

Java GranDE Forum. 1999. The Java Grande Forum benchmark suite. http://www.
javagrande.org.

Jongs, N., Gomarp, C., aAND SESTOFT, P. 1993. Partial Evaluation and Automatic Program Genera-
tion. International Series in Computer Science. Prentice-Hall.

KiczaLEs, G., HiLsDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND GRiswoLD, W. 2001. An overview
of Aspectd. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP
’01). Lecture Notes in Computer Science, vol. 2072, J. Knudsen, Ed. Budapest, Hungary, 327-353.

KiczaLgs, G., LAMPING, J., MENDHEKAR, A., MaEDA, C., LopEs, C., LOINGTIER, J., AND IRwWIN, J. 1997.
Aspect-oriented programming. In Proceedings of the European Conference on Object-oriented
Programming (ECOOP’97), M. Aksit and S. Matsuoka, Eds. Lecture Notes in Computer Science,
vol. 1241. Springer, Jyvéaskyld, Finland, 220-242.

LawaLL, J. AND MULLER, G. 2000. Efficient incremental checkpointing of Java programs. In Pro-
ceedings of the International Conference on Dependable Systems and Networks. IEEE, New York,
NY, USA, 61-70.

Lroyp, J. AND SHEPHERDSON, J. 1991. Partial evaluation in logic programming. J. Logic Prog. 11,
217-242.

Lusin, M. 1999. Object oriented linear algebra. M.S. thesis, University of Manchester.

LusAn, M., FreemaN, T., AND GURD, J. 2000. OoLALA: an object oriented analysis and design of
numerical linear algebra. In OOPSLA00 Conference Proceedings. ACM SIGPLAN Notices, M.
Rosson and D. Lea, Eds. ACM Press, Minneapolis, MN, 229-252.

Lusin, M., Gurp, J., anp Freeman, T. 2001. OoLaLa: Transformations for implementations of
matrix operations at high abstraction levels. In Proceedings 4th Workshop on Parallel Object-
Oriented Scientific Computing—POOSC’01. ACM Press, Tampa Bay, Florida, USA.

MARQUARD, M. AND STEENSGAARD, B. 1992. Partial evaluation of an object-oriented imperative lan-
guage. M.S. thesis, University of Copenhagen.

MasuHARA, H. aND YonEzAWA, A. 2002. A portable approach to dynamic optimization in run-time
specialization. New Generation Computing 20, 1, 101-124.

MULLER, G. aND ScHuLtz, U. 1999. Harissa: A hybrid approach to Java execution. IEEE Soft. 16, 2
(Mar.), 44-51.

Ocawa, H., SHimura, K., MaTtsuoka, S., MaruvaMa, F., Sonpa, Y., AND Kimura, Y. 2000. OpendIT:
an open-ended, reflective JIT compiler framework for Java. In Proceedings of the European Con-
ference on Object-Oriented Programming (ECOOP’00). Lecture Notes in Computer Science, vol.
1850. Springer-Verlag, Cannes, France, 362—-387.

PLeEvvag, J. AND CHIEN, A. 1994. Precise concrete type inference for object-oriented languages.
In OOPSLA94 Conference Proceedings. SIGPLAN Notices, vol. 29:10. ACM Press, ACM Press,
Portland, OR, USA, 324-324.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

Automatic Program Specialization for Java . 499

Raj, R., TeEmPERO, E., LEVY, H., BLACK, A., HuTCcHINSON, N., AND JUL, E. 1991. Emerald: A general-
purpose programming language. Software—Practice and Experience 21, 1 (Jan.), 91-118.

Scuurrz, U. 2000. Object-oriented software engineering using partial evaluation. Ph.D. thesis,
University of Rennes I, Rennes, France.

Scuurrz, U. 2001. Partial evaluation for class-based object-oriented languages. In Symposium on
Programs as Data Objects II. Lecture Notes in Computer Science, vol. 2053, O. Danvy and A.
Filinski, Eds. Aarhus, Denmark, 173-197.

Schurrz, U., LawairL, J., ConsiL, C., AND MULLER, G. 1999. Towards automatic specialization of
Java programs. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP’99). Lecture Notes in Computer Science, vol. 1628, R. Guerraoui, Ed. Springer-Verlag,
Lisbon, Portugal, 367-390.

Scaurrz, U., LawarL, J., ConsgL, C., AND MULLER, G. 2000. Specialization patterns. In Proceedings
of the 15th IEEE International Conference on Automated Software Engineering (ASE 2000). IEEE
Computer Society Press, Grenoble, France, 197-206.

SPEC. 1998. SPEC JVM 98 benchmarks. Standard Performance Evaluation Corporation.
http://www.specbench.org/osg/jvm98/.

SREEDHAR, V., BUrkE, M., aAND CHor, J. 2000. A framework for interprocedural optimization in the
presence of dynamic class loading. In Proceedings of the 1999 ACM SIGPLAN’00 Conference on
Programming Language Design and Implementation (PLDI’00), M. Lam, Ed. Vancouver, British
Columbia, Canada, 196-207.

SurLrivan, G. 2001. Dynamic partial evaluation. In Symposium on Programs as Data Objects II.
Lecture Notes in Computer Science, vol. 2053, O. Danvy and A. Filinski, Eds. Aarhus, Denmark,
238-256.

SuN MicrosysTeEMS, Inc. 1999. Sun JDK 1.2.2. http://java.sun.com/products/j2se.

SuN MicrosySTEMS, INc. 2002. Sun JDK 1.4.0. http://java.sun.com/products/j2se.

SUNDARESAN, V., HENDREN, L., AND RazAFIMAHEFA, C. 2000. Practical virtual method call resolution
for Java. In OOPSLA’00 Conference Proceedings. ACM SIGPLAN Notices, M. Rosson and D. Lea,
Eds. ACM Press, Minneapolis, MN, 264—-280.

Trp, F., LarrFra, C., AND SWEENEY, P. 1999. Practical experience with an application extractor for
Java. In Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA99). ACM SIGPLAN Notices, vol. 34(10), L.
Meissner, Ed. ACM Press, Denver, CO, 292—-305.

VeLDHUIZEN, T. 1999. C++ templates as partial evaluation. In ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM’98). ACM Press, San Antonio,
TX, USA, 13-18.

VeLpHUIZEN, T. 2000. Expression templates in Java. In Generative and Component-Based Soft-
ware Engineering, Second International Symposium, GCSE’00, G. Butler and S. Jarzabek, Eds.
Lecture Notes in Computer Science, vol. 2177. Springer, Erfurt, Germany, 188-202. Revised
Papers.

VoranscHi, E., ConsgL, C., MULLER, G., AND CowaN, C. 1997. Declarative specialization of object-
oriented programs. In OOPSLA’97 Conference Proceedings. ACM Press, Atlanta, GA, USA, 286—
300.

Wang, T. anp SmitH, S. 2001. Precise constraint-based type inference for Java. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP’01). Lecture Notes in
Computer Science, vol. 2072, J. Knudsen, Ed. Budapest, Hungary, 99-117.

XEROX 2000. Aspectd home page. http://aspectj.org. Xerox Corp.

Zaxs, A., FELDMAN, V., AND AzikowiTz, N. 2000. Sealed calls in Java packages. In OOPSLA00 Con-
ference Proceedings. ACM SIGPIAN Notices, M. Rosson and D. Lea, Eds. ACM Press, Minneapolis,
MN, 83-92.

Received August 2001; revised September 2002; accepted February 2003

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 4, July 2003.

