A Resource-Efficient Smart Contract for Privacy
Preserving Smart Home Systems

Nazmus Saquib, Fatih Bakir, Chandra Krintz, Rich Wolski
Department of Computer Science
University of California, Santa Barbara
{nazmus, bakir, ckrintz, rich} @cs.ucsb.edu

Abstract—Due to the proliferation of IoT and the popularity
of smart contracts mediated by blockchain, smart home systems
have become capable of providing privacy and security to
their occupants. In blockchain-based home automation systems,
business logic is handled by smart contracts securely. However, a
blockchain-based solution is inherently resource-intensive, mak-
ing it unsuitable for resource-constrained IoT devices. Moreover,
time-sensitive actions are complex to perform in a blockchain-
based solution due to the time required to mine a block. In
this work, we propose a blockchain-independent smart contract
infrastructure suitable for resource-constrained IoT devices. OQur
proposed method is also capable of executing time-sensitive
business logic. As an example of an end-to-end application, we
describe a smart camera system using our proposed method,
compare this system with an existing blockchain-based solution,
and present an empirical evaluation of their performance.

Index Terms—IoT, smart contract, smart home, ethereum,
blockchain

1. INTRODUCTION

In recent years, the advancements and pervasive application
of the Internet of Things (IoT) have influenced home au-
tomation, resulting in the increased popularity of smart home
systems. In a smart home, low-cost, resource-constrained
IoT devices control domestic appliances depending on the
change in a physical property (e.g., temperature, light, etc.)
or the occurrence of an event (e.g., opening a door). The
massive amount of data collected by these IoT devices can
be personal and sensitive; and are often transmitted over an
insecure network to untrusted service providers for further
analysis [1]-[3]. This raises concerns about data security
and privacy, as data can be used and altered by service
providers, such as the cloud, where it is stored. Therefore,
a decentralized system where the end-user and any untrusted
party can share immutable sensitive information is desirable.

A blockchain, which is an emergent peer-to-peer, im-
mutable digital ledger technology is such a system. Unsur-
prisingly, the application of blockchain in smart home has
garnered interest from the research community for address-
ing security and privacy concerns recently [4]-[11]. Some
blockchains such as Ethereum [12] support smart contracts —
executable programs stored on a blockchain that run when
some predetermined condition is met. This enables smart
home systems to record data on the blockchain and embed
business logic in the blockchain that is contingent upon that
data.

Although blockchain can be an effective tool to ensure data
privacy and security, its application in an IoT environment
has its own challenges [13]. First, most blockchain algo-
rithms require significant computational power and as such
are not suitable for direct use on resource-constrained IoT
devices. Typically, such devices must communicate with high-
end (resource-rich) devices that essentially act as proxies to
leverage the features provided by a blockchain. However,
this proxy architecture introduces new challenges in terms of
reliable network connectivity to the proxy and the complexity
associated with securing the channel between the devices and
their proxies. Reliable and fast network connecting the devices
to their blockchain contact points can be power intensive
to implement. Further, a separate protocol for securing the
connection to the blockchain proxy must be correctly inte-
grated with the blockchain protocols, further adding to the
heterogeneity and interoperability complexities that “simple”
IoT devices must support using resource-constrained architec-
tures. Third, time-sensitive actions are difficult to perform in
a blockchain due to the time required to mine a block using
blockchain algorithms. For example, at the time of writing this
paper, the public Ethereum mainnet on average mines a block
approximately every 13 seconds [14], meaning we can expect
this much delay on average for a transaction to be recorded in
the ledger. Historical values higher than 30 seconds have also
been observed in the past. Other blockchains such as bitcoin
which mines a block every 10 minutes [15] can be more
time-consuming. Further, typically there is no guarantee that
a transaction will be included in the next mined block, so the
wait time can be much greater than the average time to mine
a block.

As a result, many blockchain-based smart home systems
use a private blockchain that has a faster mining rate to
minimize this delay [5], [6], [8], [11]. However, this op-
timization introduces a new trust relationship between the
devices and the entity that operates the private blockchain
that public blockchains do not require. That is, in a private
blockchain, whoever is maintaining the blockchain has ulti-
mate authority over the data. Such data sharing is undesirable
in a smart home system, especially in sharing economy
in which a property owner rents rooms/apartments to the
tenants, or the “traditional” economy where real estate agents
require temporary access to a property that is for sale, thus
sharing control over the home’s intelligent electronics (e.g.



surveillance cameras, electronic door locks, alarm systems,
etc.). These challenges ultimately accrue to the inability of
resource-constrained devices to directly implement the secu-
rity guarantees and tamper resistance offered by blockchains
and smart contracts.

In this work, we describe the design and implementation
of a blockchain-independent, smart contract that is suitable
for direct implementation on resource-constrained IoT de-
vices. Our proposed design is independent of any particular
blockchain technology and does not share the aforementioned
limitations. However, it is still able to provide shared se-
curity and privacy desired in a smart home system, with
the possibility of its application in other fields as well. The
proposed method is based on access control using capability
tokens [16]. Unlike traditional tokens, our token system can
contain bytecodes that are executable in virtual machines
that are lightweight enough for implementation on resource-
restricted devices and secure enough to implement smart
contracts. This capability-based approach is device local,
resulting in a more time-efficient system than its blockchain-
based counterpart. The key to our approach is that any user
in possession of a token originally generated by some device
can create derivations of it, which are tokens with constrained
privileges relative to that of the current token that the user pos-
sesses. Additionally, any device can cryptographically verify
a token that it generated originally along with any derivation
of this token, transitive or immediate. To implement this
verification feature, a token carries a “chain” of derivations
(each modifying the one before it) and the device traverses
a chain of derivations and compares computed and stored
hash values. This is similar in concept to the way in which
blockchains implement verification: the protocols compare the
stored and computed hash values of the transactions in the
latest block and iteratively perform this operation up to the
first block by following reference to the parent block. We
present the details of our proposed approach in Section IV.

As an example end-to-end smart home application, we
present a detailed implementation of a smart camera in shar-
ing economy using our proposed method. We then compare
our system against an existing blockchain-based solution [4]
and present an empirical evaluation of the two systems.
We find that our system can operate in resource-constrained
devices, be used in time-sensitive operations, and has 5
orders of magnitude better user perceived latency than the
blockchain-based solution, and is thus suitable for on-device
implementation.

II. BACKGROUND

In this section, we give a brief overview of blockchain,
types of blockchain, and smart contracts. We also explain
how each of these is related to smart home systems.

A. Blockchain

A blockchain is a distributed, peer-to-peer, immutable
digital ledger consisting of a chain of blocks. Each block
contains one or more transactions along with a hash of

these transactions. These blocks are mined (i.e. added to the
chain) by solving cryptographically hard problems requiring
significant computational power. High-end devices that are
used to solve these problems are called miners. There are
generally multiple miners in a blockchain forming a peer-to-
peer network.

The ordering of blocks in a blockchain is achieved using
a consensus algorithm. Each block contains a hash of the
previous one, which means the entire chain can be traversed
and validated starting from any block up to the first one (called
genesis). The cryptographic algorithms are designed in such
a way that for an adversarial entity to tamper with a block
and still get validated would require an impractical amount of
computational power. A blockchain provides multiple features
that are desirable to ensure privacy and security in a smart
home system:

o Decentralization: As a blockchain is a peer-to-peer sys-
tem, users need not rely on an untrusted third party to
store their data. Moreover, the same system can be used
to allow tenants to maintain their data separately from
that of homeowners.

o Immutability: A blockchain can ensure the integrity of
transactions through its immutable ledger. Transactions
can be performed between a homeowner and a tenant
using the blockchain, which cannot be disputed.

e Transparency: A transaction mined in one node is prop-
agated to multiple nodes in the blockchain. Moreover,
these transactions are validated by the receiving nodes.
This adds to the confidence of the involved parties
regarding the correctness of the transactions.

B. Types of Blockchain

There are primarily two types of blockchain: (i) public and
(ii) private. Any user can join a public blockchain network
and add and verify data. On the other hand, only certain
“permissioned” entities can take part in a private blockchain
network. As a result, the consensus algorithms and validation
process used in a public blockchain tend to be more resource-
intensive than that of a private blockchain. Most specifically,
private blockchains typically implement faster mining and
validation rates than their public counterparts [17]. However,
a private blockchain requires trust among the participants.
Moreover, it is considered to be less secure than its public
counterpart, as in a public network the number of nodes
involved is high, resulting in a low probability of a major-
ity attack being successful. Therefore, a public blockchain
provides better security and privacy features compared to a
private one [18]. Although the use of private blockchains in
smart home systems has been extensively researched in the
literature [5], [6], [8], [11], relatively few focus on the use of
public blockchains [4], [19].

C. Smart Contract

A smart contract is an executable code that is triggered
when predefined conditions are met. Despite smart contracts
not being new to the research community [20], they have
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Fig. 1. A high-level architecture of existing blockchain-based smart home
systems. Domestic appliances are controlled by one or more low-cost,
resource-constrained processing units. Processing units can connect to the
blockchain network using light clients through a gateway or proxy. Users can
interact with the blockchain network to read/record different parameters re-
quired by smart-home applications, e.g., threshold values of temperature, light
intensity, etc. Processing units can receive directives from the blockchain,
e.g., whether to turn a light on/off, etc.

gained renewed attention after blockchains supporting them
have been introduced — Ethereum ! being the most signif-
icant. Functions in a smart contract are executed when a
transaction calling that function is successfully added to a
mined block. In this way blockchains allow business logic to
be executed based on data stored securely in the blockchain.

III. BLOCKCHAIN-BASED SMART HOME SYSTEMS

The traditional smart home system consists of one or more
processing units that control home appliances [2]. These
processing units are often low-cost and resource-constrained,
e.g., microcontrollers or single-board computers. If there are
multiple processing units, they usually communicate wire-
lessly. The processing units are connected to the Internet
through a gateway. In addition, systems that use a private
blockchain often include high-end devices acting as miners
within the home network [5], [6], [8], [11]. The home-
owner deploys smart contracts in the blockchain through a
blockchain transaction and receives the address of the smart
contract.

The basic architecture of a blockchain-based smart home
system shown in Figure 1 has been adopted in multiple
previous efforts. In [5], the authors use a single machine
private Ethereum blockchain to implement an air-conditioning
system. In this work, the authors use a smart contract to store
a threshold temperature value and do not provide any exper-
imental results. In [6], the authors use a private Ethereum
blockchain with two miners to create an alert system that
lights LEDs if the temperature/humidity rises above a thresh-
old. Their results reveal that setting the threshold values takes
18.55 seconds on average. In [8], the authors create a private
Ethereum blockchain with two machines and use the smart
contract to store threshold values like the previous works.
Although the authors do not present the execution time,
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Fig. 2. Role of different users in the blockchain-based smart camera
system [4].

they compare CPU usage between two well-known consensus
algorithms. In [21], the authors propose a blockchain-enabled,
capability-based access control that uses smart contracts to
convey rights from client to service provider. The authors
create a private Ethereum blockchain with six high-end miners
and report that a client observes a delay of 243 milliseconds
on average before receiving a response from the server,
including the time required by the server to read from the
smart contract. However, they do not report the time required
to store token data. In [4], the authors propose a privacy-
preserving smart camera system for sharing economy, such
as Airbnb 2. This work uses a public blockchain (to obtain
greater security) and embeds business logic in the smart
contract (e.g., checking conditions to transfer tenancy) instead
of using it simply for storage. However, the authors do not
provide any experimental evaluation of their proposed system.
Our work presents a detailed explanation and an implemen-
tation of the system described in [4] as well as a comparative
implementation using our approach (viz. Section V).

A. Smart Camera System

We consider a scenario where a homeowner rents a room
to a tenant. The room has a camera that encrypts data
while streaming video. Ideally, only the owner should be
able to decrypt this data when the room is unrented, but a
tenant should be able to take over this exclusive decryption
capability for the duration of the rental. In [4], the authors
provide a blockchain-based solution to this problem using
smart contracts as described next.

The manufacturer of the camera records the address of
the homeowner (every user account and smart contract in
a blockchain has an address) within a smart contract (Pos-
sessionContract) and deploys it to a public blockchain. This
contract is responsible for tenancy transfers and tenancy
polling. The manufacturer embeds the address of the smart
contract in the camera, along with the private key of the
camera. The public key of the camera is recorded in the smart
contract during deployment.

PossessionContract consists primarily of two functions:
transferTenancy and pollTenancy. transferTenancy is used to
update tenant’s information such as the public key of the
tenant, tenancy period, cost, etc. This function performs a

Zhttps://www.airbnb.com



check at the beginning to make sure the entity calling the
function is indeed the owner. A malicious actor (including a
malicious owner) may call the function at any time during
the valid tenancy period, and this function will return without
affecting any value, thus respecting the original agreement
between the owner and the tenant.

pollTenancy is used by the camera to find the public key
of the current tenant. A camera polls the tenant’s public key
on a daily basis according to the proposed method in [4].
As both the camera and the tenant know each other’s public
key, they can establish a symmetric key using the Diffie-
Hellman protocol. It is at this moment that the tenancy (with
respect to the camera) begins as the camera encrypts its video
stream data using this key which only the tenant can decrypt.
Once the camera detects a tenancy change through a call
to this function, a new key is established. Figure 2 shows
the interaction among the different users and the functions of
PossessionContract as proposed in [4].

The authors in [4] suggest the use of Ethereum as a public
blockchain for this system. We highlight a few caveats of us-
ing the public blockchain that we explored while investigating
this approach. First, functions that update or store data (data
stored in a smart contract comprise its state) in the smart
contract can be executed only as a result of a blockchain
transaction getting mined [22]. As described in Section I, a
block in Ethereum public network is mined every 13 seconds
on average but practically, this delay can be much longer. This
delay might prevent even a well-intended execution of this
function. For example, consider a scenario where an owner
sets the wrong information first (cost, e.g.) and then attempts
to do it correctly just before the tenancy begins by calling the
transferTenancy function. As the transaction containing this
function call might get mined after the tenancy period starts,
the function will return without making any change.

Second, Ether (ETH) is the currency of Ethereum, which
can be bought using real money or mined by solving cryp-
tographically hard problems. Every transaction costs some
amount of ETH. Therefore, executing the transferlenancy
function requires some amount of money, however small it
might be. Note that the pollTenancy function does not cost
any ETH, as it is reading a value rather than updating the
state [23]. Functions that only read the state are known as
view functions.

Third, in the version of the application described in [4], a
smart contract function can not run on its own — it must be
called explicitly (through a transaction if it updates state).
Therefore, the tenancy will not revert automatically back
to the owner after an agreed-upon tenancy period is over.
Moreover, the owner has to make sure he/she transfers tenancy
to a new tenant before the camera performs its daily poll but
after the end of the old tenancy.

IV. CAPABILITY-BASED SMART HOME SYSTEMS

In this section, we describe an alternative approach to
building smart home applications where access control is
enforced through very computationally efficient capabilities.

Our goal is to achieve feature parity with blockchain-based
systems while reducing power consumption and operation
latency sufficiently to permit direct on-device implementa-
tion. To enable this, we have designed and implemented a
distributed capability framework for heterogeneous distributed
systems like those used in IoT and smart homes. The complete
approach, called CAPLETS is described comprehensively in
[24] and overviewed here.

A capability is a communicable, unforgeable token of
authority. The holder of a token is entitled to the privileges
held in that token. While capabilities have many potential
implementations, we are interested in network capabilities,
which allow the tokens to be passed around freely over a
network, as opposed to local capabilities such as those found
in [25]. While local capabilities are protected from tampering
and forging by kernel-user space separation, network capabil-
ities are protected through cryptographic means, often in the
form of a digital signature, signed by the origin of the token.
For example, the tokens defined in [26] are simply JSON
objects with a signature field. The contents are application-
defined, but when the server receives a token, it can ensure
that it is a token it generated before and the token has not
been tampered in any way. The best analogy is they work
like a truly secure concert ticket. Clients receive/buy a token
at some point, and at a later point, they present it as proof
that they are entitled to perform a request/enter the venue.
Unlike physical tickets, it is impossible to forge a new token
or tamper with it to gain access to a more expensive area.

Some implementations of network capabilities (e.g. [26])
do not allow any modification to the token by clients, while
others [27], [28] allow controlled reduction of privileges
in varying levels of expressiveness. The tokens defined by
Macaroons [28] allow attaching richer constraints (e.g. be-
yond simple downgrades from read/write to read) to tokens.
This derivation operation occurs without the knowledge or
participation of the server, which forms the basis of the
distributed authorization framework capabilities enable.

Alongside the use of capabilities for authorization, the
most important difference from the blockchain-based system
is that this version is completely device local. For instance,
for the smart camera application, the entire state needed for
operation, the stream encryption key, the tenant public key,
etc. are maintained by the camera itself thus removing the
costs of external activities, mainly blockchain mining, from
the end-to-end system.

We construct a CAPLETS application as a group of RPC
services running on a device. An application-dependent set
of capabilities carried within tokens grant access to these
services. Another set of application-dependent constraints
limit the use of the capabilities in different ways. An example
of a capability is the privilege to call a specific function of a
service. An example of a constraint is limiting this function
call to be made only from a specific network endpoint. Unlike
Access Control Lists, Role-Based Access Control [29], or
Attribute-Based Access Control [30] models, this information
is not stored on the device as part of a database, but rather
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Fig. 3. Chain structures of blockchain and CAPLETS.

carried in cryptographically secure tokens and stored by the
clients themselves. Its cryptographic construction prevents
malicious clients from forging tokens.

Constraints of CAPLETS are implemented through pro-
grams for an application-specific byte code virtual machine
or native code. This allows for absolutely flexible policy
implementations, similar to smart contracts. Unlike smart
contracts, the programs are efficient enough to be executed
securely by resource-restricted devices.

Capabilities and constraints in CAPLETS are strongly
typed objects. They have agreed upon structures and they
maintain type information across the network. They can carry
arbitrary information for use in authorization. CAPLETS also
defines a mechanism to encode RPC invocations as part of its
capability encoding.

We provide a distributed and secure method for sharing
privileges in CAPLETS, called a derivation. Capabilities and
constraints are carried in blocks called frames to support
derivations. A client can append a new frame to an existing
token while maintaining verifiable cryptographic proof that
it indeed held the token to which it is appending the new
frame. The capabilities in a frame can only be reduced and
constraints can only be increased, so it is impossible to
gain new privileges through derivations. Finally, derivations
are irreversible, so a client holding a token with reduced
privileges cannot recover the original, more privileged token.

We tag tokens with a computationally inexpensive HMAC-
SHA256 [31] rather than signing with asymmetric digital
signature functions. The first token of a device is tagged with
a secret generated by the device. The token is shared with the
device owner, but the secret never leaves the device. Changing
the internal secret renders all existing tokens invalid.

To summarize, a token is a chain of frames and a single 32-
byte HMAC-SHA256 tag. The initial tag is computed using
the secret on the device and the content of the first frame,
therefore the device must create any token with a single frame.
MAC construction guarantees that it is impossible to recover
the secret given the tag and the contents. Tags of derivations
(i.e. tokens with multiple frames) can be computed by any
entity holding a valid token using the existing tag as the secret
to the same MAC operation with the content of the next frame.

In other words, a token carries an immutable log of derivations
where each link protects the next one. Once a device receives
a token, it can verify it by replaying the MAC functions as
described above over the log of derivations and comparing the
computed tag value with the tag stored in the token. Figure 3
shows that while not identical, the chain of derivations is
analogous to the chain of transactions in a blockchain and is
thus verifiable in a similar way.

For every device, there is a root foken (similar to the genesis
in a blockchain) that authorizes every operation and is held
by the device’s owner. Only the device can generate its root
token using a secret that it alone possesses. When the device
receives a token over the network, it verifies the signature is
intact and checks if all derivations are valid. Then, it checks
that all constraints are met. If any of the checks fail, the token
is discarded. If all checks pass, the entire token is considered
well-formed and any requests in the token will be served.
Finally, CAPLETS defines an efficient key exchange protocol
for in-transit encryption.

For the camera tenancy application, we identify the follow-
ing requirements:

1) A tenant must lose any access once their tenancy period

ends,

2) Each secure operation needed by the application must

finish under a second,

3) A tenant is authenticated by their public key,

4) Once tenancy is transferred, the owner cannot access

the device until the tenancy ends,

5) A tenancy can be canceled early only by the tenant.

We fulfill the first requirement through the use of a timeout
constraint on all tenant tokens. A timeout constraint carries
a UTC time after which the server will reject any token
carrying it. The second one we demonstrate in the evalua-
tion (Section V). We meet the third one by introducing a
public key constraint to the tenant token. The public key
constraint requires the client to sign tokens they send with
the corresponding private key of the public key carried in the
constraint.

While the first three requirements are supported by
CAPLETS without smart contracts, the last two need the
introduction of a new ability. The core design of CAPLETS



implies that every client is essentially acting on behalf of
the owner. In other words, any operation that any client
can perform, the owner can also perform (since the owner
holds the root token for the device). This design goes against
requirements 4 and 5. Our solution is to add an ownership
transfer protocol to CAPLETS. This is implemented by the
following service interface:

service caplets_host {
transfer_ownership (
until: Time,
key: array<u8>
) —> Token;
early_cancel ()
get_root_token ()

-> bool;
-> Token;

The transfer_ownership function is called by the
owner to temporarily relinquish ownership rights carried in
the original root token. This call immediately changes the
server’s internal signing key. The function returns a new root
token signed with the new key which, for this application,
must be the public key of the tenant. Thus the owner gets
back a temporary root capability (that invalidate the previous
root) that only the tenant can use. To implement this rights
transfer, the device places a public key constraint on the
returned token with the tenant’s public key (which the tenant
supplied when occupying the rental), meeting requirement 4.
It also places a timeout constraint to meet requirement 1. The
owner then passes this token to the tenant. Since the tenant
can sign tokens, only the tenant has access to the device
until the timeout expires. Further, because the tenant holds
the temporary root, it can call early_cancel to revert its
ownership and end its tenancy early.

As described in the next section, performing public key
operations can incur between 2 to 3 orders of magnitude
overhead to processor and power use. Since the root token
held by the tenant has a public key constraint, this cost
is applied to every single request made by the tenant. It
is possible to amortize this overhead, however. Once the
tenant has their constrained token, they can perform a request
to get_root_token (essentially a session key for the
duration of the rental) to obtain a root token that is only
timeout constrained. After that point, the tenant can use the
more efficient root token for the duration of the rental.

With these primitives in mind, we describe a CAPLETS-
based smart camera scenario. We begin with the provisioning
of the smart camera. When the camera is first enabled, it
generates a secret, S7. It uses this secret to tag the root token
and transmit it to the owner. We refer to the contents of the
root token as R, and the tagged token as [R]s,. The [X]y
notation is used to denote X is tagged with the secret Y. This
step is shown in Figure 4.

Once the owner has the root capability, they can now exe-
cute any of the functions served by the camera. We now de-
scribe the transfer ownership scenario. Here, the tenant makes
a move-in request MZ = (Kr) where Kr is the public key
of the tenant. The owner in turn makes a transfer ownership
request 7O = [R]s, > transferOwnership(Kr, E) to the
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Fig. 4. Device provisioning in the CAPLETS approach.
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Fig. 5. Ownership transfer in the CAPLETS approach.

camera. Here, the X > Y notation means that Y is derived
from X. E stands for the agreed-upon move-out time. The
camera in turn generates a new secret So and switches to
it and responds with the public key constrained tenant root
token, Ry = FExpiresAtg!MustSigng,![R]s,. Here, the
XY denotes that Y is constrained on X. At this point, the
owner loses access to the camera. This operation is shown in
Figure 5.

Now, the tenant can exercise their root token since
they have the private key for K. For instance, they can
make a set stream encryption key request SK = {Rr >
setStreamEncryptionK ey(key)} k. Here {X}y means
that X is digitally signed with the corresponding private key
of Y. This is shown in Figure 6. However, using R directly
like this incurs considerable overhead if a request is expected
to be made frequently. In such cases, the tenant makes a
request GR to the get_root_token function to acquire
a cheaper to exercise token and uses it in the future. The
cheaper root token, Rc = ExpiresAtg![R]s,, is identical to
R except that it does not have the public key constraint. The
cheap set key request SK' is identical to SK except that it
is derived from R instead of Rp. This scenario is shown
in Figure 7. While the use of this operation is optional, we
have observed performance improvements up to a factor of
500 after introducing and using it.

This approach does not suffer from any of the blockchain-
related caveats mentioned in Section III. Specifically, it has no
monetary cost to execute, has no computationally expensive
operations that increase latency, and does not require addi-
tional operations at the end of a tenancy.
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Fig. 6. Encryption key setting in the CAPLETS approach.
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Fig. 7. Encryption key setting in the optimized CAPLETS approach.

V. EVALUATION

In this section, we empirically evaluate the performance of
two smart camera systems — one Ethereum-based as discussed
in Section III-A, and another one based on our proposed
method as discussed in Section IV. For the Ethereum-based
system, we deploy our smart contract in Ropsten® [32], which
is one of Ethereum’s public test networks (testnets) that uses
the same algorithm as the main network (mainnet). Ropsten
thus closely replicates the mainnet environment.

We invoke the smart contract functions using a Truffle [33]
client from a Eucalyptus [34] private cloud instance con-
taining two 2GHz CPU and 4GB memory and measure the
time between invocation and return. We perform capability
experiments on both the same instance as we use for the
blockchain experiments and an STM32L.475 microcontroller
with an 80MHz ARM Cortex M4 processor with 64KB of
RAM. We take 100 readings for each of the two functions
(transferTenancy and pollTenancy) and present the average
and standard deviation.

A. Performance of a Blockchain-Based System

As transferTenancy has to update the state, a corresponding
transaction must be mined in the blockchain for it to execute.
On the other hand, pollTenancy is a view function and does
not require a transaction. Table II shows the average time
taken to transfer tenancy and to poll tenancy.

As expected, transferTenancy is slower than pollTenancy.
The average execution time of the former is 20.267 seconds
whereas that of the latter is 0.992 seconds. That is, trans-
ferTenancy is more than 20z slower than pollTenancy. The
high standard deviation of 10.796 seconds in transferTenancy
is expected, as the function gets executed only when the
transaction containing the function invocation gets mined,
which can be the immediate next block that is mined or an
arbitrary number of blocks after that. The observed minimum
and maximum execution times for this function are 5.685
seconds and 60.302 seconds respectively.

B. Ether (ETH) Expenditure

In Ethereum, gas is a measure of the amount of computa-
tional effort required to execute an operation [35]. At the time
of smart contract deployment, the deployer has to specify how
much ETH he/she is willing to spend per unit of gas, i.e., gas

3relevant transactions can be explored at https://bit.ly/3sQT61z

price. If the gas price is higher, miners have a greater incentive
to mine, resulting in a transaction getting mined faster.

In our experiment, we used the default gas price in Ropsten,
which was 0.00000002 ETH at the time of deployment. In
general, the cost of a transaction is the amount of gas used
times the gas price. Table I shows the cost of contract creation
and function execution according to the market value at the
time of the deployment of the contract (20 April 2021). As we
can see, apart from incurring an initial cost of USD 27.21, we
also require USD 1.90 every time we call the transferTenancy
function. As no mining effort is required for the execution of
a view function, the poliTenancy function can be executed
free of cost.

TABLE I
EXECUTION COST WITH A GAS PRICE P=0.00000002 ETH, 1 ETH=USD
2328.54.
action/function gas (G) | Ether (GxP) | USD
contract creation | 584216 0.01168432 27.21
transferTenancy 40731 0.00081462 1.90
pollTenancy - - -

C. Performance of a CAPLETS-based System

Unlike the blockchain version, the capability-based im-
plementation has no external dependencies, so read-only vs
update request latency does not change in a significant way.
However, whether the request token includes a public key
constraint or not affects the latency considerably, so we report
two sets of results. The public key constrained version is
called only once per tenant.

We implement the public key constraint using ECDSA
(Elliptic Curve Digital Signature Algorithm) on the secp256r1
curve. The constraint consists of the public key that has to
sign the token.

Table II shows the average time it takes to execute a
request on a particular host. Note that both implementations
have the same security guarantees. Our experiments show
that the capability-based approach is 5 and 6 orders of
magnitude faster on transferTenancy and pollTenancy oper-
ations respectively compared to the blockchain. Even the

TABLE 11
LATENCY RESULTS OF transferTenancy AND poliTenancy (OR setKey)
OPERATIONS FOR BOTH BLOCKCHAIN-BASED AND CAPABILITY-BASED

IMPLEMENTATION.
Mean latency (stddev) | Mean latency (stddev)
in microseconds in microseconds
on virtual machine on microcontroller
Blockchain 20,267,000 N/A
transfer (10,796,000)
Blockchain 992,000
poll_tenancy | (50,000) N/A
Caplets transfer
with pubkey 652 (32) 156,230 (167)
Caplets transfer
without pubkey 7@ 922 (26)
Caplets set_key
with pubkey 584 (34) 150,931 (527)
Caplets set_key
without pubkey 3 457 (25)




microcontroller version of capabilities performs 2 to 4 orders
of magnitude faster than the blockchain implementation on a
fully provisioned, resource-rich server.

Due to the very expensive elliptic curve operation, the
tokens with the public key constraint take more than 2 orders
of magnitude more time to use. However, since it doesn’t
incur any overhead on tokens that do not use it, and we can
drop the constraint after the first request, we believe it is a
good trade-off for the benefits public key cryptography brings
in this application.

VI. CONCLUSION

Smart contracts have received revitalized attention due to
the emergence of blockchains. Smart home systems, and
IoT applications in general, can now embed business logic
in smart contracts while providing the security and privacy
commonly associated with blockchains. However, blockchain
is inherently a resource-intensive technology and hence its ap-
plication in systems with resource-constrained IoT devices is
challenging. Moreover, applications performing time-sensitive
operations are complex to implement using blockchains.
Hence, we propose a new blockchain-independent approach
to smart contracts that is resource-efficient and suitable for
IoT applications. Our results show that the proposed method
can outperform existing blockchain-based solutions while
providing security and privacy. In the future, we plan to
explore the use of our proposed method in different IoT
applications beyond those of smart home systems.
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