Response Time SLAs for Cloudhosted Web Applications

Hiranya Jayathilaka
Prof. Chandra Krintz
Prof. Rich Wolski
Computer Science Dept., UC Santa Barbara

SOCC 2015

Web APIs

Growth in Web APIs Since 2005

Number of API Today: ~14,000

Source: http://www.programmableweb.com/api-research

Web APIs are Now IT Resources

Application SLAs and "The Cloud"

 Modern cloud platforms only provide some uptime SLAs for individual APIs

Covered Service	Monthly Uptime Percentage
Google Prediction API, Google BigQuery Service, and the standard storage class of Google Cloud Storage	>= 99.9%
Durable Reduced Availability Storage class of Google Cloud Storage	>= 99.0%
Cloud Storage Nearline class of Google Cloud Storage	>= 99.0%

 Cloud platforms do not provide SLAs on deployed user applications and APIs.

Performance SLAs in the Cloud

- Question: Is it possible to determine, automatically, performance SLAs for cloudhosted applications and APIs?
- Our solution: Cerebro
 - Predicts the response time of future web-API invocations from historical measurements
 - Fully automatic
 - For PaaS clouds

PaaS Clouds for Web Services

PaaS Client Application Survey

PaaS Client Applications...

- Don't have many branches
 - 99% of the methods have < 36 paths
- Don't have many loops
 - 88% of the methods have no loops
- Spend most of their time executing cloud SDK calls (> 94%)

So...

- PaaS applications are highly amenable to static analysis
- Cloud SDK calls essentially define client-perceived application performance

Cerebro Architecture

QBETS: Queue Bounds Estimation from Time Series

- Analyzes the first n entries in a time series
- Predicts an upper bound for the (n+1)th entry
 - $-QBETS([x_1,x_2,...x_n], p) = Q \text{ where } p \in (0,1)$
 - $-P(x_{n+1} \le Q) \ge p$
- Cerebro uses QBETS to predict response time
 SLAs of the form:
 - Operation O responds under T milliseconds (100p)
 % of the time

Evaluation: Prediction Correctness

Evaluation: Prediction Tightness

Conclusions and Future Work

- Cerebro predictions are correct and moderately tight
 - Necessary conditions for use in an SLA
- SLA durability period analysis
 - GAE: 26.8 hours
 - AppScale: 33.7 hours
- SLA-related policy enforcement at deployment time with EAGER

Thank You! Questions?

- Hiranya Jayathilaka (hiranya@cs.ucsb.edu)
- The UCSB Lab for Research on Adaptive Computing Environments (RACELab)
 - http://www.cs.ucsb.edu/~ckrintz/racelab.html

Fastest Growing Web API Categories (6 Months)

Non-commercial entities are joining the API party too...

- White House API Program: https://www.whitehouse.gov/digitalgov/apis
- IEEE APIs: http://ieeexplore.ieee.org/gateway/
- UC Berkeley APIs: https://api-central.berkeley.edu/

Prototype and Experiments

- SDK monitor: App Engine Java app
- Tests conducted on Google App Engine public cloud, and AppScale private cloud (running on a 4-node Eucalyptus cluster)
- Network delay between client and Google is included but not modeled or predicted explicitly