
MTM
2
: Scalable Memory Management for

Multi-Tasking Managed Runtime Environments

Sunil Soman Chandra Krintz1 Laurent Daynès2

1 Computer Science Department
University of California, Santa Barbara

{sunils,ckrintz}@cs.ucsb.edu
2 Sun Microsystems Inc.
laurent.daynes@sun.com

Abstract. Multi-tasking, managed runtime environments (MREs) for mod-
ern type-safe, object-oriented programming languages enable isolated, concur-
rent execution of multiple applications within a single operating system pro-
cess. Multi-tasking MREs can potentially extract high-performance on mod-
ern desktop and hand-held systems through aggressive sharing of classes and
compiled code, and by exploiting high-level dynamic program information for
optimization across program executions.

In this paper, we investigate the performance of a state-of-the-art multi-taking
MRE for concurrent program execution and find that due to limited support for
multi-tasking and performance isolation in the memory management subsys-
tem, multi-tasking performs poorly compared to a production-quality, single-
tasking MRE. To address this limitation, we present MTM

2: a comprehensive
memory management system for concurrent multi-tasking. MTM

2 facilitates
performance isolation and efficient heap space usage through on-demand al-
location of application-private regions. Moreover, MTM

2 mitigates fragmen-
tation using a novel hybrid garbage collector that combines mark-sweep with
opportunistic copying. Our empirical evaluation shows that MTM

2 improves
overall performance, scalability, and footprint for concurrent workloads over
state-of-the-art, multi- and single-tasking MREs.

1 Introduction

As desktop and hand-held platforms become more capable (faster multicore CPUs,
larger memories, etc.), users increasingly expect more from the software they execute.
In particular, users that once executed a single program at a time, now demand that
these systems multi-task, i.e, seamlessly and simultaneously execute multiple applica-
tions (such as, instant messaging, calendar and email clients, audio player, Internet
browsers, office suite, etc.). Concurrently, developers of these applications commonly
employ high-level, type-safe, portable programming languages (e.g. JavaTM and the
Microsoft .NetTM languages) for their implementation, since these languages offer
high programmer productivity, portability, rapid deployment, and support for veri-
fication of safety properties. Programs in these languages are encoded by a source
compiler into an architecture neutral format that can be executed on any system

with a managed runtime environment (MRE) for the format. To address both of
these demands and to better utilize the underlying resources on modern desktops
and hand-held systems, modern MREs have emerged with multi-tasking extensions
[5, 4, 26, 28].

Multi-tasking MREs address isolation and resource management for multi-applica-
tion workloads and provide application developers with a first-class representation of
an isolated program execution (e.g., the isolate in [15, 5] and the application domain
in .Net [19]). This representation provides the necessary functionality to launch and
control the life cycle of multiple, isolated execution units (programs).

MREs have access to high-level program information, can potentially monitor
time-varying program behavior and resource requirements, and can dynamically opti-
mize programs as well as the runtime based on prior information. Therefore, they offer
potential for more intelligent scheduling and resource management of programs. Prior
work has shown that multi-tasking is more effective at enabling cross-program sharing
of dynamically loaded and compiled code, and at achieving smaller memory footprint
and faster startup times [4, 6] than traditional MREs that rely on process-based isola-
tion. Yet, little attention has been directed at the performance of multi-tasking MREs
for simultaneous program execution, i.e., concurrent workloads, compared to a more
common scenario in which each program runs in its own process.

Figure 1 shows the results from a set of experiments that we have conducted to
compare MVM [4, 26], a state-of-the art multi-tasking JVM from Sun Microsystems,
with the single-tasking JVM (the Sun Microsystems HotSpot virtual machine version
1.5.0) from which the MVM is derived. The programs are a subset of the benchmarks
that we use for our evaluation (that we describe in detail in Section 4) that exhibit
significant garbage collection (GC) activity for the old generation (the longer-lived
region). The figure shows that the MVM significantly degrades execution performance
for concurrent workloads (2, 5, and 10 concurrent program instances in this graph),
despite the significant opportunity for sharing (i.e. multiple versions of the same
program are executing concurrently).

The MVM prototype that we use in this study is based on prior work [26] and
achieves partial performance isolation across applications, reclamation of an appli-
cation’s heap memory upon task termination without having to perform GC, per-
application accounting of heap usage, and per-application control of heap size set-
tings. However, our results indicate that the prior state-of-the-art fails to perform
favorably compared to its single-tasking counterpart for concurrent workloads that
fully exercise the memory management system. The key impediment to scalability is
the lack of GC performance isolation and a poorly performing full-heap GC algorithm.

To address these issues, we propose a novel memory management approach, which
we call multi-tasking memory manager (MTM2). MTM2 provides better GC per-
formance isolation between programs while preserving other benefits of multi-tasking
(small aggregate footprint, fast startup and sharing of classes and dynamically com-
piled code). MTM2 is a generational GC system [29] that employs per-application
young generation collection from [26] and introduces a novel hybrid approach to old
generation collection that (i) maintains the constraint that all live objects within a
region belong to the same application (which is key to GC isolation and the accu-

-80

-60

-40

-20

0

20

40

db
ja
va
c

an
tlr fo

p

lu
in
de
x

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

2 5 10

Number of homogenous instances

per benchmark

Fig. 1: Performance of a state-of-the-art multi-tasking MRE (MVM) versus multiple in-
stances of the JavaTM HotSpot virtual machine for concurrent execution of five community
benchmarks. No prior work has performed such an evaluation. Our analysis of MVM reveals
that the key bottleneck to multi-tasking performance is memory management. MVM enables
significant sharing and fewer OS processes, but this benefit does not outweigh the lack of
performance isolation in the garbage collection subsystem.

racy of tracking per-application heap usage), (ii) ensures that the aggregate footprint
of the multi-tasking MRE is small for concurrent workloads, and (iii) enables space
reclaimed through opportunistic evacuation of objects from sparsely populated re-
gions of one program to be made available to other programs. To achieve these goals,
MTM2 performs full collection of a single program’s heap in isolation with co-located
concurrent programs by combining fast, space-efficient, mark-sweep collection for re-
gions with little fragmentation, with copying collection for regions with significant
garbage and fragmentation. MTM2 combines and extends a large body of recent GC
research [8, 26, 25, 2, 20] to facilitate scalability via hybrid collection of independent
applications in a multi-tasking MRE.

We have integrated MTM2 with a prototype of MVM described in [26], and have
used it to compare the execution of multiple programs executed using a single multi-
tasking MRE versus using multiple concurrent instances of single-tasking MREs (one
per program). Two metrics are particularly interesting with respect to the scalability
of the two approaches: the overall footprint when executing multiple programs, and
the execution times of programs. We demonstrate that on average, MTM2 achieves
better overall execution times and footprint versus its single-tasking counterpart, for
concurrent workloads using a number of community benchmarks. Moreover, MTM2

is able to do so while maintaining the other benefits of running with a multi-tasking
MRE. MTM2 outperforms the HotSpot single-tasking MRE by up to 14% on average
for concurrent instances of the same program (homogeneous), and by up to 16% on
average for workloads with a mix of programs (heterogeneous). MTM2 achieves up
to 41% reduction in footprint on average for homogeneous workloads, and by up to
33% on average for heterogeneous workloads over the single-tasking MRE. Finally,

we show that MTM2 outperforms an extant state-of-the-art multi-tasking MRE by
10% to 22% for concurrent workloads.

In summary, we contribute the following:

– the first study that compares multi-instance JVM execution vs multi-tasking ex-
ecution for concurrent program execution;

– a complete memory management system that provides full GC performance iso-
lation for multi-tasking MREs;

– the design and implementation of a hybrid, multi-tasking aware GC that combines
GC approaches that are well understood, i.e., mark-sweep and copying, to bal-
ance GC performance and memory footprint. Hybrid GC re-uses reclaimed space
across multiple isolated program executions; this design achieves footprint-aware
memory management that facilitates runtime efficiency for concurrent workloads;

– an empirical evaluation that shows that multi-tasking MREs when equipped
with appropriate mechanisms for GC performance isolation, compare favorably
to single-tasking MREs with respect to footprint and program execution time for
concurrent workloads. This result further strengthens the case for multi-tasking
MREs.

In the sections that follow, we first detail the design and implementation of
MTM2. We then present our experimental framework and empirical results in Sec-
tion 4. We compare and contrast related work in Section 5. Finally, we conclude with
a summary of our findings and contributions in Section 6.

2 Multi-Tasking Memory Management

MTM2’s design enables GC to be performed for a given application in isolation, and
concurrently with respect to the mutators (threads modifying heap objects) of other
applications.

MTM2 follows the generational design [29] and each application is provided with a
private two-generation heap. As with prior versions of MVM, a third generation, called
the permanent generation, is shared across applications. The permanent generation
is used to allocate long-lived meta-data, such as the runtime representation of classes
(including method byte codes, constant pools, etc.), symbols and interned strings,
and data structures of the MRE itself, all of which may be transparently shared
across programs. The meta-data stored in the permanent generation may survive the
execution of many programs, and is rarely collected.

The permanent generation is a single contiguous area. Memory for the young
and old generations of applications originates from two pools of fixed-size regions
managed by MTM2. Each pool uses its own region size. The two pools and the
shared permanent generation are contiguous in virtual space, such that old regions
are in between the young regions pool and the permanent generation.

Memory for the young generation of a program is allocated at program startup,
by provisioning a region from the young generation pool. Memory for a program’s
old generation is allocated on demand, on a per-region basis, from an old region
pool. Thus, old and young generations are both made of one or more regions, that
are possibly disjoint in virtual space. Regions are made of an integral number of

operating system virtual pages and aligned to page boundaries to enable on-demand
allocation/deallocation of the physical pages allocated to regions by the operating
system3. Backing storage for the virtual pages of a region is allocated only upon
allocation of the region to a program. Conversely, when a region is returned to the
pool, the backing storage for its virtual memory pages is freed immediately.

A region can only contain objects allocated by the same program, i.e., a region
is always private to a program. This constraint facilitates both tracking of pro-
gram memory usage and instantaneous, GC-less, reclamation of space upon program-
termination [26]. It also helps performance isolation since GC only needs to synchro-
nize with the threads of a single application (instead of all applications).

Following standard generational GC practice, programs allocate primarily from
their young generation. Threads of a program are each assigned a thread local allo-
cation buffer (TLAB) [14, 9, 16] from the corresponding program’s young generation.
TLABs satisfy most allocation requests with a simple, non-atomic, increment of a
pointer of the TLAB’s allocation hand (bump-pointer).

Tracking of cross-generation references uses a card-marking scheme [3, 12, 11, 1].
Old regions are card-aligned and consist of an integral number of cards, so that young
generation collection of an application only needs to scan the dirty cards that cor-
respond to the old regions allocated to the application. These are maintained by
MTM2 in a per-application list ordered by increasing virtual address. Each appli-
cation is also associated with a current old region, which identifies the region used
to allocate tenured space for the applications. Tenured space is allocated primarily
during young generation collection, when promoting young objects, and occasionally,
directly by mutator threads of the application to allocate space for large objects.

MTM2 initiates a young generation collection for an application when the appli-
cation’s young generation is full, and an old generation collection when the application
reaches its maximum heap size limit, or when allocation of a region from the pool
of old region fails. Minor collection for an application is performed concurrently with
respect to other applications using mechanisms described previously [26].

Collection of the old generation of an application’s heap space follows a hybrid
approach that combines fast, space-efficient, mark-sweep for regions of the old gen-
eration with little fragmentation or garbage, with a copying collection for regions of
the old generation with either significant fragmentation or with a significant amount
of garbage. Old generation collection is on a per-application basis, i.e., only the old
generation of the application that triggers GC is collected.

MTM2 also exploits MVM’s representation of classes to organize the permanent
generation in a way to limit tracing, during young and old generation collection,
to objects of the application that initiated the collection (henceforth called the GC
initiator). The MVM separates the application-dependent part of the runtime repre-
sentation of classes from the rest of the class representation. When a class is sharable
across applications, a task table is interposed between the class representation and
its application-dependent part, the latter being allocated in the old generation of
the corresponding application. The task table for a class has an entry for every ap-
plication executing in the MRE, and each application is assigned, upon startup, a

3 E.g., using map/unmap system calls on the SolarisTM OS.

unique number (the task identifier) which is used to index these tables. The entry
of a task table holds a reference to the object that holds the application-dependent
part of the class when the application associated with that entry loads the class, or
a null pointer otherwise [4]. Classes whose representation cannot be shared across
programs (e.g., classes defined by program-defined class loaders) refer directly to the
application-dependent part. All data structures that directly reference application-
dependent data are clustered in a specific area of the permanent generation, which
is the only area that needs to be traced during collection of younger generations.
When an application does not use program-defined class loaders, tracing is limited to
a single entry in every task table (the entry assigned to the GC trigger).

Other data-structures that reference application-dependent data (e.g., JNI Han-
dles) are organized either in a per-application pool or in tables with one entry per
application, similar to the task table. MTM2 is aware of this organization and ex-
ploits it to scan only those pools or table entries associated with the GC initiator.
Further, only stacks of threads of the GC initiator are scanned for roots.

3 MTM
2’s Mark-Evacuate-Sweep Garbage Collector

Our experiments with prototypes of MVM suggest that efficient GC is key to making
the concurrent execution of multiple programs using multi-tasking a viable alter-
native to running the same programs using one instance of a single-task MRE per
application.

MTM2’s old generation design is constrained by the need to ensure that an old
region contains only objects from the same application, for performance isolation, as
well as for efficient and accurate tracking of heap resources. This implies that dead
space within an old region allocated to an application cannot be reused by another
application. This can potentially lead to significant fragmentation and substantially
increase footprint for multi-tasking. Copying GC is effective at mitigating fragmen-
tation, but at the cost of excessive copying of live objects, and the necessity of a copy
reserve area. In place compaction requires multiple passes over the heap (although re-
cent work has significantly optimized compaction [20]). Mark-sweep, however, is fast,
and involves a single pass over live data, but may result in poor space utilization [17].

MTM2 combines two relatively simple and well-understood techniques: mark-
sweep and copying. We use copying to evacuate live objects from only those regions
that are fragmented or are sparsely populated, and mark-sweep for the remaining
regions. The goal is to maintain a low footprint, but without the overhead of copying
of all live objects and a copy reserve for every GC. Space reclaimed via sweeping can
only be used by the GC initiator, since the free space may be co-located with live
data in the same region. Evacuated regions, on the other hand, can be returned to
the old region pool where the backing storage for their virtual pages is freed until the
regions are re-assigned to an application.

Candidate regions for evacuation are selected based on the amount of fragmen-
tation the GC is likely to cause in the region. Before the collection begins, MTM2

suspends all the threads of the GC initiator at a GC safepoint. The threads are
restarted when GC completes.

The collection itself is performed in four phases: marking, selecting candidate
regions for evacuation, evacuation (copying), and sweeping and adjustment of regions

(performed in the same pass). The first two phases gather information (liveness,
connectivity, occupancy, and estimated fragmentation) necessary for the last two
phases. Evacuation and adjustment are optional, and occurs only if the second phase
selects regions for evacuation.

Figure 2 illustrates with an example the main phases of MTM2’s hybrid collection.
The following sub-sections detail each of the four phases.

3.1 Marking Phase

The marking phase begins a collection and produces two data structures as output: a
mark bitmap that records live objects of the GC initiator; and a connectivity matrix
that records connectivity information between old generation regions. Together, these
are used to determine regions to evacuate, sweep and adjust.

Storage for the mark bitmap and the connectivity matrix is allocated for the
duration of the hybrid GC cycle. The mark bitmap has one bit for every word of
heap memory. Marking starts with the roots of live objects for the GC initiator: the
stacks of the application’s threads; the entry corresponding to the GC initiator in
each task table for the runtime representation of shared classes in the permanent
generation, and entries in global tables maintained by the multi-tasking MRE (such
as JNI handles).

Marking then traverses the object graph from these roots. Because isolation is
strictly enforced between applications through application-private regions, the mark-
ing phase will never access an object allocated by another application nor traverse a
region allocated to another application.

The connectivity matrix is updated when a yet unmarked object is traversed. The
matrix is encoded as a two-dimension boolean array, so that an entry (i, j) set to true
indicates that there exists at least one reference from region i to region j. The matrix
is initially zero-filled.

Testing whether each reference crosses a region boundary can be expensive. We
have observed that inter region object references in the old generation are clustered,
and that the distance between the referencing (source) object and the object being
referenced (destination) in an old region is often small. Therefore, given an old region
size that is large enough, the source and destination objects are likely to reside in the
same region. If region size is a power of two, and regions are aligned, testing whether
two addresses are in the same region can be inexpensively performed as follows 4:

to == *from;

if (to ∧ from) >> LOG REGION SIZE) != 0 {
// Not in the same region.

update connectivity matrix(to,from);

}

When the test fails, a slow path is taken in order to update the connectivity matrix.
The choice of an appropriate region size contributes to confine clusters of connected
objects to a single region, which has two benefits: reducing the overhead of tracking
inter-region connectivity (i.e., the fast path will be taken more often); and limiting

4 This test for cross-region object references is similar to the test in the write barrier of the
Beltway framework [2] except that, in our case, the test is performed at marking-time.

the number of regions that needs to be inspected for potential pointer adjustment
after regions are evacuated. We have empirically identified an old region size of 256KB
that works well.

In summary, tracking of connectivity information helps to reduce the amount
of live data that needs to be scanned during pointer adjustment if any region is
evacuated.

3.2 Selecting Regions for Evacuation

The decision to evacuate a region attempts to balance the cost of evacuation (copy-
ing and pointer adjustment) and heap fragmentation (consequently, footprint). To
maintain a low cost for evacuation we evacuate sparsely populated regions, while to
maintain a low footprint, we evacuate regions with fragmentation.

That is, our evacuation policy evacuates a region unconditionally if the ratio of the
live to dead space (live ratio) is less than a certain minimum live ratio (MinLiveRatio).
The region is also evacuated if it is estimated to be fragmented. This is done by com-
paring the average size of each contiguous fragment of dead space to a threshold
(MinFragmentSize). That is, given L, the amount of live data in the region, F , the
number of contiguous areas of dead objects in the region, and R the size of the region,
a region is selected for evacuation if:

(L/R) < MinLiveRatio∨((L/R) < K∧(F > 1)∧((R−L)/F) < MinFragmentSize)

We empirically chose MinLiveRatio to be 0.25, i.e., a region is always evacuated if
it contains over 75% of garbage. When the pool of old regions is closed to exhaustion,
this parameter is increased up to 0.9 to aggressively evacuate all but the almost
full regions. K is the occupancy threshold and chosen to be 0.9, i.e., we look for
fragmentation in regions that are at least 90% full. MinFragmentSize is set to 50
bytes by default.

In order to realize this policy, MTM2 needs to determine the ratio of live to dead
data and the number of contiguous fragments of dead space in each region. This is
done following the completion of the marking phase, by scanning the mark bitmap.
For each region belonging to the GC initiator, MTM2 walks over the region’s objects,
using the mark bitmap to determine their liveness and the objects’ header to obtain
their size. In addition, in this pass, adjacent dead objects are coalesced into a single
dead area to reduce scanning time for future passes.

3.3 Evacuation, Sweeping and Adjustment of Old Regions

Live objects in regions selected for evacuation are relocated to new regions allocated
from the old regions pool. Evacuation traverses the region being evacuated for live
objects using the mark bitmap. Live objects are copied to the new region, and a
forwarding pointer is installed in the header of the (old) copied object. Forwarding
pointers are necessary for pointer adjustment. This, however, prevents the evacuated
regions from being freed before adjustment is complete.

New regions used to store evacuated objects are added to the set of regions that
need adjustment, i.e., we assume that the a region is likely to contain objects that
point to other objects in the same region.

live lists app 1 app 2 old region pool

Before Marking

After Marking

evacuate sweep

Evacuation & Sweeping

0... 0101... 1.01

app1 free
regions

mark bitmap

old region pool

old region pool

Fig. 2: Marking, Evacuation and Sweeping of Old Regions. Each application has a corre-
sponding list of live areas. Marking traverses live objects for an application and marks live
objects in the mark bitmap. After marking, candidate regions for evacuation (or sweeping)
are selected based on the amount of live data and fragmentation. Regions selected for evac-
uation are then evacuated, regions selected for sweeping are swept and free areas in these
added to a per-application free list. Pointer adjustment for swept regions is also performed
during this pass, if necessary.

Once evacuation is complete, sweeping and adjustment of pointers can be per-
formed in the same pass. For each region that was not evacuated, the mark bitmap
corresponding to the region is used to build lists of live and free areas within the
region. The connectivity matrix is also checked to determine if the region contains
objects that reference objects in evacuated regions. If so, the live objects in the region
are scanned to adjust references. Finally, the free and live lists of areas are combined
into a list of live old generation areas used by the application. The live list is used
to account for the old generation usage of the application, as well as during young
generation collection to limit the amount of work that is done during card scanning,
i.e., we only need to scan dirty cards that correspond to the application’s list of old
generation regions. The application’s free list that was constructed during sweeping
can only be used to satisfy allocation requests for that application (cf. Section 2).

If any region is evacuated, in addition to adjustment of some old regions, we also
need to adjust objects in the young generation of the application, the permanent
generation, and outside the heap (globals) that reference objects in the evacuated
region(s).

The young generation is typically small (the default is 2MB) and can therefore be
scanned in its entirety without significant overhead. However, performing an object
graph traversal beginning from the roots to identify globals and permanent gener-
ation pointers that need to be adjusted can be prohibitively expensive. Instead, we
keep track of the locations of these pointers during the marking phase, and update
them during pointer adjustment. The space overhead required to keep track of these
locations is small, and is reported as part of the total footprint of MTM2 in Section 4.

live lists app 1 app 2

src dst
2 3

app1 region connectivity

1 2 3

Fig. 3: Adjustment of old regions. Application 1 is being collected. We build the region
connectivity matrix for application 1 during the marking phase. Region 2 has outgoing
pointers to Region 3, therefore, Region 2 must be scanned if Region 3 is evacuated. However,
Region 1 and 4 do not need to be scanned.

Once all regions have been adjusted, the evacuated regions are returned to the pool
of free regions, and backing physical memory corresponding to their virtual address
pages is unmapped, i.e., freed regions do not consume physical memory and can be
later re-mapped and used as part of the old generations for any application.

Objects larger than a single region are treated specially. They are assigned an
integral number of contiguous old regions large enough to hold the object. MTM2

notes whether a region is part of a single large object region and whether that object
contains no references (scalars only). This information is used to reclaim space when
these large objects die (e.g., by returning their regions immediately to the pool,
without waiting for adjustment).

4 Evaluation

The design of MTM2 was motivated by the poor behavior of extant approaches
to multi-tasking for concurrent application workloads, especially when compared to
running the same concurrent workload using one instance of a single-tasking MRE
per application as noted in Section 1.

In this section, we report our assessment of how well a multi-tasking MRE using
MTM2 fares when facing similar workloads. We first compare the performance of
the most recent prototype of MVM (described in [26]) to that of an MVM modified

to integrate MTM2. We then compare MTM2 to a single-tasking MRE. We use the
JavaTM HotSpot virtual machine, version 1.5.0-03 [14], a production quality, high-
performance virtual machine from Sun Microsystems (which we will refer to as HSVM
from now on). Both MVM and MTM2 derive their implementation from HSVM and
share a significant amount of code, which facilitates comparison. MVM and MTM2

differ only in their memory management sub-systems and modification to the runtime
to achieve GC performance isolation. All other mechanisms to support multi-tasking
and sharing of the runtime representation of classes, byte code and compiled code
(see [4, 5] for detailed descriptions) as well as other virtual machine implementation
aspects inherited from HSVM are identical.

The main metrics of interest for our comparison are execution time and the ag-
gregate memory footprint necessary to run concurrent workloads.

We begin with a description of our experimental setup, including hardware, bench-
mark, and methodology.

Benchmark

compress SpecJVM98 compression utility (input 100)

jess SpecJVM98 expert system shell benchmark:

 Computes solutions to rule based puzzles (input 100)

db SpecJVM98 database access program (input 100)

javac SpecJVM98 Java to bytecode compiler (input 100)

mtrt SpecJVM98 multi-threaded ray tracing implementation (input 100)

jack SpecJVM98 Java parser generator based on the Purdue Compiler

antlr Dacapo antlr: Parses grammar files and generates a parser

 and lexical analyzer for each (default input)

fop Dacapo fop: XSL-FO to PDF parser/converter (default input)

luindex Dacapo luindex: uses lucene to index the works of Shakespeare

 and the King James Bible (default input)

ps Dacapo ps: Postscript interpreter (default input)

opengrok Open source code browser and cross reference tool

 (input: Source files in HSVM "memory" subdirectory, 118 files)

jruby Ruby interpreter written in Java

 (uses small scripts as input: beer song, fibonacci numbers,

 number parsing, thread test)

groovy Groovy interpreter written in Java

 (input: unsigns, i.e., strips MANIFESTs) for a number of jar

 files from Apache ant)

antlr-mixed mixed workload consisting of antlr, fop and opengrok

luindex-mixed mixed workload consisting of luindex, fop and ps

javac-mixed mixed workload consisting of javac, jess, mtrt and jack

scripts-mixed mixed workload consisting of groovy and jruby

Description

Fig. 4: Benchmarks and workloads used in the empirical evaluation of MTM
2

4.1 Experimental Methodology

We ran our experiments on a dedicated dual CPU 1.5GHz UltraSPARC IIIi system,
with 2GB physical memory, 32KB instruction and 64KB data cache running the
SolarisTM Operating System version 10.

Figure 4 describes the benchmarks and workloads we used for our experiments.
Programs used in our concurrent workloads are selected from community programs

from the SpecJVM98 [27] and Dacapo [7] benchmark suites 5, as well as two commonly

5 We used version 2006-10-MR2 version of the Dacapo benchmarks, and ps from Dacapo
version beta-05022004.

used open-source scripting applications, jruby [18] and groovy [10], and an open-
source source code browser and cross reference tool called opengrok [23]. We exclude
mpegaudio from SpecJVM98 (as is commonly done) since it does not exercise the GC.

We experimented with two types of workloads: homogeneous and heterogeneous. A
homogeneous workload consists of multiple concurrent instances of the same program.
For instance, 10 instances of javac implies that 10 instances of this program are
launched simultaneously. A heterogeneous workload consists of concurrent instances
of different programs.

Exec time Footprint Exec time Footprint Exec time Footprint

Bmark (sec) (MB) (sec) (MB) (sec) (MB)

compress 10.96 139.44 27.60 351.16 56.41 650.80

jess 4.93 19.82 12.33 33.18 24.54 55.12

db 20.84 35.95 52.50 74.05 105.10 141.00

javac 10.40 49.51 26.78 109.85 53.97 261.03

mtrt 3.39 20.46 8.47 62.27 16.24 114.26

jack 4.21 30.84 10.75 59.53 20.89 104.78

antlr 9.17 67.51 20.95 114.23 39.86 219.61

fop 6.00 51.84 14.31 87.45 28.53 148.49

luindex 40.08 76.68 89.45 173.35 169.42 333.43

ps 27.18 16.63 68.37 23.91 136.80 37.02

opengrok 10.44 101.50 25.40 230.85 51.35 429.77

groovy 10.15 138.06 21.54 366.63 50.92 544.25

jruby 2.58 34.80 5.66 49.67 10.67 73.47

Average 12.33 60.23 29.55 133.55 58.82 239.46

Number of instances

102 5

Exec time Footprint Exec time Footprint

Bmark (sec) (MB) (sec) (MB)

antlr-mixed 12.64 79.52 24.43 148.06

luindex-mixed 34.44 77.04 42.47 132.76

javac-mixed 13.28 31.97 23.58 63.57

scripts-mixed 8.28 68.68 11.30 118.95

Average 17.16 64.30 25.45 115.84

1 2

Number of instances

Fig. 5: Total execution time (in seconds) and footprint (in MB) data with MTM
2 for con-

current homogeneous (multiple instances of same application), and heterogeneous (multiple
instances of different applications). The benchmarks are described in Figure 4. All relative
performance improvement results for execution time as well footprint in this paper use these
values.

We refer to the heterogeneous workload as mixed in Figure 4. We present results
for 1 and 2 instances each of an application in a heterogeneous workload. For example,
2 instances each for antlr-mixed implies that we launch 2 instances each of antlr,
fop and opengrok simultaneously, i.e., 6 concurrent instances.

We report total execution time by reporting the time elapsed since the applications
in a workload were launched and until the last application completes. We use a harness
that executes each application as an isolate [15] using reflection and we report total
elapsed time using System.nanoTime(). To measure footprint, we use the UNIX
pmap utility, which we execute as an external process in a tight loop and report
the maximum of the total RSS (resident segment size) value reported by executing
pmap -x on the MRE process. Footprint and execution times are reported using
independent runs. In case of single-tasking, we sum the RSS values returned by pmap

for each individual MRE process (since to execute concurrent workloads, we must
launch a single-tasking MRE process for each application).

We perform all HSVM experiments using the client compiler and the default
serial GC (sliding mark-compact) used for client configuration (i.e., using the -client
-XX:+UseSerialGC command line flags). HSVM and MTM2 both use copying GC for
collecting the young generation. For all results, we present the average of 5 executions.

4.2 MTM
2 Versus MVM

We first present performance results that compare MTM2 to MVM. MVM provides
performance isolation for the young generation only, per-application resource account-
ing, and immediate, GC-less reclamation of heap space upon program termination.
However, as seen earlier, this MVM performs poorly for concurrent workloads rela-
tive to executing the same concurrent workload with multiple instances of HSVM (cf
Figure 1).

0

10

20

30

40

50

60

db
ja
va
c

an
tlr fo

p

lu
in
de
x

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

2 5 10

Number of homogenous instances

per benchmark

Fig. 6: Percentage improvement in execution time enabled by MTM
2 versus a state-of-the-

art implementation of MVM for concurrent workloads that show significant old generation
GC activity. MTM

2 enables better performance due to a more efficient old generation GC
and performance isolation.

Figure 6 shows the performance improvement enabled by MTM2 over this MVM.
The results indicate that MTM2 outperforms MVM by 10%, 15%, and 22% on aver-
age when running 2, 5, and 10 concurrent instances, respectively. For this experiment,
we only present results for applications that show significant old generation GC activ-
ity. This performance improvement is possible due to the hybrid old generation GC
in MTM2 that enables performance isolation, as well as improved GC performance.

Figure 7 shows the old generation GC times for MTM2 versus MVM. MTM2’s
hybrid GC significantly improves GC performance over MVM. MVM uses a stop-
the-world mark-compact GC for the old generation that performs three passes over
the entire old generation (for all applications), with cost proportional to the size of
the heap. With more concurrent instances, the cost of old generation GC in MVM
increases.

MVM MTM
2
% imp MVM MTM

2
% imp MVM MTM

2
% imp

Bmark (sec) (sec) (sec) (sec) (sec) (sec)

db 0.57 0.28 51.95 2.92 0.70 76.05 5.47 1.38 74.81

javac 3.24 2.51 22.47 8.95 3.48 61.06 40.10 7.93 80.23

antlr 2.44 0.48 80.17 4.11 1.29 68.69 6.23 1.39 77.75

fop 1.18 0.67 42.96 2.29 1.11 51.58 4.98 2.54 49.00

luindex 4.27 1.51 64.73 8.36 2.86 65.82 14.35 8.24 42.60

Average 2.34 1.09 52.46 5.32 1.89 64.64 14.22 4.29 64.88

2 5 10

Number of instances

Fig. 7: Old generation GC times (total) for MTM
2 versus a prior state-of-the-art implemen-

tation of multi-tasking (MVM). GC times are presented in seconds along with percentage
improvement in GC time enabled by MTM

2 vs MVM. MTM
2 ’s per-application hybrid old

generation GC outperforms MVM’s mark-compact old generation GC.

In addition, unlike MVM, MTM2 never pauses tasks to perform GC and all allo-
cation and collection for any application is isolated with respect to other applications.
MTM2 scales better over MVM overall due to performance isolation as the number
of instances is increased, as seen in Figure 6. The impact of performance isolation is
especially evident in the case of javac. For instance, when 10 concurrent instances
of javac execute, the total old generation GC time for MVM is about 40 seconds.
The cost of old generation GC is higher since mark-compact GC needs to scan a
larger heap in case of MVM. Further, since all applications are paused during old
generation GC, MVM significantly degrades execution time for javac. In the case of
db and luindex, GC time does not dominate total execution time, and consequently,
the improvement enabled by MTM2 versus MVM is less significant.

4.3 MTM
2 Versus HSVM

We next compare the execution time and footprint of MTM2 to HSVM. HSVM
allows users to specify an initial heap size (32MB by default) and a maximum heap
size (64MB by default) when launching an application. The initial heap size controls
the heap limit, the point at which a full GC is triggered. The initial heap size grows (or
shrinks) after a full GC, if required. For results in Figures 8, 9, 10, and 11, we set the
initial heap size for HSVM equal to the maximum heap size. With this setting, HSVM
performs less frequent GC and achieves better overall performance (total execution
time), compared to when the initial heap size is at the default value. This setting
allows single-tasking to perform at its best potential since the application heap is
not restricted. We also present results for the other case, i.e., when the initial heap
size for HSVM is not set to the maximum initially (the default behavior), thereby
allowing HSVM to achieve a smaller footprint (Figures 14, 15, 12 and 13). MTM2

does not restrict the initial heap size, or use a “soft limit” for applications, yet we
always ensure that we never exceed the maximum heap size setting for an application
(which is set to the HSVM default maximum heap size of 64MB in order to ensure a
fair comparison).

Figure 8 shows percentage improvement in total execution time when homoge-
neous workloads are executed with MTM2 versus the HSVM virtual machine, i.e.,
concurrent instances of the same application. We present results for 2, 5 and 10 con-
current instances for each application. Multi-tasking allows sharing of compiled code
and classes between applications resulting in reduced overall execution time. MTM2

enables an improvement of 11%, 13% and 14% for 2, 5 and 10 concurrent applications
on average for homogeneous workloads. MTM2 allows complete application isolation
and space reclaimed by evacuating old generation regions for an application to be
reused by other applications. Scripting and parsing applications such as antlr and
jruby are commonly used on desktop systems and particularly show a significant
benefit due to sharing of compiled code.

-5

5

15

25

35

45

55

co
m
pr
es
s

je
ss db

ja
va
c
m
trt ja

ck
an
tlr fo

p

lu
in
de
x ps

op
en
gr
ok

gr
oo
vy

jru
by

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e 2 5 10

Number of instances
per benchmark

Fig. 8: Percentage improvement in execution time enabled by MTM
2 over HSVM (default

initial heap size = max heap size = 64MB) for homogeneous concurrent workloads (multiple
instances of the same application). Benchmarks are described in Figure 4.

0

5

10

15

20

25

30

an
tlr
-m
ix
ed

lu
in
de
x-
m
ix
ed

ja
va
c-
m
ix
ed

sc
rip
ts
-m
ix
ed

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

1 2

Number of instances

per benchmark

Fig. 9: Percentage improvement in execution time enabled by MTM
2 versus HSVM (default

initial heap size = max heap size = 64MB) for heterogeneous concurrent workloads (multiple
instances of different applications). Benchmarks are described in Figure 4.

For some applications, such as compress, javac and ps multi-tasking does not
outperform single-tasking. For compress in particular, multi-tasking performance lags

single tasking due to the fact that it allocate large objects (byte arrays) in the old
generation which leads to fragmentation and worse GC performance in a shared old
generation address space, and also due to the overhead due to a level of indirection to
access static variables [4]. However, MTM2 attempts to mitigate the adverse impact
of fragmentation and achieves a significant benefit for these worst-case applications
over the state-of-the-art multi-tasking MRE implementation, as shown earlier (cf Fig-
ure 6), while achieving performance that is close to the performance of these applica-
tions with single-tasking (within 3%). On average, MTM2 significantly outperforms
single-tasking.

Figure 9 shows the percentage improvement in total execution time for heteroge-
neous workloads, i.e., concurrent instances of different applications for 1 instances of
each application, and 2 instances of each application for every heterogeneous workload
(see Figure 4). For example, antlr-mixed with two instances indicates that 2 instances
each of antlr, fop, opengrok are executed concurrently (6 concurrent applications).
On average, MTM2 improves performance by up to 16%, with improvements ranging
from 3% to 25% in individual cases. As seen earlier, scripting workloads in particular
perform very well with multi-tasking.

0 0.5 1 1.5 2

compress

jess

db

javac

mtrt

jack

antlr

fop

luindex

ps

opengrok

groovy

jruby

Average

B
e
n
c
h
m
a
r
k
s

Footprint relative to single-tasking

2 5 10
Number of

instances

per benchmark

Fig. 10: Percentage improvement in footprint enabled by MTM
2 versus HSVM (default

initial heap size = max heap size = 64MB) for homogeneous concurrent workloads (2, 5,
and 10 instances of the same application).

Figures 10 and 11 compare the total process footprint for MTM2 versus HSVM
for the same set of applications as in the previous figures. Each bar represents the
ratio of the footprint for MTM2 versus HSVM. The value 1 indicates that MTM2

and HSVM have identical footprint for a given workload. Values less than 1 indicate
that MTM2 has a lower footprint.

MTM2 shows a better footprint compared to HSVM and on average, MTM2

achieves 34% to 41% reduction in footprint for homogeneous workloads, and 31% to

0 0.5 1 1.5 2

antlr-mixed

luindex-mixed

javac-mixed

scripts-mixed

Average

B
e
n
c
h
m
a
r
k
s

Footprint relative to single-tasking

1 2
Number of

instances

per benchmark

Fig. 11: Percentage improvement in footprint enabled by MTM
2 versus HSVM (default ini-

tial heap size = max heap size = 64MB) for heterogeneous concurrent workloads. 1 denotes 1
instance each of the mix of applications that constitute a heterogeneous workload. 2 indicates
2 instances of each application in the mix.

33% benefit for heterogeneous workloads. These savings are possible due to sharing
of classes and compiled code in a multi-tasking MRE.

0 0.5 1 1.5 2

compress

jess

db

javac

mtrt

jack

antlr

fop

luindex

ps

opengrok

groovy

jruby

Average

B
e
n
c
h
m
a
r
k
s

Footprint relative to single-tasking

2 5 10
Number of

instances

per benchmark

Fig. 12: Percentage improvement in footprint enabled by MTM
2 versus HSVM (default

initial heap size = 32MB) for homogeneous concurrent workloads (2, 5, and 10 instances of
the same application).

However, compress shows worse footprint (around 50% or 1.5x). The worse foot-
print for compress can be attributed to large scalar objects (objects that do not hold
references, such as byte arrays). As noted earlier, compress allocates a significant

number of large byte arrays which are directly allocated in the old generation. Since
our old generation is non-contiguous, and since we allocate large scalar objects in a
separate region, which we can safely skip during pointer adjustment, allocation of very
large (> minimum region size, which is 256KB by default), byte arrays leads to excess
fragmentation. A new region needs to be allocated for each such large byte array, and
this region needs to be aligned to the region boundary for correctness. However, the
number and size of these is unknown at runtime, without a priori profiling. There-
fore, we cannot pre-allocate a suitable sized region. As part of future work, we plan
to address the allocation of large objects, by providing a per-application large object
region that is sized differently and collected separately from the old generation. Note
that compress is a numerical computation benchmark and does not represent typical
MRE workloads.

0 0.5 1 1.5 2

antlr-mixed

luindex-mixed

javac-mixed

scripts-mixed

Average

B
e
n
c
h
m
a
r
k
s

Footprint relative to single-tasking

1 2
Number of

instances

per benchmark

Fig. 13: Percentage improvement in footprint enabled by MTM
2 versus HSVM (default

initial heap size = 32MB), heterogeneous workloads, i.e., multiple concurrent instances of
different applications. 1 denotes 1 instance each of the mix of applications that constitute a
heterogeneous workload. 2 indicates 2 instances of each application in the mix.

Figures 12 and 13 compare the process footprint for MTM2 versus HSVM, when
the initial heap size for HSVM is restricted and increased gradually. In this config-
uration, HSVM gradually increases the heap (if required), starting from an initial
default (32MB), in order to achieve smaller footprint. As expected, HSVM runs in
a much smaller heap and consequently, the process footprint is lower. On average,
MTM2 shows a footprint improvement of 6% to 14% for homogeneous workloads,
and 12% to around 15% for heterogeneous workloads. Note that these values are
smaller compared to the earlier configuration of HSVM, i.e. when the initial heap size
for HSVM is not restricted. However, if we look at the execution time for MTM2

versus HSVM (Figures 14 and 15) when the initial heap size for HSVM is restricted,
MTM2 outperforms HSVM by a greater margin than when we do not restrict the

initial heap size for HSVM. On average, MTM2 shows an improvement of 15% to
over 17% for homogeneous workloads, and 19% to 21% for heterogeneous workloads.

-5

5

15

25

35

45

55

co
m
pr
es
s

je
ss db

ja
va
c
m
trt ja

ck
an
tlr fo

p

lu
in
de
x ps

op
en
gr
ok

gr
oo
vy

jru
by

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e 2 5 10

Number of instances
per benchmark

Fig. 14: Percentage improvement in execution time enabled by MTM
2 versus HSVM (default

initial heap size = 32MB) homogeneous concurrent workloads. Benchmarks are described in
Figure 4.

0

5

10

15

20

25

30

35

an
tlr
-m
ix
ed

lu
in
de
x-
m
ix
ed

ja
va
c-
m
ix
ed

sc
rip
ts
-m
ix
ed

Av
er
ag
e

Benchmarks

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

1 2

Number of instances

per benchmark

Fig. 15: Percentage improvement in execution time enabled by MTM
2 versus HSVM (default

initial heap size = 32MB) for heterogeneous concurrent workloads (multiple instances of
different applications). Benchmarks are described in Figure 4.

In summary, by controlling heap growth the single-tasking HSVM virtual machine
can achieve a better footprint when the heap is not restricted, however, MTM2 shows
a comparable or better footprint on average across concurrent workloads that we
looked at. Further, MTM2 outperforms HSVM by a larger margin, since there is a
reduction in performance for the single-tasking MRE due to more frequent GC. There

exists a tradeoff between execution time and footprint by choosing the threshold at
which GC is triggered. We believe that manually having to select an appropriate per-
application heap size in a context of a multi-tasking VM is counter-productive. On
average, MTM2 significantly outperforms HSVM and has a better footprint without
having to manually select an appropriate initial per-application heap size.

0

5

10

15

20

25

30

35

40

45

d
b

ja
va
c

an
tl
r

fo
p

lu
in
d
ex

A
ve
ra
g
e

Benchmark

P
e
r
c
e
n
ta
g
e
 I
m
p
r
o
v
e
m
e
n
t
in
 T
o
ta
l
T
im
e

1x 2x 3x 4xHeapsize relative to minimum

Fig. 16: Percentage improvement in execution time enabled by MTM
2 over HSVM for 1

through 4 times the minimum heap size that each benchmark needs to execute in MTM
2 .

We next examine the performance of MTM2 versus HSVM as the heapsize is
varied from the minimum that an application requires to execute in MTM2 , to 4
times the minimum for that application (Figure 16). We only consider benchmarks
that show significant old generation GC activity. The minimum heap size selected is
45MB for luindex and 22MB for the rest. Across heap sizes, MTM2 outperforms
HSVM by 18 – 19% on average.

However, HSVM is able to execute programs in a smaller heap compared to
MTM2 (i.e., < 45MB for luindex and < 22MB for other benchmarks). HSVM uses
in-place sliding compacting GC, which is more space efficient than MTM2’s hybrid
GC for small heaps. This is due to the fact that evacuation, although it is partial
and selective, requires a copy reserve for the duration of the GC to copy live ob-
jects. For highly memory constrained scenarios, HSVM’s GC may be a more suitable
choice compared to evacuation. We are investigating mechanisms to perform in-place
compaction across disjoint regions as part of future work.

4.4 Sensitivity Analysis

In the next set of results, we examine how MTM2 with selective evacuation (copying)
and mark-sweep compares to only mark-sweep and only copying. Our hybrid GC can
operate as a mark-sweep only GC (by setting the MinLiveRatio threshold described
in Section 3 to 0), or as a copying only GC (by setting the MinLiveRatio threshold
to 1, i.e., 100%).

In particular, in Figure 17 we present total process footprint for MTM2 with
hybrid GC versus MTM2 with mark-sweep only, and MTM2 with copying only,

MTM
2
MTM

2
MTM

2
MTM

2
MTM

2
MTM

2

MTM
2
MS CP MS CP MTM

2
MS CP MS CP MTM

2
MS CP MS CP

Bmark (KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB)

javac 49.5 127.7 65.4 61.2 24.3 109.9 297.5 117.7 63.1 6.6 261.0 602.1 261.7 56.6 0.3

luindex 76.7 128.4 83.5 40.3 8.2 173.4 302.9 182.0 42.8 4.7 333.4 589.5 351.9 43.4 5.2

vs vs vs

% imp % imp % imp

Number of instances

2 5 10

MTM
2
MTM

2
MTM

2
MTM

2

MTM
2
MS CP MS CP MTM

2
MS CP MS CP

Bmark (KB) (KB) (KB) (KB) (KB) (KB)

antlr-mixed 79.5 86.1 80.6 7.6 1.3 148.1 156.6 148.2 5.5 0.1

javac-mixed 32.0 51.9 41.6 38.4 23.2 63.6 91.3 87.5 30.4 27.4

scripts-mixed 68.7 94.8 104.5 27.5 34.3 119.0 127.0 140.3 6.4 15.2

1 2

Number of instances

vs vs

% imp % imp

Fig. 17: Footprint for MTM
2 with hybrid GC (mix of mark-sweep and copying) versus

mark-sweep (MS) only and copying GC (CP) only for a set of homogeneous (instances
of the same application) and heterogeneous (different applications) concurrent workloads.
Hybrid GC achieves a footprint that is lower than always choosing mark-sweep or always
choosing copying.

for a subset of benchmark programs. We only present results for benchmarks that
show significant change in footprint compared to either mark-sweep or copying (>
5%). For all other benchmarks, we did not find a significant change in the footprint
(however, MTM2 with hybrid GC never shows a worse footprint compared to either
mark-sweep or copying).

For javac, luindex, javac-mixed and scripts-mixed, hybrid GC has a much
smaller footprint compared to mark-sweep. We believe this is due to fragmenta-
tion due to using mark-sweep only without any compaction. For javac-mixed and
scripts-mixed, copying has a higher footprint, since always copying all live data
requires a larger copy reserve space during GC. While performing evacuation, the old
as well as the new (copied to) regions need to be occupied (mapped) for the duration
of the GC cycle.

We next examine the effect of using hybrid GC, mark-sweep only, and copying
only, on execution time for javac, which shows a significant difference in performance
(Figure 18). Using mark-sweep only results in excess fragmentation. Fragmentation
has an interesting effect on execution time for javac – an increase in young generation
GC time by 8% on average (or 0.51 sec, 0.66 sec and 1.17 sec for 2, 5 and 10 instances
respectively) due to an increase in card scanning time, since more cards need to be
scanned. Using copying alone results in excess copying and adjustment, and conse-
quently, performance suffers due to an increase in old generation GC time by around
6% (or 0.07 sec, 0.16 sec and 0.70 sec for 2, 5 and 10 instances respectively).

For other benchmarks, we did not encounter a significant change in execution
time (however, in all cases, hybrid GC never performs worse than using mark-sweep
or copying alone).

To summarize, hybrid GC achieves a lower footprint in many cases for benchmarks
that show significant old generation GC activity, while maintaining performance that
is on-par or better than using mark-sweep or copying alone.

MTM
2
MTM

2
MTM

2
MTM

2
MTM

2
MTM

2

MTM
2

MS CP MS CP MTM
2
MS CP MS CP MTM

2
MS CP MS CP

Bmark (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

javac 10.40 10.82 10.57 3.9 1.6 26.78 28.14 27.29 4.8 1.9 53.97 56.48 55.25 4.4 2.3

% imp % imp % imp

vs vs vs

Number of instances

2 5 10

Fig. 18: Execution time MTM
2 with hybrid GC (mix of mark-sweep and copying) versus

mark-sweep (MS) only and copying GC (CP) only for the javac benchmark.

5 Related Work

Our work relates directly to other multi-tasking implementations of MREs. To our
knowledge, no prior work conclusively demonstrates that multi-tasking has the abil-
ity to outperform a single-tasking MRE in terms of execution time, as well as overall
footprint for concurrent workloads (multiple applications executing simultaneously).
MVM is the most well-known, state-of-the-art implementation of a multi-tasking
MRE. Prior work on MVM reports substantial improvement for startup, footprint
and execution time compare to a corresponding single-tasking JVM [4, 5]. However,
execution times were measured for serial execution of programs, and footprint of con-
currently running programs were obtained when applications were quiescent, and do
not reflect the footprint of programs when they are actually running concurrently and
are exercising the memory management system. Recent attempts at improving GC
performance isolation for MVM [26] only address young generation GC and GC-less
instantaneous reclamation of the heap space of terminated programs, and demon-
strates only provision of performance isolation for short-lived programs that do not
stress the GC. Sun Microsystems’ CLDC HotSpot Implementation, aimed at small
hand-held devices, supports multi-tasking in a way that is similar to MVM, but uses
a single heap shared by all tasks [28], with no provision for GC performance isolation.
We were not able to find any information about GC performance isolation for .NET
application domains.

Our work also builds upon and extends a large body of important contributions
to memory management for single-tasking MREs.

Our hybrid GC bears some similitude to incremental copying GCs that divide
the heap into equally sized regions that can be evacuated independently of others. In
our case, heap space partitioning is primarily motivated by the need to allocate pri-
vate tenured space to isolated applications on demand. Like our hybrid GC, Garbage
First [8] only evacuates regions that can be reclaimed with little copying. Information
regarding the amount of live data in regions is provided by a concurrent marker (as
opposed to a synchronous marking phase in our case). Bidirectional remembered sets
between regions are maintained by mutators (with help from the concurrent marker)
to allow any set of regions to be collected independently of the others. In the case
of our hybrid GC, this property is achieved by gathering cross-regions connectivity
information during marking. The Mature Object Space (MOS) collector of Hudson
and Moss [13] is another region-based incremental copying GC. It uses unidirectional
remembered sets, which requires regions to be evacuated in order. MOS cannot there-
fore pick an arbitrary region to evacuate based on cost-related criteria (e.g., amount
of live data). Both Garbage First and MOS are evacuation-only GC.

Lang and Dupont [21] describes a hybrid mark-sweep and copy similar to ours. The
heap is divided into equal size segments. During GC, a single segment is compacted,
while others are swept. Like our hybrid mark-sweep-evacuate GC, the collector is
primarily mark-sweep. The cost of compaction is bounded since a single segment is
collected. However, the segment compacted at each GC is chosen arbitrarily. By con-
trast, we use copying opportunistically, only to evacuate sparsely populated regions
or highly fragmented one. We may thus evacuate several regions during a single GC,
or none if the regions are densely populated with little fragmentation.

MC2 [25] and its predecessor, Mark-Copy [24] describe an incremental copying
GC that uses a marking phase to precisely annotate equal size regions of the old
generation of the heap with the amount of live data in them, like our GC, and then
build uni-directional remembered set to update pointers to evacuated objects. MC2

builds precise remembered sets, whereas we build an imprecise connectivity matrix
that only records regions that references other regions. MC2 aims at achieving good
throughput and low pause times for memory constrained devices.

Beltway [2] provides incremental and generational GC by partitioning the heap
into belts and collecting a single belt during GC. Garbage cycles larger than a belt
cannot be reclaimed by collecting a single belt. However, Beltway has a provision for
performing full GC by providing a separate belt with a single region and collecting this
when it occupies half the heap space. Our per-application GC is complete and reclaims
all garbage for that application. We, therefore, do not require precise remembered sets
between regions or need mechanisms to ensure completeness.

McGachey et al [22] present a scheme that uses a generational GC with a reduced
copy reserve, with the ability to dynamically switch to a compacting GC if necessary.

Page unmapping as well as compaction has been used to reduce application mem-
ory footprint in prior work, such as the Compressor [20]. However, Compressor is a
concurrent, parallel compacting GC that achieves low pause times. Our goal is dif-
ferent: to provide a relative simple, per-application GC that achieves good footprint
and overall performance for desktop or small client applications, while allowing other
applications to execute concurrently, without interference.

6 Conclusion

Multi-tasking has been proposed as a means to enable sharing of code and classes
between applications in order to enable better startup performance, footprint and
for faster overall execution compared to single-tasking, i.e., executing each applica-
tion in a separate MRE process. While prior implementations of multi-tasking have
demonstrated the above for serial execution of programs, and for execution of multi-
ple programs with little simultaneous activity, we show that the prior state-of-the-art
performs poorly for concurrent workloads. We attribute this to lack of performance
isolation and a poor performing garbage collector for full garbage collection (GC).

We have described MTM2, a scalable approach to memory management for multi-
tasking managed runtime environments. MTM2 enables complete performance isola-
tion with respect to GC, provides each application with a private heap, and employs
generational GC with a hybrid GC for old generation collection. MTM2’s hybrid GC
combines mark-sweep with copying collection in the same GC cycle along with fast

adjustment for copied objects, to achieve good performance and a low footprint while
avoiding the overhead of full copying GC. The hybrid GC uses marking to gather in-
formation (liveness, connectivity, occupancy, and estimated fragmentation) necessary
to determine regions of the old generation to evacuate (if any) and to sweep and to
identify which regions need to be scanned for pointer adjustment.

We have integrated MTM2 with MVM, a multi-tasking implementation of the
JVM, and a compare it to a widely used, production-quality, single-tasking MRE
for concurrent application workloads. Our results show that MTM2 enables signif-
icant performance, as well as footprint improvement compared to single-tasking for
concurrent workloads. MTM2 outperforms single-tasking by up to 14% on average
for homogeneous workloads (instances of the same application) and up to 16% on
average for heterogeneous workloads (mix of different applications). MTM2 achieves
up to 41% reduction in footprint on average for homogeneous workloads, and up
to 33% on average improvement for heterogeneous workloads over single-tasking. In
addition, MTM2 achieves better performance for concurrent workloads over the ex-
tant state-of-the-art multi-tasking implementation, outperforming it by 10% to 22%.
These results indicate that multi-tasking is a viable approach for executing concurrent
applications and strengthens the case for multi-tasking MREs.

Trademarks

Sun, Sun Microsystems, Inc., Java, JVM, HotSpot, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and other countries. SPARC
and UltraSPARC are trademarks or registered trademarks of SPARC International, Inc., in
the United States and other countries.

References

1. S. Blackburn and K. McKinley. In or Out? Putting Write Barriers in Their Place. In
International Symposium on Memory Management (ISMM), 2002.

2. S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B. Moss. Beltway: Getting
around garbage collection gridlock. In Conference on Programming Language Design
and Implementation, June 2002.

3. C. Chambers. The Design and Implementation of the SELF Compiler, an Optimiz-
ing Compiler for an Objected-Oriented Programming Language. PhD thesis, Stanford
University, Mar. 1992.

4. G. Czajkowski and L. Daynès. Multitasking without Compromise: A Virtual Machine
Evolution. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Oct. 2001.

5. G. Czajkowski and L. Daynès. A Multi-User Virtual Machine. In USENIX 2003 Annual
Technical Conference, June 2003.

6. G. Czajkowski, L. Daynès, and N. Nystrom. Code Sharing among Virtual Machines. In
European Conference on Object-Oriented Programming (ECOOP), June 2002.

7. The Dacapo Benchmark Suite, version beta050224. http://www-ali.cs.umass.edu/

DaCapo/gcbm.html.

8. D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-First Garbage Collection. In
International Symposium on Memory Management (ISMM), Oct. 2004.

9. A. Garthwaite, D. Dice, and D. White. Supporting per-processor local-allocation buffers
using lightweight user-level preemption notification. In First International Conference
on Virtual Execution Environments, June 2005.

10. Groovy: An agile dynamic language for the Java Platform. http://groovy.codehaus.

org/.
11. U. Hölzle. A Fast Write Barrier for Generational Garbage Collectors. In OOP-

SLA/ECOOP Workshop on Garbage Collection in Object-Oriented Systems, Oct. 1993.
12. A. L. Hosking, J. E. B. Moss, and D. Stefanović. A Comparative Performance Evaluation

of Write Barrier Implementations. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Oct. 1992.

13. R. L. Hudson and J. E. B. Moss. Incremental Garbage Collection for Mature Objects.
In International Workshop on Memory Management (IWMM), 1992.

14. S. M. Inc. The Java Hotspot Virtual Machine White Paper. http://java.sun.com/

products/hotspot/docs/whitepaper/Java HotSpot WP Final 4 30 01.html.
15. Java Community Process. JSR-121: Application Isolation API Specification. http:

//jcp.org/jsr/detail/121.jsp.
16. R. Jones and A. C. King. A Fast Analysis for Thread-Local Garbage Collection with

Dynamic Class Loading. In Fifth International Workshop on Source Code Analysis and
Manipulation (SCAM’05), 2005.

17. R. E. Jones and R. Lins. Garbage Collection: Algorithms for Automatic Dynamic Mem-
ory Management. Wiley and Sons, July 1996.

18. JRuby: Java powered Ruby implementation. http://jruby.codehaus.org/.
19. A. Kennedy and D. Syme. Combining generics, pre-compilation and sharing between

software-based processes. In Proceedings of the Second Workshop on Semantics, Program
Analysis and Computing Environments for Memory Management (SPACE’01).

20. H. Kermany and E. Petrank. The Compressor: concurrent, incremental, and paral-
lel compaction. Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation.

21. B. Lang and F. Dupont. Incremental Incrementally Compacting Garbage Collection. In
Symposium on Interpreters and Interpretive Techniques, 1987.

22. P. McGachey and A. L. Hosking. Reducing Generational Copy Reserve Overhead with
Fallback Compaction. In International Symposium on Memory Management (ISMM),
June 2006.

23. OpenSolaris Project: OpenGrok. http://opensolaris.org/os/project/opengrok/.
24. N. Sachindran, J. Eliot, and B. Moss. Mark-copy: Fast Copying GC with less Space

Overhead. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Oct. 2003.

25. N. Sachindran, J. Eliot, and B. Moss. MC
2: high-performance garbage collection for

memory-constrained environments. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Oct. 2004.

26. S. Soman, L. Daynès, and C. Krintz. Task-Aware Garbage Collection in a Multi-Tasking
Virtual Machine. In International Symposium on Memory Management (ISMM), June
2006.

27. SpecJVM’98 Benchmarks. http://www.spec.org/osg/jvm98.
28. Sun Microsystems Inc. CLDC HotSpotTM Implementation. http://java.sun.com/

javame/reference/docs/cldc-hi-2.0-web/.
29. D. Ungar. Generation Scavenging: A Non-disruptive High Performance Storage Recala-

mation Algorithm. In Software Engineering Symposium on Practical Software Develop-
ment Environments, Apr 1992.

