Volume 07 Issue O1 Published, February 19, 2003 ISSN 1535-766X

INntel
Technology
Journal

Managed Runtime Technologies

The StarJIT Compiler:
A Dynamic Compiler for Managed
Runtime Environments

A compiled version of all papers from this issue of the Intel Technology Journal can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

The StarJIT Compiler: A Dynamic Compiler for Managed
Runtime Environments

Ali-Reza Adl-Tabatabai, Microprocessor Research Labs, Intel Corporation
Jay Bharadwaj, Microprocessor Research Labs, Intel Corporation
Dong-Y uan Chen, Microprocessor Research Labs, Intel Corporation
Anwar Ghuloum, Microprocessor Research Labs, Intel Corporation
Vijay Menon, Microprocessor Research Labs, Intel Corporation
Brian Murphy, Microprocessor Research Labs, Intel Corporation
Mauricio Serrano, Microprocessor Research Labs, Intel Corporation
Tatiana Shpeisman, Microprocessor Research Labs, Intel Corporation

Index words: Just-in-time compiler, JIT, Java, Common Language Runtime, virtual machine, dynamic

optimization

ABSTRACT

Dynamic compilers (or Just-in-Time [JIT] compilers) are
a key component of managed runtime environments. This
paper describes the design and implementation of the
StarJIT compiler, a dynamic compiler for Java Virtual
Machines and Common Language Runtime platforms.
The goal of the StarJIT compiler is to build an
infrastructure to research the influence of managed
runtime environments on Intel architectures. The StarJIT
compiler can compile both Java” and Common Language
Infrastructure (CLI) bytecodes, and it uses a single
intermediate representation and global optimization
framework for both Java and CLI. The StarJIT compiler
is designed to generate optimized code for the major Intel
architectures and currently targets two Intel architectures:
IA-32 and the Itanium” Processor Family.

In this paper, we describe the overal architecture
(bytecode trandators, global optimizer, and code
generators) of the StarJIT compiler and the design of its
intermediate representation, global optimizer, Itanium
Processor Family code generator, and dynamic
optimization framework. We present implementation
details on the single static assignment (SSA)-based global

Y Other brands and names are the property of their
respective owners.

7 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

optimizations [1], the Itanium Processor Family trace
scheduler, and the profile-driven dynamic optimization
framework.

INTRODUCTION

Programs targeted to managed runtime environments
(MRTES), such as the Java Virtua Machine and the
Common Language Runtime, are distributed in a machine-
neutral bytecode format and need to be compiled to native
machine code by a dynamic compiler. The performance
of managed applications depends on the quality of
optimizations and code generation performed by the
dynamic compiler. Dynamic compilers, or Just-in-Time
(JIT) compilers, are thus a key component of MRTEs.

Because final native code generation happens as part of an
application’s execution, MRTES pose several challenges
to the dynamic compiler:

1. The dynamic compiler must be sensitive to the time
and space efficiency of its optimization algorithms —
compilation overheads become overheads on the
application’s execution. For example, a slow
compiler can slow down an application’s load time,
making the system feel less responsive to the user. A
dynamic compiler, therefore, must be designed to
balance compilation overhead with code quality.

2. Bugs in the dynamic compiler can become security
holes that can be exploited by hackers. MRTEs
partialy rely on the dynamic compiler to enforce
security; for example, the dynamic compiler enforces

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 19

Intel Technology Journal, Vol. 7, Issue 1, 2003

memory safety by inserting checks for type casts and
out-of-bound array accesses. Bugs in the dynamic
compiler can compromise the safety guarantees
provided by the MRTE. A dynamic compiler,
therefore, must not only be efficient but also robust.

These challenges are particularly difficult for architectures
that rely on compiler optimizations for performance. For
example, the Itanium” Processor Family architecture
relies heavily on expensive and sophisticated code-
generation optimizations (such as globa scheduling and
control speculation) for performance. A dynamic
compiler must implement these optimizations robustly and
efficiently, and also be flexible, to allow balancing of
compilation overhead and code quality.

In comparison to traditional, statically compiled programs,
however, MRTEs also provide new performance
optimization opportunities:

1. Because native code generation occurs during an
application's execution, MRTEs are an idea
environment for dynamic profile-guided optimization.
This is important for the Itanium Processor Family,
which relies on profile-guided optimizations (such as
inlining and trace scheduling) for performance.
Dynamic profile-guided optimization also enables the
dynamic compiler to concentrate expensive
optimizations only on those regions of the program
that have the biggest payoffs, thus limiting
optimization overhead.

2. The dynamic compiler can tailor the generated code
to the platform on which the application is executing.
The dynamic compiler can detect platform parameters
(such as microarchitecture generation, cache size, and
memory size) and tailor the code to the platform
parameters. Thus it can deal effectively with “legacy
binary” issues.

3. MRTEs provide metadata (such as type information)
that can be used for optimization. Metadata gives the
compiler precise information about control flow and
types used by a program, which the compiler can
exploit for optimization (e.g., type-based alias
analysis).

We have built the StarJIT compiler as a research
infrastructure to investigate these chalenges and
opportunities on Intel architectures.

The rest of this paper is organized as follows. In the next
section, we describe the overall architecture of the StarJI T
compiler. We then describe the design of the global

7 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

optimizer, including the single static assignment (SSA)-
based intermediate representation, global optimization
phase structure, and SSA-based global optimization
algorithms. We then describe the design of the Itanium
Processor Family code generator, including the code
generation phase structure and trace scheduler.

THE ARCHITECTURE OF THE STARJIT
COMPILER

The StarJIT compiler is designed to provide a common
strongly typed substrate in which code distributed for
various managed runtime environments can be safely
optimized and targeted to Intel architectures. A further
design goal is to enable dynamic profile-driven
optimization and recompilation. These goals are reflected
directly in the topological organization of the architecture,
illustrated in Figure 1. Paths exist connecting every
language front-end with every architecture-specific back-
end, propagating type information from the source
bytecodes through to the architecture-specific back-ends.
Furthermore, an additional path for annotating the
intermediate representation (IR) used by the global
optimizer with profile information from execution of the
generated native code enables the seamless injection and
use of dynamic information for recompilation.

If virtual machine (VM) support exists, supporting a new
hardware architecture for all of the supported languages
requires only that a single StarJIT compiler back-end is
implemented for that hardware. Similarly, supporting a
new language across the supported Intel architectures
requires only that a new language front-end be
implemented. The primary architectural features of the
StarJI'T compiler that enable this are divided into
language- and architecture-specific portions and language-
and architecture-independent portions, both of which are
described in this section.

The process for StarJI'T compilation follows a single path
in this architectural schema, determined by the source
language and target architecture. The managed runtime
environment (MRTE) bytecode is trandated into the
global optimizer's IR by the individual front-ends for each
source language supported. The language- and
architecture-independent portion comprises the global
optimizer and the profile feedback manager. The global
optimizer is built on an IR caled STIR (StarJIT IR).
After optimization, architecture-specific code generators
trandate STIR into architecture-specific IRs, perform
architecture-specific scheduling and register allocation,
and finally emit the generated native code. A dynamic
feedback loop is created through the use of profile
information by the Profile Feedback Manager to
selectively recompile and guide global and architecture-
specific optimization decisions.

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 20

Intel Technology Journal, Vol. 7, Issue 1, 2003

MRTE bytecode-
specific

Architecture
& MRTE
independent

Global
Optimizer

Java
xlator

Java Byte
Codes

StarJIT IR

CLIByte CLI
Codes xlator

(STIR)

Profile

Architecture-specific

IA32 Scheduler &
Reg. Allocator

IA32 Code
Selector

Code
Emitter

Itanium
Processor
Family
Code
Selector

Feedback

Code
Emitter

D

=t

Itanium

Manager

!

Processor Family
Scheduler & Reg.
Allocator

—— g —————————-

Execution
Profile

Execution

Figure 1: StarJIT compiler architecture

The interface of the StarJIT compiler to a specific
MRTE's VM is implemented in a layer that abstracts out
the required set of interactions between the JIT and the
VM in any MRTE. These include, among other
transactions, enumeration of live pointer information for
garbage collection, alocation of objects, and metadata
gueries.

Java”and Common Language I nfrastructure
Bytecode Trangdlators

The initial compilation step is the trandation of portable
bytecode into STIR. Currently, the StarJIT compiler has
bytecode trandator front-ends for Common Language
Interface (CLI) and Java

Bytecode trandation has two phases. the first phase
establishes basic block boundaries and exception handling
regions, and it recovers type information for variables and
operators. There are two major differences in the type
information contained in the CLI and Java bytecodes.
First, CLI variables are annotated with exact type
information whereas Java variables do not have a fixed
type and may be reused with different types at different
points in the program. Second, CLI operators are untyped
whereas Java operators are typed. The first phase of
trandation reconciles these differences to generate type
information for both variables and operators. the Java
trandator performs type propagation to recover type
information for variables, and the CLI translator performs
type propagation to recover type information for the
operators.

7 Other brands and names are the property of their
respective owners.

The second trandation phase generates STIR and

performs simple optimizations, including inlining,
congtant and copy propagation, folding, strength
reduction, type check eimination, devirtualization,

elimination of class initialization checks, and value
numbering-based redundancy elimination across extended
basic blocks.

The bytecode translators generate low-level operators to
expose as many calculations as possible to the later global
optimization phase. For example, aload of an object field
is broken up into component operations that perform a
null check of the object reference, load the base address of
the object, compute the address of the field, and load the
value at that computed address. The front-end trandators,
however, can be configured to use higher-level operators,
which minimizes the need for later-stage coalescing, to
take advantage of 1A-32' s rich addressing modes.

STIR: The StarJIT Compiler’s|ntermediate
Representation

The StarJIT compiler’s intermediate representation (IR)
(STIR) is a traditiona two-level IR, with control-flow
represented as a graph and instructions represented as
triples[16].

At ahigh level, STIR is a control flow graph consisting of
nodes and edges. The StarJIT compiler also maintains
dominator and loop structure information on this level of
IR for use in optimization and code generation. STIR
represents both conventional control flow due to jumps
and branches, and exceptional control flow due to thrown
and caught exceptions, so that the global optimizer and
code generators both account for and optimize exceptions
and exception handlers. STIR models conventional
control flow via basic block nodes and edges, which
represent jumps and conditional branches between basic

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 21

Intel Technology Journal, Vol. 7, Issue 1, 2003

block nodes. STIR models exceptiona control-flow via
dispatch nodes: a thrown exception is represented by an
edge from a basic block node to a dispatch node, and a
caught exception is represented by an edge from a
dispatch node to a block node.

In managed runtime implementations, compiler-generated
code generally does not implement exceptional control
flow. Instead, the underlying system implicitly handles
the exception throws and catches. The StarJIT compiler
generates a system call instruction for each throw and
registers a handler for each catch. By modeling
exceptional control flow explicitly in the control flow
graph, the compiler can optimize across throw-catch
boundaries. For locally handled exceptions, the compiler
replaces expensive throw and catch combinations with
cheaper direct branches.

At alower level, each basic block node consists of alist of
instructions, where each instruction is a tuple consisting of
an operator and a set of static single assignment (SSA)
operands [10]. The operators are low level in order to
expose finer-grain operations to the optimizer. SSA form
provides explicit use-def links between operands and their
defining instructions, which simplifies and speeds up
global optimizations. STIR is designed to address both
exclusive and dissonant implementation semantics of Java
and CLI.

Each STIR instruction and operand is annotated with
detailed type information. STIR instructions retain all
type information explicit or implicit in the origina Java
and CLI bytecodes. Optimization passes preserve and
update this type information, and they propagate it
through to the architecture-specific back-ends for their
use. Type information is needed in the code generator to
support exact garbage collection (GC), which requires
enumeration of the root set at GC safe points. Type
information also greatly improves the quality of the
compiler analyses by enabling type-based memory
disambiguation at various optimization and code-
generation stages.

Itanium® Processor Family and | A-32 Code
Generators

The StarJIT compiler currently supports both the I tanium”
Processor Family and 1A-32 family architectures through
distinct back-end code generators. The compiler enables
adaptation of new code generators, such as for the Intel”

" Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

“ Intel XScale is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

XScale” family, through a software interface that allows
the optimizer to transparently perform the necessary
callbacks to the code generator to construct each code-
generator’s IR with the appropriate type information.

The propagation of STIR type information and access to
metadata provide the code generators with the critical
ability to disambiguate memory accesses relatively
inexpensively, avoiding aiasing conflicts that would
otherwise defeat many code optimizations and
transformations. Metadata also allow the code generators
to generate sufficient GC information so that the StarJIT
compiler can enumerate the root set of live pointers when
requested to do so by the garbage collector at runtime.

The implementations of the code generators are
completely independent because each architecture family
requires a different set of optimizations and code-
generation passes and utilizes very different IRs. For
example, the Itanium Processor Family code generator
performs aggressive trace scheduling; the |A-32 code
generator does not need to do this because of its
ingtruction set architecture and its microarchitectural
implementation.

Dynamic Profile-Guided Optimizations

The StarJI'T compiler supports dynamic profile-guided
optimization (DPGO) as part of its dynamic compilation
framework. Modern static compilers have used profile-
guided optimization (PGO) to achieve significant
performance improvement [5] [7]. The performance
benefit from PGO on the Itanium Processor Family
architecture is even more profound, with a speedup of
approximately 20% observed on certain integer
benchmarks. Traditional static PGO requires an initial
compilation and execution run to collect an execution
profile for use in afinal compilation step. The three-step
process — compiling with instrumentation, executing with
representative inputs, and re-compiling with PGO —
requires manual involvement, and it adds a significant
burden to the wusualy time-constrained software
development cycle. Moreover, this process requires the
software vendor to develop a training workload that
represents the end-user’ s workload.

In contrast, DPGO is automatic and transparent to the end
user and software vendor. At the center of the StarJIT
compiler’'s DPGO framework is a module called the
Profile Manager, which resides in the virtua machine.
The Profile Manager manages the collection and
processing of the execution profile, and it selects hot
methods for recompilation. The first time it compiles a
method, the compiler uses lightweight, fast-path
optimizations and prepares additional information to
support profiling (which depends on the profiling
mechanisms used). When a method is executed, its

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 22

Intel Technology Journal, Vol. 7, Issue 1, 2003

execution profile is collected online. Periodicaly, the
Profile Manager examines the execution profile of each
method to determine which methods are hot enough to
warrant recompilation. Once the Profile Manager selects
a method for recompilation, it tells the compiler to
recompile the method with a higher level of optimizations.
The Profile Manager also preprocesses the execution
profile of the method and provides it to the compiler so
that the compiler can apply PGO during recompilation.

This recompilation yields higher performing code for hot
methods. The Profile Manager continues this profiling-
recompilation process throughout the execution of the
application. Since DPGO collects execution profiles and
triggers recompilation on-the-fly, it can re-optimize hot
methods when there is significant change in their
execution profile, allowing the MRTE to adapt to different
execution or usage patterns of an application.

Because of the high overhead in collecting an execution
profile, DPGO in today’s MRTEs is typically constrained
to collect a method invocation profile for identifying hot
methods and a dynamic call graph for making inlining
decisions. As an advanced research platform, the StarJIT
compiler provides a much more extensive set of profilesin
its DPGO framework. Two types of profiling mechanisms
are supported in the StarJIT DPGO framework: one is
instrumentati on-based and the other is sampling-based.

Instrumentation-based profiling inserts profile-collecting
code in the dynamically generated native binary when the
compiler first compiles a method. The inserted code
increments counters when execution goes through the
control flow of the method [2]. The StarJIT compiler
currently supports the collection of method invocation and
control flow edge execution counts. The inserted code
maintains these counters in buffers that are accessible to
the Profile Manger. The instrumentation code incurs
significant overhead during execution; therefore, the
compiler does not generate instrumentation when it
recompiles a method with DPGO.

Sampling-based profiling collects an execution profile by
collecting samples during the program execution. Instead
of simply taking an instruction pointer (IP) sample, the
StarJIT compiler utilizes the Performance Monitoring
Unit (PMU) of a microprocessor to get a better execution
profile of an application. On the Itanium Processor
Family architecture, the PMU can monitor and provide a
rich set of events and execution information. For
example, the Itanium Processor Family PMU has a Branch
Trace Buffer (BTrB) that can capture information on the
last few branches executed. The branch trace information
includes the IP address of a branch instruction and the
target 1P address of the branch. The information in the
BTrB thus captures a short trace fragment during the
execution of the program. By taking enough BTrB

samples, the Profile Manager is able to construct an
execution profile that approximates the edge profile.

The PMU samples contain virtual |P addresses. To map
the sampling profile into a control flow profile, the
compiler must map IP addresses into IR at the feedback
point. To facilitate such IP-to-IR mapping, the StarJIT
compiler emits a basic block mapping table when it
dynamically compiles a method. The table alows the
mapping of an IP address to a basic block and the branch-
target pair of IPs to a control flow edge in the optimizer
IR.

The Profile Manager can adjust the overhead of sampling-
based profiling by changing the sampling rate. Hence once
the compiler has recompiled the majority of hot methods
with DPGO, the Profile Manager can tune down the
sampling rate to lower the profiling cost. The dynamic
adjustment of the sampling rate allows non-stop, low-
overhead monitoring of the application, making
continuous profiling and recompilation feasible in
MRTEs.

When profile information is available, the StarJT
compiler feeds the profile information into the IR, and it
selects an optimization path consisting of aggressive
profile-guided optimizations. The optimizer propagates
the profile information to the Itanium Processor Family
code generator so that the code generator can use the
profile to guide basic block layout, trace selection,
instruction scheduling, and other transformations. We
discuss the details of profile usage in later sections.

GLOBAL OPTIMIZER

The StarJT compiler uses a single optimization
framework for Java” and Common Language
Infrastructure (CLI) programs. The StarJIT global
optimizer applies a set of classical, object-oriented, and
profile-guided optimizations to the method representation,
balancing the aggressiveness of optimizations with their
compile-time cost.

Figure 2 shows the high-level flow of the StarJIT global
optimizer. The optimizer has two primary phases. The
first phase consists of fast optimizations performed every
time the StarJIT compiler is invoked. This phase
improves code quality and performance without
substantial compile-time cost. It carries out a baseline set
of optimizations on all generated code. It is deterministic:
it uses no contextual information (such as profiling) that
may change in alater recompile. If no profile information
is available (i.e, thisis the first time the StarJIT compiler

7 Other brands and names are the property of their
respective owners.

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 23

Intel Technology Journal, Vol. 7, Issue 1, 2003

is compiling a method) and the Profile Manager is using
instrumentation-based profiling, then the StarJIT
optimizer instruments the intermediate representation (IR)
before invoking the code generator.

If profile information is available (i.e., the method is a hot
method that the Profile Manager has selected for
recompilation), the optimizer annotates it into the STIR
after the first phase and runs the second optimization
phase. This phase applies more aggressive optimizations
and takes advantage of profile information in the
annotated STIR. Through this second phase, the StarJIT
compiler focuses compilation time on methods and
regions that are most critical to overall performance.

Fast optimizations

Gat profile? =5

L}
| Annatate IR with profede
InsdruifmEnt IR

Profile-gusied
optimizations

.
Code generation

Figure2: The StarJIT global optimizer

Each of the two optimization phases performs the same
basic set of optimization passes. These passes are
grouped into four categories. Scope Enhancement passes,
Privatization passes, and Redundancy Elimination passes
are performed in sequence, while IR Smplification passes
are performed at multiple points to clean up the method
representation between passes. In the first phase, all
passes use conservative settings to run quickly. In the
second phase, the passes use profile information and more
aggressive settings. In this manner, the StarJIT compiler
balances compile time with performance by concentrating
expensive optimizations only on methods that are hot.
The remainder of this section describes the optimization
passes in more detail.

I ntermediate Representation Simplification
Passes

IR simplification passes are a set of very fast optimization
passes that the StarJIT optimizer performs severa times
on the IR. These optimizations reduce the size and
complexity of the IR. In addition to improving the code
quality, this reduction improves the efficiency of other,
more expensive optimizations. IR simplification consists
of three passes.

The first pass involves propagation and folding. This pass
performs constant, type, and copy propagation over the
entire method following the static single assignment
(SSA)-form use-def links. As it does this, it aso
simplifies and folds expressions such as arithmetic on
constants or runtime checks for null references that are
proven non-null (e.g., a reference defined by a new
alocation). When branch conditions or instructions that
can potentially raise an exception are folded, the
corresponding edges are also removed from the control
flow graph, and any unreachable code as a result of the
edge deletion is skipped (effectively performing
conditional constant propagation [19]).

The second pass eliminates unreachable and useless code.
It does the former by testing reachability via traversal
from the control flow graph entry; it does the latter by
using a sparse liveness traversal over SSA-form use-def
links.

The third pass performs fast global value numbering to
eliminate common subexpressions [3]. This pass does an
in-order depth-first traversal of the dominator tree (instead
of the more expensive iterative dataflow analysis done by
traditional common subexpression elimination). At any
given program point, SSA-form expressions computed
earlier within the same basic block are considered
available. In addition, expressions that are available at the
end of dominating blocks are also available. Expressions
that may be killed (such as loads from memory) or have
side-effects (such as calls) are ignored.

Global value numbering is effective in eliminating
redundant address computation and check instructions
(e.g., chkzero, chknull, and chkcast that are redundant or
guarded by explicit conditional branches). Later
optimization passes eliminate redundant memory accesses
(which require alias analysis and kill information) and
array bounds checks (which are difficult to remove in a
single forward pass because they require arithmetic
reasoning and propagation of dataflow facts across loop
back edges).

Together, the IR simplification passes can be thought of as
a single cleanup pass. This cleanup is performed at a
number of pointsin the optimization process.

Scope Enhancement Passes

The global optimizer begins with a set of transformations
designed to enhance the scope of later optimizations. The
first scope enhancement pass normalizes control flow by
removing critical edges (a critical edge is an edge from a
node with multiple successors to a node with multiple
predecessors), and factoring entry and back edges of
loops. These transformations prepare the intermediate
representation for later optimization; for example, loop

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 24

Intel Technology Journal, Vol. 7, Issue 1, 2003

normalization simplifies the implementation of peeling,
and critical edge removal is necessary for redundancy
elimination.

After normalization, the optimizer performs a set of loop
transformations. These include loop inversion, peeling,
and unrolling. The first optimization phase is
conservative, and performs only loop inversion and
limited partial peeling. The second profile-driven
optimization phase is more aggressive, and performs
profile-driven peeling and unrolling of hot loops. Note
that loop peeling, in combination with global value
numbering, provides a cheap mechanism to hoist loop-
invariant computation and runtime checks.

The third scope enhancement optimization is guarded
devirtualization of virtual method calls. Virtual method
cals are prevalent in managed runtime environment
(MRTE) applications. They differ from direct callsin that
the actual call target must be resolved at runtime by
examining an object’s virtual method table. The costs of
this extra level of indirection include the runtime expense
of extra code to invoke a virtual method and potentially
poorer branch prediction in hardware for that call, as well
as the compile-time expense of impeded interprocedural
analysis and inlining.

In cases where the optimizer has exact type information,
the IR simplification pass is able to devirtualize a virtual
call by converting it into a more efficient direct call. In
other cases, the target of a virtual method may be highly
predictable. In these cases, the scope enhancement pass
devirtualizes the call by guarding it with an inexpensive
runtime test that checks whether the predicted method is
in fact the target. If performed accurately, guarded
devirtualization alleviates the runtime costs associated
with virtual method calls and enables the compiler to
inline targets of virtual method calls. The first phase
performs guarded devirtualization conservatively using
simple static heuristics. The profile-driven phase
performs guarded devirtualization aggressively using
block execution and call graph profiles.

The centerpiece of the scope enhancement passes is the
inliner. Inlining removes the overhead of a direct call and
specializes the called method within the context of its call
site. The inliner consists of an iterative process built
around the other scope enhancement and IR simplification
passes. In the first pass through this cycle, scope
enhancement and IR simplification transformations are
performed on the original intermediate representation. At
this point, the inliner examines each direct call site in the
IR (including those exposed by guarded devirtualization),
heurigtically assigns a benefit to it, and, if it exceeds a
certain threshold, registers it in a priority queue. The top
candidate, if any, is then selected for inlining. The
trandator generates IR for the inlined method, and the

cycle is repeated upon the new IR. The inliner then
processes the new IR for further inlining candidates
(updating the priority queue), splices it into the existing
IR, selects a new candidate, and repeats the cycle. The
inliner halts once the queue is empty or after the IR
reaches a certain size limit. When inlining is completed,
the globa optimizer performs a final IR simplification
pass over the entire intermediate representation.

Privatization Passes

The privatization passes optimize accesses to memory
locations. The privatization phase first performs alias and
escape analyses on memory accesses, and then performs
synchronization removal [18] and scalar replacement [16].
Alias analysis yields information about which load/store
addresses may affect each other [16]. The StarJIT
optimizer uses the type information about object fields for
alias analysis. For example, accesses to two object fields
cannot refer to the same location if the object types, field
names, or field types differ. A store cannot alias with a
final or read-only field of an object (except in the object
congtructor). The StarJIT optimizer also uses the
definition point of an object reference for alias analysis: a
reference to an object that is a method parameter may not
alias with areference resulting from an object allocation.

Escape analysis determines the extent to which accessed
memory locations are visible outside the current method
[6][13]. Escape analysis determines this information with
a sparse SSA-based analysis of each object referenced in a
method. An object that is alocated in the body of the
method is initially assumed to be private to the method
(i.e., non-escaping). Any object passed in as an argument
or a return value, passed as an argument to another
method, returned as a result, or stored into a static field
escapes by definition. Moreover, any object stored as a
field in an escaping object transitively escapes. Finally,
any object that potentially aliases an escaping object
(because of a copy or a merge at an SSA phi node) also
escapes. The StarJIT optimizer’s current escape analysis
algorithm is intra-procedural and relies on the prior
inlining pass to expose privatization opportunities. We
plan on augmenting the escape analysis pass with inter-
procedural information.

Once escape analysis is done, synchronization removal
eliminates synchronization operations (which are explicit
in STIR) on objects that do not escape a method or that
escape only via a return. Scalar replacement promotes
object fields and array elements to SSA variables that are
amenable to further optimization passes [9]. This pass
takes advantage of the alias and escape analysis
information to disambiguate memory references.

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 25

Intel Technology Journal, Vol. 7, Issue 1, 2003

Redundancy Elimination Passes

The final set of optimization passes comprises
optimizations to eliminate redundant and partialy
redundant computations. These passes include loop-
invariant code motion, bounds-check elimination, and
strength reduction [16]. They are deferred until the
largest possible program scope is available and the most
memory locations have been promoted to scalar variables.

The StarJIT optimizer uses a demand-driven array
bounds-check elimination analysis based upon the
previously published ABCD agorithm [4]. It first inserts
Pi nodes into the IR to split variable live ranges based on
branch conditions. Pi nodes capture information gleaned
about a variable based on branch conditions. From each
variable's definition, the analysis then derives inequality
constraints upon that variable's value, which can be used
to prove redundancy of bounds checks involving that
variable. Unlike the original ABCD agorithm, the
StarJI T optimizer's bounds-check elimination
implementation does not construct a separate constraint
graph, but uses the SSA graph directly to derive
congtraints during an attempted proof. We aso have
added handling of symbolic constants to allow check
glimination in dlightly harder cases, commonly
encountered in practice.

To facilitate load hoisting in the code generator, the
check-elimination transformations track conditions used to
prove that a check can be eliminated. The code
generation interface passes this information to the code
generator. The scheduler uses this information to
determine which branches guard the safety of a given
load, and marks the load as speculative if it hoists the load
above a guarding branch.

The StarJIT optimizer performs strength reduction to
transform expensive operations, such as multiplication by
an induction variable in a loop, into simpler operations
such as addition. The implementation is based upon the
operator strength reduction optimization described in [8],
extended to also reduce the strength of memory address
computations. The strength reduction pass performs
linear function test replacement to eliminate uses of the
origina loop induction variable in tests (e.g., loop exit
tests). This optimization is effective in transforming an
iteration through the elements of an array into a series of
pointer increments and pointer comparisons, and
eliminating the original array index. In cases where the
loop index is live after the loop, this pass rematerializes
the index on loop exits to still allow removal of the loop
index computation from the loop. For the Itanium”

7 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Processor Family architecture, the strength reduction pass
can aso transform loops with invariant trip counts into
counted loops.

The optimizer must be careful during strength reduction
because of overflow issues: the optimizer cannot
transform a 32-bit integer induction variable used as an
array index into a 64-bit pointer (strength reducing the
indexing operations) unless it can prove that additions to
the 32-bit index will not overflow (and wrap around to a
negative number, as required by Java® bytecode
semantics) because adding to the 64-bit pointer will not
overflow in the same cases. While unlikely to occur in
real code, the induction variable range is checked for
possible overflow before such a strength reduction
transformation. The range analysis makes use of the same
demand-driven bounds-check analysis used for array
bounds-check elimination.

THE ITANIUM PROCESSOR FAMILY
CODE GENERATOR

The Itanium® Processor Family code generator is
responsible for generating native code for a program
represented by STIR. It lowers the program
representation to the machine level, performs architecture-
dependent optimizations such as register allocation and
scheduling, computes the information necessary to support
garbage collection (GC), and emits the bits that are
directly executed by the processor.

Figure 3 shows the structure of the code generator. The
first code generation phase is code selection. During this
phase the code generator lowers STIR operations into
[tanium Processor Family code sequences and performs
simple optimizations such as immediate operand folding,
operator folding, and strength reduction. It uses
predication [15] to avoid generating additional control
flow for complex STIR operations such as instanceOf.
The Itanium Processor Family instruction sequences
generated from STIR usually contain many operations that
move data between temporaries, variables, incoming and
outgoing arguments, and return values. The code selector
makes a pass over the intermediate representation to
coalesce the sources and destination operands of moves,
and to remove the resulting redundant moves.

7 Other brands and names are the property of their
respective owners.

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 26

Intel Technology Journal, Vol. 7, Issue 1, 2003

Code selection

Trace

No scheduling
> i

GC info
computation

}

Code emission

k.

Static profile
estimation

Global register
allocation

I

Figure 3: Itanium Processor Family code gener ator
phases

The optimizer drives code selection through a code-
generation interface. This interface abstracts the
information that the optimizer should communicate to a
code generator from the details of STIR implementation
and allows the code generator to be used with any front-
end that supports the code generation interface. The
subsequent code generation phases require profile
information to guide optimizations. When dynamic
profile information is not available, the code generator
estimates the profile using static heuristics [1].

The ordering of register alocation and code scheduling is
a classical phase-ordering problem [12]. Register
alocation performed before scheduling introduces
additional anti and output dependencies that restrict
scheduler freedom to reorder the instructions. Register
allocation performed after code scheduling may require an
additional scheduling pass to accommodate generated spill
code. In addition, register alocation quality may suffer
because of increased register pressure. The code
generator chooses a middle-ground approach. It divides
all operands into two categories: local and global. An
operand is local if it has a single definition and its live
range does not span a loop boundary. All other operands
are global. Only global operands require iterative data
flow analysis to compute their liveness. The liveness of
local operands can be computed with a single reverse pass
over the IR. The global operands are assigned registers
during the global register allocation phase that occurs
before scheduling. This introduces only a few data
dependencies, as most of the operands are local. The
local register allocator is integrated with scheduling. The
scheduler keeps track of the register pressure, and
materializes and schedules spill code as needed.

The code scheduler is the most complex component of the
code generator. In addition to scheduling instructions
using trace scheduling [11], it performs code layout and
local register allocation. The design of the trace scheduler
is described in the next section.

After scheduling, the code generator computes the
information necessary to support GC. For each call
instruction, it computes the set of registers and stack
locations that contain live references and interior pointers
(pointers to the middle of the objects alocated on the
heap), and it records this information in a data structure
called the GC map table. During garbage collection, the
garbage collector enumerates the root set by iterating over
the set of frames on each thread’ s runtime stack. For each
frame, the garbage collector makes a callback into the JI T
compiler asking it to enumerate the set of live references
for that frame and to unwind to the previous frame. The
JT compiler computes the set of live references for the
frame using the GC map information.

The final code emission phase emits the native Itanium
Processor Family binary code into memory for execution.
This phase also emits the GC map table, exception handler
tables (for dispatching exceptions), stack unwinding
information (for root set enumeration, exception
unwinding, and runtime security checks), and the IP-to-IR
mapping tables (for profile gathering).

Trace Scheduler Design

The modular trace scheduler design facilitates managed
runtime environment (MRTE) research work,
retargetability to other micro-architectures, and portability
for use in other virtual machine (VM) or compilation
systems. The various components of the trace scheduler
are shown in Figure 4. The components have been
designed as independent modules with clear interfaces so
that they can be applied to each trace selectively.

Code Linearizer, Tail Duplicator &
Trace Picker

.
-
, N

/" Trace Scheduler | Dependence X
Manager

: N
' | Trace Interface Local Register !
, Manager Allocator !
E Lis i
! Scheduler '
: — |
' Compensation Micro- '
: Manager Scheduler !
' o
' Speculation i
s Manager ;

Figure 4: Trace scheduler components

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 27

Intel Technology Journal, Vol. 7, Issue 1, 2003

The first pass of the trace scheduler is the code linearizer,
tail duplicator, and trace picker. Trace selection is
important because it defines the scheduling scope. Trace
selection and scheduling are best done after code (basic
block) layout, to schedule unconditional branches
introduced by code linearization, and to form cross-block
bundles and cycles. Tail duplication is useful to eliminate
side entries into traces, but must be done before code
layout decisions are finalized. Tail duplication decisions,
however, are best made with input from trace formation.
Therefore, there is a cyclic phase ordering dependency
between trace picking, code layout, and tail duplication.

The StarJIT Itanium Processor Family code generator uses
anovel scheme that performs al three together. The code
layout technique is a top-down scheme similar to that
described by Pettis & Hansen [17]. Code layout, trace
formation, and tail duplication decisions all benefit from
any available branch profile information. Code layout
uses profiles to improve cache locality and reduce taken
branches. Along hot paths the trace picker picks longer
traces, and the tail duplicator is more aggressive in
removing cold side entries, while on cooler paths shorter
traces are picked with little or no tail duplication. Finally,
a few compensation blocks are added on some critical
edges. After scheduling, the code generator eliminates
useless compensation blocks, which have no
compensation code moved into them.

At the core of the trace scheduler is the list scheduler,
which schedules one trace at a time. The list scheduler
schedules instructions from a dataready list. It uses
severa heuristics to choose between data-ready
candidates. These include critical path length, slack (a
measure of the freedom to delay an operation without
delaying the overall schedule), register and resource
availability and future needs, code size and code motion
usefulness metrics, and effects of any required
compensation, or speculation. The heuristics are profile
sengitive: their basic goals are to generate high-
performance code at hot traces and to enable fast
generation of compact code at cold traces. The list
scheduler heuristics also guide multiway branch
generation. MRTE safety checks, such as null pointer,
array bounds, and type checks, result in a large number of
branch operations. It is therefore important to bundle
multiple branches together to reduce code size, control
height, and mispredicted branches.

The list scheduler uses a micro-scheduler to schedule
instructions within a cycle. The micro-scheduler models
resources and dispersa rules, and makes compact
bundling decisions. For the Itanium Processor Family, it
is important to integrate scheduling with bundling because
the bundling choices influence dispersal. The micro-
scheduler is based on the Open Research Compiler's

micro-scheduler [14]. It abstracts away the machine
details and reads the Itanium micro-architecture definition
from a knobsfile.

The dependence manager tracks all register data

dependencies, memory dependencies, and control
dependencies while trying to avoid transitive
dependencies, for efficiency reasons. It uses MRTE

metadata to avoid creating false memory and control
dependencies. Memory disambiguation is based on the
properties of pointers to memory locations such as type,
memory region (heap, stack, static), and access semantics
(e.g., field, array element). The dependence manager uses
the safety semantics of MRTE memory operations to
avoid unnecessary control dependencies. A load is safe
(i.e, can be issued without making it speculative)
everywhere except before its corresponding safety checks
(chknull, chkbounds, and/or chkcast). When the optimizer
combines or eliminates any of these checks based on
control or data flow implications, it keeps around enough
information to allow the dependence manager to recognize
control dependencies of such loads on the appropriate
check and/or branch instructions. The dependence
manager also enables the list scheduler to use predication
to convert a control dependency on a branch to a data
dependency on the associated predicate-generating
compare. This allows the list scheduler to predicate a
block partialy, thus reducing the need for speculation,
check, and recovery generation.

The speculation manager uses the Itanium Processor
Family control speculation feature to schedule loads
before the branches on which they are control dependent.
It keeps track of the speculative loads and dependent
speculative instructions that should be included in the
recovery code. After all traces have been scheduled, the
speculation manager materializes the recovery code and
schedulesit using alocal scheduler.

When instructions are moved above a trace side entry or
below a trace side exit, the compensation manager inserts
copies of these instructions in the off-trace blocks. The
scheduler performs code motion, only when heuristics
suggest that the good done to the on-trace path is not
outweighed by any harm done by compensation code to
the off-trace path. Code motion requiring compensation
insertion into previously scheduled tracesis not permitted.
Profile information (which determines the order in which
traces are scheduled), therefore, guides compensation
code decisions. The compensation manager also avoids
compensation code when control and data dependence
relationships indicate that it is unnecessary. For example,
compensation code is not needed at intermediate side
entry points when an instruction is moved to a dominating
point in the trace and the instruction’s operands are not
modified on any off-trace path.

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 28

Intel Technology Journal, Vol. 7, Issue 1, 2003

The trace interface manager models liveness and data flow
latency across trace boundaries (trace main entry/exit and
side entrieg/exits), thus maximizing scheduling freedom
and improving performance at trace interfaces.

The StarJIT trace scheduler has an integrated local
register alocation module (as mentioned earlier, global
operands are allocated registers prior to scheduling). This
module monitors liveness of local temporaries and
allocates registers to them when their definitions are
scheduled. A loca temporary has a single definition that
dominates all its uses. The scheduler exploits this
property to model register pressure during scheduling, and
to materialize and schedule spill code on-the-fly, thus
performing efficient and optimized register allocation.

CONCLUSION

Managed Runtime Environments (MRTESs) depend on
dynamic compilation for performance and security. The
strict runtime requirements of dynamic compilation pose
new challenges to compiler engineers. These regquirements
also provide new dynamic optimization opportunities
involving both the compiler and the hardware.

In this paper, we have described the design of the StarJI T
compiler. Built upon a framework that enables dynamic
recompilation for a range of MRTEs and Intel
architectures, this research infrastructure enables
heretofore intractable research opportunities in
implementation tradeoffs of managed runtimes and
hardware architectures.

ACKNOWLEDGMENTS

The authors thank members of the Open Research
Platform (ORP) VM team, Michal Cierniak, Neal Glew,
Rick Hudson, Brian Lewis, James Stichnoth, Sreenivas
Subramoney, and Weldon Washburn. The StarJiT
compiler would not have been realized without their
support and efforts in making the ORP VM robust and
high-performing. We thank Youfeng Wu, Roy Ju, and
Sun Chan for providing valuable feedback on the IPF
trace scheduler design and details on the ORC micro-
scheduler. The authors aso thank Jesse Fang for his
guidance and continuing support of this work, Ken Lueh
for his early contributions to the StarJIT source code, and
Youngsoo Choi for his contributions to the Itanium
Processor Family PMU driver.

REFERENCES

[1] T. Ball and J.R. Larus, “Branch Prediction for Free,”
in proceedings of ACM SIGPLAN’ 93 Conference on
Programming Language Design and |mplementation,
June 1993, pp. 300-313.

[2] T. Ball and J.R. Larus, “Optimally Profiling and
Tracing Programs,” Conference Record of the
Nineteenth ACM Symposium on Principles of
Programming Languages, January 1992, pp. 59-70.

[3] P. Briggs, K.D., Cooper and L.T. Simpson, “Value
Numbering. Software-Practice and Experience,” vol.
27(6), June 1997, pp. 701-724.

[4] R. Bodik, R. Gupta, and V. Sarkar, “ABCD:
Eliminating Array-Bounds Checks on Demand,” in
proceedings of the SGPLAN ' 00 Conference on
Program Language Design and Implementation,
Vancouver, Canada, June 2000, pp. 321-333.

[5] P.P. Chang, S.A. Mahlke and W.W. Hwu, “Using
Profile Information to Assist Classic Code
Optimizations,” Software-Practice and Experience,
vol. 21(12), Dec. 1991, pp.1301-1321.

[6] J.-D. Choi, M. Gupta, M.J. Serrano, V.C. Sreedhar
and S.P. Midkiff, “Escape Analysisfor Java,” in
proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999, pp. 1-19.

[7] R. Cohn, D. Goodwin and P.G. Lowney, “Optimizing
Alpha Executables on Windows NT with Spike,”
Digital Technical Journal, vol. 9, No. 4, 1997, pp. 3-
20.

[8] K.D. Cooper, L.T. Simpson and C.A. Vick, “Operator
Strength Reduction,” ACM Transactions on
Programming Languages and Systems, vol. 23, no. 5,
September 2001, pp. 603-625.

[9] K.D. Cooper and L. Xu, “An Efficient Static Analysis
Algorithm to Detect Redundant Memory Operations,”
ACM 2002, Workshop on Memory System
Performance (MSP ‘02), Berlin, Germany, June 16,
2002.

[10] R. Cytron, J. Ferrante, B. Rosen, M. Wegman and F.
Zadeck, “Efficiently computing static single
assignment form and the control dependence graph,”
ACM Transactions on Programming Languages and
Systems, vol. 13, No. 14, October 1991, pp 451-490.

[11] J.A. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction,” |EEE Transactions
on Computers, C-30(7), July 1981, pp. 478-490.

[12] S.M. Freudenberger and J.C. Ruttenberg, “Phase
Ordering of Register Allocation and Instruction
Scheduling,” in proceedings of the International
Workshop on Code Generation, May 1991, pp. 146-
172.

[13] D. Gay and B. Steensgaard, “Fast Escape Analysis
and Stack Allocation for Object-Based Programs,” 9™

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 29

Intel Technology Journal, Vol. 7, Issue 1, 2003

International Conference on Compiler Construction,
(CC *2000), Springer-Verlag, Vol. 1781, 2000, pp.
82-93.

[14] R. du, S. Chan, F. Chow, X. Feng and W. Chen,
“Open Research Compiler (ORC) Beyond Version
1.0,” tutorial presented at PACT-2002, September 22,
2002.

[15] S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank and
R.A. Bringmann, “Effective Compiler Support for
Predicated Execution Using the Hyperblock,” in
proceedings of the 25™ International Symposium on
Microarchitecture (MICRO 25), Dec. 1992, pp. 45-
54.

[16] S. Muchnick, Advanced Compiler Design and
Implementation, Morgan Kaufmann, San Francisco,
CA, 1997.

[17] K. Pettis and R.C. Hansen, “Profile Guided Code
Positioning,” in proceedings of the ACM SSGPLAN
90 Conference on Programming Language Design
and Implementation, White Plains, N.Y ., June 20-22,
1990, pp. 16-27.

[18] E. Ruf, “Effective synchronization removal for
Java,” in proceedings of the ACM SSGPLAN ' 00
Conference on Program Language Design and
Implementation, Vancouver, British Columbia, June
2000, pp. 208-218.

[19] M. Wegmen and F. Zadeck, “Constant Propagation
with Conditional Branches,” ACM Transactions on
Programming Languages and Systems, vol. 13, No.2,
April 1991, pp. 181-210.

AUTHORS BIOGRAPHIES

Ali-Reza AdI-Tabatabai isasenior staff researcher in the
Programming Systems Lab. He received a B.Sc. degree
from UCLA in Computer Science & Engineering and a
Ph.D. degree from Carnegie Mellon University in
Computer Science. Hisresearch interests include dynamic
compilation and optimization, managed runtimes, memory
hierarchy design, and compression. His email is ali-
reza.adl-tabatabai @intel.com

Jay Bharadwaj is a senior staff researcher in the
Programming Systems Lab. He received a B.S. degree in
Mechanical Engineering from IIT Madras, Indiaand M.S.
degrees in Computer Science and Mechanical Engineering
from Rensselaer Polytechnic Institute and SUNY Stony
Brook, respectively. His research interests include
managed runtimes, hardware software cooperation, and
compilation techniques. Other interests include activities

requiring use of hand or power tools. His email is
jay.bharadwaj @intel.com

Dong-Yuan Chen is a d<aff researcher with the
Programming Systems Lab. He received his Ph.D. degree
in Computer Science from Yae University in 1995. He
has worked on back-end compiler optimizations, including
software pipelining and machine modeling, and various
microarchitectural performance studies for the Itanium
Processor Family architecture. His current interests
include lightweight online profiling mechanisms and
dynamic profile-guided optimizations in managed runtime
environments. Hise-mail is dong-yuan.chen@intel.com

Anwar Ghuloum is a senior staff researcher in the
Programming Systems Lab. He received a B.Sc. degree
from UCLA in Computer Science & Engineering and a
Ph.D. degree from Carnegie Mellon University in
Computer Science. His research interests include
managed runtime environments, memory hierarchy design,
and compression. Other pursuits include cycling, tri,
building bikes, painting, and the uses of coherent light.
His e-mail is anwar.ghuloum@intel.com

Vijay Menon is a staff researcher in the Programming
Systems Lab. He received a B.S. from the University of
Cdlifornia, Berkeley in Electrical Engineering and
Computer Science and a Ph.D. from Cornell in Computer
Science. His current research interests include program
analysis, dynamic compilation, and managed runtime
environments. Hise-mail is vijay.menon@intel.com.

Brian R. Murphy is a Just-In-Time researcher at Intel
Labs. He has done anaysis of functional languages,
automatic parallelization of Fortran code, development of
advanced program analysis techniques, programming
language design and implementation, Unix and Linux
systems programming and administration, and Web site
development and management. He received S.B. and
S.M. degrees from M.I.T., and a Ph.D. degree from
Stanford University. His e-mail is
brian.r.murphy@intel.com

Mauricio Serrano received his Ph.D. degree in Computer
Engineering from the University of Cdlifornia Santa
Barbara in 1994, an M.S. degree from Rensselaer
Polytechnic Institute, and a B.S.E.E. from Javeriana
University, Bogota, Colombia. Before joining Intel, he
spent several years working with IBM T.J. Watson/New
York and STL/San Jose, where he worked in severd
compiler areas including program restructuring,
retargetable code generation, and Java performance
optimizations. His other interests are computer
architecture and performance modeling. He published the
first dissertation on SMT (Simultaneous Multithreaded
Processors) in 1994, although at that time he called it

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 30

mailto:ali-reza.adl-tabatabai@intel.com
mailto:ali-reza.adl-tabatabai@intel.com
mailto:jay.bharadwaj@intel.com
mailto:dong-yuan.chen@intel.com
mailto:anwar.ghuloum@intel.com
mailto:vijay.menon@intel.com
mailto:brian.r.murphy@intel.com

Intel Technology Journal, Vol. 7, Issue 1, 2003

SMS (Simultaneous Multistream Superscalar Processors).
His e-mail is mauricio.j.serrano@intel.com

Tatiana Shpeisman is a dtaff researcher in the
Programming Systems Lab. She received her B.Sc.
degree from the Leningrad Electrical Engineering Institute
in Applied Mathematics and M.S. and Ph.D. degrees from
the University of Maryland, College Park, in Computer
Science. Her research interests include compilation
techniques, managed runtimes, and sparse matrix
computations. Her other interests include hiking in the
Sierras, ballroom dancing, and classical ballet. Her e-mail
is tatiana.shpel sman@intel.com.

Copyright © Intel Corporation 2003. This publication
was downloaded from http://devel oper.intel.conv.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments

31

mailto:mauricio.j.serrano@intel.com
mailto:tatiana.shpeisman@intel.com
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.ntm

Copyright © 2002, Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information vistit: www.intel.com/sites/corporate/tradmarx.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

	A
	ABSTRACT
	INTRODUCTION
	THE ARCHITECTURE OF THE STARJIT COMPILER
	Java(and Common Language Infrastructure Bytecode Translators
	STIR: The StarJIT Compiler’s Intermediate Representation
	Itanium(Processor Family and IA-32 Code Generators
	Dynamic Profile-Guided Optimizations

	GLOBAL OPTIMIZER
	Intermediate Representation Simplification Passes
	Scope Enhancement Passes
	Privatization Passes
	Redundancy Elimination Passes

	THE ITANIUM PROCESSOR FAMILY CODE GENERATOR
	Trace Scheduler Design

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	2_StarJITWeb4QA1.pdf
	A
	ABSTRACT
	INTRODUCTION
	THE ARCHITECTURE OF THE STARJIT COMPILER
	Java(and Common Language Infrastructure Bytecode Translators
	STIR: The StarJIT Compiler’s Intermediate Representation
	Itanium(Processor Family and IA-32 Code Generators
	Dynamic Profile-Guided Optimizations

	GLOBAL OPTIMIZER
	Intermediate Representation Simplification Passes
	Scope Enhancement Passes
	Privatization Passes
	Redundancy Elimination Passes

	THE ITANIUM PROCESSOR FAMILY CODE GENERATOR
	Trace Scheduler Design

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

