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ABSTRACT 
Dynamic compilers (or Just-in-Time [JIT] compilers) are 
a key component of managed runtime environments.  This 
paper describes the design and implementation of the 
StarJIT compiler, a dynamic compiler for Java Virtual 
Machines and Common Language Runtime platforms.  
The goal of the StarJIT compiler is to build an 
infrastructure to research the influence of managed 
runtime environments on Intel architectures.  The StarJIT 
compiler can compile both Java∗  and Common Language 
Infrastructure (CLI) bytecodes, and it uses a single 
intermediate representation and global optimization 
framework for both Java and CLI.  The StarJIT compiler 
is designed to generate optimized code for the major Intel 
architectures and currently targets two Intel architectures: 
IA-32 and the Itanium  Processor Family. 

In this paper, we describe the overall architecture 
(bytecode translators, global optimizer, and code 
generators) of the StarJIT compiler and the design of its 
intermediate representation, global optimizer, Itanium 
Processor Family code generator, and dynamic 
optimization framework.  We present implementation 
details on the single static assignment (SSA)-based global 
                                                           
∗  Other brands and names are the property of their 
respective owners. 
  Itanium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 

optimizations [1], the Itanium Processor Family trace 
scheduler, and the profile-driven dynamic optimization 
framework.  

INTRODUCTION 
Programs targeted to managed runtime environments 
(MRTEs), such as the Java Virtual Machine and the 
Common Language Runtime, are distributed in a machine-
neutral bytecode format and need to be compiled to native 
machine code by a dynamic compiler.  The performance 
of managed applications depends on the quality of 
optimizations and code generation performed by the 
dynamic compiler.  Dynamic compilers, or Just-in-Time 
(JIT) compilers, are thus a key component of MRTEs. 

Because final native code generation happens as part of an 
application’s execution, MRTEs pose several challenges 
to the dynamic compiler: 

1. The dynamic compiler must be sensitive to the time 
and space efficiency of its optimization algorithms – 
compilation overheads become overheads on the 
application’s execution.  For example, a slow 
compiler can slow down an application’s load time, 
making the system feel less responsive to the user.  A 
dynamic compiler, therefore, must be designed to 
balance compilation overhead with code quality. 

2. Bugs in the dynamic compiler can become security 
holes that can be exploited by hackers.  MRTEs 
partially rely on the dynamic compiler to enforce 
security; for example, the dynamic compiler enforces 
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memory safety by inserting checks for type casts and 
out-of-bound array accesses.  Bugs in the dynamic 
compiler can compromise the safety guarantees 
provided by the MRTE.  A dynamic compiler, 
therefore, must not only be efficient but also robust. 

These challenges are particularly difficult for architectures 
that rely on compiler optimizations for performance.  For 
example, the Itanium  Processor Family architecture 
relies heavily on expensive and sophisticated code-
generation optimizations (such as global scheduling and 
control speculation) for performance.  A dynamic 
compiler must implement these optimizations robustly and 
efficiently, and also be flexible, to allow balancing of 
compilation overhead and code quality. 

In comparison to traditional, statically compiled programs, 
however, MRTEs also provide new performance 
optimization opportunities: 

1. Because native code generation occurs during an 
application’s execution, MRTEs are an ideal 
environment for dynamic profile-guided optimization.  
This is important for the Itanium Processor Family, 
which relies on profile-guided optimizations (such as 
inlining and trace scheduling) for performance.  
Dynamic profile-guided optimization also enables the 
dynamic compiler to concentrate expensive 
optimizations only on those regions of the program 
that have the biggest payoffs, thus limiting 
optimization overhead. 

2. The dynamic compiler can tailor the generated code 
to the platform on which the application is executing.  
The dynamic compiler can detect platform parameters 
(such as microarchitecture generation, cache size, and 
memory size) and tailor the code to the platform 
parameters.  Thus it can deal effectively with “legacy 
binary” issues. 

3. MRTEs provide metadata (such as type information) 
that can be used for optimization.  Metadata gives the 
compiler precise information about control flow and 
types used by a program, which the compiler can 
exploit for optimization (e.g., type-based alias 
analysis). 

We have built the StarJIT compiler as a research 
infrastructure to investigate these challenges and 
opportunities on Intel architectures. 

The rest of this paper is organized as follows.  In the next 
section, we describe the overall architecture of the StarJIT 
compiler.  We then describe the design of the global 

                                                           
  Itanium is a registered trademark of Intel Corporation or 
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optimizer, including the single static assignment (SSA)-
based intermediate representation, global optimization 
phase structure, and SSA-based global optimization 
algorithms.  We then describe the design of the Itanium 
Processor Family code generator, including the code 
generation phase structure and trace scheduler.   

THE ARCHITECTURE OF THE STARJIT 
COMPILER 
The StarJIT compiler is designed to provide a common 
strongly typed substrate in which code distributed for 
various managed runtime environments can be safely 
optimized and targeted to Intel architectures.  A further 
design goal is to enable dynamic profile-driven 
optimization and recompilation.  These goals are reflected 
directly in the topological organization of the architecture, 
illustrated in Figure 1.  Paths exist connecting every 
language front-end with every architecture-specific back-
end, propagating type information from the source 
bytecodes through to the architecture-specific back-ends. 
Furthermore, an additional path for annotating the 
intermediate representation (IR) used by the global 
optimizer with profile information from execution of the 
generated native code enables the seamless injection and 
use of dynamic information for recompilation. 

If virtual machine (VM) support exists, supporting a new 
hardware architecture for all of the supported languages 
requires only that a single StarJIT compiler back-end is 
implemented for that hardware.  Similarly, supporting a 
new language across the supported Intel architectures 
requires only that a new language front-end be 
implemented.  The primary architectural features of the 
StarJIT compiler that enable this are divided into 
language- and architecture-specific portions and language- 
and architecture-independent portions, both of which are 
described in this section. 

The process for StarJIT compilation follows a single path 
in this architectural schema, determined by the source 
language and target architecture.  The managed runtime 
environment (MRTE) bytecode is translated into the 
global optimizer’s IR by the individual front-ends for each 
source language supported.  The language- and 
architecture-independent portion comprises the global 
optimizer and the profile feedback manager.  The global 
optimizer is built on an IR called STIR (StarJIT IR).  
After optimization, architecture-specific code generators 
translate STIR into architecture-specific IRs, perform 
architecture-specific scheduling and register allocation, 
and finally emit the generated native code.  A dynamic 
feedback loop is created through the use of profile 
information by the Profile Feedback Manager to 
selectively recompile and guide global and architecture-
specific optimization decisions. 
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Figure 1: StarJIT compiler architecture

The interface of the StarJIT compiler to a specific 
MRTE’s VM is implemented in a layer that abstracts out 
the required set of interactions between the JIT and the 
VM in any MRTE.  These include, among other 
transactions, enumeration of live pointer information for 
garbage collection, allocation of objects, and metadata 
queries. 

Java∗∗∗∗  and Common Language Infrastructure 
Bytecode Translators 
The initial compilation step is the translation of portable 
bytecode into STIR.  Currently, the StarJIT compiler has 
bytecode translator front-ends for Common Language 
Interface (CLI) and Java∗ .  

Bytecode translation has two phases: the first phase 
establishes basic block boundaries and exception handling 
regions, and it recovers type information for variables and 
operators.  There are two major differences in the type 
information contained in the CLI and Java bytecodes.  
First, CLI variables are annotated with exact type 
information whereas Java variables do not have a fixed 
type and may be reused with different types at different 
points in the program.  Second, CLI operators are untyped 
whereas Java operators are typed.  The first phase of 
translation reconciles these differences to generate type 
information for both variables and operators: the Java 
translator performs type propagation to recover type 
information for variables, and the CLI translator performs 
type propagation to recover type information for the 
operators. 

                                                           
∗  Other brands and names are the property of their 
respective owners. 

The second translation phase generates STIR and 
performs simple optimizations, including inlining, 
constant and copy propagation, folding, strength 
reduction, type check elimination, devirtualization, 
elimination of class initialization checks, and value 
numbering-based redundancy elimination across extended 
basic blocks.   

The bytecode translators generate low-level operators to 
expose as many calculations as possible to the later global 
optimization phase.  For example, a load of an object field 
is broken up into component operations that perform a 
null check of the object reference, load the base address of 
the object, compute the address of the field, and load the 
value at that computed address.  The front-end translators, 
however, can be configured to use higher-level operators, 
which minimizes the need for later-stage coalescing, to 
take advantage of IA-32’s rich addressing modes. 

STIR: The StarJIT Compiler’s Intermediate 
Representation 
The StarJIT compiler’s intermediate representation (IR) 
(STIR) is a traditional two-level IR, with control-flow 
represented as a graph and instructions represented as 
triples [16].  

At a high level, STIR is a control flow graph consisting of 
nodes and edges.  The StarJIT compiler also maintains 
dominator and loop structure information on this level of 
IR for use in optimization and code generation.  STIR 
represents both conventional control flow due to jumps 
and branches, and exceptional control flow due to thrown 
and caught exceptions, so that the global optimizer and 
code generators both account for and optimize exceptions 
and exception handlers.  STIR models conventional 
control flow via basic block nodes and edges, which 
represent jumps and conditional branches between basic 
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block nodes.  STIR models exceptional control-flow via 
dispatch nodes: a thrown exception is represented by an 
edge from a basic block node to a dispatch node, and a 
caught exception is represented by an edge from a 
dispatch node to a block node.    

In managed runtime implementations, compiler-generated 
code generally does not implement exceptional control 
flow.  Instead, the underlying system implicitly handles 
the exception throws and catches.  The StarJIT compiler 
generates a system call instruction for each throw and 
registers a handler for each catch.  By modeling 
exceptional control flow explicitly in the control flow 
graph, the compiler can optimize across throw-catch 
boundaries.  For locally handled exceptions, the compiler 
replaces expensive throw and catch combinations with 
cheaper direct branches.    

At a lower level, each basic block node consists of a list of 
instructions, where each instruction is a tuple consisting of 
an operator and a set of static single assignment (SSA) 
operands [10].  The operators are low level in order to 
expose finer-grain operations to the optimizer.  SSA form 
provides explicit use-def links between operands and their 
defining instructions, which simplifies and speeds up 
global optimizations.  STIR is designed to address both 
exclusive and dissonant implementation semantics of Java 
and CLI. 

Each STIR instruction and operand is annotated with 
detailed type information.  STIR instructions retain all 
type information explicit or implicit in the original Java 
and CLI bytecodes.  Optimization passes preserve and 
update this type information, and they propagate it 
through to the architecture-specific back-ends for their 
use.  Type information is needed in the code generator to 
support exact garbage collection (GC), which requires 
enumeration of the root set at GC safe points.  Type 
information also greatly improves the quality of the 
compiler analyses by enabling type-based memory 
disambiguation at various optimization and code-
generation stages.  

Itanium  Processor Family and IA-32 Code 
Generators 
The StarJIT compiler currently supports both the Itanium  
Processor Family and IA-32 family architectures through 
distinct back-end code generators.  The compiler enables 
adaptation of new code generators, such as for the Intel  

                                                           
  Itanium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 
  Intel XScale is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

XScale  family, through a software interface that allows 
the optimizer to transparently perform the necessary 
callbacks to the code generator to construct each code-
generator’s IR with the appropriate type information.  

The propagation of STIR type information and access to 
metadata provide the code generators with the critical 
ability to disambiguate memory accesses relatively 
inexpensively, avoiding aliasing conflicts that would 
otherwise defeat many code optimizations and 
transformations.  Metadata also allow the code generators 
to generate sufficient GC information so that the StarJIT 
compiler can enumerate the root set of live pointers when 
requested to do so by the garbage collector at runtime. 

The implementations of the code generators are 
completely independent because each architecture family 
requires a different set of optimizations and code-
generation passes and utilizes very different IRs.  For 
example, the Itanium Processor Family code generator 
performs aggressive trace scheduling; the IA-32 code 
generator does not need to do this because of its 
instruction set architecture and its microarchitectural 
implementation.  

Dynamic Profile-Guided Optimizations 
The StarJIT compiler supports dynamic profile-guided 
optimization (DPGO) as part of its dynamic compilation 
framework.  Modern static compilers have used profile-
guided optimization (PGO) to achieve significant 
performance improvement [5] [7].  The performance 
benefit from PGO on the Itanium Processor Family 
architecture is even more profound, with a speedup of 
approximately 20% observed on certain integer 
benchmarks.  Traditional static PGO requires an initial 
compilation and execution run to collect an execution 
profile for use in a final compilation step.  The three-step 
process – compiling with instrumentation, executing with 
representative inputs, and re-compiling with PGO – 
requires manual involvement, and it adds a significant 
burden to the usually time-constrained software 
development cycle.  Moreover, this process requires the 
software vendor to develop a training workload that 
represents the end-user’s workload. 

In contrast, DPGO is automatic and transparent to the end 
user and software vendor.  At the center of the StarJIT 
compiler’s DPGO framework is a module called the 
Profile Manager, which resides in the virtual machine.  
The Profile Manager manages the collection and 
processing of the execution profile, and it selects hot 
methods for recompilation.  The first time it compiles a 
method, the compiler uses lightweight, fast-path 
optimizations and prepares additional information to 
support profiling (which depends on the profiling 
mechanisms used).  When a method is executed, its 



Intel Technology Journal, Vol. 7, Issue 1, 2003 

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 23 

execution profile is collected online.  Periodically, the 
Profile Manager examines the execution profile of each 
method to determine which methods are hot enough to 
warrant recompilation.  Once the Profile Manager selects 
a method for recompilation, it tells the compiler to 
recompile the method with a higher level of optimizations.  
The Profile Manager also preprocesses the execution 
profile of the method and provides it to the compiler so 
that the compiler can apply PGO during recompilation.  

This recompilation yields higher performing code for hot 
methods.  The Profile Manager continues this profiling-
recompilation process throughout the execution of the 
application.  Since DPGO collects execution profiles and 
triggers recompilation on-the-fly, it can re-optimize hot 
methods when there is significant change in their 
execution profile, allowing the MRTE to adapt to different 
execution or usage patterns of an application. 

Because of the high overhead in collecting an execution 
profile, DPGO in today’s MRTEs is typically constrained 
to collect a method invocation profile for identifying hot 
methods and a dynamic call graph for making inlining 
decisions.  As an advanced research platform, the StarJIT 
compiler provides a much more extensive set of profiles in 
its DPGO framework.  Two types of profiling mechanisms 
are supported in the StarJIT DPGO framework: one is 
instrumentation-based and the other is sampling-based. 

Instrumentation-based profiling inserts profile-collecting 
code in the dynamically generated native binary when the 
compiler first compiles a method.  The inserted code 
increments counters when execution goes through the 
control flow of the method [2].  The StarJIT compiler 
currently supports the collection of method invocation and 
control flow edge execution counts.  The inserted code 
maintains these counters in buffers that are accessible to 
the Profile Manger.  The instrumentation code incurs 
significant overhead during execution; therefore, the 
compiler does not generate instrumentation when it 
recompiles a method with DPGO.  

Sampling-based profiling collects an execution profile by 
collecting samples during the program execution.  Instead 
of simply taking an instruction pointer (IP) sample, the 
StarJIT compiler utilizes the Performance Monitoring 
Unit (PMU) of a microprocessor to get a better execution 
profile of an application.  On the Itanium Processor 
Family architecture, the PMU can monitor and provide a 
rich set of events and execution information.  For 
example, the Itanium Processor Family PMU has a Branch 
Trace Buffer (BTrB) that can capture information on the 
last few branches executed.  The branch trace information 
includes the IP address of a branch instruction and the 
target IP address of the branch.  The information in the 
BTrB thus captures a short trace fragment during the 
execution of the program.  By taking enough BTrB 

samples, the Profile Manager is able to construct an 
execution profile that approximates the edge profile. 

The PMU samples contain virtual IP addresses.  To map 
the sampling profile into a control flow profile, the 
compiler must map IP addresses into IR at the feedback 
point.  To facilitate such IP-to-IR mapping, the StarJIT 
compiler emits a basic block mapping table when it 
dynamically compiles a method.  The table allows the 
mapping of an IP address to a basic block and the branch-
target pair of IPs to a control flow edge in the optimizer 
IR. 

The Profile Manager can adjust the overhead of sampling-
based profiling by changing the sampling rate. Hence once 
the compiler has recompiled the majority of hot methods 
with DPGO, the Profile Manager can tune down the 
sampling rate to lower the profiling cost.  The dynamic 
adjustment of the sampling rate allows non-stop, low-
overhead monitoring of the application, making 
continuous profiling and recompilation feasible in 
MRTEs. 

When profile information is available, the StarJIT 
compiler feeds the profile information into the IR, and it 
selects an optimization path consisting of aggressive 
profile-guided optimizations.  The optimizer propagates 
the profile information to the Itanium Processor Family 
code generator so that the code generator can use the 
profile to guide basic block layout, trace selection, 
instruction scheduling, and other transformations.  We 
discuss the details of profile usage in later sections. 

GLOBAL OPTIMIZER 
The StarJIT compiler uses a single optimization 
framework for Java∗  and Common Language 
Infrastructure (CLI) programs.  The StarJIT global 
optimizer applies a set of classical, object-oriented, and 
profile-guided optimizations to the method representation, 
balancing the aggressiveness of optimizations with their 
compile-time cost.   

Figure 2 shows the high-level flow of the StarJIT global 
optimizer.  The optimizer has two primary phases.  The 
first phase consists of fast optimizations performed every 
time the StarJIT compiler is invoked.  This phase 
improves code quality and performance without 
substantial compile-time cost.  It carries out a baseline set 
of optimizations on all generated code.  It is deterministic: 
it uses no contextual information (such as profiling) that 
may change in a later recompile.  If no profile information 
is available (i.e., this is the first time the StarJIT compiler 
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is compiling a method) and the Profile Manager is using 
instrumentation-based profiling, then the StarJIT 
optimizer instruments the intermediate representation (IR) 
before invoking the code generator. 

If profile information is available (i.e., the method is a hot 
method that the Profile Manager has selected for 
recompilation), the optimizer annotates it into the STIR 
after the first phase and runs the second optimization 
phase.  This phase applies more aggressive optimizations 
and takes advantage of profile information in the 
annotated STIR.  Through this second phase, the StarJIT 
compiler focuses compilation time on methods and 
regions that are most critical to overall performance.   

 
Figure 2: The StarJIT global optimizer 

Each of the two optimization phases performs the same 
basic set of optimization passes.  These passes are 
grouped into four categories.  Scope Enhancement passes, 
Privatization passes, and Redundancy Elimination passes 
are performed in sequence, while IR Simplification passes 
are performed at multiple points to clean up the method 
representation between passes.  In the first phase, all 
passes use conservative settings to run quickly.  In the 
second phase, the passes use profile information and more 
aggressive settings.  In this manner, the StarJIT compiler 
balances compile time with performance by concentrating 
expensive optimizations only on methods that are hot.  
The remainder of this section describes the optimization 
passes in more detail. 

Intermediate Representation Simplification 
Passes 
IR simplification passes are a set of very fast optimization 
passes that the StarJIT optimizer performs several times 
on the IR.  These optimizations reduce the size and 
complexity of the IR.  In addition to improving the code 
quality, this reduction improves the efficiency of other, 
more expensive optimizations.  IR simplification consists 
of three passes. 

The first pass involves propagation and folding.  This pass 
performs constant, type, and copy propagation over the 
entire method following the static single assignment 
(SSA)-form use-def links.  As it does this, it also 
simplifies and folds expressions such as arithmetic on 
constants or runtime checks for null references that are 
proven non-null (e.g., a reference defined by a new 
allocation).  When branch conditions or instructions that 
can potentially raise an exception are folded, the 
corresponding edges are also removed from the control 
flow graph, and any unreachable code as a result of the 
edge deletion is skipped (effectively performing 
conditional constant propagation [19]). 

The second pass eliminates unreachable and useless code.  
It does the former by testing reachability via traversal 
from the control flow graph entry; it does the latter by 
using a sparse liveness traversal over SSA-form use-def 
links. 

The third pass performs fast global value numbering to 
eliminate common subexpressions [3].  This pass does an 
in-order depth-first traversal of the dominator tree (instead 
of the more expensive iterative dataflow analysis done by 
traditional common subexpression elimination).  At any 
given program point, SSA-form expressions computed 
earlier within the same basic block are considered 
available.  In addition, expressions that are available at the 
end of dominating blocks are also available.  Expressions 
that may be killed (such as loads from memory) or have 
side-effects (such as calls) are ignored.  

Global value numbering is effective in eliminating 
redundant address computation and check instructions 
(e.g., chkzero, chknull, and chkcast that are redundant or 
guarded by explicit conditional branches).  Later 
optimization passes eliminate redundant memory accesses 
(which require alias analysis and kill information) and 
array bounds checks (which are difficult to remove in a 
single forward pass because they require arithmetic 
reasoning and propagation of dataflow facts across loop 
back edges).  

Together, the IR simplification passes can be thought of as 
a single cleanup pass.  This cleanup is performed at a 
number of points in the optimization process.   

Scope Enhancement Passes 
The global optimizer begins with a set of transformations 
designed to enhance the scope of later optimizations.  The 
first scope enhancement pass normalizes control flow by 
removing critical edges (a critical edge is an edge from a 
node with multiple successors to a node with multiple 
predecessors), and factoring entry and back edges of 
loops.  These transformations prepare the intermediate 
representation for later optimization; for example, loop 
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normalization simplifies the implementation of peeling, 
and critical edge removal is necessary for redundancy 
elimination. 

After normalization, the optimizer performs a set of loop 
transformations.  These include loop inversion, peeling, 
and unrolling.  The first optimization phase is 
conservative, and performs only loop inversion and 
limited partial peeling.  The second profile-driven 
optimization phase is more aggressive, and performs 
profile-driven peeling and unrolling of hot loops.  Note 
that loop peeling, in combination with global value 
numbering, provides a cheap mechanism to hoist loop-
invariant computation and runtime checks.   

The third scope enhancement optimization is guarded 
devirtualization of virtual method calls.  Virtual method 
calls are prevalent in managed runtime environment 
(MRTE) applications.  They differ from direct calls in that 
the actual call target must be resolved at runtime by 
examining an object’s virtual method table.  The costs of 
this extra level of indirection include the runtime expense 
of extra code to invoke a virtual method and potentially 
poorer branch prediction in hardware for that call, as well 
as the compile-time expense of impeded interprocedural 
analysis and inlining.  

In cases where the optimizer has exact type information, 
the IR simplification pass is able to devirtualize a virtual 
call by converting it into a more efficient direct call.  In 
other cases, the target of a virtual method may be highly 
predictable.  In these cases, the scope enhancement pass 
devirtualizes the call by guarding it with an inexpensive 
runtime test that checks whether the predicted method is 
in fact the target.  If performed accurately, guarded 
devirtualization alleviates the runtime costs associated 
with virtual method calls and enables the compiler to 
inline targets of virtual method calls.  The first phase 
performs guarded devirtualization conservatively using 
simple static heuristics.  The profile-driven phase 
performs guarded devirtualization aggressively using 
block execution and call graph profiles. 

The centerpiece of the scope enhancement passes is the 
inliner.  Inlining removes the overhead of a direct call and 
specializes the called method within the context of its call 
site.  The inliner consists of an iterative process built 
around the other scope enhancement and IR simplification 
passes.  In the first pass through this cycle, scope 
enhancement and IR simplification transformations are 
performed on the original intermediate representation.  At 
this point, the inliner examines each direct call site in the 
IR (including those exposed by guarded devirtualization), 
heuristically assigns a benefit to it, and, if it exceeds a 
certain threshold, registers it in a priority queue.  The top 
candidate, if any, is then selected for inlining.  The 
translator generates IR for the inlined method, and the 

cycle is repeated upon the new IR.  The inliner then 
processes the new IR for further inlining candidates 
(updating the priority queue), splices it into the existing 
IR, selects a new candidate, and repeats the cycle.  The 
inliner halts once the queue is empty or after the IR 
reaches a certain size limit.  When inlining is completed, 
the global optimizer performs a final IR simplification 
pass over the entire intermediate representation.  

Privatization Passes 
The privatization passes optimize accesses to memory 
locations.  The privatization phase first performs alias and 
escape analyses on memory accesses, and then performs 
synchronization removal [18] and scalar replacement [16].  
Alias analysis yields information about which load/store 
addresses may affect each other [16].  The StarJIT 
optimizer uses the type information about object fields for 
alias analysis.  For example, accesses to two object fields 
cannot refer to the same location if the object types, field 
names, or field types differ.  A store cannot alias with a 
final or read-only field of an object (except in the object 
constructor).  The StarJIT optimizer also uses the 
definition point of an object reference for alias analysis: a 
reference to an object that is a method parameter may not 
alias with a reference resulting from an object allocation. 

Escape analysis determines the extent to which accessed 
memory locations are visible outside the current method 
[6][13].  Escape analysis determines this information with 
a sparse SSA-based analysis of each object referenced in a 
method.  An object that is allocated in the body of the 
method is initially assumed to be private to the method 
(i.e., non-escaping).  Any object passed in as an argument 
or a return value, passed as an argument to another 
method, returned as a result, or stored into a static field 
escapes by definition.  Moreover, any object stored as a 
field in an escaping object transitively escapes.  Finally, 
any object that potentially aliases an escaping object 
(because of a copy or a merge at an SSA phi node) also 
escapes. The StarJIT optimizer’s current escape analysis 
algorithm is intra-procedural and relies on the prior 
inlining pass to expose privatization opportunities.  We 
plan on augmenting the escape analysis pass with inter-
procedural information. 

Once escape analysis is done, synchronization removal 
eliminates synchronization operations (which are explicit 
in STIR) on objects that do not escape a method or that 
escape only via a return.  Scalar replacement promotes 
object fields and array elements to SSA variables that are 
amenable to further optimization passes [9].  This pass 
takes advantage of the alias and escape analysis 
information to disambiguate memory references. 
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Redundancy Elimination Passes 
The final set of optimization passes comprises 
optimizations to eliminate redundant and partially 
redundant computations.  These passes include loop-
invariant code motion, bounds-check elimination, and 
strength reduction [16].  They are deferred until the 
largest possible program scope is available and the most 
memory locations have been promoted to scalar variables. 

The StarJIT optimizer uses a demand-driven array 
bounds-check elimination analysis based upon the 
previously published ABCD algorithm [4].  It first inserts 
Pi nodes into the IR to split variable live ranges based on 
branch conditions.  Pi nodes capture information gleaned 
about a variable based on branch conditions.  From each 
variable’s definition, the analysis then derives inequality 
constraints upon that variable’s value, which can be used 
to prove redundancy of bounds checks involving that 
variable.  Unlike the original ABCD algorithm, the 
StarJIT optimizer’s bounds-check elimination 
implementation does not construct a separate constraint 
graph, but uses the SSA graph directly to derive 
constraints during an attempted proof.  We also have 
added handling of symbolic constants to allow check 
elimination in slightly harder cases, commonly 
encountered in practice. 

To facilitate load hoisting in the code generator, the 
check-elimination transformations track conditions used to 
prove that a check can be eliminated.  The code 
generation interface passes this information to the code 
generator.  The scheduler uses this information to 
determine which branches guard the safety of a given 
load, and marks the load as speculative if it hoists the load 
above a guarding branch. 

The StarJIT optimizer performs strength reduction to 
transform expensive operations, such as multiplication by 
an induction variable in a loop, into simpler operations 
such as addition.  The implementation is based upon the 
operator strength reduction optimization described in [8], 
extended to also reduce the strength of memory address 
computations.  The strength reduction pass performs 
linear function test replacement to eliminate uses of the 
original loop induction variable in tests (e.g., loop exit 
tests).  This optimization is effective in transforming an 
iteration through the elements of an array into a series of 
pointer increments and pointer comparisons, and 
eliminating the original array index.  In cases where the 
loop index is live after the loop, this pass rematerializes 
the index on loop exits to still allow removal of the loop 
index computation from the loop.  For the Itanium  
                                                           
  Itanium is a registered trademark of Intel Corporation or 
its subsidiaries in the United States and other countries. 

Processor Family architecture, the strength reduction pass 
can also transform loops with invariant trip counts into 
counted loops.   

The optimizer must be careful during strength reduction 
because of overflow issues: the optimizer cannot 
transform a 32-bit integer induction variable used as an 
array index into a 64-bit pointer (strength reducing the 
indexing operations) unless it can prove that additions to 
the 32-bit index will not overflow (and wrap around to a 
negative number, as required by Java∗  bytecode 
semantics) because adding to the 64-bit pointer will not 
overflow in the same cases.  While unlikely to occur in 
real code, the induction variable range is checked for 
possible overflow before such a strength reduction 
transformation.  The range analysis makes use of the same 
demand-driven bounds-check analysis used for array 
bounds-check elimination. 

THE ITANIUM PROCESSOR FAMILY 
CODE GENERATOR 
The Itanium® Processor Family code generator is 
responsible for generating native code for a program 
represented by STIR.  It lowers the program 
representation to the machine level, performs architecture-
dependent optimizations such as register allocation and 
scheduling, computes the information necessary to support 
garbage collection (GC), and emits the bits that are 
directly executed by the processor.  

Figure 3 shows the structure of the code generator.  The 
first code generation phase is code selection.  During this 
phase the code generator lowers STIR operations into 
Itanium Processor Family code sequences and performs 
simple optimizations such as immediate operand folding, 
operator folding, and strength reduction.  It uses 
predication [15] to avoid generating additional control 
flow for complex STIR operations such as instanceOf.  
The Itanium Processor Family instruction sequences 
generated from STIR usually contain many operations that 
move data between temporaries, variables, incoming and 
outgoing arguments, and return values.  The code selector 
makes a pass over the intermediate representation to 
coalesce the sources and destination operands of moves, 
and to remove the resulting redundant moves. 

                                                           
∗  Other brands and names are the property of their 
respective owners.  



Intel Technology Journal, Vol. 7, Issue 1, 2003 

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 27 

 
C ode selec tion  

G ot profile?  

S tatic  p rofile 
estim ation  

G lobal reg ister 
allocation  

T race  
scheduling  

G C  info  
com putatio n  

C ode em ission

N o 

 
Figure 3: Itanium Processor Family code generator 

phases 

The optimizer drives code selection through a code-
generation interface.  This interface abstracts the 
information that the optimizer should communicate to a 
code generator from the details of STIR implementation 
and allows the code generator to be used with any front-
end that supports the code generation interface.  The 
subsequent code generation phases require profile 
information to guide optimizations.  When dynamic 
profile information is not available, the code generator 
estimates the profile using static heuristics [1]. 

The ordering of register allocation and code scheduling is 
a classical phase-ordering problem [12].  Register 
allocation performed before scheduling introduces 
additional anti and output dependencies that restrict 
scheduler freedom to reorder the instructions.  Register 
allocation performed after code scheduling may require an 
additional scheduling pass to accommodate generated spill 
code.  In addition, register allocation quality may suffer 
because of increased register pressure.  The code 
generator chooses a middle-ground approach.  It divides 
all operands into two categories: local and global.  An 
operand is local if it has a single definition and its live 
range does not span a loop boundary.  All other operands 
are global.  Only global operands require iterative data 
flow analysis to compute their liveness.  The liveness of 
local operands can be computed with a single reverse pass 
over the IR.  The global operands are assigned registers 
during the global register allocation phase that occurs 
before scheduling.  This introduces only a few data 
dependencies, as most of the operands are local.  The 
local register allocator is integrated with scheduling. The 
scheduler keeps track of the register pressure, and 
materializes and schedules spill code as needed.  

The code scheduler is the most complex component of the 
code generator.  In addition to scheduling instructions 
using trace scheduling [11], it performs code layout and 
local register allocation.  The design of the trace scheduler 
is described in the next section. 

After scheduling, the code generator computes the 
information necessary to support GC.  For each call 
instruction, it computes the set of registers and stack 
locations that contain live references and interior pointers 
(pointers to the middle of the objects allocated on the 
heap), and it records this information in a data structure 
called the GC map table.  During garbage collection, the 
garbage collector enumerates the root set by iterating over 
the set of frames on each thread’s runtime stack.  For each 
frame, the garbage collector makes a callback into the JIT 
compiler asking it to enumerate the set of live references 
for that frame and to unwind to the previous frame.  The 
JIT compiler computes the set of live references for the 
frame using the GC map information. 

The final code emission phase emits the native Itanium 
Processor Family binary code into memory for execution.  
This phase also emits the GC map table, exception handler 
tables (for dispatching exceptions), stack unwinding 
information (for root set enumeration, exception 
unwinding, and runtime security checks), and the IP-to-IR 
mapping tables (for profile gathering). 

Trace Scheduler Design 
The modular trace scheduler design facilitates managed 
runtime environment (MRTE) research work, 
retargetability to other micro-architectures, and portability 
for use in other virtual machine (VM) or compilation 
systems.  The various components of the trace scheduler 
are shown in Figure 4.  The components have been 
designed as independent modules with clear interfaces so 
that they can be applied to each trace selectively.  
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Figure 4: Trace scheduler components 
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The first pass of the trace scheduler is the code linearizer, 
tail duplicator, and trace picker.  Trace selection is 
important because it defines the scheduling scope.  Trace 
selection and scheduling are best done after code (basic 
block) layout, to schedule unconditional branches 
introduced by code linearization, and to form cross-block 
bundles and cycles.  Tail duplication is useful to eliminate 
side entries into traces, but must be done before code 
layout decisions are finalized.  Tail duplication decisions, 
however, are best made with input from trace formation.  
Therefore, there is a cyclic phase ordering dependency 
between trace picking, code layout, and tail duplication.  

The StarJIT Itanium Processor Family code generator uses 
a novel scheme that performs all three together.  The code 
layout technique is a top-down scheme similar to that 
described by Pettis & Hansen [17].  Code layout, trace 
formation, and tail duplication decisions all benefit from 
any available branch profile information.  Code layout 
uses profiles to improve cache locality and reduce taken 
branches.  Along hot paths the trace picker picks longer 
traces, and the tail duplicator is more aggressive in 
removing cold side entries, while on cooler paths shorter 
traces are picked with little or no tail duplication.  Finally, 
a few compensation blocks are added on some critical 
edges.  After scheduling, the code generator eliminates 
useless compensation blocks, which have no 
compensation code moved into them.  

At the core of the trace scheduler is the list scheduler, 
which schedules one trace at a time.  The list scheduler 
schedules instructions from a data-ready list.  It uses 
several heuristics to choose between data-ready 
candidates.  These include critical path length, slack (a 
measure of the freedom to delay an operation without 
delaying the overall schedule), register and resource 
availability and future needs, code size and code motion 
usefulness metrics, and effects of any required 
compensation, or speculation.  The heuristics are profile 
sensitive: their basic goals are to generate high-
performance code at hot traces and to enable fast 
generation of compact code at cold traces.  The list 
scheduler heuristics also guide multiway branch 
generation.  MRTE safety checks, such as null pointer, 
array bounds, and type checks, result in a large number of 
branch operations.  It is therefore important to bundle 
multiple branches together to reduce code size, control 
height, and mispredicted branches. 

The list scheduler uses a micro-scheduler to schedule 
instructions within a cycle.  The micro-scheduler models 
resources and dispersal rules, and makes compact 
bundling decisions.  For the Itanium Processor Family, it 
is important to integrate scheduling with bundling because 
the bundling choices influence dispersal.  The micro-
scheduler is based on the Open Research Compiler’s 

micro-scheduler [14].  It abstracts away the machine 
details and reads the Itanium micro-architecture definition 
from a knobs file.  

The dependence manager tracks all register data 
dependencies, memory dependencies, and control 
dependencies while trying to avoid transitive 
dependencies, for efficiency reasons.  It uses MRTE 
metadata to avoid creating false memory and control 
dependencies.  Memory disambiguation is based on the 
properties of pointers to memory locations such as type, 
memory region (heap, stack, static), and access semantics 
(e.g., field, array element).  The dependence manager uses 
the safety semantics of MRTE memory operations to 
avoid unnecessary control dependencies.  A load is safe 
(i.e., can be issued without making it speculative) 
everywhere except before its corresponding safety checks 
(chknull, chkbounds, and/or chkcast). When the optimizer 
combines or eliminates any of these checks based on 
control or data flow implications, it keeps around enough 
information to allow the dependence manager to recognize 
control dependencies of such loads on the appropriate 
check and/or branch instructions.  The dependence 
manager also enables the list scheduler to use predication 
to convert a control dependency on a branch to a data 
dependency on the associated predicate-generating 
compare.  This allows the list scheduler to predicate a 
block partially, thus reducing the need for speculation, 
check, and recovery generation. 

The speculation manager uses the Itanium Processor 
Family control speculation feature to schedule loads 
before the branches on which they are control dependent.  
It keeps track of the speculative loads and dependent 
speculative instructions that should be included in the 
recovery code.  After all traces have been scheduled, the 
speculation manager materializes the recovery code and 
schedules it using a local scheduler. 

When instructions are moved above a trace side entry or 
below a trace side exit, the compensation manager inserts 
copies of these instructions in the off-trace blocks.  The 
scheduler performs code motion, only when heuristics 
suggest that the good done to the on-trace path is not 
outweighed by any harm done by compensation code to 
the off-trace path.  Code motion requiring compensation 
insertion into previously scheduled traces is not permitted.  
Profile information (which determines the order in which 
traces are scheduled), therefore, guides compensation 
code decisions.  The compensation manager also avoids 
compensation code when control and data dependence 
relationships indicate that it is unnecessary.  For example, 
compensation code is not needed at intermediate side 
entry points when an instruction is moved to a dominating 
point in the trace and the instruction’s operands are not 
modified on any off-trace path.  
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The trace interface manager models liveness and data flow 
latency across trace boundaries (trace main entry/exit and 
side entries/exits), thus maximizing scheduling freedom 
and improving performance at trace interfaces.  

The StarJIT trace scheduler has an integrated local 
register allocation module (as mentioned earlier, global 
operands are allocated registers prior to scheduling).  This 
module monitors liveness of local temporaries and 
allocates registers to them when their definitions are 
scheduled.  A local temporary has a single definition that 
dominates all its uses.  The scheduler exploits this 
property to model register pressure during scheduling, and 
to materialize and schedule spill code on-the-fly, thus 
performing efficient and optimized register allocation.  

CONCLUSION 
Managed Runtime Environments (MRTEs) depend on 
dynamic compilation for performance and security.  The 
strict runtime requirements of dynamic compilation pose 
new challenges to compiler engineers. These requirements 
also provide new dynamic optimization opportunities 
involving both the compiler and the hardware.   

In this paper, we have described the design of the StarJIT 
compiler.  Built upon a framework that enables dynamic 
recompilation for a range of MRTEs and Intel 
architectures, this research infrastructure enables 
heretofore intractable research opportunities in 
implementation tradeoffs of managed runtimes and 
hardware architectures.  
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