
IEEE TRANSACTIONS IN CLOUD COMPUTING 1

Detecting Performance Anomalies in Cloud Platform Applications

Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski
Computer Science Department, Univ. of California, Santa Barbara

Abstract—We present Roots, a full-stack monitoring and analysis system for performance anomaly detection and bottleneck
identification in cloud platform-as-a-service (PaaS) systems. Roots facilitates application performance monitoring as a core capability
of PaaS clouds, and relieves the developers from having to instrument application code. Roots tracks HTTP/S requests to hosted cloud
applications and their use of PaaS services. To do so it employs lightweight monitoring of PaaS service interfaces. Roots processes
this data in the background using multiple statistical techniques that in combination detect performance anomalies (i.e. violations of
service-level objectives). For each anomaly, Roots determines whether the event was caused by a change in the request workload or
by a performance bottleneck in a PaaS service. By correlating data collected across different layers of the PaaS, Roots is able to trace
high-level performance anomalies to bottlenecks in specific components in the cloud platform. We implement Roots using the
AppScale PaaS and evaluate its overhead and accuracy.

Index Terms—Performance anomaly detection, Root cause analysis, Cloud computing

✦

1 INTRODUCTION

Cloud computing is a popular approach for deploying
applications at scale [1], [2]. This widespread adoption of
cloud computing, particularly for deploying web applica-
tions, is facilitated by ever-deepening software abstractions.
These abstractions elide the complexity necessary to en-
able scale, while making application development easier
and faster. But they also obscure the runtime details of
cloud applications, making the diagnosis of performance
problems challenging. Therefore, the rapid expansion of
cloud technologies combined with their increasing opacity
has intensified the need for new techniques to monitor
applications deployed in cloud platforms [3].

Application developers and cloud administrators gen-
erally wish to monitor application performance, detect
anomalies, and identify bottlenecks. To obtain this level
of operational insight into cloud-hosted applications, the
cloud platforms must support data gathering and analy-
sis capabilities that span the entire software stack of the
cloud. However, most cloud technologies available today
do not provide adequate application monitoring support.
Cloud administrators must therefore trust the application
developers to implement necessary instrumentation at the
application level. This typically entails using third party,
external monitoring software [4], [5], [6], which significantly
increases the effort and financial cost of maintaining ap-
plications. Developers must also ensure that their instru-
mentation is both correct, and does not degrade application
performance. Nevertheless, since the applications depend
on extant cloud services (e.g. scalable database services, scal-
able in-memory caching services, etc.) that are performance
opaque, it is often difficult, if not impossible to diagnose the
“root cause” of a performance problem using such extrinsic
forms of monitoring.

Further compounding the performance diagnosis prob-
lem, today’s cloud platforms are very large and complex [3],
[7]. They are comprised of many layers, where each layer
may consist of many interacting components. Therefore
when a performance anomaly manifests in a user applica-
tion, it is often challenging to determine the exact layer or

the component of the cloud platform that may be responsi-
ble for it. Facilitating this level of comprehensive root cause
analysis requires both data collection at different layers
of the cloud, and mechanisms for correlating the events
recorded at different layers.

Moreover, performance monitoring for cloud applica-
tions must be customizable. Different applications have
different monitoring requirements in terms of data gath-
ering frequency (sampling rate), length of the history to
consider when performing statistical analysis (sample size),
and the performance SLOs (service level objectives [8]) that
govern the application. Cloud monitoring should be able
to facilitate these diverse requirements on a per-application
basis. Designing such customizable and extensible perfor-
mance monitoring frameworks that are built into the cloud
platforms is a novel and challenging undertaking.

To address these challenges, we develop a full-stack,
application performance monitor (APM) called Roots [9], as
a cloud Platform-as-a-service (PaaS) extension. PaaS clouds
provide a set of managed services which developers com-
pose into applications, via high-level interfaces (i.e., defined
and exported via a software development kit (SDKs)). We
design Roots as another PaaS service so that it can be
managed automatically and directly capture events and per-
formance data across the PaaS without requiring application
code instrumentation.

Prior work outlines several key requirements for cloud
APMs [3], [7], which we incorporate into Roots. They are:

Scalability Roots is lightweight, and does not cause any
noticeable overhead in application performance. It puts
strict upper bounds on the data kept in memory. The
persistent data is accessed on demand, and can be
removed after their usefulness has expired.

Multitenancy Roots facilitates configuring monitoring poli-
cies at the granularity of individual applications. Users
can employ different statistical analysis methods to
process the monitoring data in ways that are most
suitable for their applications.



IEEE TRANSACTIONS IN CLOUD COMPUTING 2

Complex application architecture Roots collects data from
the entire cloud stack (load balancers, app servers,
built-in PaaS services etc.). It correlates data gathered
from different parts of the cloud platform, and performs
systemwide bottleneck identification.

Dynamic resource management Cloud platforms are dy-
namic in terms of their magnitude and topology. Roots
captures performance events of applications by aug-
menting the key components of the cloud platform.
When new processes/components become active in the
cloud platform, they inherit the same augmentations,
and start reporting to Roots automatically.

Autonomy Roots detects performance anomalies online
without manual intervention. When Roots detects a
problem, it attempts to automatically identify the root
cause by analyzing available workload and service
invocation data.

Roots collects data from the logs and the interfaces of
internal PaaS components. In addition to high-level metrics
including request throughput and latency, Roots measures
PaaS service invocations and their duration. It uses batch
operations and asynchronous communication to minimize
its overhead on request latency.

When Roots detects a performance anomaly in an ap-
plication, it attempts to identify its root cause by analyzing
the workload data and the performance of the internal PaaS
services on which the application depends. Roots first de-
termines if the detected anomaly was most likely caused by
a change in the application workload (e.g. a sudden spike in
the number of client requests), or by an internal bottleneck
in the cloud platform (e.g. a slow database query). For
the latter, Roots employs a statistical bottleneck identifica-
tion method that combines quantile analysis, change point
detection, and linear regression to identify the root cause
bottleneck (i.e. the PaaS component that most likely caused
the performance degredation).

We also devise a mechanism for Roots that distinguishes
between different paths of execution in the application (con-
trol flows). Our approach does not require static analysis but
instead uses the runtime data collected by Roots. This mech-
anism calculates the proportion of user requests processed
by each path and uses it to characterize the workload of an
application (e.g. read-heavy vs write-heavy workload in a
data management application). Using this approach, Roots
is able to detect when application workloads change.

We prototype Roots as an extension to the AppScale,
open source PaaS [10]. We evaluate the feasibility and the
efficacy of Roots by conducting a series of empirical trials
using our prototype. We show that Roots is able to detect
manually injected faults within 5 minutes of their injection
with very low overhead. We also show that Roots is able to
scale to tens of thousands concurrent applications.

2 BACKGROUND

PaaS clouds have been experiencing a rapid growth in
popularity in the recent years [11], [12]. They typically
host web-accessible (HTTP/S) applications, while providing
sandboxed execution, high scalability, and high availability.
PaaS clouds are complex distributed systems that provide

scalability by automatically allocating resources for applica-
tions on the fly (auto scaling), and availability through the
execution of multiple instances of each application.

PaaS applications rely on a set of managed, scalable
services offered by the underlying cloud platform. We refer
to these services as PaaS kernel services. PaaS clouds like
Google App Engine [13] and Microsoft Azure [14] export
the kernel services via a well-defined set of APIs, that are
collectively referred to as the PaaS “software development
kit” (SDK). The application servers provide the linkage
between application code and the PaaS kernel services. A
set of front-end servers expose web application entry points,
and provide load-balancing for HTTP/S clients invoking the
applications.

By providing most of the functionality that applications
require via kernel services, the PaaS model significantly re-
duces the amount of code that applications developers must
write. PaaS clouds also relieve developers of the burden of
configuration, deployment, and scaling through platform
automation. In combination, the PaaS model significantly
increases programmer productivity. However, a downside
of this approach is that these features also hide the perfor-
mance details of PaaS applications. Since the applications
spend most of their time executing kernel services [15], it
is challenging for the developers to diagnose performance
issues given the opacity of the cloud platform’s internal
implementation.

One way to circumvent this problem is to instrument
application code [4], [5], [6], and continuously monitor the
time taken by various parts of the application. But such
application-level instrumentation is tedious, and error prone
thereby misleading those attempting to diagnose problems.
Moreover, the instrumentation code may slow down or alter
the application’s performance. In contrast, implementing
data collection and analysis as a kernel service built into the
PaaS cloud allows performance diagnosis to be a “curated”
service that is reliably managed by the cloud platform.

3 ROOTS

Roots is a holistic system for application performance mon-
itoring (APM), performance anomaly detection, and root
cause analysis. It is operated by the cloud providers as a
builtin PaaS service that collects data from all the cloud
components user applications interact with. Data collection,
storage and analysis all take place within the cloud, and
the insights gained are communicated to both the cloud
administrators and application developers as needed. The
key intuition behind Roots is that, as an intrinsic PaaS
service, Roots has visibility into all activities of the PaaS
cloud, across layers. Moreover, since the PaaS applications
we have observed spend most of their time in PaaS kernel
services [15], we hypothesize that we can infer application
performance from observations of how the application uses
the platform, i.e. by efficiently monitoring the time spent in
PaaS kernel services. If we are able to do so, then we can
avoid application instrumentation and its downsides, while
detecting performance anomalies and identifying their root
cause quickly and accurately.

The PaaS model that we assume with Roots is one in
which the clients of a web application engage in a “service-
level agreement” (SLA) [8] with the “owner” or operator



IEEE TRANSACTIONS IN CLOUD COMPUTING 3

of the application that is hosted in a PaaS cloud. The SLA
stipulates a response-time “service-level objective” (SLO)
that, if violated, constitutes a breech of the agreement. If the
performance of an application deteriorates to the point that
at least one of its SLOs is violated, we treat it as an anomaly.
Moreover, we refer to the process of diagnosing the reason
for an anomaly as root cause analysis. For a given anomaly,
the root cause could be a change in the application workload
or a bottleneck in the application runtime. Bottlenecks may
occur in the application code, or in the PaaS kernel services
that the application relies on.

Roots collects performance data across the cloud plat-
form stack, and aggregates it based on request/response.
It uses this data to infer application performance, and to
identify SLO violations (performance anomalies). Roots can
further handle different types of anomalies in different
ways. We overview each of these functionalities in the
remainder of this section.

3.1 Data Collection and Correlation

We must address two issues when designing a monitoring
framework for a system as complex as a PaaS cloud.

1) Collecting data from multiple different layers.
2) Correlating data collected from different layers.

Each layer of the cloud platform is only able to collect
data regarding the state changes that are local to it. A
layer cannot monitor state changes in other layers due to
the level of encapsulation provided by layers. However,
processing an application request involves cooperation of
multiple layers. To facilitate system-wide monitoring and
bottleneck identification, we must gather data from all the
different layers involved in processing a request. To combine
the information across layers we correlate the data, and link
events related to the same request together.

To enable this, we augment the front-end server of
the cloud platform. Specifically, we have it tag incoming
application requests with unique identifiers. This request
identifier is added to the HTTP request as a header, which
is visible to all internal components of the PaaS cloud. Next,
we configure data collecting agents within the platform to
record the request identifiers along with any events they
capture. This way we record the relationship between ap-
plication requests, and the resulting local state changes in
different layers of the cloud, without breaking the existing
level of abstraction in the cloud architecture. This approach
is also scalable, since the events are recorded in a distributed
manner without having to maintain any state at the data
collecting agents. Roots aggregates the recorded events by
request identifier to efficiently group the related events as
required during analysis.

Figure 1 illustrates the high-level architecture of Roots,
and how it fits into the PaaS stack. APM components are
shown in grey. The small grey boxes attached to the PaaS
components represent the agents used to instrument the
cloud platform. In the diagram, a user request is tagged
with the identifier value R at the front-end server. This
identifier is passed down to the lower layers of the cloud
along with the request. Events that occur in the lower layers
while processing this request are recorded with the request

Fig. 1. Roots APM architecture.

identifier R, so Roots can correlate them later. For example,
in the data analysis component we can run a filter query to
select all the events related to a particular request (as shown
in the pseudo query in the diagram). Similarly, Roots can
run a “group by” query to select all events, and aggregate
them by the request identifier.

The figure also depicts Roots data collection across the
PaaS stack (i.e. its full stack monitoring). From the front-
end server, Roots collects information related to incoming
application requests. It does so by scraping HTTP server
access logs, which are exported by most web servers (e.g.
Apache HTTPD or Nginx).

At the application server level, Roots collects logs and
metrics related to the application runtime from the applica-
tion servers and operating system. Roots also employs a set
of per-application benchmarking processes that periodically
probes different applications to measure their performance.
These are lightweight, stateless processes managed by the
Roots framework. These processes send their measurements
to the data storage component for analysis.

Roots collects information about all kernel invocations
made by the applications by intercepting kernel invocations
at service interface entrypoints. For each PaaS kernel invo-
cation, we capture the following parameters.

• Source application making the kernel invocation
• Timestamp
• A sequence number indicating the order of PaaS

kernel invocations within an application request
• Target kernel service and operation
• Execution time of the invocation
• Request size, hash, and other parameters

These PaaS kernel invocation details enable Roots to trace
the execution of application requests through the PaaS with-
out instrumenting the application itself.

Finally, at the lowest level Roots collects information
related to virtual machines, containers and their resource
usage. We gather metrics on network usage by individual
components which is useful for traffic engineering use cases.



IEEE TRANSACTIONS IN CLOUD COMPUTING 4

We also scrape hypervisor and container manager logs to
track when resources are allocated and released.

To avoid introducing delays to the application request
processing flow, we implement Roots data collecting agents
as asynchronous tasks. Agents buffer data locally and peri-
odically write to data storage components using separate
background tasks and batch communication operations.
These persistence operations must run with sufficient fre-
quency so as to not impede the analysis that Roots employs
to detect anomalies soon after they occur.

3.2 Data Storage and Analysis

Roots stores all collected data in a database capable of
efficient persistent storage and querying. We facilitate this
via indexing data by application ID and timestamp. Roots
also performs periodic garbage collection on data that is no
longer pertinent to analyses.

The data analysis components consist of two exten-
sible abstractions: anomaly detectors and anomaly handlers.
Anomaly detectors are processes that periodically analyze
the data for each deployed application. Roots supports mul-
tiple detector implementations, each of which is a statistical
method for detecting performance anomalies. Detectors are
configured on a per-application basis, making it possible
for different applications to use different anomaly detectors.
Roots also supports multiple concurrent anomaly detectors
for the same application, which can be used to compare the
efficacy of different detection strategies concurrently. Each
anomaly detector has configurable parameters for execution
schedule and sliding window duration. We use a period 60
seconds for the former and the previous hour for the latter,
in our prototype and evaluation. Window size impacts
the time range of events processed by the detector when
invoked. We employ a fixed-size window to bound Roots
memory use.

When an anomaly detector detects an anomaly in ap-
plication performance, it sends an event to a collection
of anomaly handlers. The event encapsulates a unique
anomaly identifier, timestamp, application identifier and the
source detector’s sliding window that correspond to the
anomaly. Anomaly handlers are configured globally (i.e.
each handler receives events from all detectors), but each
handler filters events of interest. Handlers can also trigger
events, which are delivered to all the listening anomaly han-
dlers. Similar to detectors, Roots supports multiple anomaly
handler implementations, e.g., one for logging anomalies,
one for sending alert emails, one for updating a dashboard,
etc. Additionally, Roots provides two special anomaly han-
dlers: a workload change analyzer and a bottleneck iden-
tifier. Communication between detectors and handlers is
performed via shared memory.

The ability of anomaly handlers to filter the events they
process and to trigger events directly facilitates construction
of elaborate event flows with sophisticated logic. For exam-
ple, the workload change analyzer can run some analysis
upon receiving an anomaly event from any anomaly detec-
tor. If an anomaly cannot be associated with a workload
change, it can trigger a different type of event. The bot-
tleneck identifier, can be configured to execute only when
such an event occurs. Using this mechanism, Roots performs

Fig. 2. Anatomy of a Roots pod. The diagram shows 2 application
benchmarking processes (B), 3 anomaly detectors (D), and 2 handlers
(H). Processes communicate via a shared memory communication bus
local to the pod.

workload change analysis first and systemwide bottleneck
identification only when necessary.

3.3 Roots Process Management

Most data collection activities in Roots can be treated as
passive – i.e. they happen automatically as the applica-
tions receive and process requests in the cloud platform.
They do not require explicit scheduling or management.
In contrast, application benchmarking and data analysis
are active processes that require explicit scheduling and
management. This is achieved by grouping benchmarking
and data analysis processes into units called Roots pods.

Each Roots pod is responsible for starting and maintain-
ing a preconfigured set of benchmarkers and data analysis
processes (i.e. anomaly detectors and handlers). These pro-
cesses are light enough, so as to pack a large number of
them into a single pod. Pods are self-contained entities, and
there is no inter-communication between pods. Processes in
a pod can efficiently communicate with each other using
shared memory, and call out to the central Roots data
storage to retrieve collected performance data for analysis.
Furthermore, pods can be replicated for high availability,
and application load can be distributed among multiple
pods for scalability.

Figure 2 illustrates a Roots pod monitoring two appli-
cations. It consists of two benchmarking processes, three
anomaly detectors and two anomaly handlers. The anomaly
detectors and handlers are shown communicating via an
internal shared memory communication bus.

4 PROTOTYPE IMPLEMENTATION

To investigate the efficacy of Roots as an approach to imple-
menting performance diagnostics as a PaaS service, we have
developed a working prototype, and a set of algorithms that
uses it to automatically identify SLO-violating performance
anomalies. For anomalies not caused by increases in work-
load (HTTP request rate), Roots performs further analysis to
identify the bottleneck component that is responsible for the
issue.



IEEE TRANSACTIONS IN CLOUD COMPUTING 5

Fig. 3. Roots prototype implementation for AppScale PaaS.

We implement our prototype in AppScale [10], an open
source PaaS cloud that is API compatible with Google App
Engine (GAE) [13]. This compatibility enables us to evaluate
our approach using real applications developed by others
since GAE applications run on AppScale without modifi-
cation. Because AppScale is open source, we were able to
modify its implementation minimally to integrate Roots.

Figure 3 shows an overview of our prototype implemen-
tation. Roots components are shown in grey, while the PaaS
components are shown in blue. We use ElasticSearch [16]
as the data storage component of our prototype. Elastic-
Search is ideal for storing large volumes of structured and
semi-structured data [17]. It can be deployed as a scalable
distributed service with sharding and replication. Elastic-
Search continuously organizes and indexes data, making
the information available for fast and efficient querying.
Additionally, it also provides powerful data filtering and
aggregation features, which greatly simplify the implemen-
tations of high-level data analysis algorithms.

We configure AppScale’s front-end server (based on Ng-
inx) to tag all incoming application requests with a unique
identifier. This identifier is attached to the incoming request
as a custom HTTP header. All data collecting agents in the
cloud extract this identifier, and include it as an attribute in
all the events reported to ElasticSearch.

We implement a number of data collecting agents in
AppScale to gather runtime information from all major com-
ponents. These agents buffer data locally, and store them in
ElasticSearch in batches. Events are buffered until the buffer
accumulates 1MB of data, subject to a hard time limit of
15 seconds. This ensures that the events are promptly re-
ported to the Roots data storage while keeping the memory
footprint of the data collecting agents small and bounded.
For scraping server logs, and storing the extracted entries
in ElasticSearch, we use the Logstash tool [18]. To capture
the PaaS kernel invocation data, we augment AppScale’s
PaaS kernel implementation, which is derived from the GAE
PaaS SDK. More specifically we implement an agent that
records all PaaS SDK calls, and reports them to ElasticSearch
asynchronously. Most metrics captured by our prototype are
latency-related (e.g. latency of internal RPC calls and latency
of cloud SDK calls). We wish to expand Roots’ capability to
capture a more diverse range of performance metrics in our
future work.

We implement Roots pods as standalone Java server

processes. Threads are used to run benchmarkers, anomaly
detectors and handlers concurrently within each pod. Pods
communicate with ElasticSearch via a web API, and many of
the data analysis tasks such as filtering and aggregation are
performed in ElasticSearch itself. Some of the more sophis-
ticated statistical analysis tasks (e.g. change point detection
and linear regression as described below) are implemented
in the R language, and the Roots pods integrate with R using
the Rserve protocol [19].

4.1 SLO-violating Anomalies

As described previously, Roots defines anomalies as perfor-
mance events that trigger SLO violations. Thus, we devise a
detector to automatically identify when a SLO violation has
occurred. This anomaly detector allows application devel-
opers to specify simple performance SLOs for deployed ap-
plications. A performance SLO consists of an upper bound
on the application response time (T ), and the probability (p)
that the application response time falls under the specified
upper bound. A general performance SLO can be stated
as: “application responds under T milliseconds p% of the
time”.

When enabled for a given application, this anomaly
detector starts a benchmarking process that periodically
measures the response time of the target application. Probes
made by the benchmarking process are several seconds
apart in time (sampling rate), so as to not strain the ap-
plication with load. The detector then periodically analyzes
the collected response time measurements to check if the
application meets the specified performance SLO. Whenever
it detects that the application has failed to meet the SLO, it
triggers an anomaly event. The SLO-based anomaly detector
supports following configuration parameters:

• Performance SLO: Response time upper bound (T ),
and the probability (p).

• Sampling rate: Rate at which the target application is
benchmarked.

• Analysis rate: Rate at which the anomaly detector
checks whether the application has failed to meet the
SLO.

• Minimum samples: Minimum number of samples to
collect before checking for SLO violations.

• Window size: Length of the sliding window (in time)
to consider when checking for SLO violations. This
acts as a limit on the number of samples to keep in
memory. This has to be large enough so that each
analysis cycle has enough data points to calculate
results with statistical significance.

Together, the window size and sampling rate impose an
upper bound on the amount of data that needs to be kept in
memory for calculations. Analysis rate governs how often
the collected data is aggregated. Cloud administrators and
application developers can tune these parameters to meet
their specific accuracy and capacity goals.

In order to prevent the detector from needlessly report-
ing the same anomaly multiple times, we purge all the
data from anomaly detector’s sliding window whenever
it detects an SLO violation. Therefore, the detector cannot
check for further SLO violations until it repopulates the



IEEE TRANSACTIONS IN CLOUD COMPUTING 6

sliding window with the minimum number of samples. This
implies that each anomaly is followed by a “warm up”
period. For instance, with a sampling rate of 15 seconds,
and a minimum samples count of 100, the warm up period
can last up to 25 minutes.

4.2 Path Distribution Analysis
We have implemented a path distribution analyzer in Roots
whose function it is to identify recurring sequences of PaaS
kernel invocations made by an application. Each identified
sequence corresponds to a path of execution through the
application code (i.e. a path through the control flow graph
of the application). This detector is able to determine the
frequency with which each path is executed over time. Then,
using this information which we term a “path distribution,”
it reports an anomaly event when the distribution of execu-
tion paths changes.

For each application, a path distribution is comprised of
the set of execution paths available in that application, along
with the proportion of requests that executed each path. It
is an indicator of the type of request workload handled by
an application. For example, consider a data management
application that has a read-only execution path, and a read-
write execution path. If 90% of the requests execute the read-
only path, and the remaining 10% of the requests execute the
read-write path, we may characterize the request workload
as read-heavy.

Roots path distribution analyzer facilitates computing
the path distribution for each application with no static anal-
ysis, by only analyzing the runtime data gathered from the
applications. It periodically computes the path distribution
for a given application. If it detects that the latest path distri-
bution is significantly different from the distributions seen
in the past, it triggers an event. This is done by computing
the mean request proportion for each path (over a sliding
window of historical data), and then comparing the latest
request proportion values against the means. If the latest
proportion is off by more than n standard deviations from
its mean, the detector considers it to be an anomaly. The
sensitivity of the detector can be configured by changing
the value of n, which defaults to 2.

Path distribution analyzer enables developers to know
when the nature of their application request workload
changes. For example in the previous data management
application, if suddenly 90% of the requests start executing
the read-write path, the Roots path distribution analyzer
will detect the change. Similarly it is also able to detect when
new paths of execution are being invoked by requests (a
form of novelty detection).

4.3 Workload Change Analyzer
Performance anomalies can arise either due to bottlenecks
in the cloud platform or changes in the application work-
load. When Roots detects a performance anomaly (i.e. an
application failing to meet its performance SLO), it needs
to be able to determine whether the failure is due to an
increase in workload or a bottleneck that has suddenly man-
ifested. Roots employs a workload change analyzer to detect
workload changes. This Roots component is implemented
as an anomaly handler, which gets executed every time an

anomaly detector identifies a performance anomaly. Note
that this is different from the path distribution analyzer,
which is implemented as an anomaly detector. While the
path distribution analyzer looks for changes in the type
of the workload, the workload change analyzer looks for
changes in the workload size or rate.

Workload change analyzer uses change point detection
algorithms to analyze the historical trend of the applica-
tion workload. We use the “number of requests per unit
time” as the metric of workload size. Our implementation
of Roots supports a number of well known change point
detection algorithms (PELT [20], binary segmentation and
CL method [21]), any of which can be used to detect level
shifts in the workload size. Algorithms like PELT favor
long lasting shifts (plateaus) in the workload trend, over
momentary spikes. We expect momentary spikes to be fairly
common in workload data. But it is the plateaus that cause
request buffers to fill up, and consume server-side resources
for extended periods of time, thus causing noticeable per-
formance anomalies.

4.4 Bottleneck Identification

Applications running in the cloud consist of user code exe-
cuted in the application server, and remote service calls to
various PaaS kernel services. An AppScale cloud consists of
the same kernel services present in the Google App Engine
public cloud (datastore, memcache, urlfetch, blobstore, user
management etc.). We consider each PaaS kernel invocation,
and the code running on the application server as separate
components. Each application request causes one or more
components to execute, and any one of the components can
become a bottleneck to cause performance anomalies. The
purpose of bottleneck identification is to find, out of all the
components executed by an application, the one component
that is most likely to have caused application performance
to deteriorate.

Suppose an application makes n PaaS kernel invocations
(X1, X2, ...Xn) for each request. For any given application
request, Roots captures the time spent on each kernel invo-
cation (TX1 , TX2 , ...TXn ), and the total response time (Ttotal)
of the request. These time values are related by the formula
Ttotal = TX1 + TX2 + ... + TXn + r, where r is all the time
spent in the resident application server executing user code
(i.e. the time spent not executing PaaS kernel services). r is
not directly measured in Roots, since that requires code in-
strumentation. However, in previous work [15] we showed
that typical PaaS-hosted web applications spend most of
their time invoking PaaS kernel services. We make use of
these findings, and assert that for typical, well-designed
PaaS applications r ≪ TX1 + TX2 + ...+ TXn .

Roots bottleneck identification mechanism first selects
up to four components as possible candidates for the bot-
tleneck. These candidates are then further evaluated by a
weighted algorithm to determine the actual bottleneck in
the cloud platform.

4.4.1 Relative Importance of PaaS Kernel Invocations
The purpose of this metric is to find the component that
is contributing the most towards the variance in the to-
tal response time. We select a window W in time which



IEEE TRANSACTIONS IN CLOUD COMPUTING 7

includes a sufficient number of application requests, and
ending at the point when the performance anomaly was
detected. Note that for each application request in W , we
can fetch the total response time (Ttotal), and the time spent
on individual PaaS kernel services (TXn

) from the Roots
data storage. Then we take all the Ttotal values and the
corresponding TXn

values in W , and fit a linear model of the
form Ttotal = TX1

+TX2
+ ...+TXn

using linear regression.
Here we leave r out deliberately, since it is typically and
ideally small.

Occasionally in AppScale, we observe a request where
r is large relative to TXn

. Often these events are correlated
with large TXn

values as well leading us to suspect that
the effect may be due to an issue with the AppScale infras-
tructure (e.g. a major garbage collection event in the PaaS
software). Overall, Roots detects these events and identifies
them correctly (cf subsections 4.4.3 and 4.4.4 below), but
they perturb the linear regression model. To prevent that, we
filter out requests where the r value is too high. This is done
by computing the mean (µr) and standard deviation (σr)
of r over the selected window, and removing any requests
where r > µr + 1.65σr .

Once the regression model has been computed, we run
a relative importance algorithm [22] to rank each of the
regressors (i.e. TXn values) based on their contribution to
the variance of Ttotal. We use the LMG method [23] which
is resistant to multicollinearity, and provides a break down
of the R2 value of the regression according to how strongly
each regressor influences the variance of the dependent
variable. The relative importance values of the regressors
add up to the R2 of the linear regression. We consider
1 − R2 (the portion of variance in Ttotal not explained by
the PaaS kernel invocations) as the relative importance of r.
The component associated with the highest ranked regressor
is chosen as a bottleneck candidate. Statistically, this is the
component that causes the application response time to vary
the most.

4.4.2 Changes in Relative Importance
Next we divide the time window W into equal-sized seg-
ments, and compute the relative importance metrics for re-
gressors within each segment. We also compute the relative
importance of r within each segment. This way we can
obtain a time series of relative importance values for each
regressor and r. These time series represent how the relative
importance of each component has changed over time.

We subject each relative importance time series to change
point analysis to detect if the relative importance of any
particular variable has increased recently. If such a variable
can be found, then the component associated with that
variable is also a potential candidate for the bottleneck. The
candidate selected by this method represents a component
whose performance has been stable in the past, and has
become variable recently.

4.4.3 High Quantiles
Next we analyze the individual distributions of TXn

and r.
Out of all the available distributions we find the one whose
quantile values are the largest. Specifically, we compute a
high quantile (e.g. 0.99 quantile) for each distribution. The
component, whose distribution contains the largest quantile

Faulty PaaS Service L1

(30ms)
L2

(35ms)
L3

(45ms)
datastore 18 11 10

user management 19 15 10

TABLE 1
Number of anomalies detected in guestbook app under different SLOs

(L1, L2 and L3) when injecting faults into two different PaaS kernel
services.

value is chosen as another potential candidate for the bot-
tleneck. This component can be considered having a high
latency in general.

4.4.4 Tail End Values
Finally, Roots analyzes each TXk

and r distribution to
identify the one with the largest tail values with respect
to a particular high quantile. For each maximum (tail end)
latency value t, we compute the metric P q

t as the percentage
difference between t and a target quantile q of the corre-
sponding distribution. We set q to 0.99 in our experiments.
Roots selects the component with the distribution that has
the largest P q

t as another potential bottleneck candidate.
This method identifies candidates that contain rare, high-
valued outliers (point anomalies) in their distributions.

4.4.5 Selecting Among the Candidates
The above four methods may select up to four candidate
components for the bottleneck. We designate the candidate
chosen by a majority of methods as the actual bottleneck.
Ties are broken by assigning more priority to the candidate
chosen by the relative importance method.

5 RESULTS

We evaluate the efficacy of Roots as a performance monitor-
ing and root cause analysis system for PaaS applications. To
do so, we consider its ability to identify and characterize
SLO violations. For violations that are not caused by a
change in workload, we evaluate Roots’ ability to identify
the PaaS component that is the cause of the performance
anomaly. We also evaluate the Roots path distribution ana-
lyzer, and its ability to identify execution paths along with
changes in path distributions. Finally, we investigate the
performance and scalability of the Roots prototype.

5.1 Anomaly Detection: Accuracy and Speed

To begin the evaluation of the Roots prototype we experi-
ment with the SLO-based anomaly detector, using a simple
HTML-producing Java web application called “guestbook”.
This application allows users to login, and post comments.
It uses the AppScale datastore service to save the posted
comments, and the AppScale user management service to
handle authentication. Each request processed by guestbook
results in two PaaS kernel invocations – one to check if the
user is logged in, and another to retrieve the existing com-
ments from the datastore. We conduct all our experiments
on a single node AppScale cloud except where specified.
The node itself is an Ubuntu 14.04 VM with 4 virtual CPU
cores (clocked at 2.4GHz) and 4GB of memory.



IEEE TRANSACTIONS IN CLOUD COMPUTING 8

We run the SLO-based anomaly detector on guestbook
with a sampling rate of 15 seconds, an analysis rate of 60
seconds, and a window size of 1 hour. We set the minimum
sample count to 100, and run a series of experiments with
different SLOs on the guestbook application. Specifically, we
fix the SLO success probability at 95%, and set the response
time upper bound to µg+nσg . µg and σg represent the mean
and standard deviation of the guestbook’s response time.
We learn these two parameters apriori by benchmarking
the application. Then we obtain three different upper bound
values for the guestbook’s response time by setting n to 2,
3 and 5 and denote the resulting three SLOs L1, L2 and L3

respectively.
We also inject performance faults into AppScale by mod-

ifying its code to cause the datastore service to be slow to
respond. This fault injection logic activates once every hour,
and slows down all datastore invocations by 45ms over a
period of 3 minutes. We chose 45ms because it is equal to
µg+5σg for the AppScale deployment under test. Therefore
this delay is sufficient to violate all three SLOs used in our
experiments. We run a similar set of experiments where we
inject faults into the user management service of AppScale.
Each experiment is run for a period of 10 hours.

Table 1 shows how the number of anomalies detected
by Roots in a 10 hour period varies when the SLO is
changed. The number of anomalies drops noticeably when
the response time upper bound is increased. When the L3

SLO (45ms) is used, the only anomalies detected are the ones
caused by our hourly fault injection mechanism. As the SLO
is tightened by lowering the upper bound, Roots detects ad-
ditional anomalies. These additional anomalies result from a
combination of injected faults, and other naturally occurring
faults in the system. That is, Roots detected some naturally
occurring faults (temporary spikes in application latency),
when a number of injected faults were still in the sliding
window of the anomaly detector. Together these two types
of faults caused SLO violations, usually several minutes
after the fault injection period has expired.

Next we analyze how fast Roots can detect anomalies
in an application. We first consider the performance of
guestbook under the L1 SLO while injecting faults into the
datastore service. Figure 4 shows anomalies detected by
Roots as events on a time line. The horizontal axis represents
passage of time. The red arrows indicate the start of a
fault injection period, where each period lasts up to 3 min-
utes. The blue arrows indicate the Roots anomaly detection
events. Note that every fault injection period is immediately
followed by an anomaly detection event, implying near real
time reaction from Roots, except in case of the fault injection
window at 20:00 hours. Roots detected another naturally
occurring anomaly (i.e. one that we did not explicitly inject
but nonetheless caused an SLO violation) at 19:52 hours,
which caused the anomaly detector to go into the warm
up mode. Therefore Roots did not immediately react to the
faults injected at 20:00 hours. But as soon as the detector
became active again at 20:17, it detected the anomaly.

Figure 5 shows the anomaly detection time line for the
same application and SLO, while faults are being injected
into the user management service. Here too we see that
Roots detects anomalies immediately following each fault
injection window.

Time (hh:mm)

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Fault injection Anomaly detection

Fig. 4. Anomaly detection in guestbook application during a period of 10
hours. Red arrows indicate fault injection at the datastore service. Blue
arrows indicate all anomalies detected by Roots during the experimental
run.

Time (HH:mm)

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

Fault injection Anomaly detection

Fig. 5. Anomaly detection in guestbook application during a period of
10 hours. Red arrows indicate fault injection at the user management
service. Blue arrows indicate all anomalies detected by Roots during
the experimental run.

In all of our experiments, Roots detected the injected
anomalies in 158 seconds on average with a maximum time
to detection of 289 seconds (i.e. less than 5 minutes). This
duration can be further controlled by changing the analysis
rate and window size of the detectors.

5.2 Path Distribution Analyzer: Accuracy and Speed

Next we evaluate the effectiveness and accuracy of the
path distribution analyzer. For this we employ two different
applications.
key-value store This application provides the functionality

of an online key-value store. It allows users to store

Time (HH:mm)

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00

Anomalous workload injection Anomaly detection

Fig. 6. Anomaly detection in key-value store application during a period
of 10 hours. Steady-state traffic is read-heavy. Red arrows indicate
injection of write-heavy bursts. Blue arrows indicate all the anomalies
detected by the path distribution analyzer.

Time (HH:mm)

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

Anomalous workload injection Anomaly detection

Fig. 7. Anomaly detection in cached key-value store application during a
period of 10 hours. Steady-state traffic is mostly served from the cache.
Red arrows indicate injection of cache-miss bursts. Blue arrows indicate
all the anomalies detected by the path distribution analyzer.



IEEE TRANSACTIONS IN CLOUD COMPUTING 9

data objects in the cloud where each object is given a
unique key. The objects can then be retrieved, updated
or deleted using their keys. Different operations (create,
retrieve, update and delete) are implemented as sepa-
rate paths of execution in the application.

cached key-value store This is a simple extension of the
regular key-value store, which adds caching to the read
operation using the AppScale’s memcache service. The
application contains separate paths of execution for
cache hits and cache misses.

We first deploy the key-value store on AppScale, and
populate it with a number of data objects. Then we run a
test client against it which generates a read-heavy workload.
On average this workload consists of 90% read requests
and 10% write requests. The test client is also programmed
to randomly send bursts of write-heavy workloads. These
bursts consist of 90% write requests on average, and each
burst lasts up to 2 minutes. Figure 6 shows the write-heavy
bursts as events on a time line (indicated by red arrows).
Note that almost every burst is immediately followed by
an anomaly detection event (indicated by blue arrows). The
only time we do not see an anomaly detection event is when
multiple bursts are clustered together in time (e.g. 3 bursts
between 17:04 and 17:24 hours). In this case Roots detects
the very first burst, and then goes into the warm up mode
to collect more data. Between 20:30 and 21:00 hours we
also had two instances where the read request proportion
dropped from 90% to 80% due to random chance. Roots
identified these two incidents also as anomalous.

We conduct a similar experiment using the cached key-
value store. Here, we run a test client that generates a
workload that is mostly served from the cache. This is done
by repeatedly executing read requests on a small selected set
of object keys. However, the client randomly sends bursts
of traffic requesting keys that are not likely to be in the
application cache, thus resulting in many cache misses. Each
burst lasts up to 2 minutes. As shown in figure 7, Roots
path distribution analyzer correctly detects the change in
the workload (from many cache hits to many cache misses),
nearly every time the test client injects a burst of traffic that
triggers the cache miss path of the application. The only
exception is when multiple bursts are clumped together, in
which case only the first raises an alarm in Roots.

5.3 Workload Change Analyzer Accuracy

Next we evaluate the Roots workload change analyzer. In
this experiment we run a varying workload against the key-
value store application for 10 hours. The load generating
client is programmed to maintain a mean workload level
of 500 requests per minute. However, the client is also
programmed to randomly send large bursts of traffic at
times of its choosing. During these bursts the client may
send more than 1000 requests a minute, thus impacting the
performance of the application server that hosts the key-
value store. Figure 8 shows how the application workload
has changed over time. The workload generator has pro-
duced 6 large bursts of traffic during the period of the
experiment, which appear as tall spikes in the plot. Note
that each burst is immediately followed by a Roots anomaly
detection event (shown by red dashed lines). In each of

13:00 15:00 17:00 19:00 21:00

50
0

10
00

15
00

20
00

Time (hh:mm)

R
eq

ue
st

s 
pe

r 
m

in
ut

e

Fig. 8. Workload size over time for the key-value store application. The
test client randomly sends large bursts of traffic causing the spikes in
the plot. Roots anomaly detection events are shown in red dashed lines.

these 6 cases, the increase in workload caused a violation
of the application performance SLO. Roots detected the cor-
responding anomalies, and determined them to be caused
by changes in the workload size. As a result, bottleneck
identification was not triggered for any of these anomalies.
Even though the bursts of traffic appear to be momentary
spikes, each burst lasts for 4 to 5 minutes thereby causing a
lasting impact on the application performance.

5.4 Bottleneck Identification Accuracy
Next we evaluate the bottleneck identification capability
of Roots. We first discuss the results obtained using the
guestbook application, and follow with results obtained
using a more complex application. In the experimental run
illustrated in figure 4, Roots determined that all the detected
anomalies except for one were caused by the AppScale
datastore service. This is consistent with our expectations
since in this experiment we artificially inject faults into the
datastore. The only anomaly that is not traced back to the
datastore service is the one that was detected at 14:32 hours.
This is indicated by the blue arrow with a small square
marker at the top. For this anomaly, Roots concluded that
the bottleneck is the local execution at the application server
(r). We have verified this result by manually inspecting the
AppScale logs and traces of data collected by Roots. As it
turns out, between 14:19 and 14:22 the application server
hosting the guestbook application experienced some prob-
lems, which caused request latency to increase significantly.

Similarly, in the experiment shown in figure 5, Roots
determined that all the anomalies are caused by the user
management service, except in one instance. This is again
inline with our expectations since in this experiment we
inject faults into the user management service. For the
anomaly detected at 04:30 hours, Roots determined that
local execution time is the primary bottleneck. Like earlier,
we have manually verified this diagnosis to be accurate.

In order to evaluate how the bottleneck identification
performs when an application makes more than 2 PaaS
kernel invocations, we conduct another experiment using
an application called “stock-trader”. This application allows
setting up organizations, and simulating trading of stocks



IEEE TRANSACTIONS IN CLOUD COMPUTING 10

Time (hh:mm)

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Fault injection Anomaly detection

Fig. 9. Anomaly detection in stock-trader application during a period
of 10 hours. Red arrows indicate fault injection at the 1st datastore
query. Blue arrows indicate all anomalies detected by Roots during the
experimental run.

Time (HH:mm)

03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00

Fault injection Anomaly detection

Fig. 10. Anomaly detection in stock-trader application during a period
of 10 hours. Red arrows indicate fault injection at the 2nd datastore
query. Blue arrows indicate all anomalies detected by Roots during the
experimental run.

between the organizations. The two main operations in this
application are buy and sell. Each of these operations makes
8 calls to the AppScale datastore. According to our previous
work [15], 8 kernel invocations in the same path of execution
is very rare in web applications developed for a PaaS cloud.
The probability of finding an execution path with more than
5 kernel invocations in a sample of PaaS-hosted applications
is less than 1%. Therefore the stock-trader application is
a good extreme case example to test the Roots bottleneck
identification support. We execute a number of experimental
runs using this application, and here we present the results
from two of them. In all experiments we configure the
anomaly detector to check for the response time SLO of
177ms with 95% success probability.

In one of our experimental runs we inject faults into the
first datastore query executed by the buy operation of stock-
trader. The fault injection logic runs every two hours, and
lasts for 3 minutes. The duration of the full experiment is
10 hours. Figure 9 shows the resulting event sequence. Note
that every fault injection event is immediately followed by
a Roots anomaly detection event. There are also four addi-
tional anomalies in the time line which were SLO violations
caused by a combination of injected faults, and naturally
occurring faults in the system. For all the anomalies detected
in this test, Roots correctly selected the first datastore call
in the application code as the bottleneck. The additional
four anomalies occurred because a large number of injected
faults were in the sliding window of the detector. Therefore,
it is accurate to attribute those anomalies also to the first
datastore query of the application.

Figure 10 shows the results from a similar experiment
where we inject faults into the second datastore query
executed by the operation. Here also Roots detects all the
artificially induced anomalies along with a few extras. All
the anomalies, except for one, are determined to be caused
by the second datastore query of the buy operation. The
anomaly detected at 08:56 (marked with a square on top of

Time (hh:mm)

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

G4 anomaly G6 anomaly G7 anomalyFault injection

Fig. 11. Anomaly detection in 8 applications deployed in a clustered
AppScale cloud. Red arrows indicate fault injection at the datastore
service for queries generated from a specific host. Cross marks indicate
all the anomalies detected by Roots during the experiment.

the blue arrow) is attributed to the fourth datastore query
executed by the application. We have manually verified this
diagnosis to be accurate.

In the experiments illustrated in figures 4, 5, 9, and 10 we
maintain the application request rate steady throughout the
10 hour periods. Therefore, the workload change analyzer of
Roots did not detect any significant shifts in the workload
level. Consequently, none of the anomalies detected in these
4 experiments were attributed to a workload change. The
bottleneck identification was therefore triggered for each
anomaly.

To evaluate the agreement level among the four bottle-
neck candidate selection methods, we analyze 407 anoma-
lies detected by Roots over a period of 3 weeks. We see
that except on 13 instances, in all the remaining cases 2 or
more candidate selection methods agreed on the final bottle-
neck component chosen. This implies that most of the time
(96.8%) Roots identifies bottlenecks with high confidence.

5.5 Multiple Applications in a Clustered Setting

To demonstrate how Roots can be used in a multi-node
environment, we set up an AppScale cloud on a cluster
of 10 virtual machines (VMs). VMs are provisioned by a
Eucalyptus (IaaS) cloud, and each VM is comprised of 2
CPU cores and 2GB memory. Then we proceed to deploy
8 instances of the guestbook application on AppScale. We
use the multitenant support in AppScale to register each
instance of guestbook as a different application (G1 through
G8). Each instance is hosted on a separate application server
instance, has its own private namespace on the AppScale
datastore, and can be accessed via a unique URL. We disable
auto-scaling support in the AppScale cloud, and inject faults
into the datastore service of AppScale in such a way that
queries issued from a particular VM, are processed with a
100ms delay. We identify the VM by its IP address in our test
environment, and shall refer to it as Vf in the discussion. We
trigger the fault injection every 2 hours, and when activated
it lasts for up to 5 minutes. Then we monitor the applications
using Roots for a period of 10 hours. Each anomaly detector
is configured to check for the 75ms response time SLO with
95% success rate. ElasticSearch, Logstash and the Roots pod
are deployed on a separate VM.

Figure 11 shows the resulting event sequence. Note that
we detect anomalies in 3 applications (G4, G6 and G7) im-
mediately after each fault injection. Inspecting the topology
of our AppScale cluster revealed that these were the only
3 applications that were hosted on Vf . As a result, the bi-
hourly fault injection caused their SLOs to get violated.



IEEE TRANSACTIONS IN CLOUD COMPUTING 11

Feature Results Observed in Roots
Detecting
anomalies

All the artificially induced anomalies were de-
tected, except when multiple anomalies are clus-
tered together in time. In that case only the
first anomaly was detected. Roots also detected
several anomalies that occurred due to a combi-
nation of injected faults, and natural faults.

Characterizing
anomalies as
being due
to workload
changes or
bottlenecks

When anomalies were induced by varying the
application workload, Roots correctly deter-
mined that the anomalies were caused by work-
load changes. In all other cases we kept the
workload steady, and hence the anomalies were
attributed to a system bottleneck.

Identifying cor-
rect bottleneck

In all the cases where bottleneck identification
was performed, Roots correctly identified the
bottleneck component.

Reaction time All the artificially induced anomalies (SLO vio-
lations) were detected as soon as enough sam-
ples of the fault were taken by the benchmark-
ing process (2-5 minutes from the start of the
fault injection period).

Path distribu-
tion

All the artificially induced changes to the path
distribution were detected.

TABLE 2
Summary of Roots efficacy results.

Other applications did not exhibit any SLO violations since
we are monitoring against a very high response time upper
bound. In each case Roots detected the SLO violations 2-
3 minutes into the fault injection period. As soon as that
happened, the anomaly detectors of G4, G6 and G7 entered
the warmup mode. But our fault injection logic kept in-
jecting faults for at least 2 more minutes. Therefore when
the anomaly detectors reactivated after 25 minutes (time
to collect the minimum sample count), they each detected
another SLO violation. As a result, we see another set of
detection events approximately half an hour after the fault
injection events.

We conclude our discussion of Roots efficacy with a
summary of our results. Table 2 provides an overview of all
the results presented so far, broken down into four features
that we wish to see in an anomaly detection and bottleneck
identification system.

5.6 Roots Performance Overhead and Scalability

Next we evaluate the performance overhead incurred by
Roots on the applications deployed in the cloud platform.
We are particularly interested in understanding the over-
head of recording the PaaS kernel invocations made by
each application, since this feature requires some changes
to the PaaS kernel implementation. We deploy a number of
applications on a vanilla AppScale cloud (with no Roots),
and measure their request latencies. We use the popular
Apache Bench tool to measure the request latency under a
varying number of concurrent clients. We then take the same
measurements on an AppScale cloud with Roots, and com-
pare the results against the ones obtained from the vanilla
AppScale cloud. In both environments we disable the auto-
scaling support of AppScale, so that all client requests are
served from a single application server instance. In our
prototype implementation of Roots, the kernel invocation
events get buffered in the application server before they are
sent to the Roots data storage. We wish to explore how this

Without Roots With Roots
App./Concurrency Mean

(ms)
SD Mean

(ms)
SD

guestbook/1 12 3.9 12 3.7
guestbook/50 375 51.4 374 53
stock-trader/1 151 13 145 13.7
stock-trader/50 3631 690.8 3552 667.7

kv store/1 7 1.5 8 2.2
kv store/50 169 26.7 150 25.4

cached kv store/1 3 2.8 2 3.3
cached kv store/50 101 24.8 97 35.1

TABLE 3
Latency comparison of applications when running on a vanilla

AppScale cloud vs when running on a Roots-enabled AppScale cloud.

100 1000 10000

Memory
CPU

Number of Detectors

M
ax

 M
em

or
y 

U
sa

ge
 (

M
B

)

0
20

0
40

0
60

0
80

0

0
50

10
0

15
0

20
0

25
0

M
ax

 C
P

U
 U

sa
ge

 (
%

)

Fig. 12. Resource utilization of a Roots pod.

feature performs when the application server is under heavy
load.

Table 3 shows the comparison of request latencies. We
discover that Roots does not add a significant overhead to
the request latency in any of the scenarios considered. In
all the cases, the mean request latency when Roots is in
use, is within one standard deviation from the mean latency
when Roots is not in use. The latency increases with the
number of concurrent clients (since all requests are handled
by a single application server), but still there is no evidence
of any detrimental overhead from Roots even under load.
This is due to the asynchronous nature of Roots, which
buffers monitoring events in memory, and reports them to
ElasticSearch out of the request processing flow.

Finally, to demonstrate how lightweight and scalable
Roots is, we deploy a Roots pod on a virtual machine
with 4 CPU cores and 4GB memory. To simulate monitoring
multiple applications, we run multiple concurrent anomaly
detectors in the pod. Each detector is configured with a 1
hour sliding window. We vary the number of concurrent
detectors between 100 and 10000, and run each configura-
tion for 2 hours. We track the memory and CPU usage of
the pod during each of these runs using the jstat and pidstat
tools.

Figure 12 illustrates the maximum resource utilization
of the Roots pod for different counts of concurrent anomaly
detectors. We see that with 10000 concurrent detectors, the
maximum CPU usage is 238%, where 400% is the available
limit for 4 CPU cores. The maximum memory usage in this



IEEE TRANSACTIONS IN CLOUD COMPUTING 12

case is only 778 MB. Since each anomaly detector operates
with a fixed-sized window, and they bring additional data
into memory only when required, the memory usage of the
Roots pod generally stays low. We also experimented with
larger concurrent detector counts, and we were able to pack
up to 40000 detectors into the pod before getting constrained
by the CPU capacity of our VM. This result implies that
we can monitor tens of thousands of applications using a
single pod, thereby scaling up to a very large number of
applications using only a handful of pods.

6 RELATED WORK

Roots falls into the category of performance anomaly detec-
tion and bottleneck identification (PADBI) systems. PADBI
systems observe, in real time, the performance behaviors of
a running system or application, collecting vital measure-
ments at discrete time intervals to create baseline models
of typical system behaviors [7]. Such systems play a crucial
role in achieving guaranteed service reliability, performance
and quality of service by detecting performance issues in
a timely manner before they escalate into major outages
or SLO violations [24]. PADBI systems are thoroughly re-
searched, and well understood in the context of traditional
standalone and network applications. Many system admin-
istrators are familiar with frameworks like Nagios [25],
Open NMS [26] and Zabbix [27] which can be used to collect
data from a wide range of applications and devices.

However, the paradigm of cloud computing, being rela-
tively new, is yet to be fully penetrated by PADBI systems
research. The size, complexity and the dynamic nature of
cloud platforms make performance monitoring a particu-
larly challenging problem. The existing technologies like
Amazon CloudWatch [28], New Relic [4] and DataDog [6]
facilitate monitoring cloud applications by instrumenting
low level cloud resources (e.g. virtual machines), and appli-
cation code. But such technologies are either impracticable
or insufficient in PaaS clouds where the low level cloud
resources are hidden under layers of managed services, and
the application code is executed in a sandboxed environ-
ment that is not always amenable to instrumentation. When
code instrumentation is possible, it tends to be burdensome,
error prone, and detrimental to the application’s perfor-
mance. Roots on the other hand is built into the fabric of
the PaaS cloud giving it full visibility into all the activities
that take place in the entire software stack.

Our work borrows heavily from the past literature [3],
[7] that detail the key features of cloud APMs. Ibidun-
moye et al highlight the importance of multilevel bottle-
neck identification as an open research question [7]. This
is the ability to identify bottlenecks from a set of top-level
application service components, and further down through
the virtualization layer to system resource bottlenecks. We
detail our early investigations into doing so in [9]. The work
herein expands upon both the technical detail and empirical
evaluation of this initial work. We also present a novel
mechanism for detecting changes in application workload
patterns by analyzing the request execution paths. Roots
is unique in that it supports identifying execution paths
and performance bottlenecks using only the set of services
provided by the PaaS kernel.

Similar to systems like X-Trace [29] and PinPoint [30],
Roots also tags request messages in order to trace their
flow through a complex distributed system. X-Trace records
network activities across protocols and layers, but does not
support root cause analysis. PinPoint traces interactions
among J2EE middleware components to localize faults.
Roots on the other hand traces the PaaS kernel service calls
made by an application while processing requests.

Cherkasova et al developed an online performance mod-
eling technique to detect anomalies in traditional transaction
processing systems [31]. They divide time into contiguous
segments, such that within each segment the application
workload (volume and type of transactions) and resource
usage (CPU) can be fit to a linear regression model. Seg-
ments for which a model cannot be found, are considered
anomalous. Then they remove anomalous segments from
the history, and perform model reconciliation to differen-
tiate between workload changes and application problems.
While this method is powerful, it requires instrumenting ap-
plication code to detect different external calls (e.g. database
queries) executed by the application. Since the model uses
different transaction types as parameters, some prior knowl-
edge regarding the transactions also needs to be fed into the
system. The algorithm is compute intensive due to the need
for continuous segmentation and model fitting.

Dean et al implemented PerfCompass [32], an anomaly
detection and localization method for IaaS clouds. They
instrument the VM operating system kernels to capture
the system calls made by user applications. Anomalies are
detected by looking for unusual increases in system call
execution time. They group system calls into execution units
(processes, threads etc), and analyze how many units are
affected by any given anomaly. Based on this metric they
conclude if the problem was caused by a workload change
or an application level issue. We take a similar approach in
Roots, in that we capture the PaaS kernel invocations made
by user applications.

Nguyen et al presented PAL, another anomaly detection
and localization mechanism targeting distributed applica-
tions deployed on IaaS clouds [33]. Similar to Roots, they
also use an SLO monitoring approach to detect application
performance anomalies. When an anomaly is detected, they
perform change point analysis on gathered resource usage
data (CPU, memory and network) to identify the anomaly
onset time.

Magalhaes and Silva have made significant contributions
in the area of anomaly detection and root cause analysis in
web applications [34], [35]. They compute the correlation be-
tween application workload and latency. If the level of corre-
lation drops significantly, they consider it to be an anomaly.
A similar correlation analysis between workload and other
local system metrics (e.g. CPU and memory usage) is used
to identify the system resource that is responsible for a given
anomaly. They also use an aspect-oriented programming
model in their target applications, which allows them to
easily instrument application code, and gather metrics re-
garding various remote services (e.g. database) invoked by
the application. This data is subjected to a series of sim-
ple linear regressions to perform root cause analysis. This
approach assumes that remote services are independent
of each other. However, in a cloud platform where kernel



IEEE TRANSACTIONS IN CLOUD COMPUTING 13

services are deployed in the same shared infrastructure, this
assumption might not hold true. Therefore we improve on
their methodology, and use multiple linear regression with
relative importance to identify cloud platform bottlenecks.
Relative importance is resistant to multicollinearity, and
therefore does not require the independence assumption.

Anomaly detection is a general problem not restricted
to performance analysis. Researchers have studied anomaly
detection from many different points of view, and as a result
many viable algorithms and solutions have emerged over
time [36]. Prior work in performance anomaly detection and
root cause analysis can be classified as statistical methods
(e.g. [33], [35], [37], [38]) and machine learning methods
(e.g. [39], [40], [41]). While we use many statistical methods
in our work (change point analysis, relative importance,
quantile analysis), Roots is not tied to any of these tech-
niques. Rather, we provide a framework on top of which
new anomaly detectors and anomaly handlers can be built.

7 CONCLUSIONS AND FUTURE WORK

As the paradigm of cloud computing grows in popularity,
the need for monitoring cloud-hosted applications is be-
coming critical. Application developers and cloud admin-
istrators wish to detect performance anomalies in cloud
applications, and perform root cause analysis to diagnose
problems. However, the high level of abstraction provided
by cloud platforms, coupled with their scale and complexity,
makes performance diagnosis a daunting problem.

In this paper, we present Roots, an efficient and accurate
monitoring framework for applications deployed in a PaaS
cloud. Roots is designed to function as a curated service
built into the cloud platform. It relieves the application
developers from having to configure their own monitoring
solutions, or instrument application code. Roots captures
runtime data from all the different layers involved in pro-
cessing application requests. It correlates events across PaaS
layers and identifies bottlenecks across the PaaS stack.

Roots monitors applications for compliance with service
level objectives (SLOs) and detects anomalies via SLO viola-
tions. When Roots detects an anomaly, it analyzes workload
data and application runtime data to perform root cause
analysis. Roots is able to determine whether a particular
anomaly was caused by a change in the application work-
load, or due to a bottleneck in the cloud platform. Our
workload change point detection algorithm distinguishes
between different paths of execution though an application.
Our bottleneck identification algorithm uses a combination
of linear regression, quantile analysis, and change point
detection to identify the PaaS service that is the most likely
cause of the anomaly.

We evaluate Roots using a prototype built for the App-
Scale PaaS. Our results indicate that Roots is effective at
detecting workload changes and performance bottlenecks
within 5 minutes from when they start and introduces
no false positives. Our empirical trials also show that the
mean latency of the PaaS platform with Roots is within
one standard deviation of the mean latency of the cloud
platform without Roots, for the workloads we studied.

In our future work, we plan to expand the data gathering
capabilities of Roots into the low level virtual machines and

containers that host cloud platform services. We intend to
tap into the hypervisors and container managers to harvest
runtime data regarding the resource usage (CPU, memory,
disk etc.) of application components. With that we expect to
extend the root cause analysis support of Roots so that it can
not only pinpoint the bottlenecked application components,
but also the low level hosts and system resources that
constitute each bottleneck.

Finally, we acknowledge and thank our research sup-
porters. This work is funded in part by NSF (CCF-1539586,
ACI- 1541215, CNS-1218808, CNS-0905237, ACI-0751315),
NIH (1R01EB014877-01), ONR NEEC (N00174-16-C-0020),
Huawei Technologies, and the California Energy Commis-
sion (PON- 14-304).

REFERENCES

[1] N. Antonopoulos and L. Gillam, Cloud Computing: Principles, Sys-
tems and Applications, 1st ed. Springer Publishing Company,
Incorporated, 2010.

[2] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud
computing systems,” in Proceedings of the International Conference
on Information Systems and Design of Communication, ser. ISDOC
’14. New York, NY, USA: ACM, 2014, pp. 127–131. [Online].
Available: http://doi.acm.org/10.1145/2618168.2618188

[3] G. Da Cunha Rodrigues, R. N. Calheiros, V. T. Guimaraes, G. L. d.
Santos, M. B. de Carvalho, L. Z. Granville, L. M. R. Tarouco,
and R. Buyya, “Monitoring of cloud computing environments:
Concepts, solutions, trends, and future directions,” in Proceedings
of the 31st Annual ACM Symposium on Applied Computing, ser. SAC
’16. New York, NY, USA: ACM, 2016, pp. 378–383. [Online].
Available: http://doi.acm.org/10.1145/2851613.2851619

[4] “New relic: Application performance management and monitor-
ing,” 2016, https://newrelic.com [Accessed Sep 2016].

[5] “Dynatrace: Digital performance management and applica-
tion performance monitoring,” 2016, https://www.dynatrace.com
[Accessed Sep 2016].

[6] “Datadog: Cloud monitoring as a service,” 2016, https://www.
datadoghq.com [Accessed Sep 2016].

[7] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth,
“Performance anomaly detection and bottleneck identification,”
ACM Comput. Surv., vol. 48, no. 1, pp. 4:1–4:35, Jul. 2015. [Online].
Available: http://doi.acm.org/10.1145/2791120

[8] A. Keller and H. Ludwig, “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services,” J. Netw.
Syst. Manage., vol. 11, no. 1, Mar. 2003.

[9] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance
monitoring and root cause analysis for cloud-hosted web
applications,” in Proceedings of the 26th International Conference
on World Wide Web, ser. WWW ’17. Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences
Steering Committee, 2017, pp. 469–478. [Online]. Available:
https://doi.org/10.1145/3038912.3052649

[10] C. Krintz, “The appscale cloud platform: Enabling portable,
scalable web application deployment,” IEEE Internet Computing,
vol. 17, no. 2, pp. 72–75, March 2013.

[11] SearchCloudComputing, 2015, http://
searchcloudcomputing.techtarget.com/feature/
Experts-forecast-the-2015-cloud-computing-market [Accessed
March 2015].

[12] Forbes, 2016, http://www.forbes.
com/sites/louiscolumbus/2016/03/13/
roundup-of-cloud-computing-forecasts-and-market-estimates-2016
[Accessed Sep 2016].

[13] “App engine - run your applications on a fully managed paas,”
2015, ”https://cloud.google.com/appengine” [Accessed March
2015].

[14] “Microsoft azure cloud sdk,” https://azure.microsoft.com/
en-us/downloads/ [Accessed October 2016].

[15] H. Jayathilaka, C. Krintz, and R. Wolski, “Response time
service level agreements for cloud-hosted web applications,” in
Proceedings of the Sixth ACM Symposium on Cloud Computing,
ser. SoCC ’15. New York, NY, USA: ACM, 2015, pp. 315–328.
[Online]. Available: http://doi.acm.org/10.1145/2806777.2806842

http://doi.acm.org/10.1145/2618168.2618188
http://doi.acm.org/10.1145/2851613.2851619
https://newrelic.com
https://www.dynatrace.com
https://www.datadoghq.com
https://www.datadoghq.com
http://doi.acm.org/10.1145/2791120
https://doi.org/10.1145/3038912.3052649
http://searchcloudcomputing.tech target.com/feature/Experts-forecast-the-2015-cloud-computing-market
http://searchcloudcomputing.tech target.com/feature/Experts-forecast-the-2015-cloud-computing-market
http://searchcloudcomputing.tech target.com/feature/Experts-forecast-the-2015-cloud-computing-market
http://www.forbes.com/sites/louiscolumbus/2016/ 03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016
http://www.forbes.com/sites/louiscolumbus/2016/ 03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016
http://www.forbes.com/sites/louiscolumbus/2016/ 03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016
"
https://azure.microsoft.com/en-us/downloads/
https://azure.microsoft.com/en-us/downloads/
http://doi.acm.org/10.1145/2806777.2806842


IEEE TRANSACTIONS IN CLOUD COMPUTING 14

[16] “Elasticsearch - search and analyze data in real time,” 2016,
”https://www.elastic.co/products/elasticsearch” [Accessed Sep
2016].

[17] O. Kononenko, O. Baysal, R. Holmes, and M. W. Godfrey, “Mining
modern repositories with elasticsearch,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: ACM, 2014, pp. 328–331. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597091

[18] “Logstash - collect, enrich and transport data,” 2016,
”https://www.elastic.co/products/logstash” [Accessed Sep
2016].

[19] S. Urbanek, “Rserve – a fast way to provide r functionality to
applications,” in Proc. of the 3rd international workshop on Distributed
Statistical Computing (DSC 2003), 2003.

[20] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection
of changepoints with a linear computational cost,” Journal of the
American Statistical Association, vol. 107, no. 500, pp. 1590–1598,
2012.

[21] C. Chen and L.-M. Liu, “Joint estimation of model parameters
and outlier effects in time series,” Journal of the American Statistical
Association, vol. 88, no. 421, pp. 284–297, 1993.

[22] U. Groemping, “Relative importance for linear regression
in r: The package relaimpo,” Journal of Statistical Software,
vol. 17, no. 1, pp. 1–27, 2006. [Online]. Available: https:
//www.jstatsoft.org/index.php/jss/article/view/v017i01

[23] G. R. Lindeman R.H., Merenda P.F., Introduction to Bivariate and
Multivariate Analysis. Scott, Foresman, Glenview, IL, 1980.

[24] Q. Guan, Z. Zhang, and S. Fu, “Proactive failure management
by integrated unsupervised and semi-supervised learning for
dependable cloud systems,” in Availability, Reliability and Security
(ARES), 2011 Sixth International Conference on, Aug 2011, pp. 83–90.

[25] R. C. Harlan, “Network management with nagios,” Linux
J., vol. 2003, no. 111, pp. 3–, Jul. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=860375.860378

[26] “Opennms: Network management platform,” 2016, https://www.
opennms.org/en [Accessed Sep 2016].

[27] P. Tader, “Server monitoring with zabbix,” Linux J., vol. 2010,
no. 195, Jul. 2010. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1883478.1883485

[28] “Amazon cloud watch,” 2016, https://aws.amazon.com/
cloudwatch [Accessed Sep 2016].

[29] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-
trace: A pervasive network tracing framework,” in Proceedings
of the 4th USENIX Conference on Networked Systems Design &#38;
Implementation, 2007.

[30] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pin-
point: Problem determination in large, dynamic internet services,”
in Proceedings of the 2002 International Conference on Dependable
Systems and Networks, 2002.

[31] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni,
“Anomaly? application change? or workload change? towards
automated detection of application performance anomaly and
change,” in 2008 IEEE International Conference on Dependable Sys-
tems and Networks With FTCS and DCC (DSN), June 2008, pp. 452–
461.

[32] D. J. Dean, H. Nguyen, P. Wang, and X. Gu, “Perfcompass: Toward
runtime performance anomaly fault localization for infrastructure-
as-a-service clouds,” in Proceedings of the 6th USENIX Conference
on Hot Topics in Cloud Computing, ser. HotCloud’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 16–16. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2696535.2696551

[33] H. Nguyen, Y. Tan, and X. Gu, “Pal: Propagation-aware
anomaly localization for cloud hosted distributed applications,”
in Managing Large-scale Systems via the Analysis of System Logs and
the Application of Machine Learning Techniques, ser. SLAML ’11.
New York, NY, USA: ACM, 2011, pp. 1:1–1:8. [Online]. Available:
http://doi.acm.org/10.1145/2038633.2038634

[34] J. P. Magalhaes and L. M. Silva, “Detection of performance
anomalies in web-based applications,” in Proceedings of the
2010 Ninth IEEE International Symposium on Network Computing
and Applications, ser. NCA ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 60–67. [Online]. Available:
http://dx.doi.org/10.1109/NCA.2010.15

[35] J. a. P. Magalhães and L. M. Silva, “Root-cause analysis of
performance anomalies in web-based applications,” in Proceedings
of the 2011 ACM Symposium on Applied Computing, ser. SAC ’11.

New York, NY, USA: ACM, 2011, pp. 209–216. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982234

[36] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[37] G. Casale, N. Mi, L. Cherkasova, and E. Smirni, “Dealing with
burstiness in multi-tier applications: Models and their parameter-
ization,” IEEE Transactions on Software Engineering, vol. 38, no. 5,
pp. 1040–1053, Sept 2012.

[38] S. Malkowski, M. Hedwig, J. Parekh, C. Pu, and A. Sahai,
“Bottleneck detection using statistical intervention analysis,” in
Proceedings of the Distributed Systems: Operations and Management
18th IFIP/IEEE International Conference on Managing Virtualization
of Networks and Services, ser. DSOM’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 122–134. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1783374.1783389

[39] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase,
“Correlating instrumentation data to system states: A building
block for automated diagnosis and control,” in Proceedings of
the 6th Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, ser. OSDI’04. Berkeley, CA,
USA: USENIX Association, 2004, pp. 16–16. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251254.1251270

[40] L. Yu and Z. Lan, “A scalable, non-parametric anomaly
detection framework for hadoop,” in Proceedings of the 2013 ACM
Cloud and Autonomic Computing Conference, ser. CAC ’13. New
York, NY, USA: ACM, 2013, pp. 22:1–22:2. [Online]. Available:
http://doi.acm.org/10.1145/2494621.2494643

[41] K. Bhaduri, K. Das, and B. L. Matthews, “Detecting abnormal
machine characteristics in cloud infrastructures,” in 2011 IEEE 11th
International Conference on Data Mining Workshops. IEEE, 2011, pp.
137–144.

Hiranya Jayathilaka Hiranya Jayathilaka is a
fifth year PhD candidate at the computer science
department of UC Santa Barbara. His research
focuses on automated governance for cloud plat-
forms, which addresses a wide range of issues
including policy enforcement, performance guar-
antees, monitoring and troubleshooting. He re-
ceived a B.Sc. in engineering from University of
Moratuwa, Sri Lanka.

Chandra Krintz Chandra Krintz is a Professor
of Computer Science (CS) at UC Santa Barbara
and Chief Scientist at AppScale Systems Inc.
Chandra holds M.S./Ph.D. degrees in CS from
UC San Diego. Chandra’s research interests
include programming systems, cloud and big
data computing, and the Internet of Things (IoT).
Chandra has supervised and mentored over 60
students and has led several educational and
outreach programs that introduce young people
to computer science.

Rich Wolski Dr. Rich Wolski is a Professor of
Computer Science at the UC Santa Barbara, and
co-founder of Eucalyptus Systems Inc. Having
received his M.S. and Ph.D. degrees from UC
Davis (while a research scientist at Lawrence
Livermore National Laboratory) he has also held
positions at the UC San Diego, and the Uni-
versity of Tennessee, the San Diego Supercom-
puter Center and Lawrence Berkeley National
Laboratory. Rich has led several national scale
research efforts in the area of distributed sys-

tems, and is the progenitor of the Eucalyptus open source cloud project.

"
http://doi.acm.org/10.1145/2597073.2597091
"
https://www.jstatsoft.org/index.php/jss/article/view/v017i01
https://www.jstatsoft.org/index.php/jss/article/view/v017i01
http://dl.acm.org/citation.cfm?id=860375.860378
https://www.opennms.org/en
https://www.opennms.org/en
http://dl.acm.org/citation.cfm?id=1883478.1883485
http://dl.acm.org/citation.cfm?id=1883478.1883485
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
http://dl.acm.org/citation.cfm?id=2696535.2696551
http://doi.acm.org/10.1145/2038633.2038634
http://dx.doi.org/10.1109/NCA.2010.15
http://doi.acm.org/10.1145/1982185.1982234
http://doi.acm.org/10.1145/1541880.1541882
http://dl.acm.org/citation.cfm?id=1783374.1783389
http://dl.acm.org/citation.cfm?id=1783374.1783389
http://dl.acm.org/citation.cfm?id=1251254.1251270
http://doi.acm.org/10.1145/2494621.2494643

	Introduction
	Background
	Roots
	Data Collection and Correlation
	Data Storage and Analysis
	Roots Process Management

	Prototype Implementation
	SLO-violating Anomalies
	Path Distribution Analysis
	Workload Change Analyzer
	Bottleneck Identification
	Relative Importance of PaaS Kernel Invocations
	Changes in Relative Importance
	High Quantiles
	Tail End Values
	Selecting Among the Candidates


	Results
	Anomaly Detection: Accuracy and Speed
	Path Distribution Analyzer: Accuracy and Speed
	Workload Change Analyzer Accuracy
	Bottleneck Identification Accuracy
	Multiple Applications in a Clustered Setting
	Roots Performance Overhead and Scalability

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Hiranya Jayathilaka
	Chandra Krintz
	Rich Wolski


