
1

Replicated Versioned Data Structures for
Wide-Area Distributed Systems

Nazmus Saquib, Chandra Krintz, and Rich Wolski

Abstract—In this work, we investigate the integration of replicated versioned data structures and append-only distributed storage
systems. Doing so facilitates high availability and scalability while providing developer access to different versions of program data
structures across program executions. Modern distributed systems such as the Internet of Things (IoT) often employ multi-tiered
(cloud/edge/sensors) architectures consisting of a wide array of heterogeneous devices generating data frequently. Hence system
availability is imperative to avoid data loss, while scalability is required for the efficient operation of the system not only within the same
tier but across different tiers as well. Our proposed approach replicates, persists, and versions program data structures such as binary
search trees and linked lists for use in distributed IoT applications. The versioning and persistence of these structures aid failure
recovery and facilitate system debugging from its inception instead of making such considerations an afterthought. Moreover, our
experiments suggest versioned data structures can perform better in applications performing high volumes of temporal queries versus
traditional methods of persisting data (e.g., in a database). We empirically evaluate the overheads associated with versioning and
storage persistence of program data structures, present experimental results for multiple end-to-end applications, and demonstrate the
scalability of this approach.

Index Terms—replication, IoT, versioning, append-only logs.

F

1 INTRODUCTION

D ISTRIBUTED systems have evolved over the years re-
sulting in new computing paradigms such as cloud

computing, edge computing, and the Internet of Things
(IoT) [1]. However, programming applications that lever-
age the services provided by multi-tier deployments (i.e.,
cloud, edge, and sensor combinations) are complex and
error-prone for several reasons. First, there is no unifying
set of programming abstractions that are designed to span
resource scales consisting of heterogeneous devices – from
resource-restricted IoT end devices (e.g. microcontrollers) to
the extensive resource pools available from public clouds.
Second, many multi-tier applications must tolerate frequent
communication disruptions, outages, and failures when
operating across tiers. Clouds mask and handle failures
via vast scale and infrastructure support, which are not
available or feasible at the edge due to resource constraints,
intermittent connectivity to the cloud, and vast heterogene-
ity of IoT devices and networks. Developers of multi-tier
applications face significant failure management program-
ming challenges concerning both the number of devices to
be managed and their capabilities.

Hence for the modern distributed system to revolution-
ize the next era of computing, it must involve high-level
programming abstractions that reconcile the heterogeneity
of devices while exploiting the failure management ap-
proaches that have emerged from large-scale cloud comput-
ing. Our work addresses these dual challenges with new
programming support (i.e. high-level libraries) for com-
monly used program data structures (e.g. linked lists and
binary search trees) that transparently facilitates versioning,
replication, and eventual consistency. By doing so, we at-

The authors are with the University of California, Santa Barbara, CA, USA.
Email: {nazmus, ckrintz, rich}@cs.ucsb.edu.

tempt to solve the research challenge of realizing systems
that can reconcile the heterogeneity of modern distributed
environments while making applications capable of with-
standing failure. In Section 3, we present multiple IoT ap-
plications from existing literature (urban traffic steering [2],
inter-device task dispatch [3], smart locks [4], and machine
learning at the edge [5]) that can benefit from our approach.

The combination of versioning, replication, and storage
persistence using logs provides us with a unique approach
to application development for failure-prone, heterogeneous
distributed environments. As versioned data structure pre-
serves its previous states, versioning allows us to organ-
ically log every state an application goes through. This
removes the burden of explicit logging from the application
developer and facilitates debugging as previous versions
can be accessed to inquire what caused a failure. Unsur-
prisingly, versioned data structures can be efficient for ap-
plications with large volumes of temporal queries as well.

Replication makes program data structures durable,
highly available, and concurrently accessible in the presence
of resource failures. Strong consistency involves coordina-
tion overhead which can get compounded in failure-prone
environments due to frequent network failures. Hence we
opt for eventual consistency in this work. As it stands, many
multi-tier applications can sacrifice strong consistency in
favor of high availability and partition tolerance [4], [6], [7].

Append-only logs provide immutability, which facili-
tates both availability and coordination avoidance. Both
versioned data structures and append-only logs provide
versioning, the former from a program level and the latter
from a storage level. Our work uses logs to provide a generic
method of operation reversal as well. If we can express an
operation in terms of appends to logs, we can express the
reversal of the operation as log rollback. This plays a vital

2

role in conflict resolution during replication (cf. Section 5.6).
Our work builds upon and extends an approach to

make versioned data structures log storage persistent called
PEDaLS [8]. In particular, we extend PEDaLS in the fol-
lowing ways: We introduce a replication method for data
structures that ensures that any two replicas that observe
the same set of operations (possibly in a different order) will
arrive at the same state. This property is known as strong
eventual consistency [9]. Due to the append-only semantics
of logs, PEDaLS requires novel and complex methods to
efficiently detect and resolve any temporary conflicts that
may arise during the replication process. We present an
efficient conflict detection method that avoids full log scans
in Section 5.5 and the subsequent conflict resolution method
in Section 5.6. Notably, the append-only semantics of logs
facilitate the rollback of arbitrary data structures that makes
conflict resolution feasible.

We demonstrate the scalability of our proposed repli-
cation method in Section 6.2, in which we consider differ-
ent numbers of replicas and workload composition (i.e.,
read/write percentage). We also demonstrate how a wide
range of use cases can leverage our versioning support us-
ing multiple real-life applications in Section 6.4. Our results
show that PEDaLS performs significantly better in regard
to complex temporal queries than popular SQL and NoSQL
databases.

Finally, although conceptually, logs are unbounded, in
practice they are limited by the physical capacity of the
underlying storage. To address this challenge, we develop
a probabilistic model in Section 6.5 that determines the stor-
age required to retain a user-specified number of versions in
the face of failures. In the sections that follow, we overview
related work and then describe each of these contributions
in detail.

2 RELATED WORK

In this section, we discuss the foundations that underlie
replicated versioned data structures. We focus this section
on advances in data versioning, distributed logging, and
data replication, which are key for supporting failure-prone,
multi-tier applications. We summarize a comparative study
of these foundational concepts in Table 1.

2.1 Data Versioning
Versioned data structures maintain past program states that
can be accessed programmatically. Such data structures are
immutable – a new update operation creates a new version
that retains the previous states while recording the latest
state. Note that for immutable data structures, even deletion
operations logically append new information. Immutability
facilitates coordination avoidance as well as other robust-
ness features described below [18]. Versioned data struc-
tures are also referred to as persistent data structures [10]
in the literature. Note that the term “persistent” in this
context does not mean “storage persistence” (i.e. in a system
context, the ability to persist data during a power-off state),
rather it means that the previous versions (i.e., states) of
the data structures are preserved. If all versions (past and
present) of a data structure can be both accessed and mod-
ified it is fully persistent. If all versions of a data structure

can be accessed but only the latest one can be modified it is
partially persistent. A confluently persistent [19] data structure
can merge different versions into one. We focus on partially
persistent data structures in this paper, as the version history
is sufficient for our use cases. We refer to partially persistent
data structures in this paper as PDSs.

In our work, we use the node-copy method [10] pro-
posed by Driscoll, Sleator, Sarnak, and Tarjan for dis-
tributed, linked data structures (e.g. trees and lists). Node-
copy is a single-machine, in-memory algorithm. In [8], we
modify this algorithm to be distributed and storage persistent
(through the use of append-only logs), while maintaining
the original constant per-node traversal time complexity
of the node-copy method. That is, the node-copy method
maintains a constant traversal cost between all nodes in
a PDS. We overview this approach (called PEDaLS) in
Section 4. Most past works on PDSs cover applications
from theoretical computer science [20], text editing [21], and
computer-aided design [22]. Our extension to distributed
systems enables their use in providing application robust-
ness, distributed debugging and root cause analysis, and
repair/replay for IoT applications.

A technology related to data versioning is git [15]. Git is
a version control system typically used for text documents
with some support for binary documents. GitHub [16] is
an online platform for hosting git repositories. A primary
difference between persistent data structures and git is that
the former is used for program data, whereas the latter is
used mostly for source codes or files. Git provides support
for exploring the difference between two versions, working
on different versions (similar to fully persistent data struc-
tures), and merging different versions (similar to confluently
persistent data structures) among others.

2.2 Append-Only Logs

Due to a decline in storage costs, append-only logs are
used widely in distributed and cloud computing systems
to facilitate immutability, robustness, and scalability. Exam-
ples of log-based systems include cloud object stores [23],
[24], event systems [12], distributed databases and file sys-
tems [25], [26], [27], [28], [29], log-based transaction sys-
tems [30], [31], [32], and popular messaging and streaming
services [33], [34], [35].

Immutability facilitates robustness and coordination
avoidance [18], [36] as well as high availability (through
eventual consistency) for cloud storage, gossip protocols,
collaborative editing, and revision control, among oth-
ers [37], [38], [39]. While data versioning provides im-
mutability from a software level, append-only logs pro-
vide immutability from a storage level. Entries in a log
are ordered and most log storage systems provide a form
of sequence number (e.g. Kafka [40] provides offsets, and
Facebook LogDevice [41] provides log sequence numbers)
that reflects the log order. Log storage systems typically
provide a simple API for creating a log, appending to a log,
and retrieving entries from specific sequence numbers in a
log. This generic API facilitates communication among het-
erogeneous devices. Our work is agnostic of the underlying
log storage system as long as it provides the aforementioned
functions.

3

TABLE 1: A comparison among different technologies/platforms with PEDaLS. Only the immutability of blockchain
is supported by cryptography, other technology’s immutability/versioning is supported by their exposed interfaces.
PEDaLS and PDS provide efficient space/time complexity for linked data structures with constant in-degree in a single
machine. Similar mechanisms could potentially be used for other data structures without the same space/time complexity
guarantees. PEDaLS does not have the join semilattice or operation commutativity requirements as CRDTs. Note that to the
best of our knowledge, PEDaLS is the first and only system to provide replication for storage persistent versioned program
data structures.

Technology/
Platform

Immutable/
Versioned

Distributed/
Replicated

Type of
Consistency Supported Data Structures Complexity

Guarantees Primary Usage

PEDaLS [8] Yes Yes Strong eventual Linked data structures
with constant in-degree

Constant/op
step

Versioned and replicated
program data

PDS [10] Yes No N/A Linked data structures
with constant in-degree

Constant/op
step Versioned program data

CRDT [11] No Yes Strong eventual

Data structures having join
semilattice or having
operation commutativity
with idempotence support
from communication layer

No Replicated data

Append-only
logs [12] Yes Yes Implementation

dependent Raw data N/A System logging,
data storage, etc.

Paxos [13]/
Raft [14] N/A Yes Strong N/A N/A Replication protocol

Git [15]/
GitHub [16] Yes Yes Eventual Text, raw data N/A Source code management

Blockchain [17] Yes Yes Eventual Raw data N/A Immutable ledger

Append-only logs also provide a convenient mechanism
for operation reversal. If we express update operations of an
arbitrary data structure as log appends, we can perform a
reversal of those operations via log rollback. This is helpful
in cases where a data structure is erroneously updated
and later on it is found that the update should not have
been applied (or a different one should have been applied).
In these cases, logs enable us to rollback all operations
starting from the latest up to the undesired one, and to then
apply the correct operation if necessary via replay of the
operations that follow. This has the same final effect as the
undesired operation not being applied at all. Note that this
is different than applying a seemingly inverse operation to
a data structure, which may result in unwanted side effects.

Similar to append-only logs, blockchain [17] is a con-
tinuously growing data storage. However, blockchain has
cryptographic backing to ensure the integrity of each added
block, whereas the append-only semantics of logs are only
ensured through their exposed interfaces. That is, if a ma-
licious user were to change data previously appended to
a log through some means, there is no feasible way to
detect this anomaly. On the other hand, any such attempt
in a blockchain would reveal this modification through
cryptographic algorithms. The downside is that in addi-
tion, blockchain is resource-intensive. Blockchain is inher-
ently decentralized with algorithms that add to its integrity
through this decentralization. Both distributed logs and
blockchain are eventually consistent. Distributed logs used
in conjunction with consensus protocols such as Paxos [13]
and Raft [14] can be strongly consistent as well.

2.3 Data Replication
Distributed systems replicate data to ensure the availability
and robustness of the system. However, multi-tier deploy-
ments pose unique challenges which make many existing
replication protocols inapplicable. First, these deployments
include a vast range of heterogeneous devices including

resource-constrained systems such as microcontrollers and
single-board computers. Thus, protocols which require sig-
nificant memory or complex computation are not suitable
for them. Second, these devices are commonly battery-
powered and are connected via unstable networks.

Protocols that require frequent coordination among
replicas can experience repeated failure and restart of the
replication procedure in such settings. Due to these reasons,
protocols such as Paxos [13] and Raft [14] that provide
strong consistency and require a quorum through multiple
messages among the replicas are precluded for many IoT
devices. Multiple works in the literature suggest resorting
to a weaker consistency model in favor of availability [42],
[43]. Fortunately, many IoT use cases do not require strong
consistency semantics and instead can tolerate weaker con-
sistency models (with lower coordination requirements)
such as eventual consistency [4], [6], [7]. Thus we can trade
off strong consistency for high availability (which many of
these use cases do require) in the face of network parti-
tions [44]. Specifically, our approach supports strong eventual
consistency for replicated data structures, similar to that used
in collaborative environments [45], [46], [47] via Conflict-
Free Replicated Data-Types (CRDTs) [11].

Motivated by the various limitations of Paxos, re-
searchers have proposed multiple variations over the years.
In Paxos, the leader performs a disproportionately large
amount of communication compared to followers. Pig-
Paxos [48] attempts to reduce the load of the leader by dis-
tributing some communication responsibilities to follower
nodes, called relays. However, for write-heavy workloads
(e.g. for sensor-driven IoT applications), the communication
load is inherently distributed, limiting PigPaxos’ advantage.
Moreover, PigPaxos only redistributes the communication
workload among nodes; it does not necessarily reduce the
total amount of required communication (versus Paxos).
Additionally, in failure-prone, heterogeneous environments
such as IoT, replicas running Paxos-based protocols often

4

must give up on current progress and start fresh if a quorum
is not met. A quorum might not be met for many reasons in-
cluding multiple contending writers, device/power failure,
network latency, etc. Hence the overhead of Paxos-based
algorithms is compounded in such scenarios. On the other
hand, eventual consistency-based protocols can progress
even in failure-prone environments in presence of multiple
writers, as each replica is able to execute its operation
immediately and incorporate the rest of the operations when
the other devices become reachable.

DPaxos [49] proposes a dynamic allocation of quorums
to avoid unnecessary wide-area communication. The com-
munication reduction of DPaxos is heavily dependent on
the premise that leader election is infrequent. However, if
a leader-based protocol is used for write-heavy workloads,
the leader election phase will be more frequent. Moreover,
in the case of multiple writes, the dynamic allocation of
quorums can be prolonged multiple times; effectively being
computationally more complex than Paxos without provid-
ing any additional advantage. Hence we employ strong
eventual consistency for the write-heavy edge deployments
to reduce overall communication overhead.

3 USE CASES

In this section, we describe the research question that PED-
aLS strives to answer and provide use cases from existing
literature that can benefit from the features we adopt in
PEDaLS. We also explain why eventually consistent replica-
tion is more effective than other forms of replication for each
of the use cases. In addition, we identify the advantages of
versioning in these settings. Note that the use of append-
only logs is a core design feature that is not necessarily
dependent on individual applications. Rather it is a design
principle that enhances the overall PEDaLS system, as ex-
plained in Section 2.2.

Heterogeneous distributed systems such as the IoT
are inherently failure-prone due to the deployment envi-
ronment (e.g. poor network connectivity, unstable power
source, devices with limited capacity, etc.). Moreover, in
the face of a failure, it is difficult, if not impossible, to
debug the system due to the loss of relevant data. PEDaLS
provides an approach to alleviate this problem by ensuring
that relevant data is preserved and available, possibly in
multiple storages, along with a trace of state changes. PED-
aLS achieves this through three foundational design choices.
First, PEDaLS uses versioned data structures to capture
the historical trace of change in data. The immutability
of versioned data structures ensures the previous versions
are always preserved and the last complete state is always
checkpointed. Thus it helps in system debugging in the face
of a failure.

Second, PEDaLS uses replication to ensure the avail-
ability of data. As strong consistency involves coordination
overhead which can get worse in the presence of poor
network connectivity, PEDaLS opts for eventual consistency.
Eventual consistency is also useful in a decision support
context, where a specific decision does not depend on all
data items being present.

Third, PEDaLS uses append-only logs for storage.
Append-only logs provide robustness and scalability. The

immutability of append-only logs facilitates both coordi-
nation avoidance and high availability. While versioned
data structures provide versioning from a program level,
append-only logs provide versioning from a storage level.
Next, we present multiple existing use cases from the lit-
erature where eventual consistency (as opposed to strong
consistency) and versioned programming are beneficial.

Urban traffic steering [2]: In smart cities, different sen-
sors are deployed along the streets to gather information
regarding crowding, pollution, traffic, etc. To supplement
effective decision making, other parameters such as events,
attractions, and comments on an area are drawn from
distributed or cloud databases. From the collection of this
information, smart applications can guide pedestrians and
vehicle traffic in complex urban environments. This is a
typical example of interaction among heterogeneous devices
in an environment which is inherently eventually consistent
– numerous devices are continuously updating the state
which stabilizes over time (e.g. the traffic in an area). As
explained earlier, this is an example of a decision support
context where all data points are not necessary to make
a decision. Note that strong consistency is not necessary
for this application and would only hinder and postpone
decision-making due to the communication overhead in-
volved in such protocols. On the other hand, eventual
consistency allows each data source to generate and prop-
agate data throughout the system without complex coordi-
nation, resulting in a smoother user experience. Moreover,
historical data preserved through versioning can provide
insightful details on predicting future traffic patterns. In [2],
the authors describe eventual consistency as a property of
certain IoT applications. The authors further present that
such applications not only converge eventually but that the
current state can be used to approximate the future states of
the environment.

Inter-device task dispatch [3]: It is not uncommon for
IoT devices to interact with other nearby devices to com-
plete an objective. Inter-device apps can leverage resources
from multiple devices by sharing data and tasks among
devices. In [3], the authors point out that the prevalent
practices in inter-device app development for IoT are not
disciplined and that tasks are dispatched statically with
strong consistency. Static dispatch limits the range of in-
teraction among devices while strong consistency imposes
restrictions on inter-device apps due to synchronization
overhead. Hence the authors propose Inter-Device Task Dis-
patch (IDTD), a framework to construct and dispatch tasks
into multiple devices dynamically with eventual consistency
in a systematic manner. Data versioning in such contexts
can store the execution history and as such can be used for
system debugging in later phases.

Smart locks [4]: Smart locks replace traditional door
locks with deadbolts that can be electronically controlled by
mobile devices or remote servers. In [4] the authors show
that an eventual consistency design provides robust revoca-
tion and access logging mechanisms for smart locks. At the
same time, this design minimizes the system’s dependency
on external entities, maintains a high level of availability,
and reduces the system’s vulnerability to remote compro-
mise by allowing devices to forgo direct connections to the
internet. Due to lower dependencies on external entities,

5

these locks can be less prone to external attacks, resulting in
a more secure system. In smart lock systems, data versioning
can provide an implicit log of access control, thus aiding
security checks and debugging in case of a breach.

Banking Queue Monitoring [50]: Queue monitoring is
used for multiple purposes, such as determining the current
load, resource requirement, and expected service time of the
system. In [50] authors provide a manually collected dataset
of service queues at different banks (cf. Section 6.4.1). Such
data collection can be automated by sensors placed at the
entrance and exit or even by indoor localization using
smartphones and WiFi access points [51]. Data versioning
in this application can facilitate predicting future queue
conditions. Moreover, as the exact number of occupants is
not required to be known at any instant of time, rather an
approximate value is sufficient to make relevant decisions,
an eventual consistency based-approach works well here
as well. Furthermore, adopting an eventual consistency-
based approach allows us to avoid coordination overhead,
thus ensuring the longevity of battery-powered sensors and
better utilization of in-house network bandwidth.

4 NODE-COPY METHOD AND PEDALS
In this section, we present an overview of the node-copy
method [10] and PEDaLS [8]. Node-copy method is an
efficient single machine, in-memory algorithm to create ver-
sioned linked data structures having constant in-degree. The
time complexity of update/read operations in this method
is constant per operation step, where an operation step is
defined as the traversal from one data structure node to
the other. A data structure node of a PDS in the node-copy
method differs from that of an ephemeral (i.e. non-versioned)
node in two ways: (i) Each information field and pointer
fields in a node are tagged with a version stamp. Version
stamps start with one and are monotonically increasing.
Every update operation is considered to generate a new
version of the data structure, hence the version stamp is
increased during each update. (ii) Every data structure node
has provisions for a fixed number (user-defined) of extra
pointers to accommodate future updates. Once these extra
pointers are filled, a copy of the node is made with only the
latest pointer fields, essentially freeing up pointer fields for
further update operations.

PEDaLS [8] converts the single machine, in-memory
node-copy method into a distributed, storage persistent
one while maintaining the time complexity of update/read
operations of the node-copy method. It exposes data struc-
ture versions to developers for use in dependency tracking
and program analysis [52], history-aware programming [53],
and repair and replay [54] in distributed settings. PEDaLS
consists of append-only logs at the storage level, which it
can internally interact with simple API calls. Similar to the
node-copy method, data structure nodes contain versioned
fields with provision for extra pointers. PEDaLS abstracts
away all of these complexities from the developers and
provides them with functions to create, modify, and access
the data structures. PEDaLS does not allow multiple writes
(i.e., update operations) at the same replica at the same time,
as semantically a new version is obtained by performing an
update operation on the latest version – thus requiring an

order over the update operations. However, it allows reads
during a write operation.

The in-memory node-copy method can reuse previous
data for the latter versions and can use extra pointers to
accommodate future updates. PEDaLS retains these design
choices to create versioned data structures. Implementing
the node-copy method using append-only logs has its own
challenges. To start with, every pointer manipulation must
be expressed as appends to one or more logs instead of
being executed in-place. Moreover, in order to maintain the
time complexity of the in-memory algorithm, expensive log
scans must be avoided. As logs can be remote, PEDaLS must
withstand network failures. Finally, atomicity across logs
must be guaranteed, i.e. an update operation should either
append to all the logs that it is supposed to append to, or
keep all of the logs unchanged.

In order to address all of these challenges, PEDaLS uses
three types of logs: (i) DataLog, (ii) LinkLogs, and (iii) APLog.
The DataLog stores the information field of data structure
nodes. A LinkLog stores the pointer fields of a specific
data structure node. Each node in a data structure has a
dedicated LinkLog. Therefore, a data structure node can be
uniquely expressed through a pair of sequence numbers,
one for the DataLog and another for the corresponding Lin-
kLog. As each data structure node has a dedicated LinkLog,
any pointer modification of a node can be expressed as
an append to the corresponding LinkLog. Much like how
node-copy method has a fixed number of extra pointers for
a node, PEDaLS assumes a fixed number of entries for a
node in its LinkLog. As an example, the number of original
pointers o is 2 in a bst node (one left and one right). If
the number of extra pointers e is 1, the total number of
pointers p in a bst node is p = o + e = 2 + 1 = 3.
Therefore, the first three entries in a LinkLog denote the
original node, the next three entries denote the copy of the
node, the next three the copy of the copy, so on and so forth.
This is the ideal case without any network failure. However,
network failures make the scenario complicated with remote
logs. PEDaLS considers two types of failures: (i) Type 1. An
append to a LinkLog fails. This does not change the above
calculations. (ii) Type 2. An append to a LinkLog succeeds,
but the acknowledgment is lost. In this case, PEDaLS retries
up to a certain user-defined number of times, which results
in appending the same entry multiple times. In this case,
the total number of entries allocated for a node becomes a
function of the number of failures f (i.e., p = o+ e+ f). In
order to identify these sorts of repeated entries, each entry in
a LinkLog embeds the number of remaining pointers for the
node after the insertion of the current one. This essentially
turns every repeating append to the LinkLog idempotent,
barring the side-effect of using up space.

Similar to the in-memory node-copy method, PEDaLS
uses the access pointer log (APLog) to store the root node
of different versions of the data structure. APLog is always
written at the end of an update operation. An append to the
APLog denotes a successful completion of a version. If any
other log contains a version stamp vs′ that is not present in
the APLog (possibly due to a system crash), this implies that
the version is incomplete. To meet the atomicity requirement
of an operation, upon system recovery the tails of all the
logs are examined and any entry containing the version vs′

6

is rolled back.

5 REPLICATING VERSIONED DATA STRUCTURES

In this section, we present how we extend PEDaLS to
provide replication of versioned data structures. Replication
is used to make systems fault-tolerant and to ensure the
availability of systems. As most multi-tier deployments
have multiple devices spread across different sites, most of
which are generating data, we accommodate multi-writer
replication.

5.1 System Model

We consider an IoT deployment of N replicas (devices)
generating data, i.e, multiple writers can generate data at the
same time. Each replica is assigned a node ID from a set S.
We represent a replica asXs, s ∈ S. The underlying network
is asynchronous and unreliable; messages may be dropped,
duplicated, or reordered. The network may partition and
eventually recover. Each replica has local durable storage.
We assume replicas may face non-byzantine failures; a
replica may crash but will have access to the information
recorded in durable storage upon recovery.

5.2 Version Stamps

Although PEDaLS uses monotonically increasing integer
values to represent versions, we change the versioning
scheme to denote which replica originally executed an op-
eration. Specifically, we use the concatenation of a counter
with a node (replica) ID to represent a version stamp (Lam-
port timestamp [55]). We represent the counter and node
ID of a version stamp vs by vs.counter and vs.nodeID
respectively. We say version stamp vsa is less than version
stamp vsb (vsa < vsb) if and only if (i) the counter of vsa
is less than that of vsb, or (ii) both the counters are same
but node ID of vsa is less than that of vsb. When replica
Xs executes a new operation in response to a client request,
it tags it with version stamp vs (vs.nodeID = s), which
is greater than all other version stamps it has observed
so far (operations that happened before). Thus if operation
opa happens before opb at a replica, vsa < vsb where vsa
and vsb are the version stamps of operations opa and opb,
respectively.

Version stamps of concurrent operations can be ordered
arbitrarily but deterministically. Throughout the rest of the
paper, we use version stamps to refer both to the version
stamp itself and to the operation it tags. The intended use
will be clear from the context. We say vs is an operation of
Xs (alternatively, Xs is the originator of vs) if vs.nodeID =
s.

5.3 Ordering Operations

Over time replicas may diverge from each other due to
update requests from clients (i.e., processes that can update
or query a data structure by sending a request to any
replica). To reconcile this divergence each replica periodi-
cally performs a round of merge steps with the other replicas.
A merge step is always between a pair of replicas. Therefore,
in a round, there are at most N − 1 merge steps. In a merge

step, one replica (known as the reader) reads entries in the
log of operation from another replica (known as the source).
The goal of the merge step is for the reader to identify and
incorporate operations “unknown” to it (i.e. not previously
executed at the reader) that the source has already executed.
The reader ensures that the causality relationship among
the operations is retained while creating this merged list of
operations and subsequently executing them.

One way to achieve consistency among replicas is to
maintain a log of operations (OpLog) in each replica. Each
entry in an OpLog is the tuple (vs,op,val). vs is the version
stamp of the operation, op is the type of update operation,
and val is the operand of op. We denote the OpLog of a
replica Xs as OpLog(Xs). As long as all replicas execute
the same set of operations in the same log order, they
will converge. In fact, this is the same principle used in
replication protocols such as Raft [14]. However, in order
to reduce communication among replicas and latency expe-
rienced by clients, we allow temporary divergence of the
OpLogs, which is reconciled later on (eventual consistency
instead of Raft’s strong consistency). This means, at times, a
replica must rollback operations in the OpLog along with all
other logs used by the underlying data structure to record
these rolled back operations, followed by execution of new
operations, finally followed by replay of previously rolled
back operations. In our work, we model the history of
operations (OpLog) as a list CRDT and use an adaptation
of the method used in [56], as explained later. Using logs
to maintain order adds extra complexity, namely, avoiding
log scans. We propose new logs and algorithms to efficiently
maintain order in Section 5.4 to Section 5.6.

Although PEDaLS does not allow multiple concurrent
writes at the same replica to preserve the integrity of a
version (cf. Section 4), it still allows incoming write requests
during merge steps. To do so, the reader makes a backup
copy of the underlying data structure up to the version
which is certain to remain unchanged even after the merge.
A merge step potentially involves reordering and replay of
operations that take place on this backup copy. Meanwhile,
any direct write request to the reader is serviced by working
on the main copy with temporary version stamps. The
reader thus has to incorporate these writes on the backup
copy at the end of the merge step with updated version
stamps, during which new write requests are blocked. As an
optional optimization to increase write availability (which
we do not adopt in the experiments), the reader can choose
to block writes only if the number of new writes not in
the backup copy falls below a certain threshold set by the
application developer. Otherwise, it repeatedly checks for
new local writes and incorporates these into the backup
copy without blocking. Finally, the reader updates the main
copy with the backup copy, which can be done efficiently by
simply swapping the references to the two copies.

When a replica XA executes an operation as a direct
request from a client, it appends the operation at the end of
OpLog(XA). Apart from direct client requests, replicas also
execute operations that are unknown to them from other
replicas’ OpLogs (during merge steps). Assume vsnew is
an operation in OpLog(XB) that XA has not yet executed.
We denote the operation immediately preceding vsnew in
OpLog(XB) as vspred. As the intention is to maintain a

7

OpLog(XA)

seq vs

1 1A

2 2A

OpLog(XB)

seq vs

1 1A

2 2B

OpLog(XA)

seq vs

1 1A

2 2B

3 2A

OpLog(XB)

seq vs

1 1A

2 2B

OpLog(XA)

seq vs

1 1A

2 2B

3 2A

OpLog(XB)

seq vs

1 1A

2 2B

3 2A

after XB syncs with XAafter XA syncs with XBinitial state

(a) XA merges with XB then XB merges with XA.

OpLog(XA)

seq vs

1 1A

2 2A

OpLog(XB)

seq vs

1 1A

2 2B

OpLog(XA)

seq vs

1 1A

2 2A

OpLog(XB)

seq vs

1 1A

2 2B

3 2A

OpLog(XA)

seq vs

1 1A

2 2B

3 2A

OpLog(XB)

seq vs

1 1A

2 2B

3 2A

after XA syncs with XBafter XB syncs with XAinitial state

(b) XB merges with XA then XA merges with XB .

Fig. 1: Change in OpLogs as replicas merge with each other.
We notice the two different sequence of merge steps results
in the same consistent state at the end.

consistent order of operations, XA tries to place vsnew in its
own OpLog after vspred as well. Therefore, to incorporate
the unknown operation vsnew, XA first locates vspred in
OpLog(XA). Let us denote the operation in OpLog(XA)
immediately succeeding vspred as vssucc. That is, vsnew and
vssucc are concurrent operations. Now XA inserts vsnew in
OpLog(XA) immediately after vspred if vsnew > vssucc.
Otherwise, XA skips over all contiguous version stamps
that are greater than vsnew and then places vsnew. Of course,
it might happen that vspred is not present in XA to begin
with. In that case vspred must be inserted first. This implies
that XA should start reading OpLog(XB) from the earliest
sequence number that contains an operation unknown to
it. We express this whole procedure of inserting operation
vsnew after vspred as insert(vsnew, vspred).

To illustrate how insert works, we refer to the OpLogs in
Figure 1 (only the sequence numbers and version stamps
are shown for brevity). We consider two replicas in our
system, XA and XB . Let us assume XA executed operation
1A that XB became aware of during the latter’s merge
step. At this point, both XA and XB executed one op-
eration independently but concurrently, operation 2A and
2B respectively. Now we consider two different scenarios.
(i) Figure 1a. XA (reader) merges with XB (source). For
now, we assume readers start comparing the two OpLogs
from the beginning (we show in Section 5.5 how full log
scans can be avoided). Both OpLogs have 1A as the first
entry, so no action is needed. However, XB has 2B in the
second entry whereas XA has 2A. This is equivalent to the
insert operation insert(2B, 1A) i.e. insert 2B after 1A in
OpLog(XA) (as 2B comes after 1A in OpLog(XB)). We
note how the insertion operation is implicitly embedded
in the log order. As XA currently has 2A after 1A and
2B > 2A, it can place 2B after 1A. “Placing 2B after 1A”
is a multi-step process: XA trims its OpLog up to sequence
number 1, append the entry containing 2B, and finally re-
append the entry containing 2A. Additionally, it trims/(re-
)appends to any logs used by the underlying data type.
When XB (reader) merges with XA (source) after this, XB

can simply append 2A after 2B in its OpLog. (ii) Figure 1b.
XB (reader) merges with XA (source). Starting comparison
from the top of the OpLogs as before reveals different entries

in the second entry: OpLog(XA) has 2A as the second
entry whereas OpLog(XB) has 2B. This translates to the
operation insert(2A, 1A) to be executed in OpLog of XB .
As the version stamp after 1A at XB is 2B and 2A < 2B,
2A is placed after 2B. Merging the other way follows the
steps similar to the previous scenario. We see that in both
scenarios we end up with the same final state in both the
replicas.

Note that we could have forgone this relatively com-
plex ordering following [56] and instead chosen a strict
ascending order of version stamp counters, breaking ties
through lexicographical order of node IDs. However, this
approach would have resulted in interleaving sequences
of operations made by different replicas concurrently. Our
current choice of the method in [56] on the other hand
makes sure concurrent sequence of operations executed by
different replicas are not interleaved. In the chosen method,
the contiguous operations performed by a replica at a time
are placed together with minimal breaks. Also, note that
to break tie between concurrent operations we choose the
greater version stamp to take precedence over the smaller
one (e.g. 2B appears before 2A) to maintain similarity with
existing work [56]. In practice, we could have chosen the
reverse.

In a merge step between a readerXi and a sourceXj , the
reader performs two tasks: (i) Conflict detection: The reader
detects whether it is in conflict with the source, i.e. whether
the source has operations that the reader does not know of.
Note that we are concerned with unidirectional conflict, i.e.
if the reader has operations that are unknown to the source
no extra steps are taken (this is resolved during some other
merge step when the current source becomes a reader). A
simple way to detect conflict is to scan the OpLogs of the
reader and the source from the top until a mismatch is
found in the corresponding sequence numbers. However,
full log scans can get prohibitively expensive. Hence we
explain a mechanism to avoid log scans in Section 5.5. (ii)
Conflict resolution: In case of conflict, the reader resolves this
conflict, possibly by reordering the operations which require
rollback and replay of some operations. The conflict detec-
tion stage finds the sequence numbers of the two OpLogs
from where the comparison should be started (readerstart
and sourcestart for OpLog of the reader and the source
respectively) to guarantee that the reader encounters all the
operations it has not seen that have been already executed
by the source. These two sequence numbers are used by
the conflict resolution stage to incorporate all the unknown
operations in the reader’s OpLog.

We next introduce a new log that helps us to avoid
a full log scan (Section 5.4). We show how the conflict
detection stage uses this log to detect the presence and
point of conflict (Section 5.5). Section 5.6 then describes how
the conflict resolution stage takes this information and uses
insert operations to execute a list of ordered operations.

5.4 KnowledgeLogs
OpLogs grow over time and the merge steps become costly
if we must scan from the top. To avoid a full scan of the
OpLog of the source by the reader, a replica maintains a
map of the last observed version stamp from each replica to
a sequence number in its OpLog using one KnowledgeLog

8

OpLog(XA)

seq vs

1 1A

2 2B

3 2A

KA
A

seq vs op seq

1 1A 1

2 2A 2

KB
A

seq vs op seq

1 2B 2

OpLog(XA)

seq vs

1 1A

2 2A

KA
A

seq vs op seq

1 1A 1

2 2A 2

KB
A

seq vs op seq

OpLog(XA)

seq vs

1 1A

KA
A

seq vs op seq

1 1A 1

KB
A

seq vs op seq

XA merges with XBXA executes 2AXA executes 1A

Fig. 2: Mapping from version stamps to sequence number
of OpLog in KnowledgeLogs.

for each replica. Each entry in a KnowledgeLog contains the
tuple (vs, op seq). vs denotes the version stamp of the oper-
ation. op seq denotes the sequence number of OpLog where
the operation with vs was first appended. More precisely,
each entry of KnowledgeLog Kj

i on host Xi contains tuples
that map each version stamp vs whose node ID is j to a
sequence number in OpLog(Xi). Although the position of a
version stamp might change due to later merge steps, note
that a version stamp can only be pushed down in order
but never pulled up due to the way insert works. Thus,
the sequence numbers stored in KnowledgeLogs provide us
a starting point to search for a version stamp. The version
stamp might be at that sequence number, or at a later one,
but never at an earlier one. For improved performance,
we can also opt to cache a fixed number of entries from
the end of KnowledgeLog in memory, which must be a
tunable parameter depending on the device capabilities. As
all the information needed to maintain a KnowledgeLog are
present in the OpLog, KnowledgeLogs can be reconstructed
after a system crash.

We refer to Figure 2 as an example of interactions among
OpLogs and KnowledgeLogs. Operation 1A is inserted in
OpLog(XA) at sequence number 1. To record the mapping
from version stamp 1A to sequence number 1, XA appends
(1A, 1) to KA

A . Similarly, XA appends (2A, 2) to KA
A to

record that the operation with version stamp 2A was in-
serted in OpLog(XA) at sequence number 2. A merge step
with XB results in the operation with version stamp 2A to
be pushed down in order i.e., at sequence number 3. As
we have already recorded 2A in KA

A and we can reach 2A
in OpLog(XA) even if we start scanning from the recorded
op seq value (in this case 2), we can keep it unchanged.
We only append the entry (2B, 2) to KB

A . Now if XA

(reader) performs a merge step with an arbitrary replica Xs

(source) and wants to know whether Xs has any operation
originating from replica XB that the reader does not know
of, it can simply compare the tails of KB

A and KB
s . If the last

entry of KB
A contains a version stamp that is less than that

of the version stamp contained in the last entry of KB
s , then

Xs has operation originating from XB that XA does not
know of (as two version stamps with same node ID follow
happens-before relationship and version stamps are written
to the KnowledgeLog in increasing order). This process is

explained in detail in the next section.

5.5 Conflict Detection
In the conflict detection stage during a merge step between
reader Xi and source Xj , the reader Xi compares the last
entries of Km

i and Km
j , ∀m ∈ S. We represent the last entry

of a log L by tail(L) and a field f in entry e by e.f . If
tail(Km

i).vs < tail(Km
j).vs, this means Xj (source) has

executed operations that Xi has not. This holds as the oper-
ations in a KnowledgeLog have the same node ID and are
executed in increasing order of their counter. The counter
captures the happens-before relationship between two ver-
sion stamps with the same node ID. We say Xi lags behind
Xj with respect to Xm when tail(Km

i).vs < tail(Km
j).vs.

Xi might lag behind Xj with respect to more than one
replica. Let us represent the set of all replicas with respect
to which Xi lags behind Xj as Xlag .

We represent the set of node IDs of the replicas in
Xlag as Slag . We find the replica Xp in Xlag such that
tail(Kp

j).op seq < tail(Kl
j).op seq,∀l ∈ Slag ∧ l 6= p.

That is, Xp is the replica whose operation is at the earliest
point of conflict between Xi and Xj . However, Xi might
not know about operations of Xp that have version stamps
less than tail(Kp

j).vs. To ensure Xi can detect all unknown
operations, it scans backward from the tail of Kp

j until it
finds the entry e such that the entry before it has a version
stamp equal to tail(Kp

i).vs. Then e.op seq is the sequence
number from which the reader start scanning the source’s
OpLog (i.e. sourcestart = e.op seq). In other words, e.vs is
the earliest operation in OpLog(XB) that XA has not yet
executed.

Let the version stamp of the sequence number
sourcestart−1 inOpLog(Xj) be vsprev . To incorporate e.vs,
Xi executes insert(e.vs, vsprev) in OpLog(Xi). To do this,
Xi first finds the sequence number of e.vs in OpLog(Xi)
– the value of readerstart is this sequence number plus
one. Note that all operations in OpLog(Xj) from sequence
number 1 to sourcestart− 1 must be present in OpLog(Xi),
otherwise there is some operation between these two se-
quence numbers in OpLog(XB) that XA has not seen, and
the value of sourcestart found by the previous steps would
have been different. Therefore, readerstart must be greater
than or equal to sourcestart. To find the value of readerstart,
Xi starts scanning OpLog(XA) from the sequence number
sourcestart−1. It stops scanning if the currently scanned en-
try’s version stamp is equal to vsprev . The required value of
readerstart is the sequence number where we stop scanning
plus one.

To illustrate the conflict detection stage, we consider the
scenario in Figure 3. Let us assume there are three replicas
in our system, XA, XB , and XC . The OpLog of XA has 1A
and 2A, whereas the OpLog of XB has 1A, 2B, 3B, 4C ,
and 2A. One possible sequence of actions that might lead
to this state: XA executed operation 1A. XB merged with
XA, and then executed two operations 2B and 3B. XC (not
shown in the figure) merged with XB and executed 4C . XB

merged with XC . XA executed operation 2A. Finally, XB

merged with XA again. Now let us consider XA performs
a merge step with XB . Comparing the tails of Km

A and
Km

B , m ∈ {A,B,C}, we see that XA lags behind XB with
respect to XB and XC , i.e., Xlag = {XB , XC} (we assume

9

OpLog(XA)

seq vs

1 1A

2 2A

OpLog(XB)

seq vs

1 1A

2 2B

3 3B

4 4C

5 2A

KA
A

seq vs op seq

1 1A 1

1 2A 2

KA
B

seq vs op seq

1 1A 1

2 2A 5

kB
A

seq vs op seq

- 0B 0

kB
B

seq vs op seq

1 2B 2

2 3B 3

kC
A

seq vs op seq

- 0C 0

kC
B

seq vs op seq

1 4C 4

Fig. 3: OpLogs and KLogs of replicas XA and XB in a
system with three replicas. Dashed entries represent place-
holders used during computation when a knowledge log is
empty. During conflict detection, the reader XA compares
the same colored entries with each other to find the earliest
possible point of conflict. The arrow from the second entry
to the first entry of KB

B , represents XA’s backward scan to
find the earliest version stamp with node ID B that it does
not know of.

the absence of entry in a KnowledgeLog to be equivalent
to having a placeholder entry with a version stamp with
minimum possible invalid counter value, in this case, 0). As
the op seq value of tail(KB

B) (i.e. 3) is smaller than that of
tail(KC

B) (i.e. 5), Xp = XB . However, XA is not yet certain
tail(KB

B).vs is the earliest unknown version stamp. XA

scans KB
B backwards to find the earliest unknown version

stamp, which in this case is 2B. The corresponding op seq
value is 2, therefore sourcestart = 2. The entry immediately
preceding 2B in OpLog(XB) has the version stamp 1A. XA

reads the entry at sequence number source start−1 = 1 in
OpLog(XA) and finds that the entry contains 1A. Therefore
reader start is equal to 1 + 1 = 2 as well. The conflict
detection algorithm is presented in Algorithm 1.

5.6 Conflict Resolution
Conflict resolution is triggered when a conflict is detected,
to find and execute a merged order of operations between
the reader and the source. When there are one or more
conflicts between the reader and the source, it rolls back
the OpLog of the reader to the earliest point where the
reader does not lag behind the source with respect to the
version stamps before it and then replays the operations at
the reader (adjusting the OpLog of the reader) to reflect the
merged order. At the start of conflict resolution, Xi knows
both sourcestart and readerstart, i.e., the sequence number
of OpLog(Xi) and the sequence number of OpLog(Xj)
at which Xi should start comparing the two OpLogs. Xi

creates an ordered list, Ri, of the operations in OrdLog(Xi)
starting from the sequence number readerstart up to its
latest sequence number.Xi creates a second ordered list,Rj ,
of the operations in OrdLog(Xj) starting from the sequence
number sourcestart up to its latest sequence number.

To incorporate the operations unknown to itself, Xi

first includes those operations from Rj to Ri by invoking
insert procedures: for each entry e in Rj , Xi first finds
the entry epred in Ri which contains the version stamp
immediately preceding e in Rj . If the version stamp of the

Algorithm 1 Conflict Detection

Require: reader replica Xi, source replica Xj , and set of node
IDs S

Ensure: earliest point of conflicts sourcestart and readerstart
1: Xlag ← φ
2: for m ∈ S do
3: if tail(Km

i).vs < tail(Km
j).vs then

4: Xlag ← Xlag ∪ {Xm}
5: end if
6: end for
7: if Xlag = φ then
8: return
9: end if

10: Slag ← φ
11: for Xm ∈ Xlag do
12: Slag ← Slag ∪ {m}
13: end for
14: p← argmin

m
(tail(Xm

j).op seq),m ∈ Slag

15: idx← latest seq(Xp
j)

16: while idx > 0 do
17: if tail(Kp

i).vs < Kp
j [idx].vs then

18: sourcestart ← Kp
j [idx].op seq

19: idx← idx− 1
20: else
21: break
22: end if
23: end while
24: vsprev ← OpLog(Xj)[sourcestart − 1].vs
25: idx← sourcestart − 1
26: while idx ≤ latest seq(OpLog(Xi)) do
27: if OpLog(Xi)[idx].vs = vsprev then
28: readerstart ← idx+ 1
29: break
30: else
31: idx← idx+ 1
32: end if
33: end while
34: RESOLVECONFLICT(readerstart, sourcestart)

entry following epred in Ri is smaller than e.vs, Xi inserts
e immediately after epred (provided e is not already present
there). Otherwise, it skips over all contiguous entries where
the version stamp is greater than e.vs, and then inserts e
(provided that e is not already present there). Once Xi has
all the operations inRi, it rolls back, i.e., prunes,OpLog(Xi)
starting from readerstart and then replays all operations
in Ri at OpLog(Xi). The conflict resolution algorithm is
presented in Algorithm 2.

6 EXPERIMENTAL RESULTS

In this section, we evaluate multiple aspects of data version-
ing and PEDaLS. We start with an empirical evaluation of
the overhead associated with introducing versioning to in-
memory ephemeral data structures and subsequent integra-
tion of in-memory logs to represent versioning. Note that
only this experiment is conducted completely in memory.
The rest of the experiments use memory-mapped files as
the log abstraction. To demonstrate the scalability of storage
persistent PEDaLS, we then show the effect of increasing
number of replicas on throughput for workloads with var-
ied composition, i.e., different percentage of read and write
operations. Next, we explore the effect of Knowledge logs
on the time to detect conflicts. Then, we describe a number

10

of end-to-end applications that leverages the efficiency of
PEDaLS in answering complex temporal queries. Finally, we
present a probabilistic study on bounding log sizes to ensure
a user provided minimum number of versions can be fully
recorded by PEDaLS. Unless otherwise specified, we set the
number of extra pointers to 1 for versioned data structures
in all cases. This captures the worst case scenario in regard
to the number of times nodes must be copied.

We perform our experiments using virtual machine in-
stances in a private cloud running Eucalyptus [57]. Each
instance has two 2GHz CPUs and 2GB of memory. Unless
otherwise specified, we perform each experiment 100 times
and present the average values. We also present the stan-
dard deviation when applicable along with the mean, either
as raw values (for tabular data) or as error bars (for bar
charts).

6.1 Versioning Overhead
In this experiment, we investigate the overhead associ-
ated with making in-memory ephemeral data structures
versioned, i.e. in-memory persistent. We also investigate
the overhead associated with implementing versioned data
structures using in-memory logs (i.e., same as PEDaLS but
without storage persistence), which we term as log-persistent.
Note that in this experiment we are concerned exclusively
with the overhead in these two cases: (i) making data
structures versioned (i.e. persistent as described in [10])
and (ii) making data structures persistent using logs as
described in [8]. Hence we keep the storage (in this case,
main memory) the same for all three types of data struc-
tures: ephemeral, persistent, and log-persistent. Moreover,
we design the experiment to retain how a storage persistent
log implementation would perform – by making an extra
copy from a data structure node to the in-memory log.
Our results show that log-persistent algorithms preserve the
same time and space complexity as persistent algorithms.

We choose linked list and binary search tree (bst) as
representative linked data structures for this experiment

Algorithm 2 Conflict Resolution

Require: reader replica Xi, source replica Xj , sourcestart and
readerstart value obtained from Conflict Detection stage

Ensure: Xi is not lagging behind Xj

1: procedure RESOLVECONFLICT(sourcestart, readerstart)
2: Ri ← {OpLog(Xi)[readerstart], . . . , tail(OpLog(Xi))}
3: Rj ← {OpLog(Xj)[sourcestart], . . . , tail(OpLog(Xj))}
4: for all e ∈ Rj do
5: epred ← the entry before e in Rj . fixed dummy

value assumed for first element
6: insert(e.vs, epred.vs) in Ri

7: end for
8: Prune OpLog(Xi) starting from sequence number
readerstart

9: for all e ∈ Ri do
10: Replay/Execute e.op and append e to OpLog(Xi)
11: q ← sequence number of e in OpLog(Xi)
12: k ← e.vs.nodeID
13: if e.vs > tail(Kk

i).vs then
14: append (e.vs, q) to Kk

i

15: end if
16: end for
17: end procedure

since both are used by developers as building blocks for
more complex structures, e.g., stacks, queues, ordered col-
lections, etc. Note that the original work on persistent data
structures [10] provides space/time complexity guarantees
only for linked data structures having constant in-degree.
Hence, although a similar mechanism can be employed for
other data structures, a similar space/time complexity is
not guaranteed. We use CityPulse [58] temperature dataset
containing 12579 data points collected from the city of
Aarhus in Denmark between February-June 2014 for this
experiment. In case of bst, we use the UNIX timestamp at
the time of the collection of data point as the key and the
temperature as the value, whereas linked list stores both as
the value.

We present the space requirements for storing these data
points in Figure 4a and Figure 4b. Note that this space is for
the storage of the data structure, i.e. any auxiliary storage
used (and subsequently freed) for intermediate computation
is not included.

As evident from the figures, the space complexity is
linear in number of operations for all three types of data
structures – and differ only in the value of the constant.
This signifies that log-persistent data structures are able
to maintain a similar space complexity as persistent data
structures. As expected, log-persistent and persistent data
structures require more space than ephemeral data struc-
tures due to their retainment of information regarding past
versions. In case of bst, persistent and log-persistent data
structures require 6.55x and 4.60x space respectively of
that of ephemeral data structure. In case of linked list, this
overhead is 3.25x for both persistent and log-persistent data
structures.

Interestingly, log-persistent bst requires less space than
persistent bst. This is because copying a node in persistent
data structures involves copying both the data field and
pointer fields [10]. On the other hand, copying a node
in log-persistent data structures (as in PEDaLS) involves
copying only the pointer fields. In the case of linked list,
both the persistent and log-persistent versions require the
same amount of space. This is because in this experiment
we are only inserting values in our linked list at the head,
which never triggers copying of a node, thus keeping the
storage space the same for both persistent and log-persistent
data structures.

We present the time requirements of storing the temper-
ature data in Figure 4c and Figure 4d. We see that the time
complexity is also linear in the number of operations, signi-
fying that log-persistent data structures are able to maintain
a similar time complexity as their in-memory counterparts
(persistent data structures). Log-persistent and persistent
data structures require more time than ephemeral data
structures due to their relatively complex traversal rules. In
the case of bst, persistent and log-persistent data structures
require 5.17x and 13.44x times that of ephemeral data struc-
ture, respectively. In the case of linked list, these overheads
are 1.42x and 9.38x for persistent and log-persistent data
structures, respectively. The greater time required by log-
persistent data structures is expected, as it involves addi-
tional non-trivial steps in its operations, such as complex
methods to find boundaries among copies of nodes instead
of having direct pointers to those copies.

11

0 5000 10000
number of operations

0

1

2

3
sp

ac
e

in
 b

yt
es

1e6
ephemeral
persistent
log-persistent

(a) Bst space.

0 5000 10000
number of operations

0

1

2

3

sp
ac

e
in

 b
yt

es

1e6
ephemeral
persistent
log-persistent

(b) Linked list space.

0 5000 10000
number of operations

0

25000

50000

75000

tim
e

in
 m

icr
os

ec
on

ds

ephemeral
persistent
log-persistent

(c) Bst time.

0 5000 10000
number of operations

0

25000

50000

75000

tim
e

in
 m

icr
os

ec
on

ds

ephemeral
persistent
log-persistent

(d) Linked list time.

Fig. 4: Average space and time requirement for bst and linked list. Both the space and the time requirements are linear with
respect to the number of operations for the two data structures.

1(99) 25(75) 50(50)
update(read) percentage

0

1000

2000

3000

4000

5000

6000

7000

th
ro

ug
hp

ut
 in

 o
pe

ra
tio

ns
/s

ec
on

d 1 replica
5 replicas
10 replicas

Fig. 5: Scalability of PEDaLS.

6.2 Scalability

To evaluate the scalability of PEDaLS, we use a subset of the
CityPulse temperature dataset used in Section 6.1. As up-
dates are more expensive than reads in general, we augment
the subset with random reads to capture the performance
of PEDaLS under diverse workloads consisting of different
percentages of update and read operations. We consider
update percentages (read % is in parenthesis) of 1(99),
25(75), and 50(50) to observe the impact of workloads
with different update/read compositions on scalability over
10000 operations (update+read). We also vary the number of
replicas the client sends requests to among 1, 5, and 10. The
round trip latency among the instances (replicas+client) as
determined through the ping utility varies between 0.53ms
to 0.93ms asymmetrically on average. The network band-
width among the instances is approximately 1Gbits/second.
To simulate the effect of horizontal scaling where clients
located in different regions access different replicas, a client
process evenly distributes operations across replicas using
round-robin without delay.

Figure 5 shows the throughput of the system in opera-
tions per second for PEDaLS bst. As evident from the figure,
throughput decreases with the increase in write percentage.
This is expected, as update operations involve appends to
multiple logs in addition to searching for a value. Moreover,
we observe that although throughput of PEDaLS increases

100 200 300
number of update operations

0

20

40

60

80

100

tim
e

in
 m

s

without log
with log

Fig. 6: Conflict detection with and without Knowledge logs.

with an increase in the number of instances, this increase
is not linear. This is due to the processing required for
background merge steps.

6.3 Effect of Knowledge Logs in Conflict Detection

To reduce the time required for conflict detection, PEDaLS
uses Knowledge logs. In this section, we explore the time
benefit provided by Knowledge logs by isolating the time
to detect conflict between two replicas. Specifically, we run
two different sets of experiments. In one set of experiments,
as has the case been so far, PEDaLS uses Knowledge logs to
optimize conflict detection. In the other set of experiments,
PEDaLS performs naive conflict detection, i.e., reads the
OpLogs of the reader and the source from the top until a
point of mismatch is found or one of the logs is exhausted.

For this experiment, we vary the number of update
operations among 100, 200, and 300. We send half of the
operations to one replica XA and the other half to another
replica XB , both chosen from the pool of replicas used
in Section 6.2. As the execution time of conflict detection
can depend on the role (source or reader) of a replica, we
calculate the time for conflict detection in both ways and
take the average. The number of operations already present
in a replica can affect the time for conflict detection as well.
Hence, we consider four cases: (i) both XA and XB each
have half of the operations, (ii)XA has half of the operations

12

and XB has all of the operations (due to a merge step),
(iii) XA has all of the operations and XB has half of the
operations, and finally (iv) both XA and XB have all of the
operations.

We show the total time taken for conflict detection for
different workloads in Figure 6. Our results show that
conflict detection with Knowledge log can be 11.34x as fast
as conflict detection without Knowledge log for 300 update
operations. In general, irrespective of whether Knowledge
log is used or not, the time for conflict detection increases
with the number of update operations. This is expected,
as more update operations result in more entries in both
OpLog and Knowledge log, which in turn leads to more log
scans.

6.4 End-to-End Applications

In this section, we evaluate the performance of PEDaLS
for three different applications: (i) banking queue moni-
toring, (ii) room occupancy detection, and (iii) livestock
tracking. We compare the performance of PEDaLS with a
relational database (PostgreSQL) and a NoSQL database
(MongoDB) for each of the above-mentioned applications.
We summarize these results in Table 2 and provide a visual
representation of the results in Figure 7.

Our results show that PEDaLS outperforms the other
two storage systems when it comes to answering complex
temporal queries for all applications. Although PEDaLS is
outperformed by the other two storage systems for update
operations in two applications, the speedup provided by
PEDaLS in executing temporal queries far outweighs the
slowdown in updates. Moreover, PEDaLS provides pro-
grammatic access to versioned data, while other systems do
not. In essence, PEDaLS makes a tradeoff between update
performance and version accessibility in the favor of the
latter.

6.4.1 Banking Queue Monitoring
In mathematics, queuing theory involves the analysis of
several related events such as arriving at a queue, the wait
time at a queue, and departure from the queue. The models
created through such analysis can be used to make decisions
regarding increasing servers, optimizing queue length, and
approximating heavy and light traffic [50]. One practical
example of the application of these mathematical concepts
is to determine the efficiency of a system as indicated by
the average wait time of a request/person in a queue.
Data related to physical queues can also help in providing
location information for individuals (e.g. was a person in the
queue at a certain time) and describing individual behavior
(e.g. when does a person generally show up for a service).

In [50], authors provide a queue dataset for three banks
in Ogun State of Nigeria collected over four weeks for
each bank. The dataset contains the wall-clock time when
a user enters the bank and the time in minutes for the
user to reach the front of the queue. The dataset assigns
a monotonically increasing integer as a user ID to every
user entering the bank each day (starting with 1) but does
not contain the information whether a user ID x of one
day corresponds to the same person having user ID y on
some other day. Hence, for the purpose of this experiment,

we assume every user is assigned a new ID upon each
entry. We select the data for one bank and augment it by
calculating the timestamp of departure by adding the wait
time in queue to the timestamp of arrival. Thus each data
point contains three information: a user id, a timestamp,
and an operation (enqueue or dequeue). This information
is recorded in a storage system every time a user enters
and leaves the queue. The final dataset contains 35534 data
points.

We assume we want to answer the query Q1: “which
users are present in the queue at time X”? This is an ex-
ample of a temporal query that can be efficiently answered
using a versioned queue. Although the storage of the data
is simple for both of the databases under consideration (i.e.,
a single insertion for both PostgreSQL and MongoDB) and
PEDaLS queue (i.e., a single enqueue or dequeue operation
with the timestamp as the version and user ID as the
value), answering Q1 requires complex queries on part of
the databases as shown in Figure 8. On the other hand,
PEDaLS only requires a versioned traversal of the queue
to answer Q1.

Our results show that the average update times for
PostgreSQL, MongoDB, and PEDaLS are 0.335ms, 0.357ms,
and 0.092ms respectively. That is, PEDaLS is 3.64x as fast
as PostgreSQL and 3.88x as fast as MongoDB in regard
to updates for the application under consideration. Our
results further reveal that the average query time for Post-
greSQL, MongoDB, and PEDaLS are 8.734ms, 45.184ms,
and 1.078ms respectively. That is, PEDaLS is 8.10x as fast
as PostgreSQL and 41.91x as fast as MongoDB in regard to
queries for the application under consideration.

Several works in the literature suggest that NoSQL
databases can outperform SQL databases in the case of a
high volume of unstructured data [59], [60]. SQL databases
need complex design and multiple writes at different ta-
bles for unstructured data, making the updates slower. On
a similar note, NoSQL databases can store denormalized
data resulting in many cases in a simple single query to
retrieve relevant information. However, the data under con-
sideration is structured and the query, although complex,
does not involve reading from multiple tables. Hence we
do not observe the advantages generally associated with
NoSQL databases over SQL databases for the application
under consideration. This is supported by the similar up-
date time for both PostgreSQL and MongoDB. However,
the query time for MongoDB is higher than PostgreSQL.
This is expected, as the MongoDB aggregation pipeline [61]
(i.e., the pipeline responsible for processing documents in
stages such as matching, grouping, projection, etc.) is still
relatively immature and thus is not as well performant as
the query engine of PostgreSQL. In fact, the aggregation
pipeline is not as expressive as SQL queries either, which
is apparent from the complex query of Figure 8. PEDaLS
on the other hand is the fastest for both update and query.
During update, PEDaLS must either add a node to the end
of the queue or delete a node from the head of the queue.
As the queue records both the head and the tail, both of the
above operations can be performed efficiently. Moreover,
none of these operations result in copying of a node, as a
node can have at most one child which can be deleted at
most once. As a result, the update performance of PEDaLS

13

TABLE 2: The mean update and query execution time for different end-to-end applications. The standard deviation is
shown in parentheses. The best (fastest) execution time for each type of operation for each application is presented in bold.
PEDaLS outperforms the other two storage systems in regard to query execution time for all applications.

Banking Queue Room Occupancy Livestock Tracking
update in ms query in ms update in ms query in ms update in ms query in ms

PostgreSQL 0.335 (0.026) 8.734 (0.045) 0.354 (0.039) 0.460 (0.003) 0.342 (0.022) 5.186 (0.141)
MongoDB 0.357 (0.006) 45.184 (0.295) 0.359 (0.007) 2.255 (0.019) 0.355 (0.007) 11.687 (0.222)
PEDaLS 0.092 (0.002) 1.078 (0.022) 0.468 (0.017) 0.124 (0.003) 0.553 (0.014) 2.333 (0.083)

update read
operation type

10 2

10 1

100

101

102

ex
ec

ut
io

n
tim

e
in

 m
illi

se
co

nd
s

mongoDB
PostgreSQL
PEDaLS

(a) Banking queue.

update read
operation type

10 2

10 1

100

101

102

ex
ec

ut
io

n
tim

e
in

 m
illi

se
co

nd
s

mongoDB
PostgreSQL
PEDaLS

(b) Room occupancy.

update read
operation type

10 2

10 1

100

101

102

ex
ec

ut
io

n
tim

e
in

 m
illi

se
co

nd
s

mongoDB
PostgreSQL
PEDaLS

(c) Livestock tracking.

Fig. 7: The mean update and query execution time for different end-to-end applications as presented in Table 2. As the
execution time varies in order of magnitude among the different applications, we present the execution time in log scale
for a better and uniform visualization.

SELECT userid
FROM bankingqueue
WHERE ts <= X
AND op = 1
AND userid NOT IN (
SELECT userid
FROM bankingqueue
WHERE ts <= X
AND op = 0)

db.bankingqueue.find({
'ts': {'$lte': X},
'op': 1,
'userid': {
'$nin': db.bankingqueue.distinct(
'userid',
{'ts': {'$lte': X}, 'op': 0}
)}},
{ 'userid': 1, '_id': 0 })

Fig. 8: SQL (left) and NoSQL (right) queries to find the
set of users in the queue at time X . Here ts stands for
timestamp and op stands for enqueue/dequeue operation.
Note that distinct is not necessary for the NoSQL query to
get the correct result as a user is issued a unique ID during
each entrance to the queue. However, it is faster than the
alternative which involves converting the subquery result
into an array and subsequently mapping it to a function that
picks out each user ID in the array from the JSON object
enclosing it. The distinct function extracts the value from
the JSON object automatically and presents an array readily
usable with the not in (nin) operator.

is better than both PostgreSQL and MongoDB. To answer
Q1, PEDaLS must perform versioned traversal of the queue,
which is inherently fast due to the node-copy method. In
contrast, both PostgreSQL and MongoDB has to perform
complex queries (cf. Figure 8). Hence PEDaLS outperforms
the others in regard to read as well.

6.4.2 Room Occupancy Detection

Indoor positioning systems are used to locate, track, and
identify individuals/objects in indoor settings where tech-
nologies like GPS cannot perform with desired precision.

A common application of such a system is to detect the
occupancy of a room at different times of the day. Apart
from eliciting information pertinent to security (e.g., was
user x present in room y during some event z), it can
also provide historical data to aid in scheduling of events
depending on the occupancy of different rooms throughout
different times of the day.

SmartBench [62] is a benchmark focusing on queries
resulting from (near) real-time applications and longer-term
analysis of IoT data. For this experiment, we use the data
generation tool of SmartBench to generate room occupancy
dataset based on seed data collected from a real system. The
generated dataset contains periodic location data including
the room in which a user is. However, the data does not
contain the explicit timestamp at which a user leaves a room.
Hence, we augment the data with information that denote a
user has left the old room by inserting a new record with a
timestamp that falls between the timestamp when the user
was last seen in the old room and the timestamp when the
user was first seen in the new room. We assign an invalid
room number for such records, which essentially denotes
the user is on its way from the old room to the new room.
The preprocessed dataset contains 4002 timestamped data
points with information regarding the location (i.e., room
numbers) of users at different times of the day.

The storage of this data for databases involves the inser-
tion of a single row containing the timestamp, user ID, and
the location of the user at that timestamp. For PEDaLS, we
maintain a bst with user IDs as the keys and room numbers
as the values. We treat the timestamp as the version stamp
for the bst. A record in the dataset containing an invalid
room number corresponds to a deletion from the bst and
an insertion into the bst otherwise. We assume we want to
answer the query Q2: “what is the location of user with ID
uid at time X”? PEDaLS bst performs a simple versioned

14

SELECT room
FROM roomoccupancy
WHERE ts <= X AND
userid = uid
ORDER BY ts
DESC LIMIT 1

db.roomoccupancy.find(
{'ts': { '$lte': X }, 'userid': uid },
{ 'room': 1, '_id': 0 }
).sort('ts', -1).limit(1)

Fig. 9: SQL (left) and NoSQL (right) queries to find the room
at which user with ID uid is at time X . Here ts stands for
timestamp.

TABLE 3: Average distance between the locations at the start
and the end of an interval for an individual cow.

interval (seconds) distance (meters)
20 1.62
60 4.31
100 6.81
140 9.22
180 11.56

search withX as the timestamp and uid as the key to answer
this query. However, PostgreSQL and MongoDB require
complex queries as shown in Figure 9.

Our results show that the average query time for Post-
greSQL, MongoDB, and PEDaLS are 0.460ms, 2.255ms, and
0.124ms respectively. That is, PEDaLS is 3.71x as fast as
PostgreSQL and 18.19x as fast as MongoDB in regard to
queries for the application under consideration. As in the
banking queue application of Section 6.4.1, MongoDB does
not demonstrate any advantage over PostgreSQL for struc-
tured data of the application under consideration. PEDaLS
must perform a versioned search of a key in the bst to an-
swer Q2. This is relatively simpler than the complex queries
required by PostgreSQL and MongoDB as presented in
Figure 9. Hence PEDaLS outperforms both PostgreSQL and
MongoDB in regard to read for this application as well. Our
results also indicate that both PostgreSQL (0.354ms) and
MongoDB (0.359ms) perform better than PEDaLS (0.468ms)
for update operations (approximately 1.32x times). This is
expected, as the databases need only to insert a single entry
to record an update, whereas PEDaLS has to search the tree
for the appropriate position of a new node to be inserted or
an old node to be deleted. In contrast, PEDaLS queue for
Section 6.4.1 did not require an extra read per update opera-
tion to find the existence and/or position of a data structure
node. This explains the superior performance of PEDaLS
update in the banking queue monitoring application.

6.4.3 Livestock Tracking

Livestock tracking is a popular application of IoT in smart
farms to study animal behavior and animal-ecosystem inter-
action [63], [64]. In a livestock tracking system, each animal
is fitted with a tracking device (e.g., a GPS collar) that
records the location information at a pre-defined regular
interval. This information can then be used to analyze
different behavior of the cattle, such as grazing patterns.
As the tracking and data processing devices are typically
battery-powered in these deployments, we must minimize
the number of times a location is recorded/communicated
over the network; without losing valuable information.

SELECT lt1.cattle_id
FROM livestocktracking AS lt1
JOIN
(SELECT cattle_id, MAX(ts) as
maxts
FROM livestocktracking
WHERE ts <= X
GROUP BY cattle_id) AS lt2
ON lt1.cattle_id = lt2.cattle_id
AND lt1.ts = lt2.maxts
WHERE lt1.pos >= 0

db.livestocktracking.aggregate([
{'$match': {'ts': {'$lte': X}}},
{'$sort': {'ts': -1}},
{'$group':{
'_id': '$cattle_id',
'maxTS': {'$max': '$ts'},
'currentPos': {'$first': '$pos'}
}},
{'$match': {'currentPos': {'$gte': 0}}},
{'$project': { '_id': 1}}
])

Fig. 10: SQL (left) and NoSQL (right) queries to find the set
of cows present in plot B at time X . Here ts and pos stand
for timestamp and position respectively.

In [63], the authors provide a dataset containing day-
time (approx. 8 hours per day) grazing locations of cattle
collected from 6 Alpine farms in the summer of 2011. 2 to 4
cows from each of these farms (in total 15) were equipped
with a GPS collar and a logger box. Although data were
collected at 20 seconds interval in this work, an analysis of
the dataset shows that even a larger interval of 3 minutes
shows an average movement (i.e. distance between the
locations at the beginning and at the end of the interval)
of 12 meters for a cow (cf. Table 3). Depending on the use
case, this might be an acceptable distance.

We consider a scenario where a new patch of land B is
opened up for grazing beside an old patch of land A. We
want to know which are the cows that prefer the new patch
of land B, along with at what time of the day. Specifically,
we want to answer the query Q3: “which cows are present
in B at time X”? This is an example of a temporal query
that can be efficiently answered using a versioned bst. As
the dataset in [63] contains data for at most 4 cows from any
one farm, we use synthetic data generated using random
walk for 100 cows. The one-dimensional random walk starts
from 0. Whenever the random variable has a value >= 0,
we assume the location is in land B, otherwise land A. As
in [63], we assume each cow is equipped with a GPS collar.

From Table 3, we see that the point-to-point distance
covered by a cow on average is approximately only 12
meters for a 3 minute interval. Hence, for energy-efficiency
we assume the GPS collar collects location information at 3
minutes (180 seconds) interval instead of 20 seconds over
the duration of 8 hours (8 ∗ 60/3 = 160 data points for
each cow). We further assume the timestamped location
data is sent to a nearby edge server for storage in two
methods. In the first method, as common to many IoT
deployments, the server stores each location data into a
database upon reception. Each data point contains a cattle
id and its position at the time the data was collected. Note
that in this kind of setup, the collection of data is fast
as it involves only a single insertion to a database table.
However, retrieving answers to complex queries such as Q3

can be time-consuming. We present the SQL and NoSQL
queries to answer Q3 in Figure 10.

In the second method, the server maintains a PEDaLS
bst to store the IDs of cows that are in land B using
timestamps as the version stamps. Although this requires
some preprocessing during insertion to determine whether
a cow is already in land B, this makes query Q3 faster

15

compared to the former method; as we can now perform a
tree traversal at version X in the bst to retrieve the full set of
cows present in land B. This also removes the onus on part
of the developer to write complex queries, as the relevant
information is readily available through a versioned access
operation (in this case, tree traversal) in PEDaLS bst.

As described above, there are 160 data points for each
cow, i.e., 160 unique timestamps. We perform 160 ∗ 100
insertions and 160 queries (one for each unique timestamp)
in one iteration of the experiment. The average update
times for PEDaLS and PostgreSQL are 0.553ms and 0.342ms
respectively, whereas the average query times are 2.333ms
and 5.186ms respectively. That is, although for insertion
PostgreSQL is 1.62x as fast as PEDaLS, for query PEDaLS
is 2.22x as fast as PostgreSQL. From a power consumption
perspective, as long as the number of updates to the number
of queries ratio is less than (5.186−2.333)/(0.553−0.342) =
13.52, PEDaLS is more efficient than PostgreSQL. The higher
time requirement for PEDaLS update is expected, as every
update operation involves searching for a node in the bst
as well. On the other hand, the databases only have to
insert a single row for an update. However, due to the
efficient versioning scheme of PEDaLS bst, answering query
Q3 simply amounts to traversing a particular version of
the bst. In contrast, the databases have to perform com-
plex queries as presented in Figure 10. Hence PEDaLS
outperforms both PostgreSQL and MongoDB in regard to
read. Although the update time (0.355ms) for MongoDB is
comparable to that of PostgreSQL, much like Section 6.4.1
and Section 6.4.2, MongoDB requires significantly more time
for reads (11.687ms). This is again due to the inefficient
aggregation pipeline of MongoDB.

6.5 Bounding Log Size

One challenge with PEDaLS is that the underlying append-
only, persistent backing storage abstraction may have a size
limit due to host resource constraints or storage service
design. For example, CSPOT implements logs of fixed size
as a circular buffer [65]. Although this approach provides
fast and automatic garbage collection of log entries, if a
PEDaLS log “wraps” it may lose entries that it requires to
maintain a particular version in the version history. A PED-
aLS user specifies the maximum number of data structure
versions (i.e. the version history) she wishes to maintain.
PEDaLS ensures that at least this length of version history is
available.

To do so, PEDaLS provides a probabilistic guarantee
that a program never accesses a version for which only
partial information is available due to log wrap. It uses the
probability that it must maintain a given history length to
compute the log sizes that are necessary to ensure that this
guarantee is met. In the case where this size is attempted
to be exceeded due to an update operation performing a
log append, PEDaLS refuses further update operations. This
practice of refusing update requests in absence of adequate
space is not uncommon (e.g. Redis [66]). However, read
requests can still be serviced.

Our failure model assumes that storage failures occur
only during log-append operations and these failures take
two forms. Either the data is not written at all, or it is written

but the sequence number associated with the write is not
returned. In both cases, PEDaLS assumes that the failure
can occur silently and thus must be remediated by a timeout
and a retry. As stated in Section 4, we term the first type of
failure as a Type 1 failure and the second a Type 2.

As node copy is most frequent when the number of extra
pointers e is one, we consider the required log size for the
different logs when e = 1. Then for any case where e >
1, the required log sizes will not be greater than the ones
calculated for e = 1. We begin by determining the log sizes
assuming a fault-free system and then consider a distributed
system with failures. Let K be the maximum number of
versions in the version history specified by the PEDaLS user,
Ki the number of inserts, and Kd the number of deletions
(K = Ki + Kd). The APLog which tracks all operations
(each one creating a version) thus requires K entries while
the DataLog only grows as a result of insert operations and
thus it must minimally contain Ki entries. However, worst
case, all of the operations are inserts so the DataLog must
contain K entries.

We consider the required size of the LinkLog separately
for linked list and BST. In the case of linked list insert or
delete, PEDaLS requires one new link. As linked list has
only one type of pointer, even if PEDaLS must copy a node,
it only introduces one new link. Therefore, we require the
log size for the LinkLog for linked list to be at most K .
Even in the worst-case scenario when we are inserting to
and deleting from the end of the same node K times, a
LinkLog of size K will not experience rollover and wrap.

In the case of BST insert, PEDaLS adds one new link to
a node. However, this might result in node copying. Unlike
linked list, for BST, PEDaLS must copy both pointers in a
node during node copy. That is, if we are changing the left
(or right) pointer, PEDaLS must copy over the old right (or
left) pointer apart from introducing the new left (or right)
pointer. Thus every second modification of a node forces
it to make one extra entry into the LinkLog. Aside from
the fact that the first version of a node requires two entries
in the LinkLog, the number of links in the LinkLog is at
most 1.67 times that of the number of versions K when
all operations are inserts. In practice, this factor is much
lower. As an example, over 100 iterations of 12579 insertions
(different order for each iteration) for the CityPulse tem-
perature dataset used in Section 6.1 revealed the maximum
links required by any LinkLog is only 26, i.e. 0.002 times of
K(12579).

However, in the case of BST delete, PEDaLS might have
to introduce at most two entries to the same node when the
deleted node has two children. If node copying is necessary
(the additional node pointer is occupied), the total number
of new links to be introduced is three. Therefore, assuming
the worst-case scenario where every operation is a deletion
and where the target node has both of its children present,
we can say that the number of entries at each LinkLog will
not exceed 3K . Thus PEDaLS can preserve K versions of
BST when the LinkLog is set to 3K in the absence of Type 2
log failures.

Now that we have set a baseline for the size of the history
of each log in absence of failures, we next consider how this
changes with the introduction of our failure modes. We are
specifically concerned about Type 2 failures where an entry

16

is appended but the resulting log sequence number is lost
(since a Type 1 failure does not grow any log).

Let us assume that a log append fails with probability q
and that the probability of any such failure is independent
of any other. Given that we need to insert i entries into a
log (i = K for APLog, i = K for DataLog, i = K for
linked list LinkLog, and i = 3K for BST LinkLog) and we
must tolerate at most F failures (i.e. F additional entries
are needed in each log), the total number appends that we
can make is i + F . As an append either fails or succeeds,
we can model the probability of failure of f failures in at
most i + F appends as a binomial distribution having a
probability mass function λ parameterized by the failures f :

λ(f) =

(
i+ F

f

)
qf (1− q)i+F−f (1)

Given that we set the log size to i+ F , rollover happens
only when f > F . Thus, the probability of rollover is 1.0
minus the probability that f ≤ F expressed as:

Prollover = 1−
f=F∑
f=0

λ(f) (2)

Given probability q that any append fails and a history
version size i, we can programmatically find the number of
additional entries F (in turn the size of a log) required to
make the probability of rollover arbitrarily low. As a worst-
case example, for an append failure probability q = 0.5 and
a version history of K = 1000 versions, the APLog and
DataLog for BST would need to contain 2223 entries each
and the LinkLog would require 6379 entries to make the
rollover probability for any of these logs < 0.0000001. That
is, with a failure probability of 0.5 the APLog, DataLog, and
LinkLog are approximately 2.2 times as large as they would
be without failures.

This overhead decreases with failure probability. For
example, when the append failure probability is q = 0.1
this overhead reduces to a factor of 1.2 compared to the
failure-free case, and when q = 0.001 the overhead factor is
1.009 (9 extra entries in APLog and DataLog and 14 extra
entries in the LinkLog). As a practical matter, the failure
probability q for any given append is almost certainly well
below 0.001 (e.g. we observed no failures in tens of mil-
lions of distributed logging events over the several months
this paper has been in preparation) making the additional
space required to tolerate failures in a real-world setting
negligible. Table 4 shows the log size required to keep the
probability of rollover below 0.000001 for different values
of q.

7 CONCLUSION AND FUTURE DIRECTIONS

Partially persistent data structures (PDSs) provide data
structure immutability by implementing versioning. The
original works on PDSs are in-memory only, use mutable
data structures internally, and work only on a single sys-
tem. PEDaLS presents a PDS implementation that is crash-
resistant, provides immutability from both storage level
(i.e. append-only logs) and software level, and works in a
distributed environment. It is the first system to provide

TABLE 4: Required Log size to keep the probability of roll
over below 0.000001. i denotes the required number of suc-
cessful appends, F denotes the maximum allowable number
of unsuccessful appends, and q denotes the probability of
failure of an append. The overhead is calculated as i+F

i .
i q i+ F overhead

1000

0.1 1168 1.168
0.2 1339 1.339
0.3 1553 1.553
0.4 1834 1.834
0.5 2223 2.223

2000

0.1 2301 1.151
0.2 2624 1.312
0.3 3030 1.515
0.4 3566 1.783
0.5 4311 2.155

3000

0.1 3429 1.143
0.2 3901 1.300
0.3 4496 1.499
0.4 5283 1.761
0.5 6379 2.126

versioned program linked data structures in a distributed
setting that can facilitate system debugging.

In this work, we extend PEDaLS by introducing data
replication, thus ensuring availability and fault tolerance.
Our results show that program data structures replicated by
PEDaLS are scalable. Moreover, we explore multiple end-
to-end applications to demonstrate use cases for PEDaLS
data structures. Finally, we show how to determine the
maximum needed log size as a function of stored history
length. These contributions make PDSs utilitarian in a mod-
ern, distributed computing context while preserving their
original low algorithmic complexities.

Currently, PEDaLS guarantees convergence of an arbi-
trary linked data structure with constant in-degree. How-
ever, convergence itself does not ensure the satisfaction of
the user expectations on the semantics of the underlying
data structure, e.g., add-wins set [11], [67] instead of con-
ventional set. A possible future direction is to introduce
mechanisms to satisfy such user expected semantics.

Although the current design of PEDaLS allows it to
maintain the same space/time complexity of the node-copy
method, this design also makes the retention of the latest
K versions of the underlying data structure impossible in
the face of scarcity of space. This is due to the simple fact
that even theKth version might require information that are
present at the beginning of the DataLog or a LinkLog, e.g.
an element inserted during the first version is still present
during the Kth version. In the future, we can conduct
studies to explore a new design that would potentially have
to make a trade-off between space/time complexity and
the possibility of retaining a specified number of the latest
versions.

One possible way to extend the current work is to
employ Artificial Intelligence (AI)/ Machine Learning (ML)
to discover patterns in the data [68] stored in the underlying
data structures. PEDaLS stores historical data and provides
programmatic approach to retrieve versioned data. This can
be convenient to perform time-series analysis and explore
different trends in data.

Similar to trend analysis, PEDaLS can be used in con-
junction with AI/ML to predict potential configuration op-
tions for autonomic systems [69]. In fact, AI/ML can be used

17

to analyze a typical workload under consideration and to
predict parameters of PEDaLS itself, such as the size of a
LinkLog (cf. Section 6.5).

As PEDaLS maintains an efficient space/time complex-
ity and stores historical data, it is a good candidate for a
storage layer for real-time anomaly detection [68]. While the
previous versions of data can help in exploring underlying
trends, the efficiency in storing and accessing data can meet
the fast response requirements of real-time systems. On
a similar note, AI/ML can be used for efficient adaptive
resource scheduling [70] among replicas of PEDaLS. For
example, if a resource-constrained replica tends to receive a
higher volume of write requests at a particular time of day,
it can decide to proactively delegate some work to nearby
replica(s).

In general, PEDaLS can be extended and used as an inte-
gral part of the monitor, analyze, plan, and execute (MAPE)
loop of autonomic systems [68], [71] with the help of
AI/ML. As PEDaLS records all updates as separate versions
of the underlying data structure, it facilitates monitoring of
data. The historical data efficiently preserved by PEDaLS
can then be analyzed with the help of AI/ML techniques.
The analysis can lead to a possible actionable plan, upon
the execution of which we enter the next iteration of MAPE
loop.

ACKNOWLEDGMENTS

This work has been supported in part by NSF awards CNS-
2107101, CNS-1703560, and ACI-1541215.

REFERENCES

[1] D. Lindsay, S. S. Gill, D. Smirnova, and P. Garraghan, “The
evolution of distributed computing systems: from fundamental to
new frontiers,” Computing, vol. 103, no. 8, pp. 1859–1878, 2021.

[2] J. Beal, M. Viroli, D. Pianini, and F. Damiani, “Self-adaptation to
device distribution in the internet of things,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 12, no. 3, pp. 1–29,
2017.

[3] J. Park, J. Park, Y. Lee, C.-J. Kim, B. Kim, and S. Ryu, “A framework
for dynamic inter-device task dispatch with eventual consistency,”
in Conference Companion of the 2nd International Conference on Art,
Science, and Engineering of Programming, 2018, pp. 63–68.

[4] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity internet of things
devices,” in Proceedings of the 11th ACM on Asia conference on
computer and communications security, 2016, pp. 461–472.

[5] M. Zhang, C. Krintz, and R. Wolski, “Stoic: Serverless teleoperable
hybrid cloud for machine learning applications on edge device,”
in 2020 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops). IEEE, 2020, pp.
1–6.

[6] M. I. Naas, L. Lemarchand, P. Raipin, and J. Boukhobza, “Iot
data replication and consistency management in fog computing,”
Journal of Grid Computing, vol. 19, no. 3, pp. 1–25, 2021.

[7] N. Golubovic, R. Wolski, C. Krintz, and M. Mock, “Improving
the accuracy of outdoor temperature prediction by iot devices,”
in 2019 IEEE International Congress on Internet of Things (ICIOT).
IEEE, 2019, pp. 117–124.

[8] N. Saquib, C. Krintz, and R. Wolski, “PEDaLS: Persisting Ver-
sioned Data Structures,” in IEEE IC2E, 2021.

[9] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Symposium on Self-Stabilizing Sys-
tems. Springer, 2011, pp. 386–400.

[10] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan, “Making data
structures persistent,” J. Comput. Syst. Sci., vol. 38, no. 1, 1989.

[11] N. Preguiça, C. Baquero, and M. Shapiro, Conflict-Free Replicated
Data Types CRDTs. Cham: Springer International Publishing, 2019,
pp. 491–500. [Online]. Available: https://doi.org/10.1007/978-3-
319-77525-8 185

[12] B. Stopford, Designing Event Driven Systems: Concepts and Patterns
for Streaming Services with Apache Kafka. O’Reilly Media, 2018,
https://drive.google.com/file/d/1NGst29pUjZwtn8pXTKvlSSuau2-
to5dD/view Accessed 15-Sep-2019.

[13] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[14] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), 2014, pp. 305–319.

[15] “Git,” ”https://git-scm.com/”.
[16] “GitHub,” https://github.com/, [Online; accessed 14-October-

2013].
[17] A. A. Monrat, O. Schelén, and K. Andersson, “A survey of

blockchain from the perspectives of applications, challenges, and
opportunities,” IEEE Access, vol. 7, pp. 117 134–117 151, 2019.

[18] P. Helland, “Immutability changes everything,” in
Conference on Innovative Data Systems Research, 2015,
http://cidrdb.org/cidr2015/Papers/CIDR15 Paper16.pdf
Accessed 15-Sep-2019.

[19] A. Fiat and H. Kaplan, “Making data structures confluently per-
sistent,” in Symposium on Discrete Algorithms, 2001.

[20] S. Fortune, “A sweepline algorithm for voronoi diagrams,” Algo-
rithmica, vol. 2, no. 1, pp. 153–174, 1987.

[21] T. Reps, T. Teitelbaum, and A. Demers, “Incremental context-
dependent analysis for language-based editors,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 5, no. 3, pp.
449–477, 1983.

[22] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, “An
asymptotically optimal multiversion b-tree,” The VLDB Journal,
vol. 5, no. 4, pp. 264–275, 1996.

[23] Amazon, “S3 Object Versioning,” 2019,
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
[Online; accessed 28-Sep-2019].

[24] “Google Cloud: Versioned Object Storage,” 2018,
https://cloud.google.com/storage/docs/object-versioning
[Online; accessed 12-Sep-2018].

[25] R. Kotla, L. Alvisi, and M. Dahlin, “Safestore: A durable and
practical storage system,” in USENIX Annual Technical Conference,
2007, pp. 129–142.

[26] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in IEEE Symposium on Mass Storage
Systems and Technologies, 2010.

[27] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J.
Carey, M. Dreseler, and C. Li, “Storage management in asterixdb,”
VLDB, vol. 7, no. 10, Jun. 2014.

[28] C. Gong, S. He, Y. Gong, and Y. Lei, “On integration of appends
and merges in log-structured merge trees,” in International Confer-
ence on Parallel Processing, 2019.

[29] A. Twigg, A. Byde, G. Milos, T. Moreton, J. Wilkes, and T. Wilkie,
“Stratified b-trees and versioned dictionaries,” in USENIX Confer-
ence on Hot Topics in Storage and File Systems, ser. HotStorage’11,
2011.

[30] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei,
and J. Davis, “Corfu: A shared log design for flash clusters,” in
USENIX Symposium on Networked Systems Design and Implementa-
tion, 2012.

[31] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Chariots:
A scalable shared log for data management in multi-datacenter
cloud environments.” in EDBT, 2015, pp. 13–24.

[32] H. Vo, S. Wang, D. Agrawal, G. Chen, and B. Ooi, “Logbase: a
scalable log-structured database system in the cloud,” Proceedings
of the VLDB Endowment, vol. 5, no. 10, pp. 1004–1015, 2012.

[33] “Apache Samza,” 2019, http://samza.apache.org [Online; ac-
cessed Sep. 2019].

[34] “Apache Kafka,” 2019, http://kafka.apache.org [Online; accessed
Sep. 2019].

[35] “Amazon kinesis streams service,” 2020,
https://docs.aws.amazon.com/kinesis/index.html Accessed
15-Apr-2020.

[36] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations,
extensions, and beyond,” ACM Queue, vol. 11, no. 3, Mar. 2013.

[37] S. Burckhardt, “Principles of eventual consistency,” Foundations
and Trends in Programming Languages, vol. 1, no. 1-2, 2014.

18

[38] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. Davis, S. Rao, T. Zou, and A. Zuck, “Tango: Distributed
Data Structures over a Shared Log,” in Symposium on Operating
System Principles, Nov. 2013.

[39] “Amazon S3,” 2018, https://aws.amazon.com/s3/ [Online; ac-
cessed 28-Sep-2018].

[40] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messag-
ing system for log processing,” in Proceedings of the NetDB, vol. 11,
2011, pp. 1–7.

[41] Facebook, “LogDevice,” 2020, https://engineering.fb.com/core-
data/logdevice-a-distributed-data-store-for-logs/ Accessed 29-
Feb-2020.

[42] F. Houshmand and M. Lesani, “Hamsaz: replication coordination
analysis and synthesis,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1–32, 2019.

[43] X. Li, F. Houshmand, and M. Lesani, “Hampa: Solver-aided
recency-aware replication,” in International Conference on Computer
Aided Verification. Springer, 2020, pp. 324–349.

[44] M. Diogo, B. Cabral, and J. Bernardino, “Consistency models of
nosql databases,” Future Internet, vol. 11, no. 2, p. 43, 2019.

[45] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso,
“Evaluating crdts for real-time document editing,” in Proceedings
of the 11th ACM symposium on Document engineering, 2011, pp. 103–
112.

[46] X. Lv, F. He, W. Cai, and Y. Cheng, “A string-wise crdt algorithm
for smart and large-scale collaborative editing systems,” Advanced
Engineering Informatics, vol. 33, pp. 397–409, 2017.

[47] W. Yu, L. André, and C.-L. Ignat, “A crdt supporting selective
undo for collaborative text editing,” in IFIP International Conference
on Distributed Applications and Interoperable Systems. Springer,
2015, pp. 193–206.

[48] A. Charapko, A. Ailijiang, and M. Demirbas, “Pigpaxos: Devour-
ing the communication bottlenecks in distributed consensus,” in
Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 235–247.

[49] F. Nawab, D. Agrawal, and A. El Abbadi, “Dpaxos: Managing
data closer to users for low-latency and mobile applications,” in
Proceedings of the 2018 International Conference on Management of
Data, 2018, pp. 1221–1236.

[50] S. A. Bishop, H. I. Okagbue, P. E. Oguntunde, A. A. Opanuga, and
O. Odetunmibi, “Survey dataset on analysis of queues in some
selected banks in ogun state, nigeria,” Data in brief, vol. 19, pp.
835–841, 2018.

[51] N. Anzum, S. F. Afroze, and A. Rahman, “Zone-based indoor
localization using neural networks: A view from a real testbed,” in
2018 IEEE International Conference on Communications (ICC). IEEE,
2018, pp. 1–7.

[52] W. Lin, C. Krintz, R. Wolski, M. Zhang, X. Cai, T. Li, W. Xu, and
R. Zhou, “Tracking Causal Order in AWS Lambda Applications,”
in IEEE International Conference on Cloud Engineering, Jun. 2018.

[53] E. D. Demaine, J. Iacono, and S. Langerman, “Retroactive data
structures,” ACM Trans. Algorithms, vol. 3, no. 2, May 2007.

[54] W.-T. Lin, F. Bakir, C. Krintz, R. Wolski, and M. Mock, “Data repair
for Distributed, Event-based IoT Applications,” in ACM Interna-
tional Conference on Distributed and Event-Based Systems, 2019.

[55] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” in Concurrency: the Works of Leslie Lamport, 2019,
pp. 179–196.

[56] M. Kleppmann and A. R. Beresford, “A conflict-free replicated json
datatype,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 10, pp. 2733–2746, 2017.

[57] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The eucalyptus open-source
cloud-computing system,” in Cluster Computing and the Grid, 2009.
CCGRID’09. 9th IEEE/ACM International Symposium on. IEEE,
2009, pp. 124–131.

[58] “CityPulse Smart City Datasets - Datasets,”
”http://iot.ee.surrey.ac.uk:8080/datasets.html” [Online; accessed
20-Sep-2022].

[59] M. Sharma, V. D. Sharma, and M. M. Bundele, “Performance
analysis of rdbms and no sql databases: Postgresql, mongodb and
neo4j,” in 2018 3rd International Conference and Workshops on Recent
Advances and Innovations in Engineering (ICRAIE). IEEE, 2018, pp.
1–5.

[60] M.-G. Jung, S.-A. Youn, J. Bae, and Y.-L. Choi, “A study on
data input and output performance comparison of mongodb and
postgresql in the big data environment,” in 2015 8th international

conference on database theory and application (DTA). IEEE, 2015, pp.
14–17.

[61] G. Harrison and M. Harrison, “Tuning aggregation pipelines,” in
MongoDB Performance Tuning. Springer, 2021, pp. 155–183.

[62] P. Gupta, M. J. Carey, S. Mehrotra, and o. Yus, “Smartbench: a
benchmark for data management in smart spaces,” Proceedings of
the VLDB Endowment, vol. 13, no. 12, pp. 1807–1820, 2020.

[63] H. Homburger, M. K. Schneider, S. Hilfiker, and A. Lüscher, “In-
ferring behavioral states of grazing livestock from high-frequency
position data alone,” PLoS One, vol. 9, no. 12, p. e114522, 2014.

[64] K. Zhao and R. Jurdak, “Understanding the spatiotemporal pat-
tern of grazing cattle movement,” Scientific reports, vol. 6, no. 1,
pp. 1–8, 2016.

[65] R. Wolski, C. Krintz, F. Bakir, G. George, and W.-T. Lin, “CSPOT:
Portable, Multi-scale Functions-as-a-Service for IoT,” in ACM Sym-
posium on Edge Computing, 2019.

[66] “Redis,” ”http://redis.io”.
[67] N. Saquib, C. Krintz, and R. Wolski, “Ordering operations for

generic replicated data types using version trees,” in Proceedings
of the 9th Workshop on Principles and Practice of Consistency for
Distributed Data, 2022, pp. 39–46.

[68] S. S. Gill, M. Xu, C. Ottaviani, P. Patros, R. Bahsoon, A. Shaghaghi,
M. Golec, V. Stankovski, H. Wu, A. Abraham et al., “Ai for next
generation computing: Emerging trends and future directions,”
Internet of Things, vol. 19, p. 100514, 2022.

[69] S. S. Gill, S. Tuli, M. Xu, I. Singh, K. V. Singh, D. Lindsay, S. Tuli,
D. Smirnova, M. Singh, U. Jain et al., “Transformative effects
of iot, blockchain and artificial intelligence on cloud computing:
Evolution, vision, trends and open challenges,” Internet of Things,
vol. 8, p. 100118, 2019.

[70] H. Psaier and S. Dustdar, “A survey on self-healing systems:
approaches and systems,” Computing, vol. 91, no. 1, pp. 43–73,
2011.

[71] J. O. Kephart and D. M. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

Nazmus Saquib is a Ph.D. candidate at the
department of Computer Science, University of
California, Santa Barbara. His current research
work in IoT includes versioned data, data repli-
cation, and data provenance. Specifically, he
studies similarities in concepts from these seem-
ingly disparate aspects of data and looks at a
unified model that explores all three in an IoT
context.

Chandra Krintz is a Professor in the Computer
Science Department of UC Santa Barbara. Her
research area is programming and distributed
systems. Her research collaborations focus on
advances that target the intersection of IoT,
edge, and cloud computing, and data analytics,
with applications in farming, ranching, climate
change adaptation, and conservation science.

Rich Wolski is the Duval Family Presidential
Chair in Energy Efficiency and a Professor in
the Computer Science Department at UCSB. His
research interests include cloud infrastructures
and scientific computing, and he is the progen-
itor of the open source cloud infrastructure-as-
a-service, Eucalyptus. He holds MS and PhD
degrees from UC Davis.

