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Abstract. Despite the apparent success of the Java Virtual Machine,
its lackluster performance makes it ill-suited for many speed-critical ap-
plications. Although the latest just-in-time compilers and dedicated Java
processors try to remedy this situation, optimized code compiled directly
from a C program source is still orders of magnitude faster than software
transported via Java byte-codes. This is true even if the Java byte-codes
are subsequently further translated into native code.

In this paper, we claim that these performance penalties are not a neces-
sary consequence of machine-independence, but related to Java’s partic-
ular intermediate representation. We have constructed a prototype and
are further developing a software transportability scheme founded on a
tree-based alternative to Java byte-codes. This tree-based intermediate
representation is not only twice as compact as Java byte-codes, but also
contains more detailed semantic information, some of which is critical
for advanced code optimizations.

Our architecture not only provides on-the-fly code generation from this
intermediate representation, but also continuous re-optimization of the
existing code-base by a low-priority background process. The re-opti-
mization process is guided by up-to-the-minute profiling data, leading to
superior optimization results.

1 Introduction

In recent months, the Java Virtual Machine [LYJ96] has rapidly become a stan-
dard platform for building portable Internet “applets” and applications. For
these applications, portability is achieved by compiling Java source files into
Java byte-codes (instruction sequences for the Java Virtual Machine) that are
completely independent of the eventual target architecture. These byte-codes can
easily be distributed over the Internet and interpreted on any given machine.
For small Internet applets, electronics, and household appliances, interpret-
ing Java byte-codes yields adequate performance in most cases. For most other
application areas, however, the performance penalty associated with interpreting
byte-codes makes such an approach unsuitable—~higher performance is required.
To remedy this situation, major software distributors have introduced just-in-
time compilers. Just-in-time compilers translate Java byte-codes into a sequence
of native machine instructions on a method-by-method basis upon first activation
of a method; the compiled version is then cached for subsequent activations. Ac-
cording to manufacturers of such just-in-time compiler, e.g. [Sun95], the quality
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of the generated code is “reasonably good” and “almost indistinguishable from
native C or C++".

Just-in-time compilers improve the situation relative to interpreted execu-
tion, but they still cannot compete with true optimizing compilers. Certain ad-
vanced optimizations rely on information that, although present in the source
program, is lost in the transition to Java byte-codes, and whose reconstruction is
extraordinarily difficult. Hence, compilers that take Java byte-codes as their in-
put are not easily capable of performing intermodular optimizations, global trace
scheduling, or code-parallelizations, which makes them intrinsically inferior to
optimizing C or C++ compilers.

Since just-in-time compilers cannot always meet the required performance
goals, most performance-critical applications continue to be compiled directly
from source code into the machine language of the target machine. The current
proliferation of native plug-ins (software programs that extend the capabilities
of Web browsers) rather than Java applets for high-performance applications
clearly illustrates this point (e.g. Shockwave, PDFViewer, Live3D).

In this paper, we demonstrate that portability and high-performance are two
goals that need not necessarily be irreconcilable. In the first part of this paper we
describe an alternative intermediate representation that is based on high-level
abstract syntax-trees rather than on low-level byte-codes. Abstract syntax trees
provide the necessary foundation for advanced code optimizations and impose
no artificial barriers to it.

In the second part, we introduce the concepts of dynamic runtime optimiza-
tion and adaptive profiling. In our system, a dynamic runtime optimizer performs
code optimizations continuously, based on runtime profile data. A background
process regularly generates faster program versions that then replace earlier, less
optimal versions. Basing compilation on an adaptive profiler allows the code op-
timizer to make superior optimization decisions, improving even the quality of
already optimized code on subsequent re-optimization iterations.

2 A Tree-Based Intermediate Representation

Rather than compiling source files into a sequence of Java byte-codes or into a
register transfer language [Wal86], source files in our implementation are trans-
lated into an intermediate representation called Slim Binaries [Fra94, FK96].
The Slim Binary representation is based on abstract syntax-trees and describes
the actions of the original program similar to a parse tree. In contrast, abstract
machine representations such as Java byte-codes are linear. In the Slim Binary
representation, every node in the tree is strongly typed by a reference to the
symbol table, in the byte-code representation, this type information as well as
the block structure of the program are only implicitly present and not directly
accessible.

The Slim Binary representation, as its name suggests, is exceptionally dense,
more so than compressed source code or compressed object code, accelerating
the transfer of executable content over a network. It is a variation of adaptive



compression schemes, such as the popular LZW algorithm [Wel84], tailored to-
wards syntax trees. It is based on the observation that different parts of programs
often look very similar. As an example, expressions like j++ or subexpressions
like . ..*pi/360 might be used several times within the same scope. The same
holds for procedure calls. Procedures might be called repeatedly with similar
parameter sets (e.g. formatfloat(..., 10, 2)). These similarities can be ex-
ploited by the use of a predictive algorithm that encodes recurring expressions
and subexpressions efficiently both in terms of space and time.

In our implementation, the abstract syntax tree is reconstructed at load-time
and native code is generated on-the-fly. Slim Binaries cannot be easily inter-
preted at runtime which, at first sight, might be a disadvantage. Their structure
is less suited in the area for which Java was originally invented—embedded sys-
tems, and advanced consumer electronics. This area mainly distinguishes itself
by limited memory capacity and computing resources. However, this argument
is becoming less relevant considering the recent increase of computing power
and the recent reduction of memory-prizes. For personal computers, interpreted
execution isn’t very appealing at all.

Because code-generation is performed at load-time, and because generating
code takes more time than merely linking programs, we have built a code gener-
ating loader with the explicit design goal of fast loading times. In this context,
the importance of Slim Binaries being compact becomes even more significant.
The time saved by the faster downloading of object files can be compensated for
the on-the-fly compilation phase. Measurements show that the resulting loading
times are well within the range of what users are willing to tolerate—even for
large applications. Surprisingly the goal of fast load-times does not even go at
the expense of code quality. The code generated by our loader is comparable
in quality to commercial C and Java just-in-time compilers. In contrast to Java
interpreters and just-in-time compilers, however, the full native speed of applica-
tions is brought into action from the very beginning of executing an application.

Slim Binaries have several advantages over Java byte-codes. First, a tree
representation is likely to be more secure than byte-codes. The very definition of
adaptive compression schemes limits the vocabulary at all times to symbols that
can legally be accessed at the current position in the program. It is therefore
hardly possible to construct a program that violates the scoping rules of the
source language. Even if malicious applications could be constructed, scoping
violations can easily be detected and handled during code generation, without
resorting to mechanisms as complex as Java’s byte-code verification. Byte code
verification is a time-consuming process as it requires extensive dataflow analysis.

Second, and much more important, the information available in our inter-
mediate representation builds the foundation for advanced code optimizations.
In contrast to Java, as we will show in the next section, we are able to apply
more aggressive algorithms without large pre-processing costs, since essential
data about control- and dataflow is preserved in the abstract syntax-tree.



3 Advanced Code Optimizations

In a runtime environment that is based on byte-codes, two categories of optimiza-
tions can basically be carried out. The first category encompasses optimizations
that are completely independent of the eventual target architecture. Examples
are constant folding, dead-code elimination, loop-invariant code motion, and to
some extent, even procedure inlining. These optimizations can entirely be per-
formed at compile-time, and on the level of the source language.

The second category comprises optimizations that depend on processor-spe-
cific information. Because this information is only available at load-time, these
optimizations must operate on byte-code sequences. To improve performance,
instructions can be rearranged to achieve a better instruction mix, or unneces-
sary and expensive register-spills can be eliminated by smart register allocation
algorithms. Peephole optimizations can also be classed with this category of
optimizations.

Yet, there is a third important category of optimizations that, like opti-
mizations of the first group, operate on the level of the source language but
also depend on processor specific information that is only available at load-time.
These optimizations cannot be performed at all on Java byte-codes. Cache block-
ing [WL91] and loop-unrolling are two examples of these techniques. Analyzing
and recognizing access patterns, as well as having precise information about im-
portant cache parameters (e.g. cache size, line size) are prerequisites for these
optimizations. While the former can be accomplished at compile-time, the latter
cannot in practice. Value numbering [CS70] poses a similar problem. If done at
all at compile-time, byte-code instructions that cannot be mapped to the under-
lying architecture on a one-to-one basis, but have to be translated into a sequence
of native instructions (e.g. invokevirtual, invokestatic, invokeinterface)
cannot reasonably be taken into consideration. Delaying value numbering until
load-time is also impractical. A further problem that belongs to the third cate-
gory of optimizations is parallelizing instruction streams. Analyzing properties
of data-structures can only be realized at compile-time. However, important in-
formation about underlying hardware parameters (e.g. number of processors) is
not available until load-time.

Not being able to perform any of these optimizations is an immense disadvan-
tage, which will be of prime importance in the near future. This holds especially
for optimizations that parallelize instruction streams, since the tendency to cope
with increasing performance requirements is rather to build multi-processor sys-
tems than single-processor systems.

Moreover, Java byte-codes have additional disadvantages. Directly mapping
byte-codes onto the underlying architecture is much more difficult than generat-
ing machine instructions from an abstract syntax-tree. Code generators that are
based on a high-level representation do not have to deal with unfavorable pe-
culiarities of Java byte-codes but can tailor their output towards advanced and
specific processor features, such as special purpose instructions, size of register
sets, and cache architectures. This is especially true for today’s most common
RISC processors which are less suited for byte-code’s heavily used stack oper-



ations. Whether dedicated Java processors, such as Sun Microsystems recently
announced picoJava architecture, will overcome this disadvantage is still an open
question.

In contrast to Java byte-codes, Slim Binaries are optimally suited for all
categories of code optimizations and do not have to deal with any of the byte-
codes’ disadvantages. At the time of loading, the abstract syntax tree, which can
be efficiently decoded, contains the same amount of information that is available
at compile-time. It not only preserves the control- and dataflow of programs,
but also the structure and property of data-structures and data-types. This
information is essential for aggressive code optimizations.

4 Runtime Optimization and Adaptive Profiling

Slim Binaries reconcile portability and efficiency by providing the foundation
for code-optimizations at the time of loading. Unfortunately performing opti-
mizations at load-time has one problem: it is quite time-consuming. In many
cases it takes at least 5 times as long as simply compiling the program [Bra95].
This might be feasible for small applications, or large numerical applications in
which the time saved by the optimizations is much more substantial than the
additional time required to optimize the program. For all other applications,
however, a different solution is necessary.

Therefore, in our design (Fig. 1), program optimization is performed at run-
time, taking advantage of idle cycles (we measured idle times of more than 90%).
At load-time, a fast code-generating loader transforms the intermediate repre-
sentation into a first unoptimized code-image. The optimizer then continuously
generates faster versions of the program in the background, replacing older code-
images “in situ”. This step is repeated until a fixpoint is reached and further
optimizations do not continue contributing to the overall system performance.
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Fig. 1. Architecture



Performing optimizations at runtime also enables a completely new set of
intermodular optimizations. Because the configuration of the system (i.e. which
components are active, and how they interact) is known at runtime, optimiza-
tions are not restricted to local algorithms. Previous studies have shown that the
impact of intermodular optimizations on runtime performance can be dramatic
in some cases [H6194]. Examples of intermodular optimizations are intermodular
inlining, intermodular register allocation, and global cache optimizations [Kis96].

Runtime optimization is only one aspect of our architecture. Equally impor-
tant is the adaptive profiler that continuously collects information about the
system’s runtime behavior. The profiler’s primary goal is to pinpoint the pro-
gram parts that account for most of the execution time. That way, optimizations
can be concentrated on high payoff areas rather than being applied uniformly
to each section of the program. Less frequently executed sections are optimized
sparsely, and no optimization is performed on rarely executed sections or sections
in which optimizations would not yield profitable results.

Further, with the availability of accurate profiling-data at the time of op-
timization, the optimizer never has to resort to inexact heuristics. This leads
to superior results in most cases. Many of today’s aggressive optimization algo-
rithms are based on heuristics, in order to achieve good results. However, this
can be a double-edged sword. On the one hand, if the system’s runtime behavior
is properly predicted, considerable performance increases may be expected. On
the other hand, if predictions do not come true, these optimizations will lead to
performance penalties. As an example, in trace scheduling, traces (also called
execution-paths) are selected and scheduled in decreasing order of their execu-
tion frequency. The most frequently executed path is scheduled first, as if it were
one single basic block. However, in order to preserve semantic correctness, cor-
responding code motions have to be performed in off-trace paths. If, at runtime,
the trace which was assumed to be executed most often is indeed executed most
of the time, this optimization yields superior results. If that is not the case, and
off-trace paths are executed more often, then this optimization will deteriorate
the overall performance. Loop-unrolling which depends on loop-frequency esti-
mates and cache parameters, or inlining and partial evaluation which depend on
call-frequency estimates are other examples of optimizations that highly depend
on heuristics.

In order to make the profiler as unobtrusive as possible, it uses a combi-
nation of dynamic instrumentation of the object code and statistical profiling
techniques. It also varies the granularity at which it monitors the system’s exe-
cution, and is only applied when it can contribute to the overall system perfor-
mance, pushing the profiling overhead below 5%. Previous studies have reported
profiling overheads of 5%-91% [BL94].

5 Results

In the last few months, we have implemented an experimental system that is
based on our proposed architecture. The system, named “Juice”, enables the



seamless integration of Slim Binary encoded executables into HTML-pages. It is
based on a family of Netscape plug-ins that contain an on-the-fly code genera-
tor and the Juice runtime environment. Juice is currently publicly available for
Intel based computers running Windows 95 and for PowerPC based Macintosh
computers.

Beside being reliable and simple to use, Juice is also efficient. Table 1 shows
time-measurements for basic operations, such as assignments, additions, and
method calls. The benchmark was executed on an Intel Pentium processor clocked
at 166Mhz (Dell OptiPlex GXM 5166). Since neither the optimizer nor the pro-
filer have yet been fully implemented and integrated into the Juice architecture,
they have not been taken into account for all of the benchmarks (this special
configuration that only applies on-the-fly compilation but no optimizations is
subsequently called Juice Level I). Juice does very well in comparison to just-in-
time compilers. The runtime-differences are only minimal. Both runtime systems
achieve an average speed-up factor of 12 to 18 in contrast to byte-code interpre-
tation.

Internet Netscape Internet Juice

Explorer 3.0 Navigator 3.0 Explorer Level 1

(Interpreted) (Just-In-Time) (Just-In-Time) (No Opt.)

Local Var. Assignment 0.220 0.011 0.006 0.015
Instance Var. Assignment 0.440 0.010 0.007 0.046
Array Elem. Assignment 0.590 0.050 0.051 0.045
Byte Addition 0.680 0.044 0.030 0.021
Short Addition 0.660 0.044 0.030 0.047
Int Addition 0.570 0.015 0.013 0.017
Float Addition 0.570 0.046 0.045 0.054
Double Addition 0.500 0.140 0.044 0.110
Method Call 1.500 0.092 0.091 0.120
Average 0.637 0.050 0.035 0.053

Table 1. Suite 1—Basic Operations. All numbers are given in microseconds per oper-
ation.

Yet, speed-up factors in this range are not realistic in most cases. This has to
be attributed to the fact that larger applications often call Java library routines
that are distributed as native binaries, already optimized for speed. The more
native libraries are called, the less just-in-time compilers boost performance.
The results of the second benchmark, which comprises of several long-running,
computational intensive tasks, emphasizes this statement. It compares the exe-
cution times of Juice, just-in-time compilers, and optimized C++ to the execu-
tion time of byte-code interpretation (Table 2). The speed-ups are remarkably
smaller than the ones measured in the first test suite. Performance comprehen-
sibly degrades with the number of library calls down to disappointing ratios of
2:1-4:1. Example are the “String Sort” benchmark that frequently invokes the
native “System.arraycopy” method and the “Fourier Analysis” benchmark that



frequently calls the math library (Math.sin, Math.cos, Math.exp).

Netscape Internet Juice CH+
Navigator 3.0 Explorer 3.0 Level 1 Optimized
(Just-In-Time) (Just-In-Time) (No Opt.)

Numeric Sort 11.17 13.21 9.63 79.69
String Sort 3.50 4.72 1.55 6.70
Bitfield Operations 17.61 15.92 20.82 64.94
Fourier Analysis 0.87 2.76 2.45 4.27
IDEA Encryption 4.54 3.24 6.69 16.30
Huffman Compression 11.87 16.14 20.68 35.32
LU Decomposition 7.63 7.18 6.18 36.69
Average 8.43 9.19 10.05 35.33

Table 2. Suite 2—Computational Intensive Operations. All numbers are given in mul-
tiples of the performance of interpreted byte-codes using Internet Explorer.

This benchmark also unequivocally demonstrates that native code, compiled
from an abstract syntax tree, is at least equivalent in quality to code generated
by just-in-time compilers (Fig. 2). In some cases, the results even surpass the
fastest available Java runtime systems—notably without applying any optimiza-
tions or profiling. However, the benchmarks also clearly demonstrate the current
deficiencies of just-in-time compilers—they cannot yet compete with true opti-
mizing compilers. Optimized C++ code is still an order of magnitude faster. In
order to narrow this gap, aggressive and advanced optimizations are a necessity.
The proposed tree-based intermediate representation fulfills all the requirements
for achieving this goal.

Internet Explorer 3.0
Interpreted ] 1.00

Netscape Navigator 8.43
3.0 With JIT
Internet Explorer 3.0 9.20
With JIT ’
ce Leve ! I
No Optimizations 10.0

Native, Optimized C++ 35.33

Fig. 2. Average Speed-Up Results

One of the initial claims of this paper was that a tree-based intermediate
representation not only provides the basis for closing the efficiency gap between
Java byte-codes and optimized C++ code, but also reduces the overhead for



transferring files over a network. Not only are Slim Binary object files more than
twice as dense as Java class files, and a factor of 3 to 4 smaller than traditional
native object files, Slim Binaries are even smaller than compressed native code.
Figure 3 summarizes the results for the above test suite (consisting of 12 source
files, approximately 130kBytes in size).

Slim Binary _ 20
LZSS Compressed i386 Binary [ ] 31
LZSS Compressed JavaBinary [ ]34
LZSS Compressed PPC601 Binary [ ] 43
LZSS Compressed Source Code [ ss
Java Binary [N 4

i386 Binary | 56

PPC601 Binary ] 68

Source Code ] 131

Fig. 3. Size Comparison Between Different Distribution Formats. All numbers are given
in kBytes.

Although Slim Binaries reduce network traffic by a factor of 2 in terms of
network packets, the differences between downloading Java class files and Juice
Slim Binaries are almost indistinguishable in terms of download-time. This stems
from the fact that for small execution units, it is mostly the time to set up the
connection to a server that accounts for most of the waiting-time. However, with
the introduction of component packaging concepts (compact archive formats for
packaging the components of a Java or Juice application) the size of executable
units will become more significant.

Finally, we have also measured the time that is required to compile the ab-
stract syntax tree into native code. As mentioned earlier, the compilation time is
hardly noticeable by the user. On a PowerP C based computer (Power Macintosh
8500/120) it takes approximately 470ms to compile the 12 benchmark-files. In
comparison to the time required to download these files using a fast connection
(4s), or using a slow connection (40s), the overhead of on-the-fly code generation
can be neglected.

6 Conclusions

In the last few months, Java and the Java Virtual Machine have become a
standard environment for building portable Internet “applets” and applications.
However, despite its success, its lack of performance makes it ill-suited for many
performance critical applications. Although just-in-time compilers try to remedy



this situation and achieve speed-ups of 10-15 compared to interpreted byte-
codes, they still cannot compete with true optimizing compilers.

In this paper, we have shown, that portability and high performance need
not necessarily be irreconcilable. We have proposed an alternative intermediate
representation that is based on abstract syntax trees rather than on low-level
byte-codes. This intermediate representation, bundled with a dynamic runtime
optimizer and an adaptive profiler, builds the basis for advanced and aggressive
optimizations that are difficult to perform on a lower-level representation—much
of essential information is lost in the transition from source code to byte-codes.
We have shown that our current version of the proposed architecture can com-
pete with today’s fastest just-in-time compilers, although no optimizations have
yet been implemented. With the availability and integration of the runtime op-
timizer and the adaptive profiler, we will be able to level the performance with
optimized C++ and dismantle the current performance deficiency of portable
transportability schemes.

Additional information about Juice and research related topics at the Univer-
sity of California at Irvine can be found on the World Wide Web at the following
location: http://www.ics.uci.edu/~juice.
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