
A Tree-Based Alternative to Java Byte-Codes

Thomas Kistler and Michael Franz

Department of Information and Computer Science

University of California at Irvine

Irvine, CA 92697{3425

Abstract. Despite the apparent success of the Java Virtual Machine,

its lackluster performance makes it ill-suited for many speed-critical ap-

plications. Although the latest just-in-time compilers and dedicated Java

processors try to remedy this situation, optimized code compiled directly

from a C program source is still orders of magnitude faster than software

transported via Java byte-codes. This is true even if the Java byte-codes

are subsequently further translated into native code.

In this paper, we claim that these performance penalties are not a neces-

sary consequence of machine-independence, but related to Java's partic-

ular intermediate representation. We have constructed a prototype and

are further developing a software transportability scheme founded on a

tree-based alternative to Java byte-codes. This tree-based intermediate

representation is not only twice as compact as Java byte-codes, but also

contains more detailed semantic information, some of which is critical

for advanced code optimizations.

Our architecture not only provides on-the-
y code generation from this

intermediate representation, but also continuous re-optimization of the

existing code-base by a low-priority background process. The re-opti-

mization process is guided by up-to-the-minute pro�ling data, leading to

superior optimization results.

1 Introduction

In recent months, the Java Virtual Machine [LYJ96] has rapidly become a stan-

dard platform for building portable Internet \applets" and applications. For

these applications, portability is achieved by compiling Java source �les into

Java byte-codes (instruction sequences for the Java Virtual Machine) that are

completely independent of the eventual target architecture. These byte-codes can

easily be distributed over the Internet and interpreted on any given machine.

For small Internet applets, electronics, and household appliances, interpret-

ing Java byte-codes yields adequate performance in most cases. For most other

application areas, however, the performance penalty associated with interpreting

byte-codes makes such an approach unsuitable|higher performance is required.

To remedy this situation, major software distributors have introduced just-in-

time compilers. Just-in-time compilers translate Java byte-codes into a sequence

of native machine instructions on a method-by-method basis upon �rst activation

of a method; the compiled version is then cached for subsequent activations. Ac-

cording to manufacturers of such just-in-time compiler, e.g. [Sun95], the quality

Note
This document was originally created using TEX. Unfortunately, Adobe Acrobat has difficulties rendering the embedded font information, making the text difficult to read on the screen. This is an Acrobat-specific problem; the document will appear without these distortions when printed at 300dpi or higher resolution.



of the generated code is \reasonably good" and \almost indistinguishable from

native C or C++".

Just-in-time compilers improve the situation relative to interpreted execu-

tion, but they still cannot compete with true optimizing compilers. Certain ad-

vanced optimizations rely on information that, although present in the source

program, is lost in the transition to Java byte-codes, and whose reconstruction is

extraordinarily di�cult. Hence, compilers that take Java byte-codes as their in-

put are not easily capable of performing intermodular optimizations, global trace

scheduling, or code-parallelizations, which makes them intrinsically inferior to

optimizing C or C++ compilers.

Since just-in-time compilers cannot always meet the required performance

goals, most performance-critical applications continue to be compiled directly

from source code into the machine language of the target machine. The current

proliferation of native plug-ins (software programs that extend the capabilities

of Web browsers) rather than Java applets for high-performance applications

clearly illustrates this point (e.g. Shockwave, PDFViewer, Live3D).

In this paper, we demonstrate that portability and high-performance are two

goals that need not necessarily be irreconcilable. In the �rst part of this paper we

describe an alternative intermediate representation that is based on high-level

abstract syntax-trees rather than on low-level byte-codes. Abstract syntax trees

provide the necessary foundation for advanced code optimizations and impose

no arti�cial barriers to it.

In the second part, we introduce the concepts of dynamic runtime optimiza-

tion and adaptive pro�ling. In our system, a dynamic runtime optimizer performs

code optimizations continuously, based on runtime pro�le data. A background

process regularly generates faster program versions that then replace earlier, less

optimal versions. Basing compilation on an adaptive pro�ler allows the code op-

timizer to make superior optimization decisions, improving even the quality of

already optimized code on subsequent re-optimization iterations.

2 A Tree-Based Intermediate Representation

Rather than compiling source �les into a sequence of Java byte-codes or into a

register transfer language [Wal86], source �les in our implementation are trans-

lated into an intermediate representation called Slim Binaries [Fra94, FK96].

The Slim Binary representation is based on abstract syntax-trees and describes

the actions of the original program similar to a parse tree. In contrast, abstract

machine representations such as Java byte-codes are linear. In the Slim Binary

representation, every node in the tree is strongly typed by a reference to the

symbol table, in the byte-code representation, this type information as well as

the block structure of the program are only implicitly present and not directly

accessible.

The Slim Binary representation, as its name suggests, is exceptionally dense,

more so than compressed source code or compressed object code, accelerating

the transfer of executable content over a network. It is a variation of adaptive

2



compression schemes, such as the popular LZW algorithm [Wel84], tailored to-

wards syntax trees. It is based on the observation that di�erent parts of programs

often look very similar. As an example, expressions like j++ or subexpressions

like ...*pi/360 might be used several times within the same scope. The same

holds for procedure calls. Procedures might be called repeatedly with similar

parameter sets (e.g. formatfloat(..., 10, 2)). These similarities can be ex-

ploited by the use of a predictive algorithm that encodes recurring expressions

and subexpressions e�ciently both in terms of space and time.

In our implementation, the abstract syntax tree is reconstructed at load-time

and native code is generated on-the-
y. Slim Binaries cannot be easily inter-

preted at runtime which, at �rst sight, might be a disadvantage. Their structure

is less suited in the area for which Java was originally invented|embedded sys-

tems, and advanced consumer electronics. This area mainly distinguishes itself

by limited memory capacity and computing resources. However, this argument

is becoming less relevant considering the recent increase of computing power

and the recent reduction of memory-prizes. For personal computers, interpreted

execution isn't very appealing at all.

Because code-generation is performed at load-time, and because generating

code takes more time than merely linking programs, we have built a code gener-

ating loader with the explicit design goal of fast loading times. In this context,

the importance of Slim Binaries being compact becomes even more signi�cant.

The time saved by the faster downloading of object �les can be compensated for

the on-the-
y compilation phase. Measurements show that the resulting loading

times are well within the range of what users are willing to tolerate|even for

large applications. Surprisingly the goal of fast load-times does not even go at

the expense of code quality. The code generated by our loader is comparable

in quality to commercial C and Java just-in-time compilers. In contrast to Java

interpreters and just-in-time compilers, however, the full native speed of applica-

tions is brought into action from the very beginning of executing an application.

Slim Binaries have several advantages over Java byte-codes. First, a tree

representation is likely to be more secure than byte-codes. The very de�nition of

adaptive compression schemes limits the vocabulary at all times to symbols that

can legally be accessed at the current position in the program. It is therefore

hardly possible to construct a program that violates the scoping rules of the

source language. Even if malicious applications could be constructed, scoping

violations can easily be detected and handled during code generation, without

resorting to mechanisms as complex as Java's byte-code veri�cation. Byte code

veri�cation is a time-consuming process as it requires extensive data
ow analysis.

Second, and much more important, the information available in our inter-

mediate representation builds the foundation for advanced code optimizations.

In contrast to Java, as we will show in the next section, we are able to apply

more aggressive algorithms without large pre-processing costs, since essential

data about control- and data
ow is preserved in the abstract syntax-tree.

3



3 Advanced Code Optimizations

In a runtime environment that is based on byte-codes, two categories of optimiza-

tions can basically be carried out. The �rst category encompasses optimizations

that are completely independent of the eventual target architecture. Examples

are constant folding, dead-code elimination, loop-invariant code motion, and to

some extent, even procedure inlining. These optimizations can entirely be per-

formed at compile-time, and on the level of the source language.

The second category comprises optimizations that depend on processor-spe-

cific information. Because this information is only available at load-time, these

optimizations must operate on byte-code sequences. To improve performance,

instructions can be rearranged to achieve a better instruction mix, or unneces-

sary and expensive register-spills can be eliminated by smart register allocation

algorithms. Peephole optimizations can also be classed with this category of

optimizations.

Yet, there is a third important category of optimizations that, like opti-

mizations of the �rst group, operate on the level of the source language but

also depend on processor speci�c information that is only available at load-time.

These optimizations cannot be performed at all on Java byte-codes. Cache block-

ing [WL91] and loop-unrolling are two examples of these techniques. Analyzing

and recognizing access patterns, as well as having precise information about im-

portant cache parameters (e.g. cache size, line size) are prerequisites for these

optimizations. While the former can be accomplished at compile-time, the latter

cannot in practice. Value numbering [CS70] poses a similar problem. If done at

all at compile-time, byte-code instructions that cannot be mapped to the under-

lying architecture on a one-to-one basis, but have to be translated into a sequence

of native instructions (e.g. invokevirtual, invokestatic, invokeinterface)

cannot reasonably be taken into consideration. Delaying value numbering until

load-time is also impractical. A further problem that belongs to the third cate-

gory of optimizations is parallelizing instruction streams. Analyzing properties

of data-structures can only be realized at compile-time. However, important in-

formation about underlying hardware parameters (e.g. number of processors) is

not available until load-time.

Not being able to perform any of these optimizations is an immense disadvan-

tage, which will be of prime importance in the near future. This holds especially

for optimizations that parallelize instruction streams, since the tendency to cope

with increasing performance requirements is rather to build multi-processor sys-

tems than single-processor systems.

Moreover, Java byte-codes have additional disadvantages. Directly mapping

byte-codes onto the underlying architecture is much more di�cult than generat-

ing machine instructions from an abstract syntax-tree. Code generators that are

based on a high-level representation do not have to deal with unfavorable pe-

culiarities of Java byte-codes but can tailor their output towards advanced and

speci�c processor features, such as special purpose instructions, size of register

sets, and cache architectures. This is especially true for today's most common

RISC processors which are less suited for byte-code's heavily used stack oper-

4



ations. Whether dedicated Java processors, such as Sun Microsystems recently

announced picoJava architecture, will overcome this disadvantage is still an open

question.

In contrast to Java byte-codes, Slim Binaries are optimally suited for all

categories of code optimizations and do not have to deal with any of the byte-

codes' disadvantages. At the time of loading, the abstract syntax tree, which can

be e�ciently decoded, contains the same amount of information that is available

at compile-time. It not only preserves the control- and data
ow of programs,

but also the structure and property of data-structures and data-types. This

information is essential for aggressive code optimizations.

4 Runtime Optimization and Adaptive Pro�ling

Slim Binaries reconcile portability and e�ciency by providing the foundation

for code-optimizations at the time of loading. Unfortunately performing opti-

mizations at load-time has one problem: it is quite time-consuming. In many

cases it takes at least 5 times as long as simply compiling the program [Bra95].

This might be feasible for small applications, or large numerical applications in

which the time saved by the optimizations is much more substantial than the

additional time required to optimize the program. For all other applications,

however, a di�erent solution is necessary.

Therefore, in our design (Fig. 1), program optimization is performed at run-

time, taking advantage of idle cycles (we measured idle times of more than 90%).

At load-time, a fast code-generating loader transforms the intermediate repre-

sentation into a �rst unoptimized code-image. The optimizer then continuously

generates faster versions of the program in the background, replacing older code-

images \in situ". This step is repeated until a �xpoint is reached and further

optimizations do not continue contributing to the overall system performance.

Portable 
Intermeditate
Representation
(Object File)

Code 
Generating

Loader

Profiler Optimizer

Executable Code

Fig. 1. Architecture

5



Performing optimizations at runtime also enables a completely new set of

intermodular optimizations. Because the con�guration of the system (i.e. which

components are active, and how they interact) is known at runtime, optimiza-

tions are not restricted to local algorithms. Previous studies have shown that the

impact of intermodular optimizations on runtime performance can be dramatic

in some cases [H�ol94]. Examples of intermodular optimizations are intermodular

inlining, intermodular register allocation, and global cache optimizations [Kis96].

Runtime optimization is only one aspect of our architecture. Equally impor-

tant is the adaptive pro�ler that continuously collects information about the

system's runtime behavior. The pro�ler's primary goal is to pinpoint the pro-

gram parts that account for most of the execution time. That way, optimizations

can be concentrated on high payo� areas rather than being applied uniformly

to each section of the program. Less frequently executed sections are optimized

sparsely, and no optimization is performed on rarely executed sections or sections

in which optimizations would not yield pro�table results.

Further, with the availability of accurate pro�ling-data at the time of op-

timization, the optimizer never has to resort to inexact heuristics. This leads

to superior results in most cases. Many of today's aggressive optimization algo-

rithms are based on heuristics, in order to achieve good results. However, this

can be a double-edged sword. On the one hand, if the system's runtime behavior

is properly predicted, considerable performance increases may be expected. On

the other hand, if predictions do not come true, these optimizations will lead to

performance penalties. As an example, in trace scheduling, traces (also called

execution-paths) are selected and scheduled in decreasing order of their execu-

tion frequency. The most frequently executed path is scheduled �rst, as if it were

one single basic block. However, in order to preserve semantic correctness, cor-

responding code motions have to be performed in o�-trace paths. If, at runtime,

the trace which was assumed to be executed most often is indeed executed most

of the time, this optimization yields superior results. If that is not the case, and

o�-trace paths are executed more often, then this optimization will deteriorate

the overall performance. Loop-unrolling which depends on loop-frequency esti-

mates and cache parameters, or inlining and partial evaluation which depend on

call-frequency estimates are other examples of optimizations that highly depend

on heuristics.

In order to make the pro�ler as unobtrusive as possible, it uses a combi-

nation of dynamic instrumentation of the object code and statistical pro�ling

techniques. It also varies the granularity at which it monitors the system's exe-

cution, and is only applied when it can contribute to the overall system perfor-

mance, pushing the pro�ling overhead below 5%. Previous studies have reported

pro�ling overheads of 5%-91% [BL94].

5 Results

In the last few months, we have implemented an experimental system that is

based on our proposed architecture. The system, named \Juice", enables the

6



seamless integration of Slim Binary encoded executables into HTML-pages. It is

based on a family of Netscape plug-ins that contain an on-the-
y code genera-

tor and the Juice runtime environment. Juice is currently publicly available for

Intel based computers running Windows 95 and for PowerPC based Macintosh

computers.

Beside being reliable and simple to use, Juice is also e�cient. Table 1 shows

time-measurements for basic operations, such as assignments, additions, and

method calls. The benchmark was executed on an Intel Pentium processor clocked

at 166Mhz (Dell OptiPlex GXM 5166). Since neither the optimizer nor the pro-

�ler have yet been fully implemented and integrated into the Juice architecture,

they have not been taken into account for all of the benchmarks (this special

con�guration that only applies on-the-
y compilation but no optimizations is

subsequently called Juice Level I). Juice does very well in comparison to just-in-

time compilers. The runtime-di�erences are only minimal. Both runtime systems

achieve an average speed-up factor of 12 to 18 in contrast to byte-code interpre-

tation.

Internet Netscape Internet Juice

Explorer 3.0 Navigator 3.0 Explorer Level I

(Interpreted) (Just-In-Time) (Just-In-Time) (No Opt.)

Local Var. Assignment 0.220 0.011 0.006 0.015

Instance Var. Assignment 0.440 0.010 0.007 0.046

Array Elem. Assignment 0.590 0.050 0.051 0.045

Byte Addition 0.680 0.044 0.030 0.021

Short Addition 0.660 0.044 0.030 0.047

Int Addition 0.570 0.015 0.013 0.017

Float Addition 0.570 0.046 0.045 0.054

Double Addition 0.500 0.140 0.044 0.110

Method Call 1.500 0.092 0.091 0.120

Average 0.637 0.050 0.035 0.053

Table 1. Suite 1|Basic Operations. All numbers are given in microseconds per oper-

ation.

Yet, speed-up factors in this range are not realistic in most cases. This has to

be attributed to the fact that larger applications often call Java library routines

that are distributed as native binaries, already optimized for speed. The more

native libraries are called, the less just-in-time compilers boost performance.

The results of the second benchmark, which comprises of several long-running,

computational intensive tasks, emphasizes this statement. It compares the exe-

cution times of Juice, just-in-time compilers, and optimized C++ to the execu-

tion time of byte-code interpretation (Table 2). The speed-ups are remarkably

smaller than the ones measured in the �rst test suite. Performance comprehen-

sibly degrades with the number of library calls down to disappointing ratios of

2:1{4:1. Example are the \String Sort" benchmark that frequently invokes the

native \System.arraycopy" method and the \Fourier Analysis" benchmark that

7



frequently calls the math library (Math.sin, Math.cos, Math.exp).

Netscape Internet Juice C++

Navigator 3.0 Explorer 3.0 Level I Optimized

(Just-In-Time) (Just-In-Time) (No Opt.)

Numeric Sort 11.17 13.21 9.63 79.69

String Sort 3.50 4.72 1.55 6.70

Bit�eld Operations 17.61 15.92 20.82 64.94

Fourier Analysis 0.87 2.76 2.45 4.27

IDEA Encryption 4.54 3.24 6.69 16.30

Hu�man Compression 11.87 16.14 20.68 35.32

LU Decomposition 7.63 7.18 6.18 36.69

Average 8.43 9.19 10.05 35.33

Table 2. Suite 2|Computational Intensive Operations. All numbers are given in mul-

tiples of the performance of interpreted byte-codes using Internet Explorer.

This benchmark also unequivocally demonstrates that native code, compiled

from an abstract syntax tree, is at least equivalent in quality to code generated

by just-in-time compilers (Fig. 2). In some cases, the results even surpass the

fastest available Java runtime systems|notably without applying any optimiza-

tions or pro�ling. However, the benchmarks also clearly demonstrate the current

de�ciencies of just-in-time compilers|they cannot yet compete with true opti-

mizing compilers. Optimized C++ code is still an order of magnitude faster. In

order to narrow this gap, aggressive and advanced optimizations are a necessity.

The proposed tree-based intermediate representation ful�lls all the requirements

for achieving this goal.

 1.00

 8.43

 9.20

 10.05

 35.33

Juice Level I
No Optimizations

Native, Optimized C++

Internet Explorer 3.0 
Interpreted

Netscape Navigator 
3.0 With JIT

Internet Explorer 3.0 
With JIT

Fig. 2. Average Speed-Up Results

One of the initial claims of this paper was that a tree-based intermediate

representation not only provides the basis for closing the e�ciency gap between

Java byte-codes and optimized C++ code, but also reduces the overhead for

8



transferring �les over a network. Not only are Slim Binary object �les more than

twice as dense as Java class �les, and a factor of 3 to 4 smaller than traditional

native object �les, Slim Binaries are even smaller than compressed native code.

Figure 3 summarizes the results for the above test suite (consisting of 12 source

�les, approximately 130kBytes in size).

 131

 68

 56

 48

 55

 43

 34

 31

 20

Source Code

PPC601 Binary

i386 Binary

Java Binary

LZSS Compressed Source Code

LZSS Compressed PPC601 Binary

LZSS Compressed Java Binary

LZSS Compressed i386 Binary

Slim Binary

Fig. 3. Size Comparison Between Di�erent Distribution Formats. All numbers are given

in kBytes.

Although Slim Binaries reduce network tra�c by a factor of 2 in terms of

network packets, the di�erences between downloading Java class �les and Juice

Slim Binaries are almost indistinguishable in terms of download-time. This stems

from the fact that for small execution units, it is mostly the time to set up the

connection to a server that accounts for most of the waiting-time. However, with

the introduction of component packaging concepts (compact archive formats for

packaging the components of a Java or Juice application) the size of executable

units will become more signi�cant.

Finally, we have also measured the time that is required to compile the ab-

stract syntax tree into native code. As mentioned earlier, the compilation time is

hardly noticeable by the user. On a PowerPC based computer (Power Macintosh

8500/120) it takes approximately 470ms to compile the 12 benchmark-�les. In

comparison to the time required to download these �les using a fast connection

(4s), or using a slow connection (40s), the overhead of on-the-
y code generation

can be neglected.

6 Conclusions

In the last few months, Java and the Java Virtual Machine have become a

standard environment for building portable Internet \applets" and applications.

However, despite its success, its lack of performance makes it ill-suited for many

performance critical applications. Although just-in-time compilers try to remedy

9



this situation and achieve speed-ups of 10{15 compared to interpreted byte-

codes, they still cannot compete with true optimizing compilers.

In this paper, we have shown, that portability and high performance need

not necessarily be irreconcilable. We have proposed an alternative intermediate

representation that is based on abstract syntax trees rather than on low-level

byte-codes. This intermediate representation, bundled with a dynamic runtime

optimizer and an adaptive pro�ler, builds the basis for advanced and aggressive

optimizations that are di�cult to perform on a lower-level representation|much

of essential information is lost in the transition from source code to byte-codes.

We have shown that our current version of the proposed architecture can com-

pete with today's fastest just-in-time compilers, although no optimizations have

yet been implemented. With the availability and integration of the runtime op-

timizer and the adaptive pro�ler, we will be able to level the performance with

optimized C++ and dismantle the current performance de�ciency of portable

transportability schemes.

Additional information about Juice and research related topics at the Univer-

sity of California at Irvine can be found on the World Wide Web at the following

location: http://www.ics.uci.edu/~juice.

References

[Bra95] M. M. Brandis; Optimizing Compilers for Structured Programming Lan-

guages; (Doctoral Dissertation) Eidgen�ossische Technische Hochschule

Z�urich; 1995

[BL94] T. Ball, J. R. Larus; Optimally Pro�ling and Tracing Programs; In ACM

Transactions on Programming Languages and Systems, 16(4), pp 1319{

1360; July 1994

[CS70] J. Cocke, J. Schwartz; Programming Languages and Their Compilers:

Preliminary Notes; Courant Institute of Mathematical Sciences, New

York University; April 1970

[FK96] M. Franz, Th. Kistler; Slim Binaries; Technical Report 96-24, Department

of Information and Computer Science, UC Irvine; 1996

[Fra94] M. Franz; Code-Generation On-the-Fly: A Key to Portable Software;

(Doctoral Dissertation) Verlag der Fachvereine, Z�urich; 1994

[H�ol94] U. H�olzle; Adaptive Optimization for SELF: Reconciling High Perfor-

mance with Exploratory Programming; (Ph.D. Dissertation) Department

of Computer Science, Stanford University; 1994

[Kis96] Th. Kistler; Dynamic Runtime Optimization; Technical Report 96{54,

Department of Information and Computer Science, UC Irvine; 1996

[LYJ96] T. Lindholm, F. Yellin, B. Joy, K. Walrath; The Java Virtual Machine

Speci�cation; Addison-Wesley; 1996

[Mot93] Motorola, Inc.; PowerPC 601: RISC Microprocessor User's Manual; 1993

[Sun95] Sun Microsystems; The Java Language: An Overview;

http://java.sun.com/doc/Overviews/java/java-overview-1.html; 1995

[Wal86] D. W. Wall; Global Register Allocation at Link Time; In Proceedings of

SIGPLAN `86 Symposium on Compiler Construction, pp 264{275; July

1986

10



[Wel84] T. A. Welch; A Technique for High-Performance Data Compression; IEEE

Computer, 17(6), pp 8{19; June 1984

[Wir88] N. Wirth; The Programming Language Oberon; In Software-Practice and

Experience 18(7), pp 671{690; July 1988

[WL91] M. Wolf, M. Lam; A Data Locality Optimization Algorithm; In Proceed-

ings of the SIGPLAN `91 Conference on Programming Language Design

and Implementation, pp 30{44, Published as SIGPLAN Notices 26(6);

June 1991

11


