
A Pluggable Autoscaling Service for Open Cloud PaaS Systems

Chris Bunch Vaibhav Arora Navraj Chohan Chandra Krintz
Shashank Hegde Ankit Srivastava

Computer Science Department
University of California, Santa Barbara, CA

{cgb, vaibhavarora, nchohan, ckrintz, hegde, ankit} @ cs.ucsb.edu

I. A BSTRACT

In this paper we present the design, implementation, and
evaluation of a pluggable autoscaler within an open cloud
platform-as-a-service (PaaS). We redefine high availability
(HA) as the dynamic use of virtual machines to keep services
available to users, making it a subset of elasticity (the dynamic
use of virtual machines). This makes it possible to investigate
autoscalers that simultaneously address HA and elasticity. We
present and evaluate autoscalers within this pluggable system
that are HA-aware and Quality-of-Service (QoS)-aware for
web applications written in different programming languages.
Hot spares can also be utilized to provide both HA and
improve QoS to web users. Within the open source AppScale
PaaS, hot spares can increase the amount of web traffic that
the QoS-aware autoscaler serves to users by up to 32%.

As this autoscaling system operates at the PaaS layer, it
is able to control virtual machines and be cost-aware when
addressing HA and QoS. This cost awareness uses Spot
Instances within Amazon EC2 to reduce the cost of machines
acquired by 91%, in exchange for increased startup time. This
pluggable autoscaling system facilitates the investigation of
new autoscaling algorithms by others that can take advantage
of metrics provided by different levels of the cloud stack.

II. I NTRODUCTION

Cloud computing is a utility-oriented and service-based
computing methodology that offers users many attractive
features. Foremost, it simplifies the use of large-scale dis-
tributed systems through transparent and adaptive resource
management. Infrastructure-as-a-Service (IaaS) vendorsoffer
users access to virtual machines on-demand, on which users
configure, install, and deploy software. Amazon Web Services,
Microsoft Azure, and Google Compute Engine provide IaaS
services that follow this model, offering virtual machinesthat
run different operating systems.

Platform-as-a-Service (PaaS) clouds operate at a higher
level of abstraction, offering users a fully managed software
stack. Google App Engine is a popular public PaaS vendor that
provides automated hosting of web applications written in the
Python, Java, and Go programming languages. Google App
Engine is able to scale web servers automatically by restricting
the runtime stack. Hosted applications cannot read or writeto
a local filesystem, providing a stateless application server.

While cloud IaaS and PaaS systems have seen sizable
increases in usage, they have also suffered from a number of
outages, with some lasting several days [7] [8]. IaaS vendors
recommend utilizing resources across multiple datacenters and

autoscaling products to provide fault detection, recovery, and
elasticity. Yet to make these offerings general-purpose, the
metrics that these products can autoscale with are limited to
VM-level metrics (e.g., CPU and memory usage).

As a motivating example, consider a typical application
utilizing an IaaS and a LAMP stack. Once this application
becomes popular, the system administrator needs to manually
scale this application out, which requires them to become
experts at scaling load balancers, application servers, and
database nodes. By contrast, if the application itself runsat
the PaaS layer, then the burden of autoscaling is removed from
the developer and is placed onto the PaaS vendor.

We mitigate the problem of autoscaling by reinterpreting
high availability (HA) under the veil of elasticity, and propos-
ing a pluggable autoscaling service that operates within at the
PaaS layer. Operating at the PaaS layer enables the autoscaling
service to use high-level, application-specific metrics aswell
as low-level, cloud-specific metrics. Furthermore, because the
autoscaling service operates at the PaaS layer, it can perform
both inter-VM scaling and intra-VM scaling. Additionally,
we elect to utilize the Google App Engine PaaS, so that
our autoscaling service can operate on the one million active
applications that currently run on Google App Engine [9].

This work targets the AppScale cloud system, but the
techniques detailed here are extensible to other PaaS systems.
AppScale, originally detailed in [6] and extended in [2][5],
is an open source implementation of the Google App Engine
APIs, enabling any application written for Google App Engine
to execute over AppScale. AppScale is extensible to other
application domains; in [3], it was extended to support high-
performance computing (HPC) frameworks, including MPI
and X10 [4]. AppScale runs over the public Amazon EC2
IaaS as well as the private Eucalyptus IaaS.

We begin by detailing the design of our pluggable autoscal-
ing service and its implementation within the open source
AppScale PaaS. We then evaluate autoscalers that implement
support for HA, Quality-of-Service (QoS), and cost awareness,
discuss related work, and conclude.

III. D ESIGN

This work redefines HA as the acquisition of virtual ma-
chines to keep services available to end-users, making it a
special case of elasticity (the acquisition and release of virtual
machines). We discuss how we use this idea within a cloud
PaaS to provide HA via elasticity and our implementation of
this idea in the open source AppScale PaaS. We then detail
the pluggable autoscaling system that AppScale enables, along



2

Role Name Description Implemented Via
Load Balancer Routes users to application servers. haproxy

AppServer Runs Google App Engine applications written in Python, Java, and Go. Modified AppServer
Database A persistent datastore for application data. Pluggable [2]

AppCaching A transient key-value cache for commonly accessed data. memcached
Service Bus A FIFO queue service. VMWare RabbitMQ

Metadata A datastore optimized for small items (<1KB). Apache ZooKeeper
AppController Starts and stops all other roles for its node. Ruby daemon

TABLE I: A listing of the roles within the AppScale PaaS and the open source technologies that implement them.

with a number of autoscalers that can be used within AppScale
to provide HA, Quality-of-Service (QoS), and cost awareness
for hosted applications.

A. Role System

One goal of our work is to use elasticity to implement
HA. To support this aim within a cloud PaaS, it is necessary
to support HA for the full software stack that a cloud PaaS
provides for its users. The approach that we take within the
AppScale PaaS is what we call arole system, where each
part of the software stack is designated a uniquerole that
indicates what responsibilities it takes on, how it should be
“started” (configured and deployed), and “stopped” (its tear-
down process). The roles supported by the AppScale PaaS,
their functionality, and the open source software packagesthat
implement these roles are detailed in Table I.

Roles are started and stopped on each node by a Ruby
daemon named the AppController. Users detail the “placement
strategy” (a map indicating which nodes run each set of roles)
for their AppScale deployment and pass this information to an
AppController. The AppController then sends this information
to all other AppControllers in the system and starts all the roles
for its own node. Because the AppController itself is “role-
aware”, start and stop scripts can take advantage of this to
enforce dependencies between roles.

B. Using Role Metadata to Support Pluggable Autoscaling

Storing metrics about every role within the AppScale PaaS
enables any AppController to gather metrics about the global
state of the AppScale deployment. As the AppController role
is responsible for starting and stopping all other roles within
its node, we extend it here to make it also responsible for
maintaining all roles within its node. Furthermore, we make
AppControllers responsible for maintaining HA within the
AppScale PaaS as a whole. Specifically, after each AppCon-
troller starts all the roles necessary for its own node, it creates
a persistent connection with the Metadata service, so that it if
that node ever fails, the other AppControllers will be notified
of its failure.

This work extends the AppController to spawn a new thread,
known as theautoscaler, that is responsible for making scaling
decisions. It can view metrics about any role and any node via
the Metadata service, and can use AppController functions
to spawn and configure new nodes. Specifically, the types of
metrics that are available to the autoscaler are:

• Application-level metrics: Information about hosted
Google App Engine applications, including their API
usage (e.g., datastore, caching, e-mail). The number of

application servers serving each application is also avail-
able, as well as the average request latency.

• PaaS-level metrics: Information about the virtual ma-
chines hosting AppScale. This includes role-specific
statistics (e.g., Load Balancer usage, Metadata usage) and
historical data about previous scheduling decisions (e.g.,
the times/dates of previous node failures).

• IaaS-level metrics (if running on an open IaaS): Informa-
tion about the physical machines that run the open IaaS.
For Eucalyptus, this includes usage information on its
Cloud Controller, Cluster Controller, Storage Controller,
and Node Controller services.

IV. FRAMEWORK INSTANTIATIONS

The pluggable autoscaling system designed here can make
scaling decisions based on application, PaaS, and IaaS-level
statistics. We next detail how certain combinations of these
metrics can be utilized to implement autoscaling algorithms
to serve complementary use cases within the AppScale PaaS.

A. HA and QoS-Aware Autoscalers

One autoscaler supported within AppScale is HA. This
autoscaler polls the Metadata service for a list of all the
nodes that have registered itself as being alive, and looks for
persistent connections named after each of those nodes. If any
of those connections are missing (e.g., because a node has
failed), then the autoscaler polls the Metadata service to see
which roles that node was hosting and returns that information
to the AppController’s main thread. The AppController then
spawns nodes to take the places of each failed node.

Another autoscaler that is supported within AppScale is
QoS enforcement. This autoscaler service polls the Metadata
service for data reported by the Load Balancer role about
how many requests have been served in the lastt seconds
(a customizable value that defaults to 10 seconds) for each
AppServer and how many are currently enqueued over the last
t seconds. It then uses an exponential smoothing algorithm to
forecast how many requests to expect and how many requests
will be enqueued for the nextt seconds. If either expectation
exceeds a customizable threshold (defaulting to5), then the
autoscaler adds an AppServer within the system. If there is
enough CPU and memory free on any node currently running,
then the AppServer is added on a currently running node.

If there is not enough CPU and memory free on any
currently running node, the autoscaler reports that a new node
needs to be spawned to host an AppServer role. This autoscaler
considers both intra-VM scaling (scaling within a node) and
inter-VM scaling (scaling among nodes), in that order. Intra-
VM scaling decisions are considered every minute, while inter-
VM scaling decisions are considered every 15 minutes.



3

B. A Cost-aware Autoscaler

As AppScale operates at the PaaS layer, it is responsible for
the acquisition and utilization of IaaS resources. Therefore,
we have the opportunity to provide an autoscaler that can
make decisions that are cost aware. For example, Amazon
EC2 charges users on a per-hour basis. If the QoS-aware
autoscaler described previously were to decide that resources it
acquires are no longer needed, it would terminate them without
realizing that keeping the resources until the end of the hour
is free under the Amazon pricing model, and that there is no
gain from terminating them before this hour price boundary.

We therefore augment the HA-aware, QoS-aware autoscaler
used within AppScale to also be cost-aware in the following
ways. Whenever a resource would normally be terminated
by the QoS-aware autoscaler, it is instead relieved of all of
its roles and the node becomes a hot spare, which can then
be utilized by the HA-aware autoscaler to quickly respond
to a node failure or by the QoS-aware autoscaler to quickly
respond to increased web traffic. As we always run the HA-
aware autoscaler before the QoS-aware autoscaler, the HA-
aware autoscaler gets priority over these machines.

Amazon EC2’s standard offering provides users with in-
stances in an on-demand fashion. However, they do also offer
an auction-style product, Spot Instances (SI), which users
acquire by placing bids. If the bid that the user places is above
the market price for a particular instance type, then the user
gets the instance. If the market price ever rises above the user’s
bid, then the resource is reclaimed. As these instances can cost
substantially less than the standard, on-demand instances, we
propose a cost-aware autoscaler, which is able to automatically
place bids and utilize SIs for both the HA autoscaler and the
QoS autoscaler. To avoid losing instances to rising market
prices, the cost-aware autoscaler searches through a history
of successful bid prices and bids 20% above the average SI
price paid. We evaluate the performance and cost impacts on
the AppScale PaaS in Section V-C.

V. EXPERIMENTAL EVALUATION

We next empirically evaluate our proposed autoscalers
within AppScale. We begin by presenting our experimental
methodology and then discuss our results.

A. Methodology

To evaluate the pluggable autoscaler system put forth by
this work, we use sample Google App Engine applications
provided by Google. We use implementations of the standard
Guestbook application written in Python and Java. Upon each
web request, the application queries the database for the
most recent posts and displays them to the user. We host
this application on AppScale with a single load balancer,
application server, and database node.

B. Experimental Autoscaler Results

To evaluate the QoS autoscaler, we use the Apache Bench-
mark tool to dispatch 40,000 web requests to the Python and
Java guestbook applications (70 concurrently), and measure
how long it takes for AppScale to serve these requests. The
average results of five runs of this experiment are shown in

Figure 1. The first bar in each graph measures the time for
AppScale to process the 40,000 web requests without the QoS
autoscaler, as a baseline set of values.

The second bar in each graph uses the QoS autoscaler
and only considers inter-VM scaling. It performs significantly
better for the Python Guestbook application, but not for the
Java Guestbook application. For both applications, the high
request rate cause the QoS autoscaler to quickly acquire more
nodes to run AppServer roles, which in turn allows more
requests to be served at a time. However, the Java AppServer
is faster due to the performance difference between the Java
and Python languages, and the Java AppServer is able to use
multithreading, while the Python AppServer is limited to one
thread. Although the QoS autoscaler attempts to alleviate this
problem by adding AppServers within a virtual machine, it is
only able to do it up to a limit.

Paradoxically, the faster Java AppServer processes the
40,000 web requests before the newly spawned AppServers
can have a significant impact (hence the similarities between
Java QoS-off and Java QoS-on). To reduce the spawning time
of these AppServers and increase their impact, we add a hot
spare to the AppScale deployment before running Apache
Benchmark. The results, shown in the third bar, detail a sig-
nificant improvement for both the Python and Java Guestbook
applications when a hot spare is used. The constant presenceof
a hot spare increases the cost to run the AppScale deployment,
but is far less than the costs of business lost due to downtime.

Finally, the fourth bar utilizes the QoS autoscaler to only
perform intra-VM scaling. It performs similarly to the scenario
where the inter-VM scaler is utilized with a hot spare, and in-
curs a lower monetary cost (due to not needing the hot spare).
Work is ongoing to consider the performance implications of
utilizing the inter-VM and intra-VM scalers simultaneously.

C. Experimental Metrics Results

We next move on to the gathering and reporting of metrics
not traditionally considered by autoscaling algorithms, and
their use in ongoing research into autoscalers used by the
pluggable autoscaling solution proposed here. One metric that
is simple yet powerful for a PaaS-layer autoscaler to measure is
virtual machine startup time compared to cost incurred. Here,
we use our cost-aware scheduler to acquire Amazon EC2’s
on-demand instances and Spot Instances (SIs) automatically,
and report the time taken for the instances to boot up and the
monetary cost incurred for one hour’s use of these machines.

Table II shows two clear trends. First, on-demand instances
can be acquired quickly, with low variance in both the time
and cost incurred to utilize these machines. Second, the SIs
take an order of magnitude longer to acquire, but cost an order
of magnitude less. This makes SIs an ideal target to be used
as hot spares within the AppScale PaaS, to be aggressively
spawned and used to reduce the amount of time needed to
recover from failures or ensure a higher QoS.

VI. RELATED WORK

This work proposes and implements a pluggable autoscaling
solution that can be utilized for fault tolerance as well as
elasticity. The fields of fault tolerance and elasticity have been



4

No Scaling Inter−VM Scaling With Hot Spare Intra−VM Scaling
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
T

im
e 

to
 S

er
ve

 R
eq

ue
st

s 
(s

ec
on

ds
)

No Scaling Inter−VM Scaling With Hot Spare Intra−VM Scaling
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

T
im

e 
to

 S
er

ve
 R

eq
ue

st
s 

(s
ec

on
ds

)

Fig. 1: Average time for AppScale to serve 40,000 web requests to the Python (Left) and Java (Right) Guestbook applications.
We consider the case when the QoS autoscaler is off (the default before this work), when it is on (our contribution), when we
proactively start a hot spare, and when we only scale within VMs. Each value represents the average of five runs.

Instance Type Time to Acquire Instances (sec) Monetary Cost ($)
On-Demand 37.03± 1.36 0.3200± 0.0000

Spot 411.31± 103.61 0.0299± 0.0002

TABLE II: Time and monetary cost incurred for the cost-
aware scheduler to utilize Amazon EC2 on-demand and spot
instances. These results reflect the average of ten runs, with
the m1.large instance type in the AWS East Coast region.

well-studied, and a number of research efforts are conceptually
similar to the work proposed here.

[1] and [10] focus on developing new elasticity techniques
for web applications. Two main differences exist between these
works and the pluggable autoscaling system proposed here.
First, this work is the first that we know of to actually run
within a cloud PaaS. [1] runs within the Amazon EC2 cloud
IaaS, and similarly to this work, employs hot spares. While
this work focuses on using hot spares to decrease the startup
time for new nodes, [1] uses hot spares to mitigate potential
SLA violations that can occur if their adaptive autoscaler
puts too much workload on their own nodes. In contrast,
[10] targets machines running over the Xen hypervisor, and
does not use it as a research platform, opting instead to
focus on elasticity algorithms customized for the three-tier
web deployment strategy. Second, these efforts do not seek
to provide a pluggable autoscaling solution for researchers
to experiment with. They seek to provide novel autoscaling
algorithms, and thus do not compete with the system proposed
here. Work is ongoing to adapt the algorithms proposed in
these works as autoscalers within the AppScale PaaS.

VII. C ONCLUSION

We contribute an open source, pluggable autoscaler that runs
at the cloud PaaS layer. By realizing HA as being part of
maintaining an elastic cloud PaaS, we are able to provide an
extensible autoscaling solution that adds both HA-awareness
as well as QoS-awareness for web applications. We find that
utilizing hot spares within our system can ensure a higher QoS

to end users, with an increased performance of up to 32% for
the applications tested.

We also contribute a cost-aware autoscaler that is able
to automatically save users 91% for the instances utilized
in the AppScale PaaS for the HA-aware or QoS-aware au-
toscalers, albeit with an increased time needed to respond
to failures or low QoS. We contribute all of these au-
toscalers to the open source AppScale code base, found at
http://appscale.cs.ucsb.edu.

REFERENCES

[1] BODIK , P., GRIFFITH, R., SUTTON, C., FOX, A., JORDAN, M. I., AND

PATTERSON, D. A. Automatic exploration of datacenter performance
regimes. InProceedings of the 1st workshop on Automated control for
datacenters and clouds (New York, NY, USA, 2009), ACDC ’09, ACM,
pp. 1–6.

[2] BUNCH, C., CHOHAN, N., KRINTZ, C., CHOHAN, J., KUPFERMAN, J.,
LAKHINA , P., LI , Y., AND NOMURA, Y. An Evaluation of Distributed
Datastores Using the AppScale Cloud Platform. InIEEE International
Conference on Cloud Computing (Jul. 2010).

[3] BUNCH, C., DRAWERT, B., CHOHAN, N., KRINTZ, C., PETZOLD, L.,
AND SHAMS, K. Language and runtime support for automatic con-
figuration and deployment of scientific computing software over cloud
fabrics. Journal of Grid Computing 10 (2012), 23–46. 10.1007/s10723-
012-9213-8.

[4] CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA , C., KIEL-
STRA, A., EBCIOGLU, K., VON PRAUN, C., AND SARKAR , V. X10: an
object-oriented approach to non-uniform cluster computing. SIGPLAN
Not. 40 (October 2005), 519–538.

[5] CHOHAN, N., BUNCH, C., KRINTZ, C., AND NOMURA, Y. Database-
Agnostic Transaction Support for Cloud Infrastructures. In IEEE
International Conference on Cloud Computing (Jul. 2011).

[6] CHOHAN, N., BUNCH, C., PANG, S., KRINTZ, C., MOSTAFA, N.,
SOMAN , S.,AND WOLSKI, R. AppScale: Scalable and Open AppEngine
Application Development and Deployment. InICST International
Conference on Cloud Computing (Oct. 2009).

[7] Final Thoughts on the Five-Day AWS Out-
age. http://www.eweek.com/c/a/Cloud-Computing/
Final-Thoughts-on-the-FiveDay-AWS-Outage-236462/.

[8] Heroku: Widespread Application Outage. https://status.heroku.com/
incident/151.

[9] Google I/O 2012 Keynote Transcription. http://oakleafblog.blogspot.
com/2012/07/google-io-2012-day-2-keynote-by-urs.html.

[10] URGAONKAR, B., SHENOY, P., CHANDRA , A., GOYAL , P., AND

WOOD, T. Agile dynamic provisioning of multi-tier internet applica-
tions. ACM Trans. Auton. Adapt. Syst. 3, 1 (Mar. 2008).


