A Pluggable Autoscaling Service for Open Cloud PaaS Systems

Chris Bunch Vaibhav Arora Navraj Chohan Chandra Krintz
Shashank Hegde Ankit Srivastava
Computer Science Department
University of California, Santa Barbara, CA
{cgb, vaibhavarora, nchohan, ckrintz, hegde, gniat cs.ucsb.edu

I. ABSTRACT autoscaling products to provide fault detection, recavand

In this paper we present the design, implementation, afRsticity. Yet to make these offerings general-purpoke, t
evaluation of a pluggable autoscaler within an open clolpetrics that these products can autoscale with are limied t
platform-as-a-service (PaaS). We redefine high avaitgbiliVM-level metrics (e.g,, CPU and memory usage).
(HA) as the dynamic use of virtual machines to keep servicesAS @ motivating example, consider a typical application
available to users, making it a subset of elasticity (theadyic Utilizing an laaS and a LAMP stack. Once this application
use of virtual machines). This makes it possible to investig Pecomes popular, the system administrator needs to mgnuall
autoscalers that simultaneously address HA and elastibiey Scale this application out, which requires them to become
present and evaluate autoscalers within this pluggablesys €xperts at scaling load balancers, application serverd, an
that are HA-aware and Quality-of-Service (QoS)-aware félatabase nodes. By contrast, if the application itself rns
web applications written in different programming langesg the Paas layer, then the burden of autoscaling is removed fro
Hot spares can also be utilized to provide both HA arii€ developer and is placed onto the PaaS vendor. .
improve QoS to web users. Within the open source AppScaleVe mitigate the problem of autoscaling by reinterpreting
PaaS, hot spares can increase the amount of web traffic fhigh availability (HA) under the veil of elasticity, and gros-
the QoS-aware autoscaler serves to users by up to 32%. ing apluggable autoscaling service that operates within at the

As this autoscaling system operates at the PaaS layer#aS layer. Operating at the PaaS layer enables the airgscal
is able to control virtual machines and be cost-aware whéRrVvice to use high-level, application-specific metricsvedi
addressing HA and QoS. This cost awareness uses Spdfow-level, cloud-specific metrics. Furthermore, beeahe
Instances within Amazon EC2 to reduce the cost of machin@d4toscaling service operates at the PaaS layer, it canrperfo
acquired by 91%, in exchange for increased startup times THOth inter-VM scaling and intra-VM scaling. Additionally,
pluggable autoscaling system facilitates the investgatf We elect to utilize the Google App Engine PaaS, so that
new autoscaling algorithms by others that can take advant&/" autoscaling service can operate on the one million éctiv

of metrics provided by different levels of the cloud stack. applications that currently run on Google App Engine [9].
This work targets the AppScale cloud system, but the

Il. INTRODUCTION techniques detailed here are extensible to other PaaSrsyste

Cloud computing is a utility-oriented and service-baseflppScale, originally detailed in [6] and extended in [2][5]
computing methodology that offers users many attracti¥® an open source implementation of the Google App Engine
features. Foremost, it simplifies the use of large-scale di&Pls, enabling any application written for Google App Eregin
tributed systems through transparent and adaptive resouxe execute over AppScale. AppScale is extensible to other
management. Infrastructure-as-a-Service (laaS) veroftes application domains; in [3], it was extended to support high
users access to virtual machines on-demand, on which ugsgsformance computing (HPC) frameworks, including MPI
configure, install, and deploy software. Amazon Web Sesyiceand X10 [4]. AppScale runs over the public Amazon EC2
Microsoft Azure, and Google Compute Engine provide laa@aS as well as the private Eucalyptus laaS.
services that follow this model, offering virtual machirtbst We begin by detailing the design of our pluggable autoscal-
run different operating systems. ing service and its implementation within the open source

Platform-as-a-Service (PaaS) clouds operate at a higligypScale PaaS. We then evaluate autoscalers that implement
level of abstraction, offering users a fully managed sofevasupport for HA, Quality-of-Service (QoS), and cost awas=ye
stack. Google App Engine is a popular public PaaS vendor thfi$cuss related work, and conclude.
provides automated hosting of web applications writterhim t
Python, Java, and Go programming languages. Google App
Engine is able to scale web servers automatically by réistgic ~ This work redefines HA as the acquisition of virtual ma-
the runtime stack. Hosted applications cannot read or wwitechines to keep services available to end-users, making it a
a local filesystem, providing a stateless application serve special case of elasticity (the acquisition and releaserafal

While cloud laaS and PaaS systems have seen sizaflachines). We discuss how we use this idea within a cloud
increases in usage, they have also suffered from a numbeiPahS to provide HA via elasticity and our implementation of
outages, with some lasting several days [7] [8]. l1aaS venddhis idea in the open source AppScale PaaS. We then detail
recommend utilizing resources across multiple dataceiated the pluggable autoscaling system that AppScale enabtasy al

Il1. DESIGN

Role Name Description Implemented Via
Load Balancer Routes users to application servers. hapr oxy
AppServer Runs Google App Engine applications written in Python, Javel Go.| Modified AppServer
Database A persistent datastore for application data. Pluggable [2]
AppCaching A transient key-value cache for commonly accessed data. nentached
Service Bus A FIFO queue service. VMWare RabbitMQ
Metadata A datastore optimized for small items<{KB). Apache ZooKeeper
AppController Starts and stops all other roles for its node. Ruby daemon

TABLE I: A listing of the roles within the AppScale PaaS ane thpen source technologies that implement them.

with a number of autoscalers that can be used within AppScale application servers serving each application is also avail
to provide HA, Quality-of-Service (QoS), and cost awaresnes able, as well as the average request latency.

for hosted applications. o PaaS-level metrics: Information about the virtual ma-
chines hosting AppScale. This includes role-specific
A. Role System statistics (e.g., Load Balancer usage, Metadata usage) and

historical data about previous scheduling decisions,(e.g.
the times/dates of previous node failures).

laaS-level metrics (if running on an open laaS): Informa-
tion about the physical machines that run the open laaS.
For Eucalyptus, this includes usage information on its
Cloud Controller, Cluster Controller, Storage Contrgller
and Node Controller services.

One goal of our work is to use elasticity to implement
HA. To support this aim within a cloud PaasS, it is necessary
to support HA for the full software stack that a cloud PaaS *
provides for its users. The approach that we take within the
AppScale PaaS is what we callrale system, where each
part of the software stack is designated a unigade that
indicates what responsibilities it takes on, how it shouéd b
“started” (configured and deployed), and “stopped” (itstea IV. FRAMEWORK INSTANTIATIONS

down process). The roles supported by the AppScale PaaSpg p1yggable autoscaling system designed here can make

their functionality, and the open source software packéigs g.5jing decisions based on application, PaaS, and la@S-lev

implement these roles are detailed in Table . statistics. We next detail how certain combinations of ¢hes
Roles are started and stopped on each node by a RyRirics can be utilized to implement autoscaling algorithm

daemon named the AppController. Users detail the “placémgg serve complementary use cases within the AppScale PaaS.
strategy” (a map indicating which nodes run each set of yoles

for their AppScale deployment and pass this informationrto & HA and QoS-Aware Autoscalers

AppController. The AppController then sends this inforipat ~ One autoscaler supported within AppScale is HA. This

to all other AppControllers in the system and starts all iles autoscaler polls the Metadata service for a list of all the

for its own node. Because the AppController itself is “rolenodes that have registered itself as being alive, and looks f

aware”, start and stop scripts can take advantage of thispérsistent connections named after each of those nodeyy If a

enforce dependencies between roles. of those connections are missing (e.g., because a node has
failed), then the autoscaler polls the Metadata servicee® s

B. Using Role Metadata to Support Pluggable Autoscaling which roles that node was hosting and returns that infoonati

Storing metrics about every role within the AppScale Pad8 the AppController's main thread. The AppController then
enables any AppController to gather metrics about the gloPawns nodes to take the places of each failed node. _
state of the AppScale deployment. As the AppController role Another autoscaler that is supported within AppScale is
is responsible for starting and stopping all other roleshinit QoS_ enforcement. This autoscaler service polls the Medadat
its node, we extend it here to make it also responsible f§frvice for data reported by the Load Balancer role about
maintaining all roles within its node. Furthermore, we mak@oW many requests have been served in the dastconds
AppControllers responsible for maintaining HA within thd@ customizable value that defaults to 10 seconds) for each
AppScale PaaS as a whole. Specifically, after each AppctﬁppServer and how many are curren}ly enqueqed over 'Fhe last
troller starts all the roles necessary for its own node,gttes seconds. It then uses an exponential smoothing algorithm to
a persistent connection with the Metadata service, so tfifat jforecast how many requests to expect and how many requests

that node ever fails, the other AppControllers will be netifi will be enqueued for the nextseconds. If either expectation
of its failure. exceeds a customizable threshold (defaulting)othen the

This work extends the AppController to spawn a new threagutoscaler adds an AppServer within the system. If there is

known as theutoscaler, that is responsible for making scalingE"ough CPU and memory free on any node currently running,
decisions. It can view metrics about any role and any node VRN the AppServer is added on a currently running node.
the Metadata service, and can use AppController functions!! theré is not enough CPU and memory free on any

to spawn and configure new nodes. Specifically, the types%’f”em'y running node, the autoscaler reports that a nede no
metrics that are available to the autoscaler are: needs to be spawned to host an AppServer role. This autoscale

o . . onsiders both intra-VM scaling (scaling within a node) and
« Application-level metrics: Information about hostec{/

Google App Engine applications, including their AP
usage (e.g., datastore, caching, e-mail). The number

nter-VM scaling (scaling among nodes), in that order.dntr
l}/l scaling decisions are considered every minute, whilerint
Vol scaling decisions are considered every 15 minutes.

B. A Cost-aware Autoscaler Figure 1. The first bar in each graph measures the time for

As AppScale operates at the PaaS layer, it is responsible ffiPScale to process the 40,000 web requests without the QoS
the acquisition and utilization of laaS resources. Theeefo utoscaler, as a baseline set of values.
we have the opportunity to provide an autoscaler that canlh€ second bar in each graph uses the QoS autoscaler
make decisions that are cost aware. For example, Amazdif only considers inter-VM scaling. It performs signifittgn
EC2 charges users on a per-hour basis. If the Qos_awgggter for the Python .Gugstbook applicatior_w, byt not for t_he
autoscaler described previously were to decide that ressir Java Guestbook application. For both applications, thé hig
acquires are no longer needed, it would terminate them withdeguest rate cause the QoS autoscailer to quickly acquire mor
realizing that keeping the resources until the end of the hdiPdes to run AppServer roles, which in turn allows more
is free under the Amazon pricing model, and that there is f8Juests to be served at a time. However, the Java AppServer
gain from terminating them before this hour price boundary$ faster due to the performance difference between the Java

We therefore augment the HA-aware, QoS-aware autoscal@fl Python languages, and the Java AppServer is able to use
used within AppScale to also be cost-aware in the foIIowiﬁ'“thread'nga while the Python AppServer is limited toeon
ways. Whenever a resource would normally be terminatdéread. Although the QoS autoscaler attempts to allevfage t
by the QoS-aware autoscaler, it is instead relieved of all Bfoblem by adding AppServers within a virtual machine, it is
its roles and the node becomes a hot spare, which can tif&y able to do it up to a limit.
be utilized by the HA-aware autoscaler to quickly respond Paradoxically, the faster Java AppServer processes the
to a node failure or by the QoS-aware autoscaler to quickh,000 web requests before the newly spawned AppServers
respond to increased web traffic. As we always run the HA&n have a significant impact (hence the similarities betwee
aware autoscaler before the QoS-aware autoscaler, the HAva QoS-off and Java QoS-on). To reduce the spawning time
aware autoscaler gets priority over these machines. of these AppServers and increase their impact, we add a hot

Amazon EC2’s standard offering provides users with iriPare to the AppScale deployment before running Apache
stances in an on-demand fashion. However, they do also ofegnchmark. The results, shown in the third bar, detail a sig-
an auction-style product, Spot Instances (SI), which usé}gicgnt ?mprovement for both 'Fhe Python and Java Guestbook
acquire by placing bids. If the bid that the user places iwaboapplications when a hot spare is used. The constant presénce
the market price for a particular instance type, then the ugkhot spare increases the cost to run the AppScale deployment
gets the instance. If the market price ever rises above gresusPut is far less than the costs of business lost due to downtime
bid, then the resource is reclaimed. As these instancesasan ¢ Finally, the fourth bar utilizes the QoS autoscaler to only
substantially less than the standard, on-demand instanees Perform intra-VM scaling. It performs similarly to the seeio
propose a cost-aware autoscaler, which is able to autoaigtic where the inter-VM scaler is utilized with a hot spare, and in
place bids and utilize Sls for both the HA autoscaler and ti§&rs & lower monetary cost (due to not needing the hot spare).
QoS autoscaler. To avoid losing instances to rising markdfork is ongoing to consider the performance implications of
prices, the cost-aware autoscaler searches through ayhistilizing the inter-VM and intra-VM scalers simultaneoysl
of successful bid prices and bids 20% above the averageCSI

price paid. We evaluate the performance and cost impacts 6n
the AppScale Paa$S in Section V-C. We next move on to the gathering and reporting of metrics

not traditionally considered by autoscaling algorithmed a
their use in ongoing research into autoscalers used by the
We next empirically evaluate our proposed autoscalgptuggable autoscaling solution proposed here. One métaic t

within AppScale. We begin by presenting our experimenta simple yet powerful for a PaaS-layer autoscaler to messur
methodology and then discuss our results. virtual machine startup time compared to cost incurredeHer
we use our cost-aware scheduler to acquire Amazon EC2's
A. Methodology on-demand instances and Spot Instances (Sls) automgticall
To evaluate the pluggable autoscaler system put forth byid report the time taken for the instances to boot up and the
this work, we use sample Google App Engine applicatiomsonetary cost incurred for one hour’s use of these machines.
provided by Google. We use implementations of the standardTable 1l shows two clear trends. First, on-demand instances
Guestbook application written in Python and Java. Upon eachn be acquired quickly, with low variance in both the time
web request, the application queries the database for #ed cost incurred to utilize these machines. Second, the Sls
most recent posts and displays them to the user. We htaste an order of magnitude longer to acquire, but cost arrorde
this application on AppScale with a single load balancesf magnitude less. This makes Sls an ideal target to be used
application server, and database node. as hot spares within the AppScale PaaS, to be aggressively
) spawned and used to reduce the amount of time needed to
B. Experimental Autoscaler Results recover from failures or ensure a higher QoS.
To evaluate the QoS autoscaler, we use the Apache Bench-
mark tool to dispatch 40,000 web requests to the Python and VI. RELATED WORK
Java guestbook applications (70 concurrently), and measur This work proposes and implements a pluggable autoscaling
how long it takes for AppScale to serve these requests. Témution that can be utilized for fault tolerance as well as
average results of five runs of this experiment are shown afasticity. The fields of fault tolerance and elasticity ddeen

Experimental Metrics Results

V. EXPERIMENTAL EVALUATION

_— 2200 ‘ _— 2200
g { g
c 2000 1 c 2000 [B
o] [e}
O 1800 b Q 1800f 1
O ()
& 1600} | 1 L 1600t 1
(% | @
v 1400 1 n 14001 E
S 1 S
3 1200(I T : 2 1200} 1
9] I 9]
Y 1000} 1 Y 1000 i i 1
T
2 800+ 1 q>J 800 I —
i} @ 1
) 600f 1 o) 600f 1 = 1
T

9 400 1 9 400 B
Q Q
£ 200t 1 £ 200t —
[Fo,

No Scaling Inter-VM Scaling With Hot Spare Intra-VM Scaling No Scaling Inter-VM Scaling With Hot Spare Intra-VM Scaling

Fig. 1: Average time for AppScale to serve 40,000 web reguesthe Python (Left) and Java (Right) Guestbook applioatio
We consider the case when the QoS autoscaler is off (the ldbffore this work), when it is on (our contribution), wherew
proactively start a hot spare, and when we only scale withiflsVVEach value represents the average of five runs.

Instance Type| Time to Acquire Instances (sed) Monetary Cost ($) - . 0
On-Derand 37031136 03200 0.0000 to end users, with an increased performance of up to 32% for

Spot 21131+ 103.61 0.0299+ 0.0002 | the applications tested.

TABLE I Ti d . d for th We also contribute a cost-aware autoscaler that is able

- 'Ime an monetary cost incurred for the costy, automatically save users 91% for the instances utilized
aware scheduler to utilize Amazon EC2 on-demand and spoty,, AppScale PaaS for the HA-aware or QoS-aware au-
instances. These results reflect the average of ten runls, Vilg

. . ' "tOscalers, albeit with an increased time needed to respond
the L. | ar ge instance type in the AWS East Coast regioy failures or low QoS. We contribute all of these au-

toscalers to the open source AppScale code base, found at
well-studied, and a number of research efforts are cona#iptu ht t p: / / appscal e. cs. ucsb. edu.

similar to the work proposed here. REFERENCES
[1] and [10] focus on developing new elasticity techniquess) sopix, P., GriFFITH, R., TTON, C., FOX, A., JORDAN, M. I., AND
for web applications. Two main differences exist betweasth PATTERSON, D. A. Automatic exploration of datacenter performance

works and the pluggable autoscaling system proposed here. g‘;%gg‘;f-erL”;gccﬁé‘gz\lo;:lhsolri‘ ""\’ﬁ;"ﬂ“gﬁ Ogogggo’k%ﬁcc%‘giéo&
First, this work is the first that we know of to actually run o5 1 ¢ T ’ ' ' ’

within a cloud PaasS. [1] runs within the Amazon EC2 cloud2] BuNncH, C., CHOHAN, N., KRINTZ, C., CHOHAN, J., KUPFERMAN, J.,

i ; ; LAKHINA, P., LI, Y., AND NOMURA, Y. An Evaluation of Distributed
'af"‘s’ and Slm”arly to thls work, employs hot spares. While Datastores Using the AppScale Cloud Platform.|BEE International
this work focuses on using hot spares to decrease the startup conference on Cloud Computing (Jul. 2010).

time for new nodes, [1] uses hot spares to mitigate potentig] BuncH, C., DRAWERT, B., CHOHAN, N., KRINTZ, C., FETZOLD, L.,

SLA violations that can occur if their adaptive autoscaler AND SHAMS, K. Language and runtime support for automatic con-
. figuration and deployment of scientific computing softwarerasteud
puts too much workload on their own nodes. In contrast, faprics. Journal of Grid Computing 10 (2012), 23-46. 10.1007/s10723-

[10] targets machines running over the Xen hypervisor, and 012-9213-8.

does not use it as a research platform, opting instead #§ CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA, C., KIEL-
. . . . STRA, A., EBCIOGLU, K., VON PRAUN, C.,AND SARKAR, V. X10: an

focus on elasticity algorithms customized for the three-ti object-oriented approach to non-uniform cluster computiSigsPLAN

web deployment strategy. Second, these efforts do not seek Not. 40 (October 2005), 519-538.

; ; ; 5] CHOHAN, N., BUNCH, C., KRINTZ, C., AND NOMURA, Y. Database-
to prowdg a plulggable autoscaling SO.Iu“on for reseaﬂ:heﬁ Agnostic Transaction Support for Cloud Infrastructuresn IEEE
to ex_perlment with. They seek to proy|de novel autoscaling |nternational Conference on Cloud Computing (Jul. 2011).
algorithms, and thus do not compete with the system proposé& CHoHan, N., BuncH, C., IANG, S., KRINTZ, C., MOSTAFA, N.,

here. Work i naoin h laorithm r in SOM,_AN,_S.,AND WoLskl, R. AppScale: Scalable and OpenAp_pEngine
ere 0 $ ongoing to adapt the algorithms proposed Application Development and Deployment. WCST International

these works as autoscalers within the AppScale PaaS. Conference on Cloud Computing (Oct. 2009).
[7] Final Thoughts on the Five-Day AWS Out-
VII. CONCLUSION age. http://www.eweek.com/c/a/Cloud-Computing/

ib | bl | h Final-Thoughts-on-the-FiveDay-AWS-Outage-236462/.
We contribute an open source, pluggable autoscaler that ru[g] Heroku: Widespread Application Outage. https://ssateroku.com/

at the cloud PaaS layer. By realizing HA as being part of incident/151.

maintaining an elastic cloud PaaS, we are able to provide dfl Google /O 2012 Keynote Transcription. http://oaklsial.blogspot.
. . . com/2012/07/google-io-2012-day-2-keynote-by-urs.html.

extensible autoscaling solution that adds both HA-awamneFlo] URGAONKAR. B.. SHENOY P.. CHANDRA. A. GOYAL. P. AND

as well as QoS-awareness for web applications. We find that wWoob, T. Agile dynamic provisioning of multi-tier internet appdic

utilizing hot spares within our system can ensure a highe Qo tions. ACM Trans. Auton. Adapt. Syst. 3, 1 (Mar. 2008).

