
Hybrid Cloud Support for Large Scale Analytics and Web Processing

Navraj Chohan Anand Gupta Chris Bunch Kowshik Prakasam
Chandra Krintz

Computer Science Department
University of California, Santa Barbara, CA

1 Abstract
Platform-as-a-service (PaaS) systems, such as Google
App Engine (GAE), simplify web application develop-
ment and cloud deployment by providing developers
with complete software stacks: runtime systems and
scalable services accessible from well-defined APIs. Ex-
tant PaaS offerings are designed and specialized to sup-
port large numbers of concurrently executing web appli-
cations (multi-tier programs that encapsulate and inte-
grate business logic, user interface, and data persistence).
To enable this, PaaS systems impose a programming
model that places limits on available library support, ex-
ecution duration, data access, and data persistence. Al-
though successful and scalable for web services, such
support is not as amenable to online analytical processing
(OLAP), which have variable resource requirements and
require greater flexibility for ad-hoc query and data anal-
ysis. OLAP of web applications is key to understanding
how programs are used in live settings.

In this work, we empirically evaluate OLAP support
in the GAE public cloud, discuss its benefits, and limita-
tions. We then present an alternate approach, which com-
bines the scale of GAE with the flexibility of customiz-
able offline data analytics. To enable this, we build upon
and extend the AppScale PaaS – an open source private
cloud platform that is API-compatible with GAE. Our
approach couples GAE and AppScale to provide a hybrid
cloud that transparently shares data between public and
private platforms, and decouples public application exe-
cution from private analytics over the same datasets. Our
extensions to AppScale eliminate the restrictions GAE
imposes and integrates popular data analytic program-
ming models to provide a framework for complex ana-
lytics, testing, and debugging of live GAE applications
with low overhead and cost.

2 Introduction
Cloud computing has revolutionized how corporations
and consumers obtain compute and storage resources.

Infrastructure-as-a-service (IaaS) facilitates the rental of
virtually unlimited IT infrastructure on-demand with
high availability. Service providers, such as Amazon
AWS [1] and Rackspace [28], consolidate and share vast
resource pools across large numbers of users, who em-
ploy these resources on demand on a pay-per-use basis.
Customers provision virtual machines (VMs) via API
calls or browser portals, which they then configure, con-
nect, monitor, and manage manually according to their
software deployment needs.

Platform-as-a-service (PaaS) offerings, such as Mi-
crosoft Azure [2] and Google App Engine [16], automate
configuration, deployment, monitoring, and elasticity by
abstracting away the infrastructure through well-defined
APIs and a higher-level programming model. PaaS
providers restrict the behavior and operations (libraries,
functionality, and quota-limit execution) of hosted appli-
cations, both to simplify cloud application deployment,
and to facilitate scalable use of the platform by very large
numbers of concurrent users and applications. Google
App Engine (GAE), the system we focus on herein, cur-
rently supports over 7.5 billion page views per day across
over 500,000 active applications [15] as a result of their
platform’s design. As is the case for public IaaS systems,
public PaaS users pay only for the resources and services
they use.

A key functionality lacking from the original design
of PaaS systems is online analytics processing (OLAP).
OLAP enables application developers to model, analyze,
and identify patterns in their online web applications as
users access them. Such analysis helps developers tar-
get specific user behavior with software enhancements
(code/data optimization, improved user interfaces, bug
fixes, etc.) as well as applying said analysis for commer-
cial purposes (e.g. marketing and advertising). These
improvements and adaptations are crucial to building a
customer base, facilitating application longevity, and ul-
timately commercial success for a wide range of compa-
nies. In recognition of this need, PaaS systems are in-

1

creasingly offering new services that facilitate OLAP ex-
ecution models by and for applications that execute over
them [17, 26, 3]. However, such support is still in its in-
fancy and is limited in flexibility, posing questions as to
what can be done within quota limits and how the service
connects with the online applications they analyze.

In this paper, we investigate the emerging support of
OLAP for GAE, identify its limitations, and its impact
on the cost and performance of applications in this set-
ting. We propose an alternate approach to OLAP, in the
form of a hybrid cloud consisting of a public cloud exe-
cuting the live web application or service and a remote
analytics cloud which shares application data. To en-
able this, we build upon and extend AppScale, an open
source PaaS offering that is API-compatible with GAE.
AppScale executes over a variety of infrastructures us-
ing VM-based application and component isolation. This
portability gives developers the freedom and flexibility
to explore, research, and tinker with the system level de-
tails of cloud platforms [9, 10, 22]. Our hybrid OLAP
solution provides multiple options for data transfer be-
tween the two clouds, facilitates deployment of the an-
alytics cloud over Amazon’s EC2 public cloud or an
on-premise cluster, and integrates the popular Hive dis-
tributed data warehousing technology to enable a wide
range of complex analytics applications to be performed
over live GAE datasets. By using a remote AppScale
cloud for analytics of live data, we are able to specialize
it for this execution model and avoid the quotas and re-
strictions of GAE, while maintaining the ease of use and
familiarity of the GAE platform.

In the sections that follow, we first provide background
on GAE and AppScale. We then describe the design and
implementation of our hybrid OLAP system. We follow
this with an evaluation of existing solutions for analyt-
ics, our Hive processing, and an analysis of the cost and
overhead of cross-cloud data synchronization. Finally,
we present related work and conclude.

3 Background

Google App Engine was released in 2008, with the goal
of allowing developers to run applications on Google’s
infrastructure via a fully managed and automatically
scaled system. While the first release only supported the
Python programming language, the GAE team has since
introduced support for the Java and Go languages. Ap-
plication developers can access a variety of different ser-
vices (cf., Table 1) via a set of well-defined APIs. The
API implementations in the GAE public cloud are opti-
mized for scalability, shared use, and fault tolerance. The
APIs that we focus on in this paper are the Datastore (for
data persistence), URL Fetch (for communication), and
Task Queues (for background processing).

Table 1: Google App Engine APIs.

Name Description
Datastore Schemaless object storage
Memcache Distributed caching service
Blobstore Storage of large files
Channel Long lived JavaScript connections
Images Simple image manipulation
Mail Receiving and sending email
Users Login services with Google accounts

Task Queues Background tasks
URL Fetch Resource fetching with HTTP request

XMPP XMPP-compatible messaging service

AppScale is an open source implementation of the
GAE APIs that was released in early 2009, enabling
users to run GAE applications on their local cluster or
over the Amazon EC2 public IaaS cloud. AppScale
implements the APIs in Table 1 using a combination
of open source technologies and custom software. It
provides a database-agnostic layer, which multiple dis-
parate database/datastore technologies (e.g. Cassandra,
HBase, Hypertable, MySQL cluster, and others) can plug
into [6]. It implements the Task Queue API by executing
a task on a background thread in the same application
server as the application instance that makes the request.
This support, though simple, is inherently inefficient and
not scalable, because it is neither distributed nor load-
balanced. Moreover, it does not share state between ap-
plication servers, which leads to incorrect application be-
havior when more than one application server is present.
We replace this API implementation as part of this work,
addressing this limitation.

3.1 App Engine Analytics Libraries

The Task Queue API facilitates the use of multiple, in-
dependent user-defined queues, each with a rate limit of
100 tasks per second (which can be increased in some
cases [16]) in GAE. A task consists of an application
URL, which is called by the system upon task dequeue.
A 200 HTTP response code (OK) indicates that the task
completes successfully. Other HTTP codes cause re-
enqueuing of the task for additional execution attempts.
The number of retries, a time delay, and a task name can
be optionally specified by developers as part of the task
when it is enqueued. Use of task names is important
to prevent the same task from being enqueued multiple
times (the lack of such measures can result in a task fork
bomb, in which a task is infinitely enqueued). One way
to circumvent the 10 minute time limit for a task is to
chain tasks, in which the initial task performs a portion
of the work, and enqueuing another task to resume where

2

Figure 1: An example state machine in Fantasm.

it has left off. Tasks should be idempotent, or only per-
form side effects (e.g., updating shared, persistent data)
as the final operation – since any failure of a previous
statement will cause the task to be re-enqueued (poten-
tially updating shared state incorrectly).

GAE application developers are responsible for pro-
gram/task correctness when failures occur. This requires
that developers make proper use of task names and chain-
ing, and implement tasks that are idempotent. Doing
so for all but the most trivial of applications can be a
challenging undertaking for all but expert developers. To
address this limitation, there are libraries that provide a
layer of abstraction over the GAE task queue interface
and implementation. These libraries are Fantasm [14],
GAE Pipeline [26], and GAE MapReduce [17]. Each
automates naming and failure handling by saving inter-
mediate state via the Memcache and the Datastore APIs.

Fantasm, based on [18], employs a programming
model that is based on finite state machines (FSM). A
programmer describes a state machine via the YAML
markup language by identifying states, events, and ac-
tions. The initial state typically starts with a query to
the datastore, to gather input data for analysis. Fantasm
steps through the query and constructs a task for each en-
tity (datastore element) that the query processes in each
state. Optionally, there can be a fan-in state, which takes
multiple previous states and combines them via a reduc-
tion method. Figure 1 shows an example FSM. A limi-
tation of Fantasm is how it iterates through data. It does
not shard datasets, but instead, pages through a query se-
rially, leading to inefficient execution of state machines.

class WCUrl(pipeline.Pipeline):
def run(self, url):
r = urlfetch.fetch(url)
return len(r.data.split())

class Sum(pipeline.Pipeline):
def run(self, *values):
return sum(values)

class MySearchEngine(pipeline.Pipeline):
def run(self, *urls):
results = []
for u in urls:

Do word count on each URL
results.append((yield WCUrl(u)))

yield Sum(*results) # Barrier waits

Figure 2: Code example of Pipeline parallellizing work.
The GAE Pipeline library facilitates chaining of tasks

into a workflow. Pipeline stages (tasks) yield for barrier
synchronization, at which point the output is unioned and
passed onto the next stage in the pipeline. Figure 2 shows
an example of parallel processing via Pipeline that counts
the number of unique words on multiple web pages. The
yield operator spawns background tasks, whose results
are combined and passed to theSum operation. Imple-
menting similar code via just the Task Queue API is pos-
sible, but is more complicated for users.

The GAE MapReduce library performs parallel pro-
cessing and reductions across datasets. Mapper functions
operate on a particular kind of entity and reducer func-
tions operate on the output of mappers. Alternative input
readers (e.g. for use of Blobstore files) and sharding sup-
port is also available. The GAE MapReduce library uses
the Task Queue API for its implementation, as opposed
to using Google’s internal MapReduce infrastructure or
Hadoop, an open source implementation. Both are more
flexible than GAE MapReduce, and allow for a wider
range of analytics processing than this library. Currently,
a key limitation of GAE MapReduce is that all entities in
the Datastore are processed, even when they are not of
interest to the analysis.

Each of these abstractions for background processing
and data analytics in GAE introduce a new programming
model with its own learning curve. Moreover, analytics
processing on the dataset is intertwined with the applica-
tion, (that users use to produce/access the dataset) which
combines concerns, can introduce bugs, and can have ad-
verse affects on programmer productivity, user experi-
ence, and monetary cost of public cloud use. To address
these limitations, we investigate an alternate approach to
performing online data analytics for applications execut-
ing within GAE that employs a combination of GAE and
AppScale concurrently.

3

4 Hybrid PaaS Support for Web Applica-
tion Data Analysis

In this work, we investigate how to combine two PaaS
systems together into a hybrid cloud platform that fa-
cilitates the simple and efficient execution of large-scale
analysis of live web application data. Our hybrid model
executes the web application on the GAE public cloud
platform, synchronizes the data between this applica-
tion/platform and a remote AppScale cloud, and facili-
tates analysis of the live application data using the GAE
analytics libraries, as well as other popular data process-
ing engines (e.g. Hadoop/Hive) using AppScale. Users
can deploy AppScale on a local, on-premise cluster, or
over Amazon EC2. In this section, we overview the two
primary components of our hybrid cloud system: the data
synchronization support and the analytics processing en-
gine. We then discuss our design decisions and how our
solution works within the restrictions of the GAE plat-
form.

4.1 Cross-Cloud Data Synchronization

The key to our approach to analytics of live web applica-
tions is the combined use of GAE and AppScale. Since
the two cloud platforms share a common API, applica-
tions that execute on one can also do so on the other,
without modification. This portability also extends to
the data model. That is, given the compatibility between
AppScale and GAE, we can move data between the two
different platforms for the same application. We note
that for vast datasets such an approach may not be feasi-
ble. However, it is feasible for a large number of GAE
applications today. The cross-platform portability facil-
itates and simplifies our data synchronization support,
and makes it easier for developers to write application
and analytics code, because the runtime, APIs, and code
deployment process is similar and familiar.

We consider two approaches to data synchronization:
bulk and incremental data transfer. For bulk transfer,
GAE currently provides tools as part of its software de-
velopment kit (SDK) to upload and download data into
and out of the GAE datastore en masse. We have ex-
tended AppScale with similar functionality. Our ex-
tensions provide the necessary authentication and data
ingress/egress support, as well as support for the GAE
Remote API [16], which enables remote access to an ap-
plication’s data in the datastore. The latter must be em-
ployed by any application for which hybrid analytics will
be used. Using the Remote API, a developer can specify
what data can be downloaded (the default is all). Bulk
download from, and upload to, is subject to GAE mone-
tary charges for public cloud use.

There are several limitations to bulk data transfer as a

mechanism for data synchronization between the two ap-
plication instances. First, in its current incarnation, trans-
fer is all or nothing (of the entities specified). As such,
we are able to only perform analytics off-line or post-
mortem if we are to copy the dataset once (the most in-
expensive approach). To perform analytics concurrently
with web application execution, we are forced to down-
load the same data repeatedly over time (as the appli-
cation changes it). This can be both costly and slow. Fi-
nally, the data upload/download tools from GAE are slow
and error prone, with frequent interruptions and data loss.

To address these limitations, we investigate an alter-
native approach to synchronizing data between GAE and
AppScale: incremental data transfer. To enable this, we
have developed a library for GAE applications that runs
transparently in both GAE and AppScale. Our incre-
mental data transfer library intercepts all destructive op-
erations (writes and deletes) and communicates them to
the AppScale analytics cloud. In our current prototype,
we do not support the limited form of transactions that
GAE applications can perform [13]. As part of our on-
going and future work, we are considering how to re-
flect committed transactional updates in the AppScale
analytics cloud. Developers specify the location of the
AppScale analytics cloud as part of their GAE applica-
tion configuration file. Since the library code executes as
part of the application in GAE, it must adhere to all of
the GAE platform restrictions. Furthermore, communi-
cation to the AppScale analytics cloud is subject to GAE
charges for public cloud use.

Our goal with this library is to avoid interruption or
impact on GAE web application performance and scale,
from the users’ perspective. We consider two forms of
synchronization with different consistency guarantees:
eventual consistency (EC) and best effort (BE). EC in-
cremental transfer uses the Task Queue API to update
the AppScale analytics cloud. Using this approach, the
library enqueues a background task in GAE upon each
destructive datastore operation. The task then uses the
URL Fetch library to synchronously transmit the updated
entity. In GAE, tasks are retried until they complete with-
out error. Thus, GAE and AppScale data replicas for the
application are eventually consistent, assuming that both
the GAE and AppScale platforms are available.

Our second approach, best effort (BE), for incremen-
tal transfer implements an asynchronous URL Fetch call
to the AppScale analytics cloud for the application upon
each destructive update. If this call fails, the GAE and
AppScale replicas will be inconsistent until the next time
the same entity is updated. The BE approach can im-
plement potentially fewer transfers since failed transfers
are not retried. This may impact the cost of hybrid cloud
analytics using our system. BE is useful for settings in
which perfect consistency is not needed.

4

To maintain causal ordering across updates we employ
a logical clock (a Lamport clock [23]), ensuring that only
the latest value is reflected in the replicated dataset for
each entity. Using this approach, it is possible that at
any single point in time there may be an update missing
(still in flight due to retries in EC or failed in BE) in the
replicated dataset. We transmit entity updates as Protocol
Buffers, the GAE transfer format of Datastore entities.

4.2 Analytics Processing Engine within
AppScale

We next consider different implementations of the App-
Scale analytics processing engine. We first extend App-
Scale to support each of the three analytics libraries
that GAE supports, described in Section 3.1. We
start by replacing the TaskQueue API implementation
in AppScale, from a simple, imbalanced approach, to
a new software layer, similar to that for the Datastore
API implementation and transaction support [9], that is
implementation-agnostic and allows different task queue
implementations to be plugged in and experimented
with.

The GAE Task Queue API includes the functions:

AddTask(name, url, parameters)
DeleteTask(name)
PurgeQueue()

We emulate the GAE behavior of this API (that we in-
fer using the GAE SDK and by observing the behavior
of GAE applications) in our task queue software layer
within AppScale. Each task that is added to the queue
specifies aurl that is a valid path (URL route) defined in
the application, to which a POST request can be made
using theparameters. Thename argument ensures that
a task is only enqueued once given a unique identifier.
If a name is not supplied, a unique name is assigned to
it. ThePurgeQueue operation will remove all tasks from
a queue, resetting it to an initial, empty state, whereas
DeleteTask will remove a named task if it is still en-
queued. Task execution code is within the application
itself (a relative path), or can be a fully remote location (a
full path). Successful execution of a task is indicated by
a HTTP 200 response code. The task queue implemen-
tation retries failed tasks up to a configurable number of
times, defaulting to ten attempts.

The AppScale Task Queue interface for plugging in
new messaging systems is as follows: This API includes
the functions:

EnqueueTask(app_name, url, parameters)
LocateTask(app_name, task_name)
AddTask(app_name, task_name)
AckTask(app_name, task_name, reenqueue)
PurgeQueue(app_name)

The AddTask function stores the given task name and
state in the system-wide datastore. Possible task states
are ‘running’, ‘completed’, or ‘failed’, and states can be
retrieved viaLocateTask). AckTask tells the messaging
system whether the task should be re-enqueued, and if
it should be, the messaging system increments the retry
count associated with that task. Each function requires
the application name because AppScale supports mul-
tiple applications per cloud deployment, isolating such
communications.

Figure 3: Overview of RabbitMQ implementation in
AppScale.

Using the AppScale task queue software layer, we
plug-in the VMWare RabbitMQ [27] technology and im-
plement support for each of the GAE analytics libraries
(GAE MapReduce, GAE Pipeline, and Fantasm) de-
scribed in Section 3.1 on top of the Task Queue API. We
have chosen to integrate RabbitMQ due to its widespread
use and multiple useful features within a distributed
task queue implementation, including clustering, high
availability, durability, and elasticity. Figure 3 shows
the software architecture of RabbitMQ as a task queue
within AppScale (two nodes run a given application in
this figure). Each AppScale node that runs the appli-
cation (load-balanced application servers) runs a Rab-
bitMQ server. Each application server has a client that
can enqueue tasks or listen for assigned tasks (a call-
back thread) to or from the RabbitMQ server. We store
metadata about each task (name, state, etc.) in the sys-
tem in the cloud datastore. A worker thread consumes
tasks from the server. Upon doing so, it issues a POST
request to its localhost or full path/route (if specified),
which gets load-balanced across application servers run-
ning on the nodes. Tasks are distributed to workers in
a round-robin basis, and are retried upon failure. Rab-
bitMQ re-enqueues failed tasks and is fault tolerant.

In addition to the Task Queue, MapReduce, Pipeline,
and Fantasm APIs, we also consider a processing engine
that is popular for large-scale data analytics yet that is
not available in GAE. This processing engine employs a
combination of MapReduce [12] (not to be confused with
GAE MapReduce, which exports different semantics and
behavioral restrictions) and a query processing engine

5

that maps SQL statements to a workflow of MapReduce
operations. In this work, we employ Hadoop, an open
source implementation of a fully featured MapReduce
system, and Hive [29, 25, 20], an open source query pro-
cessing engine, similar in spirit to Pig and Sawzall. This
processing engine (Hive/Hadoop) provides users with
ad-hoc data querying capabilities that are processed us-
ing Hadoop, without requiring any knowledge about how
to write or chain MapReduce jobs. Moreover, using this
AppScale service, users can operate on data using the fa-
miliar syntax of SQL and perform large-scale, complex
data queries using Hadoop.

AppScale integrates multiple datastore technologies,
including Cassandra, Hypertable, and HBase [6, 7].
All of these datastores are distributed, scalable, fault-
tolerant, and provide column-oriented storage. Each
datastore provides a limited query language, with capa-
bilities similar to the GAE Datastore access model: en-
tities, stored as Protocol Buffers, are accessed via keys
and key ranges. We focus on the currently best perform-
ing datastore in this work, Cassandra [9].

Our extensions swap out the Hadoop File Sys-
tem (HDFS) in AppScale and replace it with Cassan-
draFS [5], an HDFS-compatible storage layer, that inter-
operates directly with Cassandra, with the added benefit
of having no single points of failure within its NameN-
ode process. Above CassandraFS, we deploy Hadoop;
above Hadoop, we deploy Hive. Developers can issue
Hive queries from the command line, a script issued on
any AppScale DB node [22], or via their applications
through a library, similar to the GAE MapReduce library
implementation in AppScale.

To enable this, we modified the datastore layout of
entities in the AppScale datastore. Previously, we em-
ployed a single column-family (table) for all kinds of
entities in an applications dataset. We shared tables
across multiple applications and we isolated datasets us-
ing namespaces prepended to the key names. In this
work, we store column-families for each kind of entity.
The serialization and deserialization between Hadoop,
CassandraFS, and Cassandra happens through a custom
interface, which enables Hadoop mappers and reducers
to read and write data from Cassandra. We extended
the AppScale Datastore API with a layer that translates
entities to/from Protocol Buffers. Our extensions elimi-
nate the extract-transform-load step of query processing
so that entities can be processed in place.

This support enables Hive queries to run SQL state-
ments which are partitioned into multiple mapper and
reducer phases. Hive compiles SQL statements into a se-
ries of connected map and reduce jobs. Analysts can per-
form queries that are automatically translated to mappers
and reducers, rather than manually writing these func-
tions and chaining them together. Take for example the

us-east-1 Northern Virginia, USA
eu-west-1 Dublin, Ireland
ap-southeast-1 Singapore
ap-northeast-1 Tokyo, Japan
sa-east-1 Sao Paulo, Brazil
us-west-1 Oregon, USA
us-west-2 California, USA

Table 2: EC2 Regions for Amazon Web Services.

task of getting the total count of entities of a certain kind.
A Hive query is as simple as:

SELECT COUNT(*) FROM appid_kind;

To to the same thing in GAE, the entities are paged
through and a counter incremented. Note that the Google
Query Language for GAE applications limits the num-
ber of entities in a single fetch operation to 1000. If
the dataset is large enough, then the developer must use
a background task or manually implement task queue
chaining. Another alternative approach is to use sharded
counters to keep a live count; multiple counter entities
are required if the increment must happen at a rate faster
than once per second. Both methods are foreign to many
developers and are far more complex and non-intuitive
than simple SQL Hive statements.

5 Evaluation

In this section, we evaluate multiple components of our
hybrid web application and analytics system. We first
start with an evaluation of the cross-cloud connectivity
within a hybrid cloud deployment. For this, we ana-
lyze the round-trip time (RTT) between a deployed GAE
application in Google datacenters and virtual machines
deployed globally across multiple regions and availabil-
ity zones of Amazon EC2. We next evaluate the per-
formance of the GAE libraries for analytics using the
GAE public cloud. We then evaluate the efficacy of our
extensions to the AppScale TaskQueue implementation.
Lastly, we show the efficiency of using the AppScale an-
alytic solution running Hive over Cassandra.

5.1 Cross Cloud Data Transfer

To evaluate the performance of cross-cloud data synchro-
nization between GAE and AppScale, we must first un-
derstand the connectivity rate between them for incre-
mental data transfer (cf Section 4.1). To measure this, we
deploy an application in the GAE public cloud that we
access remotely from multiple Amazon EC2 micro in-
stances in 16 different availability zones, spanning seven

6

Figure 4: Experimental Setup for Measuring Round-trip
Time and Bandwidth Between a GAE Application and
VMs in Multiple EC2 Regions.

Figure 5: Round-trip Time Per Different Packet Size.

regions. Figure 2 shows the regions we consider, and
Figure 4 depicts our experimental setup.

Our experiment issues a HTTP POST request from the
EC2 instances, each with a data payload of a particular
size, a destination URL location, a unique identifier, and
the type of hybrid data synchronization to employ: even-
tually consistent (EC) or best effort (BE). The sizes we
consider are 1KB, 10KB, 100KB, and 1MB (the max-
imum allowed for GAE’s Datastore API). The EC2 in-
stances host a web server, which receives the data from
the GAE application (either from a task via EC or from
the application itself via BE) and records the current time
and request identifier. Figure 5 shows the average RTT
for different packet sizes, for each availability zone. The
data indicates that it is advantageous to batch updates
when possible since there is not a linear relationship be-
tween size and RTT, as sizes grow.

We next consider whether the geographical location
of the AppScale cloud (different EC2 regions) makes
a significant difference in the communication overhead
on data synchronization. To evaluate this, we consider
the average round-trip time (RTT) and bandwidth across
payload sizes to the GAE application for the different
regions (Figure 6). The US East region had the RTT

Figure 6: Round-trip Time and Bandwidth Between a
GAE Application and Different EC2 Regions.

with the highest bandwidth, by a factor of two. Both
US regions have the next best performing communica-
tion behavior. This data suggests that our GAE appli-
cation is hosted (geographically) in GAE in the Eastern
US. Locality to the application shows more than 2x the
bandwidth for the US East availability zone than other
zones (130KB versus 50KB to 80KB for other zones).
We investigated this further and found via traceroutes
and pings that the application was located near or around
New York. We also found with this experiment that
bandwidth over time is generally steady, with the excep-
tion of between the hours of 16:00 and 22:00 (figure not
shown). It may be possible to take advantage of such
information to place the AppScale cloud to enable more
efficient data synchronization.

We next investigated the task queue delay in GAE. We
are interested in whether the delay changes over time or
remains relatively consistent. We present this data in Fig-
ure 7, as points at each hour in the day (normalized to
Eastern Standard Time) that we connect using lines to
help visualize the trends. The left x-axis is RTT in sec-
onds for the region, and the right x-axis is the average
queue delay (in seconds) for the region. Queue delays do
vary but this variance (impact on RTT) is most percepti-
ble during the early evening hours in all regions.

Finally, we compare our two methods for synchroniza-
tion: EC and BE. EC uses a combination of the Task
Queue API and synchronous URLFetch API; the use of
the former ensures that all failed tasks are retried until
they are successful. BE uses asynchronous URLFetch
for all destructive updates and does not retry upon fail-
ures.

We ran the experiment for seven days and sent a to-
tal of 1195288 requests. Out of the 597644 packets
(half of the total packets) sent via the TaskQueue op-
tion, 11679 were duplicates (unnecessary transfers). The
asynchronous URLFetch experienced 10 duplicate pack-
ets suggesting the URLFetch API will retry in some
cases from within the lower layers of the API implemen-
tation as needed. We experienced no update loss using
EC and 5 updates lost for BE.

7

Figure 7: Round-trip time from multiple regions to a deployed GAE application with task queue delay.

5.2 Benchmarks

We next consider the performance of five different and
popular analytics benchmarks: wordcount, join, grep,
aggregate, and subset aggregate. Wordcount counts the
number of times a unique word appears. Join takes two
separate tables and combines them based on a shared
field. Grep searches for a unique string for a particu-
lar substring. Aggregate gives the summation of a field
across a kind of entity, while subset aggregate does the
same, but for a portion of the entire dataset (one percent
for this benchmark). We implemented each benchmark
using the Fantasm, Pipeline, and MapReduce GAE li-
braries, as well as a Hive query.

5.3 Google App Engine Analytics

For the experiments in this section, we execute each
benchmark five times and present the average execution
time and standard deviation. We use the automatic GAE
scaling thresholds, and had billing enabled. We consid-
ered experiments with 100, 1000, 10000, and 100000 en-
tities in the datastore. We attempted even higher numbers
of entities, but the running time for each trial became in-
feasible to get complete results.

The tables in 3 shows the results for all of the bench-
marks. The Fantasm implementation shows a large la-
tency for a significant numbers of entities, and compared
to Pipeline, is 6X to 30X slower. This is due to the fact
that Fantasm’s execution model has a task for each en-
tity, so it must do paging through the query1. Pipeline,
by comparison, retrieves a maximum of 1000 entities at

1The Fantasm library, since the writing of this paper, has added the
ability to do batch fetches for better performance.

a time from the datastore, reducing the amount of time
spent querying the database. Pipeline does not see much
latency increases from 100 to 1000 entities, because both
require only a single fetch from the datastore, and the dif-
ference lays in the summation. MapReduce also deals in
batches, but the size of the batch depends on the number
of shards. When the number of entities went from 100 to
1000 for MapReduce, the growth in latency was over 5X
because the number of shards was one. 10000 entities,
on the other hand, had 10 shards, and therefore did more
work in parallel, seeing an increase in less than half the
time. Pipeline has an advantage because of its ability to
combine multiple entity values before doing a transac-
tional update to the datastore, whereas both MapReduce
and Fantasm are incrementing the datastore transaction-
ally for each entity. For the implementation, the counter
was sharded to ensure that there was high write through-
put for increments.

Pipeline shows less overhead for Grep as compared
to Aggregate (100-1000) because it uses half as many
Pipeline stages. In the aggregate Pipeline implementa-
tion, there was an initial Pipeline which does the query
fetches to the datastore, and another for incrementing the
datastore in parallel after combining values. Grep, by
comparison, does not need require combining or trans-
actional updates, as required for the counter update in
aggregate. Counter updates require reading the current
value, incrementing it, and storing it back. Aggregate
vs Grep MapReduce has a similar behavior to Pipeline
because each mapper does not require transactional up-
dates.

The Join benchmark combines two different entity
kinds to create a new table. The Join results show sim-
ilar trends as Aggregate and Grep. During the exper-

8

100 1000 10000 100000
Fantasm 13.80± 1.61 110.29± 4.70 1148.24± 86.20 11334.59± 1047.57
Pipeline 2.46± 0.86 3.05± 0.32 11.08± 0.50 98.34± 3.82
MapReduce 9.34± 0.35 57.36± 8.96 104.56± 17.83 377.70± 63.35

Aggregate

100 1000 10000 100000
Fantasm 10.85± 0.77 121.21± 21.07 1819.86± 1175.19 10360.40± 396.56
Pipeline 2.40± 1.26 2.663± 0.51 9.77± 0.72 98.89± 13.76
MapReduce 2.73± 0.30 4.56± 0.09 24.05± 0.30 227.57± 20.76

Grep

100 1000 10000 100000
Fantasm 10.71± 1.22 109.83± 4.90 977.23± 80.34 10147.75± 1106.15
Pipeline 4.54± 2.34 14.48± 5.22 44.11± 12.57 159.96± 73.30
MapReduce 6.28± 1.43 40.18± 1.66 66.76± 10.92 256.40± 11.16

Join

100 1000 10000 100000
Fantasm 0.58± 0.30 3.54± 0.28 16.95± 1.34 78.28± 10.62
Pipeline 1.97± 0.05 2.04± 0.20 2.01± 0.09 3.81± 1.60
MapReduce 2.67± 0.24 5.42± 0.45 27.66± 1.74 237.75± 12.00

Subset

100 1000 10000 100000
Fantasm 12.22± 3.20 105.82± 8.45 1022.96± 72.85 10977.50± 1258.76
Pipeline 3.63± 0.74 4.97± 0.92 25.89± 8.92 222.14± 9.02
MapReduce 6.40± 0.96 42.70± 0.72 134.88± 9.59 840.71± 125.15

Wordcount

Table 3: Execution time in seconds for the benchmarks in GAE.

Figure 8: An identical benchmark run three times show-
ing variability in run time.

iments for Join, we experienced high variability in the
performance of both the Pipeline and Fantasm libraries.
Figure 8 shows a snapshot of three separate trials for
Fantasm, in which noticeable differences in processing
times occur. Multitenacy could be a primary reason for
the fluctuations, yet the exact reasons are unknown and
requires further study.

The Subset benchmarks queries a Subset of the entities
rather than the entire dataset. Here we see that Fantasm

does well, as this scenario was the primary reason for
developing the library according to its developers [14].
Pipeline performs best, once again, because of its ability
to batch the separate entities, and to not require separate
web requests to process individual entities as Fantasm
does. MapReduce suffers the most because it must map
the entire dataset even though only a Subset is of interest.

For wordcount, MapReduce experiences its largest in-
crease from 10000 to 100000 in this benchmark, which
was due to several retries because of transaction colli-
sions. The optimistic transaction support in GAE allows
for transactions to rollback if a newer transaction begins
before the previous one finishes. This is ideal for very
large scale deployments, where failures can happen and
locks could be left behind to be cleaned up after a timeout
has occurred. Yet it is also possible to bring the through-
put of a single entity to zero if there is too much con-
tention. The performance of the wordcount benchmark
can be improved by using sharded counters per word as

9

opposed to the simple non-shared counter per word in
our implementation. Built-in backoff mechanisms in the
MapReduce library alleviates the initial contention, al-
lowing the job to complete.

5.4 AppScale Library Support

We next investigate the use of the GAE analytics libraries
over AppScale using the original Task Queue implemen-
tation in the GAE software development kit (SDK) and
our new implementation based on the RabbitMQ (RMQ)
distributed messaging system. We present only Pipeline
results here for brevity (the relative differences between
GAE and AppScale are similar). Table 4 shows the av-
erage time in seconds for the GAE applications execut-
ing over a 3 node Xen VM AppScale deployment. Each
VM had 7.5GBs of RAM and 4 cores, each clocked at
2.7GHz. Note, that for the GAE numbers, we do not
know the number of nodes/instances or the capability of
the underlying physical machines employed.

The left portion of the table shows the RMQ execu-
tion time in seconds for each message size. The right
portion of the table shows the SDK execution time in
seconds for each message size. The SDK implementa-
tion enqueues the tasks as a thread locally rather than
spreading out load between nodes. In addition, the SDK
spawns a thread for each task which posts its request to
the localhost. Tasks which originate from the local host
will never be run on another node. RabbitMQ, on the
other hand, spreads load between nodes, preventing any
single node from performing all tasks. We are unable
to run the 100K jobs using the SDK because the job fails
each time from a lack of fault tolerance. If for any reason
the node which enqueues the task fails, that task is lost
and not rerun again. RabbitMQ, however, will assign a
new client to handle the message, continuing on in the
face of client failures. For larger sized datasets we also
see a speedup because of the load distribution of tasks.

5.5 AppScale Hive Analytics

We next investigate the execution time of the GAE
benchmarks using the Hive/Hadoop system. Figure 5
presents the execution time for the previous benchmarks
using the Hive query language on a AppScale Cassan-
dra deployment. There was no discernible difference
between the sizes of the datasets, but rather the num-
ber of stages, where grep only needed a single map-
per phase, while the rest had both mapper and reducer
phases. While slower for smaller sizes than the GAE li-
brary solutions, the Hive solution is consistently faster
when dealing with larger quantities of entities (although
it has the same issue as the MapReduce library when
dealing with data subsets).

The Hive/Hadoop system in AppScale introduces a
constant startup overhead for each phase (map or reduce)
of approximately 10s. This overhead is the dominant fac-
tor in the performance. Once the startup has occurred,
each benchmark completes very quickly. The numbers
in the table include this overhead. Each of the bench-
marks use a single mapper and reducer phase except for
Grep. Our approach is significantly more efficient (en-
abling much larger and more complex queries) than per-
forming analytics using GAE. Moreover, our approach
significantly simplifies analytics program development.
Each of our GAE benchmarks requires approximately
100 lines each to implement their functionality. Using
our system, a developer can implement each of these
benchmarks using a single line with fewer than 50 char-
acters.

5.6 Monetary Cost

The cost of transferring data in GAE is dependent on two
primary metrics: bandwidth out which is billed at .12
USD per gigabyte, and frontend instances, at .08 USD
per hour. For low traffic applications, these costs can be
covered by the free quota. For higher traffic, it is pos-
sible to adjust two metrics to keep cost down; the first
is the maximum amount of time waiting before a new
application server is started (where it will be billed for
a minimum of 15 minutes), and the second is the num-
ber of idle instances that can exist (lowers latency to new
requests in exchange for higher frontend cost).

We can compress data and work in batches to lower
the bandwidth cost, seeing as how the additional latency
for sending updates is between 4 and 7 seconds on av-
erage for the largest possible entity of 1MB. The com-
pression execution time is added to frontend hour cost,
and the level of compression is very dependent on the
application’s data (images, for example, may already be
highly compressed). The average daily cost of the data
transfer was 12.41 USD for frontend hours, 1.03 USD
for datastore storage (went up over time), 2.55 USD for
bandwidth, and 15.63 USD for datastore access. As fu-
ture work, we are leveraging our findings to improve our
datastore wrapper to minimize cost while still maintain-
ing low latency overhead.

The cost for on-site analytics such as Fantasm and
Pipeline is based on datastore access, both for reading
the data which is needed for operation, and metadata for
tracking the current progress of a job. The other cost as-
sociated is the frontend instance hours. The cost for run-
ning Pipeline for wordcount on 100000 entities was 0.34
USD (not accounting for the free quota), where 0.056
USD was frontend hours, 0.13 USD was datastore writes,
and 0.154 USD on datastore reads. The cost of datastore
writes is highly dependent on the number of indexed en-

10

100 RMQ 1000 RMQ 10000 RMQ 100000 RMQ 100 SDK 1000 SDK 10000 SDK
Aggregate 3.02 5.72 183.93 610.12 3.77 6.14 N/A
Grep 5.37 16.90 205.53 862.36 6.11 28.88 260.03
Join 2.72 5.16 165.03 455.31 3.78 5.90 305.82
Subset 2.45 3.12 12.61 786.53 2.55 3.20 12.11
Wordcount 7.41 11.43 311.52 635.28 8.38 17.40 411.12

Table 4: Execution time in seconds for benchmarks using the Pipeline library on AppScale with RabbitMQ (RMQ)
and the SDK implementation.

100 1000 10000 100000
Aggregate 20.59± 1.41 21.14± 0.55 20.30± 0.88 20.94± 0.59
Grep 11.90± 1.32 11.00± 0.58 11.17± 1.30 10.69± 0.44
Join 20.52± 1.01 20.71± 0.84 20.43± 0.57 23.41± 0.64
Subset 19.93± 0.54 20.07± 1.34 20.26± 0.86 20.66± 0.45
Wordcount 21.73± 1.50 22.13± 1.51 22.19± 0.96 21.54± 0.95

Table 5: Execution time in seconds for benchmarks using Hive.

tities, and therefore if the entities have more properties,
the writes can multiply quickly as would cost (each index
write counts as a datastore write). In general, it is diffi-
cult to predict the cost of GAE analytics. Our approach
allows developers to perform analytics repeatedly with-
out being charged at the cost of data transfer.

Our other option for downloading the data is via bulk
transfer using tools provided by the SDK. We investi-
gated the use of such tools but we ran into difficulties
where exceptions arose and the connection would drop.
Multiple attempts were needed, driving cost up as much
to 5 to 6 times the cost of a daily experimental run (from
15 USD to 86 USD) before being able to complete a
full download of the data. It took 9520 seconds on av-
erage for the three successful downloads of a dataset of
202MB. This option is clearly not acceptable for hybrid
analytic clouds.

6 Related Work

OLAP and data warehousing systems have been around
since the 1970s [8], yet there is no system available for
GAE which is currently focused providing OLAP for ex-
ecuting web applications. AppScale, with its API com-
patibility and our extensions herein, brings OLAP capa-
bilities (as well as its testing and debugging) to this do-
main.

TyphoonAE is the only other framework which is ca-
pable of running GAE applications outside of GAE. Ty-
phoonAE however is a more efficient version of the
SDK (executes the system serially) and only supports
the Python language. AppScale and our work supports

Python, Java, and Go languages and is distributed and
scalable. TyphoonAE does not have the same facility as
AppScale to run analytics, as it does not support data-
stores capable of Hive support. Private PaaS offerings
such as Cloud Foundry [11] offer an open source alter-
native to many proprietary products and offer automatic
deployment and scaling of applications, yet do not sup-
port GAE APIs.

There are many cloud platforms which allows for an-
alytics to be run on large scale datasets. Amazon’s Elas-
tic MapReduce is one such service, where machines are
automatically setup to run jobs, along with customized
interfaces for tracking jobs [24]. The Mesos framework
is another cloud platform which can run a variety of pro-
cessing tools such as Hadoop and MPI, and does so with
a dynamically shared set of nodes [19]. Helios is yet an-
other framework that simplifies the application deploy-
ment process.

In [21], the authors measured data-intensive appli-
cations in multiple clouds including GAE, AWS, and
Azure. Their application was a variant of the TPC-W
benchmark, similar to an online bookstore. Our bench-
marks, by comparison, are analytics driven rather than
online processing. Furthermore, since the time of publi-
cation Google–as well as the other cloud providers–have
continuously improved functionality and added features.
Our work provides a new snapshot in time of the cur-
rent system, which has since come out of preview and
become a fully supported service.

Data replication across datacenters is a common
method for prevention of data loss and to enable disaster
recovery if needed. Currently GAE implements three-

11

plus times replication across datacenters using a vari-
ant of the Paxos algorithm [4]. Extant solutions, such
as [30], however, are not applicable because of the re-
strictions imposed by the GAE runtime. To overcome
this limitation, we provide a library wrapper around de-
structive datastore operations, to asynchronously update
our remote AppScale analytic platform. As part of fu-
ture work, we are investigating how to provide disaster
recovery using our hybrid system.

7 Conclusion

Cloud computing has seen tremendous growth and wide
spread use recently. With such growth comes the need to
innovate new methods and techniques for which extant
solutions do not exist. Online analytics processing sys-
tems are such an offering for Google App Engine, where
current technology has focused on web application exe-
cution at scale and with isolation, and existing solutions
have operated within the restrictions imposed.

In this paper we have described, implemented, and
evaluated two systems for running analytics on GAE ap-
plication, running current libraries in AppScale through
the implementation of a distributed task queue, and the
ability to run SQL statements on cross-cloud replicated
data. Future work will carry forward our findings to opti-
mize cross-cloud data synchronization as well apply our
system to another use case: disaster recovery.

References

[1] Amazon Web Services.http://aws.amazon.com/.

[2] Microsoft Azure Service Platform. http://www.
microsoft.com/azure/.

[3] A ZURE, M. Business Analytics, 2011. http:
//www.windowsazure.com/en-us/home/tour/
business-analytics/.

[4] BAKER, J., BOND, C., CORBETT, J., FURMAN , J., KHORLIN,
A., LARSON, J., LEON, J., LI , Y., LLOYD , A., AND YUSH-
PRAKH, V. Megastore: Providing Scalable, Highly Available
Storage for Interactive Services. In5th Biennial Conference for
Innovative Data Systems Research (2011).

[5] Brisk Datastax.http://www.datastax.com.

[6] BUNCH, C., CHOHAN, N., KRINTZ, C., CHOHAN, J.,
KUPFERMAN, J., LAKHINA , P., LI , Y., AND NOMURA, Y. An
Evaluation of Distributed Datastores Using the AppScale Cloud
Platform. InIEEE International Conference on Cloud Computing
(Jul. 2010).

[7] BUNCH, C., KUPFERMAN, J., AND KRINTZ, C. Active Cloud
DB: A RESTful Software-as-a-Service for Language Agnostic
Access to Distributed Datastores. InICST International Confer-
ence on Cloud Computing (2010).

[8] CHAUDHURI , S., AND DAYAL , U. An overview of data ware-
housing and olap technology.SIGMOD Rec. 26 (March 1997),
65–74.

[9] CHOHAN, N., BUNCH, C., KRINTZ, C., AND NOMURA, Y.
Database-Agnostic Transaction Support for Cloud Infrastruc-
tures. InIEEE International Conference on Cloud Computing
(July 2011).

[10] CHOHAN, N., BUNCH, C., PANG, S., KRINTZ, C., MOSTAFA,
N., SOMAN , S., AND WOLSKI, R. AppScale: Scalable and
Open AppEngine Application Development and Deployment. In
ICST International Conference on Cloud Computing (Oct. 2009).

[11] Cloud Foundry.http://cloudfoundry.com/.

[12] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters.Proceedings of 6th Symposium
on Operating System Design and Implementation(OSDI) (2004),
137–150.

[13] ENGINE, G. A. App Engine Transaction Semantics,
2010. http://code.google.com/appengine/docs/
python/datastore/transactions.html.

[14] Fantasm.http://code.google.com/p/fantasm/.

[15] Google app engine blog. http://googleappengine.
blogspot.com.

[16] Google App Engine. http://code.google.com/
appengine/.

[17] Google App Engine MapReduce.http://code.google.
com/p/appengine-mapreduce/.

[18] GURP, J. V., AND BOSCH, J. On the implementation of finite
state machines. Inin Proceedings of the 3rd Annual IASTED In-
ternational Conference Software Engineering and Applications,
IASTED/Acta (1999), Press, pp. 172–178.

[19] HINDMAN , B., KONWINSKI, A., ZAHARIA , M., GHODSI, A.,
JOSEPH, A., KATZ , R., SHENKER, S.,AND STOICA, I. Mesos:
A Platform for Fine-Grained Resource Sharing in the Data Cen-
ter. InNetworked Systems Design and Implementation (2011).

[20] HIVE. Hive Query Processing Engine, 2010.https:
//cwiki.apache.org/confluence/display/Hive/
Home.

[21] KOSSMANN, D., KRASKA, T., AND LOESING, S. An evalua-
tion of alternative architectures for transaction processing in the
cloud. In Proceedings of the 2010 international conference on
Management of data (New York, NY, USA, 2010), SIGMOD ’10,
ACM, pp. 579–590.

[22] KRINTZ, C., BUNCH, C., AND CHOHAN, N. AppScale: Open-
Source Platform-A s-A-Service. Tech. Rep. 2011-01, University
of California, Santa Barbara, Jan. 2011.

[23] LAMPORT, L. Time, Clocks, and the Ordering of Events in a
Distributed System.Communications of the ACM 21, 7 (1978).

[24] MAPREDUCE, A. E. Amazon Elastic MapReduce.http://
aws.amazon.com/elasticmapreduce.

[25] MURTHY, R., AND JAIN , N. Talk at ICDE 2010. Hive–A
Petabyte Scale Data Warehouse Using Hadoop., Mar. 2010.

[26] Google App Engine Pipeline.http://code.google.com/
p/appengine-pipeline/.

[27] RabbitMQ.http://www.rabbitmq.com.

[28] Rackspace Hosting.http://www.rackspace.com.

[29] THUSOO, A., SARMA , J. S., JAIN , N., SHAO, Z., CHAKKA ,
P., ANTHONY, S., LIU , H., WYCKOFF, P., AND MURTHY, R.
Hive- a warehousing solution over a map-reduce framework. In
VLDB (2009), pp. 1626–1629.

[30] WOOD, T., LAGAR-CAVILLA , H. A., RAMAKRISHNAN , K. K.,
SHENOY, P., AND VAN DER MERWE, J. Pipecloud: using
causality to overcome speed-of-light delays in cloud-based dis-
aster recovery. InProceedings of the 2nd ACM Symposium
on Cloud Computing (New York, NY, USA, 2011), SOCC ’11,
ACM, pp. 17:1–17:13.

12

