UNIVERSITY OF CALIFORNIA
Santa Barbara

Memory Management for Multi-Language
Multi-Runtime Systems on Multi-Core
Architectures

A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
In
Computer Science
by
Michal Wegiel

Committee in Charge:
Professor Chandra Krintz, Chair
Professor Amr El Abbadi

Professor Ben Zhao

March 2011

The Dissertation of
Michal Wegiel is approved:

Professor Amr El Abbadi

Professor Ben Zhao

Professor Chandra Krintz, Committee Chairperson

January 2011

Memory Management for Multi-Language Multi-Runtime Sysseom Multi-Core

Architectures

Copyright © 2011

by

Michal Wegiel

Dedication and Gratitude

Acknowledgements

The text of Chapter8-7 is in part a reprint of the material as it appears in the canfee
proceedings listed below. The dissertation author wastingapy researcher while the
co-author listed on each publication directed and supedvise research which forms

the basis for these chapters.

Chapter 3: Publication 59 in the ACM/SIGPLAN International Conference on Ar-
chitectural Support for Programming Languages and Oper&ystems (ASPLOS 2008).
Chapter 4: Publication L61] in the ACM/SIGPLAN International Conference on Ar-
chitectural Support for Programming Languages and Opey&ystems (ASPLOS 2009).
Chapter 5: Publication 163 as UCSB Technical Report 2010-15.

Chapter 6: Publication L6Q in the ACM/SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (PLDI 2008).

Chapter 7: Publication 64 in the ACM/SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, anlicagipns (OOPSLA 2010).

Education
2011

2006
Experience
2006 — 2010
2004 — 2005
2002
Awards
2010
2006 — 2008

Curriculum Vitee
Michal Wegiel

Doctor of Philosophy in Computer Science,

University of California, Santa Barbara.

Master of Science in Computer Science,

University of Science and Technology, Krakow, Poland.

Graduate Research Assistant,

University of California, Santa Barbara.

Research Intern,

Sun Microsystems Laboratories, Menlo Park, CA.

Student Intern,

Motorola Global Software Group, Krakow, Poland.

Dissertation Year Fellowship,

University of California, Santa Barbara.

Regents Central Fellowship,

University of California, Santa Barbara.

Vi

Publications

Michal Wegiel and Chandra Krintz: “Cross-Language, TypeeSahd Transparent Ob-
ject Sharing For Co-Located Managed Runtimésthe ACM/SIGPLAN International
Conference on Object-Oriented Programming, Systems, lageg) and Applications
(OOPSLA), 2010.

Michal Wegiel and Chandra Krintz: “Dynamic Prediction of Gaition Yield for Man-
aged Runtimes.In the ACM/SIGPLAN International Conference on Architeck&ap-
port for Programming Languages and Operating Systems (A&7]1.20009.

Michal Wegiel and Chandra Krintz: “The Single-Referent CdlbecOptimizing Com-
paction for the Common Caselh the ACM/SIGPLAN Transactions on Architecture
and Code Optimization (TACO), 2009.

Michal Wegiel and Chandra Krintz: “XMem: Type-Safe, Trangyd, Shared Memory
for Cross-Runtime Communication and Coordinatiom”the ACM/SIGPLAN Inter-
national Conference on Programming Language Design anddmgphtation (PLDI),
2008.

Michal Wegiel and Chandra Krintz: “The Mapping Collector: tdial Memory Sup-

port for Generational, Parallel, and Concurrent Compactidm.the ACM/SIGPLAN

International Conference on Architectural Support for Piaigpming Languages and
Operating Systems (ASPLOS), 2008.

Field of Study: Computer Science

vii

Abstract

Memory Management for Multi-Language Multi-Runtime
Systems on Multi-Core Architectures

Michal Wegiel

To manage the increasing complexity of software, devekpenploy a number
of different strategies. These include using high-lewgletsafe, object-oriented pro-
gramming languages, executing applications within magiagatime environments
(MRESs), modularizing software into independent isolatechgonents, and maximiz-
ing programmer productivity by implementing each companerthe most-suitable
language. Moreover, administrators and tools increagingtlocate components on
the same physical machine to better utilize multi-core esyist via thread-level par-
allelism and to enable efficient cross-component commtinita As a result, multi-
language, multi-runtime systems that employ componenbcation on multi-core
shared-memory architectures are more and more common.

In such systems, memory management takes place withimrast{intra-runtime)
and between runtimes (cross-runtime). Intra-runtime mgmaoanagement includes
allocation and automatic reclamation of objects within @B Cross-runtime memory
management refers to communication, coordination, angicbharing across MRESs.
Both intra-runtime and cross-runtime memory managemegtaelthe mechanisms

and abstractions of the underlying operating system (OS9ffecient implementation.

viii

The focus of our research is to identify ways to more effetyiexploit extant OS
functionality to improve intra-runtime and cross-runtimemory management in terms
of performance as well as programming model. Specifically,d@sign, implement,
and evaluate MRE extensions that leverage virtual memoayeshmemory, and shared
libraries to better coordinate memory management acressytem layers.

For intra-runtime memory management, we develop new teclesi to improve
throughput, reduce pauses, increase yield, and enhanadamiodof parallel and con-
current collectors. For cross-runtime memory managenvemtnvestigate type-safe,
transparent object sharing between isolated MRESs to enalds-tanguage communi-
cation and synchronization without expensive object §zaon and explicit message
passing.

Our empirical results indicate that our contributions #igantly improve both
intra-runtime and cross-runtime memory management bgbletteraging OS support.
We obtain large performance gains for parallel and conatircellectors as well as
inter-runtime communication over the state-of-the-artmogy management systems.
In addition, our techniques enhance the programming maatdddth application de-

velopers and runtime architects.

Contents

Acknowledgements Y
Curriculum Vitee Vi
Abstract Viii
List of Figures XV
List of Tables XVii
1 Introduction 1
1.1 ThesisQuestion. 7
1.2 Dissertation Organization 9
2 Background 10
2.1 Intra-Runtime Memory Management 10
2.1.1 State-of-the-Art GC Techniques. 11
2.1.2 OS-Assisted GC 17
2.1.3 Limitations 26
2.2 Cross-Runtime Memory Management 30
2.2.1 State-of-the-art Inter-Process Communication. 31
2.2.2 Cross-Runtime Communication and Coordination. 37
2.2.3 Limitations 44

3 Efficient Compaction by Mapping: Improving Intra-Runtime Mem ory
Management Performance Using Virtual Memory 51
3.1 Introduction and Motivation 52
3.2 Designand Implementation 55

3.2.1 Stop-the-World/Concurrent Marking 58
3.2.2 Stop-the-World Unmapping 59
3.2.3 ConcurrentUnmapping 61
3.2.4 Bounding Space Overhead 62
3.2.5 ImplementationDetails. 63
3.3 Experimental Evaluation. 67
3.3.1 Benchmarks 67
3.3.2 Methodology 69
3.3.3 Clustering. 70
3.3.4 Stop-the-World Compactors. 71
3.3.5 ConcurrentCompactors. 81
3.3.6 Stop-the-World/Concurrent Tradeoffs. 84
3.3.7 UnmappingOverhead 86
3.3.8 OtherBenchmarks. 87
3.4 RelatedWork 88
341 TheCompressor. 89
3.4.2 The HotSpot Compactor. 90
3.43 ThelBMCompactor 91
3.4.4 TheFlood Compactor 91
3.45 ThePauselessGC. 92
3.4.6 Virtual Memory SupportforGC 93
3.5 SummaryandConclusions. 95

Dynamic Prediction of Collection Yield: Improving Intra- Runtime Mem-

ory Management Performance Using Virtual Memory 97
4.1 Introduction and Motivation L. 98
4.2 Design and Implementation L. 101
4.2.1 YieldPredictorDesign. 102
4.2.2 Yield Prediction Process. 106
4.2.3 Implementation Details. 110
4.2.4 KernelExtensions 110
4.2.5 Alternative Approaches 112
4.3 Experimental Evaluation. 113
4.3.1 Methodology 113
4.3.2 DeadObjectClustering 116
4.3.3 CollectionYield. 118
4.3.4 Prediction Accuracyand Cost. 118
4.3.5 Impacton Applications. 120
4.3.6 Other ParameterValues. 127

Xi

44 RelatedWork 129
4.5 Summary and Conclusions. 131

Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using Shared Litaries 132

5.1 Introduction and Motivation 133
5.2 Design and Implementation 135
521 GaSiInterface. 138
5.22 Heaplayout oL 140
523 GCAlgorithm. 142
524 TracingGC 146
5.2.5 Reference CountingGC. 147
526 GaSExtensions L. 148
5.2.7 Implementation Details. 149
5.3 Experimental Evaluation. 150
5.3.1 Methodology 153
5.3.2 JavaBenchmarks 155
5.3.3 PythonBenchmarks 163
5.3.4 Overhead of Cross-Runtime Calls 167
5.3.5 Overhead of Runtime Layering 168
5.3.6 LinesofCode. 169
5.3.7 ResultsSummary. 170
54 RelatedWork 171
5.5 Newly-BuiltRuntimes. 176
55.1 GCEvaluation 181
5.6 Summary and Conclusions. 182

Type-Safe Sharing for Homogeneous Runtimes: Improving Qrss-Runtime
Memory Management Performance and Programming Model Using Shiaed

Memory 184
6.1 Introduction and Motivation 185
6.2 Designand Implementation 189
6.2.1 Double Memory Mapping 191
6.2.2 Shared-to-Private Pointers 194
6.2.3 UsingXMem 195
6.2.4 Dual Mode Object Allocation 197
6.2.5 Thread Synchronization. 198
6.2.6 Global Operations 202
6.2.7 Attachment, Detachment, and Connection. 203
6.2.8 GlobalClasslLoading 205

Xii

6.2.9 Global Garbage Collection. 206

6.2.10 Global Meta-Data Management. 212
6.2.11 FaultTolerance. 213
6.2.12 Implementation Details 214
6.3 Experimental Evaluation. 215
6.3.1 Methodology 215
6.3.2 XMemOverhead. 216
6.3.3 Global GC Performance. 219
6.3.4 Communication Efficiency for Microbenchmarks 220
6.3.5 Application Performance. 226
6.3.6 ResultsSummary. 227
6.4 RelatedWork 228
6.5 Summary and Conclusions. 232

Type-Safe Sharing for Heterogeneous Runtimes: Improving€ross-Runtime
Memory Management Performance and Programming Model Using Shiaed

Memory 234
7.1 Introduction and Motivation 235
7.2 Design and Implementation 239
7.21 ColLoRSUsage. 241
7.2.2 Shared Memory Segment. 244
7.2.3 The CoLoRS ObjectModel 245
7.2.4 The CoLoRS MemoryModel 259
7.2.5 Monitor Synchronization. 261
7.2.6 Garbage Collection. 264
7.2.7 Implementation Details. 270
7.2.8 Shared Memory Layout 271
7.29 HotSpotJVM 273
7.2.10 cPythonRuntime. 276
7.3 Experimental Evaluation. 277
7.3.1 Methodology 278
7.3.2 CoLoRS Impact on Communication Performance. 281
7.3.3 ColLoRS Garbage Collection 285
7.3.4 CoLoRS Impact on End-to-End Performance 286
7.3.5 CoLoRSOverhead. 289
7.3.6 Socketsvs. SharedMemory. 291
7.3.7 ResultsSummary. 293
7.4 C/C++ SupportforCoLoRS 293
741 TypeSafety. 295

Xiii

7.4.2 Transparency. 295

7.4.3 Programming Interface. 297

7.4.4 TypeReflection. 298

7.4.5 Pointers, Fields, and Pointers to Members. 298

7.4.6 ClassMappingandLoading. 301

7.4.7 Garbage Collection. 301

7.4.8 \Virtual Dispatch. 302

7.49 Standard Libraries L 305

7.4.10 Implementation Details 306

7.4.11 Experimental Evaluation. 307

7.5 RelatedWork 308
7.6 Summary and Conclusions. 310

8 Conclusion 312
8.1 Contributionsand Impact. 315
8.2 Future Research Directions 326
Bibliography 332

Xiv

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Intra-runtime and cross-runtime memory management.

Page-based memory reclamationinMC
Filler object formatinMC.
Clustering for deskside and server benchmarks
Clustering across benchmarks.
Space overhead for the stop-the-worldMC.
Execution time for the stop-the-world compactors.
Pause times for the stop-the-world compactars
Minimum mutator utilization for the stop-the-world cpattors . . .
Pause times scalability for the stop-the-world conqact
Pause times speedup for the stop-the-world compactors.
Space overhead for the concurrentMC.
Execution time for the concurrent compactors.
Pause times for the concurrent compactars

Predictionerrorin YP.o
Execution times for the compactors without yield predic
Execution times for the compactors with yield predictio.
Impact of the YP young-old ratio.

GaS architecture
GaSinterface
Block formatintheGaSheap
Root updates and concurrent marking
Minimum mutator utilization for the client benchmarks.
Minimum mutator utilization for the server benchmarks
Execution time for the client benchmarks.

XV

5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4

Execution time for the server benchmarks 161

Performance for the binary tree benchmark in Pythan. 165
Example instance of an XMemsystem 189
Virtual address space mappingin XMem. 191
Global GC pause times: load balancing. 218
Global GC pause times: live datasize 218
Microbenchmark communication performance. 222
Socket microbenchmarkresults. 223
Application performance: Hsqldb 225
Application performance: Tomcat. 225
CoLoRS architecture. 239
CoLoRS versioning and type mapping 252
Execution times for CoLoRSand CORBA 282
Execution time for CoLoRS, Cassandra, and HDFS. 288

XVi

List of Tables

1.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4

Two-dimensional design space in memory management

Baseline benchmark statistics.
Fall-back frequency and pause times for space-bounded M . . .
Comparison of the stop-the-world and concurrent MC.
The cost of unmapping systemcallsinMC.
Experimental results for additional benchmarks

Yield prediction pseudocode.
Baseline benchmark statistics.
Dead space clustering statistics.
Page coverage and prediction costinYP.
Average yield predictionerror
YP impacton performance.
Space overheadinYP L
YP sensitivity to the GC skip threshold

High-level comparison of the evaluated GCs.
Comparison of Java GCs: minimum heap and throughput
Comparison of Java GCs: pausetimes.
Sensitivity to GC parametersinJava
Sensitivity to GC parametersin Python.
GaSoverheadinPython.

Baseline benchmark statistics.
XMem execution time overhead.
Impact of copying on latency and throughput.
XMem impact on latency and throughput.

XVii

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

CoLoRS builtin mapping in Java and Python. 256

Throughput for the microbenchmarks for builtins. 279
Throughput for the microbenchmarks for user-defineddyp 280
Latency for the microbenchmarks for builtins. 280
Latency for the microbenchmarks for user-defined types 280
End-to-end performance for Cassandra and HDFS withmgchi . . 289
CoLoRS overhead in Python., 290
CoLoRSoverheadinJdava. 291
C++ microbenchmark performance 307

XViii

Chapter 1

Introduction

Software applications and systems have become signifycamthplex as develop-
ers attempt to model and solve a wide range of scientific,nemging, and business
problems as well as to provide automation, services, t@old,abstraction to users of
diverse hardware platforms. Considering open-source aoétwalone, there has been
an exponential growth in the number of lines of code overdsedecadedo] with the
doubling time of around fourteen months. To manage the asing software complex-
ity, and thus make systems more reliable, easier to designiement, deploy, maintain,
and evolve, developers employ a number of approaches arbdwdbdgies, which in-

clude:

e High-level programming languages. Increasingly, programmers implement
software using type-safe, object-oriented languagesténget virtualized exe-
cution within managed runtime environments (MRES). Receamkirgs for pro-

gramming language popularityl$3 show that unmanaged languages account

Chapter 1. Introduction

for approximately 27% of software development activitieday. The vast ma-
jority of newly-built systems employs managed languagesalsly Java, PHP,

Basic, C#, and Python.

Most MRESs support automatic memory management (garbageetoth) to sim-
plify application development and improve system reliépilln addition, high-
performance, scalable MREs typically provide incremerdaldive compilation,
efficient threading and synchronization primitives, aslagsldynamic extensibil-
ity via run-time class loading. Cross-platform portabjltygh-level abstractions,
expressible programming model, and safe program execugaiice the costs
and effort required to develop and deploy large multi-lageftware systems,

such as enterprise applications, middleware, and webcsstvi

e Isolated componentsDevelopers commonly divide systems into multiple inde-
pendent components that interact through well-definedfates and are other-
wise isolated from one another. This software design paitereases system
modularity and reusability as well as simplifies the systeohiéecture via ab-
straction. In addition, componentization makes softwaogamweliable through
fault isolation, separation of concerns, and encapsulatiRistinct components
are typically run in separate MRE instances to take advartdg#er-process

resource isolation and fault containment as well as to ingmerformance via

Chapter 1. Introduction

more aggressive specializations in the MREs (e.g. choobkmgést performing

memory management strategy for a specific component).

Web frameworks, such as J2E&3 and .NET [L13, are example systems that
partition applications into isolated components. They leynp three-tier archi-
tecture that consists of the presentation layer (the weltagwer component),
business logic (the application server component), aral stairce (the database
component). Each tier is deployed using a separate MRE asd-caomponent

interaction takes place via inter-process communicatrotogols.

e Multi-language systems.To increase programmer productivity and overall sys-
tem performance, distinct components are often develapddferent program-
ming languages. For instance, large-scale distributetésyssand applications
at Facebook and Google are built from a wide range of backendcgs, each
implemented using the language that is best suited to acpkatipurpose and
functionality. Thrift [143 and Protocol Buffers129 have been developed for
efficient interoperation between such multi-languageisesv Another example
is web applications: the presentation layer generatesmignaeb pages using
server-side scripting languages, such as dynamicallgetyfgHP and Ruby, while
the database backend is typically implemented in genengdegse statically-typed

languages such as Java, C#, and C/C++.

Chapter 1. Introduction

In addition, recent hardware architectures increasingly on providing greater
numbers of processing cores instead of higher clock freqyugnorder to continue to
deliver high performancerp]. Commodity computers today are equipped with proces-
sors that have four (desktops) to eight (servers) supenscates that share most of the
memory hierarchy and commonly implement hyperthreadoff [

Because of the significant challenges with extracting palrsith from applications,
developers and administrators attempt to fully utilize tincbre systems by co-locating
multiple processes on a single machine. Systems that ceenpriltiple isolated com-
ponents simplify and facilitate such configuration and ptaent since each component
is independent of others and the communication protocotsate in the same way
regardless of whether interoperating components are add or distributed. Co-
location also benefits application performance by reduttiegost of cross-component
communication.

As a result of these software and hardware trends as welldsyiised develop-
ment and deployment strategies, it is increasingly comnoorséftware designers to
architect systems that amulti-language(i.e. components are implemented in differ-
ent languages) anahulti-runtime(i.e. each component is run in a separate MRE). In
addition, multiple isolated components are more and maenab-locatedon multi-
core shared-memory architecturasd use inter-process communication mechanisms

for interaction and coordination.

Chapter 1. Introduction

In such systems, memory management takes place at two:levighen runtimes
(intra-runtime and between runtimesrpss-runtimg Figurel.ldepicts this schemati-
cally. Multiple managed runtimes, potentially for diffetgorograming languages (Java
and Python in this case), are co-located on a single mulé-sleared-memory machine.
Intra-runtime memory management includes object allooatind automatic reclama-
tion of unreachable objects (garbage collection), in MREgbe heaps. Cross-runtime
memory management refers to cross-MRE communication bycbblering (i.e. via
direct pointers to objects in a shared heap) and by messagigdi.e. via sending

serialized objects through channels).

Intra-Runtime Cross-Runtime

1

Java Process

Private Heap

| 3
: e \ Shared Heap | 8 | channel | @
: N @ Q.
! object 3 Q
! pointers :’_—; N
1 1 1 = QD :
| Python Process /i/.//,) 7 |
1 1 S \
: Private Heap) | ' l . |
: GC — ___ i
! ' ' object deserialization !
b e e e e | e
multi-core architecture
e — — — — — — } !

Figure 1.1: Intra-runtime and cross-runtime memory management inimuitime
multi-language systems deployed on multi-core shared-ongarchitectures.

Chapter 1. Introduction

Both intra- and cross-runtime memory management impactsrsyserformance
The runtime cost of garbage collection (GC) is between 2099% @f execution time,
depending on the heap size, application behavior, and thal@&ithm [159 161].
Similarly, the overhead of cross-MRE interaction via renyotecedure calls and mes-
sages in request-intensive on-line transaction procgssistems constitutes a large
portion of the end-to-end performandesp, 164).

Memory management is a subsystem that significantly afféxegprogramming
mode] both at the application and system level. A large percentdghe program-
ming effort required to implement an application or an MREyigi¢ally devoted to
memory management. Thus, providing the right primitived arechanisms for intra-
and cross-runtime memory management is key to improvingtbgramming model
for application and MRE architects.

Memory management at both levels relies on the mechanisdhaleastractions pro-
vided by the underlying@perating systenfOS). MREs need to fully leverage OS sup-
port in order to implement resource-efficient memory manag# mechanisms that

constitute an expressible and flexible programming model.

Chapter 1. Introduction

1.1 Thesis Question

The primary research question that we explore in this dig8en can be stated as

follows:

How can we improve intra-runtime and cross-runtime memoryaga-
ment in multi-language, multi-runtime systems that cateenultiple soft-
ware components on multi-core shared-memory architecturgdaking
advantage of operating system support?

To answer this question, we design, implement, and evaM&E extensions
order to better coordinate memory management across thensyasyers. We consider
MREs for both statically-typed and dynamically-typed laages. Our goal is to im-
prove systenperformanceas well as thggrogramming modeior both application and
MRE developers. We investigate OS supportvistual memory shared memoryand
shared libraries

Table 1.1 summarizes théwo-dimensional design spatkat we cover with this
dissertation. Rows represent the two metrics that we usé(pgnce and programing
model) and columns correspond to the two levels of memoryagament that we
investigate (intra- and cross-runtime). For each me&vwel pair we report the OS
mechanism(s) that we leverage to improve memory management

A primary goal of ours is to improve performance. For intuaime memory man-
agement, we aim at designing new parallel and concurrefegatots in order to re-

duce GC pauses and execution time overhead as well as iaarelection yield. For

Chapter 1. Introduction

Metric Intra-Runtime Cross-Runtime
Performance virtual memory 8, 4) | shared memoryg 7)
shared librariess)
Programming Model|| shared librariesy) | shared memoryg, 7)

Table 1.1: Two-dimensional design space in memory management thahvesti-
gate. Rows are metrics and columns are the two levels of memanagement in
multi-runtime systems. For each point in the design spaemgba metric-level pair,
we list the OS mechanism that we leverage to improve memonagement. In paren-
theses, we show the numbers of chapters that describe ttesponding systems that
we contribute.

cross-runtime memory management, we investigate theresigpe-safe, transparent
object sharing to increase throughput and decrease latérmcgss-runtime communi-
cation by avoiding object serialization.

Another key goal of our research is to improve the prograngmiodel. For intra-
runtime memory management, we aim at enhancing the moguErMRE GC im-
plementation, by investigating the design of a portable (Bity that decouples GC
from MRE internals. For cross-runtime memory managementaiweat designing a
new type-safe cross-MRE communication primitives basechanesl memory that are

simpler and more transparent than explicit message passing

Chapter 1. Introduction

1.2 Dissertation Organization

We organize the remainder of this dissertation as follows fWét provide back-
ground information, discuss terminology, state-of-thiesgstems, open problems, and
limitations in intra-runtime and cross-runtime memory mgement, in ChapteX.

Chapters3—7 describe the five systems that we contribute to address esistques-
tion and that represent separate points in the design sphaeesn Tablel.1l In this
table, the parenthesized values are corresponding chaytdsers. Each of these five
chapters starts with motivation and problem statementy thecusses the design and
implementation details, followed by experimental evaluat related work, and con-
clusions. Chapter3-5 focus on intra-runtime memory management while Chafiers
and7 target cross-runtime memory management. OS support toiavimemory is dis-
cussed in Chapte®and4, for shared libraries in Chapt&r and for shared memory in
Chapterss and7. Techniques for improving performance are described in @&nap-

7 while enhancing the programming model is the subject of Glrapt-7. Chapter8

summarizes our contributions and discusses future rdsdagctions.

Chapter 2

Background

In this chapter, we provide background on and survey stateesart in intra-
runtime and cross-runtime memory management techniquepar@cular interest to
us are systems deployed on multi-core shared-memory acthies and ones using
operating system support for memory management. We owvemngeent advances in
garbage collection and cross-runtime communication amadirsly as well as discuss

limitations of extant systems.

2.1 Intra-Runtime Memory Management

In this section, we discuss automatic memory managememticpees employed by
type-safe programming language runtimes. We overview kagepts and terminology

related to state-of-the-art garbage collectors, recestesy and algorithmic advances

10

Chapter 2. Background

in this area, and limitations of extant approaches. We alsuigle background on OS-

assisted collectors.

2.1.1 State-of-the-Art GC Techniques

Managed runtime environments (MRES) for portable, objesrbed, type-safe
programming languages, both statically-typed (e.g. Jawh@#) and dynamically-
typed (e.g. Python and Ruby) provide garbage collection (&@upport memory
safety and simplify programs by automating memory managén#hile increasing
programmer productivity and application reliability, G&rtnegatively impact both ap-
plication throughput (through additional processing) emeractivity (through pauses).
Minimizing the costs of GC to match or exceed those of exjpii@mory management
has been the subject of active research for several dec@ideé\ph excellent introduc-
tion into and overview of the GC literature can be founddf, [L65 166, 167]. Modern
GC techniques include parallel, concurrent, and on-th&@g that exploit multi-core
architectures to reduce or eliminate pauses and scale-tnigaded applications while
maintaining high throughput, and that use OS support t@bettordinate runtime and
kernel memory management. High-performance MREs typi@atiploy generational

GCs, which outperform other GC schemes in the common case.

11

Chapter 2. Background

Terminology

General-purpose MREs predominately trseing GCs, which work by first deter-
mining which objects are reachable (live) freootsand then reclaim the memory oc-
cupied by the remaining (dead) objects. In tracing GCs, teeghase is usually called
markingand amounts to computing the transitive closure of the ¢dj@achable from
the roots. The second phase can eithesweepind 166, 180, 59], where live objects
are not moved and dead blocks are added to free listspmpaction[101, 159, 1],
where live objects are slided to form a contiguous memoripreg

Reference countingl72 166, 171], being the other class of GC algorithms, is an
incremental scheme where each object maintains a countémndoming references
which is updated on every pointer store. Dead objects ategarcollected when they
become unreferenced. Due to such limitations as storagbese, problems with de-
tecting dead cycles, and poor efficiency, reference cognsimot as commonly used
as tracing (one notable example is Python). Some collectorine tracing and ref-
erence counting30].

In strongly-typed languages (like Java), GQiscisg i.e. it can accurately identify
all object pointers inside the thread stacks and in the C.hkalanguages providing
weaker type-safety (like C++), GCt®nservativg22, 23, 31, 35, 181], i.e. all memory

locations containing a value that resembles a valid poaretreated as pointers. Con-

12

Chapter 2. Background

servative collectors can suffer from memory leaks due tamagpretation of regular
data as pointers.

Serial GCs [L65 employ a single thread to perform collection. Modern MREsS us
parallel GCs [34, 67, 4] to scale on SMPs and multi-core platforms. Parallel mark-
ing typically employs static partitioning for the root seidea dynamic load balancing
scheme, such as work stealir@y], for object graph tracing.

Application threadsrfiutatorg are suspended for collection biop-the-world (STW)
GCs P9, 165 101, 159. In contrastconcurrentGCs 20, 19, 34, 82, 127 perform most
work in the background, without stopping the application.n(pared to STW GCs,
concurrent collectors impose much shorter pauses, hoyteegrrequire resource over-
provisioning in terms of the number of processing cores aachary footprint. Many
concurrent GCs requirall mutator threads to be halted briefly (for example, at the
start and end of each GC phase), others stop mutator threadst @ time gn-the-fly
GCs |61, 62)). Incremental[140 17, 165 collectors interleave small bits of collection
work with the mutator activity such as allocation and pairgieres. Inreal-timecol-
lectors pause times imposed by GC are bounded within any gine interval, which
is often specified as the minimum mutator utilization (MMU).

CompactingGCs |7, 99, 100, 67, 101, 46, 85, 1] eliminate fragmentation in the
heap by consolidating live objects into a single contiguagson in memoryCopying

GCs [166 144, 87, 58, 14] divide the heap in two semi-spaces and in every GC cycle

13

Chapter 2. Background

evacuate live objects from the currently-used semi-spateet other. This approach is
most efficient when the percentage of live objects is smatlvarage, i.e. when objects
have short lifetimes.

GenerationalGCs [16, 87, 155 133 168 group objects into separate sub-spaces
called generations based on the object age. Typicallyetseryoung generation and an
old generation. New objects are allocated in the new geinerand are later promoted
to the old generation if they survive a threshold number dfection cycles. Two
properties are key for the effectiveness of generational. GZ@st, most objects die in
the young generation (weak generational hypothd&§)]. Second, there are relatively
few references from the old generation to the young geroerati

Generational GCs focus collection efforts on the young geraer which is ex-
pected to contain mostly dead objects and this way GC yiatdkisimized. To enable
independent collection of the young generatiowrde barrier [84, 180, 125 is used
to keep track of pointers from the old generation to the yogegeration. Genera-
tional GCs have established themselves as a de-facto stiipdany high-performance
general-purpose MRE, as they tend to provide superior thmoutgn practice. In a gen-
erational heap layout, the young generation typically asaspying collector, to exploit
the weak generational hypothesis. In older generationsrevmost data is expected to
be live, MREs usually employ either a sweeping or a compaciitigctor. Compacting

GCs eliminate fragmentation (thereby reducing space owaéjend enable simpler and

14

Chapter 2. Background

more efficient linear (bump-pointer) allocation. Sweep®@s trade fast non-moving
collection for slower allocation.

Real-time[4, 15, 12] GCs guarantee fully predictable collection behavior fakta
with bounded allocation rate. Pause times are bounded aefilita scheduled to guar-
antee the desired MMU in a deterministic and consistent miariReal-time GCs are
considered special-purpose, targeted at embedded systiéimisard or soft real time
requirements. In general-purpose MREs, concurrent GC iallyssufficient as it can

provide short pause times in the common case.

Performance Metrics

Two primary measures of garbage collection performancthevaghputandpauses
[99, 166. Throughput is the percentage of total time not spent itbgge collection,
considered over long periods of time. Throughput incluétes spent in allocation. A
common approach to comparing throughput of different GCseaasuring the appli-
cation execution time. Pauses are the times when an applicGgipears unresponsive
because garbage collection is occurring. Most GC algosthincluding concurrent
ones, need to halt program threads at least once per cofienicle to avoid interfer-
ence with mutators.

Other important metrics afeotprintandpromptnes$85]. Footprint is the working

set of a process, measured in pages and cache lines. On sysigmiimited physi-

15

Chapter 2. Background

cal memory or many processes, footprint may dictate sdalabPromptness is the
time between when an object becomes dead and when the meptwmmbs available,
an important consideration for distributed systems, idiclg remote method invoca-
tion (RMI). Promptness may be affected by finalization, whigbically defers object
collection until the next GC cycle.

A commonly-employed metric for the evaluation of colleetmposed pauses are
minimal mutator utilization (MMU) curves43] that lend insight into the distribution
of GC pauses across program execution. Mutator utilizahom given time window
w is defined as the fraction of the time that the mutator (as sge@pao the collector)
executes within the window. Minimum mutator utilization for a window of a specific
sizes is the lowest mutator utilization for all time windows of sizacross the program
execution. Thus, the x-intercept of a MMU curve is the maximpause time and
the asymptotic y-value corresponds to the applicationutiinput. MMU curves are
especially useful for evaluating concurrent and real-t(ages.

For parallel GC, an important metric is scalabilisp, 1], which is typically ex-
pressed as speedup. To measure speedup, GC is run wath parallel threads for
a fixed workload (unscaled speedup) or for an increasing wadk(scaled speedup).

GCsthat employ load balancing, e.g. work stealing, oftemeaemearly-linear speedup.

16

Chapter 2. Background

2.1.2 0OS-Assisted GC

Garbage collectors that coordinate memory managementthatloS kernel typ-
ically do so by taking advantage of the available virtual roeyroperations. Appel
and Li [5] describe a number of ways that user-land programs can useptoit the
virtual memory subsystem, including user-level signaldiars, multiple mapping, and
page protection. A similar study that includes performaenauation as well as rec-
ommendations for exposing dirty-bit information to MREs t&found in B3]. While
some of these techniques require OS modifications, mosarabe and standardized
by the Portable Operating System Interface (POSIX). A godaduction to memory

management in modern OSes can be found %9149 142 114.

Virtual Memory

General-purpose operating systems support virtual metoasylate address spaces
of distinct processes, abstract away such characterddtgsysical memory as limited
size and non-contiguity, and provide a convenient unifanadr address space to pro-
grams. Most implementations divide the virtual addresssd a process intpages
whose size is typically 4KB. Virtual addresses used by pnograre converted to phys-
ical addresses used on the system bus. This process is oadlewbry mappingr
address translatiorand relies on hardware support for efficiency. The mapping be

tween virtual pages and physical page frames is stored itaastlaicture callegpage

17

Chapter 2. Background

table OS kernel is responsible for creating and maintaining pagleles but employs
the CPU memory management unit (MMU) to translate addresEesccelerate ad-
dress translation CPUs use a small associative memorygdchaéidranslation lookaside
buffer (TLB), to cache mappings for recently accessed Vigpages. On each virtual
memory access the CPU performs a TLB lookup. If a TLB entry isith CPU can

calculate the physical address immediately. On a TLB migmge table walk is per-
formed. If the needed mapping is found in the page table, MNigiits a new entry into
the TLB. Otherwise, a TLB miss fault is generated. The fauihisrcepted by the OS,
which invokes the TLB miss handler. TLBs, being implementetiardware, usually
use simple replacement policies, like not recently usedyNRthe OS occasionally
invalidates the entries in TLB, for example when context siitg or swapping a page
in or out.

Most operating systems usemand pagingo avoid setting up mapping for pages
that are never accessed (most processes allocate much imioaé memory than they
ever use at any given point in time). With this approach, theal address space starts
out empty and all virtual pages are markedhaspresentWhen a page is accessed for
the first time, the MMU generatesnainor page fault The kernel handles minor faults
by allocating a new page frame, zeroing or loading its cdntemd updating the page

table by inserting a new entry.

18

Chapter 2. Background

On memory pressure, the kernel usesp spaceo evict pages that are unlikely to
be accessed in the future. Most systems use some approxmudtihe least recently
used (LRU) policy that has been shown to often perform alrasstell as the provably
optimal replacement policy. To implement LRU, every memacgess would have
to update a data structure, a solution too expensive to ligagh Commonly-used
approximations arelock replacemenand NRU. In addition to the page replacement
policy, the kernel uses a memory balancing policy, whicledeines how much mem-
ory the OS can use for kernel buffers (e.g. the page cachel@manuch to devote to
backing virtual pages. To implement swapping, pages tabkerve two bits per page,
indicating whether a specific pagedsty and has been recenthccessedThese bits
are set by hardware upon memory store (dirty bits) and memedgrence (accessed
bits). The kernel preferentially swaps out pages with bathdieared.

Each page is associated with a set of permission bits thatat@ithe content of a
particular page can be read, written, and executed. Uponpermitted access, a page
protection violation is raised and the process receiveSH®&V signal. Permission bits
enable safe sharing of page frames. Modern OSes implenecdply-on-writepolicy,
where unmodified pages can be shared across processes etntimsnly pertains to
shared libraries and facilitates efficient process cloning

The address space of a process consists of user space aelskaice. The latter is

only accessible in the privileged mode. The kernel spacgoisdlly identity mapped,

19

Chapter 2. Background

i.e. physical addresses can be computed by adding/subgaxtconstant offset to
virtual addresses. The kernel provides two allocators fysigal memory: duddy
allocator that allocates physically contiguous and properly-aldgneemory which is
always some power-of-two (allocation order) times the psige and aslab alloca-
tor that better supports smaller allocations via kernel mensaghes, each managing
objects of a particular fixed size. The kernel also suppartsal memory allocations.
Pages tables in Linux/x86 are kept in physical memory in deatity-mapped ker-
nel segment. As such, page tables are never swapped ouheardd no nested major
page faults. Each page table is a multi-way tree, which &lyihas three levelgglobal
directory, middle directoriesandPTE directories Each directory occupies one page
frame and has a fixed size. Entries in the global and middectliries are either not
present or they point to a directory in the next level of treetr The leaves comprise
page table entries (PTEs). Address translation works higisgla virtual address into
three indicesffgd, pmd, anddt e, which correspond to the global, middle, and PTE
directories) and a page offset. The kernel starts at the(tbetglobal directory) and
retrieves an entry stored at indpgd. This entry points to a middle directory. Similar
process is repeated for the remaining two levels upimgl andpte. Having obtained
the PTE, the system can calculate the physical address byicmm the page frame ad-
dress with the offset. Each PTE containseae frame number (PFN), page permissions

(read, write, and execute) as well as three bits determiiagpage is present, dirty,

20

Chapter 2. Background

and accessed. Page tables are loaded by copying the poitherdlobal directory into
the cr3 (page table base) register (the side-effect is TL&hihg). Linux organizes
pages into three lists: active, inactive, and evicted. &gbtiages are managed using the
CLOCK algorithm. Inactive pages are protected so that thaesstriggers a minor
fault and moving into an active list. Access to evicted pagggers a major fault. The
active list is bounded in size, and implements a FIFO dis@plivhen moving entries
to the inactive list.

The 1A-32 architecture supports memory segmentation intiaddto paging. A
segment is a contiguous region of virtual memory and a settobates that define
access rightsGlobal descriptor table (GDTandlocal descriptor table (LDTkeep
tract of the segments in use. The system starts wlitlgiaal addresghat consists of a
segment select@nd an offset. The segment selector is an index into a désctgble
(GDT or LDT). Each memory access is checked against the segnoeindaries and
a fault is raised if the check fails. A 32-dihear addresds computed by adding the
offset value to the segment base address. At this point ttersymoves on to paged
address translation (TLB/page tables) to obtain the phlysiddress. Segmentation
enables many linear address spaces and aids sharing aadtjomot Unlike paging, it

is visible to the user programs (compilers define their ownas#ics).

21

Chapter 2. Background

The POSIX Interface

OSes that are fully or partially compliant with POSIX, prdeia standard interface
allowing to manipulate virtual memory mapping or to impauwt strategy the kernel
uses to manage memory for a specific process. For examplex provides a num-
ber of system calls (kernel API) that enable to influence nrgnmaapping (map,
munmap, andnr emap), page protectionnfpr ot ect), page pinning i ock and
munl ock), and page swappingr{ ncor e, nsync, andmadvi ce). Shared mem-
ory segments are allocated usisgmget and controlled vishmctl. Processes at-
tach/detach to/from shared segmentssharat / shndt . Double mapping, where two
different virtual addresses map to the same physical agldagechnique often used in
GC, is implemented by double attachment to a single sharedesggrom a process.

GCs leveraging OS support, interact with the kernel via systalls (downcalls)
and signals (upcalls). For example, concurrent compagiatect virtual pages that
are yet to be processed, intercept the SEGV signal, andss@ages incrementally as
mutators access them and trigger faults. GCs that maniputatel memory mapping,
do so by invokingmmap/munmap system calls. Frequent interaction with thaeter
imposes a certain overhead associated with kernel eniry/€ke kernel entry path
includes switching to the kernel stack, saving scratchstegs, and invoking an inter-
rupt handler (system calls are software interrupts). Thaeieexit path comprises a

potential task scheduler invocation, signal deliverytoesgtion of scratch registers, and

22

Chapter 2. Background

switching to the user stack. All these actions introduceriey. However, MREs can

significantly benefit from well-architected OS support.

OS-GC Interaction

Extant garbage collectors interact with the OS in a wideyasfaontexts: to support
concurrent marking and compactidl0OfL, 46], to avoid GC-induced pagind.y3 174,
79,179 77,80, 175, to reduce space overhead by dynamic mapping/unmapp8a) [
to predict application working set siz&{5, 77], to optimize GC triggering and improve
GC yield [39, 173 175, and to provide GC as a system/language libr&%y, B4].
Several of these systems are worth discussing in more detail

The Compressorlf0]] relies on virtual memory operations to enable concurrent
compaction. The GC uses page protection to capture accessdgects that have
not yet been relocated. Such accesses trigger traps. Thédraller takes care of
incremental (page by page) compaction. To allow the GC tescprotected pages
while trapping the application, the Compressor uses doublgping: a single physical
page is mapped twice in the virtual address space (with atibutiaccess protection).
In addition, the Compressor dynamically unmaps pages whagemt has been copied
to avoid the space overhead of a copying collector.

The Pauseless G@¢] uses similar mechanisms as the Compressor (dynamic page

(un)mapping and page protection), however it relies onozugtardware and OS (both

23

Chapter 2. Background

optimized to run Java) to implement efficient, scalable spéss compaction. The GC
employs hardware read barriers that execute in one cyclensokle user-mode traps
once a stale reference is encountered. The Pauseless Ga@nuséditional intermedi-
ate privilege level (between the user and kernel mode) f&trdzecution of traps. In
this mode, protected pages can be modified without the oadrbEthe OS entry/exit
path. The GC implements safepoints on top of fast coopergtigemption via inter-
rupts. Safepoint-checking instructions (e.g. back brasgbheck for a pending per-cpu
safepoint interrupt and raise user-mode traps.

The Bookmarking GC§0] cooperates with the kernel memory management sub-
system to avoid paging in cases where there is not enoughcphysemory in the
system. The GC computes conservative summaries of objaphgronnectivity for
the evicted pages (to avoid accessing swapped-out pageg @€ and thus prevent
frequent major page faults). The OS kernel sends a signateviee it is about to evict
a page or an evicted page has just been loaded back. The Gihdsdp the eviction
signal by trying to find an empty page and if that is not possiiy bookmarking the
page it has selected for eviction.

CRAMM [174 dynamically resizes the heap to maximize application ulghput
and minimize paging by using statistical page referencamétion collected in the OS
kernel. CRAMM estimates the working set size (WSS) for a probassd on an LRU

reference histogram. The system computes the desired iEaptsuntime to keep

24

Chapter 2. Background

the overall performance cost of swapping below a specifestiold (5% of application
execution time). CRAMM extends the OS kernel by modifying tbeva/inactive lists
implementation and leverages the CLOCK algorithm to compatailéd per-process
LRU reference histograms. OS-GC interaction takes plaaagh system calls after
each GC, when GC requests WSS estimation from the kernel ammtsebe heap
accordingly.

The goal of MicroPhasel[/J is to increase GC productivity (yield) by triggering
GC at points when many objects become unreachable. Thersystegnizes program
phases and proactively invokes GC during phase transitibhs approach strives to
exploit the observation that allocation pauses (charaetrby low allocation rates)
typically correspond to points when GC is productive. MRhase cooperates with the
OS kernel to implement efficient detection of phase trams#ti The key challenge is
the need to distinguish allocation pauses from executias¢m (e.g. thread blocking
on I/O operations). The system extends the OS kernel bydatiag per-thread CPU-
cycle counters that are incremented based on hardwareparice counters whenever
a thread is scheduled for execution. Total CPU-cyles for argtiiread can be read via
a system call.

Boehm GC 85| is a conservative mark-sweep garbage collector for C/C++a(or
memory leak detector) distributed as a C library, portalol®ss most operating sys-

tems. The GC has a simple interface, essentially consistirajlocation functions

25

Chapter 2. Background

modeled after malloc/realloc in the standard C library. BoghC has been used in a
variety of language runtimes and is available as a prepackigrary in several major

Linux distributions.

2.1.3 Limitations

Recent advances in computer architecture have invalidaaeg of the assumptions
that were the basis of the design and implementation of garballectors in the past,
while opening the opportunities for new research diresiorlardware trends, such
as increasing reliance on thread-level parallelism rathan on clock frequency to
improve performance, the growing memory-processor perdoice gap, bus and cache
contention on multi-core systems, and large 64-bit addspases invite revisiting GC
design. Atthe same time GC has become a crucial componetattefaf-the-art MRES,
which are the runtime platform for a wide range of softwargaty especially server-
side middleware, web, and application servers.

The design and implementation of state-of-the-art gerrargdose GCs is increas-
ingly centered around scalability, low pauses, and higaughput. As a result, paral-
lel, concurrent, and on-the-fly GCs receive more and moratate In addition, the
interaction between the collector and virtual memory hagmdy gained significant
interest L01, 175, 80, 46]. Virtual-memory-oblivious GCs, while being the focal pbin

of most prior work, can no longer provide the required levedfticiency on new hard-

26

Chapter 2. Background

ware and software platforms. The design of modern GC must itato account the

following aspects:

e Parallelism. GC needs to scale on both multi-processor and multi-cotatan:
tures. Collectors should employ parallel threads and usardimload balancing

to achieve close-to-linear speedups.

e Concurrency. To guarantee a high level of interactivity, required for Gapl-
plications as well as server-side software that needs tdlearient requests at
very high rates and with low latency, GC cannot impose lepgtuses. Modern
machines are over-provisioned (in terms of both memory aodgssing cores),

which makes them well-suited for concurrent GC.

e Large address spaceModern 64-bit platforms provide applications with large
virtual memory, which creates an opportunity for GCs to penfonemory man-
agement by aggressive (re)mapping operations. For exammalesirtual space
occupied by unreachable objects does not have to be filled/éyobjects but
can be instead remapped to a new area in the address spasevalhiGC can

leverage the level of indirection associated with addnessstation.

e Memory hierarchy. The widening memory-processor performance gap renders
object copying and pointer updates increasingly expensiadern GCs should

avoid such operations by adhering to non-moving collecd®much as possible.

27

Chapter 2. Background

e Abundant physical memory. Space overhead is no longer a major considera-
tion as long as it can be bounded (predictable) and does netdxa reasonable
percentage of the heap size. In the past, high memory fooipsed to be a dis-
gualifying property for a GC. Today’s MREs can afford tradiqp@gse overhead

for performance.

e Design complexity.State-of-the-art systems consist of many layers both i sof
ware and in hardware and, in consequence, their perforneasacteristics are
difficult to analyze and predict accurately. Increasinglystem architects pre-
fer a minor performance penalty to an overly complex sofuti®implicity is an

important design goal in modern GC algorithms.

e Cross-layer coordination. MREs should arrange for cooperative interaction
with the OS memory manager. For instance, the GC memory siquasern
should not conflict with the page replacement policy usedhiey@S kernel. In

addition, MREs should use the available OS facilities in agredfective way.

e Principle of locality. It is important to preserve the order or objects, as it was

created by an application, as this order reflects tempepetl&d locality of access.

e Object clustering. Empirical analysis of modern benchmarks indicates that ob-

jects exhibiting similar life spans tend to be spatiallystered in the heap. This

28

Chapter 2. Background

statistical observation enables the GC design where ratiamgranularity is

bigger than a single object (for example page-based GC).

While recent GC algorithmslp1, 46, 57, 59, 80, 179 have been increasingly ad-
dressing the above design aspects, there still remain nmaitgtions to overcome. The

most important ones that affect GC performance and intergcare:

e Object moving and pointer adjustment. State-of-the-art GCs that perform par-
allel/concurrent compaction, move objects in the heaps iBexpensive because
it causes significant cache/memory traffic. In addition, mgwbjects makes the

GC design more complex by introducing additional phasess@g@sover the heap).

e Unproductive GCs. Extant GCs that optimize GC triggering to increase GC
yield are either based on heuristics related to programvi@har rely on offline
profiling. These systems are unable to eliminate unprodeIGIiCs in a generic

way with low overhead and good accuracy.

e Unexploited clustering. Although dead object clustering is a widely-observed
phenomenon (objects with similar lifetimes tend to be amated in the headp7)),
to date, GC systems have taken little advantage of thisstati property. Now
that 64-bit address space is increasingly commonplaces #re much more op-

portunities to exploit object clustering in the heap.

29

Chapter 2. Background

e OS-oblivious GC.Most GCs published in the literature do not leverage OS sup-
port for virtual memory and those that dbd[, 46] do not eliminate object mov-
ing and low-yield collections. Existing systems do not tae tull potential of

OS-assisted cross-layer memory management.

e Complex, monolithic GC.GC is one of the most complex subsystems in modern
runtimes and for performance reasons is often tightly-teaipvith other subsys-
tems such as a dynamic compiler. Extant efforts aimed at taadung GC either
do not target modern, concurrent G85], or have limited portability and high
overhead because are part of memory management framewadttenvior and

in high-level language<2B, 29.

The GC systems described in Chapt&rd, and5 address these limitations by leverag-

ing OS support for virtual memory and system libraries.

2.2 Cross-Runtime Memory Management

In this section, we overview inter-process communicati@chanisms, both in the
context of an operating system and a language runtime. Wederbackground on key
concepts and terminology related to message passing aretilsnamory. In addition,
we discuss state-of-the-art techniques for cross-runton@munication, such as remote

procedure calls and object sharing, and point out theitétons.

30

Chapter 2. Background

2.2.1 State-of-the-art Inter-Process Communication

Inter-process communication (IPC) enables the exchangatafaimong multiple
processes potentially running on multiple computers cotateby a network. General-
purpose operating systems, e.g. UNIX, typically provideesal IPC mechanism®]
147, 105, such as message passing, synchronization, shared meandrgemote pro-
cedure calls (RPC). An efficient interprocess communicatamilify enables system
decomposition across address space boundaries, whiclof@®emailure isolation, ex-
tensibility, and modularity.

Signals and pipes are the oldest OS-level IPC mechanisnib.S{stem V, AT&T
introduced three additional forms of IPC: message queu@sagdeores, and shared
memory. POSIX equivalents of System V mechanisms definghtklidifferent API
but offer similar functionality.

Signalsare asynchronous events that can be generated by processeddd that
they have the correct privileges) or the OS kernel (for imsgain response to a key-
board interrupt or an error condition such as when a prodésspts to access a non-
existent location in its virtual memory). There is a prededirset of signals in the
system. Processes can either ignore or intercept most sfghals, with the exception
of STOP (which causes a process to halt its execution) andl Kilhich terminated a
process). Ignored signals are handled by the kernel whidbnpes the default actions

required for them, e.g. for the floating point exception tleenlel saves a core dump

31

Chapter 2. Background

and terminates the process. Signals have no relative tiggand ordering. There is no
mechanism for handling multiple signals of the same kind.(@. process cannot tell
how many continue (CONT) signals it received). Signals atveled on the kernel
exit path only and therefore there may be some delay betwerergting a signal and
presenting it to a process. Processes blocked in unintéteisystem calls are not
awoken by signals. Calling a signal handler is processaipas it requires switch-
ing between the kernel and user mode. This is typically iiglleted by manipulating
the stack and registers of the process. The program cowset to the address of its
signal handling routine and the parameters to the routie@dded to the call frame or
passed in registers (depending on the calling conventied)u®OSIX systems allow a
process to block other signals while a particular signablhag routine executes.
Pipesare unidirectional byte streams which connect the stanolatgut from one
process into the standard input of another process. Ngitoeess is aware of this
redirection and behaves just as it would normally. It is camrfor the shell to set up
temporary pipes between processes. As a process writesgde,dptes are copied into
the shared data page, from which they are later copied baaka@ber process reads
from the pipe. Pipes are synchronized by the kernel for exaturead/write access.
Reading or writing may block if there is nothing to read or norencoom to store
bytes. Some OSes, like Linux, support named pipes (also kraanFIFOs) which are

permanent entities in the file system.

32

Chapter 2. Background

The System V IPC mechanisms share common identification atieemtication
methods. Each IPC object has a unique identifier, generasedoon a key that must
be mutually agreed upon by processes that use a particyéatoBccess to IPC objects
is granted based on a set of permissions.

A message queus an internal linked list within the kernel address spacaltidle
readers and writers can use a single message queue sinoulsaneMessage queues
provide asynchronous communication (the sender and tleévezado not need to use
the queue at the same time). Each time a process attemptiéd@wressage to a queue
and there is enough room in the queue, the message is copiedife user space to the
kernel space and enqueued using the FIFO discipline. Theekblocks the process
if the queue is full. Each message is tagged with an appicagpecific type, agreed
upon by the communicating processes. A reading process pegyfs the message
type when retrieving a message from the queue. If no messagieh the given type
or the queue is empty, the reading process blocks.

Semaphoresire essentially integer counters used to control acceskaied re-
sources by multiple processes. Each semaphore is assbwidltea location in mem-
ory whose value can be tested and set atomically by more thaprocess. Depending
on the result of the test operation, the current process &k lintil the semaphore’s
value is changed by another process. The set operation &isveeeeds and adds a

given value (positive or negative) to the current value ef semaphore. Semaphores

33

Chapter 2. Background

can be used to implement critical regions. Binary semaplaae$iave only two values
(0 and 1) and therefore their functionality is equivalena tmutex. To avoid starvation,
semaphore implementations use a FIFO queue for the blockedsses.

Shared memorgllows processes to communicate via memory mapped witkin th
virtual address spaces (not necessarily at the same afldféss is the most efficient
IPC because it avoids data copying and kernel intermediatB®efore using shared
memory, each process must attach to a shared memory segsimegtausystem call.
For synchronization, processes use other IPC mechanisgnsegnaphores, or rely on
atomic operations and the memory consistency model impilesdeby the underlying
architecture.

Most hardware platforms provide sequential consistentlgeaABI level although
internally often use weaker models for better scalability @erformance. Sequential
consistency means that there is a global order on all menmeyations and it is con-
sistent with the order specified by the program code. The mgmodel specifies the
contract between the software and hardware in the contéttexd aspects: (1) ordering
of loads and stores, (2) atomicity of loads and stores, anst@8e visibility (to loads).
The memory model defines what can be read from memory unddroshditions. To
prevent unwanted reordering, processors provide speatlictions: load-acquire (no
memory operations can be moved before it), store-releasen@mory operations can

be moved after it), and full-fence (no reordering acrosd&)}32 and AMD-64 imple-

34

Chapter 2. Background

ment a relatively strong memory model: all stores are stelease (stores are never
reordered relative to other stores), all loads are nornaddqcan be reordered), and
the LOCK instruction creates a full fence.

All correctly synchronized C/C++ programs are sequentialigsistent. This is
because in such programs all shared accessed are guardeduigxa Mutexes use
load-acquire and store-release to prevent reordering enwilde mutual exclusion for
global serialization. The recent standard for C/C++ memorgleh¢33] states that
incorrectly synchronized programs are not guaranteed atfiydefined semantics.

Atomic operations are an important synchronization pnmitUsually, certain ba-
sic memory access operations, such as reading an alignedbyhachine word are
guaranteed to be atomic. This is the case on 28§\Which also supports bus locking
for performing such operations as read-modify-write. Moscessors implement some
variant of the atomic compare-and-exchange instructidims ihstruction is commonly
employed byspinlocks Spinlocks serialize access to shared data in a non-blgckin
manner. To acquire a spinlock, a thread waits in a loop, tepBaexecuting compare-
and-exchange on a certain memory location. Since spinlos&dusy waiting, they are
efficient if processes hold the lock for a short period of tamel there is not too much
contention.

Because of the cache coherence protocols, on multi-processzhines, an impor-

tant consideration ifalse sharing When a process periodically accesses data that will

35

Chapter 2. Background

never be altered by another process, but that data sharebaldack with data that is

altered, the caching protocol may force the first processltzad the whole unit even

though that is not necessary. The caching system is not ahatr¢here is no logical

sharing and treats the situation as actual sharing, thussimg high overhead on the
system bus for the coherence traffic. To avoid false shatingglated data structures
are placed at proper distances in memory.

Other IPC mechanisms offered by state-of-the-art OSesetngork socketsind
remote proceduresA network socket is an endpoint of a bidirectional flow asras
computer network based on the Internet Protocol (IP). Ssakeable delivery of data
packets to appropriate processes using IP addresses amiptrers. Each socket is
associated with a transport protocol (e.g. UDP, TCP). Tdaéistasocket communica-
tion, one process plays the role of a server that acceptsiimgoconnections while the
other process is a client.

Remote procedure call (RPC) systems, implement network/focaébcols that al-
low a process to execute a subroutine in another address ggaomonly on another
host). The programmer does not explicitly implement thienaction — the code is es-
sentially the same as for a regular procedure call. In theatgriented context RPCs
are called remote method invocations. Operating systetaa optimize the protocols
for the single-host case (e.g. Solaris dodk$]], Sun ONC/RPC 151]). RPCs are

based on a client-server model. A server registers an eainy (function address) and

36

Chapter 2. Background

binds it to an external name. Function parameters are ndhmanually as system
languages (C/C++) do not support reflection. Marshalling essary because of the
possibility of architectural differences (ONC/RPC uses tkeemal Data Representa-

tion format).

2.2.2 Cross-Runtime Communication and Coordination

Managed runtimes for general-purpose languages suchasC¥avand Python, de-
fine type-safe abstractions corresponding to some of théee@3{PC primitives. Safe
RPCs, channels, and object serialization are examples ofsifeelanguage/library
support for MRE-level, portable IPC. Their main goal is to daadxchanging ob-
jects and/or synchronization between isolated applinat@mponents while maintain-
ing the abstractions and safety guarantees of the undgriygh-level programming
language. Common design tradeoffs inherent to MRE-level iHe{tide preserving iso-
lation, type-safety, and transparency while delivering latency and high throughput.
Some IPC protocols available in extant MREs target runtineesafsingle language
(e.g. Java RMI) while other ones support heterogeneousmest(e.g. CORBA for
cross-language RPC).

There are essentially two general approaches to implengeMRE-level, type-
safe IPC in state-of-the-art managed runtimeg-down where multiple applications

are executed in a single process with software isolatiowdst them, andbottom-

37

Chapter 2. Background

up, where multiple applications are executed in distinct O&psses. The top-down
approach offers weaker (software-only) isolation guaest does not leverage OS-
level IPC, and duplicates the OS mechanisms at the MRE levebnitrast, the bottom-
up approach has stronger OS- and hardware-assisted ¢oxEs® isolation and can
readily take advantage of existing standardized OS-I&€lfacilities.

Extant MRE systems that support type-safe IPC and take thddaim approach

fall into three categories:

e multitasking virtual machines, such as the MVBB[and Singularity 89 that

enable message passing communication via channels/links,

¢ shared-nothing runtimes for concurrent real-time langsaguch as Erlan@],
Occam [L17], and Limbo B3] that build on the algebra of communicating se-
guential processe8]] and support point-to-point message passing for lighthieig

processes, and

e multi-application runtimes/operating systems suppgrsihared memory, such as

KaffeOS [L0] and SPIN R7].

To date, the bottom-up approach has been mostly used in titext@f distributed

systems that can be classified into two groups:

38

Chapter 2. Background

e distributed RPCs for homogeneous language runtimes, like B&U, and het-
erogeneous runtimes, such as CORBA|| Thrift [143, Protocol Buffers 129,

and

e distributed shared memaory/single system image systerols aalJPC64], cJVM
[6], MultiJav [41], and X10 B0Q], that support non-uniform transparent shared

memory (global address space) across a cluster of computers

Some systems providing message passing use synchronouisves with ren-
dezvous semantic§3] that require the sender and the receiver to use a speciimeha
at the same time for message delivery to take place. Otheregsuse asynchronous
message passing which lets the sender continue executoentiom message has been
copied to an internal buffer (the receiver can retrieve tlessage at a later time).

Shared memory communication, while being more transpaedtefficient than
explicit message passing, necessitates defining a mematglraad thread/process
synchronization mechanisms. In type-safe high-level daggs, the memory model
tends to be more complex because safe semantics must besgeemo programs that
use synchronization improperly. The Java Memory Model (INTRB] is notorious for
its complexity, which especially applies to rules for tfimal andwvolatile modifiers.
JMM guarantees sequentially consistent semantics onlyagrams that are properly

synchronized (i.e. those that do not contain data races).atA thce occurs when

39

Chapter 2. Background

multiple threads can access the same object field at the sarmmend at least one of
them performs a write. Java provides monitor synchrororetr mutual exclusion and
memory access serialization (preventing reordering). iMdorntry has load-acquire
semantics (downward fence) while monitor exit has stoleasee semantics (upward
fence).

Single image systems (SSI) for Ja\v@ fi1] extend the notion of the JMM (i.e.
release consistency) into a cluster of machines. For teagpsplocal/remote execution,
threads use distributed stacks. Two approaches to codiyama: method shipping
(when code is moved to a thread) and thread migration (wireads move to the code).
All SSI systems use globally unique identifiers for objeatthie heap.

Operating systems written in high-level languages, likéNSR27] and Singular-
ity [89], do not rely on protection domains for isolation but pravisoftware-based
safety based on the type-safety of the underlying languagi@he. Thus, process-
kernel interaction has the cost of a method call and doesnmopbdse the overhead of
switching between the kernel and the userland. In addiienhardware support for
the privileged mode and virtual memory is required. Effitieommunication/event
dispatch encourages the microkernel approach to the de§i@$ services and sub-
systems. The kernel has fine-grain interfaces, which presnektensibility (mono-
lithic kernels use coarse-grain interaction to amortizedbst of system calls). High-

level languages also make automatic system verificatiore rfeasible and effective.

40

Chapter 2. Background

However, despite these software engineering benefits,aatipe, OSes tend to rely
on C/C++ monolithic kernels because of their better overafiogpmance, lack of GC
overhead, better predictability, and more control overlthedware, especially when
writing device drivers.

Several systems mentioned in this section are worth disgyss more detail.
Specifically, we overview the MVM, KaffeOS, and Singularity representative exam-
ples of state-of-the-art IPC within a single OS process, @t a CORBA and Thrift
to show the recent evolution of cross-process cross-lajggR# C.

The Multitasking Virtual Machine§3] extends the Java VM to run multiple Java
applications within a single JVM process. The system imgglets lightweight isolation
between the applications (tasks). Its main goal is imp@JiM scalability by sharing
as much runtime data/state as possible. This reduces thaafM¥initialization time
(no bootstrap class loading) and memory footprint (shamd dtructures and class
representations). To implement cross-task isolationMk@/ introduces changes to a
number of runtime components, including GC, dynamic compdkass loader, byte-
code interpreter, and native code framework. Tasks canreattly share objects. They
use Java serialization and the MVM links to communicate ves$age passing. Links
do not buffer messages — send/receive is a rendezvous gdiatMVM provides the
API for task creation, termination, and link setup. Usegoied native code is run in

a separate OS process in order to prevent possible tastenatece at the C/C++ level

41

Chapter 2. Background

(the JNI is implemented using OS IPC). For the Java code amdnative libraries, the
MVM uses software-only isolation.

Singularity B9] builds the whole system stack (the OS, managed runtimeapnd
plications) from layers written in a high-level, verifiabdlEnguage. The system has
three main architectural features: software-isolatedgsees, contract-based channels
for message passing, and manifest-based programs. Sihg@iteuses on depend-
ability and correctness as a way of dealing with OS kernehenalbilities and faulty
device drivers. Processes execute in one address spacead@ctipn is achieved by
the language type-safety. No data can be shared betweerspast Sending a message
over a channel entails the transfer of exclusive data ovaiefthe compiler enforces
the constraint that after sending, objects are not reusetthdgender). The code is
sealed, there is no dynamic class loading. Programs areeddfinmanifests that spec-
ify dependencies, resources, capabilities, and runtiropguties for static verification.
Channel contracts consist of message declarations anaplstates. Singularity uses
a microkernel approach (device drivers, file systems, ancde&nsions execute as
processes). The exchange heap enables passing messadges/aiding copying and
serialization (which applies both to channels and zerordp). However, direct ob-
ject sharing is not supported. The kernel and processepaeate GCs. Channels are

asynchronous with bounded FIFO queues.

42

Chapter 2. Background

KaffeOS [L0] implements the abstraction of OS processes in a JVM to erabl
ecution of multiple Java programs in a single VM process. 3ysem defines user
and kernel boundary and implements resource managemdntiatailed accounting.
KaffeOS strives to share as much runtime data and classessaile while provid-
ing isolation for processes. Object references can crassshr/kernel boundary but
no direct pointers are allowed across the heaps of diffgr@tesses. To share objects,
processes in KaffeOS must allocate a shared heap. The siysferses two restrictions
on how shared objects may be used. First, there is no pointensa shared heap to any
private heap. Second, the size of a shared heap is frozentafédlocation and initial-
ization. There is a dedicated class loader for each shagul #dl sharing processes
are charged in full for a shared heap.

CORBA [17§ is an Object Management Group standard for object-orcenten-
munication across heterogeneous platforms in a distigbetesironment. CORBA
specifies an architecture for location-transparent RPCi$trilouted objects in a language-
and platform-independent way. The RPC employs the Inteifafeition Language
(IDL) that describes object interfaces. Messages are sentlloe Object Request Bro-
ker (ORB) which is responsible for marshalling and transp®hte IDL compiler cre-
ates IDL stubs (for the client) and IDL skeletons (for theve€ythat enable transparent
static RPCs (compile-time binding). For dynamic (run-timedang) RPCs, CORBA

uses the Dynamic Invocation Interface (DIl) and Dynamicl&iaen Interface (DSI), ca-

43

Chapter 2. Background

pable of service discovery at runtime. The clients use therdgistry (interface reposi-
tory) to discover the available RPC endpoints. CORBA suppgrtstgonous, deferred
synchronous, and asynchronous calls. The specificationedeéin implementation-
neutral object model with interface-based inheritanceramgolymorphism. The type
system comprises basic values, object references, andi@onglues (structures, se-
guences, and unions).

Thrift [143 is a fast, scalable, lightweight RPC across languages irstailuited
system. It has been developed as an alternative to CORBA taawer some of its
limitations, such as complex architecture, high overhaad, poor scalability. Thrift
is an RPC library and a set of code-generation tools. Thersydedines a language-
neutral interface specification, and generates cliemésatubs/skeletons for a number
of different programming languages (including Java, Pytrend C++). Only static
calls are supported. Thrift uses versioning which allowgnaenting data types in RPC
argument lists without service interruption. The type sgstconsists of base types
(primitives such as integers, booleans), structures, anthmers (list, map, and set).
They map to native/builtin types in each language. Thrifsarts exceptions and asyn-

chronous calls.

44

Chapter 2. Background

2.2.3 Limitations

Mainstream managed runtimes for general-purpose prognagnlanguages still
considerably lag behind the OS-level IPC in the scope of stipgd mechanisms and/or
performance. For instance, shared memory has not yet bemtealdto safe lan-
guages despite being supported by OS for decades. The amoergemulti-core ma-
chines makes managed runtime co-location more and more oamimus rendering
type-safe shared memory an important runtime service. ditiad, extant, safe RPC
mechanisms offer poor performance in the co-located caseaddata structure copy-
ing/serialization, which could be avoided by using sharedory. Thus, incorporating
object sharing to managed runtimes could improve both tbgramming model and
performance.

The design of cross-runtime memory management in modertbbyiented pro-
gramming languages needs to incorporate at least some d¢bltbeing goals and

features:

e Cross-language communicationSince each language has its own unique com-
bination of performance, productivity, and library suppatifferent software
components are often implemented in distinct languagesh 8amponents need

to communicate and/or share data.

45

Chapter 2. Background

e Cross-runtime isolation. Preserving fault and resource isolation between com-
ponents is key to the overall system robustness and ityatailstop failure prop-

agation at the component boundaries.

e Exploiting co-location. Administrators increasingly co-locate multiple compo-
nents on a single machine to better utilize multi-core anttimpucessor shared-
memory platforms via thread-level parallelism. Optimgigistributed commu-
nication protocols for the local case by taking advantagehafed memory can

improve throughput and latency significantly.

e Serialization avoidance by sharing. The most expensive part of communica-
tion via message passing in type-safe IPC systems is datetise serializa-
tion/marshalling. This process typically involves objgcaph traversal, its in-
spection via reflection, and encoding into a byte streamal&aation is difficult
to parallelize, does not scale well, and can degrade thpugnd latency by

orders of magnitude. Direct object sharing avoids this logad.

e Type-safety and garbage collection.Both message passing and shared mem-
ory systems must guarantee type/memory safety and provateem garbage
collection. Concurrent and on-the-fly GCs are most suitablenfdti-core archi-

tectures and applications that require low latency andabdéy,.

46

Chapter 2. Background

e Transparency. For the programmer’s convenience and productivity, modern
cross-runtime communication schemes must be blended hetountime type
system, builtin types, and language constructs. For ex@moplects residing in
the shared memory should behave as regular objects witbaegpsynchroniza-

tion, method calls, field access, and other runtime services

e Language-neutral object model.To communicate across languages, a channel,
an RPC system, or a shared heap must define and use a langdagendent
object model that can be mapped to native object models imleaguage. This
object model must strike a balance between being too namasy(to map but
inconvenient and inefficient memory use) and too wide (maglifficult to map

all types to all languages but more fine-grain control ovemoey use).

¢ Lightweight and simple. Complex systems are difficult to analyze and optimize.
Therefore, recent RPC systems, such as Thrift, put emphassplicity (the

key motivation for Thrift was the heavyweight and overdesid CORBA).

e Easy to use by programmers.RPC systems typically employ an interface def-
inition language (IDL) that is compiled into stubs and skas. This approach
necessitates keeping the IDL schema consistent with teettderver implemen-
tation in a specific programming language. In addition, paogners have to

learn the IDL syntax, which tends to vary significantly betweRPC systems.

a7

Chapter 2. Background

Schema-less RPC/sharing (similar in spirit to recent schiesmedatabases) can

alleviate the programming burden caused by IDLs.

e Scalable. More and more commodity systems have multi-core CPUs, and are
equipped with large main memory. Cross-runtime commurdoatystems must

therefore scale in the number of runtimes and the sharedsdata

e Loosely-coupled architecture.To make systems fault-tolerant and flexible, in-
dividual subsystems must avoid excessive interdepeneeaad centralized con-
trol. Containing failures to a single component and architgcsystems to have
no central point of failure are two approaches commonly tig@acrease system

dependability.

e Easy to evolve.To enable fast prototyping and short software development c
cles, RPCs need to permit frequent changes in the meta-dats¢tizma, prefer-
ably without stopping the deployed system. For examplesioemg in Thrift

significantly increases IDL elasticity.

Although many of the above-mentioned design goals have teegome extent in-
corporated in recent RPC systemglB 89, 40], and some RPC technologies are ma-
ture and widely-usedl]7€, state-of-the-art cross-runtime communication stikdgto
evolve to meet the requirements of modern applications akel better advantage of

the underlying software/hardware infrastructure. Culyetiie key limitations are:

48

Chapter 2. Background

e Operating system support for shared memory, although atdimdd by POSIX
for decades, is not leveraged by programming languagesinggdduction to-
day. As a result, managed runtimes are unable to optimizerzoncation on a

local machine and always use high-overhead distributetpots.

e Extant object sharing systems are limited to a single lagguand a single op-
erating system process. We are not aware of any type-safeaged runtime
that supports cross-language shared memory where rundiregsin as separate
processes. In consequence, multi-runtime multi-langsygeems that become
more and more common can only communicate by message pasgira is

suboptimal in the co-located case.

e Software-based isolation between components in statieesért object sharing
systems provides insufficient guarantees while compiigadiystem design. Du-
plication of the resource protection and management alreaplemented in the
operating system and hardware adds engineering efforevaleiing less reliable

and potentially incompatible with the policies implemehie the kernel.

e Cross-language RPC systems offer poor performance in thecabeld case be-
cause of unnecessary serialization and copying. This isezhby the lack of

support for shared memory in extant managed runtimes.

49

Chapter 2. Background

e Safe languages today offer message-passing interactigrnthars limiting the
programming model to channels and RPC. Object sharing systanmot be ef-
ficiently implemented using state-of-the-art cross-metiobject-oriented com-

munication mechanisms.

e The design of systems supporting sharing is too complexdtopn approach).

RPC systems are heavyweight and use IDL schemas.

The systems described in Chaptérand7 address these limitations by using OS sup-
port for shared memory to provide type-safe, transparejeicoharing across homo-

geneous and heterogeneous runtimes co-located on a siaglena.

50

Chapter 3

Efficient Compaction by Mapping:
Improving Intra-Runtime Memory
Management Performance Using
Virtual Memory

In this chapter, we describe an approach to improving théopaance of intra-
runtime memory management by using OS support for virtuahorg. Specifically,
we discuss the design and implementation of a parallel anduwoent compacting
collector that leverages page mapping operations. Theatol exploits the observation
that unreachable objects in the heap form clusters thateafféctively managed at the
page granularity. Such clusters can be compacted into amanrathe virtual memory
by page remapping. This avoids expensive object moving amdgr adjustment while
achieving a high degree of compaction. Using page remaiags the collector to

outperform extant compactors significantly.

51

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

3.1 Introduction and Motivation

Modern systems are increasingly complex implementing iflayered software
stacks and employing more and more processing cores, im trdeipport a vast di-
versity of applications ranging from multi-media and safte development to web-
services and distributed gaming (among others). To exhratt performance from
such systems, it is vital that the layers of the softwarekstamoperate efficiently to
make the most of the underlying hardware resources.

Two layers common to most extant systems are the operatstgray(OS) and the
managed runtime environment (MRE) for portable, type-safdieations (e.g. those
written in Java or the .Net languages). A subsystem that icganifisantly impact per-
formance and that has the potential for better OS-MRE intieracs memory manage-
ment.

MREs typically implement garbage collection (GC) to simplifle programming
model for developers. Modern managed runtimes increasiegiploy parallel and

concurrent collectorep, 1, 67, 46, 10]] to maintain scalability, as multi-core architec

tures and multi-threaded applications become more and coonenonplace. Moreover,
state-of-the-art MRESs often use compaction to eliminat fieamentation and enable

fast linear object allocatiorfp).

52

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Extant GCs achieve compaction by moving live (reachabledabj This involves
copying and pointer adjustment, both of which are increggiexpensive because of
the growing processor-memory performance gap, and camsalyémpact application
performance32]. To address this limitation, we investigate a new apprdagbaral-
lel/concurrent, compacting GC in which the MRE uses stangedable, unprivileged
virtual memory operations, supported by the OS interfazeliminate object moving.
We design and implement the Mapping Collector (MC), whichilages page mapping
to compact free space instead of compacting live space.

MC exploits the widely-known phenomenon that objects wihilgr lifetimes tend
to exhibit spatial locality in the head§7. In particular, we find that dead objects
often occur in large clusters. MC exploits this behaviorgolaim heap space at the
granularity of virtual pages. The collector trades off a krineap space overhead for
fast, inexpensive compaction. In practice, this spacehmaat is below 6% on average
and MC can additionally bound it by an infrequent fall-baclstate-of-the-art moving
compaction. MC maintains the simplicity and low cost of a-mooving collector while
providing effective compaction in the common case.

We implement both stop-the-world and concurrent MC in a gatrenal garbage
collection framework within the open-source HotSpot Jaigusl Machine. MC is ap-
plicable to both server systems (which typically employaanent GC to reduce pause

times at the cost of resource over-provisioniB§]] and deskside systems (which tend

53

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

to use stop-the-world (STW) GC because of its simplicityheigthroughput, and more
efficient use of the underlying resourcé]). Our experimental evaluation using a
multiprocessor indicates that MC significantly increasesughput and scalability as
well as reduces pause times, relative to state-of-thegpargllel and concurrent com-
pactors.

Prior work on compaction has focused on both partial elitnomaof object mov-
ing [57, 85] and reducing the number of GC phas&81], 1, 67, 137]. MC leverages
MRE-OS interaction to improve over these approaches by rditimg copying alto-
gether. Virtual memory support for GC has been shown to lee&dk in other contexts
including preventing collector-induced pagir€y[175 179 80, 174 and reducing the
space overhead of copying collection via page unmapdg, [136. Unlike previ-
ously reported systems, MC employs virtual memory unmapgasia primary and sole
technique to implement STW/concurrent compaction in a ntoiRE. MC achieves
almost the same effect as object moving but avoids objecticg@and thus improves
GC performance while imposing a small space overhead. MQieady-single-phase
compactor while extant compacting GCs require at least tvesgh

In the next sections, we overview the design and implemiemntaif MC (Sec-
tion 3.2), present the results of our empirical evaluation (Sec8@), discuss related

work (Section3.4), and conclude (Sectidd.5).

54

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

|:| live objects | | | | | | | |

| | |
1 virtual pages f } } } } } } } } } } |
| | |

T T T T T T T
|:| dead objects

Figure 3.1: Page-based free space reclamation in MC. Virtual pagesdatiyained in
dead clusters are returned to the OS.

after

marking

after
unmapping

|||free| | | |free| | | ||free

3.2 Design and Implementation

MC exploits the widely-observed statistical property thateachable objects tend
to cluster togetherl[67] and form contiguous dead regions in the heap. Our experimen
tal analysis of modern Java programs (which we present itid®e®.3) confirms this
property and reveals that clusters of dead objects are eft#itiently large to make
their reclamation via virtual page unmapping practical.

Extant garbage collectors do not take advantage of the tduabirection offered
by virtual memory and compact the heap by moving objects guthting pointers.
MC remaps the free space into a contiguous region in a newdgatkd area in vir-
tual memory. This approach is simpler and more efficient thiaject copying and
pointer adjustment. It enables nearly-single-phase cotigra while state-of-the-art
compactors comprise at least two phases. In addition toing@grkC requires only a
single traversal over the liveness bitmap (whose size is 3%tedcheap).

To achieve portability, MC relies only on standard virtuammory operationsl3d,

such as page mapping and unmapping, that are availablenjpriyileged) processes as

55

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

part of an operating system interface (system calls) on mostern platforms. We note

that it is not sufficient to rely on the OS paging mechanismviasout unreachable,

never-accessed pages, and completely avoid garbagetirileéeriodic page unmap-

ping is necessary to free the associated OS resourceshe gwap space) — otherwise
they are not freed until program termination.

Since virtual page granularity is larger than the unit obedition (most objects are
small) and because of the page alignment requirements oémaystems (e.g. 4KB
in Linux), MC incurs a certain heap space overhead, whichwauate in detail herein.
We find that the size of the uncollected free space is modesbst cases and can be
bounded via an infrequent fall-back to perfect compact®ec{ion3.2.4.

By remapping free space into a new area in virtual memory, M@omes increas-
ingly more address space as subsequent compactions oduarplienomenon, how-
ever, is not a problem on modern 64-bit architectures thag peactically inexhaustible
virtual address space at their disposal.

Like most state-of-the-art compactors, MC is designed feanaired generation in
a generationall55, 99] garbage collection system. In the young generation, ntyma
a copying collection is used as it is more efficient than cactipa if the expected
percentage of live objects is low. The cost of collectingtdrred generation typically

dominates GC performance.

56

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

The tenured generation contains objects with relativetg liifetimes and its alloca-
tion rate is relatively low (compared to the young genergtid hus, the expected rate
at which new dead clusters appear is low and address spage resaains tolerable
even on 32-bit architectures (which we have verified expentally).

MC consists of a single parallel marking phase (which impdke dominant cost
of the collector) and a series of operations for unmappirdywgpdating auxiliary data
structures. Unmapping occurs immediately following magkand has a cost propor-
tional to the size of the liveness bitmap (which is approxaha3% of the mapped heap
size). Thus, MC is a nearly-single-phase compactor.

MC can be implemented as both STW and concurrent compactoimdpunmap-
ping, MC does not access live objects at all, and therefar@gacute concurrently with
the application without the need for any synchronizatiohissignificantly simplifies
the design — note that moving compactors require OS suppdramdle concurrent
mutations to the moved objects.

While STW compaction is triggered only upon heap space exiwawisconcur-
rent compaction is initiated early, when a certain heap paoay is reached (typically
around 70%). This is necessary to guarantee space for édloaghile the compaction

progresses in the background.

57

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

3.2.1 Stop-the-World/Concurrent Marking

The marking phase identifies all reachable objects in thp hed records the start-
ing and ending words for each live object in the liveness agmBoth STW and con-
current marking can be used with MC.

State-of-the-art STW parallel marking{, 85] uses work stealing for dynamic load
balancing. The root set is assigned to the marking GC thrieaasound-robin fash-
ion. Whenever a thread becomes idle, it steals a group oferetes from another
(randomly-selected) thread. Each thread maintains a loeaking stack (for depth-
first search). To ensure that each live object is processactlgxonce, marking GC
threads claim objects atomically. GC threads coordinatekimg termination via bar-
rier synchronization.

State-of-the-art concurrent parallel markird@7, 85] consists of three sub-phases:
STW initial marking, concurrent marking, and STW final maki Initial marking
suspends mutators to record all objects directly reacHathe the roots. Concurrent
marking resumes mutators and marks a transitive closureachable objects. Due to
concurrent pointer updates some live objects might be taftarked. Therefore, the
algorithm keeps track of all pointer updates by leveragirogua table mechanism of
a generational GC system. Final marking suspends the msitahal repeats marking

from the roots treating modified pointers as additional sodtinal marking is typi-

58

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

cally short as it skips the already-marked objects. Eachofilse can be executed by

multiple parallel GC threads.

3.2.2 Stop-the-World Unmapping

STW MC performs unmapping when the mutators are suspendesigdal of the
unmapping scan (which amounts to a traversal over the lssebé&map) is to return
reclaimable pages to the OS and to compute the total sizeeefdpace available in
dead clusters.

MC performs the unmapping scan in parallel. Since the sizkefiveness bitmap
is relatively small, we do not employ dynamic load balanciMg statically partitions
the bitmap into nearly-equal-sized chunks (as many as thauof GC threads). A
boundary between two adjacent chunks is the first word of@divject. Thus, the
subdivision does not hinder our ability to detect regionsatle for unmapping. No
synchronization is necessary between the parallel threade we divide the marking
bitmap between threads at live object boundaries and, asiti,neo conflicts can occur.

MC invokes the unmapping system calls in parallel which igengcalable than
serialized unmapping, especially given that pages retuto¢he OS by different GC
threads belong to disjoint virtual memory areas. OS kertied$ support fine-grain
locking in the memory management subsystem can likely leasdth concurrency

with little contention.

59

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Figure 3.1 illustrates how MC reclaims free space on a virtual pagesba$he
unmapping scan identifies unreachable regions and unmapdrdgments that fully
cover the underlying virtual pages. Since MC does not moyectd the freed areas
never contract, and unmapped pages remain unused. Themmabead tends to im-
prove over time as small dead fragments scattered acrobg#ipeassemble into larger
clusters that MC can later unmap.

MC maintains a page bitmap to track heap pages that are dyrcermapped. Its
size is approximately 0.003% of the used address space pebitKB). Without this
additional data structure, the performance of long-rugipplications that exhibit high
object turnover in the tenured generation may degrade. mh&pping scan traverses
over the liveness bitmap which has a size of approximatelpB#te address space cur-
rently used by the heap. This includes the unmapped areasefbhe, to keep the cost
of the unmapping scan proportional to 3% of the heap sizetli@aised address space),
MC must distinguish between mapped and unmapped regionbk.thi& enhancement,
MC can traverse (and clear) the liveness bitmap only pariigkipping the unmapped
regions). In addition, this reduces the number of unmapgystem calls (as we do not
unmap the same clusters multiple times).

Once the unmapping scan is complete, MC expands the heapeliptti size of
the newly-discovered free space (not the total size of thdyaenmapped pages) in

the heap (to enable identical behavior as and a fair congrates perfect compacting

60

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

collectors). The space overhead of MC then, is the size efdkpansion minus the

total size of the pages that MC has unmapped in the curreleiction cycle.

3.2.3 Concurrent Unmapping

In concurrent MC, unmapping takes places after resuming thtator threads. MC
first traverses over the liveness bitmap, finds dead clu@tess addresses and sizes are
stored in the cluster array), and clears the bitmap. Duhiegttmap traversal, MC also
computes a new object-start array, necessary in a geneah@G& system to locate the
first object on any 512-byte card during the young generat@iection [L44]. Since
these activities are performed concurrently to mutatoggumg-generation GC might
take place in the background (two collectors may executesssame time). Therefore,
MC must compute the object-start array using a separatd@sharray. This translates
to 0.2% space overhead (1 byte per 512 bytes). Next, MC sdsghe mutators, and
finishes the computation of the shadow array. Note that duhea concurrent pass over
the bitmap, new allocations might have taken place in thegelteration. These new
objects need to be taken into account when generating tloowharray. While the
mutators are stopped, MC switches to the new shadow arraynaads filler objects
into dead clusters. Card table entries (dirty/clean cards)edt intact (as no object
moves). In addition, MC computes the new size of free spaderaesizes the heap

accordingly (by the total size of the newly-discovered pace). Finally, the mutators

61

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

are resumed, and free clusters are unmapped concurrehtly, there is one STW sub-
phase and two concurrent sub-phases. Auxiliary data snestised by concurrent MC
(the cluster array and the shadow array) impose additigedesoverhead. However,
this overhead is small in practice, and, as we discuss ligt@gt an issue given that

concurrent GC needs significantly over-provisioned heaps.

3.2.4 Bounding Space Overhead

STW MC supports space-bounded collection by falling bagkeidect compaction
in cases when unmapping fails to reclaim a sufficient amotifree space. In case of
concurrent MC, there is no need for bounding the space ovedmeaoncurrent MC re-
quires significantly more heap space than STW MC (much marettie imposed space
overhead). This is because concurrent GC trades pausefomgsace and throughput
(Section3.3.9.

STW MC evaluates whether to perform a fall-back after STWalp@runmapping.
In most state-of-the-art parallel compactors, (includn@, HS, and CP), a liveness
bitmap is the interface that bridges marking and the sulegqhases. Therefore, MC
can directly proceed to the second phase of a conventionahghoompactor without
any additional processing, once it determines that a tatkbs needed.

Our current MC fall-back is the STW Compressor. The compagbioase of the

Compressor is described in Secti®d.1 An alternative solution is a fall-back to the

62

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

HotSpot compactor, but STW CP imposes a smaller space ovkanelas simpler. The
space-bounded MC uses two mutually-distant areas in theessldpace, one of which
is active (and mapped) at any given point in time. The noningbunmapping-based
compaction always takes place in the currently active spHcaefall-back is needed,
then all objects from the active space are moved to the offearesand the roles of the
two spaces are flipped (as in the Compressor). The time owkihgased by a fall-
back is the unmapping scan (the moving compaction does matfibéom this scan)
and includes bitmap traversal, unmapping, filler objectitisn, and object-start array

computation.

3.2.5 Implementation Details

We have implemented STW MC (the unbounded and the spacedbdwariant),
concurrent MC, and the STW/concurrent Compressor in Hot3{d&,[an open-source
(GPL) high-performance Java Virtual Machine availablarfrBun Microsystems and
written in C/C++ (source code released on 3/21/2007). The ptit$vM uses a gen-
erational L55 heap layout that comprises the permanent, tenured (ofd),yaung
generation. The young generation is further subdividea &uten and two equal-sized
survivor spaces (called from-space and to-space). Thegremnt generation contains
run-time meta-data for the loaded classes. The systema&di®objects initially in

the eden (if their size precludes eden allocation, it ates#hem directly in the tenured

63

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

generation). Upon space exhaustion in the eden, a copyllegtw [42, 67] (called the

scavenger) performs a minor collection. The scavengemuetes live objects from the
eden-space and from-space to the to-space, and promoexdsothjat survive several
minor collections (or those that do not fit into the to-spaoethe tenured generation.
The roles of the survivor spaces exchange after each mirlection. When space in
the tenured generation is exhausted, a major collectiomigestion) takes place. The
parallel STW compactor currently available in HotSpot isaéed in Sectior8.4.2

GC threads in HS are schedulable kernel threads. HotSpghassach generation a
contiguous region in the virtual address space and mapsloaburrently used portion.

We implement STW/concurrent MC as a parallel compactor in¢hared genera-
tion. Both STW and concurrent MC use STW parallel marking. @ese and simplify
the marking phase of the STW parallel HotSpot compactor (M€schot require per-
chunk summary data). We increase the distance betweeragensrin virtual memory
to reserve address space for page remapping.

MC compacts the young generation (which is much smaller thatenured gener-
ation) by object moving and pointer adjustment. This cortipachowever, is not part
of the major collection. It takes place as an epilogue of ladaininor collection. Con-
sequently, MC does not need to update any pointers duringrroajlections (unlike

HS and CP).

64

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

header class length unmapped
o Ist 2nd | 3rd | | page | |
[| | | | | 1
word word word alignment

Figure 3.2: The format of a filler object. First three words form the heaafean array
object. The page-aligned part of the rest of the clusterbgestito unmapping.

Since the scavenger uses a card table to find roots duringr rogliections, the
unmapping scan in MC must compute an offset of the first lijeador each 512-byte
card (the object-start array). This additional processingoncomitant to the dead-
cluster unmapping and does not require a separate pass.

Free regions cannot be entirely unmapped as the scavengebmable to traverse
(object by object) an arbitrary subspace of the tenuredrgéina (in search for roots)
during minor collections. Therefore, we insert a filler atjmto every free area during
each unmapping scan. FigBe2 depicts the format of the filler object. The type of a
filler object is an integer array (t []), to ensure that there are no interior reference
fields for the scavenger to follow. Thus, each free regioreaimable except for
three words that are necessary for the header of a filler bbjdee minor GC treats
filler objects as if there are live, however, since they aneeachable, the next major
collection considers them to be garbage. Following the pot8onvention, we use a
single system callnmap) to perform both mapping and unmapping (for the latter we

employ theMAP_NORESERVE flag).

65

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Concurrent MC requires a STW phase in order to atomically igptiee object-
start array, insert filler objects, and resize the heap. \§gylack on the STW young
generation collection to avoid introducing additional erpive safepoint8p]. Young
generation GC is relatively frequent and a slightly-deth$&'W phase is not a problem

in practice.

Generational Compressor We extend the Compressor to support generational com-
paction, and implement it in the tenured generation. The Gesgor moves objects,
therefore it needs to update the pointers in the young andgent generations upon
each compaction. We use 256-byte blocks, as we have foundtthbe the best trade-
off between space overhead and performance. The concu@mnpressor has two
concurrent sub-phases, separated by a single STW sub-plmatee first sub-phase,
the Compressor computes the block-offset array (used fartgroforwarding) and
the shadow object-start array. In the STW sub-phase, theraygpdates the shadow
object-start array (to include new allocations) and sets the current object-start array,
invalidates card tables (because objects are moved), fdsvgdinters in the young gen-
eration and permanent generation, protects heap pagesvdoles to the other semi-
space. In the third sub-phase, a concurrent thread readscudnt pages (one word
per page to generate SEGV traps) to ensure that all the peggegentually moved, and

clears the liveness bitmap.

66

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

3.3 Experimental Evaluation

We empirically evaluate 6 compactors: STW HotSpot, STW umided MC, STW
space-bounded MC, concurrent unbounded MC, STW Compressrecarcurrent
Compressor. We compare these GCs in two groups, one compdiSimyV compactors
and the other comprising 2 concurrent compactors. In adgitve compare STW MC
with concurrent MC to investigate the STW/concurrent trdideo

Our experimental platform is an SMP with 4 processors eachhidh is a 2-way
SMT (the machine has 8 logical CPUs). Each physical processoB2-bit Intel Xeon
with 1MB of cache, clocked at 1.6GHz. The machine is equippid 7GB of main
memory and is running Linux Red Hat 3.4.6 with the 2.6.9 kerfbek virtual page size
is 4KB. We run HotSpot 7-ea-b10 compiled with GCC 3.2.3 in thanozed client-

compiler (C1) mode.

3.3.1 Benchmarks

Our benchmarks include three multi-threaded server beadtsn\VolanoMark 2.5
[156], PseudoSPECjbb 200045, and Hsqgldb from the DaCapo 2006 suit], as
well as three deskside utilities (from DaCapo 2006): XalararGland Pmd. We list the

basic statistics for these benchmarks (i.e. the minimurp ke, total execution time,

67

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Benchmark| Heap[MB] | Time[s] | GC[%] | #GCs
Chart 27 25.79 | 13.21 | 16
Xalan 31 20.39 | 43.48 68

Pmd 31 29.54 | 28.16 | 26
Hsqldb 100 18.62 | 36.48 4
\Volano 33 80.25 | 24.41 | 112

JBB 174 95.62 | 43.02 | 84

Table 3.1: GC statistics for the HotSpot compactor: the minimum hea@, €xecution
time, percentage of GC time relative to execution time, dedriumber of GCs. The
measurements have been obtained for the minimum heap sieadb benchmark.

total GC time, and the number of GCs), that we obtain using t&Spbt compactor,
in Table3.1

VolanoMark is a standard server benchmark derived from awermial chat server
(VolanoChat), which simulates a multi-user environmenhwitultiple chat rooms. The
benchmark exchanges a given number of messages and remuisien time and com-
munication throughput. PseudoSPEC]bb is a variant of SPE@GHtlexecutes a given
number of transactions and reports execution time. Thehreark emulates a three-
tier client-server system (with emphasis on the middle twérere clients are replaced
by driver threads and database storage by binary trees e€tsbj Hsqgldb is a rela-
tional SQL database management system that supports irememd disk-based data
storage. DaCapo employs Hsqldb to execute an in-memory bear&ithat comprises
a number of transactions against a model of a banking apiplicaXalan transforms

XML documents into HTML. Pmd analyzes a set of Java classes fange of source

68

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

code problems. Chart plots a number of complex line graphsemders them into a

PDF file.

3.3.2 Methodology

Each of our experiments uses a fixed-size heap. We reportiedp size, which
includes the young, old, and permanent generation. Totgb keze does not include
auxiliary data structures as they are located outside oh#ap. The young genera-
tion size is 25% of the old generation. The permanent gepereét 12MB (HotSpot
default). Explicit GC invocation and adaptive generatiesizing are disabled. We em-
ploy 4 parallel GC threads (except for the scalability expents where we use 1-8
threads). Survivor spaces (from-space and to-space) @3 of the young gener-
ation (the remaining space is used by the eden). For comtuvt€/Compressor we
start compaction when 65% of the old generation is used. GCogrdLcompaction uses
a single concurrent GC thread.

We repeat each measurement three times and report the avesadgt along with
the standard deviation (error bars in the plots), wherepgprapriate. We employ the
default input size for all DaCapo benchmarks. VolanoMarkuis with 44 chat rooms
and performs 100 iterations in the networked mode. The sanatthe client are on the
same machine. PseudoJBB is configured to exeffiitéterations against 8 (for STW

GC) and 4 (for concurrent GC) warehouses.

69

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

(a) Deskside benchmarks (b) Server benchmarks

1
0.9r
0.8¢

0.7r

—— Chart] 0.61
---- Xalan)

[a) -

— Pmd 00'5

0.4

0.3r
0.2r
0.1r

o ‘
10" 107

0.1

.
4 5

2 4 6 10

10 10 10 °
Cluster Size [byte]

‘ 3
10 Cluster JScl)ze [byte]

Figure 3.3: Distribution of cluster sizes for the deskside benchmaajsafd server
benchmarks (b). We report CDFs for individual benchmarks.

3.3.3 Clustering

Figure 3.3 shows CDFs for the sizes of clusters of dead objects for thksaks
benchmarks (a) and server benchmarks (b), while Figut@resents summary CDFs
across the benchmarks. We report data obtained for the mimifmeap sizes using
STW unbounded MC. Percentage of clusters greater than 4KRidVipage size) is
24% for Chart, 52% for Xalan, 38% for Pmd, 1% for Hsqldb, 5% falavio, and
9% for JBB. Fragmentation is higher in server benchmarks. Mgezes low space
overhead for these benchmarks by reclaiming relatively iggvclusters rather than
many smaller ones. Average cluster size is 26KB, minimumtefusize is 28B, and

maximum cluster size is 184MB.

70

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

1
0.9r
0.8F
0.7
0.6r

I'DLO 5
o)
0.4 —— Deskside
---- Server
0.3r — All

0.2r
0.1r

o ‘
10" 10°

, 3 | n : 5 ! 6 7
10(:Iuster jS(|)ze [bytejf0 10 10

Figure 3.4: Distribution of cluster sizes across the benchmarks. WertépDFs for
deskside, server, and all benchmarks.

3.3.4 Stop-the-World Compactors

We compare STW unbounded MC (UN) and STW space-bounded MLwHir
STW Compressor (CP) and STW HotSpot (HS) in terms of memorypfout through-
put, pause times, and scalability. For SP, we employ the lff6esoverhead bound
in all experiments. We also investigate the impact of otheurials on the fall-back

frequency and average pause times.

Space Overhead

HS and CP impose a constant space overhead of 3% (for 2KB chan#lsl.5%
(for 256B blocks), respectively. In MC, the space overheagible and application-
specific (but can be bounded) and depends on the degree obbgsad clustering in

the heap.

71

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

12
10} M mm sp
sl
6l

a4+

il LDIH'I

Chart Xalan Pmd Hsgldb Volano JBB

Figure 3.5: Space overhead across the heap sizes for STW unbounded MCghidN
STW space-bounded MC (SP) with the 10% bound.

Space Overhead [%)]

The bar graph in Figurd.5shows space overhead imposed by STW unbounded MC
and STW space-bounded MC. For each benchmark, we reportéhegawvalue across
the heap sizes. The overhead is shown as a percentage otihsibhe. On average, the
unbounded MC imposes 5.8% overhead while the space-boui@eith the 10%

bound) imposes 3.5% overhead.

Throughput

In Figure3.6, we present per-benchmark graphs, each with four perfareneurves
for a range of heap sizes. Each graph shows execution timéuastzon of heap size
(starting from the minimum heap size).

For the minimum heap sizes and relatively to HS, UN improlestighput by up to
23.5% (Hsqldb) and by 13.3% on average. For the minimum hieap and relatively

to CP, UN improves throughput by up to 42.1% (PseudoJBB) and [3¢28n average.

72

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

For the minimum heap sizes and relatively to HS, SP imprdwesighput by up to
22.7% (Hsqldb) and by 10.9% on average. For the minimum hieap and relatively

to CP, SP improves throughput by up to 40.1% (PseudoJBB) and.bhYa2dn average.

Pause Times

Figures3.7(a) and3.7(b) present average and maximum pause times for UN, SP,
HS, and CP. For each benchmark, we report the average vahssahe heap sizes.

Compared to HS, UN reduces average (maximum) pause times by &9®.7%
(78.7%) and on average by 63.4% (68.4%). Compared to CP, UNcesdaverage
(maximum) pause times by up to 73.8% (74.4%) and on averad 806 (67.5%).
Compared to HS, SP reduces average (maximum) pause timestbp 8% (76.4%)
and on average by 49.3% (31.4%). Compared to CP, SP reducege\eraximum)
pause times by up to 72.2% (71.7%) and on average by 53.9%%3.1.

A commonly-employed GC metric for the evaluation of coltegemposed pauses
are minimal mutator utilization (MMU) curve#8] (we discuss MMU in more detalil
in Section2.1). As shown in Figure3.8, UN achieves the highest MMU for all window
sizes across all benchmarks and attains non-zero utdizébr windows shorter than
SP, HS, and CP. SP achieves better or the same utilization astHSP for all bench-
marks. Since SP falls back to CP, its maximum pause time ig gftailar to CP. HS

achieves better or comparable utilization as CP.

73

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

4 Chart 4 Xalan
2.75%10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 3x10 ‘ ‘ :
2.8r
2.6r
)
E2.4r
£
.}:2.2*
c
o 2r
5
[
21.8f
]
1.6r
1.4r
2 2 2 4 4 42 44 2. 4 " 4 47.
6 8 3 3 Heasp Sizesﬁ/lB] 38 0 30 325 35 3¥—Igap Sige [MﬁS 5 5 50
4 Pmd Volano
3%¥10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 90 ‘ ‘ :
3r 85F
) —80r
E28 2
o -
E E75
e
26 s
2 570
3 [5]
82 4 <
i West
2.2 60
30 32 34 36 38 _._ A 42 44 46 48 32 34 36 8 40 42 44
Heap Size B\IIB] Heap Salze [MB]
4 Hsqldb 4 PseudoJBB
24X10 ‘ ‘ ‘ ‘ ‘ ‘ 14%10 ‘ ‘ ‘ ‘
2.2r
12
— 2 —
g € 101
01.8F o
£ E
i
16} 8
2 o
o1.4r 3
¢ ¢ 6
w nj
1.2
4k
1k
98 100 102 19I4 %06 E?B 110 112 114 172 174 176 178 180 182 184 186 188 190
eap Size [M

Heap Size [MB]

Figure 3.6: Benchmark performance (execution time) across the heap me&TW
unbounded MC (UN), STW space-bounded MC (SP) with the 10%ntoSTW
HotSpot compactor (HS), and STW Compressor (CP). Error bdrsate the standard
deviation across 3 runs.

74

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

(a) Average pause times (b) Maximum pause times
2500 T T T T T T 3000
2000- BN UN _ 25001 M
e =k
. £ Hs 2000 i
1500/ L Jcp % Hs

10001

=

o

o

o
T

(o)
o
o
Maximum GC Pause Time [ms]
&
o
o

Average GC Pause Time [ms]

a

o

o
T

0

Chart Xalan Pmd quldib Volano JBB Chart Xalan Pmd quldib Volano JBB

Figure 3.7: GC pause time statistics across the heap sizes for STW udbduviC
(UN), STW space-bounded MC (SP) with the 10% bound, STW HattSpmpactor
(HS), and STW Compressor (CP): average pause times (a) andhomaxpause times

(b).

Figure3.9 compares average (data points) and maximum (error barseqanes
for UN, SP, HS, and CP. For these experiments, we vary the nuofljgarallel GC
threads for a fixed heap size (we use the minimum heap sizeff). Bdand SP con-
sistently decrease pause times relative to HS and CP, indepenf the number of
parallel GC threads. For 1 GC thread, UN reduces pauses oagavby 49% relative
to HS and by 61% relative to CP, while SP reduces pauses ongavieyad4% relative
to HS and by 56% relative to CP. For 4 GC threads, UN reducespaursaverage by
61% relative to HS and by 66% relative to CP, while SP reducasgsson average by
51% relative to HS and by 57% relative to CP. Finally, for 8 Ge&#us, UN reduces
pauses on average by 65% relative to HS and by 66% relative,twi@lé SP reduces

pauses on average by 54% relative to HS and by 54% relative.to CP

75

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Chart Xalan
1 . . 0.8 ! :
-- UN
9 - UN
o spP 071 — sp
0.8 Hs 06 HS
6r — CP
o7t —CP
0.6 0.5
=05 =04
0.4r 0.3
0.3r
0.2
0.2r
0.1 0.1
0 0
10 10 10° 10° 10°
Window Size [us] Window Size [us]
Pmd Hsqldb
0.7 T T
0.6/ - UN
— SP
HS
0.5- —_cp
- 0.4
2
0.3r
0.2r
L 0.1r
G L A L L 0 L L L
10° ° 10 10° 10 10° ° 10’ 10°
Window Size [us] Window Size [us]
Volano PseudoJBB
0.9 T T 0.7 T T
0.85-
0.6r
0.8r
\
0.75¢ 0.5 i
0.7r L
S 5 0.4
% 0.65f %
0.6 0.3r
0.55r L -- UN
0.2 _sp
0.5r o1 HS
0.45} - P
0.4 . . 0 - . . .
10° 0o’ 10 10° 10° 10° 10’ 10° 10°
Window Size [us] Window Size [us]

Figure 3.8: Minimum mutator utilization (MMU) curves for the minimum ap
sizes for STW unbounded MC (UN), STW space-bounded MC (SH) thie 10%
bound, STW HotSpot compactor (HS), and STW Compressor (CR)doW size is in
microseconds.

76

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory

Management Performance Using Virtual Memory

Chart

2001

1200

1000

GC Pause Time [ms]

200¢

8001

600

400

3 4 5 6
Parallel GC Threads

Volano

550

500/
450f
2 400t
g 3501
'S 300
(2]
3 2500
a
O L
3 200
150
100}

50

3 4 5 6
Parallel GC Threads

Xalan

350

N w

o o

o o
T T

GC Pause Time [ms]
S
o

—-— CP
—=— HS
—*+— SP
—— UN

150]
s
100 T
‘ 1
5% 2 3 4 5 6 7 8 9
Parallel GC Threads
Hsqldb
10000 ‘
9000
8000
—— CP

GC Pause Time [ms]
u
o
o
o

1 2 3 4 5 6 7 8 9
Parallel GC Threads

PseudoJBB

3000

25001

N

o

o

o
T

GC Pause Time [ms]
= =
o a1
o o
(? o

5001

3 4 5 6
Parallel GC Threads

Figure 3.9: Average (data points) and maximum (error bars) GC pausestforel—
8 parallel GC threads and the minimum heap sizes for STW urdex MC (UN),
STW space-bounded MC (SP) with the 10% bound, STW HotSpopector (HS),
and STW Compressor (CP). We report average values across.3 runs

77

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Scalability

Our experimental platform has four 2-way SMT processorsalized by the op-
erating system as 8 logical CPUs. We investigate the scajaf@peedup) of UN, SP,
HS, and CP in the context of both multi-processing and mhfedding parallelism. We
measure the unscaled speedup — we apply an increasing nomBer threads (from
1 through 8) to a fixed-size workload and the minimum heap &@hdenchmark. We
compute the speedup fprthreads as a ratio of the average GC pause timé foread
and forp threads.

As shown in Figure3.1Q server benchmarks scale better (e.g. Hsgldb/UN achieves
5.9 speedup while the maximum for deskside benchmarks feBGhart/UN). HS has
the worst scalability because it computes per-chunk statisuring marking, which
entails more synchronization. The plots in Fig®® provide absolute average GC
pause times from which the speedup graphs have been derived.

When considering only multi-processing parallelism (4 G d#als), the speedup
averages at 2.86 for UN, 2.6 for SP, 2.22 for HS, and 2.49 foff@és, UN improves
speedup by 30% relative to HS and by 15% relative to CP, whilerfplPoves speedup
by 17% relative to HS and by 4% relative to CP.

When multi-threading is taken into account (8 GC thread® sieedup averages

at 3.75 for UN, 3.19 for SP, 2.56 for HS, and 3.03 for CP. Thus,ikdproves speedup

78

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Xalan
3.5 2.6 T T
2.4r
3t
2.2r
a25 =% 2r
=] >
e e}
g g18
& &
2r 1.6}
1.4r
1.5F
1.2r
1
0 9 T 2 3 4 5 6 7 8 o9
Parallel GC Threads
Pmd Hsqldb
3.5 6
5.5¢
3r 5r
4.5
o 2.5r o 4r
> >
B ® 35!
[[T
Q. o
n 2k [3t
2.5¢
1.5¢ 2
1.5¢
1 ; 1 -
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
Parallel GC Threads Parallel GC Threads
Volano PseudoJBB
3.5 T T 55 T -
3,
o 2.5¢
p=}
e
[
[
Qo
n g
1.5F
b 2 7 8 9 b1 7 8 o9

3 4 5 6 3 4 5 6
Parallel GC Threads Parallel GC Threads

Figure 3.10: Scalability (unscaled speedup) for 1-8 parallel GC threhxisd work-
load, and the minimum heap sizes for STW unbounded MC (UNYYSpace-bounded
MC (SP) with the 10% bound, STW HotSpot compactor (HS), and/SJompressor
(CP). Speedup is computed for average GC pause times. Absolatage GC pause
times are reported in Figu@9,

79

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

by 47% relative to HS and by 23% relative to CP, while SP impsaseedup by 23%

relative to HS and by 3% relative to CP.

Fall-Back Rate

SP falls back to CP if excessive fragmentation in the heap s#kienpossible
to reclaim a significant fraction of free space. TaBl& shows the rate of fall-back
to perfect compaction that is necessary to guarantee afispguace overhead bound
(2% to 20%). We express this rate as the percentage of GCsdbdtta fall back to
conventional moving compaction to keep the space overhelagvka given threshold.

The fall-back statistics for the minimum heap sizes indictitat even for tight
bounds, relatively infrequent fall-back is necessary. iBstance, in order to achieve
5% bound, on average, 6.5% collections need to trigger d&ak (for 7% bound it is
3.7% and for 10% bound it is 1.8%). In addition, we have measarverage GC pause
times for different space bounds. The results for UN and §byrted in Table8.2,
indicate that the space-bounded MC reduces pauses sigtiificalative to HS and CP
(for all bounds that we investigate), and increases avgragse times by around 20%

compared to the unbounded MC.

80

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Bound[%]| 2 | 5 [7 [10 | 15 | 20
Benchmark Fall-back frequency [%0]
Chart 128/ 0.0 | 0.0 | 0.0 | 0.0 | 0.0
Xalan 99.6|32.6(16.4| 57| 1.5 | 04
Pmd 66 | 39| 42| 41| 41| 0.0
Hsqldb 00| 00| 00| 00| 00|00
Volano 1.0, 0.0 | 00| 00| 0.0 | 0.0
JBB 43| 23|16 | 12| 00| 0.0
Compactor Avg. Pause Decrease [%]
STWCP | 62.6| 64.7| 65.2| 65.1| 65.2| 66.1
STWHS | 53.2| 55.8| 56.4| 56.3| 56.4| 57.5
Compactor Avg. Pause Increase [%0]
STWUN |26.8|225]21.4]21.5]21.4]19.4

Table 3.2: GC statistics for STW space-bounded MC for different spamends ob-
tained using the minimum heap sizes. The first part showsb&ak frequency (GC
percentage). The second part shows percentage decreasgageGC pause times
relative to STW Compressor (CP) and STW HotSpot (HS). The thértl shows per-
centage increase in average GC pause times relative to SP@lnoded MC (UN).

3.3.5 Concurrent Compactors

Next, we compare concurrent unbounded MC (UN) and concu@empressor

(CP) in terms of memory footprint, throughput, and pause gime

Space Overhead

Concurrent collection requires heap space over-provisgto avoid the situation
when allocators exhaust the heap before the ongoing baakdroollection is com-
plete. Therefore, space overhead is less of a problem inucem MC than in STW
MC. Figure 3.11 shows space overhead (as a heap percentage) averagedtheross

heap sizes. As explained earlier, CP has a constant spadeadasf 1.5%. Across the

81

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Q
[$]

7+ -

(o))
T

UN

il

Space Overhead [%)]
w

N
T

=
T

Chart Xalan Pmd Hsqgldb Volano JBB

Figure 3.11: Heap space overhead across the heap sizes for concurrenindsa MC
(UN). We use the same heap size ranges as in Fgi2

benchmarks, the space overhead of concurrent UN averade$%t Note that con-
current UN requires about 28% more heap space than STW UNi¢8&c3.6. Thus,

bounding space overhead in concurrent MC does not seemsagggsactical.

Throughput

In Figure3.12 we present per-benchmark graphs, each of which shows texecu
time as a function of heap size (starting from the minimunphsze). For the minimum
heap sizes, concurrent UN improves throughput by up to 52&afX and by 29% on

average (relative to the concurrent Compressor).

Pause Times

Figures3.13a) and3.13b) present average and maximum pause times for concur-

rent UN and concurrent CP. For each benchmark, we report #rage value across the

82

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

4 Chart 4 Xalan
2.6%10 : : ‘ ‘ 5510 :
2.55¢ —o- CP 5r
_. 25 —= UN _4s
(2] 1)
£ E 4t
o 2.45} o
E L, Ess
c j =
] S 3
3 2.35F 3
L% L;u'g 2.5
2.3¢ 1 ol
2.25 ;\% R 15

40 45 50 55 60 40 50 70 80 90

35) 30 60
Heap Size [MB] Heap Size [MB]
4 Pmd Volano
x 10
8 ! ! ! ! 68 . ! !
67
7+ —— CP
661
- —
E6t 265¢
5 E
E =641
c5 S
2 563
g 8
1% 4r 562r
61
3L
60
35 40 45 50 55 60 45 50 |§5) ,\?8 65 70
Heap Size [MB] eap Size [MB]
LaX 10° ‘ ‘ ‘ quldb‘ X 10* P‘seudoJB‘B
1.7 3 —— CP
.75
1.6r —— UN

[
2]
T
w
3]

Execution Time [ms]
[
w
=

N
=
Execution Time [ms]
)
o

I
HN
-
N
~

_I;.l00 110 120 130 .]ﬁw 150 160 170 120 130 140 150 160 170 180 190
Heap Size [MB] Heap Size [MB]

Figure 3.12: Benchmark performance (execution time) across the heap fsizeon-
current unbounded MC (UN) and concurrent Compressor (CR)r Bars indicate the
standard deviation across 3 runs.

83

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

(a) Average pause times (b) Maximum pause times

300 — 350
T 2 300F
7 2500 £ Ccp
o 3 cp 2 50 = UN
E 200 B UN =
o [}
3 % 2001
5150 &
8 8 150

L IS

§100 5 100l
g
< 50r = 500 I

o

Chart Xalan Pmd Hsqldb Volano JBB 0 Chart Xalan Pmd Hsqldb Volano JBB

Figure 3.13: GC pause time statistics across the heap sizes for contunmbounded
MC (UN), and concurrent Compressor (CP): average pause tiaeanfl maximum
pause times (b). We use the same heap size ranges as in Bigjare

heap sizes. Note that we do not consider pauses imposed byrcent marking here,
only those imposed by concurrent compaction. Compared tourcent CP, concurrent
UN reduces average pause times by up to 96% (Volano) and oage/by 90%, while

reducing maximum pause times by up to 94% (Volano) and oragedby 88%. Since
concurrent CP moves objects, it needs to update the poimiging iyoung and perma-
nent generations as part of its STW phase. Concurrent MC duegrd to do that and

thus its STW pause is much shorter.

3.3.6 Stop-the-World/Concurrent Tradeoffs

To lend insight into the tradeoffs associated with STW amtoorent compaction

[30, 57, 99, 127], we compare STW UN with concurrent UN, in terms of through-

84

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Bench-| Min.Heap[MB] | Max.Pause[ms]| Exec.Time[s]
mark | SMC| CMC | SMC | CMC | SMC | CMC
Chart | 27 39 81.4 7.9 | 23.13| 23.85
Xalan | 31 37 66.3 6.2 | 15.64| 24.62
Pmd 31 37 160.4| 11.2 | 22.44| 37.36
Hsqldb| 100 108 n/a 39.7 | 9.43 | 12.03
Volano | 33 48 n/a 2.1 |60.25| 61.07
JBB 92 122 | 147.0| 24.1 | 23.63| 26.49

Table 3.3: Comparison of STW unbounded MC (SMC) and concurrent unboukifed
(CMC). We report the minimum heap sizes, maximum GC pause fiamesexecution
times. Execution times and pause times are obtained for thenemm heap size of
CMC (as it is larger than the minimum heap size of SMC). The tejggpause times
correspond to compaction only (marking is excluded).

put, pause times, and memory footprint. Both compactorsheseame STW parallel
marking algorithm.

Table3.3 shows experimental results for our benchmarks. We repentriimimum
heap size in MB (columns 2 and 3), maximum pause time in magoos 4 and 5),
and execution time in seconds (columns 6 and 7). Executioa &#nd pause times are
measured for the minimum heap size of concurrent UN (shownlumn 3). This heap
size is often much larger than the minimum heap size of STW WiNseme cases big
enough to prevent STW UN from any GC activity (we then reparige times as n/a).

Concurrent GC trades pause times for throughput and heap.Spaaverage, rela-
tive to STW UN, concurrent UN requires 28% more heap spacalagrhdes through-
put by 28%. Maximum pause times (needed for compaction, raokimg), however,

are shorter for concurrent UN by 89% on average.

85

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Bench-| # System| GC Ti- System | System
mark Calls | me [ms]| Time [ms] | Time [%]
Chart 4358 3405 135 0.4
Xalan | 92796 8869 287.7 3.2
Pmd 26585 8319 82.4 1.0
Hsqldb 911 6818 2.8 0.0
Volano | 12514 | 19592 38.8 0.2
JBB 299953 | 41134 929.9 2.3

Table 3.4: The cost of unmapping system calls in STW unbounded MC. Wert#p®
total number of themap calls, total GC time, total time spent in the system callg, an
percentage of GC time spent in the system calls. System tasdédden conservatively
estimated using a serial micro-benchmark.

3.3.7 Unmapping Overhead

We have evaluated the cost of theap system calls relative to GC time in STW
UN. Table3.4 presents per-benchmark data obtained for the minimum heeg. 3Ve
report total number of system calls, total GC time, totateyscall time, and percent-
age of GC time spent in system calls. We estimate the cost ofghesunmapping
system call using a separate micro-benchmark. Our platfeeds 3.1s to perfori®
unmapping calls. The length of the unmapped region doesnmaagt this cost. On
average, STW UN spends 1.2% of GC time in system calls. Natethis result is an

upper bound as our micro-benchmark is not parallel.

86

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

3.3.8 Other Benchmarks

Thus far, we have only presented detailed experimentalfdatasubset of bench-
marks that we have studied. For our in-depth analysis we Balerted standard,
benchmarks whose performance is considerably affectedbyi@ble3.5summarizes
the experimental data obtained for the remaining deskditiy benchmarks that we
have investigated: Db (memory-resident database) and Jaaea compiler) from the
SPECjvm (1998) suitel45 as well as Bloat (bytecode analyzer/optimizer), Fop (XSL
parser and formatter), and Lusearch (text search engio)tine DaCapo (2006) suite
[54].

In Table3.5we report results for both STW and concurrent UN (slash+sded) in
comparison to STW HS and STW/concurrent CP. We report the mimifmeap size for
STW/concurrent UN (column 2), space overhead for STW/corotitdN (column 3),
and average pause time reduction in comparison to HS and GiPnee 4-5). Column
4 compares STW UN and STW HS. Column 5 compares STW UN with STW<LP a
well as concurrent UN with concurrent CP.

For our additional benchmarks, on average, concurrent WhNires 36.5% more
heap space than STW UN. Space overhead, across these bek&hs8% for STW
UN and 3% for concurrent UN. Concurrent UN reduces averagsepaimes by 92%
compared to concurrent CP. STW UN reduces average pauselint9o relative to

STW HS and by 70% relative to STW CP.

87

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

Bench- | Heap Si-| % Space % Avg. Pause

mark | ze [MB] | Overhead vs. HS| vs. CP
Bloat 16/20 | 59/3.1| 69.6 | 73.0/96.9
Fop 20/24 | 3.1/1.0 | 57.3 | 68.8/91.6
Lusearch| 16/24 | 44/3.1| 626 | 73.7/97.2
Db 24/32 | 0.8/0.5| 476 |66.7/94.2
Javac | 24/37 | 15.7/8.5| 56.1 | 68.8/80.8

Table 3.5: GC statistics for additional benchmarks using the minimwaghsizes.
Slash delimits data for STW and concurrent MC. In subsequelnihins, we report
the minimum heap size for STW/concurrent unbounded MC (Z¢smverhead for
STW/concurrent unbounded MC (3), average pause time rexhufcti STW unbounded
MC relative to STW HS (4) and STW Compressor (5), and averagegame reduc-
tion for concurrent unbounded MC relative to concurrent Cazsgor (5).

3.4 Related Work

While most prior work on parallel/concurrent compaction fasised on virtual-
memory-oblivious compactors, the interaction betweerctikector and virtual mem-
ory has recently gained interest(1, 175 80, 46]. Previously reported compactors
achieve compaction by moving all (or sont%¥[85, 46]) live objects and need at least
two phases. MC attempts to achieve compaction without ajgcomoving and is a
nearly-single-phase compactor. Following the methodplaged in L01], we define
a GC phase as an operation with cost proportional to the helygeadata size. The
first phase in state-of-the-art compactors is markB®) jvhich identifies live objects

through parallel/concurrent tracing.

88

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

3.4.1 The Compressor

The Compressor0]] is a parallel compacting GC that requires two phases: mark-
ing and compaction. It supports both stop-the-world (STW) eoncurrent collection.
The Compressor (herein referred to as CP) uses virtual menpanatons (i.e. page
mapping and unmapping) but accomplishes compaction by mgawe objects and
adjusting the pointers. The compaction is perfect (i.eplesgmentation is fully elim-
inated). The compactor employs two virtual spaces and sagigects page by page
from one space to the other. CP, akin to a copying collectaayd moves all objects.
It updates pointers after moving using information it hasorded in auxiliary data
structures (which include the block-offset array). Thisgass is accompanied by free-
ing pages in the source space and allocating pages in theatest space. CP imposes
a small constant space overhead (1.5% for 256-byte bloocksyuxiliary data struc-
tures. By contrast, MC performs compaction in nearly one @laasl eliminates object
moving and pointer adjustment. MC imposes a variable spaeghead (on average
<6%, which can be bounded). Both compactors preserve objget.dP unmaps and
maps the entire heap each time the compaction is invoked. iMi& Ithe number of

virtual memory operations to the number of dead-objecttehss

89

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

3.4.2 The HotSpot Compactor

The parallel compactor currently available in the HotSpt] 85] (herein referred
to as HS) is similar in spirit to the Compressor. HS updatestpos in the same way
but moves objects only when it is necessary. HS is a STW Viranmory-oblivious
collector with two phases: marking and compaction. HS @isithe heap into fixed-
size regions (chunks) and uses a liveness bitmap to receidc¢htions of live objects.
During marking, HS computes additional per-chunk data edéaor pointer adjustment.
The compaction phase is parallel. Threads claim availagens atomically and fill
them with live objects. A region becomes available when tallobjects have been
evacuated (it is empty) or it has been compacted onto itd&fupdates interior object
pointers as itfills regions. Filling a region does not req@iynchronization and involves
identifying source objects destined for the region and capthem until the region is
full or no more objects are left. HS computes a new locatioa 6¥e object as the
start of its destination region plus the size of live objehtt precede the object in that
region. HS performs perfect, sliding compaction and presethe object order. HS
imposes a constant space overhead of 3% (needed for penmgia that includes the
current compaction state for each region). The advantagelCoover HS are similar
to those over the Compressor: nearly one GC phase (insteaspfhd avoidance of

object moving and pointer manipulation.

90

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

3.4.3 The IBM Compactor

The IBM collector [1] is a parallel STW compactor that comprises three phases:
marking, object moving, and pointer fix-up. This collectored not manipulate virtual
memory mapping. It does not guarantee perfect compactidntaerefore, imposes
an application-specific space overhead, similarly to MC. 3ystem divides the heap
into fixed-size blocks. Initially, GC threads perform inrtseock compaction and pro-
ceed to inter-block compaction as free contiguous areas begppear in the already-
compacted blocks. In the moving phase, the system colletdsmation needed for
pointer adjustment. In the final phase, the system divides\dap into as many areas
as there are GC threads, and each thread redirects pomies®wn area. Pointer ad-
justment is performed in a similar way as in the Compressocohtrast, MC neither

moves objects nor updates pointers and is a nearly-sirgsepcollector.

3.4.4 The Flood Compactor

The compactor presented by Flood et &7][is a parallel version of the Lisp2
[99, 47] collector. This STW GC requires four phases: marking, fmsing pointer
installation, pointer adjustment, and object moving. Tleegis divided intg con-
tiguous regions wherg is the number of parallel GC threads. The sliding direction
alternates between left and right for even and odd regiodsaara resulf groups of

objects are formed in the heap. Thus, free space is consalidmly partially. This

91

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

compactor uses forwarding pointers instead of the bloékebfirray and the mark-bit
vector. Thus, pointer updates are more efficient but ondiiaddi phase is necessary.
MC achieves higher-quality compaction (the free space istinaonsolidated, no ob-
ject groups are formed) in nearly one phase and without blbj@ving and pointer

adjustment.

3.45 The Pauseless GC

The Pauseless GQl§| is a parallel and concurrent compactor that avoids STW
pauses through hardware read barriers, fast user-modedrajters, an additional in-
termediate TLB privilege level, and fast cooperative prpgom via interrupts. The
compactor consists of three phases, called mark, reloaateremap, each of which
is parallel and concurrent. The mark phase periodicallsesties the liveness bitmap.
The relocate phase uses the most up-to-date liveness bitnfisyol pages that contain
few live objects, evacuates live data from those pages, r@ed the underlying physi-
cal memory. Pages with no live data are unmapped as in MC. Btedwirtual pages
containing live objects are protected to trigger traps uparess. The system maintains
pointer-forwarding information outside of the evacuatedgs, in side arrays (hash ta-
ble), and imposes variable, but small, space overhead. tbfatasing stale pointers
raise traps which in turn update pointers to refer to newabgcations. The remap

phase traverses the object graph executing a read baraersag@ach pointer to en-

92

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

sure the completeness of lazy pointer forwarding and thasagitees that all evacuated
virtual pages are eventually unmapped. The system perftiensemap phase con-
currently with the mark phase of the next collection cyclenlike the Pauseless GC,
MC performs compaction in a nearly one phase — marking, wtechbe implemented
either as stop-the-world or concurrent. MC does not recgpeial hardware support,
never copies objects, and reclaims only completely freepaal of which significantly

simplify implementation.

3.4.6 Virtual Memory Support for GC

Recently proposed collectors that leverage virtual memibingefocus on copying,
not on compaction (like MC), or aim at reducing heap spaceajsag at avoiding ob-
ject moving (like MC). For example, MarkCopy 36| leverages virtual memory map-
ping to reduce the space overhead of a copying collectorcolector does not require
a copy reserve since it maps and unmaps consecutive pagepyasgecprogresses (in
a way similar to that of the Compressdi0fl]). Unlike MC, these approaches involve
object moving.

Collectors that cooperate with the virtual memory manageedoice the collector-
induced paging {7, 175 80, 179 174 are orthogonal and complementary to MC.
The Bookmarking collectoid0] records summary information about outgoing pointers

from evicted pages to avoid accessing non-resident pagegydull-heap compacting

93

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

collections. CRAMM [L75 and IV heap sizingT7] use VM paging behavior to pre-
dict and set dynamically an appropriate, application-ggeteap size that adapts to
changing memory pressure.

The Boehm-Demers-Weise39| garbage collector is a mark-sweep (non-compacting)
collector for C/C++ which uses page unmapping as an optiondlsapplementary
mechanism to reduce fragmentation. This collector is cvasige (i.e. not all garbage
can be identified). Page unmapping in the context of conseev&C for C/C++ has
also been investigated i132. The proposed collector remaps virtual memory pages
to reduce external fragmentation in a free list of large cisje In contrast, MC em-
ploys unmapping as a primary technique to achieve compaetial is the first to do
S0 among non-conservative (precise) collectors. DougsLeelloc library 03 uses
mmap/munmap primitives for memory allocation/reclamatidhis system, however,
does not support or provide garbage collection.

An alternative to STW collection is concurrent GC, commomtypdoyed for server
systems, which interleaves application (mutator) and G&cetton via additional syn-
chronization and resource (memory and processor) ovetgpooing, to reduce GC
pause times. The concurrent version of the Compred€ifi,| Garbage-First collec-
tor [57], and mostly-concurrent mark-sweep2p] are recent examples of concurrent
GCs. Concurrent collectors commonly protect virtual pagesder to detect conflicts

with mutators and to exploit cache localityJl]. Extant systems supporting concur-

94

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

rent/parallel collection either do not attempt compac{iv®7, 122 121, 19, 20, 34]
or move/copy live objectslD], 82, 43, 4, 57]. In contrast, MC achieves compaction

without object moving.

3.5 Summary and Conclusions

The Mapping Collector (MC) is a generational, parallel GC thagiports both stop-
the-world and concurrent compaction. MC coordinates with @nderlying virtual
memory system of the operating system and performs congpaictinearly one phase.
Thus, MC is simpler and more efficient than state-of-thezampactors which require
at least two phases. Unlike previously reported compack@is a non-moving col-
lector that leverages the level of indirection provided byual memory to consolidate
free space into a single contiguous region. By doing so, M@awvostly object copy-
ing and pointer adjustment. The motivation for MC is the otggon that unreachable
objects in the heap tend to form clusters that can be effdgtheclaimed at the gran-
ularity of virtual pages. Space overhead imposed by MC islée but modest in
practice and can be bounded by relatively infrequent fatidto conventional, perfect
compaction. MC is patrticularly attractive for concurrentrgaction as it does not re-
quire synchronization with the mutators and its space @aths not a problem in the

light of heap over-provisioning.

95

Chapter 3. Efficient Compaction by Mapping: Improving IntranRone Memory
Management Performance Using Virtual Memory

We implement MC in the open-source HotSpot JVM and evaluaggperimen-
tally on a multiprocessor using a range of different benatksiand metrics, including
throughput, pause times, and scalability. We show that M@icantly outperforms
state-of-the-art, stop-the-world parallel compactone €€ompressor and the HotSpot
compactor), as well as the concurrent Compressor, for theameind benchmarks that

we investigate.

The text of this chapter is in part a reprint of the materialieappears in [L59.

96

Chapter 4

Dynamic Prediction of Collection
Yield: Improving Intra-Runtime
Memory Management Performance
Using Virtual Memory

In this chapter, we describe another approach to improviegérformance of intra-
runtime memory management by using OS support for virtuahorg. However, in
contrast to Chapted, which focuses on leveraging page mapping operations towvep
the collector performance, this time we investigate exjplgipage reference bits main-
tained by the OS kernel to avoid unproductive collectiorsecHically, we discuss the
design and implementation of a collection yield predict@ttenables to estimate the
amount of heap space that can be reclaimed by a collectiolikd axtant MREs that
trigger collection based on heap use, our system schechlleston at times when the
yield is sufficient to justify the GC cost. The predictor lolslon the observation that

unreachable objects in the heap form clusters that spars plagieare never referenced

97

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

by an application. Counting such never-referenced page®gto be an accurate es-
timate of what percentage of the heap is currently reclaiemabhis allows to avoid

low-yield collections and improve performance signifidant

4.1 Introduction and Motivation

To support the vast diversity of deskside and server woddpaodern system soft-
ware stacks have grown both in depth and complexity and nowaanly include man-
aged runtime environments (MRES), e.g. Java and C# virtuahimes, layered on top
of a general-purpose operating system (OS), e.g. Linuxhodigh independent and
isolated, the OS and MRE layers provide similar services fog@ams, such as mem-
ory management and access to protected resources. In #pgechwe investigate how
to better coordinate the activities of memory managemeitden the hardware, OS,
and MREs to improve the performance of applications.

Garbage collection (GC), commonly employed by MREs to in@&gasgrammer
productivity and software reliability, can negatively iegt both application throughput
and interactivity. Key advances in GC that have led to sigaift reduction of collec-
tion costs include support for parallelism and concurregenerational heap layout,

and compactiond9, 85, 101, 46, 47, 159 57, 122. Moreover, recent GC systems in-

98

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

troduce ways to better coordinate the activities of the MREABE OS virtual memory
subsystem159, 101, 77, 136,175 80, 179 174, 79|.

We build upon and extend this prior work to improve MRE-OSelaare interaction
in a way that facilitategollection avoidanceln particular, we design and implement
a lightweight prediction scheme (the Yield Predictor) tigEntifies, with low over-
head, the amount of free space a particular GC invocatidkalylto yield from dead
objects. GC systems can employ this yield prediction tochumeffective collections
that are unable to reclaim sufficient space to justify theiired cost, by trading off a
small space overhead (equal to the small yield that woule feen collected by the
skipped GC). Most extant systems trigger GC unconditionahign a program exceeds
some threshold on its heap use, without regard for GC yigydtedns that trigger GC
proactively, rely on complex monitoring and analysis ofgraom behavior173.

The Yield Predictor (YP) provides a simple solution to digtiishing productive
GCs by estimating GC yield using hardware page referenceahatsthe OS uses to
implement virtual page replacement. Key to its efficacy e $hatistical property of
modern programs that dead objects tend to cluster togetharge groups (larger than
the 4KB virtual page size), and that pages that have not bemantly referenced by
the application correlate well with dead clusters. We \&kdthese properties with
empirical data and describe how YP makes use of them to dsti®@@ yield. We im-

plement YP for three state-of-the-art parallel compaatotisin the production-quality,

99

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

open-source, HotSpot Java virtual machine. These conmgaepresent three distinct
canonical heap layouts and GC strategies (compactiondiypglicopying, and remap-
ping).

YP demonstrates that MREs can significantly benefit from iexjsarchitectural
support for memory management when GC is given access to tph@gs and can
leverage the standard hardware mechanism used for markigpespreferenced by a
process. Thus, the predictor identifies a new use for theimgibardware facility. In
addition, YP enables a more resource-efficient GC mechattiatrgives the memory
manager more control over the space/time trade-offs and/galflor well-informed GC
scheduling decisions at run-time.

A comprehensive experimental evaluation of YP based ondatancommunity
benchmarks and open-source applications shows that YRstamity provides high
prediction accuracy and that avoidance of unproductive G@issabstantially improve
(44-59%) the performance of both server- and client-sice@arks.

In the following sections, we describe the design and implatation of YP (Sec-
tion 4.2), present results of our empirical evaluation (Secti@®), discuss related work

(Sectiond.4), and conclude (Sectiohb).

100

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

4.2 Design and Implementation

State-of-the-art MRE memory management systems trigger @@ complete (or
partial, in the case of concurrent GC) exhaustion of the spasgynated for object
allocation. The key limitation of this approach is that gveollection is performed
irrespective of whether it is worth paying for. Our investign of GC productivity i.e.
the total size of dead objects that a collection cycle rewdashows that many GCs are
unproductive and are able to reclaim only a small fractiothefheap. We empirically
evaluate this phenomenon further in Sec#b8.3 We observe from our experiments
that a number of different (deskside and server) Java aiits have an average GC
yield below 5% of the heap space.

If we are to skip unproductive GCs, we must have a fast and atzuanechanism
for estimating the total size of dead objects in the heap. kiMgr which identifies
live data via traversing the reachable object graph staftiom the roots, is the most
commonly-used mechanism to do this and can precisely cartphatamount of dead
space. However, marking takes significant time and, acogrdi our measurements,
comprises between 50% (for the Compressor) and 90% (for thgpig Collector)
of total GC time, depending on the compaction algorithm. S[tpartial reduction of
collection cost by skipping only the phases that follow niragkis not satisfactory due

to its lower potential for performance improvement.

101

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

Our goal is to design and implement effective, practicad] kghtweight yield pre-
diction. Our approach to enabling such prediction reliesroproved coordination
between the activities of OS, hardware virtual memory sstesy, and MRE memory

management.

4.2.1 Yield Predictor Design

General-purpose OSes support virtual memory to isolateeaddpaces of distinct
processes and provide a convenient uniform linear adaigs#ost virtual memory
implementations divide the virtual address space of a goiteopages each typically
4KB in size. The mapping between virtual pages and physiagégrames is stored
in an OS-maintainegage table Under memory pressure, the kernel usesp space
to evict pages that are unlikely to be accessed in the fuflwamplement swapping,
pages tables reserve two bits per page, indicating whetbpedcific page islirty and
has been recentlgferenced These bits are set by hardware upon memory store/read.

Prior work shows that for modern Java applications, objettts similar life spans
tend to be spatially clustered in the heap and that dead tsbggten form clusters
larger than the 4KB virtual page siz&499 167]. The design of YP leverages these
statistical properties and the observation that dead pagesever accessed by the
program and, as a result, eventually become not-receefiranced (NRR) from the

OS kernel perspective. YP exploits this relationship betwSRR and dead pages to

102

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

estimate the total number of dead pages in the heap. Whenthigemof dead pages is
small, an impending garbage collection is likely to be iaefive, i.e. unable to reclaim
sufficient space to justify the cost of performing GC. We emiptd to avoid such
collections in state-of-the-art compaction systems. \dddra small space overhead
for significant performance gains that result from skipdmg-yield GCs. We analyze
these trade-offs in Sectigh3,

YP takes two parameterskip thresholdandyoung-old ratio We investigate YP’s
sensitivity to both in Sectiod.3. The skip threshold determines the free proportion of
the heap that is necessary to trigger regular collectian (far the skip threshold of
x we skip all GCs that we predict to reclaim not more th&a of heap space). The
young-old ratio identifies pages that are recently-refezdr{RR). YP considers a time
window between two consecutive GCs and divides it into twdigolous parts: young
and old, according to the young-old ratio. Pages with adastss timestamp in the
young partition are considered to be live.

There are two sources of potential inaccuracy in YP’s yietction process. The
first is a page that we identify as NRR, that is not actually deadidinstead, not
accessed recently. The second is a page that is dead thaveadtayet identified as
NRR. Although all dead pages are guaranteed to be found eWgnthare may be a

delay before YP correctly classifies a page as dead.

103

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

Since YP considers only the total number of dead pages indhp,las opposed to
determining the status (live/dead) for each individualgyafe dead space estimation
errors that these two phenomena introduce do not add umdtetid, cancel each other
out. Thus, the goal of YP parameter tuning is to make suretlieatiwo misclassifica-
tions (dead-as-live and live-as-dead) occur at similagueacy. Therefore, to optimize
accuracy we need to choose the best old-young ratio. Fa tatgps live-as-dead mis-
classification dominates. For small ratios dead-as-li&tassification dominates. For
the right choice of the young-old ratio the two misclasstfaas are similarly frequent
and YP accuracy reaches its optimum.

YP periodically consults the OS kernel to obtain a list ofergity-referenced (RR)
pages within the heap. A dedicated polling thread in the MREesaup at regular
time intervals and retrieves the addresses of RR pages. Eompaae in the heap, YP
records the time when a page was last believed to be RR, ugingrast anp array
stored in the MRE.

Each time the polling thread tests the reference bits, @rsléhem atomically. To
avoid interference with the kernel swapping mechanism ated relies on RR bits,
we introduce two new bits per pageare-clearedand os-cleared This extension is
software-only. YP shares hardware RR bits with an OS, but ed@mnYP (or an OS)
clears a hardware RR bit, we set the mre-cleared (or the asedgbit in software so

that no information is ever lost. We multiplex hardware laitgl use software bits to

104

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

indicate if a HW bit was cleared. To read an RR bit of a page, YRi(dDS) computes a
logical-or of the hardware RR bit and the os-cleared bit (or the mre-etehit). When
MRE (or an OS) clears the RR bit, it also must clear the os-alb@emre-cleared) bit.

Key to our approach is accurate RR page tracking. First, we disnguish be-
tween an application access to a page and a GC access to apdgaly consider the
former as an RR trigger (since GC may reference pages notabledby the program).
To enable this, before every minor/major collection, YRetak snapshot of the current
RR page bits, and after each GC clears the reference bitsrthatbas a side-effect of
the collection. Moreover, we disable the polling threadrnyGC.

In addition, YP measures the time spent in GC and advancesalbes in the
ti mest anp array accordingly after each collection. This is necessargliminate
the impact of the stop-the-world GC pauses on timestampsn®&C pauses, muta-
tors are inactive and live pages are not used, which can rhake appear to be NRR.
Advancing timestamps eliminates this problem.

YP maintains a boolean arragi(spr edi ct ed_dead), for all pages in the heap.
Each entry indicates whether a live page has been miscéabsié dead. Such pages
are never considered dead again. The intuition behind shilsat many applications
allocate permanent data structures that subsequentlyaigly used which can lead to

YP false positives.

105

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

Since compactors typically move objects (MC is the exceptiafter each collec-
tion for such compactors, YP recomputes thespr edi ct ed_dead array to reflect
the relocation that has occurred in the heap. For each ligetpage, we consider the
(live) source pages containing objects being moved to tlgeetgpage. If any source
page has ever been misclassified as dead (including durngutinent GC cycle) then
the target page is marked asspr edi ct ed_dead. We perform this propagation
since the target page is also likely to be misclassified.

YP makes predictions of the potential GC yield while mutstare suspended (i.e.
at a safepoint). Prediction is short and simple and theeedioes not need to execute
concurrently. Parallelization is not necessary eitherradiption cost is proportional to
the number of pages in the heap. The polling thread execotesuigently and asyn-
chronously to mutators. It does not employ locking or synoiration and imposes

negligible overhead, especially when executed on a sep@rit)/core.

4.2.2 Yield Prediction Process

Table 4.1 shows the pseudocode for the steps that YP executes durihgfela
GC. YP first stops the polling thread. Next, it obtains RR pagesupdates the page
timestamps (lines 1-4). The predictor then iterates ovehap pages to determine
which pages are dead (lines 5-14); YP skips any pages psdyitaund to result in

false positivesrti spr edi ct ed_dead[page] is true). For other pages, we consider

106

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

1: rrlist = getrr_pages(heaptart, heapend)
2: for pagein rr_list do
3: timestamp[page] = curretitme
4: end for

5: deadcnt=0
6: limit= OLD_YOUNG_RATIO - (currenttime — lastfull _gc)
7. setall_entries(predictediead false)

8: for pagein [heapstart, heapend]do

9: age = currentime — timestamp[page]

10: if age>= limit and not mispredicteddead[pagethen

11: predicteddead[page] true
12: deadcnt += pagesize

13: endif

14: end for

15: if deadcnt < SKIP_.THRESHOLD- heapsizethen
16: deadcnt = max(deacdnt, minexpansion)

17: expandheap(deadnt)

18: totalexpansion += deadnt

19: else

20: fall_backto_regulargc

21: try_to_shrink heap(totalexpansion)

22: updatef_heapshrunk(totalexpansion)

23. setall_entries(propagatedead false)

24 for pagein [heapstart, heapend]do

25: if haslive_objects(pagethen

26: if mispredicteddead[pagepr predicteddead[pagethen
27: target = relocatiatarget(page)

28: propagatediead[target] #rue

29: if crossesextpage(page, targethen

30: propagatediead[successor(target)rie

31: end if

32: end if

33: end if

34: end for

35: mispredicteddead = propagatedead
36: updateif_relocated(heagtart, heapend)
37: end if

38: clearrr_pages(heaptart, heapend)

39: for pagein [heapstart, heapend]do

40: timestamp[page] += gtime

41: end for

42: lastfull_gc = currenttime

Table 4.1: Pseudocode for yield prediction executed by YP during ealtiedllection.
SKIP_.THRESHOLD and YOUNGOLD_RATIO are the two YP parameters.

107

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

their age, i.e. how long since they were accessed, and certipatragainst a percentage
of the distance (in time) between the current and previoll&fQ0. This percentage is a
YP parameter (the young-old ratio).

If the predicted amount of free space is larger than the skigshold, the system
falls back to regular compaction (i.e. does not skip GC).dvalhg compaction, YP
attempts to shrink the heap back to the size it was prior to @pmg (if any) to
reduce space overhead (line 21). Finally, we re-computeitiser edi ct ed_dead
array (lines 23-35), using the auxiliary arrpyopagat ed_dead. We traverse the
live heap pages computing a target location for each sucé. gathe source page has
ever been mispredicted dead or has been predicted deadcartiemt GC cycle (note
that this page is live), the target page becomespr edi ct ed _dead.

If the predictor expects low yield, it skips the compactiow grows the heap (lines
16-18). The expansion corresponds to the predicted fremespat is never smaller
than the minimum valuenf n_expansi on, 128KB in our implementation). This
minimum is necessary to ensure mutator progress, i.e. toetizat the mutator is able
to allocate the data that triggered the GC originally. In@@ epilogue (lines 38-42),
we clear the reference bits and advance the timestamps IGhgause time.

We never skip the first collection as it is typically highlyopuctive. Instead, we

use this collection to bootstrap the predictor and initialts data structures.

108

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

When skipping an unproductive collection, we extend the H®athe estimated
total size of dead objects (which themselves are not reeldias without marking one
cannot identify them). This creates space overhead. Thashead is small in prac-
tice because we skip only low-yield collections and shrimk heap when possible on
subsequent full collections.

Note that GC skipping is substantially different than heagrgorovisioning. Exe-
cuting an application with a larger heap does not preventagyzctive GCs, although it
does reduce the total number of collections. YP ensureshigitn probability that the
system triggers GC only when it is worth doing so. Thus, YPoimbetter resource
management and gives the memory manager greater contramavee/time trade-offs.
For example, when an expensive GC algorithm is used, an MREtinegmore conser-
vative when deciding to trigger a collection. In additiohe tuser need not determine
the right heap size a priori.

Note that on 64-bit platforms, the space costs are the samae a2-bit platforms
— the arrays that we use have one entry per page and pertgitodhle area used and
mapped by the old generation.

With concurrent GC, YP has similar or even more potential moprioving perfor-
mance. Each cycle of concurrent GC, despite imposing shoatege times, costs more

than the corresponding cycle of the stop-the-world GC.

109

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

4.2.3 Implementation Details

We integrate YP into three state-of-the-art parallel coctpa in order to investi-
gate its generality and applicability to different colle. These compactors represent
three canonical heap layouts that underlie all modern G@Griéihgns (including con-
current ones). We use exactly the same prediction algontitmeach compactor.

We implement YP in HotSpotl[Llg, an open-source (GPL), production quality
JVM written in C/C++ (source code version 7-ea-b10, releag2d(3). HotSpot uses
a generationall55 heap layout comprising the permanent, old, and young gener
tion. The permanent generation contains run-time meta-fitatthe loaded classes.
The young generation is further subdivided imienand two equally-sized survivor
spaces (calledrom andto). Objects are initially allocated in the eden. Within the
young generation a copying collectd7] evacuates live objects from the eden-space
and from-space to the to-space and promotes objects thavesweveral minor col-
lections to the old generation. Major collection (compat}itakes place upon space

exhaustion in the old generation.

4.2.4 Kernel Extensions

We have implemented YP using Linux kernel 2.6.17 configurét Wwigh mem-
ory disabled and SMP enabled. YP consists of a kernel modhlehwupon load-

ing, creates a new entry in tlpgoc filesystem using ther oc _nkdi r andcr eat e-

110

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

_proc.i nfo_entry functions. The entry is located iroc/ref/bitsand is writable
but not readable. A polling thread in an MRE repeatedly sléepd0ms, opens the
/proc/ref/bitsfile, writes three words to it (in order to obtain a list of RR pagvithin

a given address range), and closes the file. These wordstarearsd end addresses
of the memory range plus a pointer to an array for the restilie kernel invokes the
callback registered by the module, copies the three woois the user space, inspects
page table entries corresponding to the specified addrege and copies the results
into the MRE-provided array (in userland). The first arrayrgobntains the number
of the returned pointers to RR pages.

We obtain the page table entries (PTES) for subsequent peges the macros:
pgd_of f set, pud_of f set, pnd_of f set, andpt e_of f set _-map. We clear the
reference bits in PTEs atomically after testing with thephel pt ep_t est _and-

_cl ear _young. The polling thread holds a spin lock for the page table ofcilmeent
process during the entire operation.

To avoid interference with kernel swapping, we make use @tifo unused bits in
page flags (bits 21 and 22) which we defind>&kernelclearedandPG_mre cleared
Each physical page managed by the kernel has a page framétis(struct pagé
associated with it, which contains amsigned long flagfield. The flags determine
if a page is referenced, dirty, locked, etc. Note that thesevare flags are distinct

from hardware page flags present in PTEs. The kernel modisd¢hs®G_mre cleared

111

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

bit whenever clearing the RR bit in a PTE. The kernel setPGekernelclearedbit
whenever it clears the RR bit in a PTE. The latter requires mmnadification to the

kernel (the code fragments that get/set PTE RR bits).

4.2.5 Alternative Approaches

We have investigated two other approaches to implementfig™ock-based and
kswapd-based. The mlock-based design employs page piforitige old generation
(viathe POSIXm ock system call). Pinning eliminates interference of page sxbé
clearing (done by an MRE) with kernel swapping mechanisms &pproach is simple
but requires heap pages to be locked in physical memory.

In the kswapd-based design, instead of an MRE periodicadigrolg page access
bits, we reuse an existing kernel thread (kswapd daemon)eorkase its sleeping
interval. Kswapd clears page access bits whenever it wgke$\e increase the fre-
guency of kswapd wake-up to match the bit clearing frequeresded by YP. MREsS
have read-only access to RR bits and the kernel swapping misohdenefits from
higher sampling frequency of RR pages (better accuracy).adenythis approach as-
sumes the existence of kswapd and its certain behavioo@ienvakeup and RR bits

clearing) which makes it less portable (e.g. it works in kird4 but not in 2.6).

112

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

4.3 Experimental Evaluation

We empirically evaluate YP using three state-of-the-aralbel compactors: the
Mapping Collector (MC), the Compressor (CP), and the HotSpotpamtor (HS). HS
and CP are described in detail in Sect®dand MC is the subject of Chapt8r

We first overview our experimental methodology and benchkmsaite. Next, we
present results from our experiments that measure YP pi@di@ccuracy and cost as
well as the impact of YP on the application throughput, GCgeaimes, and memory
footprint. In addition, we systematically evaluate YP sewvity to different values of

its two parametersskip thresholdandyoung-old ratio

4.3.1 Methodology

Our experimental platform is a dedicated dual-core InteleCbbuo (Conroe B2)
machine clocked at 2.66GHz with the unified 4M 16-way L2 camhe 32K 8-way L1
cache, 2GB main memory, running Debian GNU/Linux 3.0 comédwvith the 2.6.17
kernel. The virtual page size is 4KB. We use HotSpot versiea-b10 deployed within
OpendDK 1.6.0 and compiled with GCC 3.2.3, in the optimizeeinticompiler (C1)
mode.

We employ YP for old-generation collection, i.e. full-heapajor GCs, only. Minor

collections use a parallel copying collector in the youngeagation. For each bench-

113

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

mark, we investigate four heap sizes within a range thaucagtsignificant to medium
GC activity, wherever possible. Each of our experiments askxed-size heap, which
consists of the young, old, and permanent generation. Theg/generation is 25% of
the old generation. The permanent generation is 12MB (Hut8gfault). We disable
all explicit GC invocations and adaptive generation regjzMWe employ 2 parallel GC
threads as we use a dual-core machine. Survivor spacesyo88upof the young gen-
eration (the remainder is used by the eden). When reportiag sige, we sum up the
size of all three generations.

We repeat each measurement 5 times and report the averagell asstandard
deviation where appropriate. We evaluate YP in detail fergkip threshold set to 5%
and the young-old ratio set to 1%. In addition, we invesegét sensitivity to other
skip thresholds (0%, 3%, and 10%) and young-old ratios (26)90

Our evaluation is based on 16 Java programs which includelatd Java bench-
marks and open-source Java applicatiof}.[We use the subset of the DaCapd]
and SPEC JVM’'98 145 benchmark suites. In addition, we employ SPEC Pseudo-
JBB’00 [144 and VolanoMark 156. We selected these benchmarks to capture a wide
range of application behaviors while focusing on prograntis significant GC activity.

Table4.2reports performance data for these benchmarks obtained HS: heap
size ranges (we use 4 heap sizes across each range; heaqelsides all generations),

execution times, and general GC statistics (for minimunphsaes): total GC time,

114

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

Benchmark| Heap Size | Execution GC GC GC Reclaimable

Program| Range [MB] | Time[s] | Time[s] | Count| Cost[%] | Space [%]
beautyj 61 —64 18.2 13.0 60 71.4 2.0
2 findbugs 82-97 13.0 2.7 5 211 31.0
% jaranalyzer 14-17 4.5 0.1 3 3.0 23.2
javaguard 16 -22 7.0 3.7 69 53.8 0.5
jdepend 30-33 20.5 6.7 77 32.7 0.3
° chart 45 -48 6.2 0.4 3 5.8 53.7
3 fop 14-20 4.3 1.9 31 43.6 4.9
Q hsqldb 92 -95 12.2 7.2 11 58.7 0.9
o pmd 40 - 46 6.2 1.2 7 18.6 511
xalan 44 — 68 6.0 1.1 21 18.0 68.7
compress| 41-47 2.6 0.0 3 1.8 49.3
g javac 33-42 2.9 0.2 3 8.0 60.9
A mtrt 19-22 8.6 4.9 97 57.3 0.7
raytrace 14 -17 2.7 1.7 58 63.0 0.1
volano 31-34 46.6 16.2 233 34.8 0.3
psjbb | 119-125 25.4 12.5 70 49.3 3.3

Table 4.2: Baseline benchmark statistics obtained using HS with YPotesk Col. 4
is total GC time. Col. 6 is the percentage of execution timesaared by GC. Col. 7
is the average GC yield across heap sizes as the percentdgeadl generation size.
Highlighted entries are multi-threaded server programs.

total number of GCs, percentage of execution time that iswwoesl by GC, and average
GC yield across heap sizes (as a percentage of the old genesie).

We investigate server-side multi-threaded workloadsgisoianoMark (multi-user
chat server), PseudoJBB’00 (three-tier database systematmuland Hsqldb (in-
memory database). The remaining benchmarks are deskditlesutbeautyj (source
code beautifier), findbugs (Java bug detector), jaranaljaedependency manager),
javaguard (Java bytecode obfuscator), jdepend (depeypdeatyzer), chart (line graph

plotter), fop (XSL-FO parser/formatter), pmd (source caaalyzer), xalan (XML

115

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

Bench- Average size [byte] Minimum size [byte] Maximum size [byte]
mark CP | HS | MC CP [HS | MC CP | HS | MC
beautyj 2.0K 2.2K 468.9 | 24.9 | 243.3| 16.0| 137.0K | 119.6K | 403.1K
findbugs 4.4K 4.4K 49K 16.0 | 16.0 | 16.0| 1.5M 1.7M 2.0M

jaranalyzer| 1.6K 1.7K 1.8K 16.0 | 16.0 | 16.0| 8.8K 28.8K | 13.0K
javaguard | 430.1 | 557.9 | 384.1 | 28.1 | 264 | 16.0| 7.7K 9.0K 44.0K
jdepend 1.7K 325K | 2453 | 1.3K | 2.0K | 16.0| 7.9K | 311.3K| 66.7K
chart 776K | 72.6K | 457K | 153 | 14.7 | 16.0| 2.9M 3.6M 6.5M
fop 1.4K 1.8K 603.0 | 91.9 | 88.2 | 16.0| 56.2K | 92.5K | 147.8K
hsqldb 5.0K 1195 | 109.1 | 16.2 | 158 | 16.0| 1.4M 27.7K | 193.5K
pmd 126.6K | 187.4K | 17.3K | 14.8 | 10.3 | 11.0| 4.5M 6.6M 5.1M
xalan 46.8K | 46.4K | 127.9K | 15.7 | 159 | 145 | 3.4M 4.0M 14.3M
compress| 5.9M 2.9M 5.1M 19.2 | 25.0 | 16.0| 10.5M 9.2M 13.2M
javac 13.2K | 12.9K 8.6K 16.0 | 16.0 | 16.0| 2.8M 3.1M 4.9M
mtrt 1.9K 2.3K 206.0 | 120.5| 506.5| 16.0 | 186.8K | 69.7K | 92.9K
raytrace 1149 | 579.8 90.8 26.8 | 544.5| 16.0| 986.2 | 808.2 9.5K
volano 486.8 | 482.7 | 157.3 | 48.5 | 102.7| 16.0| 8.0K 7.3K 44.1K
psjbb 3.1K 3.0K 997.0 | 955 | 89.0 | 16.0 | 204.5K | 329.1K | 1.3M

[average | 397.4K| 208.4K | 341.0K[116.6] 238.8] 15.6] 1./M | 1.8M | 3.0M |

Table 4.3: Dead space clustering statistics. For each benchmark, petraver-
age/minimum/maximum dead cluster size across the heagp size

to HTML transformer), compress (LZW packer), javac (Javenpiber), mtrt (multi-
threaded ray-tracer), and raytrace (3D scene renderer).

We run the default variants of the DaCapo benchmarks and agapht size of at
least 100 for JVM'98. We execute VolanoMark with 42 chat radior 100 iterations

and PseudoJBB with 5 warehouses fot iterations.

4.3.2 Dead Object Clustering

The prediction capabilities of YP depend on dead objectetisy, a widely-known
phenomenon, previously reported i©5B, 167). We have gathered basic clustering

statistics across the benchmarks, such as average, miniamoihmaximum cluster

116

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

Bench- 4KB page coverage [%] Max. Pred. Cost [%]
mark CP | HS | MC CP [HS | MC

beauty;j 441 | 432 | 813 | 0.0 | 6.0 5.2
findbugs | 925 | 93.3 | 93.7 | 38 | 2.8 4.4
jaranalyzer| 16.7 | 22.1 | 314 | 1.2 | 1.6 1.8
javaguard | 16.0 | 16.1 | 516 | 2.0 | 2.8 1.7
jdepend | 18.2 | 244 | 273 | 09 | 1.3 1.3
chart 99.4 | 994 | 994 | 28 | 2.3 2.0
fop 26.0 | 290 | 583 | 24 | 15 1.8
hsqldb 225 | 226 | 757 | 95 | 95 4.2
pmd 99.3 | 995 | 98.7 | 9.1 | 6.5 5.2
xalan 995 | 994 | 998 | 3.2 | 4.0 6.3
compress | 100.0| 100.0| 100.0 | 2.7 | 1.3 1.9
javac 943 | 957 | 947 | 3.6 | 3.5 5.3
mtrt 116 | 6.8 311 | 21 | -04 | 3.8
raytrace 0.4 0.4 13.2 1.2 | 15 2.2
volano 124 | 12.6 355 | 36 | 33 3.7
psjbb 410 | 46.2 | 595 | 84 | 7.9 8.1

| average [49.6 [50.7 | 65.7 | 35 [35 [3.7 |

Table 4.4: YP statistics across the heap sizes: percentage of deael fplsgacovered
by 4KB pages and maximum YP execution time overhead.

size as well as the percentage of dead space fully covere&Bypdges. The results
are summarized in Tabk.3 and in Table4.4 (Columns 2—-4). For each benchmark,
we report the average values obtained across all GCs thatreddor the heap size
ranges that we use. We have observed that most clusters altersiman 4KB, however
average cluster size is above 200KB. We have found that @368&6 of the dead space
is fully covered by 4KB pages. Such clustering generallydedbr both client- and

server-side Java applications and is stable across inpdtseap sizes.

117

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

4.3.3 Collection Yield

Column 7 in Tablet.2 shows the average GC yield for each benchmark. This value
is the percentage of the old generation that is reclaimaieraged across the heap
sizes). It indicates how effective the GC is on average daiming dead space. 9
benchmarks have unproductive GCs (yield below 5%). In theneimg 7 benchmarks,
the GCs are mostly productive (yield above 23%). We have diserwed that the first
full collection for all programs is typically productive ew if a particular benchmark

has a low GC yield on average.

4.3.4 Prediction Accuracy and Cost

We evaluate the prediction error of YP relative to the totaajn size as well as
relative to the old generation size. Specifically, if the @xamount of reclaimable
space isc bytes and the predictor estimates thay dytes, we compute the prediction
error aslxz — y|/size, wheresize is heap or generation size. We measure relative error
(as opposed to absolute error) because GC yield itself isalp expressed and used
in practice as a percentage.

We summarize the accuracy results in Ta#lg, which contains data averaged
across the heap sizes. For each benchmark, we report poadector for the 0% and
5% skip threshold, relative to the old generation size araptsze. The young-old

ratio is 1%. The results for the 0% threshold (when no GC ipal) lend insight

118

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

Baseline Old Generation Size Heap Size
Skip Threshold 0% 5% 0% 5%
Benchmark CP\ HS \ MC CP\ HS \ MC CP\ HS\ MC CP\ HS\ MC

beautyj 16| 10| 10 |71| 73| 6.2 10| 06| 06 |44|46]| 3.9
findbugs 71| 54| 58 |67| 55|59 |46|32| 39 |43|33]| 4.0
jaranalyzer | 9.1| 88 | 115/93| 85 |115|18|18| 3.0|19|17]| 3.0
javaguard 18, 22| 21 |74| 78| 83 |05]06|06|19|20)| 22
jdepend 06| 03| 03 |66| 66 | 6.7 |03|02|02]32]|32]| 33

chart 86| 81| 78 | 93| 82| 7.7 |47|40| 43 |52|41]| 43
fop 17,14 |12 72| 71| 74 |04]04| 03 |17|18| 19
hsqldb 04| 04| 04|87 58| 70|03|03| 03]58]|39]| 4.7
pmd 51124 78 | 56|118| 7.0 | 28| 6.7| 45 |3.0| 64| 4.1
xalan 27| 57| 30|27 55| 33|15/33|18|16|32]| 20
compress 48| 74 | 42 |44 75 | 43 | 26|40| 22 |24|41| 23
javac 41| 70 | 46 |39 70 | 55| 21|35| 26 |20| 35| 31
mtrt 02/ 02|03 |73|88| 7901|0101 |22|27| 24

raytrace 01, 01| 03|71|158| 76 |00]00| 01 |15/32]| 16
volano 06| 03| 08 |48| 75|93 |03|/01|04|23|35]| 45
psjbb 28| 28 | 40 |63| 59| 73]19|19| 2843|4152

[average [3.2] 40 34 [65] 79 71 [1.6]19] 1.7 | 3.0] 35] 3.3 |

Table 4.5: Average yield prediction error, across the heap sizestiveléo the old
generation size (Cols. 2—-7) and heap size (Cols. 8-13). Thegyold ratio set to 1%.

into prediction accuracy unaffected by avoided GCs whicimigdrtant in benchmarks
whose GCs are mostly productive.

Across the benchmarks and compactors, average error & [#o (for the 0%
threshold) and below 8% (for the 5% threshold) relative t® ¢ihd generation size.
This corresponds to 2% and 4% relative to the heap size. Véstigate accuracy for
other thresholds in Sectigh3.6 Accuracy is worse for the 5% threshold because GC
skipping increases fragmentation in the heap.

Figure4.1shows detailed accuracy plots, across the heap sizes |éotesgt bench-

marks and the 5% threshold. We report average prediction @tata points) and stan-

119

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

dard deviation (error bars) from 5 measurements relatitlest@ld generation size. The
graphs show that accuracy also varies across the heap sizes.

To implement yield prediction, we employ a polling threadhe MRE that period-
ically samples the hardware page protection bits through@ikernel module. During
each GC, the MRE also executes the YP algorithm (cf. Seetign Both of these
operations can impose a performance penalty. The final tokenns in Tablet.4
compare the execution times with and without predictiond@ey HS, and MC, to eval-
uate this overhead. With prediction on, we set the skip tiolelto 0%. Thus, we do not
skip any collections, and we isolate the performance pgmaturred by YP. That is,
for each GC, we do complete prediction and collection workdditon to the polling
thread running concurrently. We report the maximum ovedteesathe percent increase
in total execution time, across the heap sizes for CP, HS, a@d This overhead is
below 4% on average. Server-side benchmarks (e.g. hsgttpsfiob) have the highest
overhead as they fully utilize both CPU cores and the pollhmgdd needs to preempt

the application threads.

4.3.5 Impact on Applications

In this subsection, we focus on the eight benchmarks withG@wields, i.e. those
below 5% in Column 7 in Tablé.2 In the remaining programs, most collections cannot

be skipped (as they are productive) and YP affects perfocmanly marginally (max-

120

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

beautyj
18 T T T CPI T g
!] E
5 MC ——] &
wm wm
o c
i) Re]
3] o
ke S
o o
o o
2 1 1 1 1 1
61 615 62 625 63 63.5 64 14 15 16 17 18 19 20
Heap Size [MB] Heap Size [MB]
hsqldb javaguard
35 1 T T T CPI T ig T T T T
Iy L k] < b
S gg i HS —=— | = 16 -
S MC —e— S 14 -
&g 20 - g 12 i
< 15 % B s 10 | B
5 10F — 1 3]
8 ° 8 4 .
a Of 1 a2 a
_5 + 1 1 1 1 1 0 1 1 1 1 1]
92 925 93 935 94 945 95 16 17 18 19 20 21 22
Heap Size [MB] Heap Size [MB]
jdepend mtrt
20 T T CPI T
= = 18 - ——
= = 16k HS —=— |
s S waf MC —o— .
0 S 10|]
S 5 10} |
S 5 8
g 8 6F
o o 4
5 1 1 1 1 1 2 1 1 1 1 1 I
30 30.5 31 315 32 325 33 19 195 20 205 21 215 22
Heap Size [MB] Heap Size [MB]
psjbb
S S
w i
c c
K] o
8 S
=) °
o o
o o
1 1 1 1 1 I _
119 120 121 122 123 124 125 31 315 32 325 33 335 34
Heap Size [MB] Heap Size [MB]

Figure 4.1: Prediction error relative to the old generation size acressp sizes for
all compactors and 8 benchmarks (those with the most unptwduGCs). We report
average and standard deviation (error bars) from 5 rundd Yrediction is turned on,
the GC skip threshold is 5%, and the young-old ratio is 1%.

121

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

Execution Time GC Skip Maximum Pause
Benchmark| Reduction [%] Rate [%] Time Reduction [%]
CPI{HS|[MC| CP|HS|MC| CP | HS| MC
beautyj | 84.8| 79.3| 74.1|82.9|81.0|810| -3.1 | 1.1 | 1.3
javaguard | 47.5| 42.0| 31.7| 66.7 | 69.1| 69.7| -45 | -3.2| 0.0
jdepend | 50.6 | 41.6| 35.6| 77.3| 76.8| 80.0| -1.2 | -53| 6.9

fop 43.9| 37.7| 305| 659|686 | 674| -54 | 0.0 | 8.4
hsqgldb 58.4| 13.9| 45.1| 82.2|826|833| 45 |-21| 0.1

mtrt 86.4| 83.8| 823| 73.6| 72.4| 72.1| -20.1| 28 | 3.3
volano 37.6|339|215|87.0| 824 | 852| 150 | -0.7| 27.8
psjbb 59.0 | 42.3| 34.3| 77.1| 64.7| 640| 6.2 | -3.6| -0.9

| average | 585 46.8]44.4]76.6] 747]753] -1.1 [-1.4[59 |

Table 4.6: Statistics for all compactors obtained for yield prediattarned on, the GC
skip threshold of 5%, the young-old ratio of 1%, and for minimheap sizes. Columns
2-4 show percentage execution time reduction due to GC isipp YP. Next, in
Columns 5-7 we report the percentage of skipped (unprod)aBCs. Reduction in
maximum GC pause times is shown in Columns 8-10. The last rpart® average
values across the benchmarks.

Space Overhead [%]
Benchmark| Vs. Old Generation Vs. Heap
CP [HS|[MC |CP|HS|MC
beautyj 127|116 6.1 | 7.7| 74| 3.9
javaguard | 23.4| 22.0| 20.5| 58| 55| 5.4
jdepend | 11.1| 12.7| 11.2| 54| 6.2 | 5.6
fop 1731244 175| 41| 63| 4.2
hsqldb 51| 99| 49 | 34|6.7| 3.3
mtrt 20.9| 205| 199|6.3| 6.1 | 6.0
volano 92 | 86 | 89 | 44|41 44
psjbb 6.1 | 62| 36 | 41|43 26

| average | 13.2[145] 116[51][58][44 |

Table 4.7: Space overhead for all compactors obtained for yield ptedicurned on,
the GC skip threshold of 5%, the young-old ratio of 1%, andnfiimimum heap sizes.
Columns 2—7 present space overhead (as percentage) impo§#d &kipping in YP,
relative to the old generation size (Columns 2—-4) and heap(§€lolumns 5-7). The
last row reports average values across the benchmarks.

122

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

imum overhead is 3% on average for these programs). We s&Glekip threshold to
5% and the young-old ratio to 1%.

We first evaluate the impact that YP has on overall executima by comparing the
benchmark performance when prediction (and GC skippinghabled and disabled.

In Table4.6 (Cols. 2—4), we show the application throughput improvenientnini-
mum heap sizes for each compactor. On average, across tblenbarks, we observe
significant improvements in execution time: e.g. redudioh59% for CP, 47% for
HS, and 44% for MC, on average.

Cols. 5-7 in Tablet.6 show the percentage of GCs eliminated (the skip rate) on
average for each program across heap sizes. The skip ras b@tween 64% and
87%, and has an average of 75% for HS and MC, and an average dbrCR; YP is
able to avoid most GCs in these programs.

Since YP eliminates unproductive GCs, it thereby increasasmam mutator uti-
lization [43] and program performance. By doing so, YP also reduces théeauof
pauses an application experiences and increases theaist®etween pauses. In the
Cols. 8-10 in Tablel.6, we report the impact that YP has on maximum pause times.
YP tends to increase pause times since when multiple GC gmeesk the heap size be-
comes larger, and the collection that is finally performedases a longer pause (while

being more productive). Occasionally, however, YP skipsegpensive compaction

123

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

with the net effect of reducing the maximum pause time. Omame in CP and HS,
YP increases maximum pauses by 1%, and in MC, it reduces theg®ioby

The trade-off that YP makes to achieve these performanos gain predictor over-
head (below 4%) and in heap space. Cols. 2—7 in TAllshow the space overhead
that YP imposes for each compactor as a percentage of theo&tagion size and heap
size. Each skipped collection creates a temporary spacheae in the heap that is re-
duced or eliminated by the next conventional GC. This ovethieaults from skipping
potentially multiple consecutive GCs. Relative to the oldegation size the overhead
is below 15%. The overhead does not exceed 6% relative totheheap size.

We next present application throughput without (Figdr® and with (Figure4.3)
YP and GC skipping. Each figure shows per-benchmark ploté, wéh 3 performance
curves that correspond to CP, HS, and MC, respectively. Watragerage execution
time (data points) and standard deviation (error bars) edetpbfrom 5 runs for each
heap size. From the differences between the graphs in theskgures, we observe
that YP consistently outperforms conventional GC for akkthcompactors across heap
sizes.

Note that YP outperforms a system employing heap overponigy to run GC
less often. Giving more space to HS, MC, and CP (as much as YR gpachead)

does not lead to better execution times than YP obtains.

124

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory

Management Performance Using Virtual Memory

Execution Time [s] Execution Time [s] Execution Time [s]

Execution Time [s]

beautyj
35 T T T

T T
CP —x—
HS —a—

¥

- H

5 p
1 1 1 1 1

61 615 62 625 63 63.5 64
Heap Size [MB]

hsqldb
18 I T T T

T T
CP —x%— |
HS —a—

1 #

8¢ T

6 i\§\§\<;

4

92 925 93 935 94 945 95
Heap Size [MB]

jdepend
26 T T T CPI T
24 HS 457*

22
18 &
16
14
12
10

MC —e—

30 305 31 315 32 325 33
Heap Size [MB]

psjbb
35 T T T T

T T
CP —x—
HS —&— -
MC —e—

. E— 1

1 1 r 1 h
119 120 121 122 123 124 125
Heap Size [MB]

Execution Time [s] Execution Time [s] Execution Time [s]

Execution Time [s]

15 16 17 18 19 20
Heap Size [MB]

javaguard

T T
CP —x—
HS —&—
MC —e—

17 18 19 20 21 22
Heap Size [MB]

mtrt

T
CP —x—
HS —&—
MC —e—

195 20 205 21 215 22
Heap Size [MB]

volano

31 315 32 325 33 335 34

Heap Size [MB]

Figure 4.2: Benchmark execution times across heap sizes for all conmsadit report
average and standard deviation (error bars) from 5 rungd Yrediction is turned off.

125

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory

Management Performance Using Virtual Memory

Execution Time [s] Execution Time [s] Execution Time [s]

Execution Time [s]

Figure 4.3: Benchmark execution times across heap sizes for all conmsadit report
average and standard deviation (error bars) from 5 rundd Yiediction is turned on,

beautyj
5 T T T T T

1 CP —x—
4.5 ¥ HS —=—

PN
4l ~4
B L
ast e 3

3t 1

f\@/@\g
25 | 1

2
61 615 62 625 63 63.5 64

Heap Size [MB]
hsqldb
11— .
10 £ CR, ——
H]
9 MC —e—
8 - -
7 ;_ -
6 \Hx—\:
5 & E
a9
3 1 1 1 1 1

92 925 93 935 94 945 95
Heap Size [MB]

jdepend
12.3 T T T T T
12.2 CP —x—
12.1 1
12

PR
B
NWwhO

ot
n{ I

p

30 30.5 31 31.5 32 325 3

Heap Size [MB]
psjbb
16 I T T T T T
15.5 CP —x—

HS —&—
MC —e—

7119 120 121 122 123 124 125
Heap Size [MB]

Execution Time [s] Execution Time [s] Execution Time [s]

Execution Time [s]

fop
2.8
27 E
26 F
25 ¢
24F
23
22 |
21 &
2 -
19 |
18 1 1 1 1 1
14 15 16 17 18 19 20
Heap Size [MB]
javaguard
42 R T T T T T
& CP —x—
4T HS —=— 1
38 MC —e—
3.6
q
3.4 | B
32 B
3 1 1 1 1 1
16 17 18 19 20 21 22
Heap Size [MB]
mtrt
17 T T T T T
16 F CP —x—
1.5 7 HS —&—
1.4 4 MC —e—
13 F
1.2
11F
14
09+
0.8
0.7
06 1 1 1 1 1
19 195 20 205 21 215 22
Heap Size [MB]
volano
33.5 T
33 |
325 |
32 r
315 |
31
305 F
30 |
29.5 |
2 1 1 1

9
31 315 32 325 33 335 34
Heap Size [MB]

the GC skip threshold is 5% and the young-old ratio is 1%.

126

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

Thresh. 3% 5% 10% Average
GC CP| HS|MC | CP| HS | MC | CP | HS | MC CP | HS | MC
PEO 54 | 62| 57| 65| 79| 71| 81| 103| 8.8 6.7 | 81| 7.2
PEH 25| 28| 27| 30| 35| 33| 39| 48| 41 31| 3.7 | 34
SOO || 129 14.1| 10.8| 13.2| 145| 116 | 159 | 16.1| 14.3 || 14.0| 149 12.2
SOH 50| 56| 40| 51| 58| 44| 63 | 66 | 58 55| 6.0 | 4.7
SR 70.6| 71.8| 70.1| 76.6 | 74.7| 75.3 | 83.2| 80.5| 80.6 || 76.8| 75.7| 75.3
ETR 55.7| 41.8| 42.0| 585 | 46.8| 44.4 | 62.3 | 53.5| 47.2 | 58.8 | 47.4| 445
MPR 30| -07| 42| -11|-14| 59| 07| 03 |106/| -1.1| -06| 6.9

Table 4.8: YP statistics for different GC skip thresholds (3%, 5%, afé6) for each

compactor (CP, HS, and MC). We report average values acrossiianks and heap
sizes. Young-old ratio is 1%. All values are percentagesO REprediction error

relative to the old generation size. PEH is prediction eretative to the heap size.
SOO is space overhead relative to the old generation sized iIS@pace overhead
relative to the heap size. SR is GC skip rate. ETR is execttiom reduction. MPR is
maximum pause time reduction.

4.3.6 Other Parameter Values

We have also evaluated YP for the GC skip threshold of 3% a6l tbQunderstand
better how this parameter impacts application performamable4.8 summarizes the
results and compares them with the ones obtained for 5%. albvas the threshold
increases, the prediction accuracy decreases, the spadead increases, the skip rate
increases, and we observe better performance gains. Kiypishgeshold selection is a
space/time trade-off.

We have also investigated different values of the youngralib, a YP parameter
which determines what proportion of the window between tulasequent GCs is con-
sidered young. The detailed YP evaluation we have preséhtedfar is for the 1%

dead-young ratio. We have found this value to result in opkiprediction accuracy

127

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

155 T T T T T T T T
_ CP —x—
3 g 15 #ﬂ\ﬁ%j:m
§ E 145 E
wm £ 14 M
c [<&]
S 3 135f .
5 8 13l i
e 3 g
o 7 n 125 |- b
6 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Young-Old Ratio [%)] Young-Old Ratio [%)]
o 9 T T T T T T T T —_ 60 T T T T T T T T
S 8 § g o ——CP —x— |
c 7 HS —&— = HS ——
S L MC —— | & 56 MC —o— 7
S st] B s4rp -
S >
g 4r - T 52 F -
3 1 £ s0f .
2 o
3 2r 1 £ a8t -
s 1L 4 [= Fes s |
o 0k i s 46 h
]
g 1 @%J 3544
E _2 1 1 1 1 1 1 1 1 u 42 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Young-Old Ratio [%)] Young-Old Ratio [%)]

Figure 4.4: Impact of the young-old ratio on prediction error, spacerbgad, maxi-
mum pause time reduction, and execution time reduction.

(we have checked 1%, 2%, 5%, 10%, 20%, 50%, and 90%). F&drghows the im-

pact of the young-old ratio on prediction error, space ogadh maximum pause time
reduction, and execution time. For each compactor, we teperage values obtained
across the three skip thresholds (3%, 5%, and 10%). Accunacytonically decreases
when the young-old ratio increases (prediction error iases from 7% to 14%). This
is because in a steady-state execution phase, prograrnatelimostly short-lived ob-
jects. The remaining metrics are not overly sensitive toytheng-old ratio. This is

mostly because the prediction error never exceeds 16% éaatios that we checked.

Nonetheless, execution time reduction is worse for high&ras of the young-old ratio.

128

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

4.4 Related Work

Static and dynamic prediction in the context of automaticrmoey management
includes object lifetime predictior2[l, 90, 48, 98, 134, 182 139, 110 as well as heap
size prediction175 77,36, 174, 179. In contrast, YP focuses on yield prediction. No
prior work to our knowledge exploits page reference bitstact GC yield accurately.

Like YP, MicroPhase173 strives to improve the GC triggering mechanism to max-
imize the GC yield. MicroPhase recognizes phase boundanégproactively invokes
GC during phase transitions when many objects are expexthe.tThe system cooper-
ates with the OS kernel to implement efficient profiling. Imtrast, YP uses reference
bits to predict GC yield and is therefore simpler while egtireg the phase behavior
implicitly.

Garbage collection hints (GCH39] is a profile-directed method for guiding garbage
collection. GCH uses off-line profiling to identify favoratollection points in the pro-
gram code where GC dynamically chooses between nurseryudiftep collections
based on an analytical garbage collector cost-benefit mdde&ontrast, YP does not
use off-line profiling and leverages hardware to make yieédltion.

The systems below are related to YP because they often lgdtiteract with hard-
ware and operating systems. However, they either do notdgeethe mechanism of

RR bits or do not implement yield prediction.

129

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

The Pauseless GCI§] is a parallel/concurrent compactor that uses specialized
hardware and avoids pauses through read barriers, fastnoskr trap handlers, an
additional intermediate TLB privilege level, and fast ceogtive preemption via inter-
rupts.

Numerous collectors leverage virtual memory operatiom& Compressor employs
both page mapping and protection. The Mapping Collector psniiiee space in the
address space. MarkCop¥36 reduces the memory footprint of a copying collector
through on-the-fly (un)mapping of the copied pages.

Some collectors77, 175 80, 179 174, 79| cooperate with the OS virtual mem-
ory manager to reduce the collector-induced paging. The Baoking Collector 80|
records summary information about outgoing pointers frerated pages to avoid ac-
cessing non-resident pages during compaction. CRAMRE|[and IV heap sizingT7]
use VM paging behavior to predict and set dynamically thetraogable, application-
specific, heap size that adapts to changing memory presedraw@id paging. The
system described irl[f9 dynamically finds the optimal heap size by exploiting phase
behavior to balance the GC frequency and collection costedisas minimize the im-
pact of page faults on performance. Many concurrent caltscalso exploit virtual
memory supportg7, 101, 46, 122, which facilitates mutator conflict detection and

exploitation of cache localityl0]].

130

Chapter 4. Dynamic Prediction of Collection Yield: Improvimgra-Runtime Memory
Management Performance Using Virtual Memory

4.5 Summary and Conclusions

YP is a GC yield predictor that uses virtual page referentsstbiaccurately estimate
the amount of reclaimable space in the heap. We incorporBtant three state-of-
the-art parallel compactors to verify its applicabilitydanonical heap layouts used by
extant collectors. YP is simple and does not require chai@ GC algorithm (only its
triggering mechanism). YP enables better dynamic contret the space/time trade-
off in MREs. We empirically evaluate YP using 3 compactors dfdorograms and
find that YP consistently provides good accuracy while infpgp$ow time overhead.
In applications with many unproductive GCs, YP significamhproves performance

(by 44-59% on average) by skipping most GCs and incurring st@&pe&ce overhead.

The text of this chapter is in part a reprint of the materialieappears in [L61].

131

Chapter 5

Concurrent Collection as a Service:
Improving Intra-Runtime Memory
Management Performance and
Programming Model Using Shared
Libraries

In this chapter, we describe an approach to improving intraime memory man-
agement by using OS support for shared libraries. Spedyfioak discuss the de-
sign and implementation of a lightweight GC library, potea@icross runtimes and lan-
guages, and providing parallel, concurrent, and on-thedliection. The library can
be integrated into existing or newly-built runtimes usinfire-grain, low-overhead C
interface. Decoupling GC from other runtime componentgpéifiles the programming
model for runtime developers and increases system motjusard component reuse.
At the same time, the library allows to improve the GC perfance in runtimes that

do not implement modern memory management subsystems.

132

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

5.1 Introduction and Motivation

Managed runtime environments (MREs, virtual machines, VIs)high-level,
object-oriented (OO) programming languages are incrgssomplex, which makes
them challenging to architect, extend, and understand.dDtiee most complex com-
ponents in MREs is automatic memory management (garbagetioh, GC). State-of-
the-art GC algorithms, i.e. parallel, concurrent, andtmty GCs [L67, 99|, capable
of taking advantage of multi-core processors, are notshodifficult to implement,
especially in conjunction with other MRE components (loageompilers, schedulers,
etc).

As a result, it is not uncommon for MREs to implement simpler Gaften at
the expense of scalability, interactivity (pause timesy performance. For example,
most extant MREs for dynamic languages use single-thredadpetlse-world GCs (e.g.
Ruby) and reference-counting GCs (e.g. Python, PHP) whitetb@&C algorithms have
been known for decades. Even some MREs for static languatieslgton dated GCs,
e.g. the Mono runtime for C# uses conservative stack scaramdgstop-the-world
serial GC (and until recently it has been based on the Boehm GC).

One way to address GC complexity is to decouple, modulaaizé facilitate reuse

of GC implementations3b, 34, 29, 28, 88]. We investigate the design and implemen-

133

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

tation of a portable GC library (which we call GC as-a-se#\(iGaS)). GaS represents

a new point in the GC design space because of its unique cairdnrof goals:

e cross-MRE, cross-language GC library for static/dynammgiages,

e support for modern GC (concurrent, on-the-fly) tmoperativeMRESs (unlike

Boehm GC 84)),

e GC-MRE decoupling (unlike recent on-the-fly G@&][62)),

e low-overhead interface using C-based native API (unlike Mddind GCTk P8,

29)).

We aim at increasing the GC quality and decreasing the GGheagng effort by
code re-use, modularity, and separation of concerns. Ge&ugdkes GC from other
runtime components and exposes a fine-grain API for use by @@ecative runtimes
of different programming languages for heap memory managéntas provides con-
current, on-the-fly GC and avoids moving objects for use asaige or conservative
collector. We adapt the GC algorithm to avoid tight-coughmith the runtime in order
to maximize portability and simplify GaS integration. Ga®ves to minimize assump-
tions/restrictions regarding memory management in MREs.

We employ the GasS library within production-quality MREs fiava (HotSpot

JVM) and Python (cPython) and compare GaS GC against stdbe-@rt GCs. Our

134

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

empirical evaluation includes concurrent, parallel, itngdGCs as well as hybrid trac-
ing/reference counting GCs. We discuss the trade-offs weematk the GaS design
and their performance implications. We also investigageprformance of other ap-
proaches that provide GC across languages such as thosesdslanguage boundaries
and that employ a single MRE for multiple languages. Our erpantal results show
that using GaS as an alternative to tightly integrated Gfdhtces modest overhead
and that GaS reduces pause times significantly for Pythodavalprograms.

In the next sections, we describe the design and implenientaf GaS (Sec-
tion 5.2), present the results of GaS empirical evaluation (Se&i8n discuss related
work (Section5.4), investigate how newly-built runtimes can benefit from G&8c-

tion 5.5), and conclude (Sectidn6).

5.2 Design and Implementation

Figure 5.1 presents the high-level architecture of GaS. GaS providgsaged C
library that is accessible via the GaS interface and thateansed by MREs for dif-
ferent languages (e.g. Java, Python, Ruby) to integrateagarbollection (GC) into
the runtime. Each MRE dedicates some number of threads to Ga@dacurrent, on-

the-fly GC) and maps a virtual memory region which GaS manag&Ets also have

135

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

/" JavaVM) [PythonVM) [RubyVM)

Java Heap Python Heap Ruby Heap
| GaS Heap | | GaS Heap | | GaS Heap |
$41 rivends | | $45 ivents | | $18 s
Threads Threads Threads
o AN AN /
[GaS Interface]
Gas Library

Figure 5.1: GaS architecture: multiple VMs share the GasS library. EabhRhas its
own heap and GC threads.

the option of allocating certain types of objects (e.g. imt@loobjects or internal data
structures) in their private heaps and managing them inctkgpely of GasS.

We design Gas to support MREs for dynamic and static langualgiet implement
diverse memory management strategies, including referengnting, tracing, object-
moving, and non-moving GCs. Our goal is to enable GC portgfali the library (i.e.
binary) level (without recompiling the library, or modifyg the GC algorithm).

The rationale behind GaS is to enhance modularity and sepacd concerns in the
design and implementation of MREs and to enable building ndREBIfrom reusable
components. GasS abstracts away the GC functionality, thablieg construction of
an MRE with a modern GC subsystem without expert knowledgeitaboncurrent
and on-the-fly GCs. By treating GC as a component, GaS faesitasearch in other,
non-GC, MRE subsystems. In addition, GaS enables integrafiarhigh-quality GC

into MREs that lack modern GCs, e.g. scripting language MRE<sti@loy stop-the-

136

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

world, single-threaded collectors (reference countinthwycle detection for Python
and PHP, mark-sweep for Ruby). In Sect®B we show that even highly-optimized,
sophisticated MREs, such as HotSpot JVM, can benefit from GasS.

GaS is a parallel (i.e. uses multiple GC threads), conctifien collects most
objects without stopping the application threads (mug)jpand on-the-fly (i.e. stops
one thread at a time) GC. The rationale behind this configamasi that concurrent,
on-the-fly GCs are difficult to implement, thus it is practitalprovide such GCs as
a service/library. In addition, many MREs are latency-demsie.g. Ruby is used for
server-side scripting and its stop-the-world GC is a lingtfactor — concurrent GCs
avoid stop-the-world collection which can introduce lagpses. Finally, as multi-
core processors become ubiquitous, concurrent GC is isiaglg suitable for fully
utilizing and extracting high performance from modern syss.

GasS does not move objects because some MREs (e.g. Pythomeatisat ob-
ject addresses remain constant and others (e.g. Mono)yeesupport for object pin-
ning and conservative root scan. GaS uses free-list aitotand thread-local alloca-
tion buffers (TLABS) for fast, unsynchronized, bump-poma#ocation in the common
case. TLABs are vital for supporting multi-threaded MREs.

The GaS GC algorithm is an adaptation of extant snapshibtealbeginning (SATB)
on-the-fly GC B1, 62, 60]. Our extensions decouple GC from the MRE and simplify

the MRE-GC interface on the MRE side. Existing on-the-fly GCg ol system-wide

137

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

/ Virtual Machine \ / Gas Library \

4 ™\
allocation * 0) o
. .. Q %) GaS
write barrier (V] =
VM _ o Code
tdump * = o©
\T hreads "°° 1])
=%
s . o .
vm finalization 8 % % % Gas
Code object scan . Threads

J
K VM-specific OM / K oM Obliviou5/

Figure 5.2: GaS interface. The upper part shows how a VM calls into the lba&y.
The lower part lists the GaS callbacks.

handshakes with mutator threads and maintain per-threfier®do implement write
barriers and to determine quickly if another marking iterais neededgl, 57]. GaS

avoids such tight-coupling and moves GC logic out of the MREash as possible.

5.2.1 GaS Interface

Figure5.2 depicts how MREs interact and cooperate with GaS. An MRE fiist in
tializes the Gas library by specifying the number of GC tdseed LAB size, and GC
threshold (percentage heap usage that triggers a GC), amd\aglipg a mapped virtual
memory region for the GaS heap. The GasS interface consisigasations performed
by MRE threads (allocation, write barrier, and root dump) bBpdhe GasS threads (fi-

nalization and object scan).

138

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

object block
1,2,3,4.5.6,7,8

length flal|s|p| VM-specificobject format

TLAB block

1|2|3|4 56,78 1‘2|3|4 5,6,7,8

length | fla|s|p length | fla|s|p

| [
\

free block
1,23,4,5/6,7,8

length | fla]s p| next | back |overf|ow
\

Figure 5.3: Block format in the GaS heap. There are three block typescobjeAB,
and free.

An MRE requests TLABs from GaS and performs most allocationisiva TLAB.

To allocate large objects, an MRE requests a TLAB of a spect#ecand then proceeds
to intra-TLAB allocation. The GaS protocol for allocationchwrite barrier (described

in detail in Sectiorb.2.2) is kept to a minimum so that the compiler can inline this code
at allocation and reference store sites.

Before each GC, GasS requests a root dump. An MRE responds tethisst by
identifying objects (for GaS to mark) in the GaS heap thatraaehable from thread
stacks, global memory areas, and/or non-GaS generati@&irdokes MRE-provided
callbacks to scan objects for references and to indicateatparticular object is about

to be reclaimed (to support finalization).

139

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

5.2.2 Heap Layout

We divide the GaS heap into blocks. Each block starts withealée whose format
is shown in Figuré.3. The header size is one machine word (we assume 64-bit words)
so that it can be atomically loaded/stored. GaS supportyg-¢ohcurrent unsynchro-
nized sequential scans over heap blocks.

There are three block types: an object block, TLAB block, &e& block. The
block header consists of 5 fields: block length (4 bytes)clhlormat (f, 1 byte), and
three 1-byte GC flags: recently-allocated (a), scanneda(g),pending (p). We make
each field at least 1-byte in size so that we can use atomifwatel(most architectures
support single-byte atomic memory access but do not supgestise atomic access).

Object blocks are followed by an MRE-specific object représt@m, which is not
interpreted by GaS. Thus, GaS adds one word of space ovepeeadthject. GC flags
have meaning only for object blocks. New objects have tleeiently-allocated flag set.
Whenever the GaS GC marks a live object, it sets its scanned@lagects with their
pending flag set will be scanned by the collector.

We initialize each word in a TLAB block so that we can treatstthe start of a
new, shorter TLAB. For example if the first TLAB word contaiesgth = 8, then the
second TLAB word contains length = 7, etc. This approach keisadtomic allocation
of objects in TLABs. To allocate an object spanning 5 words swmeply store a new

object header (with length = 5) at the beginning of the TLABcl$@a store happens

140

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

atomically and the remaining part of a TLAB immediately hias tight TLAB header
(with the correct, shorter length). Thus, an ongoing corenirheap block traversal
cannot be confused by object allocation when we transitiomfa TLAB block to an
object block. In addition, object allocation amounts toragte word store which the
compiler inlines.

The length of object/TLAB blocks does not use the entire nractvord. However,
the limit of 16GB per object is typically sufficient in prac#i (e.g. in Java an object
cannot exceed 16GB). Free blocks can use larger length viayustering their actual
length in the overflow field (which has machine-word width).

When a TLAB fills up, we retire it (we insert a dead object inte temaining free
space) and replace it with a new TLAB. TLAB allocation, liké fagelist operations,
employs synchronization. The freelist is a double-linketldf free blocks.

GaS uses a conditional SATB], 62] write barrier, that it executes before each
store. The barrier first loads the previous pointer valu®@alo be overwritten by
a store), checks if it belongs to the GaS heap, and if so setpehding flag on the
corresponding object. For example, before a stpre- v happens we execute:
if (is_in_gas_heap(xp)) then set_pending_flag(xp);

For efficient heap membership checks, the MRE should map tiseh&ap above or
below all other object regions in an MRE — in such a setting glsihorder comparison

suffices.

141

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

5.2.3 GC Algorithm

GaS GC comprises four concurrent phases: flag clearinggdroup, object mark-
ing, and object sweeping. GC threads use barrier synctatioizto meet at subsequent
GC phases. GaS imposes no pauses if an MRE is capable of pgrdoamoot dump
without halting the mutator threads. A new GC cycle startsedhe heap usage crosses
the specified GC threshold.

We do not use a marking bitmap but instead mark object hedttierscanned flag)
directly. This enables us to avoid atomic compare-and-J@#$5) operations during
marking because one byte can be stored atomically. Sinceovmetdsynchronize GC
threads during marking, multiple GC threads may end up sogrthe same object —
we find that this happens rarely and we mitigate it via dyndoad balancing among

the GaS GC threads.

Flag Clearing Flag clearing is a concurrent phase where a single GC thraaelrses
over the heap blocks and clears the GC flags. This step haslarsifect to activating
the snapshot mode in extant SATB G®4,[62]. However, in GaS, the snapshot mode
is active all the time, meaning that all objects are allodditee (the recently-allocated
flag set) and mutators always use a SATB write barrier (gettie pending flag for

objects whose incoming pointers are overwritten). Thigaagh simplifies the MRE-

142

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

GC protocol and decouples GC and an MRE (no handshakes,dejpésdent write
barriers, etc. are required).

During flag clearing, GaS computes a balanced heap paitijarsed in the sub-
sequent, parallel heap traversals. GaS divides the heapdpial-size chunks at block

boundaries. In later traversals, each GC thread uses itsbumk only.

Root Dump In the second GC phase, an MRE finds roots into the GaS heap and
reports them to GaS by setting the pending flag for root objeEtepending on the
MRE, root dump may require scanning registers, thread stacid global memory
areas. An MRE may need to stop the mutator threads to find r&ise GaS is an
on-the-fly GC, an MRE is allowed to stop one thread at a time taddenog pauses. In
Sectionss.2.4and5.2.5 we describe how root dump can be done efficiently in MREs

using tracing and reference counting, respectively.

Marking Object marking is parallel and concurrent. Due to concurodject mu-

tations, GaS occasionally performs several marking itamatbefore converging to a
stable live object graph. In each iteration, every GC thrsahs its own heap chunk
for objects with the pending flag set. If no such objects atmdbby the concurrent
block traversal, the marking phase is complete. Pendingctbihat Gas finds are re-
cursively (using depth-first search) scanned and markedétiing the scanned flag).

Recursive marking stops on already-scanned objects (jatgmharked in previous

143

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

M\o

.. root /
\.

object O object N

Figure 5.4: Root updates and concurrent marking. Since root updateaoaptured
by a write barrier, we use different marking stopping cands during the first and
later GC iterations.

marking iterations). GaS uses dynamic load balancing dumarking (randomized
work stealing) for scalability. GaS marks objects in-pldice. uses object headers)
and, unlike some SATB GCs, does not use per-mutator markifigrbto further de-
couple GC from the threading subsystem).

During the 2nd and later marking iterations, recursive nmaylstops on already-
marked objects and on recently-allocated objects (theelkstion stops only on already-
marked). This guarantees GC termination. Assuming theré abjects in the heap
when the GC cycle starts, and all new objects are flagged estig@llocated, GC will
finish afterV iterations at most. In practice 2 or 3 iterations suffice.

Figure 5.4 explains why this strategy is correct, i.e. it cannot leadetaving
some live objects unmarked. Since we stop the 2nd and |la&eatiins of marking
on recently-allocated objects, we need to guarantee tisanipossible that a recently-
allocated object has a pointer to a live object that is otiewnreachable and is not
flagged as pending. Note that this is possible during therfiesking, when we mark

from roots. Consider an example in Figusel. Rootr initially points to objectO.

144

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

Then, objectV is allocated, and a pointer iV is set to point to objeaD. Next, root

r is updated to point taV. Now we have a configuration whefe is reachable only
throughN. Note that/V is recently-allocated and still needs to be scanned. Treorea
for this is that our snapshot write barrier (SATB WB) does ngtaee root pointer up-
dates (only heap pointer updates). However, the 2nd andhtetking iterations ignore
roots and mark from pending objects only. Thus, the newlyeated objects do not
have to be scanned once the first marking iteration complB&sonsider our example
in Figure5.4but assuming that is not a root but a field in a heap object. @apdate,

objectO is flagged pending and thus will be scanned by GC even if we teaam.)V.

Sweeping Sweeping is parallel and concurrent. Each GC thread scahsatp chunk
in an attempt to find a potentially-free block (i.e. eitherraelist block or a dead
object). This step is done without synchronization with atats which perform con-
current allocation and might use free blocks in the meanti@wce a GC thread finds
a potentially-free block, it acquires the freelist lock amhtinues scanning as long as
it encounters reclaimable blocks (dead objects or freekislodf the GC thread finds
a contiguous region of sufficient length, it coalesces tlgeoreinto a single free block
and adds it to the freelist. Immediately prior to that, thee#ld invokes the finalizer
on all dead objects. If a finalizer resurrects an object (tHRBVfinalize callback

indicates this to GaS), then the object will be finalized agaice it becomes unreach-

145

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

able next time. Finally, the GC thread releases the freleltcdt and looks for another

potentially-free block in its chunk.

5.2.4 Tracing GC

Incorporating GasS into tracing MREs is relatively straigitfard because such
MREs already implement support for object scanning, rootgluamd asynchronous
finalization. Generational MREs in addition support cardegstsemembered sets and
write barriers.

In generational MREs, we extend the card table (or remembstes) so that it is
possible to quickly find not only inter-generational pomsteut also pointers into the
GaS heap. A minor collection then suffices to implement tleg dump operation in
GaS.

In non-generational MREs, we add a write barrier that captp@nters leading
into the GaS heap as they are created. For each refereneenstarheck if the new
pointer points into the GaS heap and, if so, flag the objediiitp to as pending. After
the flag clearing phase, GaS concurrently scans the memgignsein the MRE that
might contain GasS roots, and relies on the write barrier @l déth roots that go by

Gas unnoticed during the scan.

146

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

5.2.5 Reference Counting GC

Reference counting MREs associate a reference count withagebt and rely
on two operationsincref (increment the count) andecref (decrement the count)
to detect and reclaim dead objects. Such MREs cannot rechgilescunless cycle
detection is run periodically. Each reference update irhtregp or on the stack invokes
decre f for the old reference value ardcre f for the new reference value.

To integrate GaS into a reference counting MRE, we makeérthe: f anddecre f
operations conditional. For pointers belonging to the Ge&ptthat point to an object
in the GasS heap, we do not use reference counts. In all otsesearef anddecref
have their original semantics. In particular, outgoing armming pointers in the GaS
heap are subject to reference counting and so are pointsis®of the GaS heap.

In this design, all objects in the GaS heap whose referengetds non-zero are
roots for GaS GC (because they are pointed to from outsideeoGaS heap). Thus,
the root dump operation amounts to a concurrent scan of tfg&h@ap in search of
objects with non-zero reference counts. Note that no paarsesequired for a root
dump. To deal with the race condition that might hide a roobfrGaS, we introduce
a write barrier inincref: if the reference count goes from 0 to 1, we flag the object as
pending. Thus, if a root scan sees reference count of 0, waiehbecomes 1, we do

not miss a root.

147

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

The SATB write barrier piggybacks afecre f and is only needed in case the decre-
ment is performed in the GaS heap. In addition, we modiiytcf so that it does not
call the object finalizer if the reference count drops to Ohie GaS heap (GasS calls

finalizers during sweeping).

5.2.6 GaS Extensions

Although GasS is a non-moving GC, we can extend it to perforrn{mmving)
generational collection. Instead of physical partitiahof the heap, we employ logical
partitioning. Each object has an age field, incrementedndueiach GC cycle until
the object becomes old. Minor GCs mark only young objects &u @n old objects.
A write barrier identifies old objects that contain pointéosyoung objects. Thus,
the overhead of marking is significantly reduced. The swegpost, however, is still
proportional to the heap size, as young and old objects dnehysically separated.

To support conservative GCs, we extend GaS with an objexttestay that enables
Gas to quickly determine if a given address is the start oftg@ad. GaS does not need
to update pointers thus conservative roots do not pose dgmnobGaS computes the

object start array during the clearing phase and uses ngltine root dump phase.

148

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

5.2.7 Implementation Details

We have implemented the Gas library in C and have integratatbithe HotSpot
JVM 1.6 and cPython 3.1. The HotSpot JVM uses a generaticesgh hayout while
cPython employs hybrid reference counting/cycle detactiBoth VMs use 2-word
object headers. HotSpot employs safepoints for root schitchvhalt all mutators, and
uses a three-level, circular, unified object/class model.

Our implementation of the GaS GC assumes sequential censysti.e. there is
some global order on writes and all threads see the same &vdarse memory fences
after the root dump phase to ensure store visibility. We U8IR synchronization
primitives (barriers, mutexes, and condition variables).

In HotSpot, we inline the GaS write barrier and object altmrain the template
interpreter and in the code generated by the server (C2) templie map the GaS
heap at the constant border above all other generationshwiiluces the membership
checks to comparing a register with a constant. We use mi(lfased on parallel
copying in the young generation) to find roots in thread stackor roots in other
generations, we perform concurrent generation scan anatiunte a write barrier to
capture pointers into the GaS heap. We have found this agipttoaresult in shorter
pause times than if we instead leverage card tables (wesdidbese alternatives in
Section5.2.4. We use the GaS heap for the young and old generation ane teav

permanent generation as part of the MRE-private heap.

149

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

In cPython, we extend C macros INCREF and DECREF to implementitoomal
reference counting. We synchronize the GC and the VM in&eprafter root dump
and before marking by acquiring and immediately releadneggiobal interpreter lock
(to ensure all write barriers have finished executing). s®ytdoes not have safepoints
and thus GaS imposes no pauses. Note that regular cPythsinaoese pauses for (1)
cycle detection and (2) whenever freeing large data strestafterdecref. The GaS
heap is located at a fixed precompiled address in the virteahony. We implement
Gas support in cPython for a single data structure: the pisaarch tree, which is

sufficient to evaluate GaS using our benchmark describedtaildn Sectiorb.3.

5.3 Experimental Evaluation

A primary goal of our experiments is to show that a cross4@gg, cross-runtime
GC that is implemented as a C library, offers competitivédqgremance (in terms of ap-
plication execution time, GC pause times, and other GC ngtdompared to tightly-
integrated VM-specific collectors in production-qualityd. We find that GasS sig-
nificantly reduces pause times and introduces modest aagrtie overall execution
time. In this section, we also investigate the tradeoffe@ssed (i) with the way GC

is integrated into a runtime systems (built-in vs. a natigefnative library) and (ii)

150

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

GC Gl | CMS | RC/CD | GaS
concurrent yes| yes yes
on-the-fly yes
parallel yes| yes yes
moving yes| yes
tracing yes| yes yes | yes

reference counting yes
generational | yes| yes yes

Table 5.1: High-level comparison of the GCs that we evaluate.

with different GC designs (generational vs. non-genenafianoving vs. non-moving,
concurrent vs. stop-the-world).

We first compare Gas to state-of-the-art GCs in the C-basetmesitfor Python
and Java. We use cPythdmt(p: / / docs. pyt hon. or g/ py3k/) and the HotSpot
JVM (htt p: / / openj dk. j ava. net). cPython implements a single-threaded Ref-
erence Countingb] with generational stop-the-world Cycle Detection (RC/CDJ][
The HotSpot JVM implements two concurrent, parallel, antbgational GCs: Garbage-
First (G1) B7] and Concurrent Mark Sweep (CMS)4§. Table5.3 summarizes the
main characteristics of these GCs compared to GaS.

RC/CD divides the heap into three generations. Once the nunflodyjexcts with
non-zero reference counts in the youngest generationesacspecific threshold, RC/CD
traces the object graph to find and free possible refererdeswithin this generation.
Survivors are promoted to the older generation. Generatiorl gets collected after

the specified number of collections of generatioRC/CD does not move objects and

151

http://docs.python.org/py3k/
http://openjdk.java.net

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

segregates object into generations logically (i.e. it n@ans a list of objects in each
generation).

CMS [129§ is a mostly-concurrent incremental GC based on the masthallel
collection algorithm described by Boehm et 3. HotSpot JVM implements CMS in
the old generation and overloads generational write-&arto identify objects that are
modified during concurrent marking (these objects must bear@ned to ensure that
the concurrent marking phase marks all live objects). CMSosep two pauses per
GC cycle: for initial marking and for remarking. CMS does naive/compact objects
except for promotion to the old generation and copying withie young generation.

G1 [57] is a concurrent GC designed to meet a soft real-time go& igh prob-
ability, while achieving high throughput. G1 performs magkconcurrently but halts
mutators during object evacuation. Marking identifies oegithat contain few live ob-
jects and that can be evacuated within a given pause time(lvith high probability).
Each region has an associated remembered set, which esledatocations that might
contain pointers to (live) objects within the region. Ateflly scheduled points, G1
stops the mutator threads and performs an evacuation p&ises generational — re-
gions holding current TLABs are treated as young and alwalsbdo the evacuation

set. G1 opportunistically moves objects to gradually dgfrant the heap.

152

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

5.3.1 Methodology

For our experiments, we use a dedicated machine with a quadhatel Xeon and
8GB main memory. Each core is clocked at 2.66GHz and has 6MiBec@ur platform
runs 64-bit Ubuntu Linux 8.04 (Hardy) with the 2.6.24 SMPriar

We use HotSpot JVM from OpenJDK 6 build 19 (released April@0dompiled
with GCC 4.2.4 in the 64-bit mode. Our configuration employes skrver (C2) com-
piler, biased locking, and two concurrent GCs: G1 (garbagg-and CMS (concurrent
mark-sweep) in a generational heap. In case of CMS, the yoengrgtion uses a par-
allel copying GC 85].

For the Java experiments, we employ the DaCapdd@dnd SPECjbb’00 bench-
marks. We use the default input for DaCapo and 1 warehouse #&@ishruns for
SPECjbb. We disable explicit GC invocation. For the Pythopeexnents, we use
the open-source cPython 3.1.1 (released in August 2009piteanwith GCC 4.2.4 in
the 64-bit mode. Our Python benchmarks include PyBench (aatmn of tests that
provides a standardized way to measure the performancetiobPymplementations),
a set of Shootout cPython benchmarks (p: / / shoot out . al i ot h. debi an.
or g/), and PyStone (a standard synthetic Python benchmark)ce Sirere are no
standard memory-intensive benchmarks for Python, we im@ieg our own GC bench-

mark, called BST, which we model after SPECjbb. BST executesrdruof iterations

153

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

against a balanced binary search tree. Each iteration ¢ees@® lookups, 1 insert, and
1 delete. This emulates realistic workloads by simulatimgnamemory database.

We investigate the sensitivity of GaS to different parametdues across bench-
marks. For the Java GCs, we vary four GC parameters: TLAB ga#g generation
size, number of GC threads, and GC-start threshold. We useetioenmended val-
ues of this parameters (as described in the HotSpot docatreamt for our detailed
per-benchmark evaluation. For the Python RC/CD GC, we vary orener: the
GC-start threshold which controls the frequency of cycledsn in the young gener-
ation. RC/CD has no other parameters that significantly aff€:t G

We evaluate the Java and Python GCs using four main metriosughput (exe-
cution time), GC pause times (average and maximum), minirmutator utilization
(MMU), and minimum required heap size. We do so across a rahigeap sizes start-
ing at the minimum heap size to at least its double. Note thatwurrent GC requires
more heap space than stop-the-world GC due to delayed garbalg@mation and allo-
cations happening during collection. In cPython RC/CD, theneoi reliable standard
way of setting the heap size, therefore we do not vary the bzapin this case. We
repeat each measurement a minimum of 5 times and reportasthddviation as ap-

propriate (error bars in plots).

154

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

Bench- Minimum Heap Execution Time
mark | GaS | vs.G1 | vs.CMS| GaS vs.G1l | vs.CMS
[MB] | [xincr] | [xincr.] [s] [% incr.] | [% incr.]
antlr 40 2.0 4.0 10.9 6.0 9.9
bloat | 140 4.7 14.0 25.5 115 17.9
chart | 100 1.0 3.3 25.7 8.9 9.2
eclipse| 400 8.0 5.7 71.9 114 155
hsqgldb | 290 1.9 1.9 12.7 -1.6 -1.5
jython | 80 4.0 2.7 29.9 4.8 7.8
luindex | 120 2.4 12.0 25.6 4.8 4.4
pmd 250 3.6 4.2 20.3 12.1 16.7
xalan 80 1.3 0.4 23.6 29.0 24.6
averagel 167 | 32 | 5.4 273 | 97 | 116
Throughput
[kKbops] | [% decr.] | [% decr.]
jbb \ 110 \ 1.8 \ 2.2 3.9 5.7 6.3

Table 5.2: Comparison of Java GCs: G1, CMS, and GaS. Columns 2—4 show the
minimum required heap size and Columns 5-7 show executiaittinoughput.

5.3.2 Java Benchmarks

Table5.2 and Tables.3 detail per-benchmark, GC metrics for GaS, G1, and CMS.
These experiments use our baseline GC parameters. The TizABsAkB, we use 2
GC threads, the GC-start threshold is 50% (i.e. collectiartsbnce half of the heap is
filled), and the young generation size is fixed at 8MB (the HotRlocumentation rec-
ommends the young generation size to be set to 4MB times thé&uof GC threads).

We next evaluate the impact of each GC parameter on the aliffé8C metrics.
When measuring pause times and execution time/throughpuse/the minimum heap

size that each benchmark requires to run under Gas, G1, and CMS

155

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

Bench- Average Pause Maximum Pause
mark | GaS| vs.Gl | vs.CMS| GaS| vs.G1l | vs.CMS
[ms] | [xdecr.] | [xdecr.] | [ms] | [x decr.] | [x decr.]
antlr 0.8 2.5 1.5 2.5 2.1 15
bloat | 0.5 3.8 1.4 2.0 2.4 2.6
chart | 0.3 12.0 6.2 2.0 4.8 3.0
eclipse| 0.6 7.3 3.4 3.4 4.4 4.6
hsqgldb | 0.5 36.3 20.6 14 17.2 22.9
jython | 0.8 2.3 0.8 3.9 1.2 15
luindex | 0.3 7.5 3.7 1.5 4.2 3.1
pmd | 0.3 27.2 15.0 1.2 31.9 18.2
xalan | 0.8 4.7 4.2 4.1 1.8 2.8
|averagel 05| 115 | 63 [24] 78 | 67 |
] jbb \ 0.5 \ 12.9 \ 4.3 \ 1.9 \ 7.2 \ 6.3 \

Table 5.3: Comparison of Java GCs: G1, CMS, and GasS. In Columns 2—4 and 5-7 we
report average and maximum pause times: for GaS in ms anderwhtimes decrease
relative to G1 and CMS.

Pause Times and MMU In Table5.3 we report both average and maximum pauses
(in milliseconds for GaS, and as number of times decreaséivelto G1 and CMS).
Across benchmarks, average pause times in GaS are shori@xlbgompared to G1
and 6x compared to CMS. Maximum pause times in GaS are shgr& bompared
to G1 and by 7x compared to CMS (across benchmarks).

Figure5.5and Figures.6 show the minimum mutator utilization (MMU) plots for
the benchmarks and GCs. MMU curvel] lend insight into the distribution of GC

pauses across program execution (we define this GC metrecio®2.1).

156

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

We do not include GC write barriers when computing MMU — weyotalke GC
pauses into account. GaS achieves better utilization tHaar@ CMS for all bench-

marks.

Throughput In the last three columns in Tabe2 we show per-benchmark exe-
cution time/throughput for GaS and percentage overheada® @lative to G1 and
CMS. Across the DaCapo benchmarks GaS imposes 9.7% overhegéuea to G1
and 11.6% overhead compared to CMS. For JBB, throughput redudtie to GaS
is 5.7% relative to G1 and 6.3% relative to CMS. GaS overheawloistly caused by
GC write barriers and is overestimated here because ouemwitation of the write
barriers is not as optimized as it could be.

Figure5.7and Figures.8show per-benchmark execution time as a function of heap
size. Each plot starts at the minimum heap size. CMS and G1 siaukar perfor-
mance for our benchmarks. We do not observe significant éeectime increase for
minimum heap sizes typical of stop-the-world GC. This is lseaGCs run on separate
cores and only slow the program down for short pauses durhlighlittle processing

takes place.

Heap Size In Columns 2—4 we report minimum required heap size for eacdiclbe
mark (for GaS in MB and for G1 and CMS as number of times decrezlaéve to

GasS). GasS requires larger minimum heap sizes than G1 (by 3wenage) and CMS

157

Chapter 5. Concurrent Collection as a Service: Improving 1Rwatime Memory
Management Performance and Programming Model Using Sh#veaties

dacapo-antlr dacapo-bloat

T T T T T T T
1t - 1t cae
0.8 b 0.8 b
) L] 2 L / .
% 0.6 % 0.6 /
04 - 04 /| :
1 GaS --------
0.2 — 0.2 ;' CMS -----—-- E
! Gl
0 PRETY Y BT SRR RS AY RS O P Y TR BRI RS RS
10° 10* 10* 10® 10* 10° 10° 10t 10* 10® 10* 10°
Window [ms] Window [ms]
dacapo-chart dacapo-eclipse
2 2
= =
= =
Window [ms] Window [ms]
dacapo-jython dacapo-luindex
L B T T
1r /,;;‘:1';'“"””‘“‘M_A_ T
08 | -
D D
o4/ o b
02r: /i CMS ------- b
0 0 1 2 .3 4 5
10© 10 10° 10° 10" 10
Window [ms] Window [ms]
dacapo-pmd dacapo-xalan
o) -}
= =
= =

Window [ms] Window [ms]

Figure 5.5: Minimum mutator utilization (MMU) for the client-side DaCagench-
marks. We compare GaS with two HotSpot GCs: G1 and CMS. In alpkbis, the
x-axis (logarithmic scale) is a MMU window size (in ms).

158

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

dacapo-hsqldb spec-jbb
T T L L B B L L
1t - 1
0.8 B 0.8
o) -
s 0.6 B s 0.6
= 04 . = 04 |
0.2 | . 0.2
0 MY B LY EETEErY BT B 0 PRI | L L PR
10° 10' 102 10® 10* 10° 10° 10* 102 10® 10* 10°
Window [ms] Window [ms]

Figure 5.6: Minimum mutator utilization (MMU) for the server-side bdmoarks: Da-
Capo hsqgldb and JBB. We compare GaS with two HotSpot GCs: G1 and [D\8.
the plots, the x-axis (logarithmic scale) is a MMU windowes{n ms).

(by 5x on average) because of three reasons. First, G1 and @GMjeaerational and
thus tolerate allocation bursts better and place lessymess the concurrent GC which
executes for the old generation only. Second, GaS does nad ofyjects and thus suf-
fers from fragmentation (CMS uses a copying GC in the youngegdion and G1
performs opportunistic block-based compaction). ThirdS@dds a per-object header
word, which may matter in benchmarks that allocate smakbaisj Each of these rea-
sons is a consequence of a primary GasS design goal to be lgoatabss runtimes and
languages with different memory management subsystems.

Note that in case of concurrent GC, heap overprovisioning @o¢ impact perfor-
mance significantly (unlike in case of stop-the-world G061, 159). That is, across
all the benchmarks, giving G1 and CMS much more heap does mobva their per-

formance.

159

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory

Management Performance and Programming Model Using Shaveaties

11
10.8
10.6
10.4
10.2

10

9.8
9.6

Execution Time [s]

26
25.5
25
24.5
24
23.5
23

Execution Time [s]

Execution Time [s]

20.5
20
19.5
19
18.5
18
17.5
17

Execution Time [s]

Figure 5.7: Execution time for the client-side DaCapo benchmarks as etifum of
heap size. We compare GaS with two HotSpot GCs: G1 and CMS. Heicktarts at

dacapo-antlr

_Gals T T T T
Gl —x—
ICMS —8— —

0 13 26 39 52 65 78
Heap Size [MB]

dacapo-chart

Ga!S T T T T
r Gl —x— 7]
ICMS —&—

0 33 66 99 132165198231
Heap Size [MB]

dacapo-jython

_Gaé T T T T T]
L Gl —x—
ICMS —&—

e

0 26 52 78 104130156182
Heap Size [MB]

dacapo-pmd

(Gas —— B,
Gl —x—
ICMS —8—

0 83 166 249 332 415 498
Heap Size [MB]

the minimum heap size.

Execution Time [s] Execution Time [s] Execution Time [s]

Execution Time [s]

160

74
72
70
68
66
64
62
60

7
60

dacapo-bloat

—GaIS T T T T T
- G1 —x—
ICMS —8—

e EFFwFg kX

1
0 46 92 138184230276 322

Heap Size [MB]

dacapo-eclipse

[Gas —+—.

lEMS —8— —

Gl —x—

133 266 399 532 665 798 931
Heap Size [MB]

dacapo-luindex

0 40 80 120 160 200 240
Heap Size [MB]

dacapo-xalan

. cas |

CMS —=— |

120 180 240 300 360
Heap Size [MB]

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

dacapo-hsqldb spec-jbb
13.2 T T T T - 4250
7 131r 1 7 4200 | .
GEJ 13 § 4150 |E=E i
£ 129F = 4100 .
12.8 5
c 2 4050 —
o 12.7 <
5 126 k- 2 4000 -
3 ' 2 3950 -
£ 1251 Gp —x— £
w124 tlcMs —5— = 3900 E
12.3 L L L L 3850
96 192 288 384 480 576 36 72 108 144 180 216 252
Heap Size [MB] Heap Size [MB]

Figure 5.8: Execution time (for DaCapo hsqldb) and throughput (for JBB’@8)a
function of heap size. We compare GaS with two HotSpot GCs: @1GMS. Each
plot starts at the minimum heap size.

Sensitivity to GC Parameters To evaluate the parameter sensitivity of GaS, we vary
the TLAB size between 1kB and 16kB, the young generation serevden 2MB and
32MB, the number of GC threads between 1 and 3 (note that wedmdyéd cores and
we need to leave one core for the actual program), and the &Ctsteshold between
20% and 80%. Our baseline values of GC parameters (repasempsly) are medians
of these ranges.

In Table5.4, we present how our GC metrics (throughput, average andmuami
pause times, and minimum heap) depend on GC parametersafleeconsists of two
parts. The first part (Rows 3—-6) reports the GC metrics for @#8ive to G1 and the
second part (Rows 8-11) relative to CMS. We vary one GC pararaetetime and
keep the remaining 3 parameters at their baseline valuesun®o® corresponds to
the baseline values of all 4 parameters. Each of the follgwW@onlumns (3—10) reports

the impact of one parameter: TLAB size, GC-start threshalmimer of GC threads,

161

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

Met- || Base-|| TLAB [kB] || GC Threshold| GC Threads|| Young Gen.[MB]
ric line 1 | 16 20 | 80 1 | 3 2 | 32
Relative to HotSpot G1
D 8.40 | 7.54| 7.86 || 10.29| 6.95 || 5.24 | 8.15| 3.50 12.25
APD || 10.12|| 9.76| 10.43| 12.77| 8.73 || 14.77| 8.29 | 4.32 31.34
MPD | 8.26 || 7.58| 8.34 || 7.58 | 9.33 || 10.76| 7.85|| 5.25 20.89
MHI || 3.07 || 2.30| 4.69 || 3.07 | 3.86 || 3.11 | 3.10| 4.63 1.81
Relative to HotSpot CMS
TD 9.97 || 9.60| 9.59 || 11.19| 9.50 || 7.80 | 9.85|| 2.99 13.50
APD || 552 || 5.19| 5,57 | 6.48 | 581 || 6.69 | 4.44| 2.10 13.45
MPD | 7.67 || 6.50| 6.94 || 6.53 | 8.29 || 8.59 | 8.05| 3.80 21.68
MHI || 5.05 || 3.33| 8.11 | 5.10 | 4.60 || 5.23 | 5.27 || 6.26 4.64

Table 5.4: GC parameters’ impact on the GC metrics in Java. Column 2 cmntasults
for the baseline parameters: 4kB TLAB, 2 GC threads, 50% limidsand 8MB young
gen. Each subsequent column shows the impact of one GC parantele the other
3 are kept at the baseline. Legend: TD: throughput decréageAPD: average pause
decrease [x], MPD: maximum pause decrease [x], MHI: mininli@ap increase [x].

and young generation size. We report GC metrics for two mérealues of each GC
parameter. For each benchmark, we use the minimum heapnsizkich all experi-
ments for the benchmark run. We report average results abmshmarks (DaCapo
and JBB).

The young generation size has the greatest impact on all GGcsmeFor small
sizes (2MB), GaS degrades throughput 3-4% relative to G1 an8.CGdr large sizes
(32MB) throughput degradation is 12-14%. GaS converges #€M$ performance
as G1/CMS approach non-generational GC.

G1/CMS pause times increase significantly for larger younteggion sizes (up

to 22-31 times longer than for GaS). For small sizes, G1/CM$&@dimes are 2-5

162

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

times worse than for GaS. This is because G1 and CMS are gematatybrids of
concurrent and stop-the-world GC and trade throughputdasp times. Note that GaS
does not have this tradeoff. Finally, large young genemnaipes increase the minimum
heap size in G1/CMS because during minor GCs more objects getgped and, as a
result, there is more pressure on the concurrent GC.

Dedicating fewer threads to GC in all collectors prolongggestimes and decreases
throughput. TLAB size impacts only minimum heap size — lafgé&Bs require that
Gas uses more heap than G1 and CMS. This is because allocaiois higher with

large TLABs. GC-start threshold has only a minor impact on tklen@&etrics.

5.3.3 Python Benchmarks

To evaluate cPython hybrid GC, our BST benchmark creates lyotit ¢collected
by tracing) and acyclic (collected by reference countireygge. To create cycles we
use self-referencing objects. We investigate 3 configamatiall-cyclic, all-acyclic, and
50% cyclic. Our main evaluation uses the last one. We havea&eal the all-cyclic and
all-acylic configurations relative to the 50% cyclic onengsour GC metrics. We have
found that the all-cyclic configuration has shorter paubg2(-22%), larger minimum
heap size (by 15%), and 3% worse execution time. The allli@ogonfiguration has

shorter pauses (by 49-56%), smaller minimum heap size (&) 4dnd better execution

163

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

Met- || Base-|| GC-Start Threshold [number of young unreclaimed objects]
ric line 70 700 7000
RC/CD| Rel. RC/CD| Rel. RC/CD Rel.
MH 17 7 2.4 [X1] 10 1.7 [X1] 34 0.5 [XI]
AP 0 0.2 - 0.8 — 54 -
MP 0 56.6 - 100.3 - 302.9 -
ET || 39.3 38.0 | 3.6[P]] 36.3 | 8.4[PI] 35.3 [11.4[P]]

Table 5.5: GC metrics for GaS and Python RC/CD for different values of thengo
generation threshold in RC/CD (70, 700, and 7000). We reporinmoim heap in MB,
average and maximum pauses, and BST throughput (time peiite@@ons). Column
2 shows the results for GaS in its baseline configuration. fébh@ving columns com-
pare GaS and RC/CD for different thresholds. Legend: MH: minmnmeap [MB], AP:
average pause [ms], MP: maximum pause [ms], ET: executioa fims10%iters], XI:
number of times increase, PI. percent increase.

time (by 5%). When RC/CD relies only on tracing, it imposes mormerlogad, uses 2x
more heap, and has up to 2x longer pauses than when it useeterignce counting.

We allocate 15-level trees in BST. The live data set size doesnpact RC/CD in
Python because the cost of tracing in this GC depends mastlyeonumber of objects
that are reachable from potential cycles (it does not méttieey are live or dead). The
cost of tracing in GaS is proportional to the size of live data

In Table5.5we report the GC metrics for GaS and RC/CD. Column 2 shows the
results for GaS that correspond to our baseline GC parasn@eGC threads, 50%
GC-start threshold, and 4kB TLABs). We report the minimum h@ag instrument
cPython to measure it), pause times, and execution time pEitB&tion.

Columns 3-8 compare GaS with RC/CD for 3 different values of thiea iR&/CD

parameter (the GC-start threshold). For its default val@@)GaS requires 1.7x more

164

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

BST

0.041
0.0405
0.04
0.0395
0.039
0.0385
0.038
0.0375

MMU

Time [ms] per Iteration

7
1520 25 30 35 40 45 50 55 60 1 10 100 10000
Heap Size [MB] Window [ms]

Figure 5.9: Results for Python and the BST benchmark. The left plot showsigion
time per BST iteration as a function of heap size for GaS (in RC/€aprsize is not a
GC parameter). The right plot is MMU for GaS and RC/CD. Note thratesGaS does
not impose pauses its MMU is at 1.0 across the window sizes.

heap and has 8% lower throughput relative to RC/CD. However, iBgdses no
pauses, while RC/CD does (up to 100ms, and 0.8ms on average).

Setting the GC-start threshold to 70 results in more freq@®s in RC/CD. This
results in shorter pauses (0.2ms on average and 57ms maximuamse throughput
(only 4% better than GaS), and lower minimum heap. Similacsftime tradeoffs
can be observed when the young generation threshold is 706@.CD GC is rela-
tively rare but each cycle is expensive. Pause times iner€agd ms on average and
303ms maximum), throughput improves (11% better than Gafé)the minimum heap
increases (exceeding 2x Gas).

The left plot in Figures.9 shows how sensitive per-iteration execution time in BST
is on heap size in GaS. BST throughput is 3% better for heap #iz¢ are 2 times the

minimum. Heap size is not a GC parameter for RC/CD.

165

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

| Benchmark | Execution Time [s]| % GaS Overhead

pybench 3.91 2.05
pystone 4.12 3.40
binary-trees 6.71 3.13
fannkuch 1.95 8.72
mandelbrot 15.48 2.13
meteor-contest 2.26 4.42
n-body 8.44 -0.59
spectral-norm 14.28 3.01

| average | 7.14 \ 3.28 |

Table 5.6: Execution time overhead in GasS for standard Python bendtsmelative to
RC/CD.

The right plot in Figurés.9shows MMU for GaS and RC/CD. Since GaS in cPython
has no pauses, its MMU equals 1.0 for all window sizes. In RC/@B,mhaximum
pause time is 100ms (we use the default 700 GC-start threésRE/CD approaches
Gas utilization for window sizes above 1 second. The MMU kb not take write
barriers/conditional RC into account (only pause times)RGYCD we only measure
pause times caused by tracing. Reference counting impogégibke pauses in BST
because whenever we delete nodes we free one node at a time.

Table5.6 shows execution time statistics for the Python benchmdrkese bench-
marks are not memory intensive and do not exercise GaS G@hkkBST benchmark

does. On average, the overhead of GaS extensions is 3%.

166

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

5.3.4 Overhead of Cross-Runtime Calls

We next investigate the performance overhead of other whysegrating a GC
into an MRE. We first consider the approach that implementsG@ein Java (e.g.
MMTk and GCTK) that is then integrated into a C-based runtime.ewaluate the cost
of crossing the runtime boundaries. We measure the overheaded by the up/down
calls through the Java Native Interface (JNI) — the mecmatigough which Java and
C programs interact. We consider the key GC operations:cbbjecation and object
scan.

We implement object allocation as a Java met@bpect al | ocate(int size)
which takes object size as input and returns the allocatgatbiWe upcall this method
from C via JNI. Object scan is represented as a native mdathod scan(Obj ect
o, (bject[] b) whose arguments are a reference to an object to scan and a ref-
erence to a buffer for pointers found in the scanned objetie Method returns the
number of references found. We downcall this native metlmochfJava using JNI.
Since our goal is to measure the JNI overheadathe-ate andscan methods do not
perform any processingilocate returns NULL andscan returns 4 pointers. We dupli-
cate both methods in C and call them directly from C (withatd igplining) to compare
direct calls with JNI calls.

We run 10 experiments, each consisting @f calls. On average, when compared to

direct (but not inlined) C calls, JNI upcalls faflocate are 76x slower and downcalls

167

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

for scan are 5x slower. Downcalls are faster than upcalls becauséith®pot JIT
compiler optimizes native calls extensively. B6F calls, upcalls forllocate introduce
225ms of overhead and downcalls tern incur 92ms of overhead.

The DaCapo benchmarks allocate between 2.4 and 161 millictsh(with the
mean of 18 million) whereas the number of live objects duan@C cycle reaches
between 2.8 thousand and 3.2 million (with the mean of 10dghod). Thus, the JNI
overhead for allocation can range from 0.54s to 36s of ei@ttime. Similarly, the
JNI overhead for scanning (assuming 25 collections perrprogexecution) can range
from 64ms to 7.4s of execution time.

Such overhead is likely unacceptable for C-based runtimdashwiypically are
tuned for high performance. MRE-neutral, C-based GC libraripath easier to in-

tegrate into such runtimes and offers significantly betesfggmance.

5.3.5 Overhead of Runtime Layering

We next consider another alternative approach to usingglesi@C for multiple
programming languages: runtime layering. In this study,investigate the cost of
using a production-quality Java runtime to host a non-Janguage. In particular, we
compare the performance of Python benchmarks for Jythad 2a5Python runtime
that executes on top of a JVM — the HotSpot JVM in our casejugeusing cPython

Vv2.6.

168

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

We omit the raw data due to space constraints, and summarizéndings here.
For pybench and pystone, Jython is 2.5x and 1.74x slower ¢igthon. For the
shootout benchmarks (those which Jython supports withdahsive benchmark mod-
ifications) Jython is 2.97x (meteor-contest), 1.34x (s@detorm), 2.24x (fannkuch),
1.72x (binary-trees), and 2.22x (n-body) slower. On averagython is 2.1x faster
than Jython.

Re-using a Java runtime (and Java GC) to implement runtimesttier languages
introduces significant overhead (in addition to being caxrpind time-consuming from
the engineering standpoint). An alternative, simpler, arade efficient approach to
incorporating a modern GC and memory management subsystera new or extant

C-based runtime is to use a GC library like GasS.

5.3.6 Lines of Code

We next compare GaS, HotSpot G1/CMS, and Python RC/CD usingdihesde,
to lend insight into the approximate implementation effequired for each GC. The
GasS library is around 1100 lines of C/C++. The integratiorégiode in both Python
and HotSpot is around 200 lines.

The implementation of G1 and CMS in HotSpot is around 30,0@D2000 lines
of C/C++. RC/CD in cPython is 8,400 lines of C (note that referermzenting code is

scattered across the whole runtime). This suggests thatG&akbrary is simpler to

169

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

implement than G1, CMS, and RC/CD. In addition, 200 lines of th& @&#egration
code is 2 orders of magnitude fewer than that which is requoemplement a modern

GC from scratch in an MRE.

5.3.7 Results Summary

We have compared GaS with two generational, concurrent GClaf@ and a hy-
brid tracing/reference-counting GC for Python. Gas sigaiftly improves pause times
and MMU across all benchmarks and GCs. GaS requires largprdiess and imposes
modest execution time overhead because it is non-geneahtiad non-moving (unlike
G1 and CMS) and concurrent (unlike RC/CD). GaS is non-moving abitts able to
support runtimes (such as Python) that make assumptiong abct addresses.

We also investigate the performance sensitivity to difieil®C parameters on the
GC metrics. We find that GaS minimum heap sizes and througigouerge to G1/CMS
and RC/CD once the GC parameters mitigate the generationaitadesof these GCs.
We measure the overheads associated with other approacimgsiémenting a GC in
an MRE (via cross-language calls and via runtime layeringl) fard that using a GC

library in C-based runtimes is significantly simpler and meifecient.

170

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

5.4 Related Work

The work most related to GaS is the Boehm G5, [34]. Boehm GC is a widely-
used GC library providing a conservative collector for umgerative runtimes (such
as C and C++). Boehm GC supports stop-the-world serial andlglarallection. In
contrast, GaS focuses on concurrent, on-the-fly GC for aabipe runtimes (precise
roots, write barriers, TLAB allocation etc.) Moreover, t& interface in Boehm
GC essentially consists of two functions: G@ALLOC and GCREALLOC. GaS
interface is more fine-grain to be able to leverage runtinpe4yafe mechanisms for
object scanning, finalization, and root dump (GaS and the M&dperate to a greater
degree).

GC frameworks such as UMass GC Tooll88], GCTk [29], and MMTk [28] are
different from and complementary to GaS. The UMass GC Todtesigned in the
context of persistent Smalltalk and Modula-3) focuses amegational copying stop-
the-world GC algorithms. GaS addresses concurrent, oifistli&C. GCTk, and MMTk
are GC frameworks written in Java, created in the context®fltkes RVM. Their goal
is to support a number of different GCs to enable their contjparavaluation and GC
research.

GCTk/MMTk have been used for non-Java languages, although garting is

not well-documented in the literature. For languages otih&n Java, however, these

171

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

frameworks require crossing the C-Java language boundapafdh GC operation (or
translation/reimplementation of the entire framework)o<3ing the C-Java language
boundary incurs high overhead (in Sect®13.4we investigate the overhead of such
crossings) and is therefore impractical for C-based rurgtifoé which most MREs
are).

GasS takes an alternative approach — the GC library and aaerére written in C
and do not require execution of an additional managed ren{such as a JVM) to
implement and use GC. The MRE-GC interface in GaS also differa GCTk/MMTk
in terms of granularity and encapsulation. By taking an MREtra approach, GaS
can afford fine-grain MRE-GC library interaction. In conttaSCTk/MMTK in non-
Java-based MREs must either use coarse-grain MRE-GC libm&gyaction or break
library encapsulation (because of the high cost of crosgdage calls). Since MRE-
GC interaction in inherently fine-grain (allocation/scaryiwrite barriers are frequent),
to achieve good performance, non-Java-based MREs mustatpthe GCTk/MMTk
GC implementation in the MRE. GasS supports efficient dire&-finain calls between
GC and a MRE while maintaining the library encapsulation.

GaS is also simpler and more lightweight than GCTk/MMTk (vehtre approach
is to support as many different GCs as possible, includingatbnoving GCs). Unlike
GCTKk/MMTK, GaS focuses on concurrent, on-the-fly GC and tak&saccount all

restrictions placed on GC by different MREs (e.g. hon-mov@(@ in cPython). GaS

172

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

uses a GC algorithm designed specifically for a portablediyesoupled GC library.
The approach in GCTk/MMTK is to design the interface so thaupports diverse
extant GCs.

Another way of reusing a GC implementation between two MRES isyplement
an MRE in a high-level language, e.g. Jython, JRuby are Pyhdy interpreters that
run on top of a JVM and use JVM GC. The two key issues with such M&B€ring
is performance overhead (we investigate this empiricallgéction5.3.5, and incom-
plete/incompatible standard libraries (due to the extensngineering effort required
to make layering work).

Another system, called CoLoR364], provides cross-language, type-safe object
sharing using POSIX shared memory for MRESs that execute osetime physical hard-
ware at the same time and interoperate. CoLORS uses congumettie-fly GC for the
shared memory region that each MRE maps into its address.spheeCoLoRS GC
however is tightly integrated into its runtime, and definegw object and synchroniza-
tion model for shared objects that it manages. GaS addshjectdeaders and relies
on MRE-native object model and synchronization.

VMKIit[71] is a framework that eases the development of high-level Mé&tttithus
enables experimentation with new languages and MREs aneMotamguage features.
VMKIit consists of a low-level and a high-level layer. The lbewel layer provides

threading support, GC-based memory management, and a Jigileothat translates

173

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

language-independent intermediate representation gffanmes. The high-level layer
defines such aspects as object model, type system, call seshand method dispatch.
VMKIit glues together LLVM for JIT support, MMTk for GC, and P@Sthread library
for multi-threading. VMKIit translates MMTk into the LLVM i@rmediate representa-
tion in its entirety. VMKit performance, however, is ordersmagnitude worse than
production systems. GasS is orthogonal to VMKit in that GaB ba used as a GC
component in the VMKit framework. Note, however, that Ga8 ba integrated not
only with MRE frameworks, but also with general- and spepialpose MREs for both
dynamic and static languages.

XIR [154] is a compiler-MRE interface that separates the compilekéad from
an MRE. An XIR extension mechanism allows an MRE to express thehme-level
implementation of object operations. The interface has d@astompact on compilation
time without reducing performance. Gas is similar to XIRtsaverall goal however
GasS targets GC and XIR targets JIT compilation.

The idea of modularizing an MRE motivates the design and impleation of La-
dyVM [70]. LadyVM links three third-party software components: LlMyBoehm GC,
and GNU Classpath, to implement a Java VM. Similarly to VMKiadyVM can use
Gas as a replacement for its GC component to enable modgmghility, concurrent

GC.

174

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

Compiler libraries like LLVM [L02 and VPU [126 enable modular approach to in-
tegrating JITs into VMs. LLVM is a compiler infrastructuresigned for compile-time,
link-time, and run-time optimization of programs writtendrbitrary programming lan-
guages. LLVM supports a language-independent instrustband type system. VPU
is a high-level code generation utility that performs mdshe complex tasks related
to code generation, including register allocation, andclwhproduces good-quality C
ABI-compliant native code.

JnIJVM [152 is a modular JVM that supports dynamic addition or replageimn
of its own modules without service interruption and statsloJnJVM uses dynamic
aspect weaving techniques and component architecturec@d® potentially be used
in JNJVM as a GC module.

The Common Language Infrastructure (CL1LP)] is an open specification (ECMA335)
that describes the executable code format and runtimecamaint for multiple, static,
high-level languages to be used on different computergoia$. All CLI-compatible
languages compile to the Common Intermediate Language (®Hi¢h abstracts away
the platform hardware. CLI is similar to GaS in that it pro\sdeC (among other ser-
vices) for multiple languages but it differs in that CLI usesmulithic architecture with
built-in GC. Gas provides GC in a form of a library and targetstilanguage support

via the provision of a cross-MRE GC.

175

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

GNU Classpath{3] is a GNU project to create free core class libraries for use
with virtual machines and compilers for Java. The Classphthrly can be used with
different VMs — it has a similar goal to GaS but pertains tcecdasses (not GC) and
targets Java (not multiple MRES).

XMem [160], Singularity [65], MVM [53], and KaffeOS 10] provide isolation and
sharing between MREs or tasks/processes and implement a @omm@amory man-
agement system across them. GaS GC differs from GCs in thesnsyin that it is

modular, loosely-coupled, and portable across differeRBd and languages.

5.5 Newly-Built Runtimes

The GasS library can be used not only to enhance GC in existiRe8/lbut also
when designing and implementing a new language and/omnentin order to inves-
tigate how GaS impacts the process of architecting a new MREhwild a runtime
for a new scripting language and use the GasS library to implgnts memory man-
agement component. Our goal is to determine a minimal setrdfrme capabilities
and services that are necessary to support a pauselessyremgcon-the-fly GC in
a multi-threaded environment. We design and implement Whhia GC-cooperative
MRE that is able to eliminate the negative impact of GC on paogperformance and

interactivity, provided that there are enough spare psingscores available. Unlike

176

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

extant GC systems (including real-time and hardware-&ssmnes), the MinivM GC
neither imposes pauses nor significantly slows mutatorsigaiile avoiding complex
MRE architecture.

MiniVM interprets binary programs generated by a sourceecmmpiler. The MRE
targets an object-oriented language with dynamic typirdjraative support for multi-
threading based on share-nothing semantics and explititnrtmication via message
passing over channels. The language supports user-defasses, single inheritance,
dynamic dispatch, static and instance methods in claskdmldunctions, extensibility
via native C code, dynamic field addition at runtime, and wies.

The interpreter is a hybrid stack/register machine. Fonctiode can access ar-
bitrary stack locations within the current frame. Instroies have fixed size and take
up to three operands that identify source and target stacgiant pool locations for a
specific operation. We implement a switch-based non-tleeaterpreter.

Threads share the global constant pool and the GaS heathrBad data structures
include: a growable stack, a bounded incoming message (&#®), and a TLAB
for heap allocation. For control we use the C stack so themenstack contains only
pointers (no return addresses). This makes it easier tostaaks concurrently.

In the calling convention that we use, the caller saves gliments (left to right)
on the stack and creates/destroys stack frames. The redlua gverwrites the last

argument on the stack. We do not use a frame pointer — staakdos are addressed

177

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

relative to the stack top. Stacks grow in fixed-size chunksegsled. Each stack frame,
however, is always contiguous.

The builtin types include: string, array, integer, realketd, and function. Each
object can be evaluated to true/false and used in a conditgiatement. We imple-
ment operators such as addition/subtraction as functills €perations on per-thread
gueues (enqueue and dequeue) block if the queue is fullyempt

User-defined types, strings, and arrays have variable sidegeow on demand.
We use a single-word object header that contains a classepoifihe initial size of
variable-size objects is determined based on construetanpeters (e.g. array length)
or compiler-produced hints (e.g. that typeypically hasf fields). Thus, despite the
lack of static typing, the system is able to keep space copsamclose to optimal for
most objects. Each class has one optional superclass amdentiplly empty) set of
instance/static methods.

Dynamic field access, method dispatch, and type lookup thce by name. We
use hash tables with open addressing to implement objests)gss method dictionar-
ies, and loaded classes (MiniVM supports static class fapdnly). Method dispatch
always takes constant time because we populate methodrdics of each type with
all the inherited methods (to avoid walking the class h&rgaron each virtual call).
Open addressing keeps data structures more compact themnghand reduces the

number of pointer dereferences.

178

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

We allocate permanent runtime data structures, such aseslasonstants, and meta-
data in the C heap. The GC does not traverse them. The remabjects are allocated
in the shared GaS-managed heap. Memory management is theongdex subsys-
tem in MiniVM. GC significantly impacts the design of all otheomponents (even
though GasS is a library that abstracts away the details o&fiemplementation). To
fully leverage GaS capabilities and implement pauselesse@€h runtime component
must support asynchronous, concurrent, and precise roop @i an arbitrary point in
time while the program threads execute. In addition, thémaneeds to use the SATB
write barrier for pointer updates in the heap.

We design a GC protocol that enables scanning message qureisgcks of all ac-
tive threads without introducing GC pauses. Each thread hhasinded message queue
and a growable stack, which are freed on thread terminafi@nprevent concurrent
gueue/stack scanning while freeing them, we use a globkltiat the GC acquires
for root dump and the runtime acquires for each thread stareait. Using a lock in
this case is acceptable because the system does not gedramtsoon a thread begins
executing instructions after its start and frees its resmaiafter its termination.

Message queues are bounded and provide potentially bepcldmantics. There-
fore, the GC can scan a queue with a lock being held, agaimutiihtroducing pauses

that are unexpected by a program. The same lock is used threynze concurrent

179

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

access to a queue. The cost of scanning a queue is fixed andkloking does not
change the programming model provided by message queues.

Stacks are growable and potentially contain multiple clsufikhey must be scanned
concurrently without any locking because their length isaumded and blocking is not
expected by programs for stack operations. We scan eadhstgoentially (bottom-
up) without any synchronization. To guarantee that we ab#astack snapshot (on-
the-fly GC requires a per-thread snapshot at some point @fierequest and before
marking) we use a write barrier that captures newly-wrigtck pointers. Thus, even
if a sequential scan misses a root, it is still reported byihee barrier. Stacks never
shrink in order to avoid freeing stack chunks while the GCnsctoem. We use a
handshake with each program thread before scanning its @rec GC waits until the
thread finishes executing the current instruction). Thiesessary because the first GC
phase (flag clearing) might make recently-allocated objappear unreachable. Once
the current instruction finishes, pointers to such objessfieady written to the stack
and can be found during the stack scan.

MiniVM supports C extensions via native functions/method$e system loads
them via dynamic linking at run-time. We use OS-level POSikads. We maintain
a pool of unique constant strings that identify fields, mdthand classes so that on
hash table lookup we can determine string equality by addresparison and without

parsing actual characters. We maintain a double-linkeédfiactive threads.

180

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

The MiniVM instructions enable programs to manipulate therent stack frame,
object fields, and array elements, access constant pootasdl new objects, create
new threads, send/receive messages, push/pop framdsnctibns/methods, and take
(un)conditional branches. Instruction operands (integenediates) identify stack and
constant pool locations by index.

Although the MiniVM code size is below 3000 lines of C, the systimplements
a large subset of modern runtime services such as multiimgaOO support, and
concurrent, pauseless GC. The key advantage of building aviRi that uses Gas,
compared to incorporating GaS into an existing MRE, is thétalo design the run-
time data structures in a way that can fully leverage moderthe-fly GC and thus
avoid GC pauses and high overhead, while simplifying theiman (e.g. by avoiding

safepoints).

5.5.1 GC Evaluation

Although the MiniVM GC imposes no pauses, it incurs certai@ceition time over-
head due to write barriers and concurrent collection thabduces additional memory
traffic as well as cache pollution. In order to evaluate thesitvoase cost of GC in
MiniVM, we implement a simple GC benchmark and use two Mini\ébhfigurations:
one with no GC activity and no write barriers and one with ¢ansGC activity and

frequent write barriers.

181

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

Our benchmark allocates a large single-linked list, whielys alive, and is repeat-
edly reversed. If the list length is above the GC-start thokeskhen GC is active all
the time. Otherwise, GC is never invoked. By reversing thariplace, we generate a
large number of write barriers, both in the heap and on thekstBhus, we are able to
estimate the upper-bound for the GC and write barrier cost.

Our heap size is 100MB, the list has 800K elements, and is gede200 times.
Each program run lasts at least 30 seconds. We use one Gd {sethat there are
enough cores for the GC and program threads). We set the GGhseshold to 1% and
99% and compile MiniVM with and without write barriers. Wepesat each execution
time measurement 10 times.

We find that the write barrier overhead is 4% and the concti®€h overhead is
3%, which add up to 7% total overhead. Given that this is aretppund, in practice

the GC overhead is likely to be around 3%.

5.6 Summary and Conclusions

Gas is a lightweight, cross-MRE, cross-language GC librhat provides con-
current, on-the-fly, non-moving GC. GaS can be integrateml MRESs for static (e.g.
Java) and dynamic (e.g. Python) languages via a fine-gminoverhead GC interface.

GaS is a stand-alone C-based library for GC-cooperative MRES GC adapts the

182

Chapter 5. Concurrent Collection as a Service: Improving 1Rtatime Memory
Management Performance and Programming Model Using Shaveaties

SATB algorithm for loose coupling between GC and an MRE. Th& ®arary makes
no assumptions about object model, threading, JIT, and memanagement strategy
(tracing, reference counting, generations, etc.) in an MRE.implement GaS and
integrate it within production-quality MREs for Java and lRyt. Our experimental
evaluation shows that in comparison to built-in, tightlyupled GCs, GaS can improve
pause times significantly and offers competitive perforogaeven when compared to
generational GCs. The GaS library reduces the developmgamt efquired for im-
plementing a state-of-the-art on-the-fly GC. The library barused as a modern GC
component both in extant MREs and when building new MREs for oewxisting

languages.

The text of this chapter is in part a reprint of the materialieappears in L63.

183

Chapter 6

Type-Safe Sharing for Homogeneous
Runtimes: Improving Cross-Runtime
Memory Management Performance
and Programming Model Using
Shared Memory

In this chapter, we describe an approach to improving cresgme memory man-
agement by using OS support for shared memory. Specificaflydiscuss the de-
sign and implementation of type-safe, transparent objeatiisg for co-located Java
runtimes run as separate OS processes. We overview ouisexisrio such runtime
services as synchronization, class loading, object dimtaand garbage collection,
necessary to implement object sharing. Our experimengdiation compares sharing
with extant communication mechanisms available on the piatéorm, such as RMI,
JNDI, JDBC, serialization, and network sockets. Our resotigate that object sharing

improves cross-runtime memory management in two wayst, Rirsnriches the pro-

184

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

gramming model by introducing shared memory that enablesmanication without
explicit message passing. Second, it increases througimoudecreases latency by up
to several orders of magnitude compared to state-of-th&2&E/J2EE communication

mechanisms by avoiding object serialization and networkrmoonication.

6.1 Introduction and Motivation

Developers today predominately build modern, enterpdsejponent-based, mid-
dleware for portable, distributed applications using tgaée, object-oriented languages,
such as Java, which users execute within managed runtimeoements (MRES).
These MREs typically support garbage collection (GC), dycaohss loading, in-
cremental compilation, as well as high-level threading syrithronization primitives,
among other runtime services. One popular example fromajdication domain is
JBoss, an application server that provides a complete imgaigation of the J2EBE]
specification, and that runs on top of the Java platf@&j. [

A common architectural design pattern employed by admmatists of enterprise
applications is multi-tier deployment that partitions thestem into independent do-
mains, typically run using separate MRE instances (OS psesg¢sSuch isolation im-
proves reliability and helps to manage system complexityfdayt containment and

modularity. J2EE-based applications typically compriséeast three tiers: a web

185

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

container (front-end presentation layer), an applicaserver (business logic), and a
database engine (back-end data sour@®)34, 158.

Multi-tier decomposition, however, necessitates exp@nsiter-process commu-
nication (IPC) between MREs (isolated components). Sincet m@seral-purpose
servers (e.g. web, application, database) are designedlioe transaction processing
(OLTP), in which many clients perform many short transagtisimultaneously, com-
munication overhead can constitute a significant portiothefobserved, end-to-end
response time (especially when multiple isolation unitsiavolved).

To reduce the overhead of cross-MRE IPC, administrators cartyram-locate
multiple tiers on a single machine. Co-location simplifiesnaudstration and con-
figuration, enables efficient use of local network commumocafor IPC, and makes
better use of multi-processor architectures through aszd thread-level parallelism.
Emerging multi- and many-core systems are likely to make MB#ocation increas-
ingly commonplace.

Cross-MRE IPC mechanisms cannot depend on co-location, leoysrce MRES
may alternatively be distributed across different cluataes or be migrated to achieve
load balancing and more effective utilization of serveorgses, an increasingly im-
portant operation in virtualizing systems toddyl g 120, 148. Thus, MRE IPC em-
ploys high-overhead implementations of standard comnatioic protocols, such as

remote procedure calls and object serialization, regasdi¢the proximity of the com-

186

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

municating MREs. These protocols are not optimized for théocated case because
state-of-the-art MREs offer no support for cross-runtimarsgiy. At the same time,
efficient inter-process communication mechanisms, sushaed memory, are widely
available as a standard (POSIX) operating system servioeosh modern platforms.

To address the growing need for inter-runtime object skyanve introduce sup-
port for transparent and type-safe, cross-MRE communicainal coordination, called
XMem. XMem is an IPC mechanism that enables object sharibhgd®sn MRESs co-
located on the same machine and communication via extanbdigd protocols when
physically separated. XMem is transparent in that shargectdbare the same as un-
shared objects (in terms of field access, synchronizati@),d&d method invocation,
among others), except that XMem disallows pointers fromreshabjects into MRE-
private storage. To enable efficient object sharing, XMemimaates virtual memory
mapping to avoid indirection, i.e. all object referenceghi@ system are direct. More-
over, existing communication technologies, e.g. thoseleyed by J2EE or network
sockets, can use XMem without application modification.

XMem guarantees type-safety by ensuring that the MREs entpkgame types
for shared objects when the communication medium is shasdary. XMem is also
compatible with core MRE services such as GC, dynamic claginigaand thread
synchronization. XMem coordinates MREs through infrequegphchronized global

operations that include GC and class loading.

187

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

XMem provides direct object sharing via isolated chann&sveen co-located
MREs isolated as distinct OS processes that avoids the tffsl@xherent to previous
approaches3, 10] by enabling communication without serialization and deday-
ing. XMem extends existing MRE services, abstractions, gomdries as well as intro-
duces their cross-process equivalents, including pratiess-MRE class loading and
garbage collection. At the same time, XMem maintains stahdsortable interaction
with the lower-level layers of the software/hardware stack

We implement XMem in the open-source, production-qualiot$pot Java Virtual
Machine. Our experimental evaluation, based on core conuation technologies un-
derlying J2EE, as well as using open-source server apiplicatindicates that XMem
significantly improves throughput and response time by diugi the overheads im-
posed by object serialization and network communication.

In the sections that follow, we describe the necessary stipmpoobject sharing,
multi-threading and management of the shared memory sdd®ection6.2). In Sec-
tion 6.3, we present our experimental methodology and empiricdliatian of XMem.
Finally, we contrast related work (Secti@¥) and present our conclusions in Sec-

tion 6.5.

188

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

low virtual XMem MRE Virtual Address Space (VAS) high virtual
addresses addresses

MRE [, | App. | LT | |laeT SHM | Shared | | App. | | MRE
Heap Heap Meta | Objects Stack Stack

‘ ‘ <«— XMem — ‘ ‘
é é é o é é é é
MRE and XMem < Co-located __ MRE and XMem
App. GlobalOp MREs App. GlobalOp
Threads Thread Threads Thread

Figure 6.1. Co-located XMem MRESs, and their virtual address spaces (\Wh8),are
attached to a shared memory segment (gray area). The slegied contains meta-
data (SHM-Meta) and shared objects and is mapped at the seted eddress in each
MRE. The GlobalOp thread in each MRE performs infrequent dloparations that
XMem synchronizes across attached MREs.

6.2 Design and Implementation

The goal of XMem is to improve communication performancedioterprise-class,
object-oriented, software systems, a popular applicattonain for web services. XMem
enables transparent IPC via shared-memory between iddVHRE s that areo-located
on the same machine; such co-location of related processasincreasingly common
technique for the exploitation and better utilization ofltimare systems. Using XMem,
MREs share objects directly to avoid the overhead that is segdy distributed com-
munication protocols due to object marshalling and seadlon.

To enable direct object sharing, XMem maps the shared meseggent at the

same location in the virtual address space (VAS) of all hgdcMREs. Figures.1

189

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

depicts an example instance of an XMem system. Two MREs ditettle same shared
memory segment (gray area of the VAS) to share objects. VW& tefthe VAS of
each MRE that is not mapped to the shared memory segment (avk#eof the VAS)
as MRE-private. XMem systems share per-instance, norestata only — static (per-
class) data is MRE-private since static fields typically rdqgrogram-specific or MRE-
specific state. Sharing of such fields can violate both typetysand inter-process
resource isolation.

Since we map shared memory to the same virtual address inRitdylobjects
within the shared memory have the same addresses in all MREguarantee mem-
ory and type safety, we disallow pointers from shared obj&zfprivate objects via a
write barrier (described further below), since the addsgssce of the non-shared ar-
eas in MREs is independent and unrelated across MRES. Regaodllédnss constraint
however, XMem MREs implement services, such as class loa@i@gallocation, syn-
chronization, compilation, uniformly for shared and MREvpte objects, i.e. XMem
provides object-level transparency.

Key to enabling such transparency efficiently is that (i)ititernal representations
of object types (classes) are the same across all attached MRé&that (ii) the underly-
ing operating system provides support for virtual memonyipg and its manipulation

by user-level processes (the MRE in our case).

190

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

MRE 1 (Private VAS) SHM VAS MRE 2 (Private VAS)

MRE-private K objects Shared K MRE-private K object
(N (N object (N
0x200 0x200 () 0x300
0x900
LT L
0x100 | 0x200 | 0x300 | 0x400 c 0x100 | 0x200 | 0x300
Class AlClass K|Class X|Class B| |€ Class Z|Class AClass K|
[] T T [
I)
0x800 | 0x900 G G| [0x800 | 0x900
Class A(Class K C C| [Class A|Class K|
1 .
7 T T <
Physical Memory Pages
[] []

Figure 6.2: Manipulation of VAS mapping so that class pointers resabveduivalent

MRE-private class representations across attached MREswrittopying or moving,

and while enabling direct retrieval of object metadata ¢(fpnamic dispatch, field ac-
cess, etc.). Each box is a virtual page (4KB in size), paaiptmapped to physical
memory. Blank boxes are unmapped. We omit mapping linesgdetith round ends)
for classes other than K, for clarity.

6.2.1 Double Memory Mapping

XMem manipulates the virtual address space to enable dicaess to objects as
well as to their class representations. Objects in mostotioeented language systems
typically contain a reference to an internal representatighe class (type) from which
they are instantiated. This reference enables direcevelrdf object metadata for fast
implementation of common operations such as dynamic dibpatatic field access,
and reflection. These internal representations of clasemgever, are MRE-specific
and cannot be shared, as they commonly record applicatidiR&-specific state and
provide access to static (private) data. Class pointersefitre, must resolve to the

MRE-private internal representation of the class.

191

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

To avoid moving (reordering) existing class objects (in&representations) within
each attached MRE (which can be complex and expensive), gesstare that the same
virtual address refers to the same MRE-private internalesgrtation of the class in
all MREs, XMem aligns class objects to virtual memory pagerlauies (we assume
traditional 4KB pages) and manipulates virtual addresspimgpas depicted in Fig-
ure6.2via double mapping. In the virtual address space (VAS) ohedtached MRE
in XMem, there is a global class table (GCT) and a local clasketd.CT), both of
which are MRE-private. The LCT holds the representations ¢ MRE-private and
global classes. LCTs across MREs are independent and unkdiatontrast, the GCT
in each MRE is identical in structure and layout (class ordeunt) and has the same
virtual address in MRE-private space.

XMem maps the physical page of a particular (global) classwiotual page in both
LCT and GCT, to achieve resolution of class pointers withiratiabjects to private
class representations without copying or moving and withisinoducing pointer in-
direction. In the example, the class pointer of unsharedatbj(instances of class K)
refers to the internal class representation in the LCT inr thHRE (address 0x200 in
MRE 1 and 0x300 in MRE 2). When the two MREs share an object of typeNtem
adds an entry for class K to the GCT at the same location in edRE.Msince the

GCTs are identical in each MRE and start at the same virtuakaddthe class pointer

192

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

in the shared object is the same for both MREs (0x900). We @mwrthe class loading
process that makes use of this implementation in Seéti?:8

There are two side-effects of this double-mapping. Firsthe worst case, XMem
consumes twice the VAS needed for classes (worst case isedobrMRE-private class
is a globally shared class). This case is uncommon in ourretpee as the number of
MRE-private classes typically far exceeds that of globaligred classes. Moreover,
such VAS use is negligible for machines with large addressep (64-bit platforms).
Second, class alignment to virtual page boundaries lirhigssclass size to that of a
virtual page and can cause fragmentation in the LCT (wheisetaare smaller than the
page size). In practice, we have never found a class objde arger than our virtual
page size. However, if this proves to be a limitation, we aserve a multiple of the
page size for each class. In our implementation, the LCT ipéneanent generation of
the MRE which stores other long-lived data (e.g. MRE data &iras, static strings) in
addition to class objects. This data consumes part of eagpd which helps to reduce
fragmentation. We measure and report the space overheadgmhéntation in Java
benchmarks in Sectiof.3.2 We plan to investigate the impact of large page sizes on

XMem systems as part of future work.

193

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

6.2.2 Shared-to-Private Pointers

To guarantee that shared objects never refer to privatesh{sajre such references
are particular to a specific MRE process), XMem piggy-backterextant write bar-
rier implementation of generational garbage collectio@)G5enerational GCs are in
widespread use in modern MREs as they provide superior peafuce which they
achieve by exploiting similarity in object lifetimes and pgrtitioning the heap into
distinct, contiguous spaces called generatidish[166, 99]. These systems allocate
most objects from the young generation, and collect thimrefyequently since a ma-
jority of objects die young16, 98]. To enable efficient, independent collection of gen-
erations, generational GCs use a write barrier at everyaréerstore in a program to
track references from older to younger generations. Mot#RIES typically also em-
ploy a permanent generation that is rarely collected andhblas long-lived objects
such as internal class representations, constant standdyIRE data structures.

XMem extends write barriers with two checks needed to comftiae source and
destination of a particular pointer against the constanhdary between MRE-private
and shared part of the heap. We need the source check for eatkrpstore, and
the destination check only for stores to the shared memdrg program makes an
assignment that violates the XMem constraint, the runtimats an exception and the
instruction fails. Since we map the shared memory segmetitet@ame location in

each MRE and the segment has a fixed size, this check is vengeffit consists of a

194

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

register and constant comparison. Such checks imposeayiidgloverhead on modern
architectures because there is no memory access and treh latfiaection is typically

highly biased and thus, easily predictable.

6.2.3 Using XMem

Developers make use of XMem via a simple application prognarg interface
(API). The XMem API for Java comprises the following publiatic methods declared

in thei pc. Shar edMenor y class:

voi d shar edMbdeOn(); bool ean i sShar edMbdeOn() ;
voi d sharedModeOr f (); bool ean i sShared(Object 0);
hj ect accept(int p); void connect(int p, Object 0);

void bind(int p); Obj ect copyToShared(Ohj ect 0);

To support transparency and backward-compatibility, ot within XMem allocate
objects using the conventionaéw operator, regardless of whether they are allocating
shared or private memory. XMem determines from which redgrared or private)

to allocate using a per-thread allocation mode. Initidhg allocation mode is private.
Programs or libraries change the allocation mode explieith theshar edMbdeOn
andshar edModeOf f methods. The system throwsiapc. Shar edMenor yExce-

pt i on to prevent shared-to-private pointers as well as signalibgiconnection fail-

ures and out-of-memory errors.

195

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

XMem makes use of the concept pbrtsto enable co-existence of multiple, iso-
lated communication channels in a single shared memoryesegmo initiate commu-
nication, two distinct MREs (to which we refer as a client argkaver) must obtain a
reference to a shared object (to which we refer as a root).iehtchllocates a root in
shared memory and passes a reference to it todmnect method along with a port
to which a specific server has been bound vialthad method. The server retrieves
the root from theaccept method. Once the root is exchanged, further communica-
tion proceeds according to an application-specific prdtatich commonly includes
monitor synchronization (wait/notify) on the root. Objeahared through a particu-
lar channel are reachable only to threads/MREs that havblisstad the connection.
However, an arbitrary number of threads/MREs can share afispelgject if a server
makes a reference to a shared object available to multigatsl(which use distinct
channels for communication with the server).

To enable interoperability with libraries that do not gudese immutability of the
objects they take as arguments, XMem provides a mechanrsmdarsive (deep) copy-
ing of objects into the shared memory via ttepy method. Object cloning, commonly
available from the underlying language (e.g. Java or C#jqiat by default creates
shallow object copies and must be overridden on a per-ckss to support deep cop-
ing. XMem provides this general service uniformly acrosssses and applications.

XMem uses stack-based, depth-first copying and handlegsyclthe object graph

196

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

by maintaining a hash table that maps the already-visitgectdbto their copies. We
describe how such copying to shared memory interacts wiheshmemory garbage
collection in Sectior6.2.9

Although, we focus primarily on shared memory, other IPC Ina@isms such as
signals and message queues can be built on top of XMem in ighdfcaward way.
We have integrated XMem, through the use of its API, into texgscommunication
mechanisms, such as RMI, applying only minimal library madifions. Such XMem-
aware implementations provide two paths of execution tmatfibrary routine selects
based on the proximity of the communication target: one¢hgtloys shared memory

and one that uses traditional distributed communication.

6.2.4 Dual Mode Object Allocation

To enable cross-MRE object sharing, XMem introduces dualer(shared or pri-
vate) object allocation. XMem extends the common allocatechnique of thread-
local allocation buffers (TLABs). TLABs are used by modern MR&seduce con-
tention between threads that concurrently perform lineam(p-pointer) allocation from
a common area. This approach requires no synchronizatiemafocating within a
TLAB. The system allocates TLABSs to threads linearly, usingenexpensive atomic
operations. XMem associates two TLABs with each applicatwead, one in private

and one in shared memory. We do not initialize the latterl uhé& thread performs

197

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

its first allocation into shared memory, e.g. when it firsteKes anew bytecode

within the XMem shared modesfiar edMbdeOn()). XMem excludes objects that
the system creates by side-effect of other operations, asickass loading or lazy data
structure initialization, from allocation in shared memtw prevent unintended object
leaks. XMem also uses private mode for allocation of allrimé data structures (data

commonly stored in a permanent area of the heap).

6.2.5 Thread Synchronization

Two locking schemes are commonly used to implement langleagt (e.g. Java)
monitors in extant MRESs: lightweight locking. 35 and biased lockingl35. Biased
locking optimistically assumes that a single thread usesoaitor (i.e. there is no
contention); when this proves not to be the case, biasethig¢ills back to lightweight
locking. Both lightweight and biased locking require a reida to work with shared
memory. XMem adapts and employs lightweight locking sirias the basis for both
schemes. We first overview lightweight locking and then dbsdts implementation
in XMem.

Lightweight Locking. To avoid using OS primitives (a pair consisting of a mutex and
a condition variable) in the common case of uncontendednggkightweight locking
employs atomic compare-and-swap (CAS) operations. Onlynwie threads attempt

to lock the same object does the MRE inflate the lightweighk loto a heavyweight

198

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

OS-backed monitor. Lightweight locking improves perfonoa as user-mode locking
is significantly more efficient than system calls.

The MRE stores basic locking information in the object head®ch occupies one
machine word. The lowest two bits encode one of the threeldesstates: unlocked
(UL), lightweight-locked (LL), and heavyweight-locked I(H When an object is LL
(by anoni t or ent er bytecode), the system inserts a lock record into the stack of
the thread performing the lock acquisition operation. DBgrstack unwinding (which
takes place when an exception is thrown), the system uskségords to unlock the
objects that are locked in the discarded stack frames. Ntynohjects are unlocked
by anoni t or exi t bytecode generated as part of the epilogue of block-stredtu
critical sections. Each lock record holds a pointer to tloi&éal object and the original
value of the overwritten object header.

During locking, a thread attempts an atomic CAS on the objeatbr to replace
it with a pointer to the stack-allocated lock record. Lockaels are word-aligned,
therefore the two lowest bits are always cleared and do mdglicowith the locking state
bits kept in the header. If the CAS succeeds, the thread overmdimitor. Otherwise, a
slow path is taken and the lock is inflated — the object head€AS-updated to point
to a data structure containing a mutex and a condition vigiathis data structure is

stored in private, MRE-managed, memory.

199

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

During the unlock operation of an LL object, a thread triesCtAS-restore the
header that it has stored on the stack. On success, no tdlibaneeded and the
fast path is complete. The CAS failure indicates that the lwak contended for (and
inflated) while it was held. Under such circumstances, it@sassary to notify the
competing (and now waiting) threads that the object is kddc These threads are
blocked on the condition variable. When awakened, they lrtloe mutex and resume
execution by trying to re-acquire the mutex. The mutex aredbndition variable
are multiplexed here: first they are used to wait until the lbjeat becomes unlocked
and then they are used in a standard way to provide mutuaks®al along with the
wait/notify functionality.

Recursive locking in the lightweight case is based on implatk ownership —
if the object header points into the stack of the currentatirden the current thread
already owns the lock and in a new lock record on the stack dlaglér field is set to
NULL. When unlocking, a lock record with tidULL header field is ignored. Recursive
locking in the heavyweight case uses a counter located iafttementioned MRE data
structure.

Lightweight Locking in XMem. The challenges to lightweight locking in XMem
shared memory are three-fold. First, the header of an LLoblgeints into a private
thread stack. Such references cannot be interpreted pbyrameoss MREs directly.

Second, heavyweight data structures allocated in MRE-eri@emory must now be

200

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

accessible to other MREs. Finally, POSIX synchronizatiampives by default work
within a single process.

To address these issues, XMem allocates a lock data steu@dtxS) in shared
memory, both in case of lightweight and heavyweight lockamgl uses POSIX object
attributes to enable cross-process synchronization. [EB&ves space for a mutex and
a conditional variable (which are initialized only in cadeirdlation). LDS contains
a process identifier (PID) and a thread identifier (TID), tteagfether unambiguously
identify the owner, as well as a recursion count, the locKkgdai reference, the binary
flag used for mutex/condition variable multiplexing, aneé thriginal object header.
Lock records that are stored on the stack contain only theeadf the locked object.
An object header, instead of pointing into a stack, alwayesrseto the corresponding
LDS, when locked.

XMem maintains an LDS pool in SHM-Meta (metadata area ineghanemory).
Application threads atomically bulk-allocate multiple BEBs at once from the global
pool to reduce synchronization overhead. Each thread tseldsral LDSes in a local
gueue with a FIFO discipline. An LDS of an LL object is retudrte the thread-local
gueue when unlocking succeeds (i.e. no contention is aéetedAn inflated LDS can be
freed only during shared memory GC when the HL shared obgmiines unreachable.

Invoking wait/notify on an LL object results in the lock infiilan. This is necessary

as these operations require support from the OS. An impoatspect of LL is the hash

201

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

value computation. MREs typically store the hash value irothject header and lazily
initialize it. The hash code, once computed, should nevangb. Since LL displaces
an object header, a race condition arises when an LL objsghigitaneously unlocked
and its hash code is being initialized. Such circumstanmegflock inflation and safe
initialization of the hash code (inflated locks are more Istas their unlocking does
not change the object header).

XMem uses this modified LL scheme only in the shared memorych 8RE uses
the original scheme internally as it is more space-efficieach lock/unlock operation
checks whether the corresponding object is shared or notlamaimically applies the
appropriate locking scheme.

XMem automatically preserves the guarantees provideddgnmory consistency
model of a specific MRE (e.g. the Java Memory Modé&l9) since the system consists

of homogeneous MREs.

6.2.6 Global Operations

Each XMem MRE executes a Global Operations (GlobalOp) thtleaidperforms
five coordinatedjlobal operationsattachment, detachment, connection, class loading,
and garbage collection (GC). XMem serializes these, reltikare, operations using
a global lock (a mutex and a condition variable located inghared memory). The

system performs every global operation in parallel by aliently attached MRES using

202

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

the GlobalOp thread in each MRE. Since MRE attachment and lte&d are global
operations, there is a well-defined set of attached MREs wei$pect to the current
global operation. This is an important property, as gloh@rations terminate only
when all attached MRESs report operation completion. Withetkeeption of GC, global

operations execute concurrently with application thrgads without stopping them).

6.2.7 Attachment, Detachment, and Connection

Two JVM propertiesj pc. shm fi | e andi pc. shm dest r oy, control MRE-
OS interaction. The first one identifies a shared memory segtoereate or attach to
(we employ Linux System V IPCIR3). The second one specifies if an MRE should
mark the segment for destruction upon termination. The @£ases only marked seg-
ments whose attachment count reaches zero. Upon startcip, MRE attempts to
create a new shared memory segment. The creation procssétfaé segment already
exists, which causes a fall-back to attachment. The MRE thateeds in segment
creation, initializes the shared data structures (locet&HM-Meta).

MREs that attach/detach to/from an existing segment peréogfabal attach/detach
operation. Attachment takes place after completing the MBd&idirap procedure and
before invoking the program’sai n method. Detachment is performed upon pro-
gram termination. These two global operations are aut@enaatd not accessible via

the XMem API. An MRE can attach only to one segment at a time. é¥@y XMem

203

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

supports multiple communication channels over a singleeshememory segment. A
configuration with a single segment per host is most memfigient but multiple seg-
ments can be used if needed. Attach and detach operatioateugpdlobal counter that
tracks the number of attached MREs.

The connection operation establishes a communicatiomeha@onnection allows
two MREs to obtain a reference to a shared object while guaearg privacy (other
MREs cannot reach that shared object). It implements seosasitnilar to that of a
network socket. The arguments passed todbanect (i.e. a port number and a
shared object), are propagated to other MREs as parametérs gfobal operation.
Each MRE maintains a list of ports to which it is bound. When anemtion request
to a locally bound port is detected, an MRE adds the correspgrehared object to
a local queue and awakens the threads that are blocked cacttept call on the
port. The shared object is then dequeued and returned acthept method. XMem
ensures that only one MRE is bound to any port (an atomicgtated boolean table
is kept for this purpose in the shared memory). Since coiored a global operation,
it is serialized with respect to GC, and as a result, the shalogatt (root) has a stable

location while the operation is in progress.

204

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

6.2.8 Global Class Loading

Through global class loading, XMem ensures that a spec#dg&sak privately loaded
by, and is the same in, all attached MREs, to guarantee typtysxMem implements
the latter by comparing the 160-bit SHA-1 hash value compftdethe class bytecode,
across MREs. If an MRE encounters a bytecode mismatch, gltdsd toading fails
and an exception is thrown.

Since XMem places no restrictions on MRE-private class logdihe class of a
shared object may or may not be loaded in all attached MREs wigemstantiated in
shared memory. Therefore, following each object allocgtilMem executes a class
loading barrier which checks if the new object resides instiered memory. If the ob-
jectis shared, the MRE checks whether its class has beerdggatzally. To make this
check fast (note that it is done for each allocation), XMerdsad field (a forwarding
pointer) to each private class object. The forwarding @oirg initially set toNULL to
indicate that the class is loaded only privately. After gibtdass loading, the forward-
ing pointer is set to the GCT address of the class. Followirtp @location in shared
memory, the MRE updates the class pointer of the new sharedtdbjthe forwarding
pointer. If the check fails, i.e. the class of the new shafgiéai has not been loaded
globally, the MRE initiates global class loading.

Global class loading uses the default system class load@ctjwcorresponds to

the CLASSPATH variable). XMem permits classes defined by user-defined tbesl-

205

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

ers to be instantiated in the shared memory as long as thespomding user-defined
class loaders are themselves allocated in the shared merdowyever, even though
class loaders can be shared, the internal class represastate always MRE-private.
XMem relies on MRE-private class loader constraints to guaeatype safety in the
presence of lazy class loading, user-defined class loadedsdelegation04. No
extension is needed because we first locally load all glgphha#ided classes and thus,

local constraints are always a superset of global consgsrain

6.2.9 Global Garbage Collection

Global GC in XMem identifies and reclaims dead, shared objéat. those that
are not reachable from any attached MRE). The GC is initiayedne of the attached
MREs when allocation of a new TLAB in shared memory fails. Idearto interoperate
with different GC algorithms and heap layouts], 99], XMem provides a generic
mechanism for identifying root objects in the shared memdRpot objects in this
context are objects directly reachable from one or more MRE®Itowing pointers
that are located on thread stacks, in registers, or in tleegdart of a private heap.
Once a snapshot of the root objects is obtained, shared nyezanrbe collected in a
conventional way using any tracing collector.

The key challenge is in identifying the root objects withoegorting to scanning all

the live objects in each MRE. Note that pointers into sharetharg can be scattered

206

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

across all generations. At the same time, we can expect theerof such pointers to
be relatively small.

XMem identifies roots by piggy-backing on a fast minor cdilec (the one con-
fined to the young generation). To enable this, XMem extermmdtable mechanism
[169 that supports generational GC so that it tracks pointesifolder generations
that point into the young generation or into shared memosyaAesult, a young gen-
eration collection is able to detect all root objects thagioate from a given MRE
without an exhaustive scan of older generations. For eadfaflGC, XMem triggers a
minor collection in the attached MREs. To perform a minor G@tesbf-the-art MREs
typically employ a parallel copying collecto87] that is executed in a stop-the-world
(STW) fashion as it imposes very short pause times (i.e. qoactcollection 7, 127
iS not necessary).

An XMem system implements global GC of the shared memory segmsing
STW parallel copying collection. All attached MREs perforn€ @G parallel, each
contributing multiple GC threads. MREs synchronize onlydoefand after collection.
A full barrier is needed after all MREs reach a safepoint (s&te where application
threads are suspended) because one cannot start moviritatied sbjects while other
MREs are actively using them. For similar reasons, all GCaitisefrom all MRESs
synchronize when leaving a safepoint. Any additional cowtion depends on the GC

algorithm used. Although, global GC stops all MREs, it is nasecalable or deadlock-

207

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

prone since bringing an MRE to a safepoint is a low-delay dmeraocbust with regard
to I/O.

Since global GC can interrupt an XMem deep copy from privathtared memory,
we must be careful to avoid introducing temporary sharepritate pointers during
the copy process. To this end, when we copy an object to itdoeation, we clear its
reference fields (as they may still point to private objed¥¢ update these fields with
the correct values (new locations) when we copy the corredipg objects to shared
memory. Global GC needs to update the entries in the stackbash tables used by
XMem copy operation because it is moving objects. We progidew object header to
each shared memory replica to preclude them from inheritiagynchronization state
of original objects.

Non-global GCs (both minor and major) do not follow pointdrattpoint into the
shared memory. Because of the XMem invariant that no shargditate pointers are
allowed, it is correct to stop tracing when a shared objeebhuntered. GC complete-
ness is preserved because scanning of objects in the sharedrgncannot lead to the
discovery of any additional live objects in the private hebpcal GC performance, is
thus the same regardless of the number of objects in shanedme

The most suitable GC algorithm for shared memory collectiepends on the de-
mographics and total size of the live shared objeg8. [If XMem is used to share a

large amount of long-lived data, then compacting collecare most appropriate. On

208

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Bench- Gen. Size [MB] Execution GC Count Class
mark | YoungtOld \ Perm.| Time [s] Minor \ Major | Count
bloat 40 5 55.3+0.5| 528+ 2 1+0| 827
pmd 34 6 19.5+0.1| 495+1 8+1| 1186
xalan 42 6 49.2+0.3| 1480+ 8 | 107+ 4 | 1179
antlr 8 4 45+0.1| 380+1 5+0| 679
chart 30 9 15.74+0.1| 355+7 94+ 0| 1440

eclipse 68 16 |[66.5+0.2| 551+3| 114+0 | 2627

hsqgldb 336 5 13.6+0.1 9+0 5+0| 736

fop 20 6 2.0+0.0 19+ 0 0+0 | 1423

luindex 8 4 7.2+0.1| 260+ 8 3+0| 689

lusearch 18 4 8.6+0.1| 706+1 1+0| 683

jython 8 8 43.1+ 0.3 | 3539+ 2 1+0| 1325

jbb/6wh 476 8 90+ 0.0 | 149+0 4+ 0| 1296

jbb/8wh 636 8 90+ 0.0 | 116+1 3+0]| 1296

jbb/10wh 780 8 90+ 0.0 98+ 0 3+£0 | 1296

Table 6.1: Java benchmarks that we use to evaluate XMem overhead. élobeach-
mark, we report generation sizes, execution time (noteJblatruns for a fixed period
of time), the number of minor/major collections, and the iemof loaded classes.

the other hand, if the primary purpose of XMem is communaratietween strongly
isolated MRESs, then copying collection is a better choitgg]. This is because the
communicating MREs exchange a small number of objects whitib# relatively
short lifetimes. Generational collection can be used tgetipa wide range of object
lifetimes. To accommodate short-lived communication beraypical of J2EE appli-
cations, we implement a non-generational, parallel capynrour XMem prototype.
Parallel copying collectors employ several GC threads &meate live objects from
the currently-used source space(s) to the currently-uhtasget space8b|. Since most

objects are expected to be unreachable, the target spagadallly smaller than the

209

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

Bench- XMem Overhead
mark | Time [%] | Space [MB]
bloat 3.5 2.24
pmd 3.5 2.94
xalan 3.4 3.11
antlr 2.8 1.79
chart 1.9 3.74
eclipse 2.3 7.04
hsqldb 0.3 2.00
fop 2.8 3.45
luindex 1.6 1.83
lusearch 2.6 1.79
jython 3.0 3.14
jbb/6wh 0.64 3.59
jbb/8wh 1.78 3.59
jbb/10wh 0.82 3.59

Table 6.2: The overhead introduced by XMem in terms of applicationuigigout (Jbb)
or execution time (Dacapo) and occupancy of the permanerrggon.

source space(s) and the worst-case scenario is handletlitny bmck to the promotion
of overflow objects into older generation(s). In the absewnica generational heap
layout, half of the space needs to be set aside as a copyeeserv
XMem employs two equal-sized semi-spaces in the shared nyeamal the col-

lection of the source semi-space is performed in parallelbgttached MREs. This
process is interleaved with local minor GCs so that the olgjeagph is traversed only
once. Each MRE uses multiple GC threads, which correspondhiedsilable kernel
threads and whose total number equals the number of prosésses available or

dedicated to each MRE.

210

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

XMem employs a two-level load balancing scheme in the formvofk stealing
[67]. GC threads that become idle attempt to steal object neéexefrom non-empty
marking stacks of other GC threads. Each GC thread is assdapth two marking
stacks, which we refer to as the local and shared stack.-MRE load balancing is
limited to local stacks while inter-MRE work stealing useargd stacks only. MREs
push references to objects residing in the shared memaooptloeshared stacks to make
them available to other MREs. Local load balancing is preféand global stealing is
done only when all local stacks become empty. The stealimggtdi.e. the marking
stack/stack entry) is selected randomly.

Global GC is an STW operation that comprises three barrgxdogue, epilogue,
and GC termination. The GC prologue flips the semi-spaceg Q@ epilogue for-
wards the pointers in SHM-Meta and deflates heavyweight tomassociated with
dead objects.

To ensure that each live object is processed exactly onceahf@@ds claim objects
atomically. Atomic CAS instructions are supported by mosicessors and can be
used across processes (as they are based on physical retherittual addresses).
To reduce contention, each GC thread owns a parallel lolcadadion buffer (PLAB)
where it copies the objects it has claimed. We allocate PLAR=lly, atomically, and
on-demand, from the target semi-space. The GC first copiebjant to its destination,

and then pushes the addresses of its reference-type figthermarking stack (local

211

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

and/or shared). Then, a GC thread tries to CAS-forward thgnaii object header to
the new location. If a thread loses a race to another thread>C removes the object
from the PLAB and pops the new pointers off the stack. Thisoaf operations is

motivated by fault-tolerance (Secti@2.17).

6.2.10 Global Meta-Data Management

The SHM-Meta data structures support the runtime and glgiedations of XMem.
They include a descriptor for the current global operatwhich contains the opera-
tion code, its input arguments, barrier counters, state flagd a mutex and condition
variable with which the system serializes the executionlobg operations. In ad-
dition, SHM-Meta holds the marking stacks for global GC anthlale that records
the meta-information for all globally loaded classes idahg the class name, defining
class loader (set thlULL if the default system class loader is used), and a bytecode
hash for type-safety verification. SHM-Meta also holds adisthe bound ports that
are currently in use for communication sessions betweelocaied MREs. Finally,
SHM-Meta contains single-word entries for (i) the numbeatthched MREs, (ii) the
number of globally loaded classes, (iii) the boundariesraf eurrent position in the
shared heap (for allocation of new TLABS), and (iv) the stawd &nd of a pool of

global locks that enable cross-MRE monitor synchronization

212

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

6.2.11 Fault Tolerance

XMem tolerates unexpected MRE termination, between andahdugliobal opera-
tions, by implementing a timeout mechanism (based opthe ead timed wait on a
condition). If an MRE fails, the next global operation timeg.dJpon timeout, XMem
subtracts the number of not-responding MREs from the cowfitdre attached MRESs
and releases any shared locks that were held by the termii&. Connection, and
class loading are global operations that do not require adytianal handling upon
timeout.

In case of timed-out detachment and attachment operatibassystem needs to
determine whether it was the detaching/attaching MRE thkgdfto correctly keep
track of the number of live MRES). This is done based on the Ribeprocess which
initiated attachment/detachment (XMem sends a signagubeki | | system call and
gets an error if the process is dead).

GC requires more complex handling, as the shared stacksofh#ntated MRE can
contain pointers stolen from other MREs. These stacks aetdddn shared memory
so they are not lost and can still be processed. During GCctsbge forwarded to
their new locations only when they have been copied and wian ¢ontent has been
scanned (and pushed onto a stack). Therefore, copyingctiollecan be interrupted

at any time without losing correctness, provided that wieates on the stack(s) is

213

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

eventually processed. If a global GC times out, it is suffitte empty all the marking

stacks located in the shared memory.

6.2.12 Implementation Details

We have implemented XMem in HotSpdt][g, an open-source, high-performance
JVM written in C/C++. The heap in HotSpd%|] comprises three generations: young
(where new object allocations take place), old (where lreg objects are promoted),
and permanent (where classes are stored). HotSpot resenvesrds per object. The
first word (the header) contains the locking state, age hitgl, the hash code. The
second word is a pointer to a class object located in the peniageneration. Class
objects encapsulate static fields, a virtual method tabtdass loader reference, and
pointers to other meta-objects that describe methods add {emong others).

The PTHREAD_PROCESS_SHARED attribute is set on the POSIX mutexes and
condition variables to enable cross-process synchraoizatlTo create or look up a
shared memory segment, XMem empla@ysrget . This system call is used with the
| PC_PRI VATE key to implement double mapping in LCT and GCT. Global shared
memory segments are identified by a key generatetitbyk based on a file name.
XMem supports multiple global segments on a single hoderdiftiated by a file name
(the JVMi pc. shm fi | e property). We implement attachment wghmat , which

allows to specify a virtual address that a segment is magpedRE-private memory is

214

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

allocated usingnmap, which is called with thé&VAP_FI XED flag when pinning GCT at
a specific location. For atomic operations we use thec@dxchg instruction. LCT

corresponds to the permanent generation.

6.3 Experimental Evaluation

We evaluate time/space overhead imposed by XMem extenBijoosmparing the
performance of standard Java benchmarks run on top of andifietbHotSpot JVM
and XMem-enabled one. To measure the impact of XMem on coruation perfor-
mance (throughput and latency) we use a set of microben&snfiar common Java
RPC protocols. We also investigate XMem impact on end-toagmication perfor-

mance.

6.3.1 Methodology

Our experimental platform is a dedicated machine with a-doat Intel Core 2
Duo (Conroe B2) processor clocked at 2.66GHz, equipped witli8May L3 cache,
32K 8-way L1 cache, 2GB main memory, and running Debian GNirsk 3.0 with the
2.6.17 kernel. We use the HotSpot OpenJOH§ v7-ea-b18 (Aug. 2007) compiled

with GCC 3.2.3 in the optimized client-compiler (C1) mode. Sitersion of HotSpot

215

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

implements a highly-optimized, state-of-the-art sezetion mechanism and uses stan-
dard (not process-shared) mutexes/condition variables.

For our experiments, we employ standard community bendksriaom the Da-
capo b4] and SPECjbb2005145 suites to evaluate the impact of XMem on programs
that do not communicate across MREs. We use the large inpDigficapo and 6, 8, and
10 warehouses, with 90s runs, for Jbb. To evaluate the ingfasing shared memory,
we develop a number of benchmarks ourselves (an approaeh tafl07] in a sim-
ilar context), which exercise shared memory and implemeatI2EE communication
protocols. We describe these benchmarks with each expetindée evaluate XMem-
aware implementations of RMIl and CORBA, serialization and XNNDI, and TCP/IP
sockets. Finally, we evaluate XMem for two server-side @agibns: Hsqldb$6] and
Tomcat B]. In all experiments, there are 2 MREs and the shared memzeysB0MB.

Whenever running the original HotSpot JVM, we set the yountegation to 30MB.

6.3.2 XMem Overhead

To investigate the overhead introduced by adding suppotXkéem, we compare
the performance of shared-memory-oblivious applicatiomson top of an unmodified
HotSpot JVM against our implementation of XMem. In Tabld we present basic
statistics for the benchmarks that we use (we report gaoersizes, execution times,

the number of major/minor collections, and the number oflémhclasses). Tabkg 2

216

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

summarizes the results. For each benchmark, we employ adeai.e. total size
of the young and old generation) of twice the minimum. We ayphis methodol-
ogy [14¢] to ensure some GC activity without having GC dominate pentnce — so
that we are able to measure other sources of overhead @emiroduced by XMem.
We set the permanent generation size to the minimum regtoredMem to load all
the necessary classes. The young generation constitueeoorth of the heap. We
report generation sizes, the number of minor and major G@sthennumber of loaded
classes. For timings, we execute 5 warm-up runs then contipeitererage and standard
deviation of the next 5 runs.

XMem imposes negligible time overhead which we express agp#icentage of
total execution time (for DaCapo) or throughput (for SPECi®). The sources of
overhead are two additional checks per write barrier aretiai checks for whether or
not an object is shared. We report absolute values for theespeerhead introduced
in the permanent generation (by the page alignment impléatien) as this overhead
does not depend on generation sizes (only on the numberdaddoglasses). The space
overhead ranges from 1MB to 7MB and on average is 3.1MB ac¢hes$4 programs.
This overhead is bounded by the meta-data size (as oppotesldapplication working

set size).

217

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: imnmgr&ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

B Load balancing off

'g‘ 80 Load balancing on
g 70 -
0 50 - I I 1] I
O]
o 40 A
&
5 30 -
Z 20 -

10 -

0 1 T T T T T

100/0 90/10 80/20 70/30 60/40 50/50
Relative Imbalance in Reachable Objects [%]

Figure 6.3: Global GC pause times with and without inter-MRE load balagdor
different distributions (percentage) of shared objecashable from individual MREs.
The distribution of reachable objects (imbalance) is shas/a pair of percentage val-
ues, e.g. 90/10 means that 90% of objects are reachable frefBE and the remain-
ing 10% from the other.

0.04 15
o=
oo
| £ 1.2
0.03 o=
58 0.9
> S) .
002 <§& QE P
[OR)
o £ 0.6
SF
0.01 - s @
= 2 0.3
o
0 T T T T T 0
0 25 50 75 100 125 1 3 5
Live Data [thousand of nodes] Live Data [node]

Figure 6.4: Impact of the size of live shared objects on global GC pausedi We
present two views of the same graph to show both throughpdiiaency of STW
global GC. We use regression to obtain the parameters oftharlrelationship between
live data size and GC pause time.

218

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

6.3.3 Global GC Performance

Figure 6.3 shows the impact of inter-MRE GC load balancing (work steglion
average pause times of global GC. In this experiment, each MRé&Les a single GC
thread and can reach only a specific fraction of shared abjate express the dis-
tribution of reachable objects (imbalance) as a pair of graage values. For perfect
balance (50/50), load balancing adds a small overhead.hEanbst imbalanced con-
figuration (100/0), inter-MRE work stealing reduces GC paume by 44%. We report
average GC pause times (and standard errors) from 15 GCsrebuils indicates that
cross-MRE load balancing is important for efficient GC in an etisystem.

XMem implements STW parallel copying collection and therefits GC pause
times increase linearly with live data size. Figérd presents measurements obtained
using two MREs, each with a single GC thread, where live datesists of a binary
tree comprising a specific number of nodes. We report aveGdggause times for
different live data sizes. Global GC latency (computed kyagolating GC pause time
for live data size equal to zero) is 0.9ms. Safepoint latémeysingle MRE is 0.7ms on
average. Safepoints are reached concurrently by two MREg (b not add up). Thus,
there is 0.2ms overhead imposed by XMem to coordinate glGi6alacross MREs.
Copying throughput is 3.3 million nodes/second (where eamtercorresponds to 5
small objects). This throughput is identical in case of @leMMRE (XMem does not

degrade it).

219

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

6.3.4 Communication Efficiency for Microbenchmarks

We next evaluate the impact of XMem on the performance of das@munication
technologies using our microbenchmarks.

RMI and CORBA. RMI [13]] enables inter-MRE type-safe remote method calls. A
server registers a remote object using a directory servicehws later consulted by the
client to look up the remote object by name. Once a remotearte (proxy) is con-
structed, the client can call remote methods. A client andraes use automatically-
generated stubs and skeletons to (de)marshall argumethtemn values. CORBA
[50] employs a more portable transport protocol (IIOP) to ioparate with other run-
times. Our microbenchmark times a remote method call tHegsta binary tree of
objects as an input argument and returns another binanages output value. We
employ binary trees as the microbenchmark since they reptesmiddle-ground in
common data structures: they are neither sparsely-coeohélike linked lists) nor
densely-connected (like complex graphs).

Figure6.5a) shows the average invocation time (y-axis) for an irgirepnumber
of nodes in the binary tree (x-axis). We implement the renoadé using XMem by
allocating binary trees directly in the shared memory. Gissrver interaction is co-
ordinated by monitor synchronization. Having allocatedes t the client notifies the
server that the input is ready. Once the server allocatesutmut tree, the client is

notified that the call is complete. XMem reduces latency lack &7x while increas-

220

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

ing throughput (calls/second) 6x and 35x, compared to RMIGO&RBA, respectively,
since XMem avoids argument marshalling and network comoauiain.

Serialization and XML. Object serialization141] provides a type-safe mechanism for
transforming an arbitrary graph of objects implementirgjtava. i o. Seri al i zabl e
interface into a binary byte stream which then can be useddonstruct the original
data structure. A runtime-portable alternative to binagresentation is XML. We
compare default and XML-based serialization against thkdlem implementation.
Our microbenchmark times the exchange of an object grapheeet a server and a
client. A client allocates a binary tree of objects, sezediit and sends the result to the
server over a socket. The server deserializes the treeas#® a response (being a bi-
nary tree of the same size) and sends it back to the clientenaiged form. In XMem,
we allocate the tree in the shared memory and notify the gillerthat the data is ready
(we consider the overhead of copying below). Figbub) presents the average serial-
ization time (in msecs on y-axis) for a tree of 1-1024 nodeaxig). XMem eliminates
the need for serialization and data transfer and thus ingsrtwoughput (calls/second)
20x and 391x while reducing latency by around 7000x comptretkfault and XML
serialization.

JNDI. IJNDI provides access to directory services, such as LDAP of rigistry,
where clients can look up objects by name as well as eval@atels queries. Our

microbenchmark first binds a specific number of objects in an Ridistry and then

221

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

(a) Remote method invocation time (ms) for
binary tree pass/return (x-axis is node count).

90 1.4
80 - + CORBA 121
70 + = RMI 10
60 - A XMem 'g‘ '
= i L)

50 - “E’ 0.8
40 4 = 0.6 4
30 4

. 0.4 1
20 - Tree Size [node]
10 1 02 g |

0 —— ‘ ——= 0.0 —h—

200 400 600 800 1000

1 3 5

(b) Object serialization time (s) for client/server
binary tree send/receive (x-axis is node count).

8 0.10
>
o XML 008 ‘(’/“/
6 - m Serialization '
A XMem
= | 0.06
4 o
£
Z | 0.04
2 4
Tree Size [node] 0.02 7
0 = : T T 0.00 T AT
0 2000 4000 6000 8000 1 3 5

(c) Object lookup time when a directory server returns
a number (x-axis) of name/object pairs (bindings).

1.6 0.6
1 = = JNDI
14 g 0.5
124 ‘o
e 4
104 £ 0.4
0.8 1 0.3 44—
0.6 - [Sl
’ 0.2 -
0.4 4
: o 0.1 -
0.2 Result Size [binding]
0.0 T T T ; 0.0 A=

200 400 600 800 1000

1 3 5

Figure 6.5: Microbenchmark communication performance. We blow up #esasing
a second graph snapshot to make latency visible. Each grapissegression lines.

222

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

0.05 0.015
w

0.04 - % oo P T
£

0031 = Socket | 0.009 -

0.02 - 4 XMem L0006, ,

0.01 0.003 |

Data Size [byte]
0.00 - 4 0.000

0 2000 4000 6000 8000 1 3 5

Figure 6.6: Data transfer time (ms) for client/server array send/recéi-axis is array
size in bytes).

performs a query that lists all available bindings (namgfdipairs). We time the latter
operation only as it is more important (directories arelyamneodified). XMem keeps
the bindings in the shared memory and returns an enumeratitreir subset in re-
sponse to each query. This enumeration is allocated in gtredimemory and returned
to the client by means of a notification. Figd&(c) shows the average results gathered
for a varying number of bindings (1-1024). XMem reducesneye32x and increases
throughput (lookups/second) 240x which can be attribubezbpy and transfer avoid-
ance.

TCP/IP Sockets. Network sockets operate at the byte level (as opposed toljeeto
level) and therefore have no notion of type-safety. Howewer compare their effi-
cacy with XMem for completeness. Our microbenchmark messstire time needed to
transfer a byte array of a certain length from a client to @&sewnd vice versa using

TCP/IP sockets. We implement XMem-based communication logating a shared

223

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

byte buffer. Each party writes into the shared buffer and thetifies its peer that the
new data is available. Figuf6 compares the transfer time (in ms) using conventional
sockets for data sizes 1 to 8192 bytes (x-axis). XMem ine@gdsroughput and de-
creases latency both by 2x by avoiding network stack inwtiom and redundant data
copying.

Copying Overhead. Occasionally, an object graph needs to be copied to the ghare
memory to ensure full transparency of communication. Ireagsemote method in-
vocation and object serialization this translates to afiing locally and then copying
an object tree to the shared memory just before notificatlarcase of sockets, two
copies are necessary in the worst case: first from a locadb(dfient side) to a shared
buffer and then from the shared buffer to a local buffer (sesrde). Since bindings
in directory services are immutable, it is sufficient to camly the enumeration ob-
ject encapsulating the query result while leaving the bigdiintact. Tablé&.3 shows
the impact of copying on latency and throughput. We repddtike performance of
XMem with copying to existing technologies run on top of Het$(HS) and the non-
copying version of XMem. Columns 2 and 4 show latency and tinput for XMem
with copying vs. HotSpot and columns 3 and 5 show these nsdsicXMem without
copying vs. XMem with copying. When copying is used, XMeml stignificantly

outperforms the extant mechanisms (Columns 2 and 4).

224

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Bench- Latency Throughput
mark | vs. HS| vs. XMem | vs. HS| vs. XMem
RMI 2.5x 5.8x 2.4x 2.4x

CORBA | 6.4x 5.8x 14.3x 2.4%
Serial. | 1152x 6.1x 8.3x 2.4x
XML 1204x 6.1x 164x 2.4x
JNDI 6.9x 4.6X 71x 3.4x%

Socket | 2.2x 1.1x 1.5x 1.6x

Table 6.3: Impact of copying shared data on latency and throughput. @o2 and
4 show these metrics for XMem with copying vs. HotSpot andiewis 3 and 5 show
these metrics for XMem without copying vs. XMem with copying

5 0.10
DB k
4 = JDBC/Socket 0.08 1
A JDBC/XMem &
£
34 o 0.06 *
£
= A(A//
2 A 0.04
1+ 0.02 -
Result Size [record]
0 T T T T T OOO T T
0 200 400 600 800 1000 1 3 5

Figure 6.7: Application performance: Hsqgldb. We report database gpengessing
time (ms) when a server returns a set of records (x-axis idyeu@f records).

6 6
N
° / >
449 4 -
g m HTML/Socket

34 g A HTML/XMem 34

24 F 2 1

1 y s 4 * 1 &= -+

Content Size [unit page]
0 0

0 2000 4000 6000 8000 1 3 5

Figure 6.8: Application performance: Tomcat. We report request preioggime (ms)
when a web server retrieves a web page (x-axis is page size).

225

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

6.3.5 Application Performance

We next evaluate the impact of XMem on the performance of mterprise appli-
cations. We quantify the improvement in user-perceivedughput and response time
by comparing an unmodified database server (Hsqldb) and a&&rebr (Tomcat) with
their XMem-based variants.

Hsqldb B6] is a relational SQL database management system that gapper
memory and disk-based data storage. JBoss uses an embedyldd Hstabase en-
gine by default for persistence and caching. We have modifggddb 1.8.0 to employ
shared memory. A client allocates an SQL query as a shaied.sithe server is then
notified, parses the query, and computes the result in thregin@emory. Hsqldb main-
tains an object cache in the shared memory. Internal repiesan of leaf data in the
object cache is based on immutable objects (strings, irgggates that model SQL
objects). Clients can be given a reference to such objedi®utita risk of modification
and therefore most data (and metadata) does not need copyabave encapsulated
interaction over XMem into a JDBC driver for Hsgldb to achiéwitransparency. The
server listens for connections both on a network socket @il shared memory. For
Hsqldb we measure the impact of XMem on end-to-end througftueries/second).
Our microbenchmark times tf®ELECT * FROM T statement executed against a ta-
ble T which contains between 1 and 1024 3-field records. Fi§urend Figure6.8

show the results. XMem increases throughput 2.3x and deesdatency 1.4x. The

226

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

Hsqldb JDBC driver performs proprietary data serializatihich is unnecessary in
XMem.

Apache Tomcatd] is an industrial-strength web and servlet container. Weeha
modified Tomcat 6.0 to optimize local request handling us{iiem. A client and a
server share a byte array and notify each other when sendilag Ve measure end-
to-end performance (requests/second) when retrievind BH3ET method) static web
pages of different sizes (multiples of a unit page size). ¥éethe Apachbt t pcl i ent
package to generate conventional HTTP requests. F@8ishows the time needed to
retrieve a page of a given size. XMem achieves 4x better gimput and 4x shorter

latency.

6.3.6 Results Summary

Table 6.4 summarizes our results in terms of average latency andghput. We
use least-squares linear regression to obtain latencyhamuaighput as the coefficients in
the equationtime = latency + size/throughput, following [37]. We report through-
put in the units appropriate for each protocol. While micratienarks focus on com-
munication efficiency (the only additional processing isiatization/allocation of the
exchanged data), Hsgldb and Tomcat provide insight intcetigeto-end application
performance. We observe very significant reduction in katglover three orders of

magnitude) in case of serialization (default and XML-basedRMI, CORBA, and

227

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Bench- Latency Throughput
mark HS XMem HS XMem
RMI 0.18 ms| 15x 75.8 call/s 6X

CORBA | 0.45ms| 37x 12.5 call/s 35x

Serial. | 80.4 ms| 6977x | 21.8 object/s| 20x
XML | 84.0ms| 7292x | 1.11 object/s] 391x
JNDI | 0.24 ms| 32x | 833 lookup/s| 240x

Socket | 0.01 ms| 2.3x 279 kB/s 2.3x

Hsqgldb | 0.06 ms| 1.4x | 227 queryls| 2.3x

Tomcat | 4.46 ms| 3.9x | 10* request/s 4.2x

Table 6.4: Summary of XMem impact on latency and throughput for micrade
marks and applications. We report average baseline peafozen(Columns 2 and 4)
and XMem improvement as a multiple of the baseline (Columnsd3x).

JNDI use their own, more efficient, serialization and thusdji¢ less due to XMem.
XML-based serialization yields the most significant thropgt increase (over two or-
ders of magnitude) since it uses a verbose representatithe afbject graph and thus

transfers more data.

6.4 Related Work

The key difference between XMem and previously reportetesys that coordinate
co-located and isolated applications written in type-tafguages is that XMem takes a
top-down approach by assuming full isolation between MREgx@aviding an efficient
and straightforward mechanism for direct object sharingembreserving strong OS-
assisted resource protection as much as possible. Prigrhasrfocused on bottom-up

approaches by introducing weak isolation implementedutinoreplication of basic

228

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

OS facilities within a single OS process. Such systems ahmore complex than
XMem, have weaker protection guarantees, and duplicagtiegiOS mechanisms.

KaffeOS [LQ], the Multi-tasking Virtual Machine (MVM) 53], and MontyVM [115
employ a single-application MRE and add support for isotat@md multi-tasking.
MVM provides isolation via the Isolate APBP]. Multiple programs (tasks) execute
in a single MRE instance (OS process) and the MRE manages cesoand shar-
ing across them. MVM introduces a level of indirection whecessing static fields
and does not support direct object sharing. The systemdntes links (communi-
cation channels between tasks) but cannot eliminate trecbbgrialization and data
copying. KaffeOS supports direct object sharing by mearshafed heaps. However,
shared heaps are not garbage collected and are coarseepeaitities reclaimed in full
when they become unreferenced. KaffeOS lacks support foy state-of-the-art MRE
mechanisms like parallel GC and modern synchronization.

Other systems that implement the process/task model vathirM, include Alta 1],
GVM [11], and J-Kernel 157, as well as a multi-tasking JVM described ih§].
These systems strive to provide resource management alatidaowithin a single
process without relying on hardware/OS protection. Claaskr-based isolatio»]
is a standard technique commonly employed by applicatiengess in order to avoid
name space pollution/conflicts between multiple web appbas hosted within a sin-

gle JVM. Such isolation, however, does not prevent interfee through static fields of

229

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

classes loaded by the system (bootstrap) class loaderlabhisroblem was addressed
in [38] by introducing a control access model called object spadexre cross-space
object accesses are mediated by a security policy. Thisoappr however, provides
weak isolation and imposes overhead on inter-space metiisd ¢

XMem does not have the aforementioned limitations and isifsogntly simpler
than multi-tasking approaches as it leverages the existfragstructure both at the MRE
and OS level. At the same time, XMem offers better fault ciomtent — critical errors
do not automatically propagate to other MREs unless a fafdtif the shared mem-
ory. This decreases the probability of a failure escalattingultiple components. In
XMem, MREs are not completely isolated as they share partef thrtual address
spaces. However, XMem is significantly more robust than irtatking approaches,
given that resources other than memory are fully isolatetiaemory itself is only
partially shared. XMem achieves stronger isolation, wpitgviding direct object shar-
ing without introducing any level of indirection (unlikeeftMVM).

The notion of transparent global and local objects in thetexdnof distributed
shared memory (DSM) multi-processors has been used inGptii] and UPC p4].
Unlike XMem, these systems are not type-safe and providesado global objects at a
different cost than to local objects. JavaSpa&& provide DSM for applications that
implement object flows. Object repositories in JavaSpacet/pe-safe but the system

uses serialization and provides no shared memory suppocoftocated application

230

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

components. Other DSM systems for type-safe languagasd@single-system-image
approaches to implementing a global object space such &8 pglyJAVA/DSM [178,,
JESSICA [L0g], Hyperion [L0§, JavaParty124], and MultiJav B1]. While XMem tar-
gets sharing between co-located MREs, software DSM focussslyron distributed
protocols necessary to guarantee memory consistency ae@ c@herence models
defining certain semantics for concurrency in a distribsgstem.

Runtime systems for concurrent languages that offer huitteinstructs for inter-
process communication include Erlar@),[Occam [L17], and Limbo B3]. These sys-
tems build on the algebra of communicating sequential msee$1] and provide
a point-to-point message passing mechanism for lightweigbcesses with share-
nothing semantics. In contrast, XMem adheres to the shamdary programming
model. Unlike XMem, Erlang is a functional language and mexputhe shared objects
to be immutable. XMem targets general-purpose imperativegaural languages.

In language-based operating systeit®q, such as Singularityds, 89|, JX [74],
JNode p6], Inferno [63], SPIN [27], Oberon 70, and JavaOSd4], processes share
a single address space and use type and control safety pdobyda trusted compiler
(via static analysis) to guarantee memory protection asduee isolation without im-
plementing a hardware-assisted reference monitor. Saniguis a micro-kernel OS,
implemented mostly in C#, supporting efficient communicati@tween multiple iso-

lated processes. Its design differs from XMem in severalsv&yrst, XMem leverages

231

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

hardware memory protection, while Singularity provideghtiveight software-based
isolation via type-safety (multiple applications execute single address space). Sec-
ond, Singularity provides message-passing via typed aiaramd explicit communi-
cation primitives. In contrast, XMem provides a shared-rogrbased implicit com-
munication where only the initial handshake employs thennkhabstraction. Next,
in Singularity communication is limited to two endpointsdanvolves the transfer of
ownership of a memory block (there is no data sharing betvieersender and the
receiver). XMem enables direct and transparent objectrgh&aetween any number
of threads, potentially from distinct MREs. Finally, Singtty employs block-based
reference counting garbage collection while XMem uses rfineegrained tracing GC.
To date, virtual memory manipulation (which is used by XMenmaplement dou-
ble mapping of the GCT and LCT) has been used in MREs mostly indh&ext of
GC [159 101, 175 80, 46]. For example, the CompressdJl] employs double map-
ping to enable concurrent compaction, and the Mapping Goll¢t59 compacts free

space by remapping to avoid object copying.

6.5 Summary and Conclusions

XMem provides type-safe and transparent shared memorgdtated, co-located

MREs that implement the same language. The motivation beXiviem is more effi-

232

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: kimg&€ross-Runtime
Memory Management Performance and Programming Model USiraged Memory

cient, cross-component interaction and communicatiomfiarerise multi-tier applica-
tions deployed on a single host. XMem provides strongett faudl resource isolation
than previously reported systems, while enabling efficimtct object sharing over pri-
vate channels. To guarantee type-safety, XMem extends-gtdahe-art MRE services
such as synchronization, class loading, object alloca@onl garbage collection, as
well as introduces global operations to coordinate MREsgisingle shared segment.
XMem manipulates virtual memory mapping (via a standard i@&face) to avoid in-
direct memory access. XMem is transparently integratekimthe MRE infrastructure
and can be used to optimize existing communication progpseich as RMI. We im-
plement XMem in the HotSpot JVM and evaluate it empirical¥Mem introduces
tolerable space/time overhead while improving efficiedayeficy and throughput) of

extant J2SE/J2EE communication mechanisms by up to seweieds of magnitude.

The text of this chapter is in part a reprint of the materialieappears in L60.

233

Chapter 7

Type-Safe Sharing for Heterogeneous
Runtimes: Improving Cross-Runtime
Memory Management Performance
and Programming Model Using
Shared Memory

In this chapter, we describe another approach to improviagseruntime memory
management by using OS support for shared memory. Howewidteun Chapterb,
which focuses on homogeneous (Java) runtimes, this timewestigate object sharing
between heterogeneous runtimes, for both static and dgranogramming languages.
Specifically, we discuss the design and implementation pé-tsafe, transparent ob-
ject sharing in a multi-runtime, multi-language systemldg@d on a shared-memory
multi-core or multi-processor architecture. We overviéw tlesign tradeoffs involved
in reconciling the major differences in object models, mgmuoodels, type systems,

and core libraries across languages. We describe in detaimhechanisms needed for

234

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

an efficient implementation of object sharing in the mudinduage setting, including
type mapping, class versioning, a language-neutral dhjechory model, lightweight

monitor synchronization, and a loosely-coupled on-thedljector. In addition, we in-

vestigate how to incorporate shared memory support intonamnaged language (we
focus on C++) while still guaranteeing type- and memory4ydia the shared objects.
Finally, we empirically validate the key benefits of croaaguage object sharing: im-
proved communication performance (by avoiding expensjead marshalling) and a
richer programming model (by replacing RPC-style interarctidth transparent shared

memory).

7.1 Introduction and Motivation

Large, scalable software systems are increasingly beifgusing collections of
components to better manage software complexity througgaiality, modularity, and
fault isolation. Since each programming language has its umique combination of
performance, speed of development, and library suppditreint software components
are often implemented in different languages. As evideftie®y Thrift [143 and Pro-
tocol Buffers [L29 have been developed by engineers at Facebook and Gocgpecre
tively, to enable more efficient interoperation across rlaliguage components em-

ployed within their applications and backend services. il applications, different

235

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

languages are better suited for the implementation ofréiffetiers: Ruby, Python, Java,
and JavaScript facilitate fast development of the presentdayer, Java, PHP, Perl,
Python, and Ruby components commonly implement serveragile and Java, query
languages, and C/C++ are used for a wide range of backend datizhinologies. The
components of these multi-language, multi-componentiegpbns and mashups typ-
ically execute within independent runtime systems (lagguartual machines (VMs),

interpreters, etc.) and communicate and interoperateswigte procedure calls (RPC)
and message passing.

Increasingly, administrators co-locate runtimes to lveitiize multi-core resources.
This makes it possible to use shared memory for such craspa@oent communication
as well as for a cross-runtime language-neutral transpatgact storage. However,
despite its growing practical value, shared memory has abbgen investigated in
either of these contexts. To evaluate the potential of ushrayed memory for cross-
language, safe, transparent communication and obje@g&pre design and imple-
mentCo-Located Runtime Sharing (CoLoRSpPLORS provides direct object sharing
across static and dynamic, object-oriented (OO) languages

CoLoRS virtualizes VM components that assume a languagefispauject/class/-
memory model. In CoLoRS, shared objects retain their langsageific behavior,
including the semantics of virtual method calls, lockingddield access. In addition,

builtin/library data structures, such as collectionsnsgarently map to their shared

236

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

counterparts in the CoLoRS object model. Our key hypotheslisaissharing objects
across static/dynamic OO languages using shared memobecsafe, transparent, and
efficient.

CoLoRS defines an object model and memory model that enabladgeeneutral
object and class sharing across dynamic and static languablee CoLoRS object
model is a static-dynamic hybrid, which provides the efficieof a static model with
the flexibility of dynamic class modifications. To enablestfCoLoRS uses an extensi-
ble static model with versioning and type mapping.

In addition, CoLoRS implements a parallel, concurrent, andherfly GC that is
better suited for multi-VM memory management than extant.Gdd oRS GC is sim-
pler than state-of-the-art on-the-fly GCs, does not reqigtd tntegration into a run-
time, and imposes no system-wide pauses. Moreover, CoLoRSausachronization
mechanism that avoids the complexities of conventionat@gghes to monitor syn-
chronization, while providing the same semantics and coalpe performance. Both
GC and synchronization in CoLoRS are designed specificallgrimss-MRE sharing.

To investigate object sharing between dynamic and statidad@uages, we inte-
grate CoLoRS support within open-source, production-qualihtimes for Java and
Python. We have evaluated CoLoRS efficacy using standard davRydhon bench-

marks and found that CoOLORS extensions impose low executio@ diverhead. We

237

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

also provide detailed experimental results for the CoLoRS (g@rithm and CoLoRS
synchronization.

An important use case for CoLoRS is cross-language RPC. We hand &iri-
cally that CoLoRS can significantly (up to 2 orders of magnijudgrove the perfor-
mance of such RPC systems as CORBA]|[REST [66], Thrift [143, and Protocol
Buffers [129. This is because using shared memory in the co-located aasds
expensive object serialization. The improvements in comoation throughput and
latency due to CoLoRS significantly increase end-to-end &@tien performance in
Cassandra] (a key-value database), and the Hadoop Distributed Figée®y (HDFS)
server [(8].

In the sections that follow, we present the design and achite of CoLoRS, de-
scribe the key components of our system (Sec@id), including a language-neutral
object/memory model, memory management, garbage calieaind synchronization
support, as well as transparent object sharing via runlilona/y virtualization. We
then discuss CoLoRS empirical evaluation (Sec#d), investigate how to implement
CoLoRS support in an unmanaged language (C++) in Se@tigncompare/contrast

CoLoRS with related work (Section5), and conclude (Sectioh6).

238

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Java CoLoRS server process Python
process / process
: Shared Heap .
Private Heap ’)r__\\f\) i Private Heap
o) o) S
\y_: _S 1 r F L E o
— ~— -
| Private Classes | | Shared Classes | | Private Classes |
Java g % % CoLoRS % % Python
% ? % threads k GC threads/ ? threads

\ co-located on a / /
multi-core system
— - R— — - —

Ry S

Figure 7.1: CoLoRS architecture. There is exactly one CoLoORS server progbssh
manages the shared memory segment and runs concurrent G@néxufdr different
languages (Java and Python in this case) attach to the shraeubry segment and
allocate/use objects in the shared heap.

7.2 Design and Implementation

A primary design goal of CoOLORS is to provide type-safe, transpt, direct object
sharing between co-located managed runtimes for diffedgdtlanguages. This in-
cludes both statically-typed (e.g. Java) and dynamidgihed (e.g. Python) languages.
The key challenge with providing such support are the majterénces between lan-
guage implementations, including object/class modelsnamg models, type systems,
builtin types, standard libraries, and memory managent@) (For instance, dynamic
languages support attribute (member) addition at runtwhée static languages permit

class changes at compile-time only.

239

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Figure7.1shows a high-level view of a CoLORS system. In this example \fivb
processes (one for Java and one for Python) are co-locatednoulti-core system.
There is exactly one CoLORS server process which managesdhedsheap (this in-
cludes the setup of the shared memory segment, data seunttialization, as well
as support for garbage collection). Each VM process hasaits @rivate heap and a
private object/class model and runs its applications thseln the shared heap, there is
a CoLoRS object/class model which is transparently trargskate private object/class
model in each VM. All VMs map the shared memory segment at dineesaddress in
the virtual address space and use shared objects direathounters.

CoLoRS does not allow pointers from the shared heap to anytpieap because
of memory/type safety. In our experience, this restrict®rarely violated in standard
libraries and most existing classes can be shared withgquhaxifications.

Static (class) fields are not subject to sharing becausedfiey represent local
resources and sharing them would break resource isold&t@mrnstance (object) fields,
however, CoLORS supports fully transparent sharing with neega allocation, GC,
field access, (virtual) method invocation, monitor syncization, standard libraries,
and class loading.

We do not support code sharing because that would requineirgf VM-neutral
language and checking whether two methods are equival@nthwn general is unde-

cidable. Instead, CoLORS guarantees type-safety for data/sharing only. To reduce

240

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

the programming effort associated with ensuring that tlieedmehavior matches across
different languages, methods can be translated betwegundges automatically. Note
that it is sometimes desirable to have different class impletations/interfaces in dif-
ferent VMs: standard libraries differ across languageswadio not want to unify
them because programmers are used to existing librarieshane is a lot of legacy
code written to them. Sharing only instance fields makes CoLoBi® practical as the
code and static data do not have to match across languages.

A general approach we take in CoLoRS is to define a languageaheshared
object model (with respect to non-static data) and then niyeelly map it to each
runtime-specific object model. To implement this, we vilizeall runtime components
that rely on a specific object model. Modifications to runsnaee necessary to make
object sharing transparent. In particular, COLORS needsténdept all field accesses

to handle shared objects correctly.

7.2.1 ColLoRS Usage

CoLoRS provides a simple application programming interf&¢dlY for developers.
The CoLoRS API for Java comprises the following methods inSheredMemory
class (Python has equivalent API):

Object copyToSharedMemory(Object root);

Object allocate(Class objectClass);

241

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Object allocate(Class containerClass, int length);
boolean isObjectShared(Object object);
ObjectRepository findOrCreateRepository(String key);
ObjectChannel findOrCreateChannel(String key);

Type getSharedType(Object object);

CoLoRS supports two ways of creating shared objects: viatdigect allocation (the
allocate method) and via deep copying of a private object graph toesharemory
(the copyToSharedMemory method). Theillocate method has two variants: one for
allocation of fixed-size objects and one for allocation afteiner objects (which takes
the initial size of a container as a parameter).

Note that we do not support a state model where a thread cachswithe shared
mode and issue regular object allocations to allocate ineshiaemory (as is done in
related work on cross-JVM sharingg§0d). The reason is that the state model requires
complex rules specifying which allocations should tardired memory. For instance,
in a JVM, we must exclude class loading, static initializeasd exception handling
from leaking objects into shared memory.

CoLoRS provides two mechanisms to initiate communicationveeh two run-
times: channels and repositories, both of which are nametiesrenabling exchange

of a reference to a shared object. Th&ject Repository class provides nonblocking

242

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

get/set functionality while th&bjectChannel class supports blocking send/receive
cross-VM semantics. The following code fragments show @&midtic repository us-
age for two Java processes. The client process:

ObjectRepository r = SharedMemory.findOrCreateRepository(“db”);

synchronized(rY while(r.get() == null) r.wait();}

The server process:

ObjectRepository r = SharedMemory.findOrCreateRepository(“db”);

synchronized(r) r.set(root); r.notifyAll(); }

For object channels, we have a similar pattern but synchation/waiting is not nec-
essary because of the blocking behavior of send and receive.

Each repository holds a reference to its root object. Eacmiodl has a fixed ca-
pacity for messages and blocks the sender when full. As leng shared object is
reachable from any repository, channel, or any VM, it stdiggaUnreachable shared
objects are garbage collected. Channels and repositoeésantified by a key (string).

The CoLoRS API enables reflective inspection of the shared afeshared ob-
ject via theget SharedType method. We need this APl method because in CoLoRS,
expressions that evaluate to an object class, e.g. olg&Ctass() in Java, retrieve a
private class to which a specific shared class currently m@psee the shared class

before mapping to a private class occw&,SharedType is used. Shared classes are

243

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

regular objects — CoLoRS uses a three-level circular metidatarchy that is fully
traversable by programs wishing to inspect it.

A programmer can check whether an object is in shared memamh&:sObject-
Shared method. The system throwsS&ared M emoryException to prevent shared-
to-private pointers as well as to signal type mapping fagyrout-of-memory errors,

and locking issues.

7.2.2 Shared Memory Segment

CoLoRS uses a dedicated process (CoLoRS server) to manage shamsuty.
There is one CoLORS server per OS instance. This server craategizes, and de-
stroys the shared memory segment, as well as runs concupaaadlel GC. That is,
GC continues to function even when no runtimes are curretthched. CoLoRS was
designed to be scalable (GC, repositories) therefore hanegerver per host is not a
limitation.

To use shared memory, runtimes attach to the shared mengmese (by mapping
it to their virtual address space at the pre-defined, fixedes$). The shared memory
segment contains three spaces: metadata space (for statielasand synchroniza-
tion), classes space (for shared types, repositories, laadnels), and objects space
(for garbage-collected shared objects). Each VM runs aragp@oLoRS thread which

is responsible for collaboration with the CoLoRS server dufC.

244

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

CoLoRS intercepts all field accesses in the VMs and handlesdlad private data
differently. Private fields are read/written in a VM-spezxiftay while shared fields use

CoLoRS accessors.

7.2.3 The CoLoRS Object Model

CoLoRS employs an object model (OM) that aims at transparehetiicient cross-
language object sharing, while supporting both static gméuohic languages. Our pri-
mary goal is maintaining the language-specific OM and ohljkss semantics while a
VM interacts with shared objects. The rationale behind ihi® avoid introducing a
new unfamiliar programming model. In addition, CoLoRS coreRinertain character-
istics of static and dynamic OMs in order to support the flixybof a dynamic model

while providing the efficiency and simplicity of a static nmedd

CoLoRS Type System

CoLoRS preserves language-specific type-safety withoutidgfirew typing rules
by mapping shared types to private types. When mapping adhgreS to a private
type P, in one VM and to private typé> in another VM, we guarantee that any field
access permitted b#, does not violate the field typing constraints imposedyand

vice versa).

245

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

In the CoLORS type system, every value is an object (there apinutive types
like in Java or C#). This is motivated by dynamic languages Fython and Ruby
which treat everything as an object and therefore requatdach value have a unique
identity (address).

Unlike extant systems for cross-language data sharing, R8Ldoes not specify
its own data definition language (DDL). Conventional apphaschave resulted in a
number of domain-specific DDLs, e.g. SQL in relational datsds, WSDL in web
services, and IDL in CORBA. The primary limitation of DDLs isihstatic nature and
the necessity for a programmer to master another languasggeald, COLORS generates
the shared data model automatically from the native langutaga model defined by
the programmer. Moreover, this happens dynamically atmenand only for types that
are used in shared memory.

The CoLoRS OM strives to strike a balance between supportiweysi languages
(both static and dynamic) and staying sufficiently close aoheindividual language
so that costly runtime data conversions are avoided if ptessiAnother key design
tradeoff is to support the flexibility of dynamic languagéesii leveraging the benefits
provided by static typing. In fully static OMs (e.g. Javabjext layout is completely
described by classes, fields are efficiently accessed \satsffeach object consumes
only as much memory as necessary for its attribute valuesthendata model is fully

documented by classes. On the other hand, in fully dynamis @&\Wy. Python) classes

246

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

do not describe object attributes, each object maintainsteodary mapping attribute
names to values, field access is expensive as it takes pkanawies, and space usage is
suboptimal due to the redundancy across attribute diatiesiaHowever, unlike static
OMs, dynamic OMs support dynamic attribute addition/reatl@s well as per-object
attributes.

Several hybrid models have been introduced to mitigate tdtecslynamic trade-
offs. A partially static/dynamic OM is used by Google Applirg where each object
has a static part (fields described by a class) and a dynamti(pea-object dictionary).
On attribute access, the system first tries to use a statictfieh falls back to an object
dictionary on failure. Dynamically created attributes di hecome part of the static
model. A similar concept has been introduced to Python fwea slots _ declaration).
The JavaScript V8 runtime implements hidden classes tolerfiast, offset-based at-

tribute lookup while supporting dynamic attribute additend deletion.

Hybrid OM and Versioning

CoLoRS OM is a static-dynamic hybrid, which can be describedraextensible
static model with versioning and type mapping. Our goal ikeéep CoLoRS OM
as static as possible but still allow the flexibility of modétions (add/remove/change

namef/type of a field).

247

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Shared classes are always created based on private cldssesavprivate object
gets allocated in (or copied to) shared memory. On eachaditwtin shared memory,
we inspect the fields of the allocated object and look for aexhalass being an exact
match for a given type name and field set. If we do not find antexatch, we create
a new class (or if a class with this name already exists, watera new shared class
version, having the same class name but a different field s&t) example, suppose
that we have the following class in Java:
class Employeé String name; double salary;
and we perform shared allocation using:
Employee e = (Employee)SharedMemory.allocate(Employee.class);
If no Employee class is present in shared memory yet, we create one, witli¢las
that correspond to the privatemployee class. Now assume that we add a new field to
the Employee class, sayrmployee manager; and we repeat the shared allocation as
shown above. This time, CoLoRS will create a new version of Haeedd Employee
class, with three fields. Note that at any point in time ther@xactly one private
Employee class (which may evolve in time) and there may be multiplesiogis of
sharedEEmployee class (reflecting the schema evolution). Field removal redhed in
a similar way.

Shared objects use shared classes to describe their ldytigrent versions of a

single shared class may have different layouts in memoryiatitsets. Shared classes

248

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

are read-only, they do not change. However, shared objeaysamange their class
pointers (from one version of a particular class to anotteesion of the class). This
can happen both in static and dynamic languages. For exathpléllowing code in
Python, which uses our two-fielllmployee class:

e = sharedmemory.copyto(Employee('Smith’, 100))

e.state = 'NY’

adds a new field (calle¢tate) dynamically. To support this in shared memory, COLORS
creates a new version of thémployee class and changes the current class ofethe
object to the new class version. Dynamic field removal (ain Python) is handled
similarly.

The advantage of versioning over a pure OO model is lowerespacsumption. In
conventional OO systems, class evolution takes place Welassing: to add or hide a
field a new class is created that inherits from the old classa fesult, it is not possible
to remove any attribute and space is consumed forever byedrfiedds. In contrast,
with versioning, even if classes evolve, the newly-creatg@cts always consume the

optimal amount of space.

Type Mapping

To correctly handle multiple class versions in shared mgmooLoRS uses type

mapping. Each private clagdin a VM always has exactly one version which, at any

249

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

given moment, may be mapped to several different versiookesP in shared mem-
ory (a one-to-many relationship). Except for builtins (elgteger, String), mapping
only occurs between classes with the same name — program#ereat languages
must agree on package/module and class names. We map a Belted a private
field if and only if both have the same name and the same (orecbible) type. In
dynamic languages, we map solely on the field name basis @sdheno static types
available.

Since type mapping is a relatively expensive process, wemeiit lazily, once per
shared-class-version, and maintain the mapping in a privash table in each VM.
We also use a reverse mapping table, to avoid shared-typapdoatching on every
allocation in shared memory. Note that on allocation, wedneeobtain the shared
type based on a private type. In contrast, when accessiniglarfia shared object, we
perform the mapping from a shared type to the private type.

When CoLoRS allocates a new object in shared memory, it trieqtbaishared
class version that exactly matches the private field seteohtwly-allocated object. If
no exact match is found, it creates a new shared class verSionsequently, newly-
created objects do not contain fields that were removed frpmivate class due to its
evolution. The rationale behind this is that we want to kdepdbject size in shared
memory optimal. However, when mapping a shared class tosatprelass in a context

other than allocation, we allow both private and shared Sigddremain unmapped (if

250

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

they do not have a match). When a VM uses an unmapped field irredsbbject, we
dynamically add a field to a class. To do so, we create a nevedltdass version that
contains the previously unmapped field, and change thedlbaject’s class pointer to
point to the new class version. Note that the shared objggits does not change, as
seen from the VM’s perspective — all versions of a shareds@bgays map to the same
private class (with the same name).

Although CoLoRS supports dynamic changes, once the data risosi@ble, both
space usage and field access work exactly like a fully stasaah Also, in the CoLORS
OM, all object attributes are always present in its class @t be introspected via
reflection.

Some VMs, such as Java, support class loading that makessity@to have multi-
ple classes with the same fully-qualified name. CoLoRS supfiug via type mapping.
One shared class can map to multiple private classes (e.gamvmap a single shared
class named a.b.C to all private classes named a.b.C logdsitldyent class loaders).

Figure7.2shows an example where private classvolves from a single-field class
containing “int a” into a class with two fields, “int a” and “Bb b”. Private class! has
exactly one version (the newest one with both fields). Shelas$A has two versions.
Both shared versions are mapped to the private class that they can be uniformly
used, despite being distinct types in shared memory. Thedludbjects space contains

two objects of class! — one allocated for the old version dfand one allocated for the

251

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

<— shared memory

; | private
objects space classes space . memory
i class version | o
object A| 7 |class A listfor A | rivate
'/ﬁ inta |-- ' class A with
a=1 | pointer field “float b”
- PO added
, cldss
object A pOihter e
T 7~ |classA 1 :
= 3 : __» | inta
a=1 1 int a ;
b=0.1 3 --- 1 float b
- float b _
shared to private

mapping (many-to-one)

Figure 7.2: An example illustrating CoLORS versioning and type mappingraste
classA evolves by having a field added.

new version ofA. Note that each shared object uses only as much space asargces
for its attribute set. Both objects have the same type in a \fid,the VM may access
both fields ¢ andb) in both objects. On access to a non-existent fiéloh this case)

in older shared objects, CoLoRS will expand the object to ma&enrfor the new field
(initializing the new field to 0).

Reconsidering the example in Figufin the case when classevolves by having
theo field removed, we have a similar situation. Private cldssgain has exactly one
version (the newest one, with one fieljl Shared classi has two versions, both
mapped to the same private tyde Field b remains unmapped as it can never be used
by the VM and this field is simply ignored in those shared digj¢lcat have it. Note

that newly-allocated shared objects do not reserve a sldigld b, thus using optimal

252

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

amount of space. In contrast, OO inheritance does not abovoval of a field from an
object (unused inherited fields continue to consume slatbjects). Field renaming is
equivalent to field removal followed by a field addition.

Note that using CoLORS cannot lead to broken program invarisetause match-
ing fields can never remain unmapped. Thus, if class impléatiens across languages
match and preserve some invariant in each language, CoLoR@&skrve this invari-

ant too.

Built-In Types and Libraries

CoLoRS provides full transparency for builtin types (e.gingfs, integers, lists, and
sets). Builtin types differ significantly across languaged at the same time are fre-
guently used by programs and libraries. COLORS preservesdaggspecific interfaces
for builtin types by virtualizing the builtin implementati and/or standard libraries in
each runtime. Library virtualization amounts to modifyitng code of library methods
so that these methods check whether any of the method argsimeciuding the re-
ceiver, if any) is a shared object and, if so, to execute &difft implementation of the
method.

CoLoRS defines a set of builtin types which we identify in Tablg with their

mappings in Java and Python.

253

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

We support 64-bit integers, which can be mapped to Pythoand to any integer
type in Java, both primitive, e.gut, short, and reference, e.d.ong, Integer. Having
only one integer type allows us to avoid complex rules fodfreapping during schema
evolution. For example, if we supportéd andshort as distinct integer types in shared
memory, then we would have to define complex semantics fangihg the field type
fromint to short and vice versa, i.e. when we create a new field dynamicallydoesh
we reuse existing integer field.

We use a similar approach in case of floating-point typespatmg only 64-bit
IEEE floats. The CoLoORS 64-bit float can be used in Java as aninfiqadint type, e.g.
double or Float. We do overflow/underflow checks when reading/writing ietéfjpat
fields requires conversion.

For non-container types, we also provid@lcan andstring. As in Thrift [143,
CoLoRS defines three container typést, set, andmap. Containers are untyped (i.e.
may contain objects of different types at the same time).s Thbecause we cannot
automatically infer the container element type (at leastiva and Python), even if the
container is not empty. To support a compact byte array semtation we provide the
binary type, suitable for blobs. Note that in Java, a shdfedcan be used as an array
(of any type) and as @ist. The rationale behind this is transparency — we want to
support Java arrays even though CoLoRS and Python do not hays ap that we do

not change the Java programming model. Non-container typeeger, float, boolean,

254

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

and string) are immutable. Builtin objects always have dyaxte version, exactly one
mapping to a private type, and do not have any programméiteiselds.

In order to use shared objects along with private objects sngle hash-based
container, hash codes and equal-to methods must agrees aardgnes. We unify
them for Java and Python builtin types. For shared objectepR8 provides default
hash code generation, equal-to methods, and less-therodsetall based on object
addresses). They can be overridden by programmers.

For programmer convenience, CoLORS automatically copiescoatainer types
(e.g. integer, string) to shared memory. On field assignfaeay store, the system
checks whether the assignment uses a private r-value ardeddkvalue. If so, and the
r-value is of a non-container type, CoLoRS silently callsdhyeyToShared Memory
method on the r-value, instead of throwing an exceptions itechanism is particularly

useful for constructors.

Static Languages

In static languages, object fields are typed and typicalbessed using field off-
sets. Since CoLORS uses a mostly-static OM, it also identiiddsfin shared objects
by their offsets. Private and shared field offsets may d#feit is necessary to map
between them. Unidirectional mapping from the private eift® the shared offset is

sufficient because VMs always access shared fields usingttiext of a private type.

255

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

| Shared | Java | Python |
integer | byte, short, int, long, char, Byte,
Short, Integer, Long, Character int
float float, double, Float, Double float
boolean boolean, Boolean bool
string String str
binary byte[] bytearray
list List, ArrayList, Object[], int[],
float[], T[], ... list, tuple
set Set, HashSet set, frozenset
map Map, HashMap dict

Table 7.1: Builtin types supported by CoLoRS and their mappings to JavadPgtitbn
builtin types. For transparent and convenient use by progrars, multiple mappings
are possible per shared type.

To make this mapping efficient, we associate a field-offablet with each pair (S,P)
where S is a shared type mapped to private type P. Wheneverogesaa shared field
in a shared object, we index the appropriate field-offskeletevith the private field offset
and obtain the shared field offset.

When inspecting a class of a shared object (e.g. via objeCliages() in Java) we al-
ways get a unique private class as a result. For examgle;er maps taSharedInteger
while list maps toSharedList. However, to ensure transparency, shared builtins can
map to multiple different private types. In OO languagess ttan be implemented
via multiple inheritance. For instance, if we can maleredList inherit from List,
Object]|, ArrayList, etc. then representing sharist as privateSharedList is cor-
rect in all possible mappings. However, some languages (@aga) do not support

multiple inheritance or inheritance of array types. Weeast simulate both by modi-

256

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

fying the runtime so that haredList can be cast to any of the private types that shared
list maps to. We apply a similar approach teteger and float.

Each private class maps to a unique shared class. A genkrdhat we use is that
whenever we allocate private tygeas shared typs, we must later be able to use the
shared types asP.

Type mapping may cause class loading in a VM. This is becausmever we
encounter an instance of a shared typewhich maps to a private typ€, we must
load clasg/. Thus, CoLoRS introduces a new class loading barrier (in VNs tise
dynamic loading).

Since in static languages, the static type of a field is aviglave permit certain
conversions while mapping shared fields to private fieldst usedenote any private
class to which a shared claSsnaps as map). For a given field of shared typeand
of private typeP, CoLoRS allows both upcasts and downcasts during mapping.

Upcasts occur if clasB is a superclass of class m&p©r class mapf) implements
interface P. For instance, we have an upcast when we map a field of shaped ty
list to a field of private typd.ist (because mapist) = SharedList and SharedList
implements thd.ist interface). Or we have an upcast when we map a field of shared
type string to a field of private typebject, becaus&bject is a superclass of class
map(string) = String. Upcasts are most useful to support interface-type priveits,

such ad.ist in Java.

257

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Downcasts take place if clagssubclasses mag]. For example, there is a down-
cast if a field of shared typkst is mapped to a field of private tyg&ring[], because
String|] subclasse®bject|| = map(ist). Thanks to downcasts, private arrays (whose
elements are typed) can conveniently access shared listsérelements are untyped).

To ensure type safety, downcasts require a read barriethwdiiecks the actual
object type on each read access. Upcasts represent a oot operator (analogous
to the array upcasts in Java) and therefore require a wniteeb¢hat checks the type of

the stored object against the expected static type.

Dynamic Languages

In dynamic languages, fields are accessed by name (not mt)fnd static field
types are not available. Therefore, when creating a newedh@ass or comparing to
an existing one, CoLoRS relies on actual types of all non-rtribaites in a particular
object (i.e. the one being copied to shared memory). Thigltees type concretiza-
tion — shared classes created by dynamic runtimes alwaysthavmost derived field
types. Such concretized types can be later used by statimeswithout any problems
because static runtimes allow upcasts during type mapping.

We ignore NULL fields as for them no static (concretized) tgp@ be inferred.
When looking for an exact type match (during copying to shanethory), we allow

type conversions (upcasts and downcasts). No read basrigedessary as dynamic

258

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

languages do not guarantee any particular type for any fi¢devever, each field store
must verify the type of the stored object against an appatgstatic shared type (via a
write barrier).

When mapping a shared tygeto a private typeP, we do not map fields, as we do
not have field types and offsets ih Instead, we just create a hash table mapping field
names to shared offsets. This speeds up attribute accegs(isidone via names).
Since multiple private types can be mapped to a single shgpede.g.list andtuple
in Python both map to sharédst), we employ multiple inheritance if possible (e.g. in
Python) or we extend the runtime to simulate it for the typeguestion.

CoLoRS uses reverse mapping to avoid shared class lookup dna#acation.
Reverse mapping can improve performance only if privateimss of a single private
class have similar attribute sets (a natural property battbat is not always enforced
by dynamic languages). Otherwise, the system might endlyimgeon dynamic field
addition frequently as some objects’ types may be mappettic sypes that have too

few static attributes.

7.2.4 The CoLoRS Memory Model

CoLoRS defines a memory model (MM) that builds on and simplifieswry mod-
els supported by mainstream languages. CoLoRS MM is equivaléme Java MM for

programs that do not contain data races. Java programsethairrvolatile and final

259

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

fields or other race-related aspects of the Java MM may wadkactly with CoLORS
because shared object fields drop their Java-specific madiffython does not define
any MM so using CoLoRS cannot break extant Python programs.

Following the Java Memory Model (JMM) approach and receahdardization
effort for the C++ MM B3], CoLORS guarantees sequentially consistent semantics
only to programs that are properly synchronized (i.e. thbs¢ do not contain data
races). A data race occurs when multiple threads can adeesame object field at the
same time and at least one of them performs a write.

Similarly to Java and C#, CoLoRS provides monitor synchroigmat Monitors
provide mutual exclusion for threads and restrict re-ardpof memory accesses. Mon-
itor entry has load acquire semantics (downward fence)enmibnitor exit has store
release semantics (upward fence). Full memory fence is upgpasted in CoLORS
(following Java and C# design) — a pair of downward and upwandds does not con-
stitute a full fence. In CoLoRS, monitors are fault-tolerah&t VM dies while holding
a monitor, subsequent acquisitions of this monitor do n&dlien a deadlock or access
to corrupted data, but throw a runtime exception beforergmge critical section.

Like the JMM (and unlike the C++ MM), CoLoRS must guarantee bgge- and
memory-safety even in the presence of data races. Ther@fio@oLORS, all pointer
stores and loads are always safe (even with data races)pimsrty is relatively easy

to implement (an aligned machine-word-wide load/storet@snéc on most architec-

260

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

tures). This property is not strictly necessary for typfefsan case of primitive values,
like integer or float, and therefore CoLoRS does not guarahfeenon-pointer fields.
Operations like shared class creation or dynamic field snidédre always thread-safe
because they are rare and can be internally protected bka loc

Note that CoLoRS MM avoids many of the complexities of the IMMshpporting
only instance field sharing (no statics, no methods, no cectstrs) and ignoring field
modifiers like final andwvolatile. Unlike C++ MM, CoLoRS MM does not support
atomic operations and theylock functionality, which simplifies the model signifi-

cantly.

7.2.5 Monitor Synchronization

The CoLoRS synchronization mechanism is an adaptation anpliSaation of
extant, commonly-used schemes, which are inadequate fooR®8lbecause of their
complexity, tight integration with VM services, and rel@non the ability to stop all
the threads.

State-of-the-art high-performance VMs, like HotSpot J\de biased lockindl35
to avoid atomic CAS operations in the common case. Howevaseblilocking requires
safepoint support — it occasionally needs to stop all theattts to recover from its
speculative behavior. Safepoints are needed for bias ateoc(when a thread must

manipulate the stack of the current bias owner) as well alsuiirrebiasing (to walk all

261

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

thread stacks to search for currently held monitors). Onta@fdesign goals in CoL-
ORS is to avoid stopping all VMs at once — such system-widepsiaties are inherently
unscalable and introduce lengthy pauses. Therefore,dlasking is not suitable for
CoLoRS.

Another commonly-used locking scheme is lightweight logiiL 35|, which strives
to avoid using OS primitives in the common case by relying toméc CAS opera-
tions. We have investigated the efficacy of this approachfaodd that in modern
OSes that provide futexes (fast user-mode locking priesliylightweight locking per-
forms worse that an OS mutex. In older OSes, OS-backed symizlation was slow
because it required kernel entry/exit. Linux implementsxas that in the uncontended
case perform one atomic CAS in user-mode for each pair of lockumlock opera-
tions. In contrast, lightweight locking needs two atomic @&$. 35 per uncontended
lock-unlock pair. We have compared the performance of pdmteased locking and
lightweight locking in the uncontended case. We measureditire needed to do one
lock and one unlock. Our results show that lightweight lagkis slower: on a dual-
core Intel Core2 by 31%, and on a quad-core Intel Xeon by 45%réfare, we have
designed CoLoRS to use OS primitives (POSIX mutexes basedexeh) directly.

Most extant monitor implementations (e.g. HotSpot JVM)erge a word in the
object header to assign a lock pointer to an object once aisaogeded. The presence

of such a pointer leads to significant design complexity iaeksystems because once

262

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

the pointer is set, one can only clear it when all threads taged or the object has
become unreachable. CoLoRS does not ever stop-the-worlds@fapoint all threads
in the system), hence we take a different approach.

Instead of using a pointer to a monitor, we hash the objeagesddshared objects do
not move in CoLoRS) into a fixed-size table of monitors kept iared memory. Since
few objects are used as monitors at a time, it is unlikely thaltiple simultaneously-
locked objects will ever hash to the same monitor-tableyefite. hash conflicts are
rare). To avoid deadlocks and decreasing concurrency, ereetietect conflicts in the
hash table and use a collision chain to ensure that eacht@geca unique monitor.
Hash-based locking is also used in GB3|[(GNU static Java compiler) in order to
reduce the object header size. GCJ, however, uses bothadigthtieavy-weight locks.

We use mutexrylock() to avoid blocking the acquiring thread in caseéhis a con-
flict in the lock-hash-table. We also tag lock-hash-tableies with an object pointer,
once a lock is successfully acquired via mutedock(). Each thread locking object
O first checks if a hash-table entry is tagged with O. If so,thtead proceeds to mu-
tex trylock(). Otherwise, if the entry is tagged with P !'= O, wehash to find another
entry. If there is no tag there, we proceed to muigdock(). Dead-object tags are
cleared asynchronously by GC — for each conflict chain, G@teseand locks a new
untagged chain entry, thus temporarily stopping chain esioa (all threads will block

on mutextrylock() in that GC-created entry). GC then clears the dagd in the chain,

263

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

and finally, notifies the blocked threads to repeat theirilugkrom scratch (the re-do
flag is set on the GC-created entry and the GC releases the)mutex

The above synchronization scheme can be transparenttyratésl into Java based
on Java monitors. Python does not support the monitor aftistna(locks are not asso-
ciated with objects) and therefore needs to be extendedieditated API for monitors

(similar to Java).

7.2.6 Garbage Collection

Since CoLoRS targets multi- and many-core systems and avwstEns-wide safe-
points, the most appropriate GC algorithm for shared objectparallel (i.e. using
multiple GC threads), concurrent (i.e. performing most kvaithout stopping the
application), and on-the-fly (i.e. stopping at most onedtrat a time) GC. In addi-
tion, CoLORS needs a non-moving, mark-sweep-style GC because runtimes (e.g.
Python) assume that objects do not move and other ones (@go Mr C#) use con-
servative stack scanning.

We have found extant on-the-fly mark-sweep GCs to be unsaigibén the CoL-
ORS architecture and requirements. Therefore, we haversgsbsagvariation of snapshot-

at-the-beginning (SATB) GC, which is parallel, concurrent] an-the-fly.

264

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

The state-of-the-art in on-the-fly GC systems include thloaeemploy the Doligez-
Leroy-Gonthier 60] algorithm and its extensions by Domani et &1[62] for genera-
tional heap layout and multiprocessors without sequeatiabistency.

State-of-the-art, snapshot-based, on-the-fly GC alguostiequire multiple (three to
start the collection cycle) system-wide handshakes witthalthreads. The mutators
must check whether they need to respond to handshakesntggluang their normal
operation. For scalability, we designed CoLoRS to work at ttanglarity of VMs,
not individual threads. The handshakes would require keepack of all threads in
all VMs. In addition, we do not want to require VMs to impleniéhe per-thread
handshake-polling mechanism, as it is not generally supgan VMs.

A design goal of CoLoRS GC is to abstract away private VM memaanpagement
to one operation: shared root report, without imposing grgcgic implementation
details. As a result, we have designed an on-the-fly GC thes dot use handshakes
and works at the VM level (not thread level). In addition, @eLoRS GC is simpler
(as it does not have any phase transitions) and guarante@saton (some previous
algorithms unreliably depend on the relative speed of thiedor and mutation rate
for termination).

CoLoRS uses thread-local allocation buffers (TLABS) to redalbecation cost.
Each thread performs bump-pointer unsynchronized allmcat its own TLAB. Once

the TLAB is exhausted, it is retired, and the thread requeestsw one. VMs request

265

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

TLAB- and large-object-allocation directly from the objespace. The freelist contains
all unallocated blocks whose size is at least the TLAB size ffeelist is protected by

a lock.

GC Algorithm

Our GC comprises four concurrent phases: flag clearing,repmirt, marking, and
sweeping. The CoLoRS server initiates a new GC cycle as sodmedsetap usage
crosses a specified threshold. The main GC thread is awokan bjlocating thread
once this happens. CoLoRS GC imposes no pauses. If a VM is eaphl#porting
shared roots without causing internal pauses (e.g. as Pgtig, then the system never

needs to pause any threads.

Flag clearing. The main GC thread first clears all GC-related flags in the h€hjs.
operation is fully concurrent. Each object has three GC flpgading (i.e. it needs to
be recursively marked), marked (i.e. it has been recussivalrked), and recent (it has
been recently allocated).

Unlike in extant SATB GCs, in CoLoRS, the snapshot mode is aetivihe time.
This simplifies the algorithm as it avoids complex stategi@ons and handshakes. The
snapshot mode means that all objects are allocated liven(ile the recent flag set) and

mutators use a write barrier: on pointer stores they markweewritten pointer as live

266

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

(i.e. they set the pending flag). When GC scans a live objeetst iss marked flag.
During the flag-clearing heap scan, the main GC thread alsipuates a fully-balanced
heap partitioning that is used later on for parallel scagnifihe key system invariant
is that it is always possible to sequentially scan all block¢he heap, without any
synchronization. We carefully design allocation proceduso that we do not break
this invariant.

GC flag clearing has a similar effect to activating the snapsiode from scratch
in other algorithms, but does not require handshakes. Oi@#8a§s are cleared, the

main GC thread requests root dumps from all attached VMs.

Root report. Each VM must be able to identify pointers into shared memoris
private heap/stacks in an efficient way. In VMs using tracg{@this is straightforward
— we either scan the whole heap (non-generational GC) or umeldable (generational
GCOC). Inthe latter case (e.g. in Java), we extend the cardsalileat we can quickly find
not only pointers from the old generation(s) to the youngegation but also pointers
from the old generation(s) to shared memory. To report shavets in this case, we
simply trigger a fast minor collection and efficiently find pbinters to shared memory.
In VMs which use reference counting GC (e.g. cPython), CoLo&8ack shared

roots as they are created and destroyed, thus being abledid teem any time without

any processing. For each shared reference, we create amall object in private

267

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

memory with reference count set to one. Once the proxy obgobmes unreachable
(which we know immediately thanks to reference countingyeaaim it and forget the
shared root. Note that only private references can existegtoxy object since there
are no shared-to-private pointers.

CoLoRS requests roots from each VM and waits until all reparigea To report a
shared root, a VM sets the object’s pending flag. To ensure stsibility, a memory
fence takes place on both sides once the reporting compl€®isoRS does not use
timeouts because it detects VM termination in a reactive wayl CP/IP sockets. Ter-
mination is noticed right away and the exited VM is removexhfithe waiting-for-roots

list.

Marking. As soon as all roots are reported, the main GC thread irstizdeallel, con-
current marking done by several worker GC threads. Eachavahkead scans its own
heap partition looking for pending objects, and recurgivebrks them using depth-
first search. To ensure dynamic load balancing during mgrkiorker GC threads
employ randomized work stealing. GC threads use barriectsgmnization to meet at
subsequent GC phases.

Once first marking completes, the main GC thread enters a IDapng each iter-
ation, CoLoRS performs parallel, concurrent marking fromdaeq objects. However,

this time it stops marking the object graph once its sees gtoWwith the recent flag

268

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

set. The loop terminates when no new objects have been ma&kaguping marking on
recently-allocated objects guarantees GC terminatioeretis a finite number of “old”
objects in the heap when the GC starts, and all the newlgathal objects are being
flagged as recent. Therefore, GC must finish in a finite numbsteps.

This scheme is correct because after the 1st iteration, emtlgeallocated object
cannot have a pointer to an object that is live but otherwiseachable and invisible
to GC (and thus it cannot be incorrectly left unmarked). Nb& such a situation may
occur during the first marking pass, which marks from the VMtso Our snapshot
write barrier (SATB WB) does not capture root pointer updatésonly captures heap
stores. Suppose that roopoints to objectD, and a new objecd is allocated having
its only pointer set ta). If root r is later updated to point t&/, we end up with a
newly-allocated objeciV that has a pointer to a live object that is reachable only
throughN. The reason for this is that we do not notice root updatesh @usituation
is impossible from the second marking on, as during 2nd ahdeqguent markings we
ignore roots and mark from the pending flags only (i.e. fromphebjects that are

protected by SATB WB). Reconsidering our example in the heapegtinobjectO is

marked as pending onupdate, and will be marked/scanned even if we stop marking

on objectN (which has its recent flag set).

269

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Sweeping. As soon as the marking loop terminates, COLORS moves on to concu
rent, parallel sweep. Each worker GC thread scans its heaqkdying to find the
first potentially-free (candidate) block. This scan is dantout synchronizing with
mutators that are actively allocating objects. Once a G€aithfinds a candidate block,

it acquires the freelist lock and continues the scan as Isrigemcounters reclaimable
blocks. Finally, it removes all found dead blocks from theefist and inserts one coa-
lesced block into the freelist. The GC thread releases #wdit lock and looks for the
next candidate block. Our GC-mutator contract guarantessathblock headers are

always parsable.

7.2.7 Implementation Details

CoLoRS can work under any OS that supports adequate IPC foattio We have
implemented CoLoRS in HotSpot JVM 1.6 and cPython 3.1 undamtin

The first step in the process of extending a VM with CoLoRS supptw determine
the VM object/class model, its relationship to the CoLoRS OMymry management
(GC) algorithm(s), and operations that use objects, tylyiéi@ld access, method calls,
synchronization, etc. Next, we define type mapping for msland user-defined types,
and add any runtime extensions (such as multiple inheefatocsupport it. The next
step is heap access virtualization which amounts to exterath interpreter, a JIT com-

piler, or both, to provide a separate control path for hamyihared objects. Depending

270

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

on a VM, other components may need similar extensions, leegGC subsystem. Typ-
ically, we must intercept all program instructions thatd/e@aite heap objects. Next,
we insert calls to the CoLoRS API along the newly added contatthga This step
translates VM-specific operations into VM-neutral openasi (e.g. getting an attribute
by name into getting a field by offset). Lastly, we add GC netisupport — we im-
plement a dedicated CoLoRS thread and the shared-root-duengtmm in the private

GC system.

7.2.8 Shared Memory Layout

The CoLoRS shared memory segment contains three spacesataetddsses, and
objects. The objects space is a garbage-collected mar&gstweap with TLAB/free-
list allocation. The classes space is a bump-pointer spaceninortal objects that
contains shared classes, class version lists, and registéject repositories/channels.
The metadata space contains pointers to all builtin typethé classes space), pointers
to the repositories/channels hash tables (mapping namesptsitories/channels), a
pointer to class versions hash table (mapping names to was®n lists), as well as
user-level monitors, internal system locks, the freelestdy space usage statistics, and
the bump-pointer top (for the classes space).

Each CoLoRS monitor has its POSIX mutex and condition variale use the

PTHREAD.PROCESSSHARED flag to make the POSIX mutexes and conditions work

271

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

across OS processes. In addition, monitors use the renuwrsimt (to avoid re-locking
by the same thread) as well as owner ID (VM ID plus thread ID).

The CoLoORS server maintains additional state (metadata)ivatprmemory to
manage GC threads, and to track the attached VMs. For eaddhett VM, there is
a dedicated monitoring thread, which detects VM termimatising an open TCP/IP
connection to a VM. On VM termination, the monitoring threadeives an error when
reading from a closed socket. Note that OS-level IPC (e.ckeds) is the only reliable
way of detecting process termination without resortingrtebut/keep-alive solutions.
This is because in Unix systems certain signals (e.g. the_lslgnal) cannot be inter-
cepted.

We group class versions into lists based on their name. Ofgpositories/channels
and classes are permanent entities — we do not collect thetimegisare small and
reusable. Object repositories/channels are treated a®@€during GC.

GC flags are implemented as one-byte-wide fields becausencio@nt access.
We assume that writes issued by a particular thread ardevigitother threads in the
order they are issued (sequential consistency guaraiisgs t

The objects space is a contiguous sequence of blocks. Eadhdan be an object, a
free chunk (part of the freelist), or a TLAB. The block headamtains two fields: block
length and block type. This enables quick traversal of trepheithout parsing actual

objects — a key property for our concurrent GC. TLAB blockstaanan owner ID,

272

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

which identifies the VM that is currently using the TLAB. Thisables us to reclaim
TLABSs orphaned by asynchronously terminated VMs.

To provide transparent object sharing, CoLoRS intercept¥Mlloperations that
access heap memory. To efficiently check whether an objstiaired, CoLORS uses a
constant border between private and shared area in thaMmmory. Each memory-
related operation, such as field access, compares the paate against this constant

border.

7.2.9 HotSpot JVM

In static runtimes with high-performance, adaptively opting compilers, border-
checks may be expensive as they make the intermediate agee éand more difficult
to optimize. Therefore, in our CoLORS implementation in the$pmt JVM server
compiler, we compile methods in two modes: CoLoRS-aware ancdbB68tsafe. The
CoLoRS-aware mode is used for methods in which shared memarpden deter-
mined (via profiling during interpretation) to be commoniged. For such methods,
border-checking overhead and the additional code thatlésaide shared pointers are
acceptable.

The remaining methods (a vast majority in practice) are datpn the COLORS-
safe mode, where private pointers are the common case. TheRSkafe methods

contain only the minimum number of border-checks neededke & trap on shared

273

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

pointers. Such traps deoptimize the method and recompale @oLoRS-aware, run-
ning the method in the interpreted mode in the meantime. Th®R8-aware methods
use fast upcalls to C to handle shared pointers (CoLoRS is meieed in C). If fast

upcalls fail (e.g. because class loading is needed), web#ib the interpreter.

In CoLoRS-safe methods, we combine null checks with sharedebchecks. As-
suming that shared memory area is at lower virtual addrebsesthe private area,
checking if a pointer is below the border detects both NULInpers and shared point-
ers. If the check passes, we trap to the interpreter, whidls fime actual cause of a trap
itself (the trap cost is not a problem as it is the uncommoe pagh). In CoLoRS-aware
methods we guard virtual method calls to prevent calling atCoLoRS-safe method
with a shared receiver (such calls need a trap). CoLoRS-sateon® must translate
user-provided null checks into null-and-border checksvimdaeliding border checks
along with null checks.

We also perform approximate data flow analysis which coraely computes all
methods which can operate on a pointer to a shared objectaffdgsis exploits the
fact that shared pointers can only be produced by the mefhaisthe CoLoRS API.
We dynamically and incrementally build the call graph as®sés are loaded. In the
graph, nodes represent methods and there is an edge frommntme, if methodm
can pass/return a reference to methodn case of interface methods, we have addi-

tional edges leading to all implementors of a particularirodt We divide all loaded

274

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

methods into two classes: private and potentially-shafrizate methods can never
reach shared objects. If any potentially-shared methodagwtheputstatic byte-
code, then we assume all methods containingthietatic bytecode to be potentially-
shared. Otherwise, if a method is reachable from a potgrshbred method in the
call graph, that method is also considered potentiallyesthaPotentially-shared meth-
ods are compiled as either CoLoRS-aware or CoLoRS-safe, deyeowlithe profiling
data. Private methods do not contain any instrumentatibclass loading makes a
previously-private method potentially-shared, we maleerttethod non-entrant and re-
compile it.

CoLoRS intercepts all bytecode instructions that accesstbje the heap (both
fields and object header): putfield, getfield, arrayloadayestore, invoke, monitor-
related ones, arraylength, and objectclass. We extenddt@pdt template interpreter
and the server compiler (both targeting amd64). In additivirtualize the HotSpot
runtime written in C (biased locking, GC, class loading, JBWM, JMM, JVMTI).
Several internal classes are not allowed to be in instaatiat shared memory (e.g.
Thread, ClassLoader) — they are VM-specific and do not makseserthe context of

other VMs.

275

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

7.2.10 cPython Runtime

We virtualize shared objects via private proxy objectsheamtaining a forwarding
pointer to a shared object and a normal Python header (ceimgpmprivate type and a
reference count). This design choice is dictated by thetfattPython uses reference
counting GC and CoLoRS uses tracing GC (so there is no refeenogs in shared
object headers). The cost of one level of indirection is cengated by the fact that
we do not need to perform type mapping on each shared objeessie proxy objects
have their private type computed once. All proxy objectsehidne same size and are
bucket-allocated in a dedicated memory region (for fastieochecks). Deallocation
takes place once a reference count drops to zero. Thus, theanwof proxies never
exceeds the number of private-to-shared pointers. Firghiaged roots in such a setting
is fast and amounts to a linear scan of the proxy object region

Proxy objects also simplify Python runtime virtualizati@s the Python interpreter
dispatches basic operations such as field access, methodnthbperator evaluation,
based on object type (note that proxies already have theepmpvate type set). We
provide a new private type for each builtin shared type, dedinterpreter automati-
cally invokes the right implementation (shared/privaieython VM allocates only one
global TLAB because the interpreter is single-threadedsamdilates multi-threading

by context-switching between program threads. The Pytbatime component most

276

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

complex to virtualize are standard libraries and builtipey, which provide rich, com-

plex interfaces (e.g. for sorting, concatenation, settakgestc).

7.3 Experimental Evaluation

An important practical use case for CoLoRS is improving comigation perfor-
mance of RPC in the co-located case. We evaluate CoLoRS in thtextdbecause
there are cross-language RPC frameworks, such as CORBA,, Bnatiocol Buffers,
and REST, to which we can compare. CoLoRS, however, providegisantly more
functionality over extant cross-language RPC systems bpliewggadirect, type-safe,
and transparent object sharing.

We compare CoLoRS-based RPC against extant RPC frameworksis ¢écom-
munication performance (i.e. latency and throughput). We avaluate end-to-end
server-client performance (response time and transachit®) for two applications:
Cassandra and HDFS. Finally, we measure the overhead of Colrop®drams that
do not employ shared memory, using standard community meadts for Java and

Python.

277

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

7.3.1 Methodology

Our experimental platform is a dedicated machine with a epaad Intel Xeon and
8GB main memory. Each core is clocked at 2.66GHz and has 6MBecaWe run
64-bit Ubuntu Linux 8.04 (Hardy) with the 2.6.24 SMP kernel.

We use HotSpot JVM from OpenJDK 6 build 16 (April 2009) corediwith GCC
4.2.4 in the 64-bit mode. Our configuration employs the ge(@@) compiler, biased
locking, and parallel GC (copying in the young generatiod eampacting in the old
generation). For the Python runtime we use the open-soudigthon 3.1.1 (released
August 2009) compiled with GCC 4.2.4 in the 64-bit mode.

To measure CoLORS overhead in Java, we use DaCapo’08 and SPEI)jl@nd
'05). We set the heap size to 3.5x the live data size so thatdB@tg does not dominate
performance and so that we capture all sources of overheadis@/the default input
for DaCapo and 5 warehouses, with 90s runs, for SPECjbb.

In Python, we evaluate CoLoRS overhead using PyBench (a doheat tests that
provides a standardized way to measure the performancetiobiPymplementations),
a set of Shootout cPython benchmarks (fratl]], and PyStone (a standard synthetic
Python benchmark).

In all experiments, we repeat each measurement a minimuravehstimes. For

experiments that employ shared memory, we perform sufidierations to guarantee

278

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Thruput in calls/ms; CoLoRS/RPC in parenthesis
RPC boolean integer float string
CORBA | 173.22 (11)| 82.67 (26) | 83.20 (27) | 75.96 (15)
ProtoBuf| 31.73 (59) | 30.98 (70) | 34.32 (65) | 26.43 (43)
REST | 23.17 (81) | 22.45(97) | 21.89 (102)| 22.94 (50)
Thrift 237.04 (8) | 283.23 (8) | 274.37 (8) | 149.08 (8)
CoLoRS | 1876.08 (1)| 2175.32 (1)| 2231.45 (1)| 1144.87 (1)

Table 7.2: Throughput for the microbenchmarks for builtins. For eaeltadtype,
we show the throughput in calls per millisecond; in paresgéise we show the CoL-
0RS/RPC throughput ratio.

that GC is performed by CoLoRS. We report average values. Emnelatd deviation is
below 5% in all cases.

CoLoRS reserves 256MB in shared memory for objects and 64MBlésses. We
use 32KB TLABSs, and 2 parallel GC threads. In each experimgatemploy two
co-located runtimes: Python and Java. Whenever running arodified (CoLoRS-
unaware) JVM, we set its heap size to 300MB so that its privegmory is comparable
in size to the shared memory.

Note that our results underestimate CoLoORS potential sincenpéement ColL-
oRS in Python 3.1 and compare its communication performaiitbeRPCs running on
Python 2.6. This is because the RPC frameworks that we usenoayet been ported
to Python 3.1. To quantify this difference we evaluate théguemance of Python 3.1
relative to Python 2.6. The last column in Taldl& shows the overhead of Python 3.1
relative to Python 2.6 across our set of benchmarks. On geeRython 3.1 is slower

by 20%.

279

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Thruput in calls/ms; CoLoRS/RPC in parenthesis
RPC tree:1 tree:2 tree:3 tree:4
CORBA | 14.67 (13)| 4.68 (15)| 1.83 (17)| 0.86 (17)
ProtoBuf| 2.85(68) | 0.88 (78)| 0.36 (85)| 0.17 (91)
REST | 8.73(22) | 2.66 (26)| 0.91 (34), 0.31(49)
Thrift | 15.38 (13)| 4.27 (16)| 1.80 (17)| 0.87 (17)
CoLoRS| 193.66 (1)| 68.61 (1)| 30.61 (1)| 15.08 (1)

Table 7.3: Throughput for the microbenchmarks for user-defined types.each data
type, we show the throughput in calls per millisecond; ingpéneses, we show the
CoLoRS/RPC throughput ratioree : n means the type is a full binary tree of depth

Latency in ms; RPC/CoLoRS in parenthesis
RPC boolean | integer float string
CORBA | 0.62 (14)| 0.65(19) | 0.62 (14)| 0.63 (14)
ProtoBuf| 0.22(5) | 0.31(9) | 0.21(5) | 0.23(5)
REST | 3.89(90)| 3.89 (113)| 4.00 (89)| 3.92 (90)
Thrift 0.09(2) | 0.10(3) | 0.21(3) | 0.12(3)
CoLoRS| 0.04(1) | 0.03(1) | 0.04 (1) | 0.04(2)

Table 7.4: Latency for the microbenchmarks for builtins. For each dgpe, we show
the latency in milliseconds; in parentheses, we show the RR@IS latency ratio.

Latency in ms; RPC/CoLoRS in parenthesis
RPC tree:1 tree:2 tree:3 tree:4
CORBA | 0.68(17) | 0.82(15)| 1.13(17) | 1.92(19)
ProtoBuf| 0.55 (14) | 1.32 (23)| 2.90 (44) | 6.02 (58)
REST | 4.07 (101)| 4.80 (85)| 7.35(111)| 9.94 (96)
Thrift 0.19(5) | 0.35(6) | 0.74(11) | 1.38 (13)
CoLoRS| 0.04(1) | 0.06(1) | 0.07(2) | 0.10(2)

Table 7.5: Latency for the microbenchmarks for user-defined types. damh data
type, we show the latency in milliseconds; in parenthesesshow the RPC/CoLoRS
latency ratioiree : n means the type is a full binary tree of depth

280

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

7.3.2 CoLoRS Impact on Communication Performance

We first evaluate the performance potential of CoLoRS-basedi®i@ communi-
cation microbenchmarks with a range of message types agsl 3ie implement equiv-
alent microbenchmarks using RPC frameworks for CORBA, Theifgtocol Buffers,
and REST. We compare RPC latency and throughput (call rate).

For the implementation of the microbenchmarks, we use adpytlient and a
Java server. Whenever possible we employ RPC methods with duthmetric in-
put and output (i.e. returning a data structure similar ® dhata structure passed in
as an argument). This ensures that the server and the ckertige data structure
(de-)serialization in a symmetric way.

To evaluate RPC throughput, we vary method input/outputiseteeen 1 to 1024
units and measure mean time per method call. Next, we udedgaares linear regres-
sion to compute throughput from the coefficients in the equaime = latency +
size/throughput. We calculate latency as the mean time needed per call foinni
put/output. We employ this methodology because we havaeddéhat for small input
sizes the functiorime(size) is sometimes non-linear and approximating it by a line
leads to an inaccurate latency estimation.

Each RPC method call takes a list as input and returns a listigsio List sizes
vary between 1 and 1024. For each list size we do 10 expersnagtuse their average

in the calculation above. We use several different objestisa elements, including

281

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

80 80
Boolean Boolean
70 - 70 -
- Integer = Integer
o 60 60 —
.g Float _E e F|oat
[[
.S 50 - String § 50 String T
S
% 40 - BinTree-Depthl § 40 - BinTree-Depthl
< . =3
ﬁ 30 BinTree-Depth2 ";J' 30 BinTree-Depth2
& 1)
g 20 4 BinTree-Depth3 § 20 BinTree-Depth3
< BinTree-Depth4 < BinTree-Depth4
10 10

e 0 —)/

— N < 0 O N <
- n O

0 — —

— N < 00O N T 0O N <
N O AN N AN
HNWS

Data Size Data Size

Figure 7.3: Average execution time (in seconds) for CoLORS (left) and CORf#h()
experiments.

built-in primitive types (string, integer, float, and boaig and user-defined types. For
the latter we employ binary trees, the depth for which rargeeen 1 and 4 levels,
and each node contains 4 primitive fields. This enables us/&stigate both shallow-
and deeply-linked data structures. The above choice istidsated by the limitations
of extant RPC frameworks which support a small set of builind do not support
recursive data structures. (Note that CoLoRS provides arrarimore flexible object
model than these RPC systems.)
We implement an RPC endpoint in CoLORS as a message queue onaxdecher

waits for messages (call requests). Each message is an eb@psulating input and
output. A clientissues a call by allocating a message olgext the associated input) in

shared memory, enqueuing it, and notifying the server. Emees removes the request

282

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

from the queue and generates the output in shared memosllyi-ihe server notifies
the client that the result is ready (as the output field in tlessage object).

For all experiments, we report throughput as the number ltf par millisecond,
and latency in milliseconds. Due to space constraints, iiemesent timings graphs
that compare CORBA to CoLoRS. This data is shown in Figu@ The x-axis is
message size and the y-axis is time in seconds. This datpresentative of all of the
RPC experiments. We summarize the latency and throughpuaichf lgelow.

Table 7.2 and Table7.3 show throughput across all microbenchmarks and RPC
systems. We report both absolute values and relative inepnent due to CoLoRS.
Table7.4 and Table7.5 use a similar format but presents results for our latency-mea

surements.

CORBA. The Common Object Request Broker Architecture (CORB3(] [stan-
dardizes object-oriented RPC across different platforarguiages, and network proto-
cols. A clientand a server use automatically-generatdasstond skeletons to (de)marshall
arguments and return values for methods specified in thefdoeDefinition Language
(IDL). To implement our CORBA benchmarks, we use thg.omg.CORBA package
and theidlj compiler in Java and thEnorb module and thgnidl compiler in Python.
Our measurements indicate that, compared to CORBA, CoLoRSvashild—-27 times

better throughput and 14-19 times lower latency.

283

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Thrift. Thrift is a framework originally developed at Facebook foalgble cross-
language RPC. Like CORBA, Thrift requires a language-neuttafface specification
from which it generates client/server template code. HawneVhrift is simpler and
much more lightweight than CORBA. We use Apache Thrift versd608/04/11. Our
experiments show that CoLoRS improves throughput by 8—17%tene latency by 2—
13 times, over Thrift. We also find that Thrift achieves mudttér performance for

builtin types than for user-defined types.

Protocol Buffers. Protocol Buffers (PB) are a language-neutral, platform-radugx-
tensible mechanism for serializing structured data, dpexl by Google engineers as
a more efficient alternative to XML1R9. To use PB, developers specify message
types in a.proto file, and a PB compiler generates data access classes thattall
parse/encode objects into a bytes buffer/stream. We useePdowu 2.2.0, which in-
cludes message parsers and builders but does not support REX@fdre, we imple-
ment RPC on top of PB by using PB serialization and commuricatver TCP/IP
sockets. We maintain a single TCP connection throughout@goériment. Each mes-
sage that we send from a client to a server, contains a me#tgpdhtessage length,
and PB-serialized data structure (method input). CoLoRS iugsrthe throughput of

PB-RPC by 43-91 times and latency by 5-58 times.

284

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

REST. REpresentational State Transfer (RES®&$|[is a client-server architecture
based on HTTP/1.0 where requests and responses are builidattte transfer of rep-
resentations of resources. REST provides stateful RPC byaagaig documents that
capture the current or intended state of a resource. Indavicesources are identified
in requests by URIs. In our benchmarks, we define a single resatored on a server
and identified bynt t p: / /1 ocal host : 8080/ db/ i t ens. A representation of this
resource is an XML document containing all stored items.@isend> E'T requests
to the resource URI, and parse the resulting XML documents @bcument contains
a varying number of items (1-1024), where each item is edhgrmitive or a user-
defined object. We employ the Pythoest ful_lib to implement the client and the Java
restlet (version 1.1.6) for the server. Relative to REST, CoLoRS thrpuglts 22—-102
times higher and latency is 85-113 times lower. REST has tjteekt latency among
all of the RPC technologies that we investigate because ofdti®se data format and

parsing overhead of XML.

7.3.3 CoLoRS Garbage Collection

We gathered basic GC statistics for our Java-Python miciearks. The results
are similar across all the payloads that we use (descriltbeé jprevious section). Below

we discuss the experimental data obtained for 4-level pitraes.

285

http://localhost:8080/db/items

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

We set the GC triggering threshold to 70%. Average time betwsibsequent GC
cycles is 1458ms while average GC cycle time is 325ms (GCtigeat8% of the
time). Note that GC runs concurrently in a separate procEss.clearing phase takes
94ms on average (29% GC cycle). The root dump phase was 12msoage (below
0.4% GC cycle). In the HotSpot JVM, each root dump requessesa STW pause
which averages at 0.8ms (with the maximum pause of 2.9mg)Python there is no
pauses. The marking phase takes 116ms on average (36% &(. dyeb object graph
scanning iterations suffice on average (the maximum is 3¢ Siteep phase averages
at 113ms (35% GC cycle). The dominating GC phases are markimgeping, and

clearing, each taking around 1/3 of each GC cycle.

7.3.4 CoLoRS Impact on End-to-End Performance

To lend insight into the CoLoRS potential when used by actupliegtions, we
investigate two popular server-side software systems: dbasa P] version 0.4.1 and
HDFS [78] version 0.20.1. Cassandra is a highly scalable, eventoalhgistent, dis-
tributed, structured, peer-to-peer, key-value store lopesl by Facebook engineers.
HDFS is the Hadoop Distributed File System — a file systemesehat provides repli-
cated, reliable storage of files across cluster resourceth @ddhese systems are em-
ployed for a wide range of web applications, e.g. MapRedudadgd (open-source

BigTable implementation), email search, etc.

286

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Cassandra and HDFS both expose Thrift-based interfaceseTimerfaces provide
a set of query/update methods which use relatively comméx structures (e.g. maps).
Query methods are natural candidates for in-memory reaalting, recently a common
approach to scaling up servers (e.g. MemchacheD, MySQLegatitcaching is used,
then in the common case (i.e. on cache hit), server progessiminimal and therefore
communication constitutes a large portion of the end-w@erformance.

In systems with in-memory caching, CoLoRS can improve peréme in two
ways. First, it can reduce RPC cost by avoiding serializati®@econd, part of the
in-memory cache can be kept in shared memory — immutabletsbgeich as strings
can be shared by multiple clients without the risk of integfece. As a result, CoL-
ORS can provide copy semantics without actually copying.datinvestigate both
these scenarios, we extend Cassandra and HDFS with in-mecings for particular
gueries and evaluate the efficacy of using CoLoRS for theseagpen end-to-end per-
formance. Note that when caching is used, the benchmarksigenot only copying
to shared memory but also frequent access to shared objdath(includes translation
overhead).

For Cassandra, we implement caching forghe key_range query (parameterized
by table name, column family, start value, end value, marinkeys count, and con-
sistency level). The query returns a list of keys matchirggiven criteria. Updaters,

such as insert and remove, detect conflicting modificatioddavalidate the cache ac-

287

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

90

18 -
’l
16 ! 80 1 J
< 70 - '
% 14 " . ;
S = === Cassandra-Cache) £ 60 | = == =HDFS-Cache !
= 12 1 = []
c (] g]
o - 50 m
g 10 Cassandra-CoLoRS " E — -CoLo
g !
Q] Q 40 -
sz 8 ! o J
(V] Q |
® 6 / % 30 y
[} / [h)
3: 4 ’I 3: 20 ’/
2 oL 10 2
- .’
________ — -
0 —— ‘ ‘ 0 - :
— N < 00 O N S 0O NS N < 0O N S 00O N <
— O N 1N N — O N N N

Data Size Data Size

Figure 7.4: Average execution time (in seconds) for Cassandra (left}-HDES (right)
vs. CoLoRS.

cordingly. The cache is kept on the server and maps inputglfged to a string) to
responses. Cached responses are partially in shared mestramgg are immutable).
Thus, CoLoRS has the potential for improving performance lmydawg serialization
and reducing copying overhead.
For HDFS, we implement an in-memory cache fortheStatus call, which, given

a directory name, generates a listfofleStatus objects, each describing file attributes,
name, owner, permissions, length, and modification time. cthe is a map from path
name to responses, which we partially store in shared mer@aghe invalidation hap-
pens on conflicting file system operations: create, apperitg,wm, rename, mkdirs,

chmod, and chown.

288

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Throughput Latency
Server queries| CoLoRS| in App/
Application | perms| /App ms | CoLoRS
Cassandra| 249.50 19 0.12 3

HDFS 12.03 20 0.19 3

Table 7.6: End-to-end performance for Cassandra and HDFS with caching third
and fifth column show number of times improvement due to CoLodtShroughput
and latency, respectively.

Figure 7.4 presents the timing data for Cassandra and CoLoRS (left gramh) a
HDFS and CoLoRS (right graph). The x-axis is message size ang-#xis is time
in seconds. We use this data to compute latency and throtighbich we summarize
in Table 7.6. Columns 2—-3 show transaction rate (per millisecond) whiléu@aos
4-5 present response time (in ms). We use one cache warnapoitefollowed by
10 iterations during each of which we vary the query resuk sietween 1 and 1024
entries. In each column group, we report measurementsdadiver without CoLORS
and the relative improvement due to CoLoRS. For cache-en&dsdandra, CoLORS
improves transaction rate by 19 times and reduces respomséy 3 times. For cache-
enabled HDFS, CoLoRS improves transaction rate by 20 timedecm@ases response

time by 3 times.

7.3.5 CoLoRS Overhead

To implement CoLORS, we virtualize components of Java anddpythintimes.

This includes standard libraries, object field access,mymization, method dispatch,

289

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Bench- Python 3.1| CoLoRS 3.1| Python 2.6
mark time (s) % OHead % Impr
binary-trees 6.79 3.39 -0.44
fannkuch 1.97 457 24.68
mandelbrot 15.32 7.18 66.52
meteor-contes 2.25 1.78 32.35
n-body 8.67 2.08 7.04
spectral-norm 14.31 5.73 18.85
pybench	392	520	118
pystone	409	587	1298
Average	717	448	2040

Table 7.7: The overhead of CoLORS support for Python (and for the use dfdayt
v3.1 over v2.6). Column 2 is execution time in seconds. Colush@vs the percent
degradation due to CoLoRS. Column 4 shows the percent improwemperformance
when we use Python 2.6 (over 3.1).

interpreter, dynamic compiler, allocation, and GC. Doingpsavides transparency, but
introduces execution time overhead. To evaluate this @athwe compare unmodified
release versions of Python 3.1 and Java 1.6 with their CoLoRBterparts.

Table7.7 shows Python results. In Column 2, we report per-benchmaekigion
times for unmodified Python 3.1. Next, in Column 3, we preseai@oLoRS overhead
— percentage increase in execution times relative to Columtdss our benchmarks,
the average CoLoORS overhead is 4%. Note that scripting lamguag not concerned
with enabling high-performance (they are interpreted amdmslower than statically
compiled code).

Table7.8 shows the Java results. For each benchmark, we report jpssmaand

execution time (for DaCapo — the top 11 benchmarks) or thrpug(for SPECjbb),

290

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Bench- | Heap ET CoLoRS Support
mark Size | orTP % Overhead
antlr 7 2.40 8.4
bloat 28 6.34 6.3
chart 42 6.19 6.1

eclipse | 115 | 24.54 4.7
fop 28 2.11 7.7

hsgldb | 280 3.35 3.6

jython 3 8.35 4.5

luindex 7 7.50 9.0

lusearch| 45 4.25 1.4
pmd 56 6.92 8.6
xalan 105 5.97 -0.6

jbb’00 | 900 | 112726 5.3

jbb’05 | 900 | 54066 1.3

Table 7.8: The overhead of CoLoRS runtime support for Java. Column 3 isugixec
time (ET) in seconds for all but jbb’00 and jbb’05 for which weport throughput (TP).
Column 4 shows the percent degradation due to CoLORS.

and percentage CoLoRS overhead (Column 4). Across the berk$ntlae average

CoLoRS overhead is 5%.

7.3.6 Sockets vs. Shared Memory

We also investigate the relative performance of shared-ongfased transport
(SMTx) and local-socket-based transport (LSTx). This éshs to determine how
much performance improvement is due to the use of shared merasus of sockets
and due to avoiding object serialization.

In this experiment, we extend the Thrift RPC framework foraJewth SMTx and

compare it with the LSTx already built into Thrift (using ooricrobenchmarks de-

291

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

scribed in Sectior7.3.2. We have implemented SMTx in Thrift on top of a bidirec-
tional FIFO channel in a shared memory segment and POSIXxesftonditions. We
focus on Java and Thrift here because of their high-perfooma&haracteristics.

We observe that Thrift over LSTx attains better throughpuhe- improvement
ranges from 1.7x (for the integer payload) to 3.2x (for 4eldvinary trees) and averages
at 2.7x. At the same time, Thrift over SMTx has lower latenmydmall messages (by
up to 29% for the integer payload) and higher latency fordagayloads (by up to 0.8x
for 4-level binary trees), while averaging at 9% lower latethan Thrift over LSTX.

The fact that Thrift/LSTx achieves better overall commatimn performance than
Thrift/SMTx can be attributed to a more efficient socketslenpentation (in the kernel)
than our shared-memory queue implementation (in uset-laindthe kernel, there is
more control over memory mapping and thread schedulingdy, @bivhich can be used
to optimize sockets implementation (e.g. to reduce the amolucopying and thread
context switching).

Based on this experiment, we can conclude that CoLoRS imprbvesghput and
latency because it avoids serialization and not becauseg shared memory instead

of sockets.

292

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

7.3.7 Results Summary

CoLoRS can improve communication performance significantigmruntimes ex-
ecuting interoperating components (potentially writterdifferent languages) are co-
located on the same physical system, compared to extansafpecross-language
RPCs (latency 2—113 times and throughput 8—-102 times). lesgstvith short request
processing times (e.g. servers with caches) this improxmeoan translate to large end-
to-end performance gains (19-20x for transaction rates3aridr response times). As
more and more components are co-located on multi-coresaaiees become prevalent
in servers, object sharing systems like CoLoRS have a grovotengial for increasing

performance of multi-component, multi-language systems.

7.4 C/C++ Support for CoLORS

The main challenges in implementing CoLoRS for unmanagedranogning lan-
guages, such as C/C++, that provide no language/runtime guppautomatic mem-
ory management, threading, concurrency, synchronizagiod type reflection, are the

following:

e Guaranteeing type-safety for the objects in the shared mewilaile preserving
pointer arithmetic, unsafe memory accesses, and uncheggbedasts (useful for

systems programming) in the private memory.

293

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

e Providing transparent access to private and shared oloeetsns of field load/store,
virtual dispatch, pointer and operator usage, builtin g types, and the stan-

dard library (STL, at least for string, map, list, and set).

e Extending the language runtime to include sufficient refledhformation to en-
able implementation of class mapping, recursive objeqgtlgteaversal/copying,

and dynamic field offset translation.

e Extending the memory management subsystem with suppaedbniques typ-
ically used by modern managed runtimes, such as multiteceatiocation in

TLABS, precise root scanning, concurrent pauseless gadugetion, etc.

e Providing monitor synchronization semantics in a form abedry and reconcil-

ing the CoLoRS memory model with the C/C++ memory model.

To address these issues, one can either modify the C/C++ car{g@i). gcc) or use
source-to-source C/C++ code translation. We have taken tteg &pproach because
it is simpler and provides portability across the C/C++ coegil Before compiling
a C/C++ program that uses shared memory to an executable b@akpRS trans-
lates the program source code into its CoLoRS-safe equivddgnising pointer/field

wrappers, templates, and operator overloading).

294

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

7.4.1 Type Safety

To guarantee type- and memory-safety in the shared memobhgR® intercepts
all pointer-based memory accesses as well as pointer atithnunsafe pointers to the
objects in the shared memory (produced for instance via@oarithmetic or arbitrary
type casts) are disallowed. As soon as a program createssugtsafe shared pointer,
an exception is thrown. Although shared pointers cannot&eipulated, unsafe point-
ers in the private memory are allowed and normal pointehmuetic still works for
them.

CoLoRS achieves memory safety by wrapping all pointers in thgnam source
code in an object and redefining pointer-related operaidrgs, the system can detect
all pointer manipulations and check that all pointers tarstiabjects are correct and
that there are no shared-to-private pointers.

For each local/global variable, function argument, an@otdjeld whose type i$*
we change the type topt r <T>. Thexpt r template class mimics pointer behavior

by operator overloading and implicit type conversion.

7.4.2 Transparency

Shared memory objects can be accessed only via pointersoulgjh C/C++ sup-
ports both pointer and value types, shared data cannot darnuaeon-pointer context.

For example, assuming that we have poiptef type A+, expressions lik@- >nane,

295

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

p- >print () are allowed, however expressions likp, p[2] are disallowed. The
reason is that a non-pointer context requires copying, apglicg data from the shared
memory to private memory is not supported because of thapatambiguity of type
mapping in CoLoRS (one-to-many mapping relationship, e.greshclass nt eger
maps to C/C++ int/char/long etc.) Another reason is that ef/enpying to private
memory worked, updates likel 2] . name = NULL; , would be lost as they would
execute on private copies.

C++ references are not supported because obtaining a C+emeéto a shared
object requires going through a non-pointer context, &g& = =*p; . Supporting
references would require substantial parsing/transiagitort (to optimize away the
non-pointer context in cases where no actual copying is trisatihe programmer).

CoLoRS uses C++ exceptions to signal errgrgafedmemoryexceptioris thrown
on error). In C++, type hierarchy does not have a single raaike java.lang.Object
in Java) and therefore the CoLoRS API relies on templates (theR® API functions
are generated for the types that actually use them insteaavoig one implementation
for the root type).

Share-able classes may contain only builtin types and @a@intinteger builtins
(char,short,int,long,long | ong, and theirunsi gned variations) map to

i nt eger. Floating point builtins (| oat , doubl e, andl ong doubl e) map to

296

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

fl oat . C++bool mapstdool ean. Additional predefined mappings exist for STL
string,list,set,andmap. Below, we show an example share-able C++ class.
cl ass Person {

string *nane;

doubl e sal ary;
Per son *manager ;

3
Fieldsnanme andmanager are pointers because they are non-scalar.

C++ uses namespaces for identifier scope management. CoLo&8apping re-
lies on fully-qualified class names. In C++, CoLoRS builds figlyalified class names

using subsequent nested namespaces and dot as a separator.

7.4.3 Programming Interface

The CoLoRS C++ API is equivalent to the CoLoRS Java API (i.e. it sugp
repositories, copying to shared memory, direct allocatpointer testing for being
private/shared, and reflection). CoLoRS adds the monitorhsgnezation API (lock,
unlock, wait, notify, and notifyall) because C++ lacks support for monitors in the lan-
guage. The memory model imposed by the synchronization &omsistent with the
C++ memory model (i.e. semantics is given only to properlyesyonized programs).
The CoLoRS API uses templates with generic code for user-deéilasses and tem-

plate specializations for builtins.

297

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

7.4.4 Type Reflection

We extend the C++ runtime with reflective information becaheeC++ RTTI does
not support inspecting field types, inheritance hierarelmg member functions. With
source-to-source translation, gathering reflection dasraightforward. While pars-
ing/translating a class definition, we collect typing imf@tion and emit it as soon as
the class is processed. For each field in a class we recorakits, rtype, offset, and size
(the last two are necessary because when copying a priv@aet tibthe shared memory

we need to read it field by field).

7.4.5 Pointers, Fields, and Pointers to Members

We virtualize pointers, fields, and pointers to members)gigiree main wrappers:
xpt r for pointers,xf | d for fields, andxof f for pointers to members. Thept r

template class looks as follows.
tenpl ate <class T>
class xptr {
T+ forward;
| ong i ndex;
3
The class contains the actual pointer (forward) and itsxmaléhe table ok pt r objects

(this table is used for garbage collection in the shared nngmdhus, wrapped pointers

are twice bigger than regular C/C++ pointers.

298

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Since C/C++ supports pointers to pointexpt r objects might form a chain. For
exampleAx* p, becomesxpt r <xptr <A>>. The xptr class overloads pointer
arithmetic and implicit conversion to and frofm .

Each non-static field is wrapped xf | d, a template class parameterized by field

type (T), field index (1), and the enclosing class type (H)slaswn below.

tenplate <class T, int |, class H>
class xfld<T, I, H> {

T val ue;
3

For our exampléer son class, the following field wrapping is generated by the trans

lator:

cl ass Person {

xfl d<xptr<xlang_string> 0, Person> nane;
xfl d<doubl e, 1, Person> sal ary;

xfl d<xptr<Person>, 2, Person> nanager;

1
Note that in this case there is no space overhead (the aaldaVélue is the only field
in thexf | d wrapper).

Template parametersT, | , H> are necessary to transparently implement field ac-
cess. Suppose that we execpte>sal ary = 100; on a shared pointgs. This
invokes the assignment operator in #fd d wrapper. The implementation of this op-
erator must compute the actual receiver (shared objeceasldmget the shared type of

the receiver, map this shared type to a local type, competstibred field offset based

299

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

on the mapping, and do the actual field store. The holder (H)raatex (I) parameters
are needed to compute the receiver- (ocal offsetsal ar y)) as well as to perform
type mapping.

Thexf | d class overloads a number of operators to emulate reguldrfedavior
(arithmetic/comparison operators to support numericheoifields, conversion to and
from T, assignment operators, etc.)

We use thexof f wrapper to support C++ pointers to fields in the shared memory.
The wrapper contains only the field index, as shown below.

tenplate <class M class T>
class xoff {

i nt index;
1
During translation, pointers to fields are replaced witf f , e.g. i nt A: : *p be-
comesxof f <i nt, A> p. Fortransparency, thept r class defines the>* opera-
tor that takexof f (xof f <i nt, A> in this case) as a parameter and retwh&d.
Thexof f class has an implicit conversion from all potential poister fields (in this

casefronxfld<int, I, A> A :=*pforalllusedinA). Since C++ does notallow

the dot operator to be overloaded, we translate expresikers. * p into (&) - >* p.

300

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

7.4.6 Class Mapping and Loading

We maintain a mapping from shared classes to private classe®ll as mapping
from full private class names to private classes. The laéteeeded whenever an un-
mapped shared class is encountered (to find a private clagdfoname). The former
is used during each field access/virtual call for offset niragydynamic dispatch emu-
lation.

We use STLmap to implement both mappings (by shared class and by full name)
Each entry in the by-shared-class mapping contains a profass pointer and a vector
for field offset mapping. This mapping is built dynamicatg classes are encountered
in the shared memory.

For performance reasons, each thread caches recentlymegoings in thread-
local (POSIX TLS) partial copies of the two global maps. Tkeato this, mapping can
be done without synchronization in the common case. Theafjlolaps are consulted

only if the lookup fails in the cached maps.

7.4.7 Garbage Collection

CoLoRS GC requires each attached VM/MRE to report all pointerstg) to the
shared memory on request. C/C++ does not have any mechanipneéise stack scan-
ning, safepoints, and locating pointers in the heap. Howewve can reuse thept r

wrappers for finding all shared roots. To do that, we intredihe root table — akpt r

301

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

instances present in the private memory that wrap sharedgusiare registered in the
root table. Threads bulk-allocate multiple root table iestto reduce synchronization
overhead. On construction, ampt r object registers itself in the root table, and on
destruction it deregisters itself. Thus, roots can be tegaoany time by scanning the
root table. The system uses a write barrier when registerisigared pointer to ensure
that all pointers are captured even if a sequential scarr tbeeroot table) misses a
root. The root dump is fully concurrent, we do not need to stop threads (CoLoRS
GC imposes no pauses). This is consistent with the C/C++ pmogiag model, where

there are no asynchronously-triggered pauses.

7.4.8 Virtual Dispatch

The C++ virtual call mechanism is based on a virtual table teoipresent in each
object whose class has a virtual function. The C++ ABI mandétisspointer to be
the first word in an object. Dynamic dispatch in C++ first fetchlee virtual table
pointer, then loads the function address from the table,fawadly calls the function.
We cannot use it directly on shared objects. However, we easerit by introducing
proxy objects. Proxy objects are created based on privasses. We first map a shared
class to a private class, then create a proxy object, peidid@s+ native dispatch on the
proxy, and finally statically call the right function for tleeiginal (shared) receiver. For

example, suppose we have clédsshich defines a single virtual functidn as shown in

302

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

the code fragment below. The translator replaces @dasgh its instrumented version

that has two additional functions.

/'l original code:
class A {
public:
virtual void f(int a) {
[+ f code */
}
1

/'l generated code:
class A {
publi c:
virtual void f_xlang(int a) {
[+ f code =*/
}
virtual void f_xlang2(int a) {
A+ xl ang_recv = xlang fix_receiver(this);
xl ang_recv->A::f _xl ang(a);
}
inline void f(int a) {
if (not_in_shared_nenory(this)) {
f _xlang(a);
} else {
XLangVTBLW apper x| ang_w apper;
A+ xlang_recv = xlang_receiver(this,
&l ang_wr apper) ;
xl ang_recv->f x|l ang2(a);
}
};

Note that the original functioh is no longer virtual, it is statically-bound and inlined.
In that function, we first check if we have to deal with a shaobgect. If not, we

simply proceed to a regular C++ dynamic dispatch on the cureseiver. Otherwise,

303

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

we create a proxy object on the stack. This is accomplisheddxl ang r ecei ver

function, which initializes both fields of the proxy object.

cl ass XLangVTBLW apper { // proxy

public:
voi d *vtbl pointer;
voi d *shared_obj ect;

3

tenpl ate <class T>

T+ xlang_receiver(T *xt, XLangVTBLW apper *w) {
w >shared_object = (void*)t; // receiver
/1 map shared type of t to local type Ic
w>vt bl _pointer = |c->vtbl_pointer;
return (Tx)w;, // return the w apper

The shared receivet | is stored in the proxy object for future use. At the same time
we map the shared classtofto a private class. This private class is used to set up the
virtual table pointer (the first word) of the proxy object.

Once the proxy is initialized, we perform a normal C++ dishata it. After the
dispatch, we end up in tHfe x| ang?2 function, where we restore the previously-saved
shared receiver and call statically the function that gpoads to the function we ended
up in.

Since most functions in C++ programs are static (non-viytwalperform the above
transformation only for classes that have virtual fundioDetermining if a function is
virtual requires walking up the class hierarchy, theretoreimplify the translator we
conservatively find all virtual functions by name — if a sffieaname occurred earlier in

the context of a virtual function we assume that the funcisorirtual.

304

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

To obtain a virtual table pointer for a private class (we nig¢d set up a proxy)
in a portable way, we create an object instance for each @dhsvirtuals, before
the program starts. To do that, we emit an empty construdtainc(for inheritance
and membership relationships) and call this empty consrushain to silently (i.e.
without any side effects) instantiate and delete an obja@.save the first word as a

virtual table pointer for later use.

7.4.9 Standard Libraries

We virtualize STLstri ng, | i st, set, andmap so that shared and private in-
stances of these classes can be used transparently. Oualggproach is to implement
a wrapper class with the same API as the original class. E&liukction first checks
whether a private or local implementation of the functionwdd be used. For the pri-
vate case, we delegate to the wrapped instance. For instanst d: : st ri ng the
wrapper class is the following.

class xlang_string {
std::string val ue;
publi c:
size_t size() const {
if (not_in_shared_nenory(this))
return val ue. size();
/'l shared inplenmentation

}
H

305

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

The translator replaces adlt d: : st ri ng occurrences in the program source with

x|l ang_string.

7.4.10 Implementation Details

We use JavaCC, an open-source recursive-descent parseatgerier Java that
supports variable look-ahead LL(k) grammars. We modify bliply available ANSI
C/C++ grammar for JavaCC to implement a single-pass translaltve translator
builds no abstract syntax tree and mostly copies input tpudutOccasionally, a se-
guence of tokens is buffered and processed together, fongrao emit pointer/field
wrappers. While parsing the input, the translator gathdtsatéeze information about
classes/fields, which is then emitted once a particulasdass fully parsed. The trans-
lator does not perform any syntactic/semantic correctobesks (we assume that the
input code compiles correctly because this can be easilykeldebefore the translation
begins).

For efficient direct allocation in the shared memory and égect graph copying,
each private class has a pointer to a shared class that fallghas the private class.
This avoids repetitive class comparison/lookup.

The shared memory segment is mapped at a pre-defined aduxétaal memory.
Thus, border checks are inlined comparisons with cons{amtsros) that the C/C++

compiler can regroup and optimize away.

306

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

Bench- CoLoRS CORBA Proto.-Buff. Thrift
mark Thr. Lat. || Thr. | Lat. | Thr. | Lat. | Thr. | Lat.
[callms] | ms | [rel.] | [rel.] | [rel.] | [rel.] | [rel.] | [rel.]
boolean| 18.47 | 19.97| 1.69| 551 | 3.04 | 2.19 | 559 | 3.21
integer 6.86 28.44| 3.07| 3.90 | 1.34| 1.55| 2.35| 2.22
float 598 |35.40(| 297 | 3.05| 146 | 1.35| 2.16 | 1.76
string 1.99 16.70(2.44 | 6.93 | 299 | 3.43 | 2.37 | 3.93
1-tree 0.61 29.30| 1.54| 6.72 | 1.46 | 255 | 1.96 | 2.48
2-tree 0.24 25.00(1.97| 597 | 1.70 | 2.75| 251 | 2.95
3-tree 0.11 19.92(2.16 | 11.25| 1.85| 4.33 | 2.78 | 4.63
4-tree 0.05 |43.75| 2.47|1154| 209 | 259 | 3.10| 3.21

[average] 4.29 |27.31] 2.29] 6.86 | 1.99] 2.59 | 2.85[3.05 |

Table 7.9: Microbenchmark performance for CoLoRS, CORBA, Protocol Buffers
and Thrift. Columns 2 and 3 show absolute throughput (caltsnuiisecond) and
latency (in milliseconds) for CoLoRS. Columns 4-9 show reéatiwoughput degra-
dation and relative latency increase compared to CoLoRS (pertraumber of times
degradation/increase).

7.4.11 Experimental Evaluation

We compare the performance of CORBA, Protocol Buffers, andthith the RPC
implemented on top of CoLoRS. We use a C++ client and a Java serdermploy the
same communication microbenchmarks and methodology as ifygthon-Java experi-
ments. For the CORBA C++ client we use omniORB 4.1.4. We exten&wbBuffers
with the TCP/IP transport and send the serialized messagesthe TCPNODELAY
flag.

Table 7.9 summarizes the results. We report per-microbenchmarkigimout and
latency: absolute values for CoLoRS and relative values for CQRBotocol Buffers,

and Thrift (number of times throughput degradation and remdb times latency in-

307

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

crease compared to CoLoRS). On average, CoLoRS throughputes bgt2x to 3x,
and CoLoRS latency is shorter by 3x to 7x. Among all RPCs, CORBA hahitihest

latency and Thrift has the lowest throughput.

7.5 Related Work

CoLoRS is unique in that it supports type-safe, transparedtdaect object shar-
ing via shared memory between managed runtimes for diffetatic/dynamic object-
oriented languages. To enable this, CoOLORS defines a lanqueageal object/memory
model as well as a synchronization mechanism and concloretite-fly GC, all de-
signed specifically for multi-VM cross-language objectraing

CoLoRS takes a top-down approach to object sharing. That issaeme full iso-
lation between the runtimes via operating system (OS) ggsemantics and provide
a mechanism for object sharing within this context. Severavious systemsbp, 10,
65, 115 took a bottom-up approach by executing multiple applmadiin a single OS
process and providing software-based isolation betwesn th

State-of-the-art systems that support type-safe, cergpdage communication for
OO0 languages, such as OMG CORBBQ], Apache Thrift L43, Google Protocol
Buffers [129, SOAP, and REST, target distributed systems and rely onagesgassing

and data serialization. CoLoRS differs from these systentsanit targets co-location

308

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

and transparent shared memory (as opposed to explicit gegsessing). Although
one can use CoLoRS to implement an efficient cross-language &RKefco-located
case (similar in spirit to LRPC2fg]), CoLoRS is more general than RPC systems and
differs from them in terms of both architecture and prograngmodel.

XMem [16(Q provides direct object sharing between JVMs. XMem alsesaktop-
down and transparent approach, but does not support sHagtagen heterogeneous
languages and requires global synchronization acrossmes{which CoLoRS avoids)
for such operations as garbage collection, class loadirages memory attach/detach,
and communication channel establishment.

Systems supporting communication between isolated tasksna single-language,
single-process runtime include Erland,[KaffeOS [10], MVM [53], Alta[11], GVM [11]],
and J-Kernel 157]. These systems take a bottom-up approach which providekeve
isolation (i.e. weaker protection guarantees than the ColLa{ffoach) and is more
complex to implement. Unlike CoLoRS, they replicate OS meidmas within a single
OS process instead of leveraging existing hardware-assister-process isolation.

Language-based operating systems also provide mechafesmmemmunication
and interoperation between processk3g] 65, 89, 74, 96, 63, 27, 170, 94]. Such sys-
tems typically implement support for light-weight processhat share a single address
space and provide compiler support to guarantee type antotsafety within and

between processes. To facilitate the latter, these systequsre that the components

309

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

(processes/tasks) be written in the same safe/checkaigedge. In addition, since
CoLoRS is not an operating system, it is significantly simpler.

Some concurrent languages provide direct support for-pr@cess communica-
tion between light-weight processe [L17, 63] written in the same language. The
key difference between these systems and CoLoRS is that thelpeshare-nothing
semantics for message-based communication whereas CoLaRiSgs support for
direct object sharing when runtimes are co-located on theegzhysical machine.

CoLoRS is also distinct from distributed shared memory andlsiaystem image
runtimes for clusters such as MultiJa41], cJVM [6], JESSICA [L0g], Split-C [51],
and UPC 64]. In contrast to them, CoLoRS provides a uniform cost for asiogsall
objects (private and shared) and does not target distdledamputing. These systems
provide sharing between code written in the same languagkfatus on guarantee-
ing memory consistency and cache coherence for concurcersgs to objects across

multiple machines.

7.6 Summary and Conclusions

CoLoRS provides cross-language, cross-runtime, type-safed memory for co-
located MREs. CoLoRS defines a language-neutral object/iclassdry model for

static and dynamic OO languages, as well as an on-the-flguctent GC and a mon-

310

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimesolimg Cross-Runtime
Memory Management Performance and Programming Model (&iaged Memory

itor synchronization mechanism both adapted and extermlsdgport language- and
runtime-independent object sharing.

We implement and evaluate CoLoRS within runtimes for Pythahdava. CoLoRS
imposes low overhead when there is no use of shared memorjo{dPython and 5%
for Java) due to virtualization of runtime services anddr@s. An important use case
for CoLoRS is improving the performance of RPC protocols in thdocated case. We
have found that for microbenchmarks CoLoRS increases thpugdhy 8-102 times
and reduces latency by 2-113 times. CoLoRS improves the paafare for the cache-
enabled Cassandra database and HDFS by 19-20 times for liprdguand 3 times for
latency. In summary, CoLORS enables type-safe, object shadross OO languages

in a transparent and efficient way.

The text of this chapter is in part a reprint of the materialieappears in [L64).

311

Chapter 8

Conclusion

In this dissertation, we investigate techniques for imprgumemory management
in multi-language, multi-runtime systems that co-locatdtiple isolated components
on multi-core shared-memory architectures. Such systeenbexoming increasingly
common because of a number of reasons. First, in order tmeat@ogrammer pro-
ductivity, developers more and more often use high-leygletsafe, object-oriented,
and portable programming languages, and execute apphsatvithin managed run-
times. Second, to manage software complexity, architgptedlly divide systems into
multiple components, which execute in separate runtimesefsource and fault iso-
lation. Third, to reduce development time, each comporenisually implemented
using the programing language that is most suitable to itstfanality, dependencies,
and performance requirements. Finally, administrataresi@singly co-locate multiple
components to utilize the resources of multi-core archites and reduce the cross-

component communication overhead.

312

Chapter 8. Conclusion

The goal of our work is to improve the performance and prognarg model of
multi-language, multi-runtime systems deployed on meidtie machines by leveraging
OS support for memory management. We investigate new tgabsifor both intra-
runtime (object allocation and garbage collection) andgsnuntime (object sharing,
message passing, and remote procedure calls) memory nma@agé/iore specifically,
we design, implement, and evaluate MRE extensions that erwediter coordination
across the memory management subsystems in the OS kernel andVIRE. These

extensions are described in detail in Chap8f&and leverage OS support for:

e Virtual memory. Since unreachable objects form large clusters in the hkap, t
can be effectively managed at the granularity of virtualgsaigstead of individ-
ual objects. To improve the performance of intra-runtimemogy management,
we develop two collectors, MC and YP, that exploit this statal property and
use the OS virtual memory subsystem. MC leverages page pngappera-
tions to implement partial compaction in virtual memoryuftmaps individual
empty pages and maps them as a new contiguous region inlviteraory. As
MC moves dead space instead of live space, it avoids cosgcotopying and
pointer updates, which results in higher throughput andtehpauses. YP lever-
ages the kernel page reference bits to estimate the pegeeoitéhe heap that is

reclaimable and guide the GC triggering mechanism accglylio avoid unpro-

313

Chapter 8. Conclusion

ductive collections. This allows to reduce the number of G&thus increase

throughput and MMU.

e Shared libraries. We design and implement a portable and lightweight shared
library that enables integration of parallel and concur&@ into existing or new
managed runtimes. The library decouples the GC implementabm MRE in-
ternals via a C interface. It improves intra-runtime memwo@nagement in two
ways. First, by increasing MRE modularity, the library siffips the program-
ming model for MRE developers. Second, by providing an effigieptimized

GC implementation, it improves MRE performance.

e Shared memory. For cross-runtime memory management, we develop type-
safe, transparent object sharing that uses OS shared meegments and the
associated OS inter-process synchronization primitivd&e investigate cross-
runtime sharing in a single-language (Java) and multidagg (Java, Python,
C++) setting. In both cases we virtualize such runtime ses/and components
as object allocation, GC, field access, method dispatch,tor@ynchronization,
class loading, and system libraries. We find that directalgbaring increases
throughput and decreases latency by up to several orderagiitade compared
to state-of-the-art type-safe cross-runtime commuroogtrotocols based on re-

mote method invocation and messaging that require objeetization. In addi-

314

Chapter 8. Conclusion

tion to improving performance, shared memory also enrithegprogramming
model by adding the ability of sharing that has not been alslin managed
runtimes to date and that is more natural than explicit nggspassing for many

applications.

Detailed empirical evaluation of our MRE extensions showstiey enable perfor-
mance improvements both in intra-runtime (GC) and crossiman(inter-MRE com-
munication) memory management. In addition, they enhame@togramming model
for both application and MRE developers through new comnatign primitives and

by simplifying MRE implementation through separation of cems, respectively.

8.1 Contributions and Impact

In this section, we summarize our main contributions andudis their impact. Our
primary contribution is improving performance and prognaimg model of state-of-
the-art memory management within and across managed embgnbetter cross-layer
coordination, specifically OS support for MREs. Other cdnitions that we make
in this dissertation include reducing complexity and imsiag modularity of MREs,
exploiting statistical properties exhibited by progranigumntime, developing better

techniques for garbage collection and direct object shadas well as leveraging recent

315

Chapter 8. Conclusion

hardware and software trends (multi-cores, co-locatiargd 64-bit address spaces,
etc.) to improve the efficiency of memory management systems

The results of our research have appeared in the proceeafihggh-impact-factor
peer-reviewed conferences such as PLDI, ASPLOS, and OOPB}p-safe, trans-
parent shared memory across different, static and dynangulages has never been
investigated in the literature before. Besides their sdienmpact, our contributions
have a significant practical value. MREs and type-safe lagesiavith automatic mem-
ory management have become the major development platfmritmoth applications
and systems. A wide array of software technologies todaging from deskside appli-
cations to enterprise middleware, rely on MREs for obje@+ded languages, garbage
collection, and type-safe RPCs. Improving performance andramming model of
such systems deployed in production settings has the paitémimpact many users
and developers.

Below we describe our key contributions in more detail andarpghow they relate

to the specific techniques and systems discussed in Ch@piers

e Improved cross-layer interaction. We develop new ways of improving the in-
tegration of MREs with the underlying OS and making memory ag@ment
in MREs OS-aware. Our results demonstrate that MREs can signify ben-
efit from more cooperative interaction with the lower-lelayers of the soft-

ware/hardware stack, while maintaining standard and blert®IRE-OS inter-

316

Chapter 8. Conclusion

faces (e.g. system calls, kernel modules, shared librdR€smechanisms, and

shared memory).

We identify new uses for the OS virtual memory support in MREE (Chap-
ter 3) uses page (re)mapping for efficient compaction, YP (Chaptkaverages
the page reference bits for accurate yield prediction, aM@pd (Chaptel) ex-
ploits the level of indirection provided by virtual memormyrfdouble class map-
ping. XMem and CoLoRS (Chapt&) are the first MRE systems described in
the literature that integrate OS support for shared memuaalyirster-process syn-
chronization into a managed runtime for the purpose of sgife-object sharing
and coordination across different OS processes. GaS (CGHgpsecurrently the
only shared library with C/C++ linkage that encapsulates @goent, on-the-fly

GC for GC-cooperative runtimes.

¢ Significant performance increase.We contribute several system and algorith-
mic techniques that reduce the overhead imposed by paaalietoncurrent GC
used in state-of-the-art MREs. Our experimental evaluasioows that these
contributions enable significant improvements in prograecation time and/or
GC pause times (responsiveness). These performance gaidaato low-cost
page-based virtual compaction (MC), predicting and skigpinproductive col-

lections (YP), and integrating an on-the-fly low-pausedrgrbased GC into an

317

Chapter 8. Conclusion

MRE (GaS). To date, page reference bits have not been useditoizgo GC

triggering (YP is the first system to leverage them in thisterit).

In addition, we optimize RPC performance by introducing sfb8RE and cross-
language shared memory to avoid data structure seriazatid copying in the
co-located case. We observe orders of magnitude improvsnrethroughput
and latency which translate to significant end-to-end perémce gains. Presently,
CoLoRS is the only system that can speed up local RPC acrossediftgpe-safe

languages.

e Enhanced programming model.To date, managed runtimes for safe languages
have supported only message passing and RPC as means ofurogs® com-
munication. We enrich this programming model by providihg abstraction of
type-safe shared memory as an alternative. Cross-MRE oltjadng has not
been investigated before and general-purpose languagesdgged behind the
OS IPC in the scope of supported primitives. Shared memaryroprove per-
formance in the co-located case as well as it is a more natoramunication
mechanism and a system model for certain applications. Otenpal practical
use case is improving communication performance for ciasguage RPC in
systems like backend servers at Google and Facebook tkeatadtlocate differ-

ent components. Another possible application are serdersystems such as the

318

Chapter 8. Conclusion

Oracle databasd 19 that are increasingly written in safe languages and whose
architecture comprises a set of isolated OS processes draedsnemory seg-
ment. Multi-tiered enterprise web applications, which osdtiple languages
(e.g. PHP for the presentation layer, and Java/C++ for thaebdse layer) and
run in independent runtimes can benefit from efficient locaLRPHPC systems
using OO languages (C++, Java, etc.) and deployed on clusttensilti-core
machines can use object sharing as a lightweight messagmgasplacement

for co-located isolated worker processes.

Our contributions also improve the programming model for M&&elopers.
Memory management is one of the most complex subsystemsnaged run-
times. Providing state-of-the-art on-the-fly GC, notorifarsits implementation
complexity, as a reusable library (GaS) reduces the denedap effort required

for building new or improving existing MREs.

¢ New memory management techniques and algorithm&lo enable better cross-
layer memory management in the OS and MREs we developed a nofmiew
GC techniques. We designed them specifically for more catiperGC-OS in-
teraction. This involved adapting extant algorithms ansiglang new ones, re-
moving dependencies on runtime services, as well as deogugid abstracting

away the GC internals. Thus far, our GC systems have beenhysex$earches

319

Chapter 8. Conclusion

from Zurich, Switzerland, at the University of Salzburg ddiversity of Texas
at Austin, as well as at AMD Operating System Research CentBromach,

Germany.

MC is the first nearly-one-phase compactor (other GCs thateimgnt com-
paction have two or more phases) and uses one of the sim|gestlams (avoid-
ing object moving and pointer adjustment), which is equakgy to employ in
both stop-the-world and concurrent GCs. XMem and CoLoRS usdlgland
concurrent GC that is adapted to work with isolated and ecadtaddress spaces.
GCs in these systems delegate the root dump operation to ttentiy attached
managed runtimes. In addition, XMem and CoLoRS reduce the MREHG
terface to a minimum to avoid tight coupling and the resgltiack of fault-
tolerance. Both GaS and CoLoRS adapt the SATB GC algorithm bigéxl
Leroy and Gonthier to decouple GC from the runtime servidéss adaptation
introduces an additional phase and removes dependencgdslmal handshakes
and per-thread write barrier buffers. To the best of our Kedge, this is the sim-
plest and most decoupled on-the-fly GC published today. Y®Bdnces a novel
GC triggering mechanism based on page reference bits whapéee prediction
is guided by the feedback from GC. YP is the first GC system tbas program

reference behavior to optimize the GC frequency and timing.

320

Chapter 8. Conclusion

e Type-safe object sharing across language$Vhen we started this dissertation
work, object sharing systems were either limited to a sihgiguage (mostly
Java) or to a single OS process (e.g. KaffeOS, MVM). In addjtthe design
of most such systems was based on the top-down approach; shtomplex,
provides weak software-only isolation, and duplicates @Sssprocess resource
protection. Distributed shared memory systems (e.g. cJMM(tiJav) not only
targeted one language but also focused only on optimiziegligtributed proto-
cols while ignoring co-location. At the same time, OS supfparshared mem-
ory, despite having been standardized and used in produidrodecades, was
neither exploited by managed runtimes nor exposed to agijait developers at
the level of abstraction matching the programming langudgeconsequence,
programs written in high-level languages had to rely on agpe message pass-
ing protocols and occasionally adjust the programming rhidiit the available

abstractions.

Two our most important contributions, XMem and CoLoRS, sigaifitly changed
the landscape of type-safe, cross-runtime and cross-dgy@gyoommunication.
We took a different, bottom-up design approach and buitltigeight shared
memory for OO languages that reuses extant IPC facilitiesstiong OS inter-
process isolation. CoLoRS is the first system that providesselanguage direct

sharing for co-located runtime processes. It addressesnberuof previously-

321

Chapter 8. Conclusion

unexplored research questions and design tradeoffs pedao such aspects as
language-neutral object model and memory model, efficigopart for dynamic
translation between language-specific and shared objgutitsy, type-safety in
hybrid static and dynamic type systems, and decoupled aasparent GC and
synchronization. CoLoRS is currently used by AppScd#g,[a multi-language
distributed cloud system, to optimize communication bemvmtermittently co-

located components.

e Reduced system complexityWhile designing all the systems that we contribute
herein, we strived to leverage OS support not only to impmeormance and
enhance the programming model but also to reduce the coitypdésubsystems
and services implemented by managed runtimes. A primangnig®al of GaS
is to simplify MREs by decoupling GC as a library that exposegel-defined
API. GaS adapts the SATB on-the-fly algorithm to avoid pheaasitions, hand-
shakes, and signal polling, all of which complicate the G@lementation. MC
significantly simplifies concurrent compaction by movinga(vemapping) dead
space instead of relocating live objects and fixing pointéfglem uses double
page mapping to simplify dynamic class resolution and awdrdducing a level
of indirection for dynamic dispatch and type reflection. CBlSoleverages fast
mutex implementations in modern OS (based on user-mode@tparations) to

simplify monitor implementation by obviating the need famghtweight locking.

322

Chapter 8. Conclusion

YP exploits dead object clustering and the OS page replatemechanism to
avoid the complexity of heuristics used in extant systenasraduce the problem

of prediction to counting not-recently-referenced pages.

e Improved decoupling and modularity. The MRE extensions that we contribute
increase the MRE modularity by making the memory managemsergystem
loosely coupled with the runtime internals. GaS decoupfethe-fly GC from
MREs via a simple C interface. The GasS library makes no assangpabout
the object model, threading support, dynamic compiler, lag@p management
framework used by a managed runtime. Both GaS and CoLoRS rerheve t
dependencies of the SATB GC on global safepoints and conditimulti-state
write barriers. In addition, CoLORS adapts the tightly-cedgplightweight and
biased locking schemes in order to separate out the momfmementation from
the MRE. XMem and CoLoRS also modularize the GC by division gboesi-
bility: MREs implement the root dump operation while tracemgd sweeping is

done by the shared memory server.

e Better leverage of statistical properties of programsWe develop and evaluate
the effectiveness of new uses for the widely-known stastbbservation that
dead objects cluster together in the heap. This propertgnpints the design of

MC and YP. MC exploits clustering to implement fast partiatpaction with a

323

Chapter 8. Conclusion

high degree of defragmentation. YP leverages clusterimgtionate the percent-
age of the heap occupied by dead objects by exploiting théHfatdead clusters

are not referenced.

We optimize most mechanisms for the common case that wer eisit@blish ex-
perimentally or infer from well-known program propertiedMem and CoLoRS
implement TLAB allocation that avoids free-list access #mel associated syn-
chronization overhead for small-to-medium objects. CoLoR&zes method
instrumentation in the compiled code by assuming that meathods use only
private data. CoLoRS hash-based monitors exploit the fattitbee are few con-
flicts in the table. GaS GC assumes that most mutations happbe recently-
allocated objects. CoLoRS object model is designed aroundsfiegmption that
dynamic field additions are relatively rare and thus mosgectgjare allocated in

one contiguous chunk.

e Exploiting architectural advances to reduce design tradeds. One of our re-
search goals is to leverage recent hardware trends and ©$asupport to elimi-
nate or diminish the design tradeoffs present in statdwefart memory manage-
ment systems. MC uses large 64-bit virtual address spagsatideenon-moving
compaction and avoid the tradeoff between the cost of defeagation and al-

location speed. In addition, MC provides a simple concurcempacting GC

324

Chapter 8. Conclusion

that does not synchronize with mutators, eliminating thetesy complexity vs.
concurrent defragmentation tradeoff. XMem and CoLoRS leermaulti-core
architectures and co-location to reduce the tradeoff betvmeodularity/isolation
and cross-component communication performance. GaS ssidré¢he tight in-
tegration vs. GC performance tradeoff. YP enables betteahyc control over

the space/time tradeoff in MREs that use GC.

e Comprehensive experimental evaluationFor each of our systems, we perform
a comprehensive experimental evaluation based on standarthunity bench-
marks and open-source applications. Our microbenchmaeksnadeled after
actual application behavior. We use a variety of metrics|uiting execution
time, pause times, MMU, throughput, latency, and scalkgbilDur evaluation
uses production-quality infrastructure: HotSpot JVM aRython are the most
widely-used, most efficient, and sophisticated runtimegdéwa and Python avail-
able today. We compare our systems to state-of-the-art GERBCs used in
both research and production settings. Our methodolog¥yicagand experi-
mental setup reflect the best practices used in the memorggearent commu-

nity.

e Open-source implementation. We contribute our implementations as open-

source GPL projects available for download for free. Theecbdse for MC,

325

Chapter 8. Conclusion

YP, and XMem has been already used by other researchers.n{plementa-
tions require standard, portable OS services and libramelshave been tested

under various Linux distributions on several differentratectures.

In summary, our contributions advance state-of-the-art@mory management pri-
marily by improving performance and programming model, sexbndarily by simpli-
fying and modularizing the MRE architecture. They includeeisystems and algo-
rithmic techniques that have the potential to impact endsysgpplication and MRE

designers and developers, as well as programing languagarohers.

8.2 Future Research Directions

In this section, we identify several avenues for future aeste work. Our contribu-
tions described in this dissertation motivate and fad¢ditdesigning and building new
systems that further advance state-of-the-art in memornyageement, MREs, and be-
yond. We discuss a number of research directions that weueetire worth exploring
based on our empirical results and observations as wellsagrdand implementation
intuition that we have gained while developing the systemslescribed in Chaptegs-

7. We overview both extensions to our contributions and cetay new research

projects along with their potential impact.

326

Chapter 8. Conclusion

Type-safe, transparent shared memory provided by CoLoRSecarstarting point
for a number of different research paths. We identify anéflyrioverview the most

interesting and promising ones below.

e Distributed shared memory. Cross-language, transparent, and lightweight shar-
ing across a cluster of machines has never been investigatede. Previous
work is limited to single-language systems, such as cJ8Mupd MultiJav B1]
for Java. These single-system-image approaches are coapdeheavyweight

because they support whole-system-state sharing andlthmgaation.

e Support for other object-oriented languages.Other popular, type-safe, man-
aged languages like Ruby, PHP, and C# may substantially bémefitshared
memory as they are often used in enterprise web backends&admmunication-
intensive and rely on high-overhead RPC protocols. Suppordditional lan-
guages would also verify the generality and usability of @@_oRS object

model.

e Virtualization support and sharing across guest OSesCoLoRS may be ex-
tended to support object sharing across managed runtimesxacute in sepa-
rate OS instances run in a virtualized environment. VshmgRrd][is a recent

Linux extension that enables using shared memory segmerttssaguest OSes

327

Chapter 8. Conclusion

executed on a single hypervisor. By leveraging the Vshmem 8BLoORS can

support cross-OS cross-runtime sharing.

e Better fault-tolerance for critical sections. An interesting research question is
whether critical sections (delimited by monitor entrytgim the shared memory
can tolerate arbitrary process failures. One possiblecgmprto providing such
fault-tolerance is using transactional memory. At the o#rel of the spectrum is
limiting the programming model to atomic operations andpging support for

full monitor semantics.

e Support for static fields and code. CoLoRS currently provides only instance-
field sharing but it can be extended with support for statid$isvith reasonable
design and implementation effort. Another way to improve #ystem prac-
ticality, is to facilitate sharing of method code acrossgiaages. This can be
accomplished either by extending CoLoRS or by providing aalatd tools, for

instance for automating code generation via cross-largtragslation.

e Fully transparent RPCs: automatic local/remote protocol lection. Optimiz-
ing the performance of RPC protocols in the co-located casssing CoLoRS
should not require any changes to the application code. @blerhis, CoLoRS

requires a co-location discovery mechanism (that idestifileen communicating

328

Chapter 8. Conclusion

VMs start/stop being co-located) to drive automatic séedbetween local and

remote protocols.

We believe that leveraging OS support for MREs can be extendech further.
Below, we describe a number of potential research directluatsseem worth exploring

and might lead to interesting results.

e Fully-virtual compaction via multiple page mappings. Instead of remapping
empty virtual pages, we can remap multiple mostly-emptyepagto a single

page in a way that prevents overlapping of live objects ireithdress space.

e Concurrent moving GC as an OS module to avoid the cost of signaandlers.
Certain concurrent GCs that compact the heap are expensigadeethey rely on
page protection and frequent SEGV signals which requiresiong the process-
kernel boundary. Implementing part of the concurrent GClesiael module can

eliminate this overhead.

e Elimination of the overhead of virtual calls via virtual memory mapping.
The level of indirection provided by virtual memory can bedso devirtualize
megamorphic call sites that cannot benefit from profilingnecaches, and other

dispatch optimizations used by managed runtimes.

e Cooperative thread context switching in the kernel. Extant OSes implement

thread context switching without the knowledge of critisattions in the appli-

329

Chapter 8. Conclusion

cation code. This can lead to unproductive switches, fomgte, while a thread
executes within a critical section. MREs could avoid this bgking monitor

synchronization cooperative with the kernel task schedule

e Using page dirty bits to improve memory managementExisting GC systems
do not take advantage of page dirty bits, a hardware-adsis¢ehanism used by
OSes to implement page replacement. Potential uses ofldigtynclude write

barrier elimination and efficient detection of heap projpsrat run-time.

e Exploiting clustering and other statistics. The empirical observation that dead/live
objects cluster together may be exploited to a larger exigNMIREs to imple-
ment different variants of page-based memory managemetiter @roperties
exhibited by modern programs, such as the fact that oldexctbhave less frag-

mentation than younger onesg?Z, can also lead to better GC performance.

e Decoupling other MRE components as simple librariesln addition to mem-
ory management, several other MRE subsystems may benefitbieamy engi-
neered as reusable libraries, for example, dynamic compiterpreter, profiler,

standard language libraries, etc.

e GC for non-uniform memory architectures. Many-core NUMA machines re-

quire a different approach to memory management, where @his @wvare of dif-

330

Chapter 8. Conclusion

ferent memory access costs in the address space. Most &gaaigorithms and

techniques assume uniform memory access and are thusabieddr NUMA.

In summary, our contributions open up several promisingassh opportunities
in memory management and can be a foundation for furtherawgments in MRE
performance, programming model, and architecture, asasedlystem modularity and

MRE-OS coordination.

331

Bibliography

[1] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein efficient parallel heap
compaction algorithm. I ©OPSLA 2004.

[2] Apache Cassandra Projetit t p: / / cassandr a. apache. or g.
[3] Apache Tomcathtt p://tontat. apache. org.

[4] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent t=ition on stock
multiprocessorsACM SIGPLAN Notice23(7):11-20, 1988.

[5] A. W. Appel and K. Li. Virtual memory primitives for userrpgrams. ACM
SIGPLAN Notices26(4):96-107, 1991.

[6] Y. Aridor, M. Factor, and A. Teperman. cJVM: A single sgstimage of a JVM
on a cluster. INCPP, 1999.

[7] J. Armstrong. Erlang — a survey of the language and itasiréhl applications.
In 9th ESIAR 1996.

[8] J. Armstrong, R. Virding, C. Wikstrom, and M. William€oncurrent Program-
ming in Erlang Prentice-Hall, 1996.

[9] M. J. Bach.The Design of the UNIX Operating Systelatentice-Hall, 1986.

[10] G. Back, W. C. Hsieh, and J. Lepreau. Processes in Kafféition, resource
management, and sharing in JavaQ8DI, 2000.

[11] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepredava operating
systems: Design and implementation. Technical reporty.WhiUtah, 1998.

[12] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbagescotl with low
overhead and consistent utilization. ROPL, 2003.

[13] D. F. Bacon and V. Rajan. Concurrent cycle collection irerefce counted
systems. IlECOOR 2001.

332

http://cassandra.apache.org
http://tomcat.apache.org

Bibliography

[14] H. G. Baker. Cache-conscious copying collectionO@PSLA 1991.

[15] H. G. Baker. The Treadmill, real-time garbage collectwithout motion sick-
ness.ACM SIGPLAN Notice®27(3):66—70, Mar. 1992.

[16] H. G. Baker. ‘Infant mortality’ and generational garleagpllection. ACM SIG-
PLAN Notices28(4), Apr. 1993.

[17] H. G. Baker and C. E. Hewitt. The incremental garbage ctide of processes.
Technical report, MIT Press, 1977.

[18] D. Balfanz and L. Gong. Experience with secure multigessing in Java. In
ICDCS 1998.

[19] K. Barabash, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V.ikehman, Y. Os-
sia, A. Owshanko, and E. Petrank. A parallel, incrementaistiy concurrent
garbage collector for server§OPLAS 27(6):1097-1146, 2005.

[20] K. Barabash, Y. Ossia, and E. Petrank. Mostly concurgambage collection
revisited. INOOPSLA 2003.

[21] D. A. Barrett and B. G. Zorn. Using lifetime predictors tmprove memory
allocation performance. IRLDI, 1993.

[22] J. F. Bartlett. Compacting garbage collection with ambigs roots. Technical
report, DEC Western Research Laboratory, 1988.

[23] J. F. Bartlett. Mostly-Copying garbage collection picksgenerations and C++.
Technical report, DEC Western Research Laboratory, 1989.

[24] BEA WebLogic Application Servettt p: / / www. bea. com

[25] O. Ben-Yitzhak, I. Goft, E. Kolodner, K. Kuiper, and V. ikehman. An algo-
rithm for parallel incremental compaction. IBMM, 2002.

[26] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Lewvightweight
remote procedure calACM Trans. Comput. Sys8(1), 1990.

[27] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. EZlyngki, D. Becker,
C. Chambers, and S. J. Eggers. Extensibility, safety andpeaface in the SPIN
operating system. I8OSPR 1995.

[28] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and w&tétigh perfor-
mance garbage collection in Java with MMTK. IBSE, 2004.

333

http://www.bea.com

Bibliography

[29] S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B. Mosdiiay: Getting
around garbage collection gridlock. RLDI, 2002.

[30] S. M. Blackburn and K. S. McKinley. Ulterior referenceuctiing: Fast garbage
collection without a long wait. I ©OOPSLA 2003.

[31] H.-J. Boehm. Space efficient conservative garbageaaie InPLDI, 1993.
[32] H.-J. Boehm. Reducing garbage collector cache missdSMiv, 2000.

[33] H.-J. Boehm and S. V. Adve. Foundations of the C++ conciyememory
model. InPLDI, 2008.

[34] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly pdrgdlebage collection.
ACM SIGPLAN Noticg6(6), 1991.

[35] H.-J. Boehm and M. Weiser. Garbage collection in an upeoative environ-
ment. Software Practice and Experienck(9):807-820, 1988.

[36] V. Braberman, F. Feandez, D. Garbervetsky, and S. Yovine. Parametric predic-
tion of heap memory requirements. IBMM, 2008.

[37] F. Breg and C. D. Polychronopoulos. Java virtual machumgosrt for object
serialization. InJava Grande2001.

[38] C. Bryce and C. Razafimahefa. An approach to safe objectrgha®iGPLAN
Not, 35(10), 2000.

[39] D. Buytaert, K. Venstermans, L. Eeckhout, and K. De Bosseh GCH: Hints
for triggering garbage collection§HPEAG 1(1), 2007.

[40] P.Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielgtr. Ebcioglu, C. von
Praun, and V. Sarkar. X10: an object-oriented approach meumiform cluster
computing. INOOPSLA 2005.

[41] X. Chen and V. H. Allan. MultiJav: A distributed shared mery system based
on multiple Java virtual machines. RDPTA 1998.

[42] C. J. Cheney. A non-recursive list compacting algorith@ommunications of
the ACM 13(11):677-8, Nov. 1970.

[43] P.Chengand G. Blelloch. A parallel, real-time garbadeector. InPLDI, 2001.

334

Bibliography

[44] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soraad,R. Wol-
ski. AppScale: Scalable and Open AppEngine Applicationdgyment and
Deployment. INCCC, 2009.

[45] T. W. Christopher. Reference count garbage collect®iPE 14(6), 1984.
[46] C. Click, G. Tene, and M. Wolf. The Pauseless GC algorithmVVEE, 2005.

[47] J. Cohen and A. Nicolau. Comparison of compacting alporg for garbage
collection. TOPLAS 5(4):532-553, 1983.

[48] D. Cohn and S. Singh. Predicting lifetimes in dynamigallocated memory. In
ANIPS 1997.

[49] Computer Language Benchmarks Game. Language Perfoen@2ommparisons.
http://shoot out. al i ot h. debi an. org.

[50] CORBA Specificationht t p: / / www. ong. or g.

[51] D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A. Knamurthy,
S. Lumetta, T. von Eicken, and K. A. Yelick. Parallel programg in Split-
C. InSC 1993.

[52] G. Czajkowski. Application isolation in the Java virtutmachine. INOOPSLA
2000.

[53] G. Czajkowski and L. Daynes. Multitasking without coraprise: A virtual
machine evolution. I OOPSLA 2001.

[54] The DaCapo Benchmark Suitet t p: / / dacapobench. or g.
[55] Dell Desktops and Serverbt t p: / / www. del | . com
[56] A. Deshpande and D. Riehle. The total growth of open saulitOSS 2008.

[57] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbddigst garbage collection.
In ISMM, 2004.

[58] A. Diwan, D. Tarditi, and J. E. B. Moss. Memory subsystearfprmance of
programs using copying garbage collectionPIaPL, 1994.

[59] D. Doligez and G. Gonthier. Portable, unobtrusive ggebcollection for multi-
processor systems. POPL, 1994.

335

http://shootout.alioth.debian.org
http://www.omg.org
http://dacapobench.org
http://www.dell.com

Bibliography

[60] D. Doligez and X. Leroy. A concurrent, generational lgsge collector for a
multithreaded implementation of ML. IROPL, 1993.

[61] T.Domani, E. K. Kolodner, E. Lewis, E. E. Salant, K. Baaah, I. Lahan, Y. Lev-
anoni, E. Petrank, and I. Yanorer. Implementing an on-thedibage collector
for Java.SIGPLAN Not.36(1), 2001.

[62] T. Domani, E. K. Kolodner, and E. Petrank. A generatlanathe-fly garbage
collector for JavaSIGPLAN Not.35(5), 2000.

[63] S. Dorward, R. Pike, D. L. Presotto, D. Ritchie, H. Trickagd P. Winterbottom.
Inferno. INCOMPCON 1997.

[64] T. EI-Ghazawi, W. Carlson, and J. Draper. UPC LanguagecBpations V,
2001.htt p: // upc. gwu. edu.

[65] M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Huh R. Larus, and
S. Levi. Language support for fast and reliable messageebesmmunication
in Singularity OS. INEuroSys2006.

[66] R. T. Fielding. Architectural styles and the design ofwmk-based software
architectures. Technical report, Univ. of California, trej 2000.

[67] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallebgge collection for
shared memory multiprocessors.USENIX JVM 2001.

[68] E. Freeman, S. Hupfer, and K. ArnoldlavaSpaces Principles, Patterns, and
Practice (Jini Series)Pearson Education, 1999.

[69] The GNU Compiler for the Java Programming Languddé.p: / / gcc. gnu.
org/java.

[70] N. Geoffray, G. Thomas, C. €ment, and B. Folliot. A lazy developer approach:
Building a JVM with third party software. IRPPJ 2008.

[71] N. Geoffray, G. Thomas, J.Lawall, G. Muller, and B. FolliVMKit: a Substrate
for Managed Runtime Environments. MEE, 2010.

[72] P. Gepner and M. Kowalik. Multi-core processors: Newywa achieve high
system performance. BPARELEGC 2006.

[73] GNU Classpathht t p: // www. gnu. or g/ sof t war e/ cl asspat h.

336

http://upc.gwu.edu
http://gcc.gnu.org/java
http://gcc.gnu.org/java
http://www.gnu.org/software/classpath

Bibliography

[74] M. Golm, M. Felser, C. Wawersich, and J. Kleinoder. Theop€rating system.
In USENIX ATC2002.

[75] J. Gosling, B. Joy, and G. Steel&he Java Language SpecificatioAddison-
Wesley, 1997.

[76] Open Source Software in Javat t p: / /] ava- sour ce. net .

[77] C. Grzegorczyk, S. Soman, C. Krintz, and R. Wolski. Islat¥iseap sizing:
Using feedback to avoid paging. @GO, 2007.

[78] Hadoop File System (HDFSht t p: / / hadoop. apache. org.

[79] M. Hertz, Y. Feng, and E. Berger. Page-level cooperag@idbage collection.
Technical report, Univ. of Massachusetts, 2004.

[80] M. Hertz, Y. Feng, and E. D. Berger. Garbage collectiothaiit paging. In
PLDI, 2005.

[81] C. A. R. Hoare. Communicating sequential processesmmun. ACM26(1),
1983.

[82] A. L. Hosking. Portable, mostly-concurrent and mostbpying garbage collec-
tion for multi-processors. I[ISMM, 2004.

[83] A. L. Hosking and J. E. B. Moss. Protection traps and aliéves for memory
management of an object-oriented languages@ER 1993.

[84] A. L. Hosking, J. E. B. Moss, and D. StefanoviA comparative performance
evaluation of write barrier implementations. @GOPSLA 1992.

[85] HotSpot Java Virtual Machine GC.htt p://j ava. sun. com j avase/
t echnol ogi es/ hot spot.

[86] Hsqldb.htt p: // www. hsqgl db. org.

[87] R. L. Hudson and J. E. B. Moss. Incremental garbage cadledor mature
objects. INWMM, 1992.

[88] R. L. Hudson, J. E. B. Moss, A. Diwan, and C. F. Weight. A laager
independent garbage collector toolkit. Technical reddmiy. of Massachusetts,
1991.

[89] G. C. Huntand J. R. Larus. Singularity: Rethinking the wafe stack Operat-
ing Systems Reviewl(2):37-49, 2007.

337

http://java-source.net
http://hadoop.apache.org
http://java.sun.com/javase/technologies/hotspot
http://java.sun.com/javase/technologies/hotspot
http://www.hsqldb.org

Bibliography

[90] H.Inoue, D. Stefanogi and S. Forrest. Object lifetime prediction in Java. Tech-
nical report, Univ. of New Mexico, 2003.

[91] Intel 64 and IA-32 Architectures Software Developéfanual. Vol. 3A. System
Programming Guide.

[92] Isolate API. JSR-121http://j cp. org.

[93] Java 2 Enterprise Editiomtt p: //j ava. sun. com j avaee/ .
[94] JavaOS : A Standalone Java Environment, 1996. Sun Blystems.
[95] JBoss Enterprise Middlewarbt t p: / / www. j boss. com

[96] JNode.htt p: // www. j node. or g.

[97] R. Jones. Dynamic memory management: Challenges foy tald tomorrow.
InILC, 2007.

[98] R. Jones and C. Ryder. Garbage collection should be lieetaware. In
ICOOOLPS 2006.

[99] R. E. Jones.Garbage Collection: Algorithms for Automatic Dynamic Memor
ManagementJohn Wiley and Sons, 1996.

[100] H. B. M. Jonkers. A fast garbage compaction algorithmiormation Processing
Letters 9(1), 1979.

[101] H. Kermany and E. Petrank. The Compressor: Concurranteinental and
parallel compaction. I##LDI, 2006.

[102] C. Lattner and V. Adve. LLVM: A Compilation Framework faifelong Pro-
gram Analysis & Transformation. I6GO, 2004.

[103] D. Lea. A memory allocator, 199/t t p: // gee. cs. oswego. edu/ dl /
htm /mal | oc. htm .

[104] S. Liang and G. Bracha. Dynamic class loading in the Jataal machine. In
OOPSLA1998.

[105] The Linux Documentation Projedatt p: //t | dp. org/.

[106] M. J. M. Ma, C.-L. Wang, and F. C. M. Lau. JESSICA: Java-émclisingle-
system-image computing architecturel. Parallel Distrib. Comput. 60(10),
2000.

338

http://jcp.org
http://java.sun.com/javaee/
http://www.jboss.com
http://www.jnode.org
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
http://tldp.org/

Bibliography

[107] J. Maassen, R. V. Nieuwpoort, R. Veldema, H. E. Bal, T. iahn, C. J. H.
Jacobs, and R. F. H. Hofman. Efficient Java RMI for parallel progning.
Programming Languages and Syste2(6), 2001.

[108] M. Macbeth, K. McGuigan, and P. Hatcher. Executingaliveads in parallel in
a distributed-memory environment. GASCON 1998.

[109] J. Manson, W. Pugh, and S. V. Adve. The Java memory m&I&lPLAN Not.
40(1), 2005.

[110] S. Marion, R. Jones, and C. Ryder. Decrypting the Java geak InISMM,
2007.

[111] J. Mauro and R. McDougall.Solaris Internals (2nd Edition) Prentice Hall,
2006.

[112] E. Meijer and J. Gough. Technical overview of the Comrhanguage Runtime,
2000. Microsoft.

[113] Microsoft .NET Frameworkht t p: // wwv. m crosoft. conf net/.

[114] D. Modberger and S. EranialA-64 Linux Kernel: Design and Implementation
Prentice Hall, 2002.

[115] The Project Monty Virtual Machine, 2002. Sun Microsyss.

[116] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transpamamgration for virtual
machines. IUSENIX Technical Conferenc2005.

[117] Occam Programming Manual, 1984. Inmos Corporation.
[118] Open Source J2SHtt p: / / openj dk. j ava. net .

[119] Oracle Database Concepts 11g Release 1, 2007. ChaptezrBoiM Architec-
ture.

[120] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The desidrnaplementation of
Zap: A system for migrating computing environments 8Dl 2002.

[121] Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. lkehman, and A. Ow-
shanko. A parallel, incremental and concurrent GC for ssrvi@ PLDI, 2002.

[122] Y. Ossia, O. Ben-Yitzhak, and M. Segal. Mostly concatreompaction for
mark-sweep GC. IlSMM, 2004.

339

http://www.microsoft.com/net/
http://openjdk.java.net

Bibliography

[123] M. Perry. Shared Memory Under Linux, 199t t p://f scked. or g/
witings/SHM shm htni .

[124] M. Philippsen and M. Zenger. JavaParty — transparemiote objects in Java.
Concurrency: Practice and Experienc®11), 1997.

[125] P. P. Pirinen. Barrier techniques for incrementalitrgcin ISMM, 1998.

[126] I. Piumarta. The virtual processor: fast, architeetoeutral dynamic code gen-
eration. INVMRTS 2004.

[127] T. Printezis and D. Detlefs. A generational mostlyxcorrent garbage collector.
In ISMM, 2000.

[128] T. Printezis and D. Detlefs. A generational mostlyrcorrent garbage collector.
SIGPLAN Not.36(1), 2001.

[129] Protocol Buffers. Google’s Data Interchange Formathtt p:// code.
googl e. cont p/ pr ot obuf .

[130] R. Rashid, A. Tevanian, M. Young, et al. Machine-indegeart virtual mem-
ory management for paged uniprocessor and multiprocesshitectures. In
ASPLOS$1987.

[131] Java RMI Specificatiorht t p: / / j ava. sun. com

[132] G. Rodriguez-Rivera, M. Spertus, and C. Fiterman. A nmagthenting, non-
moving garbage collector. i5MM, 1998.

[133] N. Rojemo. Generational garbage collection without tempospgce leaks for
lazy functional languages. IWWMM, 1995.

[134] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dyneaily allocated ob-
jects. InPOPL, 1988.

[135] K. Russell and D. Detlefs. Eliminating synchronizatielated atomic opera-
tions with biased locking and bulk rebiasinglGPLAN Not.41(10), 2006.

[136] N. Sachindran and E. Moss. MarkCopy: Fast copying G@ \eits space over-
head. INOOPSLA 2003.

[137] K. Sagonas and J. Wilhelmsson. Mark and splittSNM, 2006.

[138] F. B. Schneider, G. Morrisett, and R. Harper. A langubgsed approach to
security.LNCS 2001.

340

http://fscked.org/writings/SHM/shm.html
http://fscked.org/writings/SHM/shm.html
http://code.google.com/p/protobuf
http://code.google.com/p/protobuf
http://java.sun.com

Bibliography

[139] M. L. Seidl and B. Zorn. Low cost methods for predictirepip object behavior.
In WEDO, 1999.

[140] J. Seligmann and S. Grarup. Incremental mature garbatiection using the
train algorithm. INECOOR, University of Aarhus, 1995.

[141] Java Object Serialization Specificatidrt.t p: //j ava. sun. com
[142] A. SilberschatzOperating System Concept®ohn Wiley and Sons, 2004.

[143] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scddee Cross-Language
Services Implementation, 2007.

[144] P. Sobalvarro. A lifetime-based garbage collectorifigp systems on general-
purpose computers. Technical report, MIT, 1988.

[145] SPEC.htt p://ww. spec. org.

[146] D. Stefanovic, M. Hertz, S. M. Blackburn, K. S. McKinlegnd J. E. B. Moss.
Older-first garbage collection in practice: Evaluation ide&a virtual machine.
In MSP, 2002.

[147] W. R. Stevens.Advanced Programming in the UNIX Environmemddison-
Wesley, 1992.

[148] T. Suezawa. Persistent execution state of a JavaVirtachine. InfJava Grande
2000.

[149] A. TanenbaumOperating Systems: Design and ImplementatiBrentice Hall,
1987.

[150] A. TanenbaumModern Operating SystemBrentice Hall, 1992.

[151] B. H. Tay and A. L. Ananda. A survey of remote procedullésc&IGOPS Oper.
Syst. Rey24(3), 1990.

[152] G. Thomas, N. Geoffray, C. &nent, and B. Folliot. Designing highly flexible
virtual machines: the JnJVM experiencoftw. Pract. Exper38(15), 2008.

[153] TIOBE Index.htt p: //ww. ti obe. com

[154] B. Titzer, T. Wurthinger, D. Simon, and M. Cintra. Impiog Compiler-Runtime
Separation with XIR. I'WVEE, 2010.

341

http://java.sun.com
http://www.spec.org
http://www.tiobe.com

Bibliography

[155] D. M. Ungar. Generation scavenging: A non-disruptigh performance stor-
age reclamation algorithmrACM SIGPLAN Noticesl9(5):157-167, 1984.

[156] The VolanoMark Benchmarktt p: // www. vol ano. com benchmar ks.
htm .

[157] T. von Eicken, C.-C. Chang, G. Czajkowski, C. Hawblitzel, Bu, and
D. Spoonhower. J-Kernel: A capability-based operatingesysfor Java. In
SIP, 1999.

[158] IBM WebSphere Application Serveht t p: / / www. i bm com

[159] M. Wegiel and C. Krintz. The Mapping Collector: Virtualemory support for
generational, parallel, and concurrent compactiolASLO$2008.

[160] M. Wegiel and C. Krintz. XMem: Type-Safe, Transparestiared Memory for
Cross-Runtime Communication and CoordinationPLDI, 2008.

[161] M. Wegiel and C. Krintz. Dynamic prediction of colleati yield for managed
runtimes. INASPLOS$2009.

[162] M. Wegiel and C. Krintz. The single-referent collect@ptimizing compaction
for the common caseACM Trans. Archit. Code Optim6, 2009.

[163] M. Wegiel and C. Krintz. Concurrent collection as an @pieig system service
for cross-runtime cross-language memory management. nicatReport 15,
University of California, Santa Barbara, 2010.

[164] M. Wegiel and C. Krintz. Cross-language, type-safe,teanasparent object shar-
ing for co-located managed runtimes.@©PSLA 2010.

[165] P. R. Wilson. Uniprocessor garbage collection techesg InNlWMM, 1992.

[166] P. R. Wilson. Uniprocessor garbage collection techegy Technical report,
Univ. of Texas, 1994.

[167] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dyigsstorage alloca-
tion: A survey and critical review. IWWMM, 1995.

[168] P. R. Wilson, M. S. Lam, and T. G. Moher. Caching consitiens for genera-
tional garbage collection. IbFP, 1992.

[169] P. R. Wilson and T. G. Moher. A card-marking scheme fortoaling intergen-
erational references in generation-based garbage dolteah stock hardware.
ACM SIGPLAN Notice24(5):87-92, 1989.

342

http://www.volano.com/benchmarks.html
http://www.volano.com/benchmarks.html
http://www.ibm.com

Bibliography

[170] N. Wirth and J. GutknechtProject Oberon: the design of an operating system
and compiler ACM Press/Addison-Wesley, 1992.

[171] D. S. Wise. Stop-and-copy and one-bit reference g¢ogntTechnical report,
Indiana University, 1993.

[172] D. S. Wise and D. P. Friedman. The one-bit referencecdiT, 17(3):351-9,
1977.

[173] F. Xian, W. Srisa-an, and H. Jiang. MicroPhase: An apph to proactively
invoking garbage collection for improved performanceO@PSLA 2007.

[174] T. Yang, E. D. Berger, M. Hertz, S. F. Kaplan, and J. E. B:ssloAutonomic
heap sizing: Taking real memory into accounti&MvM, 2004.

[175] T.Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM1NI memory
support for garbage-collected applicationsQ8DI, 2006.

[176] Z. Yang and K. Duddy. Corba: A platform for distributetject computing
(a state-of-the-art report on omg/corbaperating Systems Revig®0:4-31,
1996.

[177] L. Youseff and R. Wolski. Vshmem: Shared-memory ospsuipfor multicore-
based hpc systems. Technical report, University of Califgr8anta Barbara,
20009.

[178] W. Yu and A. L. Cox. Java/DSM: A platform for heterogensccomputing.
Concurrency: Practice and Experienc®11), 1997.

[179] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and M. Cgdn Program-
level adaptive memory management.I&MM, 2006.

[180] B. Zorn. Comparing mark-and-sweep and stop-and-copyagg collection. In
LFP, 1990.

[181] B. Zorn. The measured cost of conservative garbageatah. Software Prac-
tice and Experience23:733-756, 1993.

[182] B. Zorn and M. Seidl. Segregating heap objects by refedehavior and life-
time. INASPLO$1998.

343

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	Thesis Question
	Dissertation Organization

	Background
	Intra-Runtime Memory Management
	State-of-the-Art GC Techniques
	OS-Assisted GC
	Limitations

	Cross-Runtime Memory Management
	State-of-the-art Inter-Process Communication
	Cross-Runtime Communication and Coordination
	Limitations

	Efficient Compaction by Mapping: Improving Intra-Runtime Memory Management Performance Using Virtual Memory
	Introduction and Motivation
	Design and Implementation
	Stop-the-World/Concurrent Marking
	Stop-the-World Unmapping
	Concurrent Unmapping
	Bounding Space Overhead
	Implementation Details

	Experimental Evaluation
	Benchmarks
	Methodology
	Clustering
	Stop-the-World Compactors
	Concurrent Compactors
	Stop-the-World/Concurrent Tradeoffs
	Unmapping Overhead
	Other Benchmarks

	Related Work
	The Compressor
	The HotSpot Compactor
	The IBM Compactor
	The Flood Compactor
	The Pauseless GC
	Virtual Memory Support for GC

	Summary and Conclusions

	Dynamic Prediction of Collection Yield: Improving Intra-Runtime Memory Management Performance Using Virtual Memory
	Introduction and Motivation
	Design and Implementation
	Yield Predictor Design
	Yield Prediction Process
	Implementation Details
	Kernel Extensions
	Alternative Approaches

	Experimental Evaluation
	Methodology
	Dead Object Clustering
	Collection Yield
	Prediction Accuracy and Cost
	Impact on Applications
	Other Parameter Values

	Related Work
	Summary and Conclusions

	Concurrent Collection as a Service: Improving Intra-Runtime Memory Management Performance and Programming Model Using Shared Libraries
	Introduction and Motivation
	Design and Implementation
	GaS Interface
	Heap Layout
	GC Algorithm
	Tracing GC
	Reference Counting GC
	GaS Extensions
	Implementation Details

	Experimental Evaluation
	Methodology
	Java Benchmarks
	Python Benchmarks
	Overhead of Cross-Runtime Calls
	Overhead of Runtime Layering
	Lines of Code
	Results Summary

	Related Work
	Newly-Built Runtimes
	GC Evaluation

	Summary and Conclusions

	Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime Memory Management Performance and Programming Model Using Shared Memory
	Introduction and Motivation
	Design and Implementation
	Double Memory Mapping
	Shared-to-Private Pointers
	Using XMem
	Dual Mode Object Allocation
	Thread Synchronization
	Global Operations
	Attachment, Detachment, and Connection
	Global Class Loading
	Global Garbage Collection
	Global Meta-Data Management
	Fault Tolerance
	Implementation Details

	Experimental Evaluation
	Methodology
	XMem Overhead
	Global GC Performance
	Communication Efficiency for Microbenchmarks
	Application Performance
	Results Summary

	Related Work
	Summary and Conclusions

	Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime Memory Management Performance and Programming Model Using Shared Memory
	Introduction and Motivation
	Design and Implementation
	CoLoRS Usage
	Shared Memory Segment
	The CoLoRS Object Model
	The CoLoRS Memory Model
	Monitor Synchronization
	Garbage Collection
	Implementation Details
	Shared Memory Layout
	HotSpot JVM
	cPython Runtime

	Experimental Evaluation
	Methodology
	CoLoRS Impact on Communication Performance
	CoLoRS Garbage Collection
	CoLoRS Impact on End-to-End Performance
	CoLoRS Overhead
	Sockets vs. Shared Memory
	Results Summary

	C/C++ Support for CoLoRS
	Type Safety
	Transparency
	Programming Interface
	Type Reflection
	Pointers, Fields, and Pointers to Members
	Class Mapping and Loading
	Garbage Collection
	Virtual Dispatch
	Standard Libraries
	Implementation Details
	Experimental Evaluation

	Related Work
	Summary and Conclusions

	Conclusion
	Contributions and Impact
	Future Research Directions

	Bibliography

