
UNIVERSITY OF CALIFORNIA
Santa Barbara

Memory Management for Multi-Language
Multi-Runtime Systems on Multi-Core

Architectures

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Michal Wegiel

Committee in Charge:

Professor Chandra Krintz, Chair

Professor Amr El Abbadi

Professor Ben Zhao

March 2011

The Dissertation of
Michal Wegiel is approved:

Professor Amr El Abbadi

Professor Ben Zhao

Professor Chandra Krintz, Committee Chairperson

January 2011

Memory Management for Multi-Language Multi-Runtime Systems on Multi-Core

Architectures

Copyright © 2011

by

Michal Wegiel

iii

Dedication and Gratitude

iv

Acknowledgements

The text of Chapters3–7 is in part a reprint of the material as it appears in the conference

proceedings listed below. The dissertation author was the primary researcher while the

co-author listed on each publication directed and supervised the research which forms

the basis for these chapters.

Chapter 3: Publication [159] in the ACM/SIGPLAN International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS 2008).

Chapter 4: Publication [161] in the ACM/SIGPLAN International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS 2009).

Chapter 5: Publication [163] as UCSB Technical Report 2010-15.

Chapter 6: Publication [160] in the ACM/SIGPLAN International Conference on Pro-

gramming Language Design and Implementation (PLDI 2008).

Chapter 7: Publication [164] in the ACM/SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2010).

v

Curriculum Vitæ

Michal Wegiel

Education

2011 Doctor of Philosophy in Computer Science,

University of California, Santa Barbara.

2006 Master of Science in Computer Science,

University of Science and Technology, Krakow, Poland.

Experience

2006 – 2010 Graduate Research Assistant,

University of California, Santa Barbara.

2004 – 2005 Research Intern,

Sun Microsystems Laboratories, Menlo Park, CA.

2002 Student Intern,

Motorola Global Software Group, Krakow, Poland.

Awards

2010 Dissertation Year Fellowship,

University of California, Santa Barbara.

2006 – 2008 Regents Central Fellowship,

University of California, Santa Barbara.

vi

Publications

Michal Wegiel and Chandra Krintz: “Cross-Language, Type-Safe, and Transparent Ob-
ject Sharing For Co-Located Managed Runtimes.”In the ACM/SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2010.

Michal Wegiel and Chandra Krintz: “Dynamic Prediction of Collection Yield for Man-
aged Runtimes.”In the ACM/SIGPLAN International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), 2009.

Michal Wegiel and Chandra Krintz: “The Single-Referent Collector: Optimizing Com-
paction for the Common Case.”In the ACM/SIGPLAN Transactions on Architecture
and Code Optimization (TACO), 2009.

Michal Wegiel and Chandra Krintz: “XMem: Type-Safe, Transparent, Shared Memory
for Cross-Runtime Communication and Coordination.”In the ACM/SIGPLAN Inter-
national Conference on Programming Language Design and Implementation (PLDI),
2008.

Michal Wegiel and Chandra Krintz: “The Mapping Collector: Virtual Memory Sup-
port for Generational, Parallel, and Concurrent Compaction.” In the ACM/SIGPLAN
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2008.

Field of Study: Computer Science

vii

Abstract

Memory Management for Multi-Language Multi-Runtime
Systems on Multi-Core Architectures

Michal Wegiel

To manage the increasing complexity of software, developers employ a number

of different strategies. These include using high-level, type-safe, object-oriented pro-

gramming languages, executing applications within managed runtime environments

(MREs), modularizing software into independent isolated components, and maximiz-

ing programmer productivity by implementing each component in the most-suitable

language. Moreover, administrators and tools increasingly co-locate components on

the same physical machine to better utilize multi-core systems via thread-level par-

allelism and to enable efficient cross-component communication. As a result, multi-

language, multi-runtime systems that employ component co-location on multi-core

shared-memory architectures are more and more common.

In such systems, memory management takes place within runtimes (intra-runtime)

and between runtimes (cross-runtime). Intra-runtime memory management includes

allocation and automatic reclamation of objects within an MRE. Cross-runtime memory

management refers to communication, coordination, and object sharing across MREs.

Both intra-runtime and cross-runtime memory management rely on the mechanisms

and abstractions of the underlying operating system (OS) for efficient implementation.

viii

The focus of our research is to identify ways to more effectively exploit extant OS

functionality to improve intra-runtime and cross-runtimememory management in terms

of performance as well as programming model. Specifically, we design, implement,

and evaluate MRE extensions that leverage virtual memory, shared memory, and shared

libraries to better coordinate memory management across the system layers.

For intra-runtime memory management, we develop new techniques to improve

throughput, reduce pauses, increase yield, and enhance modularity of parallel and con-

current collectors. For cross-runtime memory management,we investigate type-safe,

transparent object sharing between isolated MREs to enable cross-language communi-

cation and synchronization without expensive object serialization and explicit message

passing.

Our empirical results indicate that our contributions significantly improve both

intra-runtime and cross-runtime memory management by better leveraging OS support.

We obtain large performance gains for parallel and concurrent collectors as well as

inter-runtime communication over the state-of-the-art memory management systems.

In addition, our techniques enhance the programming model for both application de-

velopers and runtime architects.

ix

Contents

Acknowledgements v

Curriculum Vitæ vi

Abstract viii

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Thesis Question. 7
1.2 Dissertation Organization. 9

2 Background 10
2.1 Intra-Runtime Memory Management. 10

2.1.1 State-of-the-Art GC Techniques. 11
2.1.2 OS-Assisted GC. 17
2.1.3 Limitations . 26

2.2 Cross-Runtime Memory Management. 30
2.2.1 State-of-the-art Inter-Process Communication. 31
2.2.2 Cross-Runtime Communication and Coordination. 37
2.2.3 Limitations . 44

3 Efficient Compaction by Mapping: Improving Intra-Runtime Mem ory
Management Performance Using Virtual Memory 51
3.1 Introduction and Motivation. 52
3.2 Design and Implementation. 55

x

3.2.1 Stop-the-World/Concurrent Marking. 58
3.2.2 Stop-the-World Unmapping. 59
3.2.3 Concurrent Unmapping. 61
3.2.4 Bounding Space Overhead. 62
3.2.5 Implementation Details. 63

3.3 Experimental Evaluation. 67
3.3.1 Benchmarks. 67
3.3.2 Methodology . 69
3.3.3 Clustering . 70
3.3.4 Stop-the-World Compactors. 71
3.3.5 Concurrent Compactors. 81
3.3.6 Stop-the-World/Concurrent Tradeoffs. 84
3.3.7 Unmapping Overhead. 86
3.3.8 Other Benchmarks. 87

3.4 Related Work . 88
3.4.1 The Compressor. 89
3.4.2 The HotSpot Compactor. 90
3.4.3 The IBM Compactor. 91
3.4.4 The Flood Compactor. 91
3.4.5 The Pauseless GC. 92
3.4.6 Virtual Memory Support for GC. 93

3.5 Summary and Conclusions. 95

4 Dynamic Prediction of Collection Yield: Improving Intra- Runtime Mem-
ory Management Performance Using Virtual Memory 97
4.1 Introduction and Motivation. 98
4.2 Design and Implementation. 101

4.2.1 Yield Predictor Design. 102
4.2.2 Yield Prediction Process. 106
4.2.3 Implementation Details. 110
4.2.4 Kernel Extensions. 110
4.2.5 Alternative Approaches. 112

4.3 Experimental Evaluation. 113
4.3.1 Methodology . 113
4.3.2 Dead Object Clustering. 116
4.3.3 Collection Yield . 118
4.3.4 Prediction Accuracy and Cost. 118
4.3.5 Impact on Applications. 120
4.3.6 Other Parameter Values. 127

xi

4.4 Related Work . 129
4.5 Summary and Conclusions. 131

5 Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using Shared Libraries 132
5.1 Introduction and Motivation. 133
5.2 Design and Implementation. 135

5.2.1 GaS Interface. 138
5.2.2 Heap Layout. 140
5.2.3 GC Algorithm . 142
5.2.4 Tracing GC . 146
5.2.5 Reference Counting GC. 147
5.2.6 GaS Extensions. 148
5.2.7 Implementation Details. 149

5.3 Experimental Evaluation. 150
5.3.1 Methodology . 153
5.3.2 Java Benchmarks. 155
5.3.3 Python Benchmarks. 163
5.3.4 Overhead of Cross-Runtime Calls. 167
5.3.5 Overhead of Runtime Layering. 168
5.3.6 Lines of Code. 169
5.3.7 Results Summary. 170

5.4 Related Work . 171
5.5 Newly-Built Runtimes. 176

5.5.1 GC Evaluation. 181
5.6 Summary and Conclusions. 182

6 Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model Using Shared
Memory 184
6.1 Introduction and Motivation. 185
6.2 Design and Implementation. 189

6.2.1 Double Memory Mapping. 191
6.2.2 Shared-to-Private Pointers. 194
6.2.3 Using XMem . 195
6.2.4 Dual Mode Object Allocation. 197
6.2.5 Thread Synchronization. 198
6.2.6 Global Operations. 202
6.2.7 Attachment, Detachment, and Connection. 203
6.2.8 Global Class Loading. 205

xii

6.2.9 Global Garbage Collection. 206
6.2.10 Global Meta-Data Management. 212
6.2.11 Fault Tolerance. 213
6.2.12 Implementation Details. 214

6.3 Experimental Evaluation. 215
6.3.1 Methodology . 215
6.3.2 XMem Overhead . 216
6.3.3 Global GC Performance. 219
6.3.4 Communication Efficiency for Microbenchmarks. 220
6.3.5 Application Performance. 226
6.3.6 Results Summary. 227

6.4 Related Work . 228
6.5 Summary and Conclusions. 232

7 Type-Safe Sharing for Heterogeneous Runtimes: ImprovingCross-Runtime
Memory Management Performance and Programming Model Using Shared
Memory 234
7.1 Introduction and Motivation. 235
7.2 Design and Implementation. 239

7.2.1 CoLoRS Usage. 241
7.2.2 Shared Memory Segment. 244
7.2.3 The CoLoRS Object Model. 245
7.2.4 The CoLoRS Memory Model. 259
7.2.5 Monitor Synchronization 261
7.2.6 Garbage Collection. 264
7.2.7 Implementation Details. 270
7.2.8 Shared Memory Layout. 271
7.2.9 HotSpot JVM . 273
7.2.10 cPython Runtime. 276

7.3 Experimental Evaluation. 277
7.3.1 Methodology . 278
7.3.2 CoLoRS Impact on Communication Performance. 281
7.3.3 CoLoRS Garbage Collection. 285
7.3.4 CoLoRS Impact on End-to-End Performance. 286
7.3.5 CoLoRS Overhead. 289
7.3.6 Sockets vs. Shared Memory. 291
7.3.7 Results Summary. 293

7.4 C/C++ Support for CoLoRS. 293
7.4.1 Type Safety . 295

xiii

7.4.2 Transparency . 295
7.4.3 Programming Interface. 297
7.4.4 Type Reflection. 298
7.4.5 Pointers, Fields, and Pointers to Members. 298
7.4.6 Class Mapping and Loading. 301
7.4.7 Garbage Collection. 301
7.4.8 Virtual Dispatch. 302
7.4.9 Standard Libraries. 305
7.4.10 Implementation Details. 306
7.4.11 Experimental Evaluation. 307

7.5 Related Work . 308
7.6 Summary and Conclusions. 310

8 Conclusion 312
8.1 Contributions and Impact. 315
8.2 Future Research Directions. 326

Bibliography 332

xiv

List of Figures

1.1 Intra-runtime and cross-runtime memory management. 5

3.1 Page-based memory reclamation in MC. 55
3.2 Filler object format in MC. 65
3.3 Clustering for deskside and server benchmarks. 70
3.4 Clustering across benchmarks. 71
3.5 Space overhead for the stop-the-world MC. 72
3.6 Execution time for the stop-the-world compactors. 74
3.7 Pause times for the stop-the-world compactors. 75
3.8 Minimum mutator utilization for the stop-the-world compactors . . . 76
3.9 Pause times scalability for the stop-the-world compactors 77
3.10 Pause times speedup for the stop-the-world compactors. 79
3.11 Space overhead for the concurrent MC. 82
3.12 Execution time for the concurrent compactors. 83
3.13 Pause times for the concurrent compactors. 84

4.1 Prediction error in YP. 121
4.2 Execution times for the compactors without yield prediction 125
4.3 Execution times for the compactors with yield prediction 126
4.4 Impact of the YP young-old ratio. 128

5.1 GaS architecture. 136
5.2 GaS interface. 138
5.3 Block format in the GaS heap. 139
5.4 Root updates and concurrent marking. 144
5.5 Minimum mutator utilization for the client benchmarks. 158
5.6 Minimum mutator utilization for the server benchmarks. 159
5.7 Execution time for the client benchmarks. 160

xv

5.8 Execution time for the server benchmarks. 161
5.9 Performance for the binary tree benchmark in Python. 165

6.1 Example instance of an XMem system. 189
6.2 Virtual address space mapping in XMem. 191
6.3 Global GC pause times: load balancing. 218
6.4 Global GC pause times: live data size. 218
6.5 Microbenchmark communication performance. 222
6.6 Socket microbenchmark results. 223
6.7 Application performance: Hsqldb. 225
6.8 Application performance: Tomcat. 225

7.1 CoLoRS architecture. 239
7.2 CoLoRS versioning and type mapping. 252
7.3 Execution times for CoLoRS and CORBA. 282
7.4 Execution time for CoLoRS, Cassandra, and HDFS. 288

xvi

List of Tables

1.1 Two-dimensional design space in memory management. 8

3.1 Baseline benchmark statistics. 68
3.2 Fall-back frequency and pause times for space-bounded MC 81
3.3 Comparison of the stop-the-world and concurrent MC. 85
3.4 The cost of unmapping system calls in MC. 86
3.5 Experimental results for additional benchmarks. 88

4.1 Yield prediction pseudocode. 107
4.2 Baseline benchmark statistics. 115
4.3 Dead space clustering statistics. 116
4.4 Page coverage and prediction cost in YP. 117
4.5 Average yield prediction error. 119
4.6 YP impact on performance. 122
4.7 Space overhead in YP. 122
4.8 YP sensitivity to the GC skip threshold. 127

5.1 High-level comparison of the evaluated GCs. 151
5.2 Comparison of Java GCs: minimum heap and throughput. 155
5.3 Comparison of Java GCs: pause times. 156
5.4 Sensitivity to GC parameters in Java. 162
5.5 Sensitivity to GC parameters in Python. 164
5.6 GaS overhead in Python. 166

6.1 Baseline benchmark statistics. 209
6.2 XMem execution time overhead. 210
6.3 Impact of copying on latency and throughput. 225
6.4 XMem impact on latency and throughput. 228

xvii

7.1 CoLoRS builtin mapping in Java and Python. 256
7.2 Throughput for the microbenchmarks for builtins. 279
7.3 Throughput for the microbenchmarks for user-defined types. 280
7.4 Latency for the microbenchmarks for builtins. 280
7.5 Latency for the microbenchmarks for user-defined types. 280
7.6 End-to-end performance for Cassandra and HDFS with caching 289
7.7 CoLoRS overhead in Python. 290
7.8 CoLoRS overhead in Java. 291
7.9 C++ microbenchmark performance. 307

xviii

Chapter 1

Introduction

Software applications and systems have become significantly complex as develop-

ers attempt to model and solve a wide range of scientific, engineering, and business

problems as well as to provide automation, services, tools,and abstraction to users of

diverse hardware platforms. Considering open-source software alone, there has been

an exponential growth in the number of lines of code over the last decade [56] with the

doubling time of around fourteen months. To manage the increasing software complex-

ity, and thus make systems more reliable, easier to design, implement, deploy, maintain,

and evolve, developers employ a number of approaches and methodologies, which in-

clude:

• High-level programming languages. Increasingly, programmers implement

software using type-safe, object-oriented languages thattarget virtualized exe-

cution within managed runtime environments (MREs). Recent rankings for pro-

gramming language popularity [153] show that unmanaged languages account

1

Chapter 1. Introduction

for approximately 27% of software development activities today. The vast ma-

jority of newly-built systems employs managed languages, notably Java, PHP,

Basic, C#, and Python.

Most MREs support automatic memory management (garbage collection) to sim-

plify application development and improve system reliability. In addition, high-

performance, scalable MREs typically provide incremental adaptive compilation,

efficient threading and synchronization primitives, as well as dynamic extensibil-

ity via run-time class loading. Cross-platform portability, high-level abstractions,

expressible programming model, and safe program execution, reduce the costs

and effort required to develop and deploy large multi-layersoftware systems,

such as enterprise applications, middleware, and web services.

• Isolated components.Developers commonly divide systems into multiple inde-

pendent components that interact through well-defined interfaces and are other-

wise isolated from one another. This software design pattern increases system

modularity and reusability as well as simplifies the system architecture via ab-

straction. In addition, componentization makes software more reliable through

fault isolation, separation of concerns, and encapsulation. Distinct components

are typically run in separate MRE instances to take advantageof inter-process

resource isolation and fault containment as well as to improve performance via

2

Chapter 1. Introduction

more aggressive specializations in the MREs (e.g. choosing the best performing

memory management strategy for a specific component).

Web frameworks, such as J2EE [93] and .NET [113], are example systems that

partition applications into isolated components. They employ a three-tier archi-

tecture that consists of the presentation layer (the web container component),

business logic (the application server component), and data source (the database

component). Each tier is deployed using a separate MRE and cross-component

interaction takes place via inter-process communication protocols.

• Multi-language systems.To increase programmer productivity and overall sys-

tem performance, distinct components are often developed in different program-

ming languages. For instance, large-scale distributed systems and applications

at Facebook and Google are built from a wide range of backend services, each

implemented using the language that is best suited to a particular purpose and

functionality. Thrift [143] and Protocol Buffers [129] have been developed for

efficient interoperation between such multi-language services. Another example

is web applications: the presentation layer generates dynamic web pages using

server-side scripting languages, such as dynamically-typed PHP and Ruby, while

the database backend is typically implemented in general-purpose statically-typed

languages such as Java, C#, and C/C++.

3

Chapter 1. Introduction

In addition, recent hardware architectures increasingly rely on providing greater

numbers of processing cores instead of higher clock frequency in order to continue to

deliver high performance [72]. Commodity computers today are equipped with proces-

sors that have four (desktops) to eight (servers) superscalar cores that share most of the

memory hierarchy and commonly implement hyperthreading [55].

Because of the significant challenges with extracting parallelism from applications,

developers and administrators attempt to fully utilize multi-core systems by co-locating

multiple processes on a single machine. Systems that comprise multiple isolated com-

ponents simplify and facilitate such configuration and placement since each component

is independent of others and the communication protocols operate in the same way

regardless of whether interoperating components are co-located or distributed. Co-

location also benefits application performance by reducingthe cost of cross-component

communication.

As a result of these software and hardware trends as well as widely-used develop-

ment and deployment strategies, it is increasingly common for software designers to

architect systems that aremulti-language(i.e. components are implemented in differ-

ent languages) andmulti-runtime(i.e. each component is run in a separate MRE). In

addition, multiple isolated components are more and more oftenco-locatedon multi-

core shared-memory architecturesand use inter-process communication mechanisms

for interaction and coordination.

4

Chapter 1. Introduction

In such systems, memory management takes place at two levels: within runtimes

(intra-runtime) and between runtimes (cross-runtime). Figure1.1depicts this schemati-

cally. Multiple managed runtimes, potentially for different programing languages (Java

and Python in this case), are co-located on a single multi-core shared-memory machine.

Intra-runtime memory management includes object allocation and automatic reclama-

tion of unreachable objects (garbage collection), in MRE-private heaps. Cross-runtime

memory management refers to cross-MRE communication by object sharing (i.e. via

direct pointers to objects in a shared heap) and by message passing (i.e. via sending

serialized objects through channels).

object sharin

Java Process

Private Heap

Python Process

Intra-Runtime

Shared Heap Channel

object serialization

Cross-Runtime

m
essage pass

object
pointers

GC

ringPython Process

object deserialization

assing

Private Heap

multi-core architecture

GC

Figure 1.1: Intra-runtime and cross-runtime memory management in multi-runtime
multi-language systems deployed on multi-core shared-memory architectures.

5

Chapter 1. Introduction

Both intra- and cross-runtime memory management impacts systemperformance.

The runtime cost of garbage collection (GC) is between 20% to 70% of execution time,

depending on the heap size, application behavior, and the GCalgorithm [159, 161].

Similarly, the overhead of cross-MRE interaction via remoteprocedure calls and mes-

sages in request-intensive on-line transaction processing systems constitutes a large

portion of the end-to-end performance [160, 164].

Memory management is a subsystem that significantly affectsthe programming

model, both at the application and system level. A large percentage of the program-

ming effort required to implement an application or an MRE is typically devoted to

memory management. Thus, providing the right primitives and mechanisms for intra-

and cross-runtime memory management is key to improving theprogramming model

for application and MRE architects.

Memory management at both levels relies on the mechanisms and abstractions pro-

vided by the underlyingoperating system(OS). MREs need to fully leverage OS sup-

port in order to implement resource-efficient memory management mechanisms that

constitute an expressible and flexible programming model.

6

Chapter 1. Introduction

1.1 Thesis Question

The primary research question that we explore in this dissertation can be stated as

follows:

How can we improve intra-runtime and cross-runtime memory manage-
ment in multi-language, multi-runtime systems that co-locate multiple soft-
ware components on multi-core shared-memory architectures, by taking
advantage of operating system support?

To answer this question, we design, implement, and evaluateMRE extensionsin

order to better coordinate memory management across the system layers. We consider

MREs for both statically-typed and dynamically-typed languages. Our goal is to im-

prove systemperformanceas well as theprogramming modelfor both application and

MRE developers. We investigate OS support forvirtual memory, shared memory, and

shared libraries.

Table 1.1 summarizes thetwo-dimensional design spacethat we cover with this

dissertation. Rows represent the two metrics that we use (performance and programing

model) and columns correspond to the two levels of memory management that we

investigate (intra- and cross-runtime). For each metric-level pair we report the OS

mechanism(s) that we leverage to improve memory management.

A primary goal of ours is to improve performance. For intra-runtime memory man-

agement, we aim at designing new parallel and concurrent collectors in order to re-

duce GC pauses and execution time overhead as well as increase collection yield. For

7

Chapter 1. Introduction

Metric Intra-Runtime Cross-Runtime
Performance virtual memory (3, 4) shared memory (6, 7)

shared libraries (5)
Programming Model shared libraries (5) shared memory (6, 7)

Table 1.1: Two-dimensional design space in memory management that we investi-
gate. Rows are metrics and columns are the two levels of memorymanagement in
multi-runtime systems. For each point in the design space, being a metric-level pair,
we list the OS mechanism that we leverage to improve memory management. In paren-
theses, we show the numbers of chapters that describe the corresponding systems that
we contribute.

cross-runtime memory management, we investigate the design of type-safe, transparent

object sharing to increase throughput and decrease latencyof cross-runtime communi-

cation by avoiding object serialization.

Another key goal of our research is to improve the programming model. For intra-

runtime memory management, we aim at enhancing the modularity of MRE GC im-

plementation, by investigating the design of a portable GC library that decouples GC

from MRE internals. For cross-runtime memory management, weaim at designing a

new type-safe cross-MRE communication primitives based on shared memory that are

simpler and more transparent than explicit message passing.

8

Chapter 1. Introduction

1.2 Dissertation Organization

We organize the remainder of this dissertation as follows. We first provide back-

ground information, discuss terminology, state-of-the-art systems, open problems, and

limitations in intra-runtime and cross-runtime memory management, in Chapter2.

Chapters3–7 describe the five systems that we contribute to address our thesis ques-

tion and that represent separate points in the design space shown in Table1.1. In this

table, the parenthesized values are corresponding chapternumbers. Each of these five

chapters starts with motivation and problem statement, then discusses the design and

implementation details, followed by experimental evaluation, related work, and con-

clusions. Chapters3–5 focus on intra-runtime memory management while Chapters6

and7 target cross-runtime memory management. OS support for virtual memory is dis-

cussed in Chapters3 and4, for shared libraries in Chapter5, and for shared memory in

Chapters6 and7. Techniques for improving performance are described in Chapters3–

7 while enhancing the programming model is the subject of Chapters5–7. Chapter8

summarizes our contributions and discusses future research directions.

9

Chapter 2

Background

In this chapter, we provide background on and survey state-of-the-art in intra-

runtime and cross-runtime memory management techniques. Of particular interest to

us are systems deployed on multi-core shared-memory architectures and ones using

operating system support for memory management. We overview recent advances in

garbage collection and cross-runtime communication and sharing as well as discuss

limitations of extant systems.

2.1 Intra-Runtime Memory Management

In this section, we discuss automatic memory management techniques employed by

type-safe programming language runtimes. We overview key concepts and terminology

related to state-of-the-art garbage collectors, recent system and algorithmic advances

10

Chapter 2. Background

in this area, and limitations of extant approaches. We also provide background on OS-

assisted collectors.

2.1.1 State-of-the-Art GC Techniques

Managed runtime environments (MREs) for portable, object-oriented, type-safe

programming languages, both statically-typed (e.g. Java and C#) and dynamically-

typed (e.g. Python and Ruby) provide garbage collection (GC) to support memory

safety and simplify programs by automating memory management. While increasing

programmer productivity and application reliability, GC can negatively impact both ap-

plication throughput (through additional processing) andinteractivity (through pauses).

Minimizing the costs of GC to match or exceed those of explicit memory management

has been the subject of active research for several decades [97]. An excellent introduc-

tion into and overview of the GC literature can be found in [99, 165, 166, 167]. Modern

GC techniques include parallel, concurrent, and on-the-flyGCs that exploit multi-core

architectures to reduce or eliminate pauses and scale multi-threaded applications while

maintaining high throughput, and that use OS support to better coordinate runtime and

kernel memory management. High-performance MREs typicallyemploy generational

GCs, which outperform other GC schemes in the common case.

11

Chapter 2. Background

Terminology

General-purpose MREs predominately usetracing GCs, which work by first deter-

mining which objects are reachable (live) fromrootsand then reclaim the memory oc-

cupied by the remaining (dead) objects. In tracing GCs, the first phase is usually called

markingand amounts to computing the transitive closure of the objects reachable from

the roots. The second phase can either besweeping[166, 180, 59], where live objects

are not moved and dead blocks are added to free lists, orcompaction[101, 159, 1],

where live objects are slided to form a contiguous memory region.

Reference counting[172, 166, 171], being the other class of GC algorithms, is an

incremental scheme where each object maintains a counter for incoming references

which is updated on every pointer store. Dead objects are garbage collected when they

become unreferenced. Due to such limitations as storage overhead, problems with de-

tecting dead cycles, and poor efficiency, reference counting is not as commonly used

as tracing (one notable example is Python). Some collectorscombine tracing and ref-

erence counting [30].

In strongly-typed languages (like Java), GC isprecise, i.e. it can accurately identify

all object pointers inside the thread stacks and in the C heap. In languages providing

weaker type-safety (like C++), GC isconservative[22, 23, 31, 35, 181], i.e. all memory

locations containing a value that resembles a valid pointerare treated as pointers. Con-

12

Chapter 2. Background

servative collectors can suffer from memory leaks due to misinterpretation of regular

data as pointers.

SerialGCs [165] employ a single thread to perform collection. Modern MREs use

parallel GCs [34, 67, 4] to scale on SMPs and multi-core platforms. Parallel mark-

ing typically employs static partitioning for the root set and a dynamic load balancing

scheme, such as work stealing [67], for object graph tracing.

Application threads (mutators) are suspended for collection bystop-the-world (STW)

GCs [99, 165, 101, 159]. In contrast,concurrentGCs [20, 19, 34, 82, 122] perform most

work in the background, without stopping the application. Compared to STW GCs,

concurrent collectors impose much shorter pauses, however, they require resource over-

provisioning in terms of the number of processing cores and memory footprint. Many

concurrent GCs requireall mutator threads to be halted briefly (for example, at the

start and end of each GC phase), others stop mutator threads one at a time (on-the-fly

GCs [61, 62]). Incremental[140, 17, 165] collectors interleave small bits of collection

work with the mutator activity such as allocation and pointer stores. Inreal-timecol-

lectors pause times imposed by GC are bounded within any given time interval, which

is often specified as the minimum mutator utilization (MMU).

CompactingGCs [47, 99, 100, 67, 101, 46, 85, 1] eliminate fragmentation in the

heap by consolidating live objects into a single contiguousregion in memory.Copying

GCs [166, 144, 87, 58, 14] divide the heap in two semi-spaces and in every GC cycle

13

Chapter 2. Background

evacuate live objects from the currently-used semi-space to the other. This approach is

most efficient when the percentage of live objects is small onaverage, i.e. when objects

have short lifetimes.

GenerationalGCs [16, 87, 155, 133, 168] group objects into separate sub-spaces

called generations based on the object age. Typically, there is a young generation and an

old generation. New objects are allocated in the new generation and are later promoted

to the old generation if they survive a threshold number of collection cycles. Two

properties are key for the effectiveness of generational GCs. First, most objects die in

the young generation (weak generational hypothesis [155]). Second, there are relatively

few references from the old generation to the young generation.

Generational GCs focus collection efforts on the young generation which is ex-

pected to contain mostly dead objects and this way GC yield ismaximized. To enable

independent collection of the young generation, awrite barrier [84, 180, 125] is used

to keep track of pointers from the old generation to the younggeneration. Genera-

tional GCs have established themselves as a de-facto standard for any high-performance

general-purpose MRE, as they tend to provide superior throughput in practice. In a gen-

erational heap layout, the young generation typically usesa copying collector, to exploit

the weak generational hypothesis. In older generations, where most data is expected to

be live, MREs usually employ either a sweeping or a compactingcollector. Compacting

GCs eliminate fragmentation (thereby reducing space overhead) and enable simpler and

14

Chapter 2. Background

more efficient linear (bump-pointer) allocation. SweepingGCs trade fast non-moving

collection for slower allocation.

Real-time[4, 15, 12] GCs guarantee fully predictable collection behavior for tasks

with bounded allocation rate. Pause times are bounded and carefully scheduled to guar-

antee the desired MMU in a deterministic and consistent manner. Real-time GCs are

considered special-purpose, targeted at embedded systemswith hard or soft real time

requirements. In general-purpose MREs, concurrent GC is usually sufficient as it can

provide short pause times in the common case.

Performance Metrics

Two primary measures of garbage collection performance arethroughputandpauses

[99, 166]. Throughput is the percentage of total time not spent in garbage collection,

considered over long periods of time. Throughput includes time spent in allocation. A

common approach to comparing throughput of different GCs is measuring the appli-

cation execution time. Pauses are the times when an application appears unresponsive

because garbage collection is occurring. Most GC algorithms, including concurrent

ones, need to halt program threads at least once per collection cycle to avoid interfer-

ence with mutators.

Other important metrics arefootprintandpromptness[85]. Footprint is the working

set of a process, measured in pages and cache lines. On systems with limited physi-

15

Chapter 2. Background

cal memory or many processes, footprint may dictate scalability. Promptness is the

time between when an object becomes dead and when the memory becomes available,

an important consideration for distributed systems, including remote method invoca-

tion (RMI). Promptness may be affected by finalization, whichtypically defers object

collection until the next GC cycle.

A commonly-employed metric for the evaluation of collector-imposed pauses are

minimal mutator utilization (MMU) curves [43] that lend insight into the distribution

of GC pauses across program execution. Mutator utilizationfor a given time window

w is defined as the fraction of the time that the mutator (as opposed to the collector)

executes within the windoww. Minimum mutator utilization for a window of a specific

sizes is the lowest mutator utilization for all time windows of sizes across the program

execution. Thus, the x-intercept of a MMU curve is the maximum pause time and

the asymptotic y-value corresponds to the application throughput. MMU curves are

especially useful for evaluating concurrent and real-timeGCs.

For parallel GC, an important metric is scalability [159, 1], which is typically ex-

pressed as speedup. To measure speedup, GC is run with1 to p parallel threads for

a fixed workload (unscaled speedup) or for an increasing workload (scaled speedup).

GCs that employ load balancing, e.g. work stealing, often achieve nearly-linear speedup.

16

Chapter 2. Background

2.1.2 OS-Assisted GC

Garbage collectors that coordinate memory management withthe OS kernel typ-

ically do so by taking advantage of the available virtual memory operations. Appel

and Li [5] describe a number of ways that user-land programs can use toexploit the

virtual memory subsystem, including user-level signal handlers, multiple mapping, and

page protection. A similar study that includes performanceevaluation as well as rec-

ommendations for exposing dirty-bit information to MREs canbe found in [83]. While

some of these techniques require OS modifications, most are portable and standardized

by the Portable Operating System Interface (POSIX). A good introduction to memory

management in modern OSes can be found in [150, 149, 142, 114].

Virtual Memory

General-purpose operating systems support virtual memoryto isolate address spaces

of distinct processes, abstract away such characteristicsof physical memory as limited

size and non-contiguity, and provide a convenient uniform linear address space to pro-

grams. Most implementations divide the virtual address space of a process intopages,

whose size is typically 4KB. Virtual addresses used by programs are converted to phys-

ical addresses used on the system bus. This process is calledmemory mappingor

address translationand relies on hardware support for efficiency. The mapping be-

tween virtual pages and physical page frames is stored in a data structure calledpage

17

Chapter 2. Background

table. OS kernel is responsible for creating and maintaining pages tables but employs

the CPU memory management unit (MMU) to translate addresses.To accelerate ad-

dress translation CPUs use a small associative memory, called the translation lookaside

buffer (TLB), to cache mappings for recently accessed virtual pages. On each virtual

memory access the CPU performs a TLB lookup. If a TLB entry is found, CPU can

calculate the physical address immediately. On a TLB miss, apage table walk is per-

formed. If the needed mapping is found in the page table, MMU inserts a new entry into

the TLB. Otherwise, a TLB miss fault is generated. The fault isintercepted by the OS,

which invokes the TLB miss handler. TLBs, being implemented in hardware, usually

use simple replacement policies, like not recently used (NRU). The OS occasionally

invalidates the entries in TLB, for example when context switching or swapping a page

in or out.

Most operating systems usedemand pagingto avoid setting up mapping for pages

that are never accessed (most processes allocate much more virtual memory than they

ever use at any given point in time). With this approach, the virtual address space starts

out empty and all virtual pages are marked asnot present. When a page is accessed for

the first time, the MMU generates aminor page fault. The kernel handles minor faults

by allocating a new page frame, zeroing or loading its content, and updating the page

table by inserting a new entry.

18

Chapter 2. Background

On memory pressure, the kernel usesswap spaceto evict pages that are unlikely to

be accessed in the future. Most systems use some approximation of the least recently

used (LRU) policy that has been shown to often perform almostas well as the provably

optimal replacement policy. To implement LRU, every memoryaccess would have

to update a data structure, a solution too expensive to be practical. Commonly-used

approximations areclock replacementand NRU. In addition to the page replacement

policy, the kernel uses a memory balancing policy, which determines how much mem-

ory the OS can use for kernel buffers (e.g. the page cache) andhow much to devote to

backing virtual pages. To implement swapping, pages tablesreserve two bits per page,

indicating whether a specific page isdirty and has been recentlyaccessed. These bits

are set by hardware upon memory store (dirty bits) and memoryreference (accessed

bits). The kernel preferentially swaps out pages with both bits cleared.

Each page is associated with a set of permission bits that control if the content of a

particular page can be read, written, and executed. Upon an unpermitted access, a page

protection violation is raised and the process receives theSEGV signal. Permission bits

enable safe sharing of page frames. Modern OSes implement thecopy-on-writepolicy,

where unmodified pages can be shared across processes – this commonly pertains to

shared libraries and facilitates efficient process cloning.

The address space of a process consists of user space and kernel space. The latter is

only accessible in the privileged mode. The kernel space is typically identity mapped,

19

Chapter 2. Background

i.e. physical addresses can be computed by adding/subtracting a constant offset to

virtual addresses. The kernel provides two allocators for physical memory: abuddy

allocator that allocates physically contiguous and properly-aligned memory which is

always some power-of-two (allocation order) times the pagesize and aslab alloca-

tor that better supports smaller allocations via kernel memorycaches, each managing

objects of a particular fixed size. The kernel also supports virtual memory allocations.

Pages tables in Linux/x86 are kept in physical memory in the identity-mapped ker-

nel segment. As such, page tables are never swapped out, and there is no nested major

page faults. Each page table is a multi-way tree, which logically has three levels:global

directory, middle directories, andPTE directories. Each directory occupies one page

frame and has a fixed size. Entries in the global and middle directories are either not

present or they point to a directory in the next level of the tree. The leaves comprise

page table entries (PTEs). Address translation works by splitting a virtual address into

three indices (pgd, pmd, andpte, which correspond to the global, middle, and PTE

directories) and a page offset. The kernel starts at the root(the global directory) and

retrieves an entry stored at indexpgd. This entry points to a middle directory. Similar

process is repeated for the remaining two levels usingpmd andpte. Having obtained

the PTE, the system can calculate the physical address by combining the page frame ad-

dress with the offset. Each PTE contains apage frame number (PFN), page permissions

(read, write, and execute) as well as three bits determiningif a page is present, dirty,

20

Chapter 2. Background

and accessed. Page tables are loaded by copying the pointer to the global directory into

the cr3 (page table base) register (the side-effect is TLB flushing). Linux organizes

pages into three lists: active, inactive, and evicted. Active pages are managed using the

CLOCK algorithm. Inactive pages are protected so that their access triggers a minor

fault and moving into an active list. Access to evicted pagestriggers a major fault. The

active list is bounded in size, and implements a FIFO discipline when moving entries

to the inactive list.

The IA-32 architecture supports memory segmentation in addition to paging. A

segment is a contiguous region of virtual memory and a set of attributes that define

access rights.Global descriptor table (GDT)and local descriptor table (LDT)keep

tract of the segments in use. The system starts with alogical addressthat consists of a

segment selectorand an offset. The segment selector is an index into a descriptor table

(GDT or LDT). Each memory access is checked against the segment boundaries and

a fault is raised if the check fails. A 32-bitlinear addressis computed by adding the

offset value to the segment base address. At this point the system moves on to paged

address translation (TLB/page tables) to obtain the physical address. Segmentation

enables many linear address spaces and aids sharing and protection. Unlike paging, it

is visible to the user programs (compilers define their own semantics).

21

Chapter 2. Background

The POSIX Interface

OSes that are fully or partially compliant with POSIX, provide a standard interface

allowing to manipulate virtual memory mapping or to impact the strategy the kernel

uses to manage memory for a specific process. For example, Linux provides a num-

ber of system calls (kernel API) that enable to influence memory mapping (mmap,

munmap, andmremap), page protection (mprotect), page pinning (mlock and

munlock), and page swapping (mincore, msync, andmadvice). Shared mem-

ory segments are allocated usingshmget and controlled viashmctl. Processes at-

tach/detach to/from shared segments viashmat/shmdt. Double mapping, where two

different virtual addresses map to the same physical address, a technique often used in

GC, is implemented by double attachment to a single shared segment from a process.

GCs leveraging OS support, interact with the kernel via system calls (downcalls)

and signals (upcalls). For example, concurrent compactorsprotect virtual pages that

are yet to be processed, intercept the SEGV signal, and process pages incrementally as

mutators access them and trigger faults. GCs that manipulatevirtual memory mapping,

do so by invokingmmap/munmap system calls. Frequent interaction with the kernel

imposes a certain overhead associated with kernel entry/exit. The kernel entry path

includes switching to the kernel stack, saving scratch registers, and invoking an inter-

rupt handler (system calls are software interrupts). The kernel exit path comprises a

potential task scheduler invocation, signal delivery, restoration of scratch registers, and

22

Chapter 2. Background

switching to the user stack. All these actions introduce latency. However, MREs can

significantly benefit from well-architected OS support.

OS-GC Interaction

Extant garbage collectors interact with the OS in a wide array of contexts: to support

concurrent marking and compaction [101, 46], to avoid GC-induced paging [173, 174,

79, 179, 77, 80, 175], to reduce space overhead by dynamic mapping/unmapping [136],

to predict application working set size [175, 77], to optimize GC triggering and improve

GC yield [39, 173, 175], and to provide GC as a system/language library [35, 34].

Several of these systems are worth discussing in more detail.

The Compressor [101] relies on virtual memory operations to enable concurrent

compaction. The GC uses page protection to capture accessesto objects that have

not yet been relocated. Such accesses trigger traps. The trap handler takes care of

incremental (page by page) compaction. To allow the GC to access protected pages

while trapping the application, the Compressor uses double mapping: a single physical

page is mapped twice in the virtual address space (with and without access protection).

In addition, the Compressor dynamically unmaps pages whose content has been copied

to avoid the space overhead of a copying collector.

The Pauseless GC [46] uses similar mechanisms as the Compressor (dynamic page

(un)mapping and page protection), however it relies on custom hardware and OS (both

23

Chapter 2. Background

optimized to run Java) to implement efficient, scalable, pauseless compaction. The GC

employs hardware read barriers that execute in one cycle andinvoke user-mode traps

once a stale reference is encountered. The Pauseless GC usesan additional intermedi-

ate privilege level (between the user and kernel mode) for fast execution of traps. In

this mode, protected pages can be modified without the overhead of the OS entry/exit

path. The GC implements safepoints on top of fast cooperative preemption via inter-

rupts. Safepoint-checking instructions (e.g. back branches) check for a pending per-cpu

safepoint interrupt and raise user-mode traps.

The Bookmarking GC [80] cooperates with the kernel memory management sub-

system to avoid paging in cases where there is not enough physical memory in the

system. The GC computes conservative summaries of object graph connectivity for

the evicted pages (to avoid accessing swapped-out pages during GC and thus prevent

frequent major page faults). The OS kernel sends a signal whenever it is about to evict

a page or an evicted page has just been loaded back. The GC responds to the eviction

signal by trying to find an empty page and if that is not possible by bookmarking the

page it has selected for eviction.

CRAMM [175] dynamically resizes the heap to maximize application throughput

and minimize paging by using statistical page reference information collected in the OS

kernel. CRAMM estimates the working set size (WSS) for a processbased on an LRU

reference histogram. The system computes the desired heap size at runtime to keep

24

Chapter 2. Background

the overall performance cost of swapping below a specific threshold (5% of application

execution time). CRAMM extends the OS kernel by modifying the active/inactive lists

implementation and leverages the CLOCK algorithm to compute detailed per-process

LRU reference histograms. OS-GC interaction takes place through system calls after

each GC, when GC requests WSS estimation from the kernel and resizes the heap

accordingly.

The goal of MicroPhase [173] is to increase GC productivity (yield) by triggering

GC at points when many objects become unreachable. The system recognizes program

phases and proactively invokes GC during phase transitions. This approach strives to

exploit the observation that allocation pauses (characterized by low allocation rates)

typically correspond to points when GC is productive. MicroPhase cooperates with the

OS kernel to implement efficient detection of phase transitions. The key challenge is

the need to distinguish allocation pauses from execution pauses (e.g. thread blocking

on I/O operations). The system extends the OS kernel by introducing per-thread CPU-

cycle counters that are incremented based on hardware performance counters whenever

a thread is scheduled for execution. Total CPU-cyles for a given thread can be read via

a system call.

Boehm GC [35] is a conservative mark-sweep garbage collector for C/C++ (ora

memory leak detector) distributed as a C library, portable across most operating sys-

tems. The GC has a simple interface, essentially consistingof allocation functions

25

Chapter 2. Background

modeled after malloc/realloc in the standard C library. Boehm GC has been used in a

variety of language runtimes and is available as a prepackaged library in several major

Linux distributions.

2.1.3 Limitations

Recent advances in computer architecture have invalidated many of the assumptions

that were the basis of the design and implementation of garbage collectors in the past,

while opening the opportunities for new research directions. Hardware trends, such

as increasing reliance on thread-level parallelism ratherthan on clock frequency to

improve performance, the growing memory-processor performance gap, bus and cache

contention on multi-core systems, and large 64-bit addressspaces invite revisiting GC

design. At the same time GC has become a crucial component of state-of-the-art MREs,

which are the runtime platform for a wide range of software today, especially server-

side middleware, web, and application servers.

The design and implementation of state-of-the-art general-purpose GCs is increas-

ingly centered around scalability, low pauses, and high throughput. As a result, paral-

lel, concurrent, and on-the-fly GCs receive more and more attention. In addition, the

interaction between the collector and virtual memory has recently gained significant

interest [101, 175, 80, 46]. Virtual-memory-oblivious GCs, while being the focal point

of most prior work, can no longer provide the required level of efficiency on new hard-

26

Chapter 2. Background

ware and software platforms. The design of modern GC must take into account the

following aspects:

• Parallelism. GC needs to scale on both multi-processor and multi-core architec-

tures. Collectors should employ parallel threads and use dynamic load balancing

to achieve close-to-linear speedups.

• Concurrency. To guarantee a high level of interactivity, required for GUIap-

plications as well as server-side software that needs to handle client requests at

very high rates and with low latency, GC cannot impose lengthy pauses. Modern

machines are over-provisioned (in terms of both memory and processing cores),

which makes them well-suited for concurrent GC.

• Large address space.Modern 64-bit platforms provide applications with large

virtual memory, which creates an opportunity for GCs to perform memory man-

agement by aggressive (re)mapping operations. For example, the virtual space

occupied by unreachable objects does not have to be filled by live objects but

can be instead remapped to a new area in the address space. This way, GC can

leverage the level of indirection associated with address translation.

• Memory hierarchy. The widening memory-processor performance gap renders

object copying and pointer updates increasingly expensive. Modern GCs should

avoid such operations by adhering to non-moving collectionas much as possible.

27

Chapter 2. Background

• Abundant physical memory. Space overhead is no longer a major considera-

tion as long as it can be bounded (predictable) and does not exceed a reasonable

percentage of the heap size. In the past, high memory footprint used to be a dis-

qualifying property for a GC. Today’s MREs can afford trading space overhead

for performance.

• Design complexity.State-of-the-art systems consist of many layers both in soft-

ware and in hardware and, in consequence, their performancecharacteristics are

difficult to analyze and predict accurately. Increasingly,system architects pre-

fer a minor performance penalty to an overly complex solution. Simplicity is an

important design goal in modern GC algorithms.

• Cross-layer coordination. MREs should arrange for cooperative interaction

with the OS memory manager. For instance, the GC memory access pattern

should not conflict with the page replacement policy used by the OS kernel. In

addition, MREs should use the available OS facilities in a more effective way.

• Principle of locality. It is important to preserve the order or objects, as it was

created by an application, as this order reflects temporal/spatial locality of access.

• Object clustering. Empirical analysis of modern benchmarks indicates that ob-

jects exhibiting similar life spans tend to be spatially clustered in the heap. This

28

Chapter 2. Background

statistical observation enables the GC design where reclamation granularity is

bigger than a single object (for example page-based GC).

While recent GC algorithms [101, 46, 57, 59, 80, 175] have been increasingly ad-

dressing the above design aspects, there still remain many limitations to overcome. The

most important ones that affect GC performance and interactivity are:

• Object moving and pointer adjustment. State-of-the-art GCs that perform par-

allel/concurrent compaction, move objects in the heap. This is expensive because

it causes significant cache/memory traffic. In addition, moving objects makes the

GC design more complex by introducing additional phases (passes over the heap).

• Unproductive GCs. Extant GCs that optimize GC triggering to increase GC

yield are either based on heuristics related to program behavior or rely on offline

profiling. These systems are unable to eliminate unproductive GCs in a generic

way with low overhead and good accuracy.

• Unexploited clustering. Although dead object clustering is a widely-observed

phenomenon (objects with similar lifetimes tend to be co-located in the heap [167]),

to date, GC systems have taken little advantage of this statistical property. Now

that 64-bit address space is increasingly commonplace, there are much more op-

portunities to exploit object clustering in the heap.

29

Chapter 2. Background

• OS-oblivious GC.Most GCs published in the literature do not leverage OS sup-

port for virtual memory and those that do [101, 46] do not eliminate object mov-

ing and low-yield collections. Existing systems do not tap the full potential of

OS-assisted cross-layer memory management.

• Complex, monolithic GC.GC is one of the most complex subsystems in modern

runtimes and for performance reasons is often tightly-coupled with other subsys-

tems such as a dynamic compiler. Extant efforts aimed at modularizing GC either

do not target modern, concurrent GC [35], or have limited portability and high

overhead because are part of memory management frameworks written for and

in high-level languages [28, 29].

The GC systems described in Chapters3, 4, and5 address these limitations by leverag-

ing OS support for virtual memory and system libraries.

2.2 Cross-Runtime Memory Management

In this section, we overview inter-process communication mechanisms, both in the

context of an operating system and a language runtime. We provide background on key

concepts and terminology related to message passing and shared memory. In addition,

we discuss state-of-the-art techniques for cross-runtimecommunication, such as remote

procedure calls and object sharing, and point out their limitations.

30

Chapter 2. Background

2.2.1 State-of-the-art Inter-Process Communication

Inter-process communication (IPC) enables the exchange of data among multiple

processes potentially running on multiple computers connected by a network. General-

purpose operating systems, e.g. UNIX, typically provide several IPC mechanisms [9,

147, 105], such as message passing, synchronization, shared memory, and remote pro-

cedure calls (RPC). An efficient interprocess communication facility enables system

decomposition across address space boundaries, which promotes failure isolation, ex-

tensibility, and modularity.

Signals and pipes are the oldest OS-level IPC mechanisms. With System V, AT&T

introduced three additional forms of IPC: message queues, semaphores, and shared

memory. POSIX equivalents of System V mechanisms define a slightly different API

but offer similar functionality.

Signalsare asynchronous events that can be generated by processes (provided that

they have the correct privileges) or the OS kernel (for instance in response to a key-

board interrupt or an error condition such as when a process attempts to access a non-

existent location in its virtual memory). There is a predefined set of signals in the

system. Processes can either ignore or intercept most of thesignals, with the exception

of STOP (which causes a process to halt its execution) and KILL (which terminated a

process). Ignored signals are handled by the kernel which performs the default actions

required for them, e.g. for the floating point exception the kernel saves a core dump

31

Chapter 2. Background

and terminates the process. Signals have no relative priorities and ordering. There is no

mechanism for handling multiple signals of the same kind (e.g. a process cannot tell

how many continue (CONT) signals it received). Signals are delivered on the kernel

exit path only and therefore there may be some delay between generating a signal and

presenting it to a process. Processes blocked in uninterruptible system calls are not

awoken by signals. Calling a signal handler is processor-specific as it requires switch-

ing between the kernel and user mode. This is typically implemented by manipulating

the stack and registers of the process. The program counter is set to the address of its

signal handling routine and the parameters to the routine are added to the call frame or

passed in registers (depending on the calling convention used). POSIX systems allow a

process to block other signals while a particular signal handling routine executes.

Pipesare unidirectional byte streams which connect the standardoutput from one

process into the standard input of another process. Neitherprocess is aware of this

redirection and behaves just as it would normally. It is common for the shell to set up

temporary pipes between processes. As a process writes to a pipe, bytes are copied into

the shared data page, from which they are later copied back asanother process reads

from the pipe. Pipes are synchronized by the kernel for exclusive read/write access.

Reading or writing may block if there is nothing to read or no more room to store

bytes. Some OSes, like Linux, support named pipes (also known as FIFOs) which are

permanent entities in the file system.

32

Chapter 2. Background

The System V IPC mechanisms share common identification and authentication

methods. Each IPC object has a unique identifier, generated based on a key that must

be mutually agreed upon by processes that use a particular object. Access to IPC objects

is granted based on a set of permissions.

A message queueis an internal linked list within the kernel address space. Multiple

readers and writers can use a single message queue simultaneously. Message queues

provide asynchronous communication (the sender and the receiver do not need to use

the queue at the same time). Each time a process attempts to write a message to a queue

and there is enough room in the queue, the message is copied from the user space to the

kernel space and enqueued using the FIFO discipline. The kernel blocks the process

if the queue is full. Each message is tagged with an application-specific type, agreed

upon by the communicating processes. A reading process may specify the message

type when retrieving a message from the queue. If no messagesmatch the given type

or the queue is empty, the reading process blocks.

Semaphoresare essentially integer counters used to control access to shared re-

sources by multiple processes. Each semaphore is associated with a location in mem-

ory whose value can be tested and set atomically by more than one process. Depending

on the result of the test operation, the current process may block until the semaphore’s

value is changed by another process. The set operation always succeeds and adds a

given value (positive or negative) to the current value of the semaphore. Semaphores

33

Chapter 2. Background

can be used to implement critical regions. Binary semaphorescan have only two values

(0 and 1) and therefore their functionality is equivalent toa mutex. To avoid starvation,

semaphore implementations use a FIFO queue for the blocked processes.

Shared memoryallows processes to communicate via memory mapped within their

virtual address spaces (not necessarily at the same address). This is the most efficient

IPC because it avoids data copying and kernel intermediation. Before using shared

memory, each process must attach to a shared memory segment using a system call.

For synchronization, processes use other IPC mechanisms, e.g. semaphores, or rely on

atomic operations and the memory consistency model implemented by the underlying

architecture.

Most hardware platforms provide sequential consistency atthe ABI level although

internally often use weaker models for better scalability and performance. Sequential

consistency means that there is a global order on all memory operations and it is con-

sistent with the order specified by the program code. The memory model specifies the

contract between the software and hardware in the context ofthree aspects: (1) ordering

of loads and stores, (2) atomicity of loads and stores, and (3) store visibility (to loads).

The memory model defines what can be read from memory under what conditions. To

prevent unwanted reordering, processors provide special instructions: load-acquire (no

memory operations can be moved before it), store-release (no memory operations can

be moved after it), and full-fence (no reordering across it). IA-32 and AMD-64 imple-

34

Chapter 2. Background

ment a relatively strong memory model: all stores are store release (stores are never

reordered relative to other stores), all loads are normal loads (can be reordered), and

the LOCK instruction creates a full fence.

All correctly synchronized C/C++ programs are sequentially consistent. This is

because in such programs all shared accessed are guarded by amutex. Mutexes use

load-acquire and store-release to prevent reordering and provide mutual exclusion for

global serialization. The recent standard for C/C++ memory model [33] states that

incorrectly synchronized programs are not guaranteed any well-defined semantics.

Atomic operations are an important synchronization primitive. Usually, certain ba-

sic memory access operations, such as reading an aligned byte or machine word are

guaranteed to be atomic. This is the case on x86 [91] which also supports bus locking

for performing such operations as read-modify-write. Mostprocessors implement some

variant of the atomic compare-and-exchange instruction. This instruction is commonly

employed byspinlocks. Spinlocks serialize access to shared data in a non-blocking

manner. To acquire a spinlock, a thread waits in a loop, repeatedly executing compare-

and-exchange on a certain memory location. Since spinlocksuse busy waiting, they are

efficient if processes hold the lock for a short period of timeand there is not too much

contention.

Because of the cache coherence protocols, on multi-processor machines, an impor-

tant consideration isfalse sharing. When a process periodically accesses data that will

35

Chapter 2. Background

never be altered by another process, but that data shares a cache block with data that is

altered, the caching protocol may force the first process to reload the whole unit even

though that is not necessary. The caching system is not awarethat there is no logical

sharing and treats the situation as actual sharing, thus imposing high overhead on the

system bus for the coherence traffic. To avoid false sharing,unrelated data structures

are placed at proper distances in memory.

Other IPC mechanisms offered by state-of-the-art OSes arenetwork socketsand

remote procedures. A network socket is an endpoint of a bidirectional flow across a

computer network based on the Internet Protocol (IP). Sockets enable delivery of data

packets to appropriate processes using IP addresses and port numbers. Each socket is

associated with a transport protocol (e.g. UDP, TCP). To establish socket communica-

tion, one process plays the role of a server that accepts incoming connections while the

other process is a client.

Remote procedure call (RPC) systems, implement network/localprotocols that al-

low a process to execute a subroutine in another address space (commonly on another

host). The programmer does not explicitly implement this interaction – the code is es-

sentially the same as for a regular procedure call. In the object-oriented context RPCs

are called remote method invocations. Operating systems often optimize the protocols

for the single-host case (e.g. Solaris doors [111], Sun ONC/RPC [151]). RPCs are

based on a client-server model. A server registers an entry point (function address) and

36

Chapter 2. Background

binds it to an external name. Function parameters are marshalled manually as system

languages (C/C++) do not support reflection. Marshalling is necessary because of the

possibility of architectural differences (ONC/RPC uses the eXternal Data Representa-

tion format).

2.2.2 Cross-Runtime Communication and Coordination

Managed runtimes for general-purpose languages such as Java, C#, and Python, de-

fine type-safe abstractions corresponding to some of the OS-level IPC primitives. Safe

RPCs, channels, and object serialization are examples of type-safe language/library

support for MRE-level, portable IPC. Their main goal is to enable exchanging ob-

jects and/or synchronization between isolated application components while maintain-

ing the abstractions and safety guarantees of the underlying high-level programming

language. Common design tradeoffs inherent to MRE-level IPC include preserving iso-

lation, type-safety, and transparency while delivering low latency and high throughput.

Some IPC protocols available in extant MREs target runtimes for a single language

(e.g. Java RMI) while other ones support heterogeneous runtimes (e.g. CORBA for

cross-language RPC).

There are essentially two general approaches to implementing MRE-level, type-

safe IPC in state-of-the-art managed runtimes:top-down, where multiple applications

are executed in a single process with software isolation between them, andbottom-

37

Chapter 2. Background

up, where multiple applications are executed in distinct OS processes. The top-down

approach offers weaker (software-only) isolation guarantees, does not leverage OS-

level IPC, and duplicates the OS mechanisms at the MRE level. Incontrast, the bottom-

up approach has stronger OS- and hardware-assisted cross-process isolation and can

readily take advantage of existing standardized OS-level IPC facilities.

Extant MRE systems that support type-safe IPC and take the top-down approach

fall into three categories:

• multitasking virtual machines, such as the MVM [53] and Singularity [89] that

enable message passing communication via channels/links,

• shared-nothing runtimes for concurrent real-time languages, such as Erlang [8],

Occam [117], and Limbo [63] that build on the algebra of communicating se-

quential processes [81] and support point-to-point message passing for lightweight

processes, and

• multi-application runtimes/operating systems supporting shared memory, such as

KaffeOS [10] and SPIN [27].

To date, the bottom-up approach has been mostly used in the context of distributed

systems that can be classified into two groups:

38

Chapter 2. Background

• distributed RPCs for homogeneous language runtimes, like Java RMI, and het-

erogeneous runtimes, such as CORBA [50], Thrift [143], Protocol Buffers [129],

and

• distributed shared memory/single system image systems, such as UPC [64], cJVM

[6], MultiJav [41], and X10 [40], that support non-uniform transparent shared

memory (global address space) across a cluster of computers.

Some systems providing message passing use synchronous primitives with ren-

dezvous semantics [53] that require the sender and the receiver to use a specific channel

at the same time for message delivery to take place. Other systems use asynchronous

message passing which lets the sender continue execution once the message has been

copied to an internal buffer (the receiver can retrieve the message at a later time).

Shared memory communication, while being more transparentand efficient than

explicit message passing, necessitates defining a memory model and thread/process

synchronization mechanisms. In type-safe high-level languages, the memory model

tends to be more complex because safe semantics must be giveneven to programs that

use synchronization improperly. The Java Memory Model (JMM) [75] is notorious for

its complexity, which especially applies to rules for thefinal andvolatile modifiers.

JMM guarantees sequentially consistent semantics only to programs that are properly

synchronized (i.e. those that do not contain data races). A data race occurs when

39

Chapter 2. Background

multiple threads can access the same object field at the same time and at least one of

them performs a write. Java provides monitor synchronization for mutual exclusion and

memory access serialization (preventing reordering). Monitor entry has load-acquire

semantics (downward fence) while monitor exit has store-release semantics (upward

fence).

Single image systems (SSI) for Java [6, 41] extend the notion of the JMM (i.e.

release consistency) into a cluster of machines. For transparent local/remote execution,

threads use distributed stacks. Two approaches to code locality are: method shipping

(when code is moved to a thread) and thread migration (when threads move to the code).

All SSI systems use globally unique identifiers for objects in the heap.

Operating systems written in high-level languages, like SPIN [27] and Singular-

ity [89], do not rely on protection domains for isolation but provide software-based

safety based on the type-safety of the underlying language/runtime. Thus, process-

kernel interaction has the cost of a method call and does not impose the overhead of

switching between the kernel and the userland. In addition,no hardware support for

the privileged mode and virtual memory is required. Efficient communication/event

dispatch encourages the microkernel approach to the designof OS services and sub-

systems. The kernel has fine-grain interfaces, which promotes extensibility (mono-

lithic kernels use coarse-grain interaction to amortize the cost of system calls). High-

level languages also make automatic system verification more feasible and effective.

40

Chapter 2. Background

However, despite these software engineering benefits, in practice, OSes tend to rely

on C/C++ monolithic kernels because of their better overall performance, lack of GC

overhead, better predictability, and more control over thehardware, especially when

writing device drivers.

Several systems mentioned in this section are worth discussing in more detail.

Specifically, we overview the MVM, KaffeOS, and Singularityas representative exam-

ples of state-of-the-art IPC within a single OS process, as well as CORBA and Thrift

to show the recent evolution of cross-process cross-language RPC.

The Multitasking Virtual Machine [53] extends the Java VM to run multiple Java

applications within a single JVM process. The system implements lightweight isolation

between the applications (tasks). Its main goal is improving JVM scalability by sharing

as much runtime data/state as possible. This reduces the VM startup/initialization time

(no bootstrap class loading) and memory footprint (shared data structures and class

representations). To implement cross-task isolation, theMVM introduces changes to a

number of runtime components, including GC, dynamic compiler, class loader, byte-

code interpreter, and native code framework. Tasks cannot directly share objects. They

use Java serialization and the MVM links to communicate via message passing. Links

do not buffer messages – send/receive is a rendezvous point.The MVM provides the

API for task creation, termination, and link setup. User-supplied native code is run in

a separate OS process in order to prevent possible task interference at the C/C++ level

41

Chapter 2. Background

(the JNI is implemented using OS IPC). For the Java code and core native libraries, the

MVM uses software-only isolation.

Singularity [89] builds the whole system stack (the OS, managed runtime, andap-

plications) from layers written in a high-level, verifiablelanguage. The system has

three main architectural features: software-isolated processes, contract-based channels

for message passing, and manifest-based programs. Singularity focuses on depend-

ability and correctness as a way of dealing with OS kernel vulnerabilities and faulty

device drivers. Processes execute in one address space and protection is achieved by

the language type-safety. No data can be shared between processes. Sending a message

over a channel entails the transfer of exclusive data ownership (the compiler enforces

the constraint that after sending, objects are not reused bythe sender). The code is

sealed, there is no dynamic class loading. Programs are defined by manifests that spec-

ify dependencies, resources, capabilities, and runtime properties for static verification.

Channel contracts consist of message declarations and protocol states. Singularity uses

a microkernel approach (device drivers, file systems, and OSextensions execute as

processes). The exchange heap enables passing messages while avoiding copying and

serialization (which applies both to channels and zero-copy I/O). However, direct ob-

ject sharing is not supported. The kernel and processes use separate GCs. Channels are

asynchronous with bounded FIFO queues.

42

Chapter 2. Background

KaffeOS [10] implements the abstraction of OS processes in a JVM to enable ex-

ecution of multiple Java programs in a single VM process. Thesystem defines user

and kernel boundary and implements resource management with detailed accounting.

KaffeOS strives to share as much runtime data and classes as possible while provid-

ing isolation for processes. Object references can cross the user/kernel boundary but

no direct pointers are allowed across the heaps of differentprocesses. To share objects,

processes in KaffeOS must allocate a shared heap. The systemimposes two restrictions

on how shared objects may be used. First, there is no pointersfrom a shared heap to any

private heap. Second, the size of a shared heap is frozen after its allocation and initial-

ization. There is a dedicated class loader for each shared heap. All sharing processes

are charged in full for a shared heap.

CORBA [176] is an Object Management Group standard for object-oriented com-

munication across heterogeneous platforms in a distributed environment. CORBA

specifies an architecture for location-transparent RPC for distributed objects in a language-

and platform-independent way. The RPC employs the InterfaceDefinition Language

(IDL) that describes object interfaces. Messages are sent over the Object Request Bro-

ker (ORB) which is responsible for marshalling and transport.The IDL compiler cre-

ates IDL stubs (for the client) and IDL skeletons (for the server) that enable transparent

static RPCs (compile-time binding). For dynamic (run-time binding) RPCs, CORBA

uses the Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI), ca-

43

Chapter 2. Background

pable of service discovery at runtime. The clients use the IDL registry (interface reposi-

tory) to discover the available RPC endpoints. CORBA supports synchronous, deferred

synchronous, and asynchronous calls. The specification defines an implementation-

neutral object model with interface-based inheritance andno polymorphism. The type

system comprises basic values, object references, and complex values (structures, se-

quences, and unions).

Thrift [143] is a fast, scalable, lightweight RPC across languages in a distributed

system. It has been developed as an alternative to CORBA to overcome some of its

limitations, such as complex architecture, high overhead,and poor scalability. Thrift

is an RPC library and a set of code-generation tools. The system defines a language-

neutral interface specification, and generates client/server stubs/skeletons for a number

of different programming languages (including Java, Python, and C++). Only static

calls are supported. Thrift uses versioning which allows augmenting data types in RPC

argument lists without service interruption. The type system consists of base types

(primitives such as integers, booleans), structures, and containers (list, map, and set).

They map to native/builtin types in each language. Thrift supports exceptions and asyn-

chronous calls.

44

Chapter 2. Background

2.2.3 Limitations

Mainstream managed runtimes for general-purpose programming languages still

considerably lag behind the OS-level IPC in the scope of supported mechanisms and/or

performance. For instance, shared memory has not yet been adopted to safe lan-

guages despite being supported by OS for decades. The emergence of multi-core ma-

chines makes managed runtime co-location more and more common, thus rendering

type-safe shared memory an important runtime service. In addition, extant, safe RPC

mechanisms offer poor performance in the co-located case due to data structure copy-

ing/serialization, which could be avoided by using shared memory. Thus, incorporating

object sharing to managed runtimes could improve both the programming model and

performance.

The design of cross-runtime memory management in modern object-oriented pro-

gramming languages needs to incorporate at least some of thefollowing goals and

features:

• Cross-language communication.Since each language has its own unique com-

bination of performance, productivity, and library support, different software

components are often implemented in distinct languages. Such components need

to communicate and/or share data.

45

Chapter 2. Background

• Cross-runtime isolation. Preserving fault and resource isolation between com-

ponents is key to the overall system robustness and its ability to stop failure prop-

agation at the component boundaries.

• Exploiting co-location. Administrators increasingly co-locate multiple compo-

nents on a single machine to better utilize multi-core and multi-processor shared-

memory platforms via thread-level parallelism. Optimizing distributed commu-

nication protocols for the local case by taking advantage ofshared memory can

improve throughput and latency significantly.

• Serialization avoidance by sharing.The most expensive part of communica-

tion via message passing in type-safe IPC systems is data structure serializa-

tion/marshalling. This process typically involves objectgraph traversal, its in-

spection via reflection, and encoding into a byte stream. Serialization is difficult

to parallelize, does not scale well, and can degrade throughput and latency by

orders of magnitude. Direct object sharing avoids this overhead.

• Type-safety and garbage collection.Both message passing and shared mem-

ory systems must guarantee type/memory safety and provide modern garbage

collection. Concurrent and on-the-fly GCs are most suitable for multi-core archi-

tectures and applications that require low latency and scalability.

46

Chapter 2. Background

• Transparency. For the programmer’s convenience and productivity, modern

cross-runtime communication schemes must be blended into the runtime type

system, builtin types, and language constructs. For example, objects residing in

the shared memory should behave as regular objects with respect to synchroniza-

tion, method calls, field access, and other runtime services.

• Language-neutral object model.To communicate across languages, a channel,

an RPC system, or a shared heap must define and use a language-independent

object model that can be mapped to native object models in each language. This

object model must strike a balance between being too narrow (easy to map but

inconvenient and inefficient memory use) and too wide (may bedifficult to map

all types to all languages but more fine-grain control over memory use).

• Lightweight and simple. Complex systems are difficult to analyze and optimize.

Therefore, recent RPC systems, such as Thrift, put emphasis on simplicity (the

key motivation for Thrift was the heavyweight and overdesigned CORBA).

• Easy to use by programmers.RPC systems typically employ an interface def-

inition language (IDL) that is compiled into stubs and skeletons. This approach

necessitates keeping the IDL schema consistent with the client/server implemen-

tation in a specific programming language. In addition, programmers have to

learn the IDL syntax, which tends to vary significantly between RPC systems.

47

Chapter 2. Background

Schema-less RPC/sharing (similar in spirit to recent schema-less databases) can

alleviate the programming burden caused by IDLs.

• Scalable. More and more commodity systems have multi-core CPUs, and are

equipped with large main memory. Cross-runtime communication systems must

therefore scale in the number of runtimes and the shared datasize.

• Loosely-coupled architecture.To make systems fault-tolerant and flexible, in-

dividual subsystems must avoid excessive interdependencies and centralized con-

trol. Containing failures to a single component and architecting systems to have

no central point of failure are two approaches commonly usedto increase system

dependability.

• Easy to evolve.To enable fast prototyping and short software development cy-

cles, RPCs need to permit frequent changes in the meta-data/IDL schema, prefer-

ably without stopping the deployed system. For example, versioning in Thrift

significantly increases IDL elasticity.

Although many of the above-mentioned design goals have beento some extent in-

corporated in recent RPC systems [143, 89, 40], and some RPC technologies are ma-

ture and widely-used [176], state-of-the-art cross-runtime communication still needs to

evolve to meet the requirements of modern applications and take better advantage of

the underlying software/hardware infrastructure. Currently, the key limitations are:

48

Chapter 2. Background

• Operating system support for shared memory, although standardized by POSIX

for decades, is not leveraged by programming languages usedin production to-

day. As a result, managed runtimes are unable to optimize communication on a

local machine and always use high-overhead distributed protocols.

• Extant object sharing systems are limited to a single language and a single op-

erating system process. We are not aware of any type-safe, managed runtime

that supports cross-language shared memory where runtimesare run as separate

processes. In consequence, multi-runtime multi-languagesystems that become

more and more common can only communicate by message passing, which is

suboptimal in the co-located case.

• Software-based isolation between components in state-of-the-art object sharing

systems provides insufficient guarantees while complicating system design. Du-

plication of the resource protection and management already implemented in the

operating system and hardware adds engineering effort while being less reliable

and potentially incompatible with the policies implemented in the kernel.

• Cross-language RPC systems offer poor performance in the co-located case be-

cause of unnecessary serialization and copying. This is caused by the lack of

support for shared memory in extant managed runtimes.

49

Chapter 2. Background

• Safe languages today offer message-passing interaction only thus limiting the

programming model to channels and RPC. Object sharing systemscannot be ef-

ficiently implemented using state-of-the-art cross-runtime object-oriented com-

munication mechanisms.

• The design of systems supporting sharing is too complex (top-down approach).

RPC systems are heavyweight and use IDL schemas.

The systems described in Chapters6 and7 address these limitations by using OS sup-

port for shared memory to provide type-safe, transparent object sharing across homo-

geneous and heterogeneous runtimes co-located on a single machine.

50

Chapter 3

Efficient Compaction by Mapping:
Improving Intra-Runtime Memory
Management Performance Using
Virtual Memory

In this chapter, we describe an approach to improving the performance of intra-

runtime memory management by using OS support for virtual memory. Specifically,

we discuss the design and implementation of a parallel and concurrent compacting

collector that leverages page mapping operations. The collector exploits the observation

that unreachable objects in the heap form clusters that can be effectively managed at the

page granularity. Such clusters can be compacted into a new area in the virtual memory

by page remapping. This avoids expensive object moving and pointer adjustment while

achieving a high degree of compaction. Using page remappingallows the collector to

outperform extant compactors significantly.

51

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

3.1 Introduction and Motivation

Modern systems are increasingly complex implementing multi-layered software

stacks and employing more and more processing cores, in order to support a vast di-

versity of applications ranging from multi-media and software development to web-

services and distributed gaming (among others). To extracthigh performance from

such systems, it is vital that the layers of the software stack cooperate efficiently to

make the most of the underlying hardware resources.

Two layers common to most extant systems are the operating system (OS) and the

managed runtime environment (MRE) for portable, type-safe applications (e.g. those

written in Java or the .Net languages). A subsystem that can significantly impact per-

formance and that has the potential for better OS-MRE interaction is memory manage-

ment.

MREs typically implement garbage collection (GC) to simplifythe programming

model for developers. Modern managed runtimes increasingly employ parallel and

concurrent collectors [25, 1, 67, 46, 101] to maintain scalability, as multi-core architec-

tures and multi-threaded applications become more and morecommonplace. Moreover,

state-of-the-art MREs often use compaction to eliminate heap fragmentation and enable

fast linear object allocation [99].

52

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Extant GCs achieve compaction by moving live (reachable) objects. This involves

copying and pointer adjustment, both of which are increasingly expensive because of

the growing processor-memory performance gap, and can adversely impact application

performance [32]. To address this limitation, we investigate a new approachto paral-

lel/concurrent, compacting GC in which the MRE uses standard, portable, unprivileged

virtual memory operations, supported by the OS interface, to eliminate object moving.

We design and implement the Mapping Collector (MC), which leverages page mapping

to compact free space instead of compacting live space.

MC exploits the widely-known phenomenon that objects with similar lifetimes tend

to exhibit spatial locality in the heap [167]. In particular, we find that dead objects

often occur in large clusters. MC exploits this behavior to reclaim heap space at the

granularity of virtual pages. The collector trades off a small heap space overhead for

fast, inexpensive compaction. In practice, this space overhead is below 6% on average

and MC can additionally bound it by an infrequent fall-back to state-of-the-art moving

compaction. MC maintains the simplicity and low cost of a non-moving collector while

providing effective compaction in the common case.

We implement both stop-the-world and concurrent MC in a generational garbage

collection framework within the open-source HotSpot Java Virtual Machine. MC is ap-

plicable to both server systems (which typically employ concurrent GC to reduce pause

times at the cost of resource over-provisioning [85]) and deskside systems (which tend

53

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

to use stop-the-world (STW) GC because of its simplicity, higher throughput, and more

efficient use of the underlying resources [85]). Our experimental evaluation using a

multiprocessor indicates that MC significantly increases throughput and scalability as

well as reduces pause times, relative to state-of-the-art,parallel and concurrent com-

pactors.

Prior work on compaction has focused on both partial elimination of object mov-

ing [57, 85] and reducing the number of GC phases [101, 1, 67, 137]. MC leverages

MRE-OS interaction to improve over these approaches by eliminating copying alto-

gether. Virtual memory support for GC has been shown to be effective in other contexts

including preventing collector-induced paging [77, 175, 179, 80, 174] and reducing the

space overhead of copying collection via page unmapping [101, 136]. Unlike previ-

ously reported systems, MC employs virtual memory unmapping as a primary and sole

technique to implement STW/concurrent compaction in a modern MRE. MC achieves

almost the same effect as object moving but avoids object copying and thus improves

GC performance while imposing a small space overhead. MC is anearly-single-phase

compactor while extant compacting GCs require at least two phases.

In the next sections, we overview the design and implementation of MC (Sec-

tion 3.2), present the results of our empirical evaluation (Section3.3), discuss related

work (Section3.4), and conclude (Section3.5).

54

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

live objects

dead objects

after

marking

free free freefree

virtual pages

after

unmapping

Figure 3.1: Page-based free space reclamation in MC. Virtual pages fullycontained in
dead clusters are returned to the OS.

3.2 Design and Implementation

MC exploits the widely-observed statistical property thatunreachable objects tend

to cluster together [167] and form contiguous dead regions in the heap. Our experimen-

tal analysis of modern Java programs (which we present in Section 3.3) confirms this

property and reveals that clusters of dead objects are oftensufficiently large to make

their reclamation via virtual page unmapping practical.

Extant garbage collectors do not take advantage of the levelof indirection offered

by virtual memory and compact the heap by moving objects and updating pointers.

MC remaps the free space into a contiguous region in a newly allocated area in vir-

tual memory. This approach is simpler and more efficient thanobject copying and

pointer adjustment. It enables nearly-single-phase compaction, while state-of-the-art

compactors comprise at least two phases. In addition to marking, MC requires only a

single traversal over the liveness bitmap (whose size is 3% of the heap).

To achieve portability, MC relies only on standard virtual memory operations [130],

such as page mapping and unmapping, that are available for (unprivileged) processes as

55

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

part of an operating system interface (system calls) on mostmodern platforms. We note

that it is not sufficient to rely on the OS paging mechanism to swap out unreachable,

never-accessed pages, and completely avoid garbage collection. Periodic page unmap-

ping is necessary to free the associated OS resources (e.g. the swap space) – otherwise

they are not freed until program termination.

Since virtual page granularity is larger than the unit of allocation (most objects are

small) and because of the page alignment requirements of modern systems (e.g. 4KB

in Linux), MC incurs a certain heap space overhead, which we evaluate in detail herein.

We find that the size of the uncollected free space is modest inmost cases and can be

bounded via an infrequent fall-back to perfect compaction (Section3.2.4).

By remapping free space into a new area in virtual memory, MC consumes increas-

ingly more address space as subsequent compactions occur. This phenomenon, how-

ever, is not a problem on modern 64-bit architectures that have practically inexhaustible

virtual address space at their disposal.

Like most state-of-the-art compactors, MC is designed for atenured generation in

a generational [155, 99] garbage collection system. In the young generation, normally

a copying collection is used as it is more efficient than compaction if the expected

percentage of live objects is low. The cost of collecting thetenured generation typically

dominates GC performance.

56

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

The tenured generation contains objects with relatively long lifetimes and its alloca-

tion rate is relatively low (compared to the young generation). Thus, the expected rate

at which new dead clusters appear is low and address space usage remains tolerable

even on 32-bit architectures (which we have verified experimentally).

MC consists of a single parallel marking phase (which imposes the dominant cost

of the collector) and a series of operations for unmapping and updating auxiliary data

structures. Unmapping occurs immediately following marking and has a cost propor-

tional to the size of the liveness bitmap (which is approximately 3% of the mapped heap

size). Thus, MC is a nearly-single-phase compactor.

MC can be implemented as both STW and concurrent compactor. During unmap-

ping, MC does not access live objects at all, and therefore can execute concurrently with

the application without the need for any synchronization. This significantly simplifies

the design – note that moving compactors require OS support to handle concurrent

mutations to the moved objects.

While STW compaction is triggered only upon heap space exhaustion, concur-

rent compaction is initiated early, when a certain heap occupancy is reached (typically

around 70%). This is necessary to guarantee space for allocation while the compaction

progresses in the background.

57

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

3.2.1 Stop-the-World/Concurrent Marking

The marking phase identifies all reachable objects in the heap and records the start-

ing and ending words for each live object in the liveness bitmap. Both STW and con-

current marking can be used with MC.

State-of-the-art STW parallel marking [67, 85] uses work stealing for dynamic load

balancing. The root set is assigned to the marking GC threadsin a round-robin fash-

ion. Whenever a thread becomes idle, it steals a group of references from another

(randomly-selected) thread. Each thread maintains a localmarking stack (for depth-

first search). To ensure that each live object is processed exactly once, marking GC

threads claim objects atomically. GC threads coordinate marking termination via bar-

rier synchronization.

State-of-the-art concurrent parallel marking [127, 85] consists of three sub-phases:

STW initial marking, concurrent marking, and STW final marking. Initial marking

suspends mutators to record all objects directly reachablefrom the roots. Concurrent

marking resumes mutators and marks a transitive closure of reachable objects. Due to

concurrent pointer updates some live objects might be left unmarked. Therefore, the

algorithm keeps track of all pointer updates by leveraging acard table mechanism of

a generational GC system. Final marking suspends the mutators and repeats marking

from the roots treating modified pointers as additional roots. Final marking is typi-

58

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

cally short as it skips the already-marked objects. Each sub-phase can be executed by

multiple parallel GC threads.

3.2.2 Stop-the-World Unmapping

STW MC performs unmapping when the mutators are suspended. The goal of the

unmapping scan (which amounts to a traversal over the liveness bitmap) is to return

reclaimable pages to the OS and to compute the total size of free space available in

dead clusters.

MC performs the unmapping scan in parallel. Since the size ofthe liveness bitmap

is relatively small, we do not employ dynamic load balancing. MC statically partitions

the bitmap into nearly-equal-sized chunks (as many as the number of GC threads). A

boundary between two adjacent chunks is the first word of a live object. Thus, the

subdivision does not hinder our ability to detect regions suitable for unmapping. No

synchronization is necessary between the parallel threadssince we divide the marking

bitmap between threads at live object boundaries and, as a result, no conflicts can occur.

MC invokes the unmapping system calls in parallel which is more scalable than

serialized unmapping, especially given that pages returned to the OS by different GC

threads belong to disjoint virtual memory areas. OS kernelsthat support fine-grain

locking in the memory management subsystem can likely handle such concurrency

with little contention.

59

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Figure 3.1 illustrates how MC reclaims free space on a virtual page basis. The

unmapping scan identifies unreachable regions and unmaps their fragments that fully

cover the underlying virtual pages. Since MC does not move objects, the freed areas

never contract, and unmapped pages remain unused. The spaceoverhead tends to im-

prove over time as small dead fragments scattered across theheap assemble into larger

clusters that MC can later unmap.

MC maintains a page bitmap to track heap pages that are currently unmapped. Its

size is approximately 0.003% of the used address space (1 bitper 4KB). Without this

additional data structure, the performance of long-running applications that exhibit high

object turnover in the tenured generation may degrade. The unmapping scan traverses

over the liveness bitmap which has a size of approximately 3%of the address space cur-

rently used by the heap. This includes the unmapped areas. Therefore, to keep the cost

of the unmapping scan proportional to 3% of the heap size (notthe used address space),

MC must distinguish between mapped and unmapped regions. With this enhancement,

MC can traverse (and clear) the liveness bitmap only partially (skipping the unmapped

regions). In addition, this reduces the number of unmappingsystem calls (as we do not

unmap the same clusters multiple times).

Once the unmapping scan is complete, MC expands the heap by the total size of

the newly-discovered free space (not the total size of the newly-unmapped pages) in

the heap (to enable identical behavior as and a fair comparison to perfect compacting

60

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

collectors). The space overhead of MC then, is the size of this expansion minus the

total size of the pages that MC has unmapped in the current collection cycle.

3.2.3 Concurrent Unmapping

In concurrent MC, unmapping takes places after resuming the mutator threads. MC

first traverses over the liveness bitmap, finds dead clusters(their addresses and sizes are

stored in the cluster array), and clears the bitmap. During the bitmap traversal, MC also

computes a new object-start array, necessary in a generational GC system to locate the

first object on any 512-byte card during the young generationcollection [144]. Since

these activities are performed concurrently to mutators, ayoung-generation GC might

take place in the background (two collectors may execute at the same time). Therefore,

MC must compute the object-start array using a separate (shadow) array. This translates

to 0.2% space overhead (1 byte per 512 bytes). Next, MC suspends the mutators, and

finishes the computation of the shadow array. Note that during the concurrent pass over

the bitmap, new allocations might have taken place in the oldgeneration. These new

objects need to be taken into account when generating the shadow array. While the

mutators are stopped, MC switches to the new shadow array andinserts filler objects

into dead clusters. Card table entries (dirty/clean cards) are left intact (as no object

moves). In addition, MC computes the new size of free space and resizes the heap

accordingly (by the total size of the newly-discovered freespace). Finally, the mutators

61

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

are resumed, and free clusters are unmapped concurrently. Thus, there is one STW sub-

phase and two concurrent sub-phases. Auxiliary data structures used by concurrent MC

(the cluster array and the shadow array) impose additional space overhead. However,

this overhead is small in practice, and, as we discuss later,is not an issue given that

concurrent GC needs significantly over-provisioned heaps.

3.2.4 Bounding Space Overhead

STW MC supports space-bounded collection by falling back toperfect compaction

in cases when unmapping fails to reclaim a sufficient amount of free space. In case of

concurrent MC, there is no need for bounding the space overhead as concurrent MC re-

quires significantly more heap space than STW MC (much more than the imposed space

overhead). This is because concurrent GC trades pause timesfor space and throughput

(Section3.3.6).

STW MC evaluates whether to perform a fall-back after STW parallel unmapping.

In most state-of-the-art parallel compactors, (includingMC, HS, and CP), a liveness

bitmap is the interface that bridges marking and the subsequent phases. Therefore, MC

can directly proceed to the second phase of a conventional moving compactor without

any additional processing, once it determines that a fall-back is needed.

Our current MC fall-back is the STW Compressor. The compaction phase of the

Compressor is described in Section3.4.1. An alternative solution is a fall-back to the

62

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

HotSpot compactor, but STW CP imposes a smaller space overhead and is simpler. The

space-bounded MC uses two mutually-distant areas in the address space, one of which

is active (and mapped) at any given point in time. The non-moving unmapping-based

compaction always takes place in the currently active space. If a fall-back is needed,

then all objects from the active space are moved to the other space and the roles of the

two spaces are flipped (as in the Compressor). The time overhead imposed by a fall-

back is the unmapping scan (the moving compaction does not benefit from this scan)

and includes bitmap traversal, unmapping, filler object insertion, and object-start array

computation.

3.2.5 Implementation Details

We have implemented STW MC (the unbounded and the space-bounded variant),

concurrent MC, and the STW/concurrent Compressor in HotSpot [118], an open-source

(GPL) high-performance Java Virtual Machine available from Sun Microsystems and

written in C/C++ (source code released on 3/21/2007). The HotSpot JVM uses a gen-

erational [155] heap layout that comprises the permanent, tenured (old), and young

generation. The young generation is further subdivided into eden and two equal-sized

survivor spaces (called from-space and to-space). The permanent generation contains

run-time meta-data for the loaded classes. The system allocates objects initially in

the eden (if their size precludes eden allocation, it allocates them directly in the tenured

63

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

generation). Upon space exhaustion in the eden, a copying collector [42, 67] (called the

scavenger) performs a minor collection. The scavenger evacuates live objects from the

eden-space and from-space to the to-space, and promotes objects that survive several

minor collections (or those that do not fit into the to-space)to the tenured generation.

The roles of the survivor spaces exchange after each minor collection. When space in

the tenured generation is exhausted, a major collection (compaction) takes place. The

parallel STW compactor currently available in HotSpot is described in Section3.4.2.

GC threads in HS are schedulable kernel threads. HotSpot assigns each generation a

contiguous region in the virtual address space and maps onlythe currently used portion.

We implement STW/concurrent MC as a parallel compactor in thetenured genera-

tion. Both STW and concurrent MC use STW parallel marking. We reuse and simplify

the marking phase of the STW parallel HotSpot compactor (MC does not require per-

chunk summary data). We increase the distance between generations in virtual memory

to reserve address space for page remapping.

MC compacts the young generation (which is much smaller thanthe tenured gener-

ation) by object moving and pointer adjustment. This compaction, however, is not part

of the major collection. It takes place as an epilogue of a failed minor collection. Con-

sequently, MC does not need to update any pointers during major collections (unlike

HS and CP).

64

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

class lengthheader unmapped

1st

word

2nd

word

3rd

word

page

alignment

Figure 3.2: The format of a filler object. First three words form the header of an array
object. The page-aligned part of the rest of the cluster is subject to unmapping.

Since the scavenger uses a card table to find roots during minor collections, the

unmapping scan in MC must compute an offset of the first live object for each 512-byte

card (the object-start array). This additional processingis concomitant to the dead-

cluster unmapping and does not require a separate pass.

Free regions cannot be entirely unmapped as the scavenger must be able to traverse

(object by object) an arbitrary subspace of the tenured generation (in search for roots)

during minor collections. Therefore, we insert a filler object into every free area during

each unmapping scan. Figure3.2 depicts the format of the filler object. The type of a

filler object is an integer array (int[]), to ensure that there are no interior reference

fields for the scavenger to follow. Thus, each free region is reclaimable except for

three words that are necessary for the header of a filler object. The minor GC treats

filler objects as if there are live, however, since they are unreachable, the next major

collection considers them to be garbage. Following the HotSpot convention, we use a

single system call (mmap) to perform both mapping and unmapping (for the latter we

employ theMAP NORESERVE flag).

65

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Concurrent MC requires a STW phase in order to atomically update the object-

start array, insert filler objects, and resize the heap. We piggyback on the STW young

generation collection to avoid introducing additional expensive safepoints [85]. Young

generation GC is relatively frequent and a slightly-delayed STW phase is not a problem

in practice.

Generational Compressor We extend the Compressor to support generational com-

paction, and implement it in the tenured generation. The Compressor moves objects,

therefore it needs to update the pointers in the young and permanent generations upon

each compaction. We use 256-byte blocks, as we have found them to be the best trade-

off between space overhead and performance. The concurrentCompressor has two

concurrent sub-phases, separated by a single STW sub-phase. In the first sub-phase,

the Compressor computes the block-offset array (used for pointer forwarding) and

the shadow object-start array. In the STW sub-phase, the system updates the shadow

object-start array (to include new allocations) and sets itas the current object-start array,

invalidates card tables (because objects are moved), forwards pointers in the young gen-

eration and permanent generation, protects heap pages and switches to the other semi-

space. In the third sub-phase, a concurrent thread reads subsequent pages (one word

per page to generate SEGV traps) to ensure that all the pages are eventually moved, and

clears the liveness bitmap.

66

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

3.3 Experimental Evaluation

We empirically evaluate 6 compactors: STW HotSpot, STW unbounded MC, STW

space-bounded MC, concurrent unbounded MC, STW Compressor, and concurrent

Compressor. We compare these GCs in two groups, one comprising4 STW compactors

and the other comprising 2 concurrent compactors. In addition, we compare STW MC

with concurrent MC to investigate the STW/concurrent tradeoffs.

Our experimental platform is an SMP with 4 processors each ofwhich is a 2-way

SMT (the machine has 8 logical CPUs). Each physical processoris a 32-bit Intel Xeon

with 1MB of cache, clocked at 1.6GHz. The machine is equippedwith 7GB of main

memory and is running Linux Red Hat 3.4.6 with the 2.6.9 kernel. The virtual page size

is 4KB. We run HotSpot 7-ea-b10 compiled with GCC 3.2.3 in the optimized client-

compiler (C1) mode.

3.3.1 Benchmarks

Our benchmarks include three multi-threaded server benchmarks: VolanoMark 2.5

[156], PseudoSPECjbb 2000 [145], and Hsqldb from the DaCapo 2006 suite [54], as

well as three deskside utilities (from DaCapo 2006): Xalan, Chart, and Pmd. We list the

basic statistics for these benchmarks (i.e. the minimum heap size, total execution time,

67

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Benchmark Heap[MB] Time[s] GC[%] #GCs
Chart 27 25.79 13.21 16
Xalan 31 20.39 43.48 68
Pmd 31 29.54 28.16 26

Hsqldb 100 18.62 36.48 4
Volano 33 80.25 24.41 112
JBB 174 95.62 43.02 84

Table 3.1: GC statistics for the HotSpot compactor: the minimum heap size, execution
time, percentage of GC time relative to execution time, and the number of GCs. The
measurements have been obtained for the minimum heap size for each benchmark.

total GC time, and the number of GCs), that we obtain using the HotSpot compactor,

in Table3.1.

VolanoMark is a standard server benchmark derived from a commercial chat server

(VolanoChat), which simulates a multi-user environment with multiple chat rooms. The

benchmark exchanges a given number of messages and reports execution time and com-

munication throughput. PseudoSPECjbb is a variant of SPECjbbthat executes a given

number of transactions and reports execution time. The benchmark emulates a three-

tier client-server system (with emphasis on the middle tier) where clients are replaced

by driver threads and database storage by binary trees of objects. Hsqldb is a rela-

tional SQL database management system that supports in-memory and disk-based data

storage. DaCapo employs Hsqldb to execute an in-memory benchmark that comprises

a number of transactions against a model of a banking application. Xalan transforms

XML documents into HTML. Pmd analyzes a set of Java classes for a range of source

68

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

code problems. Chart plots a number of complex line graphs andrenders them into a

PDF file.

3.3.2 Methodology

Each of our experiments uses a fixed-size heap. We report total heap size, which

includes the young, old, and permanent generation. Total heap size does not include

auxiliary data structures as they are located outside of theheap. The young genera-

tion size is 25% of the old generation. The permanent generation is 12MB (HotSpot

default). Explicit GC invocation and adaptive generation resizing are disabled. We em-

ploy 4 parallel GC threads (except for the scalability experiments where we use 1–8

threads). Survivor spaces (from-space and to-space) occupy 33% of the young gener-

ation (the remaining space is used by the eden). For concurrent MC/Compressor we

start compaction when 65% of the old generation is used. Concurrent compaction uses

a single concurrent GC thread.

We repeat each measurement three times and report the average result along with

the standard deviation (error bars in the plots), wherever appropriate. We employ the

default input size for all DaCapo benchmarks. VolanoMark is run with 44 chat rooms

and performs 100 iterations in the networked mode. The server and the client are on the

same machine. PseudoJBB is configured to execute105 iterations against 8 (for STW

GC) and 4 (for concurrent GC) warehouses.

69

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

(a) Deskside benchmarks (b) Server benchmarks

10
2

10
4

10
6

10
80.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size [byte]

C
D

F

Chart
Xalan
Pmd

10
1

10
2

10
3

10
4

10
50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size [byte]

C
D

F

Hsqldb
Volano
JBB

Figure 3.3: Distribution of cluster sizes for the deskside benchmarks (a) and server
benchmarks (b). We report CDFs for individual benchmarks.

3.3.3 Clustering

Figure3.3 shows CDFs for the sizes of clusters of dead objects for the deskside

benchmarks (a) and server benchmarks (b), while Figure3.4 presents summary CDFs

across the benchmarks. We report data obtained for the minimum heap sizes using

STW unbounded MC. Percentage of clusters greater than 4KB (virtual page size) is

24% for Chart, 52% for Xalan, 38% for Pmd, 1% for Hsqldb, 5% for Volano, and

9% for JBB. Fragmentation is higher in server benchmarks. MC achieves low space

overhead for these benchmarks by reclaiming relatively fewbig clusters rather than

many smaller ones. Average cluster size is 26KB, minimum cluster size is 28B, and

maximum cluster size is 184MB.

70

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

10
1

10
2

10
3

10
4

10
5

10
6

10
70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size [byte]

C
D

F

Deskside
Server
All

Figure 3.4: Distribution of cluster sizes across the benchmarks. We report CDFs for
deskside, server, and all benchmarks.

3.3.4 Stop-the-World Compactors

We compare STW unbounded MC (UN) and STW space-bounded MC (SP) with

STW Compressor (CP) and STW HotSpot (HS) in terms of memory footprint, through-

put, pause times, and scalability. For SP, we employ the 10% space overhead bound

in all experiments. We also investigate the impact of other bounds on the fall-back

frequency and average pause times.

Space Overhead

HS and CP impose a constant space overhead of 3% (for 2KB chunks) and 1.5%

(for 256B blocks), respectively. In MC, the space overhead isvariable and application-

specific (but can be bounded) and depends on the degree of dead-object clustering in

the heap.

71

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Chart Xalan Pmd Hsqldb Volano JBB
0

2

4

6

8

10

12

S
pa

ce
 O

ve
rh

ea
d

[%
]

 UN
 SP

Figure 3.5: Space overhead across the heap sizes for STW unbounded MC (UN), and
STW space-bounded MC (SP) with the 10% bound.

The bar graph in Figure3.5shows space overhead imposed by STW unbounded MC

and STW space-bounded MC. For each benchmark, we report the average value across

the heap sizes. The overhead is shown as a percentage of the heap size. On average, the

unbounded MC imposes 5.8% overhead while the space-boundedMC (with the 10%

bound) imposes 3.5% overhead.

Throughput

In Figure3.6, we present per-benchmark graphs, each with four performance curves

for a range of heap sizes. Each graph shows execution time as afunction of heap size

(starting from the minimum heap size).

For the minimum heap sizes and relatively to HS, UN improves throughput by up to

23.5% (Hsqldb) and by 13.3% on average. For the minimum heap sizes and relatively

to CP, UN improves throughput by up to 42.1% (PseudoJBB) and by 23.3% on average.

72

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

For the minimum heap sizes and relatively to HS, SP improves throughput by up to

22.7% (Hsqldb) and by 10.9% on average. For the minimum heap sizes and relatively

to CP, SP improves throughput by up to 40.1% (PseudoJBB) and by 21.1% on average.

Pause Times

Figures3.7(a) and3.7(b) present average and maximum pause times for UN, SP,

HS, and CP. For each benchmark, we report the average value across the heap sizes.

Compared to HS, UN reduces average (maximum) pause times by upto 69.7%

(78.7%) and on average by 63.4% (68.4%). Compared to CP, UN reduces average

(maximum) pause times by up to 73.8% (74.4%) and on average by66.8% (67.5%).

Compared to HS, SP reduces average (maximum) pause times by upto 67.8% (76.4%)

and on average by 49.3% (31.4%). Compared to CP, SP reduces average (maximum)

pause times by up to 72.2% (71.7%) and on average by 53.9% (31.5%).

A commonly-employed GC metric for the evaluation of collector-imposed pauses

are minimal mutator utilization (MMU) curves [43] (we discuss MMU in more detail

in Section2.1). As shown in Figure3.8, UN achieves the highest MMU for all window

sizes across all benchmarks and attains non-zero utilization for windows shorter than

SP, HS, and CP. SP achieves better or the same utilization as HSand CP for all bench-

marks. Since SP falls back to CP, its maximum pause time is often similar to CP. HS

achieves better or comparable utilization as CP.

73

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

26 28 30 32 34 36 38 40 42 44

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75x 10
4 Chart

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

CP

HS

SP

UN

30 32.5 35 37.5 40 42.5 45 47.5 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3x 10
4 Xalan

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

CP

HS

SP

UN

30 32 34 36 38 40 42 44 46 48

2.2

2.4

2.6

2.8

3

3.2x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Pmd

CP

HS

SP

UN

32 34 36 38 40 42 44

60

65

70

75

80

85

90

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[s
]

Volano

CP

HS

SP

UN

98 100 102 104 106 108 110 112 114

1

1.2

1.4

1.6

1.8

2

2.2

2.4x 10
4 Hsqldb

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

CP

HS

SP

UN

172 174 176 178 180 182 184 186 188 190

4

6

8

10

12

14x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

PseudoJBB

CP

HS

SP

UN

Figure 3.6: Benchmark performance (execution time) across the heap sizes for STW
unbounded MC (UN), STW space-bounded MC (SP) with the 10% bound, STW
HotSpot compactor (HS), and STW Compressor (CP). Error bars indicate the standard
deviation across 3 runs.

74

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

(a) Average pause times (b) Maximum pause times

Chart Xalan Pmd Hsqldb Volano JBB
0

500

1000

1500

2000

2500

A
ve

ra
ge

 G
C

 P
au

se
 T

im
e

[m
s] UN

SP
HS
CP

Chart Xalan Pmd Hsqldb Volano JBB
0

500

1000

1500

2000

2500

3000

M
ax

im
um

 G
C

 P
au

se
 T

im
e

[m
s]

UN
SP
HS
CP

Figure 3.7: GC pause time statistics across the heap sizes for STW unbounded MC
(UN), STW space-bounded MC (SP) with the 10% bound, STW HotSpot compactor
(HS), and STW Compressor (CP): average pause times (a) and maximum pause times
(b).

Figure3.9 compares average (data points) and maximum (error bars) pause times

for UN, SP, HS, and CP. For these experiments, we vary the number of parallel GC

threads for a fixed heap size (we use the minimum heap sizes). Both UN and SP con-

sistently decrease pause times relative to HS and CP, independent of the number of

parallel GC threads. For 1 GC thread, UN reduces pauses on average by 49% relative

to HS and by 61% relative to CP, while SP reduces pauses on average by 44% relative

to HS and by 56% relative to CP. For 4 GC threads, UN reduces pauses on average by

61% relative to HS and by 66% relative to CP, while SP reduces pauses on average by

51% relative to HS and by 57% relative to CP. Finally, for 8 GC threads, UN reduces

pauses on average by 65% relative to HS and by 66% relative to CP, while SP reduces

pauses on average by 54% relative to HS and by 54% relative to CP.

75

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

10
4

10
5

10
6

10
7

10
80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Window Size [us]

M
M

U

Chart

UN
SP
HS
CP

10
4

10
5

10
6

10
7

10
80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Window Size [us]

M
M

U

Xalan

UN
SP
HS
CP

10
5

10
6

10
7

10
80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Window Size [us]

M
M

U

Pmd

UN
SP
HS
CP

10
4

10
5

10
6

10
7

10
80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Window Size [us]

M
M

U

Hsqldb

UN
SP
HS
CP

10
5

10
6

10
7

10
80.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Window Size [us]

M
M

U

Volano

UN
SP
HS
CP

10
5

10
6

10
7

10
8

10
90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Window Size [us]

M
M

U

PseudoJBB

UN
SP
HS
CP

Figure 3.8: Minimum mutator utilization (MMU) curves for the minimum heap
sizes for STW unbounded MC (UN), STW space-bounded MC (SP) with the 10%
bound, STW HotSpot compactor (HS), and STW Compressor (CP). Window size is in
microseconds.

76

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Chart

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
50

100

150

200

250

300

350

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Xalan

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Pmd

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Hsqldb

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
50

100

150

200

250

300

350

400

450

500

550

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

Volano

CP
HS
SP
UN

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

Parallel GC Threads

G
C

 P
au

se
 T

im
e

[m
s]

PseudoJBB

CP
HS
SP
UN

Figure 3.9: Average (data points) and maximum (error bars) GC pause times for 1–
8 parallel GC threads and the minimum heap sizes for STW unbounded MC (UN),
STW space-bounded MC (SP) with the 10% bound, STW HotSpot compactor (HS),
and STW Compressor (CP). We report average values across 3 runs.

77

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Scalability

Our experimental platform has four 2-way SMT processors virtualized by the op-

erating system as 8 logical CPUs. We investigate the scalability (speedup) of UN, SP,

HS, and CP in the context of both multi-processing and multi-threading parallelism. We

measure the unscaled speedup – we apply an increasing numberof GC threads (from

1 through 8) to a fixed-size workload and the minimum heap for each benchmark. We

compute the speedup forp threads as a ratio of the average GC pause time for1 thread

and forp threads.

As shown in Figure3.10, server benchmarks scale better (e.g. Hsqldb/UN achieves

5.9 speedup while the maximum for deskside benchmarks is 3.4for Chart/UN). HS has

the worst scalability because it computes per-chunk statistics during marking, which

entails more synchronization. The plots in Figure3.9 provide absolute average GC

pause times from which the speedup graphs have been derived.

When considering only multi-processing parallelism (4 GC threads), the speedup

averages at 2.86 for UN, 2.6 for SP, 2.22 for HS, and 2.49 for CP.Thus, UN improves

speedup by 30% relative to HS and by 15% relative to CP, while SPimproves speedup

by 17% relative to HS and by 4% relative to CP.

When multi-threading is taken into account (8 GC threads), the speedup averages

at 3.75 for UN, 3.19 for SP, 2.56 for HS, and 3.03 for CP. Thus, UNimproves speedup

78

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

Parallel GC Threads

S
pe

ed
up

Chart

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Parallel GC Threads

S
pe

ed
up

Xalan

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

Parallel GC Threads

S
pe

ed
up

Pmd

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Parallel GC Threads

S
pe

ed
up

Hsqldb

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

Parallel GC Threads

S
pe

ed
up

Volano

UN
SP
HS
CP

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Parallel GC Threads

S
pe

ed
up

PseudoJBB

UN
SP
HS
CP

Figure 3.10: Scalability (unscaled speedup) for 1–8 parallel GC threads, fixed work-
load, and the minimum heap sizes for STW unbounded MC (UN), STW space-bounded
MC (SP) with the 10% bound, STW HotSpot compactor (HS), and STW Compressor
(CP). Speedup is computed for average GC pause times. Absolute average GC pause
times are reported in Figure3.9.

79

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

by 47% relative to HS and by 23% relative to CP, while SP improves speedup by 23%

relative to HS and by 3% relative to CP.

Fall-Back Rate

SP falls back to CP if excessive fragmentation in the heap makes it impossible

to reclaim a significant fraction of free space. Table3.2 shows the rate of fall-back

to perfect compaction that is necessary to guarantee a specific space overhead bound

(2% to 20%). We express this rate as the percentage of GCs that need to fall back to

conventional moving compaction to keep the space overhead below a given threshold.

The fall-back statistics for the minimum heap sizes indicate that even for tight

bounds, relatively infrequent fall-back is necessary. Forinstance, in order to achieve

5% bound, on average, 6.5% collections need to trigger a fall-back (for 7% bound it is

3.7% and for 10% bound it is 1.8%). In addition, we have measured average GC pause

times for different space bounds. The results for UN and SP, reported in Table3.2,

indicate that the space-bounded MC reduces pauses significantly relative to HS and CP

(for all bounds that we investigate), and increases averagepause times by around 20%

compared to the unbounded MC.

80

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Bound [%] 2 5 7 10 15 20
Benchmark Fall-back frequency [%]

Chart 12.8 0.0 0.0 0.0 0.0 0.0
Xalan 99.6 32.6 16.4 5.7 1.5 0.4
Pmd 6.6 3.9 4.2 4.1 4.1 0.0

Hsqldb 0.0 0.0 0.0 0.0 0.0 0.0
Volano 1.0 0.0 0.0 0.0 0.0 0.0
JBB 4.3 2.3 1.6 1.2 0.0 0.0

Compactor Avg. Pause Decrease [%]
STW CP 62.6 64.7 65.2 65.1 65.2 66.1
STW HS 53.2 55.8 56.4 56.3 56.4 57.5

Compactor Avg. Pause Increase [%]
STW UN 26.8 22.5 21.4 21.5 21.4 19.4

Table 3.2: GC statistics for STW space-bounded MC for different space bounds ob-
tained using the minimum heap sizes. The first part shows fall-back frequency (GC
percentage). The second part shows percentage decrease in average GC pause times
relative to STW Compressor (CP) and STW HotSpot (HS). The thirdpart shows per-
centage increase in average GC pause times relative to STW unbounded MC (UN).

3.3.5 Concurrent Compactors

Next, we compare concurrent unbounded MC (UN) and concurrent Compressor

(CP) in terms of memory footprint, throughput, and pause times.

Space Overhead

Concurrent collection requires heap space over-provisioning to avoid the situation

when allocators exhaust the heap before the ongoing background collection is com-

plete. Therefore, space overhead is less of a problem in concurrent MC than in STW

MC. Figure 3.11 shows space overhead (as a heap percentage) averaged acrossthe

heap sizes. As explained earlier, CP has a constant space overhead of 1.5%. Across the

81

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Chart Xalan Pmd Hsqldb Volano JBB
0

1

2

3

4

5

6

7

8

S
pa

ce
 O

ve
rh

ea
d

[%
]

 UN

Figure 3.11: Heap space overhead across the heap sizes for concurrent unbounded MC
(UN). We use the same heap size ranges as in Figure3.12.

benchmarks, the space overhead of concurrent UN averages at4.1%. Note that con-

current UN requires about 28% more heap space than STW UN (Section 3.3.6). Thus,

bounding space overhead in concurrent MC does not seem necessary/practical.

Throughput

In Figure3.12, we present per-benchmark graphs, each of which shows execution

time as a function of heap size (starting from the minimum heap size). For the minimum

heap sizes, concurrent UN improves throughput by up to 52% (Xalan) and by 29% on

average (relative to the concurrent Compressor).

Pause Times

Figures3.13(a) and3.13(b) present average and maximum pause times for concur-

rent UN and concurrent CP. For each benchmark, we report the average value across the

82

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

35 40 45 50 55 60

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Chart

CP

UN

30 40 50 60 70 80 90

1.5

2

2.5

3

3.5

4

4.5

5

5.5x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Xalan

CP

UN

35 40 45 50 55 60

3

4

5

6

7

8x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Pmd

CP

UN

45 50 55 60 65 70

60

61

62

63

64

65

66

67

68

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[s
]

Volano

CP

UN

100 110 120 130 140 150 160 170
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

Hsqldb

CP

UN

120 130 140 150 160 170 180 190

2.7

3

3.25

3.5

3.75

4x 10
4

Heap Size [MB]

E
xe

cu
tio

n
T

im
e

[m
s]

PseudoJBB

CP

UN

Figure 3.12: Benchmark performance (execution time) across the heap sizes for con-
current unbounded MC (UN) and concurrent Compressor (CP). Error bars indicate the
standard deviation across 3 runs.

83

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

(a) Average pause times (b) Maximum pause times

Chart Xalan Pmd Hsqldb Volano JBB
0

50

100

150

200

250

300

A
ve

ra
ge

 G
C

 P
au

se
 T

im
e

[m
s]

CP
UN

Chart Xalan Pmd Hsqldb Volano JBB
0

50

100

150

200

250

300

350

M
ax

im
um

 G
C

 P
au

se
 T

im
e

[m
s]

CP
UN

Figure 3.13: GC pause time statistics across the heap sizes for concurrent unbounded
MC (UN), and concurrent Compressor (CP): average pause times (a) and maximum
pause times (b). We use the same heap size ranges as in Figure3.12.

heap sizes. Note that we do not consider pauses imposed by concurrent marking here,

only those imposed by concurrent compaction. Compared to concurrent CP, concurrent

UN reduces average pause times by up to 96% (Volano) and on average by 90%, while

reducing maximum pause times by up to 94% (Volano) and on average by 88%. Since

concurrent CP moves objects, it needs to update the pointers in the young and perma-

nent generations as part of its STW phase. Concurrent MC does not need to do that and

thus its STW pause is much shorter.

3.3.6 Stop-the-World/Concurrent Tradeoffs

To lend insight into the tradeoffs associated with STW and concurrent compaction

[30, 57, 99, 127], we compare STW UN with concurrent UN, in terms of through-

84

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Bench- Min.Heap[MB] Max.Pause[ms] Exec.Time[s]
mark SMC CMC SMC CMC SMC CMC
Chart 27 39 81.4 7.9 23.13 23.85
Xalan 31 37 66.3 6.2 15.64 24.62
Pmd 31 37 160.4 11.2 22.44 37.36

Hsqldb 100 108 n/a 39.7 9.43 12.03
Volano 33 48 n/a 2.1 60.25 61.07
JBB 92 122 147.0 24.1 23.63 26.49

Table 3.3: Comparison of STW unbounded MC (SMC) and concurrent unboundedMC
(CMC). We report the minimum heap sizes, maximum GC pause times, and execution
times. Execution times and pause times are obtained for the minimum heap size of
CMC (as it is larger than the minimum heap size of SMC). The reported pause times
correspond to compaction only (marking is excluded).

put, pause times, and memory footprint. Both compactors use the same STW parallel

marking algorithm.

Table3.3shows experimental results for our benchmarks. We report the minimum

heap size in MB (columns 2 and 3), maximum pause time in ms (columns 4 and 5),

and execution time in seconds (columns 6 and 7). Execution time and pause times are

measured for the minimum heap size of concurrent UN (shown incolumn 3). This heap

size is often much larger than the minimum heap size of STW UN –in some cases big

enough to prevent STW UN from any GC activity (we then report pause times as n/a).

Concurrent GC trades pause times for throughput and heap space. On average, rela-

tive to STW UN, concurrent UN requires 28% more heap space anddegrades through-

put by 28%. Maximum pause times (needed for compaction, not marking), however,

are shorter for concurrent UN by 89% on average.

85

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Bench- # System GC Ti- System System
mark Calls me [ms] Time [ms] Time [%]
Chart 4358 3405 13.5 0.4
Xalan 92796 8869 287.7 3.2
Pmd 26585 8319 82.4 1.0

Hsqldb 911 6818 2.8 0.0
Volano 12514 19592 38.8 0.2
JBB 299953 41134 929.9 2.3

Table 3.4: The cost of unmapping system calls in STW unbounded MC. We report the
total number of themmap calls, total GC time, total time spent in the system calls, and
percentage of GC time spent in the system calls. System time has been conservatively
estimated using a serial micro-benchmark.

3.3.7 Unmapping Overhead

We have evaluated the cost of themmap system calls relative to GC time in STW

UN. Table3.4presents per-benchmark data obtained for the minimum heap sizes. We

report total number of system calls, total GC time, total system call time, and percent-

age of GC time spent in system calls. We estimate the cost of a single unmapping

system call using a separate micro-benchmark. Our platformneeds 3.1s to perform106

unmapping calls. The length of the unmapped region does not impact this cost. On

average, STW UN spends 1.2% of GC time in system calls. Note that this result is an

upper bound as our micro-benchmark is not parallel.

86

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

3.3.8 Other Benchmarks

Thus far, we have only presented detailed experimental datafor a subset of bench-

marks that we have studied. For our in-depth analysis we haveselected standard,

benchmarks whose performance is considerably affected by GC. Table3.5summarizes

the experimental data obtained for the remaining deskside utility benchmarks that we

have investigated: Db (memory-resident database) and Javac (Java compiler) from the

SPECjvm (1998) suite [145] as well as Bloat (bytecode analyzer/optimizer), Fop (XSL

parser and formatter), and Lusearch (text search engine) from the DaCapo (2006) suite

[54].

In Table3.5we report results for both STW and concurrent UN (slash-separated) in

comparison to STW HS and STW/concurrent CP. We report the minimum heap size for

STW/concurrent UN (column 2), space overhead for STW/concurrent UN (column 3),

and average pause time reduction in comparison to HS and CP (columns 4–5). Column

4 compares STW UN and STW HS. Column 5 compares STW UN with STW CP as

well as concurrent UN with concurrent CP.

For our additional benchmarks, on average, concurrent UN requires 36.5% more

heap space than STW UN. Space overhead, across these benchmarks, is 6% for STW

UN and 3% for concurrent UN. Concurrent UN reduces average pause times by 92%

compared to concurrent CP. STW UN reduces average pause timesby 59% relative to

STW HS and by 70% relative to STW CP.

87

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

Bench- Heap Si- % Space % Avg. Pause
mark ze [MB] Overhead vs. HS vs. CP
Bloat 16 / 20 5.9 / 3.1 69.6 73.0 / 96.9
Fop 20 / 24 3.1 / 1.0 57.3 68.8 / 91.6

Lusearch 16 / 24 4.4 / 3.1 62.6 73.7 / 97.2
Db 24 / 32 0.8 / 0.5 47.6 66.7 / 94.2

Javac 24 / 37 15.7 / 8.5 56.1 68.8 / 80.8

Table 3.5: GC statistics for additional benchmarks using the minimum heap sizes.
Slash delimits data for STW and concurrent MC. In subsequent columns, we report
the minimum heap size for STW/concurrent unbounded MC (2), space overhead for
STW/concurrent unbounded MC (3), average pause time reduction for STW unbounded
MC relative to STW HS (4) and STW Compressor (5), and average pause time reduc-
tion for concurrent unbounded MC relative to concurrent Compressor (5).

3.4 Related Work

While most prior work on parallel/concurrent compaction hasfocused on virtual-

memory-oblivious compactors, the interaction between thecollector and virtual mem-

ory has recently gained interest [101, 175, 80, 46]. Previously reported compactors

achieve compaction by moving all (or some [57, 85, 46]) live objects and need at least

two phases. MC attempts to achieve compaction without any object moving and is a

nearly-single-phase compactor. Following the methodology used in [101], we define

a GC phase as an operation with cost proportional to the heap or live data size. The

first phase in state-of-the-art compactors is marking [99] which identifies live objects

through parallel/concurrent tracing.

88

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

3.4.1 The Compressor

The Compressor [101] is a parallel compacting GC that requires two phases: mark-

ing and compaction. It supports both stop-the-world (STW) and concurrent collection.

The Compressor (herein referred to as CP) uses virtual memory operations (i.e. page

mapping and unmapping) but accomplishes compaction by moving live objects and

adjusting the pointers. The compaction is perfect (i.e. heap fragmentation is fully elim-

inated). The compactor employs two virtual spaces and copies objects page by page

from one space to the other. CP, akin to a copying collector, always moves all objects.

It updates pointers after moving using information it has recorded in auxiliary data

structures (which include the block-offset array). This process is accompanied by free-

ing pages in the source space and allocating pages in the destination space. CP imposes

a small constant space overhead (1.5% for 256-byte blocks) for auxiliary data struc-

tures. By contrast, MC performs compaction in nearly one phase and eliminates object

moving and pointer adjustment. MC imposes a variable space overhead (on average

<6%, which can be bounded). Both compactors preserve object order. CP unmaps and

maps the entire heap each time the compaction is invoked. MC limits the number of

virtual memory operations to the number of dead-object clusters.

89

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

3.4.2 The HotSpot Compactor

The parallel compactor currently available in the HotSpot JVM [85] (herein referred

to as HS) is similar in spirit to the Compressor. HS updates pointers in the same way

but moves objects only when it is necessary. HS is a STW virtual-memory-oblivious

collector with two phases: marking and compaction. HS divides the heap into fixed-

size regions (chunks) and uses a liveness bitmap to record the locations of live objects.

During marking, HS computes additional per-chunk data needed for pointer adjustment.

The compaction phase is parallel. Threads claim available regions atomically and fill

them with live objects. A region becomes available when all its objects have been

evacuated (it is empty) or it has been compacted onto itself.HS updates interior object

pointers as it fills regions. Filling a region does not require synchronization and involves

identifying source objects destined for the region and copying them until the region is

full or no more objects are left. HS computes a new location ofa live object as the

start of its destination region plus the size of live objectsthat precede the object in that

region. HS performs perfect, sliding compaction and preserves the object order. HS

imposes a constant space overhead of 3% (needed for per-region data that includes the

current compaction state for each region). The advantages of MC over HS are similar

to those over the Compressor: nearly one GC phase (instead of two) and avoidance of

object moving and pointer manipulation.

90

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

3.4.3 The IBM Compactor

The IBM collector [1] is a parallel STW compactor that comprises three phases:

marking, object moving, and pointer fix-up. This collector does not manipulate virtual

memory mapping. It does not guarantee perfect compaction and, therefore, imposes

an application-specific space overhead, similarly to MC. Thesystem divides the heap

into fixed-size blocks. Initially, GC threads perform intra-block compaction and pro-

ceed to inter-block compaction as free contiguous areas begin to appear in the already-

compacted blocks. In the moving phase, the system collects information needed for

pointer adjustment. In the final phase, the system divides the heap into as many areas

as there are GC threads, and each thread redirects pointers in its own area. Pointer ad-

justment is performed in a similar way as in the Compressor. Incontrast, MC neither

moves objects nor updates pointers and is a nearly-single-phase collector.

3.4.4 The Flood Compactor

The compactor presented by Flood et al. [67] is a parallel version of the Lisp2

[99, 47] collector. This STW GC requires four phases: marking, forwarding pointer

installation, pointer adjustment, and object moving. The heap is divided intop con-

tiguous regions wherep is the number of parallel GC threads. The sliding direction

alternates between left and right for even and odd regions and as a resultp
2

groups of

objects are formed in the heap. Thus, free space is consolidated only partially. This

91

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

compactor uses forwarding pointers instead of the block-offset array and the mark-bit

vector. Thus, pointer updates are more efficient but one additional phase is necessary.

MC achieves higher-quality compaction (the free space is mostly consolidated, no ob-

ject groups are formed) in nearly one phase and without object moving and pointer

adjustment.

3.4.5 The Pauseless GC

The Pauseless GC [46] is a parallel and concurrent compactor that avoids STW

pauses through hardware read barriers, fast user-mode traphandlers, an additional in-

termediate TLB privilege level, and fast cooperative preemption via interrupts. The

compactor consists of three phases, called mark, relocate,and remap, each of which

is parallel and concurrent. The mark phase periodically refreshes the liveness bitmap.

The relocate phase uses the most up-to-date liveness bitmapto find pages that contain

few live objects, evacuates live data from those pages, and frees the underlying physi-

cal memory. Pages with no live data are unmapped as in MC. Evacuated virtual pages

containing live objects are protected to trigger traps uponaccess. The system maintains

pointer-forwarding information outside of the evacuated pages, in side arrays (hash ta-

ble), and imposes variable, but small, space overhead. Mutators using stale pointers

raise traps which in turn update pointers to refer to new object locations. The remap

phase traverses the object graph executing a read barrier against each pointer to en-

92

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

sure the completeness of lazy pointer forwarding and thus guarantees that all evacuated

virtual pages are eventually unmapped. The system performsthe remap phase con-

currently with the mark phase of the next collection cycle. Unlike the Pauseless GC,

MC performs compaction in a nearly one phase – marking, whichcan be implemented

either as stop-the-world or concurrent. MC does not requirespecial hardware support,

never copies objects, and reclaims only completely free pages, all of which significantly

simplify implementation.

3.4.6 Virtual Memory Support for GC

Recently proposed collectors that leverage virtual memory either focus on copying,

not on compaction (like MC), or aim at reducing heap space usage, not at avoiding ob-

ject moving (like MC). For example, MarkCopy [136] leverages virtual memory map-

ping to reduce the space overhead of a copying collector. Thecollector does not require

a copy reserve since it maps and unmaps consecutive pages as copying progresses (in

a way similar to that of the Compressor [101]). Unlike MC, these approaches involve

object moving.

Collectors that cooperate with the virtual memory manager toreduce the collector-

induced paging [77, 175, 80, 179, 174] are orthogonal and complementary to MC.

The Bookmarking collector [80] records summary information about outgoing pointers

from evicted pages to avoid accessing non-resident pages during full-heap compacting

93

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

collections. CRAMM [175] and IV heap sizing [77] use VM paging behavior to pre-

dict and set dynamically an appropriate, application-specific, heap size that adapts to

changing memory pressure.

The Boehm-Demers-Weiser [35] garbage collector is a mark-sweep (non-compacting)

collector for C/C++ which uses page unmapping as an optional and supplementary

mechanism to reduce fragmentation. This collector is conservative (i.e. not all garbage

can be identified). Page unmapping in the context of conservative GC for C/C++ has

also been investigated in [132]. The proposed collector remaps virtual memory pages

to reduce external fragmentation in a free list of large objects. In contrast, MC em-

ploys unmapping as a primary technique to achieve compaction and is the first to do

so among non-conservative (precise) collectors. Doug Lee’s malloc library [103] uses

mmap/munmap primitives for memory allocation/reclamation. This system, however,

does not support or provide garbage collection.

An alternative to STW collection is concurrent GC, commonly employed for server

systems, which interleaves application (mutator) and GC execution via additional syn-

chronization and resource (memory and processor) over-provisioning, to reduce GC

pause times. The concurrent version of the Compressor [101], Garbage-First collec-

tor [57], and mostly-concurrent mark-sweep [122] are recent examples of concurrent

GCs. Concurrent collectors commonly protect virtual pages inorder to detect conflicts

with mutators and to exploit cache locality [101]. Extant systems supporting concur-

94

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

rent/parallel collection either do not attempt compaction[127, 122, 121, 19, 20, 34]

or move/copy live objects [101, 82, 43, 4, 57]. In contrast, MC achieves compaction

without object moving.

3.5 Summary and Conclusions

The Mapping Collector (MC) is a generational, parallel GC thatsupports both stop-

the-world and concurrent compaction. MC coordinates with the underlying virtual

memory system of the operating system and performs compaction in nearly one phase.

Thus, MC is simpler and more efficient than state-of-the-artcompactors which require

at least two phases. Unlike previously reported compactors, MC is a non-moving col-

lector that leverages the level of indirection provided by virtual memory to consolidate

free space into a single contiguous region. By doing so, MC avoids costly object copy-

ing and pointer adjustment. The motivation for MC is the observation that unreachable

objects in the heap tend to form clusters that can be effectively reclaimed at the gran-

ularity of virtual pages. Space overhead imposed by MC is variable but modest in

practice and can be bounded by relatively infrequent fall-back to conventional, perfect

compaction. MC is particularly attractive for concurrent compaction as it does not re-

quire synchronization with the mutators and its space overhead is not a problem in the

light of heap over-provisioning.

95

Chapter 3. Efficient Compaction by Mapping: Improving Intra-Runtime Memory
Management Performance Using Virtual Memory

We implement MC in the open-source HotSpot JVM and evaluate it experimen-

tally on a multiprocessor using a range of different benchmarks and metrics, including

throughput, pause times, and scalability. We show that MC significantly outperforms

state-of-the-art, stop-the-world parallel compactors (the Compressor and the HotSpot

compactor), as well as the concurrent Compressor, for the metrics and benchmarks that

we investigate.

The text of this chapter is in part a reprint of the material asit appears in [159].

96

Chapter 4

Dynamic Prediction of Collection
Yield: Improving Intra-Runtime
Memory Management Performance
Using Virtual Memory

In this chapter, we describe another approach to improving the performance of intra-

runtime memory management by using OS support for virtual memory. However, in

contrast to Chapter3, which focuses on leveraging page mapping operations to improve

the collector performance, this time we investigate exploiting page reference bits main-

tained by the OS kernel to avoid unproductive collections. Specifically, we discuss the

design and implementation of a collection yield predictor that enables to estimate the

amount of heap space that can be reclaimed by a collection. Unlike extant MREs that

trigger collection based on heap use, our system schedules collection at times when the

yield is sufficient to justify the GC cost. The predictor builds on the observation that

unreachable objects in the heap form clusters that span pages that are never referenced

97

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

by an application. Counting such never-referenced pages proves to be an accurate es-

timate of what percentage of the heap is currently reclaimable. This allows to avoid

low-yield collections and improve performance significantly.

4.1 Introduction and Motivation

To support the vast diversity of deskside and server workloads, modern system soft-

ware stacks have grown both in depth and complexity and now commonly include man-

aged runtime environments (MREs), e.g. Java and C# virtual machines, layered on top

of a general-purpose operating system (OS), e.g. Linux. Although independent and

isolated, the OS and MRE layers provide similar services for programs, such as mem-

ory management and access to protected resources. In this chapter, we investigate how

to better coordinate the activities of memory management between the hardware, OS,

and MREs to improve the performance of applications.

Garbage collection (GC), commonly employed by MREs to increase programmer

productivity and software reliability, can negatively impact both application throughput

and interactivity. Key advances in GC that have led to significant reduction of collec-

tion costs include support for parallelism and concurrency, generational heap layout,

and compaction [99, 85, 101, 46, 47, 159, 57, 122]. Moreover, recent GC systems in-

98

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

troduce ways to better coordinate the activities of the MRE GCand OS virtual memory

subsystem [159, 101, 77, 136, 175, 80, 179, 174, 79].

We build upon and extend this prior work to improve MRE-OS-hardware interaction

in a way that facilitatescollection avoidance. In particular, we design and implement

a lightweight prediction scheme (the Yield Predictor) thatidentifies, with low over-

head, the amount of free space a particular GC invocation is likely to yield from dead

objects. GC systems can employ this yield prediction to avoid ineffective collections

that are unable to reclaim sufficient space to justify the incurred cost, by trading off a

small space overhead (equal to the small yield that would have been collected by the

skipped GC). Most extant systems trigger GC unconditionallywhen a program exceeds

some threshold on its heap use, without regard for GC yield. Systems that trigger GC

proactively, rely on complex monitoring and analysis of program behavior [173].

The Yield Predictor (YP) provides a simple solution to distinguishing productive

GCs by estimating GC yield using hardware page reference bitsthat the OS uses to

implement virtual page replacement. Key to its efficacy is the statistical property of

modern programs that dead objects tend to cluster together in large groups (larger than

the 4KB virtual page size), and that pages that have not been recently referenced by

the application correlate well with dead clusters. We validate these properties with

empirical data and describe how YP makes use of them to estimate GC yield. We im-

plement YP for three state-of-the-art parallel compactorswithin the production-quality,

99

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

open-source, HotSpot Java virtual machine. These compactors represent three distinct

canonical heap layouts and GC strategies (compaction by sliding, copying, and remap-

ping).

YP demonstrates that MREs can significantly benefit from existing architectural

support for memory management when GC is given access to pagetables and can

leverage the standard hardware mechanism used for marking pages referenced by a

process. Thus, the predictor identifies a new use for the existing hardware facility. In

addition, YP enables a more resource-efficient GC mechanismthat gives the memory

manager more control over the space/time trade-offs and allows for well-informed GC

scheduling decisions at run-time.

A comprehensive experimental evaluation of YP based on standard community

benchmarks and open-source applications shows that YP consistently provides high

prediction accuracy and that avoidance of unproductive GCs can substantially improve

(44–59%) the performance of both server- and client-side benchmarks.

In the following sections, we describe the design and implementation of YP (Sec-

tion 4.2), present results of our empirical evaluation (Section4.3), discuss related work

(Section4.4), and conclude (Section4.5).

100

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

4.2 Design and Implementation

State-of-the-art MRE memory management systems trigger GC upon complete (or

partial, in the case of concurrent GC) exhaustion of the spacedesignated for object

allocation. The key limitation of this approach is that every collection is performed

irrespective of whether it is worth paying for. Our investigation ofGC productivity, i.e.

the total size of dead objects that a collection cycle reclaims, shows that many GCs are

unproductive and are able to reclaim only a small fraction ofthe heap. We empirically

evaluate this phenomenon further in Section4.3.3. We observe from our experiments

that a number of different (deskside and server) Java applications have an average GC

yield below 5% of the heap space.

If we are to skip unproductive GCs, we must have a fast and accurate mechanism

for estimating the total size of dead objects in the heap. Marking, which identifies

live data via traversing the reachable object graph starting from the roots, is the most

commonly-used mechanism to do this and can precisely compute the amount of dead

space. However, marking takes significant time and, according to our measurements,

comprises between 50% (for the Compressor) and 90% (for the Mapping Collector)

of total GC time, depending on the compaction algorithm. Thus, partial reduction of

collection cost by skipping only the phases that follow marking is not satisfactory due

to its lower potential for performance improvement.

101

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

Our goal is to design and implement effective, practical, and lightweight yield pre-

diction. Our approach to enabling such prediction relies onimproved coordination

between the activities of OS, hardware virtual memory subsystem, and MRE memory

management.

4.2.1 Yield Predictor Design

General-purpose OSes support virtual memory to isolate address spaces of distinct

processes and provide a convenient uniform linear addressing. Most virtual memory

implementations divide the virtual address space of a process intopages, each typically

4KB in size. The mapping between virtual pages and physical page frames is stored

in an OS-maintainedpage table. Under memory pressure, the kernel usesswap space

to evict pages that are unlikely to be accessed in the future.To implement swapping,

pages tables reserve two bits per page, indicating whether aspecific page isdirty and

has been recentlyreferenced. These bits are set by hardware upon memory store/read.

Prior work shows that for modern Java applications, objectswith similar life spans

tend to be spatially clustered in the heap and that dead objects often form clusters

larger than the 4KB virtual page size [159, 167]. The design of YP leverages these

statistical properties and the observation that dead pagesare never accessed by the

program and, as a result, eventually become not-recently-referenced (NRR) from the

OS kernel perspective. YP exploits this relationship between NRR and dead pages to

102

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

estimate the total number of dead pages in the heap. When the number of dead pages is

small, an impending garbage collection is likely to be ineffective, i.e. unable to reclaim

sufficient space to justify the cost of performing GC. We employ YP to avoid such

collections in state-of-the-art compaction systems. We trade a small space overhead

for significant performance gains that result from skippinglow-yield GCs. We analyze

these trade-offs in Section4.3.

YP takes two parameters:skip thresholdandyoung-old ratio. We investigate YP’s

sensitivity to both in Section4.3. The skip threshold determines the free proportion of

the heap that is necessary to trigger regular collection (e.g. for the skip threshold of

x we skip all GCs that we predict to reclaim not more thanx% of heap space). The

young-old ratio identifies pages that are recently-referenced (RR). YP considers a time

window between two consecutive GCs and divides it into two contiguous parts: young

and old, according to the young-old ratio. Pages with a last-access timestamp in the

young partition are considered to be live.

There are two sources of potential inaccuracy in YP’s yield prediction process. The

first is a page that we identify as NRR, that is not actually dead but is instead, not

accessed recently. The second is a page that is dead that we have not yet identified as

NRR. Although all dead pages are guaranteed to be found eventually, there may be a

delay before YP correctly classifies a page as dead.

103

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

Since YP considers only the total number of dead pages in the heap, as opposed to

determining the status (live/dead) for each individual page, the dead space estimation

errors that these two phenomena introduce do not add up, but instead, cancel each other

out. Thus, the goal of YP parameter tuning is to make sure thatthe two misclassifica-

tions (dead-as-live and live-as-dead) occur at similar frequency. Therefore, to optimize

accuracy we need to choose the best old-young ratio. For large ratios live-as-dead mis-

classification dominates. For small ratios dead-as-live misclassification dominates. For

the right choice of the young-old ratio the two misclassifications are similarly frequent

and YP accuracy reaches its optimum.

YP periodically consults the OS kernel to obtain a list of recently-referenced (RR)

pages within the heap. A dedicated polling thread in the MRE wakes up at regular

time intervals and retrieves the addresses of RR pages. For each page in the heap, YP

records the time when a page was last believed to be RR, using atimestamp array

stored in the MRE.

Each time the polling thread tests the reference bits, it clears them atomically. To

avoid interference with the kernel swapping mechanism thatalso relies on RR bits,

we introduce two new bits per page:mre-clearedandos-cleared. This extension is

software-only. YP shares hardware RR bits with an OS, but whenever YP (or an OS)

clears a hardware RR bit, we set the mre-cleared (or the os-cleared) bit in software so

that no information is ever lost. We multiplex hardware bitsand use software bits to

104

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

indicate if a HW bit was cleared. To read an RR bit of a page, YP (or an OS) computes a

logical-or of the hardware RR bit and the os-cleared bit (or the mre-cleared bit). When

MRE (or an OS) clears the RR bit, it also must clear the os-cleared (or mre-cleared) bit.

Key to our approach is accurate RR page tracking. First, we must distinguish be-

tween an application access to a page and a GC access to a page,and only consider the

former as an RR trigger (since GC may reference pages not reachable by the program).

To enable this, before every minor/major collection, YP takes a snapshot of the current

RR page bits, and after each GC clears the reference bits that are set as a side-effect of

the collection. Moreover, we disable the polling thread during GC.

In addition, YP measures the time spent in GC and advances thevalues in the

timestamp array accordingly after each collection. This is necessaryto eliminate

the impact of the stop-the-world GC pauses on timestamps. During GC pauses, muta-

tors are inactive and live pages are not used, which can make them appear to be NRR.

Advancing timestamps eliminates this problem.

YP maintains a boolean array (mispredicted dead), for all pages in the heap.

Each entry indicates whether a live page has been misclassified as dead. Such pages

are never considered dead again. The intuition behind this is that many applications

allocate permanent data structures that subsequently are rarely used which can lead to

YP false positives.

105

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

Since compactors typically move objects (MC is the exception), after each collec-

tion for such compactors, YP recomputes themispredicted dead array to reflect

the relocation that has occurred in the heap. For each live target page, we consider the

(live) source pages containing objects being moved to the target page. If any source

page has ever been misclassified as dead (including during the current GC cycle) then

the target page is marked asmispredicted dead. We perform this propagation

since the target page is also likely to be misclassified.

YP makes predictions of the potential GC yield while mutators are suspended (i.e.

at a safepoint). Prediction is short and simple and therefore does not need to execute

concurrently. Parallelization is not necessary either as prediction cost is proportional to

the number of pages in the heap. The polling thread executes concurrently and asyn-

chronously to mutators. It does not employ locking or synchronization and imposes

negligible overhead, especially when executed on a separate CPU/core.

4.2.2 Yield Prediction Process

Table 4.1 shows the pseudocode for the steps that YP executes during each full

GC. YP first stops the polling thread. Next, it obtains RR pages and updates the page

timestamps (lines 1–4). The predictor then iterates over the heap pages to determine

which pages are dead (lines 5–14); YP skips any pages previously found to result in

false positives (mispredicted dead[page] is true). For other pages, we consider

106

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

1: rr list = get rr pages(heapstart, heapend)
2: for pagein rr list do
3: timestamp[page] = currenttime
4: end for
5: deadcnt = 0
6: limit = OLD YOUNG RATIO · (currenttime− last full gc)
7: setall entries(predicteddead,false)
8: for pagein [heapstart, heapend]do
9: age = currenttime− timestamp[page]

10: if age>= limit and not mispredicteddead[page]then
11: predicteddead[page] =true
12: deadcnt += pagesize
13: end if
14: end for
15: if deadcnt≤ SKIP THRESHOLD· heapsizethen
16: deadcnt = max(deadcnt, min expansion)
17: expandheap(deadcnt)
18: total expansion += deadcnt
19: else
20: fall back to regulargc
21: try to shrink heap(totalexpansion)
22: updateif heapshrunk(totalexpansion)
23: setall entries(propagateddead,false)
24: for pagein [heapstart, heapend]do
25: if haslive objects(page)then
26: if mispredicteddead[page]or predicteddead[page]then
27: target = relocationtarget(page)
28: propagateddead[target] =true
29: if crossesnext page(page, target)then
30: propagateddead[successor(target)] =true
31: end if
32: end if
33: end if
34: end for
35: mispredicteddead = propagateddead
36: updateif relocated(heapstart, heapend)
37: end if
38: clearrr pages(heapstart, heapend)
39: for pagein [heapstart, heapend]do
40: timestamp[page] += gctime
41: end for
42: lastfull gc = currenttime

Table 4.1: Pseudocode for yield prediction executed by YP during each full collection.
SKIP THRESHOLD and YOUNGOLD RATIO are the two YP parameters.

107

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

their age, i.e. how long since they were accessed, and compare that against a percentage

of the distance (in time) between the current and previous full GC. This percentage is a

YP parameter (the young-old ratio).

If the predicted amount of free space is larger than the skip threshold, the system

falls back to regular compaction (i.e. does not skip GC). Following compaction, YP

attempts to shrink the heap back to the size it was prior to GC-skipping (if any) to

reduce space overhead (line 21). Finally, we re-compute themispredicted dead

array (lines 23–35), using the auxiliary arraypropagated dead. We traverse the

live heap pages computing a target location for each such page. If the source page has

ever been mispredicted dead or has been predicted dead in thecurrent GC cycle (note

that this page is live), the target page becomesmispredicted dead.

If the predictor expects low yield, it skips the compaction and grows the heap (lines

16–18). The expansion corresponds to the predicted free space, but is never smaller

than the minimum value (min expansion, 128KB in our implementation). This

minimum is necessary to ensure mutator progress, i.e. to ensure that the mutator is able

to allocate the data that triggered the GC originally. In theGC epilogue (lines 38–42),

we clear the reference bits and advance the timestamps by theGC pause time.

We never skip the first collection as it is typically highly productive. Instead, we

use this collection to bootstrap the predictor and initialize its data structures.

108

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

When skipping an unproductive collection, we extend the heapby the estimated

total size of dead objects (which themselves are not reclaimed as without marking one

cannot identify them). This creates space overhead. This overhead is small in prac-

tice because we skip only low-yield collections and shrink the heap when possible on

subsequent full collections.

Note that GC skipping is substantially different than heap over-provisioning. Exe-

cuting an application with a larger heap does not prevent unproductive GCs, although it

does reduce the total number of collections. YP ensures withhigh probability that the

system triggers GC only when it is worth doing so. Thus, YP enables better resource

management and gives the memory manager greater control over space/time trade-offs.

For example, when an expensive GC algorithm is used, an MRE might be more conser-

vative when deciding to trigger a collection. In addition, the user need not determine

the right heap size a priori.

Note that on 64-bit platforms, the space costs are the same ason 32-bit platforms

– the arrays that we use have one entry per page and pertain only to the area used and

mapped by the old generation.

With concurrent GC, YP has similar or even more potential for improving perfor-

mance. Each cycle of concurrent GC, despite imposing shorterpause times, costs more

than the corresponding cycle of the stop-the-world GC.

109

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

4.2.3 Implementation Details

We integrate YP into three state-of-the-art parallel compactors in order to investi-

gate its generality and applicability to different collectors. These compactors represent

three canonical heap layouts that underlie all modern GC algorithms (including con-

current ones). We use exactly the same prediction algorithmwith each compactor.

We implement YP in HotSpot [118], an open-source (GPL), production quality

JVM written in C/C++ (source code version 7-ea-b10, released 3/2007). HotSpot uses

a generational [155] heap layout comprising the permanent, old, and young genera-

tion. The permanent generation contains run-time meta-data for the loaded classes.

The young generation is further subdivided intoedenand two equally-sized survivor

spaces (calledfrom and to). Objects are initially allocated in the eden. Within the

young generation a copying collector [67] evacuates live objects from the eden-space

and from-space to the to-space and promotes objects that survive several minor col-

lections to the old generation. Major collection (compaction) takes place upon space

exhaustion in the old generation.

4.2.4 Kernel Extensions

We have implemented YP using Linux kernel 2.6.17 configured with high mem-

ory disabled and SMP enabled. YP consists of a kernel module which, upon load-

ing, creates a new entry in theproc filesystem using theproc mkdir andcreate-

110

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

proc info entry functions. The entry is located at/proc/ref/bitsand is writable

but not readable. A polling thread in an MRE repeatedly sleepsfor 10ms, opens the

/proc/ref/bitsfile, writes three words to it (in order to obtain a list of RR pages within

a given address range), and closes the file. These words are: start and end addresses

of the memory range plus a pointer to an array for the results.The kernel invokes the

callback registered by the module, copies the three words from the user space, inspects

page table entries corresponding to the specified address range and copies the results

into the MRE-provided array (in userland). The first array entry contains the number

of the returned pointers to RR pages.

We obtain the page table entries (PTEs) for subsequent pagesusing the macros:

pgd offset, pud offset, pmd offset, andpte offset map. We clear the

reference bits in PTEs atomically after testing with the help of ptep test and-

clear young. The polling thread holds a spin lock for the page table of thecurrent

process during the entire operation.

To avoid interference with kernel swapping, we make use of the two unused bits in

page flags (bits 21 and 22) which we define asPG kernel clearedandPG mre cleared.

Each physical page managed by the kernel has a page frame descriptor (struct page)

associated with it, which contains anunsigned long flagsfield. The flags determine

if a page is referenced, dirty, locked, etc. Note that these software flags are distinct

from hardware page flags present in PTEs. The kernel module sets thePG mre cleared

111

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

bit whenever clearing the RR bit in a PTE. The kernel sets thePG kernel clearedbit

whenever it clears the RR bit in a PTE. The latter requires minor modification to the

kernel (the code fragments that get/set PTE RR bits).

4.2.5 Alternative Approaches

We have investigated two other approaches to implementing YP: mlock-based and

kswapd-based. The mlock-based design employs page pinningfor the old generation

(via the POSIXmlock system call). Pinning eliminates interference of page access bit

clearing (done by an MRE) with kernel swapping mechanism. This approach is simple

but requires heap pages to be locked in physical memory.

In the kswapd-based design, instead of an MRE periodically clearing page access

bits, we reuse an existing kernel thread (kswapd daemon) anddecrease its sleeping

interval. Kswapd clears page access bits whenever it wakes up. We increase the fre-

quency of kswapd wake-up to match the bit clearing frequencyneeded by YP. MREs

have read-only access to RR bits and the kernel swapping mechanism benefits from

higher sampling frequency of RR pages (better accuracy). However, this approach as-

sumes the existence of kswapd and its certain behavior (periodic wakeup and RR bits

clearing) which makes it less portable (e.g. it works in Linux 2.4 but not in 2.6).

112

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

4.3 Experimental Evaluation

We empirically evaluate YP using three state-of-the-art parallel compactors: the

Mapping Collector (MC), the Compressor (CP), and the HotSpot compactor (HS). HS

and CP are described in detail in Section3.4and MC is the subject of Chapter3.

We first overview our experimental methodology and benchmark suite. Next, we

present results from our experiments that measure YP prediction accuracy and cost as

well as the impact of YP on the application throughput, GC pause times, and memory

footprint. In addition, we systematically evaluate YP sensitivity to different values of

its two parameters:skip thresholdandyoung-old ratio.

4.3.1 Methodology

Our experimental platform is a dedicated dual-core Intel Core 2 Duo (Conroe B2)

machine clocked at 2.66GHz with the unified 4M 16-way L2 cacheand 32K 8-way L1

cache, 2GB main memory, running Debian GNU/Linux 3.0 configured with the 2.6.17

kernel. The virtual page size is 4KB. We use HotSpot version 7-ea-b10 deployed within

OpenJDK 1.6.0 and compiled with GCC 3.2.3, in the optimized client-compiler (C1)

mode.

We employ YP for old-generation collection, i.e. full-heap, major GCs, only. Minor

collections use a parallel copying collector in the young generation. For each bench-

113

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

mark, we investigate four heap sizes within a range that captures significant to medium

GC activity, wherever possible. Each of our experiments uses a fixed-size heap, which

consists of the young, old, and permanent generation. The young generation is 25% of

the old generation. The permanent generation is 12MB (HotSpot default). We disable

all explicit GC invocations and adaptive generation resizing. We employ 2 parallel GC

threads as we use a dual-core machine. Survivor spaces occupy 33% of the young gen-

eration (the remainder is used by the eden). When reporting heap size, we sum up the

size of all three generations.

We repeat each measurement 5 times and report the average as well as standard

deviation where appropriate. We evaluate YP in detail for the skip threshold set to 5%

and the young-old ratio set to 1%. In addition, we investigate its sensitivity to other

skip thresholds (0%, 3%, and 10%) and young-old ratios (2–90%).

Our evaluation is based on 16 Java programs which include standard Java bench-

marks and open-source Java applications [76]. We use the subset of the DaCapo [54]

and SPEC JVM’98 [145] benchmark suites. In addition, we employ SPEC Pseudo-

JBB’00 [145] and VolanoMark [156]. We selected these benchmarks to capture a wide

range of application behaviors while focusing on programs with significant GC activity.

Table4.2 reports performance data for these benchmarks obtained using HS: heap

size ranges (we use 4 heap sizes across each range; heap size includes all generations),

execution times, and general GC statistics (for minimum heap sizes): total GC time,

114

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

Benchmark Heap Size Execution GC GC GC Reclaimable
Program Range [MB] Time [s] Time [s] Count Cost [%] Space [%]

G
P

L

beautyj 61 – 64 18.2 13.0 60 71.4 2.0
findbugs 82 – 97 13.0 2.7 5 21.1 31.0

jaranalyzer 14 – 17 4.5 0.1 3 3.0 23.2
javaguard 16 – 22 7.0 3.7 69 53.8 0.5

jdepend 30 – 33 20.5 6.7 77 32.7 0.3

D
aC

ap
o chart 45 – 48 6.2 0.4 3 5.8 53.7

fop 14 – 20 4.3 1.9 31 43.6 4.9
hsqldb 92 – 95 12.2 7.2 11 58.7 0.9

pmd 40 – 46 6.2 1.2 7 18.6 51.1
xalan 44 – 68 6.0 1.1 21 18.0 68.7

JV
M

compress 41 – 47 2.6 0.0 3 1.8 49.3
javac 33 – 42 2.9 0.2 3 8.0 60.9
mtrt 19 – 22 8.6 4.9 97 57.3 0.7

raytrace 14 – 17 2.7 1.7 58 63.0 0.1
volano 31 – 34 46.6 16.2 233 34.8 0.3
psjbb 119 – 125 25.4 12.5 70 49.3 3.3

Table 4.2: Baseline benchmark statistics obtained using HS with YP disabled. Col. 4
is total GC time. Col. 6 is the percentage of execution time consumed by GC. Col. 7
is the average GC yield across heap sizes as the percentage ofthe old generation size.
Highlighted entries are multi-threaded server programs.

total number of GCs, percentage of execution time that is consumed by GC, and average

GC yield across heap sizes (as a percentage of the old generation size).

We investigate server-side multi-threaded workloads using VolanoMark (multi-user

chat server), PseudoJBB’00 (three-tier database system emulator), and Hsqldb (in-

memory database). The remaining benchmarks are deskside utilities: beautyj (source

code beautifier), findbugs (Java bug detector), jaranalyzer(jar dependency manager),

javaguard (Java bytecode obfuscator), jdepend (dependency analyzer), chart (line graph

plotter), fop (XSL-FO parser/formatter), pmd (source codeanalyzer), xalan (XML

115

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

Bench- Average size [byte] Minimum size [byte] Maximum size [byte]
mark CP HS MC CP HS MC CP HS MC

beautyj 2.0K 2.2K 468.9 24.9 243.3 16.0 137.0K 119.6K 403.1K
findbugs 4.4K 4.4K 4.9K 16.0 16.0 16.0 1.5M 1.7M 2.0M

jaranalyzer 1.6K 1.7K 1.8K 16.0 16.0 16.0 8.8K 28.8K 13.0K
javaguard 430.1 557.9 384.1 28.1 26.4 16.0 7.7K 9.0K 44.0K
jdepend 1.7K 32.5K 245.3 1.3K 2.0K 16.0 7.9K 311.3K 66.7K

chart 77.6K 72.6K 45.7K 15.3 14.7 16.0 2.9M 3.6M 6.5M
fop 1.4K 1.8K 603.0 91.9 88.2 16.0 56.2K 92.5K 147.8K

hsqldb 5.0K 119.5 109.1 16.2 15.8 16.0 1.4M 27.7K 193.5K
pmd 126.6K 187.4K 17.3K 14.8 10.3 11.0 4.5M 6.6M 5.1M
xalan 46.8K 46.4K 127.9K 15.7 15.9 14.5 3.4M 4.0M 14.3M

compress 5.9M 2.9M 5.1M 19.2 25.0 16.0 10.5M 9.2M 13.2M
javac 13.2K 12.9K 8.6K 16.0 16.0 16.0 2.8M 3.1M 4.9M
mtrt 1.9K 2.3K 206.0 120.5 506.5 16.0 186.8K 69.7K 92.9K

raytrace 114.9 579.8 90.8 26.8 544.5 16.0 986.2 808.2 9.5K
volano 486.8 482.7 157.3 48.5 102.7 16.0 8.0K 7.3K 44.1K
psjbb 3.1K 3.0K 997.0 95.5 89.0 16.0 204.5K 329.1K 1.3M

average 397.4K 208.4K 341.0K 116.6 238.8 15.6 1.7M 1.8M 3.0M

Table 4.3: Dead space clustering statistics. For each benchmark, we report aver-
age/minimum/maximum dead cluster size across the heap sizes.

to HTML transformer), compress (LZW packer), javac (Java compiler), mtrt (multi-

threaded ray-tracer), and raytrace (3D scene renderer).

We run the default variants of the DaCapo benchmarks and use the input size of at

least 100 for JVM’98. We execute VolanoMark with 42 chat rooms for 100 iterations

and PseudoJBB with 5 warehouses for105 iterations.

4.3.2 Dead Object Clustering

The prediction capabilities of YP depend on dead object clustering, a widely-known

phenomenon, previously reported in [159, 167]. We have gathered basic clustering

statistics across the benchmarks, such as average, minimum, and maximum cluster

116

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

Bench- 4KB page coverage [%] Max. Pred. Cost [%]
mark CP HS MC CP HS MC

beautyj 44.1 43.2 81.3 0.0 6.0 5.2
findbugs 92.5 93.3 93.7 3.8 2.8 4.4

jaranalyzer 16.7 22.1 31.4 1.2 1.6 1.8
javaguard 16.0 16.1 51.6 2.0 2.8 1.7
jdepend 18.2 24.4 27.3 0.9 1.3 1.3

chart 99.4 99.4 99.4 2.8 2.3 2.0
fop 26.0 29.0 58.3 2.4 1.5 1.8

hsqldb 22.5 22.6 75.7 9.5 9.5 4.2
pmd 99.3 99.5 98.7 9.1 6.5 5.2
xalan 99.5 99.4 99.8 3.2 4.0 6.3

compress 100.0 100.0 100.0 2.7 1.3 1.9
javac 94.3 95.7 94.7 3.6 3.5 5.3
mtrt 11.6 6.8 31.1 2.1 -0.4 3.8

raytrace 0.4 0.4 13.2 1.2 1.5 2.2
volano 12.4 12.6 35.5 3.6 3.3 3.7
psjbb 41.0 46.2 59.5 8.4 7.9 8.1

average 49.6 50.7 65.7 3.5 3.5 3.7

Table 4.4: YP statistics across the heap sizes: percentage of dead space fully covered
by 4KB pages and maximum YP execution time overhead.

size as well as the percentage of dead space fully covered by 4KB pages. The results

are summarized in Table4.3 and in Table4.4 (Columns 2–4). For each benchmark,

we report the average values obtained across all GCs that occurred for the heap size

ranges that we use. We have observed that most clusters are smaller than 4KB, however

average cluster size is above 200KB. We have found that at least 50% of the dead space

is fully covered by 4KB pages. Such clustering generally holds for both client- and

server-side Java applications and is stable across inputs and heap sizes.

117

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

4.3.3 Collection Yield

Column 7 in Table4.2shows the average GC yield for each benchmark. This value

is the percentage of the old generation that is reclaimable (averaged across the heap

sizes). It indicates how effective the GC is on average at reclaiming dead space. 9

benchmarks have unproductive GCs (yield below 5%). In the remaining 7 benchmarks,

the GCs are mostly productive (yield above 23%). We have also observed that the first

full collection for all programs is typically productive even if a particular benchmark

has a low GC yield on average.

4.3.4 Prediction Accuracy and Cost

We evaluate the prediction error of YP relative to the total heap size as well as

relative to the old generation size. Specifically, if the exact amount of reclaimable

space isx bytes and the predictor estimates that asy bytes, we compute the prediction

error as|x − y|/size, wheresize is heap or generation size. We measure relative error

(as opposed to absolute error) because GC yield itself is typically expressed and used

in practice as a percentage.

We summarize the accuracy results in Table4.5, which contains data averaged

across the heap sizes. For each benchmark, we report prediction error for the 0% and

5% skip threshold, relative to the old generation size and heap size. The young-old

ratio is 1%. The results for the 0% threshold (when no GC is skipped) lend insight

118

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

Baseline Old Generation Size Heap Size
Skip Threshold 0% 5% 0% 5%

Benchmark CP HS MC CP HS MC CP HS MC CP HS MC

beautyj 1.6 1.0 1.0 7.1 7.3 6.2 1.0 0.6 0.6 4.4 4.6 3.9
findbugs 7.1 5.4 5.8 6.7 5.5 5.9 4.6 3.2 3.9 4.3 3.3 4.0

jaranalyzer 9.1 8.8 11.5 9.3 8.5 11.5 1.8 1.8 3.0 1.9 1.7 3.0
javaguard 1.8 2.2 2.1 7.4 7.8 8.3 0.5 0.6 0.6 1.9 2.0 2.2
jdepend 0.6 0.3 0.3 6.6 6.6 6.7 0.3 0.2 0.2 3.2 3.2 3.3

chart 8.6 8.1 7.8 9.3 8.2 7.7 4.7 4.0 4.3 5.2 4.1 4.3
fop 1.7 1.4 1.2 7.2 7.1 7.4 0.4 0.4 0.3 1.7 1.8 1.9

hsqldb 0.4 0.4 0.4 8.7 5.8 7.0 0.3 0.3 0.3 5.8 3.9 4.7
pmd 5.1 12.4 7.8 5.6 11.8 7.0 2.8 6.7 4.5 3.0 6.4 4.1
xalan 2.7 5.7 3.0 2.7 5.5 3.3 1.5 3.3 1.8 1.6 3.2 2.0

compress 4.8 7.4 4.2 4.4 7.5 4.3 2.6 4.0 2.2 2.4 4.1 2.3
javac 4.1 7.0 4.6 3.9 7.0 5.5 2.1 3.5 2.6 2.0 3.5 3.1
mtrt 0.2 0.2 0.3 7.3 8.8 7.9 0.1 0.1 0.1 2.2 2.7 2.4

raytrace 0.1 0.1 0.3 7.1 15.8 7.6 0.0 0.0 0.1 1.5 3.2 1.6
volano 0.6 0.3 0.8 4.8 7.5 9.3 0.3 0.1 0.4 2.3 3.5 4.5
psjbb 2.8 2.8 4.0 6.3 5.9 7.3 1.9 1.9 2.8 4.3 4.1 5.2

average 3.2 4.0 3.4 6.5 7.9 7.1 1.6 1.9 1.7 3.0 3.5 3.3

Table 4.5: Average yield prediction error, across the heap sizes, relative to the old
generation size (Cols. 2–7) and heap size (Cols. 8–13). The young-old ratio set to 1%.

into prediction accuracy unaffected by avoided GCs which is important in benchmarks

whose GCs are mostly productive.

Across the benchmarks and compactors, average error is below 4% (for the 0%

threshold) and below 8% (for the 5% threshold) relative to the old generation size.

This corresponds to 2% and 4% relative to the heap size. We investigate accuracy for

other thresholds in Section4.3.6. Accuracy is worse for the 5% threshold because GC

skipping increases fragmentation in the heap.

Figure4.1shows detailed accuracy plots, across the heap sizes, for selected bench-

marks and the 5% threshold. We report average prediction error (data points) and stan-

119

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

dard deviation (error bars) from 5 measurements relative tothe old generation size. The

graphs show that accuracy also varies across the heap sizes.

To implement yield prediction, we employ a polling thread inthe MRE that period-

ically samples the hardware page protection bits through anOS kernel module. During

each GC, the MRE also executes the YP algorithm (cf. Section4.2). Both of these

operations can impose a performance penalty. The final threecolumns in Table4.4

compare the execution times with and without prediction forCP, HS, and MC, to eval-

uate this overhead. With prediction on, we set the skip threshold to 0%. Thus, we do not

skip any collections, and we isolate the performance penalty incurred by YP. That is,

for each GC, we do complete prediction and collection work in addition to the polling

thread running concurrently. We report the maximum overhead as the percent increase

in total execution time, across the heap sizes for CP, HS, and MC. This overhead is

below 4% on average. Server-side benchmarks (e.g. hsqldb and psjbb) have the highest

overhead as they fully utilize both CPU cores and the polling thread needs to preempt

the application threads.

4.3.5 Impact on Applications

In this subsection, we focus on the eight benchmarks with lowGC yields, i.e. those

below 5% in Column 7 in Table4.2. In the remaining programs, most collections cannot

be skipped (as they are productive) and YP affects performance only marginally (max-

120

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

 2
 4
 6
 8

 10
 12
 14
 16
 18

 61 61.5 62 62.5 63 63.5 64

P
re

di
ct

io
n

E
rr

or
 [%

]

Heap Size [MB]

beautyj

CP
HS
MC

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 14 15 16 17 18 19 20

P
re

di
ct

io
n

E
rr

or
 [%

]

Heap Size [MB]

fop

CP
HS
MC

-5
 0
 5

 10
 15
 20
 25
 30
 35

 92 92.5 93 93.5 94 94.5 95

P
re

di
ct

io
n

E
rr

or
 [%

]

Heap Size [MB]

hsqldb

CP
HS
MC

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 16 17 18 19 20 21 22

P
re

di
ct

io
n

E
rr

or
 [%

]

Heap Size [MB]

javaguard

CP
HS
MC

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 30 30.5 31 31.5 32 32.5 33

P
re

di
ct

io
n

E
rr

or
 [%

]

Heap Size [MB]

jdepend

CP
HS
MC

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 19 19.5 20 20.5 21 21.5 22

P
re

di
ct

io
n

E
rr

or
 [%

]

Heap Size [MB]

mtrt

CP
HS
MC

 2

 4

 6

 8

 10

 12

 14

 119 120 121 122 123 124 125

P
re

di
ct

io
n

E
rr

or
 [%

]

Heap Size [MB]

psjbb

CP
HS
MC

-5

 0

 5

 10

 15

 20

 25

 30

 31 31.5 32 32.5 33 33.5 34

P
re

di
ct

io
n

E
rr

or
 [%

]

Heap Size [MB]

volano

CP
HS
MC

Figure 4.1: Prediction error relative to the old generation size acrossheap sizes for
all compactors and 8 benchmarks (those with the most unproductive GCs). We report
average and standard deviation (error bars) from 5 runs. Yield prediction is turned on,
the GC skip threshold is 5%, and the young-old ratio is 1%.

121

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

Execution Time GC Skip Maximum Pause
Benchmark Reduction [%] Rate [%] Time Reduction [%]

CP HS MC CP HS MC CP HS MC

beautyj 84.8 79.3 74.1 82.9 81.0 81.0 -3.1 1.1 1.3
javaguard 47.5 42.0 31.7 66.7 69.1 69.7 -4.5 -3.2 0.0
jdepend 50.6 41.6 35.6 77.3 76.8 80.0 -1.2 -5.3 6.9

fop 43.9 37.7 30.5 65.9 68.6 67.4 -5.4 0.0 8.4
hsqldb 58.4 13.9 45.1 82.2 82.6 83.3 4.5 -2.1 0.1
mtrt 86.4 83.8 82.3 73.6 72.4 72.1 -20.1 2.8 3.3

volano 37.6 33.9 21.5 87.0 82.4 85.2 15.0 -0.7 27.8
psjbb 59.0 42.3 34.3 77.1 64.7 64.0 6.2 -3.6 -0.9

average 58.5 46.8 44.4 76.6 74.7 75.3 -1.1 -1.4 5.9

Table 4.6: Statistics for all compactors obtained for yield prediction turned on, the GC
skip threshold of 5%, the young-old ratio of 1%, and for minimum heap sizes. Columns
2–4 show percentage execution time reduction due to GC skipping in YP. Next, in
Columns 5–7 we report the percentage of skipped (unproductive) GCs. Reduction in
maximum GC pause times is shown in Columns 8–10. The last row reports average
values across the benchmarks.

Space Overhead [%]
Benchmark Vs. Old Generation Vs. Heap

CP HS MC CP HS MC

beautyj 12.7 11.6 6.1 7.7 7.4 3.9
javaguard 23.4 22.0 20.5 5.8 5.5 5.4
jdepend 11.1 12.7 11.2 5.4 6.2 5.6

fop 17.3 24.4 17.5 4.1 6.3 4.2
hsqldb 5.1 9.9 4.9 3.4 6.7 3.3
mtrt 20.9 20.5 19.9 6.3 6.1 6.0

volano 9.2 8.6 8.9 4.4 4.1 4.4
psjbb 6.1 6.2 3.6 4.1 4.3 2.6

average 13.2 14.5 11.6 5.1 5.8 4.4

Table 4.7: Space overhead for all compactors obtained for yield prediction turned on,
the GC skip threshold of 5%, the young-old ratio of 1%, and forminimum heap sizes.
Columns 2–7 present space overhead (as percentage) imposed by GC skipping in YP,
relative to the old generation size (Columns 2–4) and heap size (Columns 5–7). The
last row reports average values across the benchmarks.

122

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

imum overhead is 3% on average for these programs). We set theGC skip threshold to

5% and the young-old ratio to 1%.

We first evaluate the impact that YP has on overall execution time by comparing the

benchmark performance when prediction (and GC skipping) isenabled and disabled.

In Table4.6 (Cols. 2–4), we show the application throughput improvementfor mini-

mum heap sizes for each compactor. On average, across the benchmarks, we observe

significant improvements in execution time: e.g. reductions of 59% for CP, 47% for

HS, and 44% for MC, on average.

Cols. 5–7 in Table4.6 show the percentage of GCs eliminated (the skip rate) on

average for each program across heap sizes. The skip rate varies between 64% and

87%, and has an average of 75% for HS and MC, and an average of 77%for CP; YP is

able to avoid most GCs in these programs.

Since YP eliminates unproductive GCs, it thereby increases minimum mutator uti-

lization [43] and program performance. By doing so, YP also reduces the number of

pauses an application experiences and increases the intervals between pauses. In the

Cols. 8–10 in Table4.6, we report the impact that YP has on maximum pause times.

YP tends to increase pause times since when multiple GC are skipped, the heap size be-

comes larger, and the collection that is finally performed imposes a longer pause (while

being more productive). Occasionally, however, YP skips anexpensive compaction

123

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

with the net effect of reducing the maximum pause time. On average, in CP and HS,

YP increases maximum pauses by 1%, and in MC, it reduces them by6%.

The trade-off that YP makes to achieve these performance gains is in predictor over-

head (below 4%) and in heap space. Cols. 2–7 in Table4.7 show the space overhead

that YP imposes for each compactor as a percentage of the old generation size and heap

size. Each skipped collection creates a temporary space overhead in the heap that is re-

duced or eliminated by the next conventional GC. This overhead results from skipping

potentially multiple consecutive GCs. Relative to the old generation size the overhead

is below 15%. The overhead does not exceed 6% relative to the total heap size.

We next present application throughput without (Figure4.2) and with (Figure4.3)

YP and GC skipping. Each figure shows per-benchmark plots, each with 3 performance

curves that correspond to CP, HS, and MC, respectively. We report average execution

time (data points) and standard deviation (error bars) computed from 5 runs for each

heap size. From the differences between the graphs in these two figures, we observe

that YP consistently outperforms conventional GC for all three compactors across heap

sizes.

Note that YP outperforms a system employing heap overprovisioning to run GC

less often. Giving more space to HS, MC, and CP (as much as YP space overhead)

does not lead to better execution times than YP obtains.

124

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

 0

 5

 10

 15

 20

 25

 30

 35

 61 61.5 62 62.5 63 63.5 64

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

beautyj

CP
HS
MC

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 14 15 16 17 18 19 20

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

fop

CP
HS
MC

 4

 6

 8

 10

 12

 14

 16

 18

 92 92.5 93 93.5 94 94.5 95

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

hsqldb

CP
HS
MC

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 16 17 18 19 20 21 22

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

javaguard

CP
HS
MC

 10
 12
 14
 16
 18
 20
 22
 24
 26

 30 30.5 31 31.5 32 32.5 33

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

jdepend

CP
HS
MC

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 19 19.5 20 20.5 21 21.5 22

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

mtrt

CP
HS
MC

 10

 15

 20

 25

 30

 35

 119 120 121 122 123 124 125

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

psjbb

CP
HS
MC

 25

 30

 35

 40

 45

 50

 31 31.5 32 32.5 33 33.5 34

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

volano

CP
HS
MC

Figure 4.2: Benchmark execution times across heap sizes for all compactors. We report
average and standard deviation (error bars) from 5 runs. Yield prediction is turned off.

125

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

 2

 2.5

 3

 3.5

 4

 4.5

 5

 61 61.5 62 62.5 63 63.5 64

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

beautyj

CP
HS
MC

 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4
 2.5
 2.6
 2.7
 2.8

 14 15 16 17 18 19 20

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

fop

CP
HS
MC

 3
 4
 5
 6
 7
 8
 9

 10
 11

 92 92.5 93 93.5 94 94.5 95

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

hsqldb

CP
HS
MC

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 16 17 18 19 20 21 22

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

javaguard

CP
HS
MC

 11.2
 11.3
 11.4
 11.5
 11.6
 11.7
 11.8
 11.9

 12
 12.1
 12.2
 12.3

 30 30.5 31 31.5 32 32.5 33

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

jdepend

CP
HS
MC

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

 19 19.5 20 20.5 21 21.5 22

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

mtrt

CP
HS
MC

 11.5
 12

 12.5
 13

 13.5
 14

 14.5
 15

 15.5
 16

 119 120 121 122 123 124 125

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

psjbb

CP
HS
MC

 29
 29.5

 30
 30.5

 31
 31.5

 32
 32.5

 33
 33.5

 31 31.5 32 32.5 33 33.5 34

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

volano

CP
HS
MC

Figure 4.3: Benchmark execution times across heap sizes for all compactors. We report
average and standard deviation (error bars) from 5 runs. Yield prediction is turned on,
the GC skip threshold is 5% and the young-old ratio is 1%.

126

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

Thresh. 3% 5% 10% Average
GC CP HS MC CP HS MC CP HS MC CP HS MC
PEO 5.4 6.2 5.7 6.5 7.9 7.1 8.1 10.3 8.8 6.7 8.1 7.2
PEH 2.5 2.8 2.7 3.0 3.5 3.3 3.9 4.8 4.1 3.1 3.7 3.4
SOO 12.9 14.1 10.8 13.2 14.5 11.6 15.9 16.1 14.3 14.0 14.9 12.2
SOH 5.0 5.6 4.0 5.1 5.8 4.4 6.3 6.6 5.8 5.5 6.0 4.7
SR 70.6 71.8 70.1 76.6 74.7 75.3 83.2 80.5 80.6 76.8 75.7 75.3

ETR 55.7 41.8 42.0 58.5 46.8 44.4 62.3 53.5 47.2 58.8 47.4 44.5
MPR -3.0 -0.7 4.2 -1.1 -1.4 5.9 0.7 0.3 10.6 -1.1 -0.6 6.9

Table 4.8: YP statistics for different GC skip thresholds (3%, 5%, and 10%) for each
compactor (CP, HS, and MC). We report average values across benchmarks and heap
sizes. Young-old ratio is 1%. All values are percentages. PEO is prediction error
relative to the old generation size. PEH is prediction errorrelative to the heap size.
SOO is space overhead relative to the old generation size. SOH is space overhead
relative to the heap size. SR is GC skip rate. ETR is executiontime reduction. MPR is
maximum pause time reduction.

4.3.6 Other Parameter Values

We have also evaluated YP for the GC skip threshold of 3% and 10% to understand

better how this parameter impacts application performance. Table4.8 summarizes the

results and compares them with the ones obtained for 5%. Overall, as the threshold

increases, the prediction accuracy decreases, the space overhead increases, the skip rate

increases, and we observe better performance gains. Thus, skip threshold selection is a

space/time trade-off.

We have also investigated different values of the young-oldratio, a YP parameter

which determines what proportion of the window between two subsequent GCs is con-

sidered young. The detailed YP evaluation we have presentedthus far is for the 1%

dead-young ratio. We have found this value to result in optimal prediction accuracy

127

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

 0 10 20 30 40 50 60 70 80 90

P
re

di
ct

io
n

E
rr

or
 [%

]

Young-Old Ratio [%]

CP
HS
MC

 12

 12.5

 13

 13.5

 14

 14.5

 15

 15.5

 0 10 20 30 40 50 60 70 80 90

S
pa

ce
 O

ve
rh

ea
d

[%
]

Young-Old Ratio [%]

CP
HS
MC

-2
-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 10 20 30 40 50 60 70 80 90

M
ax

. P
au

se
 R

ed
uc

tio
n

[%
]

Young-Old Ratio [%]

CP
HS
MC

 42
 44
 46
 48
 50
 52
 54
 56
 58
 60

 0 10 20 30 40 50 60 70 80 90

E
xe

c.
T

im
e

R
ed

uc
tio

n
[%

]

Young-Old Ratio [%]

CP
HS
MC

Figure 4.4: Impact of the young-old ratio on prediction error, space overhead, maxi-
mum pause time reduction, and execution time reduction.

(we have checked 1%, 2%, 5%, 10%, 20%, 50%, and 90%). Figure4.4shows the im-

pact of the young-old ratio on prediction error, space overhead, maximum pause time

reduction, and execution time. For each compactor, we report average values obtained

across the three skip thresholds (3%, 5%, and 10%). Accuracymonotonically decreases

when the young-old ratio increases (prediction error increases from 7% to 14%). This

is because in a steady-state execution phase, programs allocate mostly short-lived ob-

jects. The remaining metrics are not overly sensitive to theyoung-old ratio. This is

mostly because the prediction error never exceeds 16% for the ratios that we checked.

Nonetheless, execution time reduction is worse for higher values of the young-old ratio.

128

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

4.4 Related Work

Static and dynamic prediction in the context of automatic memory management

includes object lifetime prediction [21, 90, 48, 98, 134, 182, 139, 110] as well as heap

size prediction [175, 77, 36, 174, 179]. In contrast, YP focuses on yield prediction. No

prior work to our knowledge exploits page reference bits to predict GC yield accurately.

Like YP, MicroPhase [173] strives to improve the GC triggering mechanism to max-

imize the GC yield. MicroPhase recognizes phase boundariesand proactively invokes

GC during phase transitions when many objects are expected to die. The system cooper-

ates with the OS kernel to implement efficient profiling. In contrast, YP uses reference

bits to predict GC yield and is therefore simpler while extracting the phase behavior

implicitly.

Garbage collection hints (GCH) [39] is a profile-directed method for guiding garbage

collection. GCH uses off-line profiling to identify favorable collection points in the pro-

gram code where GC dynamically chooses between nursery and full-heap collections

based on an analytical garbage collector cost-benefit model. In contrast, YP does not

use off-line profiling and leverages hardware to make yield prediction.

The systems below are related to YP because they often actively interact with hard-

ware and operating systems. However, they either do not leverage the mechanism of

RR bits or do not implement yield prediction.

129

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

The Pauseless GC [46] is a parallel/concurrent compactor that uses specialized

hardware and avoids pauses through read barriers, fast user-mode trap handlers, an

additional intermediate TLB privilege level, and fast cooperative preemption via inter-

rupts.

Numerous collectors leverage virtual memory operations. The Compressor employs

both page mapping and protection. The Mapping Collector remaps free space in the

address space. MarkCopy [136] reduces the memory footprint of a copying collector

through on-the-fly (un)mapping of the copied pages.

Some collectors [77, 175, 80, 179, 174, 79] cooperate with the OS virtual mem-

ory manager to reduce the collector-induced paging. The Bookmarking Collector [80]

records summary information about outgoing pointers from evicted pages to avoid ac-

cessing non-resident pages during compaction. CRAMM [175] and IV heap sizing [77]

use VM paging behavior to predict and set dynamically the most-suitable, application-

specific, heap size that adapts to changing memory pressure and avoid paging. The

system described in [179] dynamically finds the optimal heap size by exploiting phase

behavior to balance the GC frequency and collection cost as well as minimize the im-

pact of page faults on performance. Many concurrent collectors also exploit virtual

memory support [57, 101, 46, 122], which facilitates mutator conflict detection and

exploitation of cache locality [101].

130

Chapter 4. Dynamic Prediction of Collection Yield: ImprovingIntra-Runtime Memory
Management Performance Using Virtual Memory

4.5 Summary and Conclusions

YP is a GC yield predictor that uses virtual page reference bits to accurately estimate

the amount of reclaimable space in the heap. We incorporate YP into three state-of-

the-art parallel compactors to verify its applicability tocanonical heap layouts used by

extant collectors. YP is simple and does not require changing the GC algorithm (only its

triggering mechanism). YP enables better dynamic control over the space/time trade-

off in MREs. We empirically evaluate YP using 3 compactors and16 programs and

find that YP consistently provides good accuracy while imposing low time overhead.

In applications with many unproductive GCs, YP significantlyimproves performance

(by 44–59% on average) by skipping most GCs and incurring modest space overhead.

The text of this chapter is in part a reprint of the material asit appears in [161].

131

Chapter 5

Concurrent Collection as a Service:
Improving Intra-Runtime Memory
Management Performance and
Programming Model Using Shared
Libraries

In this chapter, we describe an approach to improving intra-runtime memory man-

agement by using OS support for shared libraries. Specifically, we discuss the de-

sign and implementation of a lightweight GC library, portable across runtimes and lan-

guages, and providing parallel, concurrent, and on-the-flycollection. The library can

be integrated into existing or newly-built runtimes using afine-grain, low-overhead C

interface. Decoupling GC from other runtime components simplifies the programming

model for runtime developers and increases system modularity and component reuse.

At the same time, the library allows to improve the GC performance in runtimes that

do not implement modern memory management subsystems.

132

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

5.1 Introduction and Motivation

Managed runtime environments (MREs, virtual machines, VMs)for high-level,

object-oriented (OO) programming languages are increasingly complex, which makes

them challenging to architect, extend, and understand. Oneof the most complex com-

ponents in MREs is automatic memory management (garbage collection, GC). State-of-

the-art GC algorithms, i.e. parallel, concurrent, and on-the-fly GCs [167, 99], capable

of taking advantage of multi-core processors, are notoriously difficult to implement,

especially in conjunction with other MRE components (loaders, compilers, schedulers,

etc).

As a result, it is not uncommon for MREs to implement simpler GCs, often at

the expense of scalability, interactivity (pause times), and performance. For example,

most extant MREs for dynamic languages use single-threaded stop-the-world GCs (e.g.

Ruby) and reference-counting GCs (e.g. Python, PHP) while better GC algorithms have

been known for decades. Even some MREs for static languages still rely on dated GCs,

e.g. the Mono runtime for C# uses conservative stack scanningand stop-the-world

serial GC (and until recently it has been based on the Boehm GC).

One way to address GC complexity is to decouple, modularize,and facilitate reuse

of GC implementations [35, 34, 29, 28, 88]. We investigate the design and implemen-

133

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

tation of a portable GC library (which we call GC as-a-service (GaS)). GaS represents

a new point in the GC design space because of its unique combination of goals:

• cross-MRE, cross-language GC library for static/dynamic languages,

• support for modern GC (concurrent, on-the-fly) forcooperativeMREs (unlike

Boehm GC [34]),

• GC-MRE decoupling (unlike recent on-the-fly GCs [61, 62]),

• low-overhead interface using C-based native API (unlike MMTk and GCTk [28,

29]).

We aim at increasing the GC quality and decreasing the GC engineering effort by

code re-use, modularity, and separation of concerns. GaS decouples GC from other

runtime components and exposes a fine-grain API for use by GC-cooperative runtimes

of different programming languages for heap memory management. GaS provides con-

current, on-the-fly GC and avoids moving objects for use as a precise or conservative

collector. We adapt the GC algorithm to avoid tight-coupling with the runtime in order

to maximize portability and simplify GaS integration. GaS strives to minimize assump-

tions/restrictions regarding memory management in MREs.

We employ the GaS library within production-quality MREs forJava (HotSpot

JVM) and Python (cPython) and compare GaS GC against state-of-the-art GCs. Our

134

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

empirical evaluation includes concurrent, parallel, tracing GCs as well as hybrid trac-

ing/reference counting GCs. We discuss the trade-offs we make with the GaS design

and their performance implications. We also investigate the performance of other ap-

proaches that provide GC across languages such as those thatcross language boundaries

and that employ a single MRE for multiple languages. Our experimental results show

that using GaS as an alternative to tightly integrated GC introduces modest overhead

and that GaS reduces pause times significantly for Python andJava programs.

In the next sections, we describe the design and implementation of GaS (Sec-

tion 5.2), present the results of GaS empirical evaluation (Section5.3), discuss related

work (Section5.4), investigate how newly-built runtimes can benefit from GaS(Sec-

tion 5.5), and conclude (Section5.6).

5.2 Design and Implementation

Figure 5.1 presents the high-level architecture of GaS. GaS provides ashared C

library that is accessible via the GaS interface and that canbe used by MREs for dif-

ferent languages (e.g. Java, Python, Ruby) to integrate garbage collection (GC) into

the runtime. Each MRE dedicates some number of threads to GaS GC (concurrent, on-

the-fly GC) and maps a virtual memory region which GaS manages.MREs also have

135

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

��� �������

�������

��� 	
��

���

�
�
���

�����	
��

��	
�����

���

�
�
���

���
���	
��

������

���

�
�
���

�����	
��

��� 	
�� ��� 	
��

��� ���
����

Figure 5.1: GaS architecture: multiple VMs share the GaS library. Each VM has its
own heap and GC threads.

the option of allocating certain types of objects (e.g. immortal objects or internal data

structures) in their private heaps and managing them independently of GaS.

We design GaS to support MREs for dynamic and static languageswhich implement

diverse memory management strategies, including reference counting, tracing, object-

moving, and non-moving GCs. Our goal is to enable GC portability at the library (i.e.

binary) level (without recompiling the library, or modifying the GC algorithm).

The rationale behind GaS is to enhance modularity and separation of concerns in the

design and implementation of MREs and to enable building new MREs from reusable

components. GaS abstracts away the GC functionality, thus enabling construction of

an MRE with a modern GC subsystem without expert knowledge about concurrent

and on-the-fly GCs. By treating GC as a component, GaS facilitates research in other,

non-GC, MRE subsystems. In addition, GaS enables integrationof a high-quality GC

into MREs that lack modern GCs, e.g. scripting language MREs that employ stop-the-

136

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

world, single-threaded collectors (reference counting with cycle detection for Python

and PHP, mark-sweep for Ruby). In Section5.3 we show that even highly-optimized,

sophisticated MREs, such as HotSpot JVM, can benefit from GaS.

GaS is a parallel (i.e. uses multiple GC threads), concurrent (i.e. collects most

objects without stopping the application threads (mutators)), and on-the-fly (i.e. stops

one thread at a time) GC. The rationale behind this configuration is that concurrent,

on-the-fly GCs are difficult to implement, thus it is practicalto provide such GCs as

a service/library. In addition, many MREs are latency-sensitive, e.g. Ruby is used for

server-side scripting and its stop-the-world GC is a limiting factor – concurrent GCs

avoid stop-the-world collection which can introduce largepauses. Finally, as multi-

core processors become ubiquitous, concurrent GC is increasingly suitable for fully

utilizing and extracting high performance from modern systems.

GaS does not move objects because some MREs (e.g. Python) assume that ob-

ject addresses remain constant and others (e.g. Mono) require support for object pin-

ning and conservative root scan. GaS uses free-list allocation and thread-local alloca-

tion buffers (TLABs) for fast, unsynchronized, bump-pointer allocation in the common

case. TLABs are vital for supporting multi-threaded MREs.

The GaS GC algorithm is an adaptation of extant snapshot-at-the-beginning (SATB)

on-the-fly GC [61, 62, 60]. Our extensions decouple GC from the MRE and simplify

the MRE-GC interface on the MRE side. Existing on-the-fly GCs rely on system-wide

137

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

�
�
�
��
��
�	�

�

��������	�
���
 ��� �������

����������

������	�����

����
�������

������
����

�
�
�
�
�
�
�

���

������

����
����
���

������

������
�	�
���

���

����

���

����

������������

Figure 5.2: GaS interface. The upper part shows how a VM calls into the GaSlibrary.
The lower part lists the GaS callbacks.

handshakes with mutator threads and maintain per-thread buffers to implement write

barriers and to determine quickly if another marking iteration is needed [61, 57]. GaS

avoids such tight-coupling and moves GC logic out of the MRE asmuch as possible.

5.2.1 GaS Interface

Figure5.2 depicts how MREs interact and cooperate with GaS. An MRE first ini-

tializes the GaS library by specifying the number of GC threads, TLAB size, and GC

threshold (percentage heap usage that triggers a GC), and by providing a mapped virtual

memory region for the GaS heap. The GaS interface consists ofoperations performed

by MRE threads (allocation, write barrier, and root dump) andby the GaS threads (fi-

nalization and object scan).

138

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

������ � � 	

� �
 � � � � �

���	
����������������������

������ � � 	

� �
 � � � � � � �
 � � � � �

������ � � 	

� �
 � � � � �

���������	

��
�����	

�����������	

�

������ � � 	

� �
 � � � � �

����� ��� � �!�����"

Figure 5.3: Block format in the GaS heap. There are three block types: object, TLAB,
and free.

An MRE requests TLABs from GaS and performs most allocations within a TLAB.

To allocate large objects, an MRE requests a TLAB of a specific size and then proceeds

to intra-TLAB allocation. The GaS protocol for allocation and write barrier (described

in detail in Section5.2.2) is kept to a minimum so that the compiler can inline this code

at allocation and reference store sites.

Before each GC, GaS requests a root dump. An MRE responds to this request by

identifying objects (for GaS to mark) in the GaS heap that arereachable from thread

stacks, global memory areas, and/or non-GaS generations. GaS invokes MRE-provided

callbacks to scan objects for references and to indicate that a particular object is about

to be reclaimed (to support finalization).

139

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

5.2.2 Heap Layout

We divide the GaS heap into blocks. Each block starts with a header, whose format

is shown in Figure5.3. The header size is one machine word (we assume 64-bit words)

so that it can be atomically loaded/stored. GaS supports fully-concurrent unsynchro-

nized sequential scans over heap blocks.

There are three block types: an object block, TLAB block, andfree block. The

block header consists of 5 fields: block length (4 bytes), block format (f, 1 byte), and

three 1-byte GC flags: recently-allocated (a), scanned (s),and pending (p). We make

each field at least 1-byte in size so that we can use atomic read/write (most architectures

support single-byte atomic memory access but do not supportbit-wise atomic access).

Object blocks are followed by an MRE-specific object representation, which is not

interpreted by GaS. Thus, GaS adds one word of space overheadper object. GC flags

have meaning only for object blocks. New objects have their recently-allocated flag set.

Whenever the GaS GC marks a live object, it sets its scanned flag. Objects with their

pending flag set will be scanned by the collector.

We initialize each word in a TLAB block so that we can treat it as the start of a

new, shorter TLAB. For example if the first TLAB word contains length = 8, then the

second TLAB word contains length = 7, etc. This approach enables atomic allocation

of objects in TLABs. To allocate an object spanning 5 words, wesimply store a new

object header (with length = 5) at the beginning of the TLAB. Such a store happens

140

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

atomically and the remaining part of a TLAB immediately has the right TLAB header

(with the correct, shorter length). Thus, an ongoing concurrent heap block traversal

cannot be confused by object allocation when we transition from a TLAB block to an

object block. In addition, object allocation amounts to a single word store which the

compiler inlines.

The length of object/TLAB blocks does not use the entire machine word. However,

the limit of 16GB per object is typically sufficient in practice (e.g. in Java an object

cannot exceed 16GB). Free blocks can use larger length valuesby storing their actual

length in the overflow field (which has machine-word width).

When a TLAB fills up, we retire it (we insert a dead object into the remaining free

space) and replace it with a new TLAB. TLAB allocation, like all freelist operations,

employs synchronization. The freelist is a double-linked list of free blocks.

GaS uses a conditional SATB [61, 62] write barrier, that it executes before each

store. The barrier first loads the previous pointer value (about to be overwritten by

a store), checks if it belongs to the GaS heap, and if so sets the pending flag on the

corresponding object. For example, before a store∗p = v happens we execute:

if (is in gas heap(∗p)) then set pending flag(∗p);

For efficient heap membership checks, the MRE should map the GaS heap above or

below all other object regions in an MRE – in such a setting a single border comparison

suffices.

141

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

5.2.3 GC Algorithm

GaS GC comprises four concurrent phases: flag clearing, rootdump, object mark-

ing, and object sweeping. GC threads use barrier synchronization to meet at subsequent

GC phases. GaS imposes no pauses if an MRE is capable of performing a root dump

without halting the mutator threads. A new GC cycle starts once the heap usage crosses

the specified GC threshold.

We do not use a marking bitmap but instead mark object headers(the scanned flag)

directly. This enables us to avoid atomic compare-and-swap(CAS) operations during

marking because one byte can be stored atomically. Since we do not synchronize GC

threads during marking, multiple GC threads may end up scanning the same object –

we find that this happens rarely and we mitigate it via dynamicload balancing among

the GaS GC threads.

Flag Clearing Flag clearing is a concurrent phase where a single GC thread traverses

over the heap blocks and clears the GC flags. This step has a similar effect to activating

the snapshot mode in extant SATB GCs [61, 62]. However, in GaS, the snapshot mode

is active all the time, meaning that all objects are allocated live (the recently-allocated

flag set) and mutators always use a SATB write barrier (setting the pending flag for

objects whose incoming pointers are overwritten). This approach simplifies the MRE-

142

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

GC protocol and decouples GC and an MRE (no handshakes, state-dependent write

barriers, etc. are required).

During flag clearing, GaS computes a balanced heap partitioning used in the sub-

sequent, parallel heap traversals. GaS divides the heap into equal-size chunks at block

boundaries. In later traversals, each GC thread uses its ownchunk only.

Root Dump In the second GC phase, an MRE finds roots into the GaS heap and

reports them to GaS by setting the pending flag for root objects. Depending on the

MRE, root dump may require scanning registers, thread stacks, and global memory

areas. An MRE may need to stop the mutator threads to find roots.Since GaS is an

on-the-fly GC, an MRE is allowed to stop one thread at a time to avoid long pauses. In

Sections5.2.4and5.2.5, we describe how root dump can be done efficiently in MREs

using tracing and reference counting, respectively.

Marking Object marking is parallel and concurrent. Due to concurrent object mu-

tations, GaS occasionally performs several marking iterations before converging to a

stable live object graph. In each iteration, every GC threadscans its own heap chunk

for objects with the pending flag set. If no such objects are found by the concurrent

block traversal, the marking phase is complete. Pending objects that GaS finds are re-

cursively (using depth-first search) scanned and marked (bysetting the scanned flag).

Recursive marking stops on already-scanned objects (potentially marked in previous

143

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

��������� ��������	

�����

Figure 5.4: Root updates and concurrent marking. Since root updates are not captured
by a write barrier, we use different marking stopping conditions during the first and
later GC iterations.

marking iterations). GaS uses dynamic load balancing during marking (randomized

work stealing) for scalability. GaS marks objects in-place(i.e. uses object headers)

and, unlike some SATB GCs, does not use per-mutator marking buffers (to further de-

couple GC from the threading subsystem).

During the 2nd and later marking iterations, recursive marking stops on already-

marked objects and on recently-allocated objects (the 1st iteration stops only on already-

marked). This guarantees GC termination. Assuming there isN objects in the heap

when the GC cycle starts, and all new objects are flagged as recently-allocated, GC will

finish afterN iterations at most. In practice 2 or 3 iterations suffice.

Figure 5.4 explains why this strategy is correct, i.e. it cannot lead toleaving

some live objects unmarked. Since we stop the 2nd and later iterations of marking

on recently-allocated objects, we need to guarantee that itis impossible that a recently-

allocated object has a pointer to a live object that is otherwise unreachable and is not

flagged as pending. Note that this is possible during the firstmarking, when we mark

from roots. Consider an example in Figure5.4. Root r initially points to objectO.

144

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

Then, objectN is allocated, and a pointer inN is set to point to objectO. Next, root

r is updated to point toN . Now we have a configuration whereO is reachable only

throughN . Note thatN is recently-allocated and still needs to be scanned. The reason

for this is that our snapshot write barrier (SATB WB) does not capture root pointer up-

dates (only heap pointer updates). However, the 2nd and later marking iterations ignore

roots and mark from pending objects only. Thus, the newly-allocated objects do not

have to be scanned once the first marking iteration completes. Reconsider our example

in Figure5.4but assuming thatr is not a root but a field in a heap object. Onr update,

objectO is flagged pending and thus will be scanned by GC even if we do not scanN .

Sweeping Sweeping is parallel and concurrent. Each GC thread scans its heap chunk

in an attempt to find a potentially-free block (i.e. either a freelist block or a dead

object). This step is done without synchronization with mutators which perform con-

current allocation and might use free blocks in the meantime. Once a GC thread finds

a potentially-free block, it acquires the freelist lock andcontinues scanning as long as

it encounters reclaimable blocks (dead objects or free blocks). If the GC thread finds

a contiguous region of sufficient length, it coalesces the region into a single free block

and adds it to the freelist. Immediately prior to that, the thread invokes the finalizer

on all dead objects. If a finalizer resurrects an object (the MRE finalize callback

indicates this to GaS), then the object will be finalized again once it becomes unreach-

145

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

able next time. Finally, the GC thread releases the freelistlock and looks for another

potentially-free block in its chunk.

5.2.4 Tracing GC

Incorporating GaS into tracing MREs is relatively straightforward because such

MREs already implement support for object scanning, root dump, and asynchronous

finalization. Generational MREs in addition support card tables/remembered sets and

write barriers.

In generational MREs, we extend the card table (or rememberedsets) so that it is

possible to quickly find not only inter-generational pointers but also pointers into the

GaS heap. A minor collection then suffices to implement the root dump operation in

GaS.

In non-generational MREs, we add a write barrier that captures pointers leading

into the GaS heap as they are created. For each reference store we check if the new

pointer points into the GaS heap and, if so, flag the object it points to as pending. After

the flag clearing phase, GaS concurrently scans the memory regions in the MRE that

might contain GaS roots, and relies on the write barrier to deal with roots that go by

GaS unnoticed during the scan.

146

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

5.2.5 Reference Counting GC

Reference counting MREs associate a reference count with eachobject and rely

on two operations:incref (increment the count) anddecref (decrement the count)

to detect and reclaim dead objects. Such MREs cannot reclaim cycles unless cycle

detection is run periodically. Each reference update in theheap or on the stack invokes

decref for the old reference value andincref for the new reference value.

To integrate GaS into a reference counting MRE, we make theincref anddecref

operations conditional. For pointers belonging to the GaS heap that point to an object

in the GaS heap, we do not use reference counts. In all other casesincref anddecref

have their original semantics. In particular, outgoing andincoming pointers in the GaS

heap are subject to reference counting and so are pointers outside of the GaS heap.

In this design, all objects in the GaS heap whose reference count is non-zero are

roots for GaS GC (because they are pointed to from outside of the GaS heap). Thus,

the root dump operation amounts to a concurrent scan of the GaS heap in search of

objects with non-zero reference counts. Note that no pausesare required for a root

dump. To deal with the race condition that might hide a root from GaS, we introduce

a write barrier inincref : if the reference count goes from 0 to 1, we flag the object as

pending. Thus, if a root scan sees reference count of 0, whichlater becomes 1, we do

not miss a root.

147

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

The SATB write barrier piggybacks ondecref and is only needed in case the decre-

ment is performed in the GaS heap. In addition, we modifydecref so that it does not

call the object finalizer if the reference count drops to 0 in the GaS heap (GaS calls

finalizers during sweeping).

5.2.6 GaS Extensions

Although GaS is a non-moving GC, we can extend it to perform (non-moving)

generational collection. Instead of physical partitioning of the heap, we employ logical

partitioning. Each object has an age field, incremented during each GC cycle until

the object becomes old. Minor GCs mark only young objects and stop on old objects.

A write barrier identifies old objects that contain pointersto young objects. Thus,

the overhead of marking is significantly reduced. The sweeping cost, however, is still

proportional to the heap size, as young and old objects are not physically separated.

To support conservative GCs, we extend GaS with an object-start array that enables

GaS to quickly determine if a given address is the start of an object. GaS does not need

to update pointers thus conservative roots do not pose a problem. GaS computes the

object start array during the clearing phase and uses it during the root dump phase.

148

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

5.2.7 Implementation Details

We have implemented the GaS library in C and have integrated it into the HotSpot

JVM 1.6 and cPython 3.1. The HotSpot JVM uses a generational heap layout while

cPython employs hybrid reference counting/cycle detection. Both VMs use 2-word

object headers. HotSpot employs safepoints for root scan, which halt all mutators, and

uses a three-level, circular, unified object/class model.

Our implementation of the GaS GC assumes sequential consistency, i.e. there is

some global order on writes and all threads see the same order. We use memory fences

after the root dump phase to ensure store visibility. We use POSIX synchronization

primitives (barriers, mutexes, and condition variables).

In HotSpot, we inline the GaS write barrier and object allocation in the template

interpreter and in the code generated by the server (C2) compiler. We map the GaS

heap at the constant border above all other generations, which reduces the membership

checks to comparing a register with a constant. We use minor GC (based on parallel

copying in the young generation) to find roots in thread stacks. For roots in other

generations, we perform concurrent generation scan and introduce a write barrier to

capture pointers into the GaS heap. We have found this approach to result in shorter

pause times than if we instead leverage card tables (we discuss these alternatives in

Section5.2.4). We use the GaS heap for the young and old generation and leave the

permanent generation as part of the MRE-private heap.

149

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

In cPython, we extend C macros INCREF and DECREF to implement conditional

reference counting. We synchronize the GC and the VM interpreter after root dump

and before marking by acquiring and immediately releasing the global interpreter lock

(to ensure all write barriers have finished executing). cPython does not have safepoints

and thus GaS imposes no pauses. Note that regular cPython does impose pauses for (1)

cycle detection and (2) whenever freeing large data structures afterdecref . The GaS

heap is located at a fixed precompiled address in the virtual memory. We implement

GaS support in cPython for a single data structure: the binary search tree, which is

sufficient to evaluate GaS using our benchmark described in detail in Section5.3.

5.3 Experimental Evaluation

A primary goal of our experiments is to show that a cross-language, cross-runtime

GC that is implemented as a C library, offers competitive performance (in terms of ap-

plication execution time, GC pause times, and other GC metrics) compared to tightly-

integrated VM-specific collectors in production-quality VMs. We find that GaS sig-

nificantly reduces pause times and introduces modest overhead on overall execution

time. In this section, we also investigate the tradeoffs associated (i) with the way GC

is integrated into a runtime systems (built-in vs. a native/non-native library) and (ii)

150

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

GC G1 CMS RC/CD GaS
concurrent yes yes yes
on-the-fly yes
parallel yes yes yes
moving yes yes
tracing yes yes yes yes

reference counting yes
generational yes yes yes

Table 5.1: High-level comparison of the GCs that we evaluate.

with different GC designs (generational vs. non-generational, moving vs. non-moving,

concurrent vs. stop-the-world).

We first compare GaS to state-of-the-art GCs in the C-based runtimes for Python

and Java. We use cPython (http://docs.python.org/py3k/) and the HotSpot

JVM (http://openjdk.java.net). cPython implements a single-threaded Ref-

erence Counting [45] with generational stop-the-world Cycle Detection (RC/CD) [13].

The HotSpot JVM implements two concurrent, parallel, and generational GCs: Garbage-

First (G1) [57] and Concurrent Mark Sweep (CMS) [128]. Table5.3 summarizes the

main characteristics of these GCs compared to GaS.

RC/CD divides the heap into three generations. Once the number of objects with

non-zero reference counts in the youngest generation reaches a specific threshold, RC/CD

traces the object graph to find and free possible reference cycles within this generation.

Survivors are promoted to the older generation. Generationi + 1 gets collected after

the specified number of collections of generationi. RC/CD does not move objects and

151

http://docs.python.org/py3k/
http://openjdk.java.net

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

segregates object into generations logically (i.e. it maintains a list of objects in each

generation).

CMS [128] is a mostly-concurrent incremental GC based on the mostly-parallel

collection algorithm described by Boehm et al [34]. HotSpot JVM implements CMS in

the old generation and overloads generational write-barriers to identify objects that are

modified during concurrent marking (these objects must be rescanned to ensure that

the concurrent marking phase marks all live objects). CMS imposes two pauses per

GC cycle: for initial marking and for remarking. CMS does not move/compact objects

except for promotion to the old generation and copying within the young generation.

G1 [57] is a concurrent GC designed to meet a soft real-time goal with high prob-

ability, while achieving high throughput. G1 performs marking concurrently but halts

mutators during object evacuation. Marking identifies regions that contain few live ob-

jects and that can be evacuated within a given pause time limit (with high probability).

Each region has an associated remembered set, which indicates all locations that might

contain pointers to (live) objects within the region. At carefully scheduled points, G1

stops the mutator threads and performs an evacuation pause.G1 is generational – re-

gions holding current TLABs are treated as young and always belong to the evacuation

set. G1 opportunistically moves objects to gradually defragment the heap.

152

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

5.3.1 Methodology

For our experiments, we use a dedicated machine with a quad-core Intel Xeon and

8GB main memory. Each core is clocked at 2.66GHz and has 6MB cache. Our platform

runs 64-bit Ubuntu Linux 8.04 (Hardy) with the 2.6.24 SMP kernel.

We use HotSpot JVM from OpenJDK 6 build 19 (released April 2010) compiled

with GCC 4.2.4 in the 64-bit mode. Our configuration employs the server (C2) com-

piler, biased locking, and two concurrent GCs: G1 (garbage-first) and CMS (concurrent

mark-sweep) in a generational heap. In case of CMS, the young generation uses a par-

allel copying GC [85].

For the Java experiments, we employ the DaCapo’08 [54] and SPECjbb’00 bench-

marks. We use the default input for DaCapo and 1 warehouse with75s runs for

SPECjbb. We disable explicit GC invocation. For the Python experiments, we use

the open-source cPython 3.1.1 (released in August 2009) compiled with GCC 4.2.4 in

the 64-bit mode. Our Python benchmarks include PyBench (a collection of tests that

provides a standardized way to measure the performance of Python implementations),

a set of Shootout cPython benchmarks (http://shootout.alioth.debian.

org/), and PyStone (a standard synthetic Python benchmark). Since there are no

standard memory-intensive benchmarks for Python, we implement our own GC bench-

mark, called BST, which we model after SPECjbb. BST executes a number of iterations

153

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

against a balanced binary search tree. Each iteration comprises 3 lookups, 1 insert, and

1 delete. This emulates realistic workloads by simulating an in-memory database.

We investigate the sensitivity of GaS to different parameter values across bench-

marks. For the Java GCs, we vary four GC parameters: TLAB size,young generation

size, number of GC threads, and GC-start threshold. We use therecommended val-

ues of this parameters (as described in the HotSpot documentation) for our detailed

per-benchmark evaluation. For the Python RC/CD GC, we vary one parameter: the

GC-start threshold which controls the frequency of cycle detection in the young gener-

ation. RC/CD has no other parameters that significantly affect GC.

We evaluate the Java and Python GCs using four main metrics: throughput (exe-

cution time), GC pause times (average and maximum), minimummutator utilization

(MMU), and minimum required heap size. We do so across a rangeof heap sizes start-

ing at the minimum heap size to at least its double. Note that concurrent GC requires

more heap space than stop-the-world GC due to delayed garbage reclamation and allo-

cations happening during collection. In cPython RC/CD, there is no reliable standard

way of setting the heap size, therefore we do not vary the heapsize in this case. We

repeat each measurement a minimum of 5 times and report standard deviation as ap-

propriate (error bars in plots).

154

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

Bench- Minimum Heap Execution Time
mark GaS vs.G1 vs.CMS GaS vs.G1 vs.CMS

[MB] [x incr.] [x incr.] [s] [% incr.] [% incr.]
antlr 40 2.0 4.0 10.9 6.0 9.9
bloat 140 4.7 14.0 25.5 11.5 17.9
chart 100 1.0 3.3 25.7 8.9 9.2

eclipse 400 8.0 5.7 71.9 11.4 15.5
hsqldb 290 1.9 1.9 12.7 -1.6 -1.5
jython 80 4.0 2.7 29.9 4.8 7.8
luindex 120 2.4 12.0 25.6 4.8 4.4

pmd 250 3.6 4.2 20.3 12.1 16.7
xalan 80 1.3 0.4 23.6 29.0 24.6

average 167 3.2 5.4 27.3 9.7 11.6
Throughput

[kbops] [% decr.] [% decr.]
jbb 110 1.8 2.2 3.9 5.7 6.3

Table 5.2: Comparison of Java GCs: G1, CMS, and GaS. Columns 2–4 show the
minimum required heap size and Columns 5–7 show execution time/throughput.

5.3.2 Java Benchmarks

Table5.2and Table5.3detail per-benchmark, GC metrics for GaS, G1, and CMS.

These experiments use our baseline GC parameters. The TLAB size is 4kB, we use 2

GC threads, the GC-start threshold is 50% (i.e. collection starts once half of the heap is

filled), and the young generation size is fixed at 8MB (the HotSpot documentation rec-

ommends the young generation size to be set to 4MB times the number of GC threads).

We next evaluate the impact of each GC parameter on the different GC metrics.

When measuring pause times and execution time/throughput weuse the minimum heap

size that each benchmark requires to run under GaS, G1, and CMS.

155

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

Bench- Average Pause Maximum Pause
mark GaS vs.G1 vs.CMS GaS vs.G1 vs.CMS

[ms] [x decr.] [x decr.] [ms] [x decr.] [x decr.]
antlr 0.8 2.5 1.5 2.5 2.1 1.5
bloat 0.5 3.8 1.4 2.0 2.4 2.6
chart 0.3 12.0 6.2 2.0 4.8 3.0

eclipse 0.6 7.3 3.4 3.4 4.4 4.6
hsqldb 0.5 36.3 20.6 1.4 17.2 22.9
jython 0.8 2.3 0.8 3.9 1.2 1.5
luindex 0.3 7.5 3.7 1.5 4.2 3.1

pmd 0.3 27.2 15.0 1.2 31.9 18.2
xalan 0.8 4.7 4.2 4.1 1.8 2.8

average 0.5 11.5 6.3 2.4 7.8 6.7

jbb 0.5 12.9 4.3 1.9 7.2 6.3

Table 5.3: Comparison of Java GCs: G1, CMS, and GaS. In Columns 2–4 and 5–7 we
report average and maximum pause times: for GaS in ms and number of times decrease
relative to G1 and CMS.

Pause Times and MMU In Table5.3 we report both average and maximum pauses

(in milliseconds for GaS, and as number of times decrease relative to G1 and CMS).

Across benchmarks, average pause times in GaS are shorter by12x compared to G1

and 6x compared to CMS. Maximum pause times in GaS are shorter by 8x compared

to G1 and by 7x compared to CMS (across benchmarks).

Figure5.5 and Figure5.6 show the minimum mutator utilization (MMU) plots for

the benchmarks and GCs. MMU curves [43] lend insight into the distribution of GC

pauses across program execution (we define this GC metric in Section2.1).

156

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

We do not include GC write barriers when computing MMU – we only take GC

pauses into account. GaS achieves better utilization than G1 and CMS for all bench-

marks.

Throughput In the last three columns in Table5.2 we show per-benchmark exe-

cution time/throughput for GaS and percentage overhead of GaS relative to G1 and

CMS. Across the DaCapo benchmarks GaS imposes 9.7% overhead compared to G1

and 11.6% overhead compared to CMS. For JBB, throughput reduction due to GaS

is 5.7% relative to G1 and 6.3% relative to CMS. GaS overhead ismostly caused by

GC write barriers and is overestimated here because our implementation of the write

barriers is not as optimized as it could be.

Figure5.7and Figure5.8show per-benchmark execution time as a function of heap

size. Each plot starts at the minimum heap size. CMS and G1 havesimilar perfor-

mance for our benchmarks. We do not observe significant execution time increase for

minimum heap sizes typical of stop-the-world GC. This is because GCs run on separate

cores and only slow the program down for short pauses during which little processing

takes place.

Heap Size In Columns 2–4 we report minimum required heap size for each bench-

mark (for GaS in MB and for G1 and CMS as number of times decreaserelative to

GaS). GaS requires larger minimum heap sizes than G1 (by 3x onaverage) and CMS

157

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

dacapo-antlr

GaS
CMS

G1
 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

dacapo-bloat

GaS
CMS

G1

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

dacapo-chart

GaS
CMS

G1
 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

dacapo-eclipse

GaS
CMS

G1

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

dacapo-jython

GaS
CMS

G1
 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

dacapo-luindex

GaS
CMS

G1

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

dacapo-pmd

GaS
CMS

G1
 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

dacapo-xalan

GaS
CMS

G1

Figure 5.5: Minimum mutator utilization (MMU) for the client-side DaCapo bench-
marks. We compare GaS with two HotSpot GCs: G1 and CMS. In all theplots, the
x-axis (logarithmic scale) is a MMU window size (in ms).

158

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

dacapo-hsqldb

GaS
CMS

G1
 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

M
M

U

Window [ms]

spec-jbb

GaS
CMS

G1

Figure 5.6: Minimum mutator utilization (MMU) for the server-side benchmarks: Da-
Capo hsqldb and JBB. We compare GaS with two HotSpot GCs: G1 and CMS.In all
the plots, the x-axis (logarithmic scale) is a MMU window size (in ms).

(by 5x on average) because of three reasons. First, G1 and CMS are generational and

thus tolerate allocation bursts better and place less pressure on the concurrent GC which

executes for the old generation only. Second, GaS does not move objects and thus suf-

fers from fragmentation (CMS uses a copying GC in the young generation and G1

performs opportunistic block-based compaction). Third, GaS adds a per-object header

word, which may matter in benchmarks that allocate small objects. Each of these rea-

sons is a consequence of a primary GaS design goal to be portable across runtimes and

languages with different memory management subsystems.

Note that in case of concurrent GC, heap overprovisioning does not impact perfor-

mance significantly (unlike in case of stop-the-world GC [161, 159]). That is, across

all the benchmarks, giving G1 and CMS much more heap does not improve their per-

formance.

159

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

 9.6

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 11

 0 13 26 39 52 65 78 91

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

dacapo-antlr

GaS
G1

CMS

 21
 21.5

 22
 22.5

 23
 23.5

 24
 24.5

 25
 25.5

 26

 0 46 92 138 184 230 276 322

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

dacapo-bloat

GaS
G1

CMS

 23

 23.5

 24

 24.5

 25

 25.5

 26

 0 33 66 99 132 165 198 231

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

dacapo-chart

GaS
G1

CMS

 60

 62

 64

 66

 68

 70

 72

 74

 0 133 266 399 532 665 798 931

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

dacapo-eclipse

GaS
G1

CMS

 26.5
 27

 27.5
 28

 28.5
 29

 29.5
 30

 30.5
 31

 0 26 52 78 104 130 156 182

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

dacapo-jython

GaS
G1

CMS

 24
 24.2
 24.4
 24.6
 24.8

 25
 25.2
 25.4
 25.6
 25.8

 0 40 80 120 160 200 240

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

dacapo-luindex

GaS
G1

CMS

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 0 83 166 249 332 415 498

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

dacapo-pmd

GaS
G1

CMS

 17
 18
 19
 20
 21
 22
 23
 24
 25

 60 120 180 240 300 360

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

dacapo-xalan

GaS
G1

CMS

Figure 5.7: Execution time for the client-side DaCapo benchmarks as a function of
heap size. We compare GaS with two HotSpot GCs: G1 and CMS. Each plot starts at
the minimum heap size.

160

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

 12.3
 12.4
 12.5
 12.6
 12.7
 12.8
 12.9

 13
 13.1
 13.2

 96 192 288 384 480 576

E
xe

cu
tio

n
T

im
e

[s
]

Heap Size [MB]

dacapo-hsqldb

GaS
G1

CMS
 3850
 3900
 3950
 4000
 4050
 4100
 4150
 4200
 4250

 36 72 108 144 180 216 252

T
hr

ou
gh

pu
t [

bo
ps

]

Heap Size [MB]

spec-jbb

GaS
G1

CMS

Figure 5.8: Execution time (for DaCapo hsqldb) and throughput (for JBB’00)as a
function of heap size. We compare GaS with two HotSpot GCs: G1 and CMS. Each
plot starts at the minimum heap size.

Sensitivity to GC Parameters To evaluate the parameter sensitivity of GaS, we vary

the TLAB size between 1kB and 16kB, the young generation size between 2MB and

32MB, the number of GC threads between 1 and 3 (note that we haveonly 4 cores and

we need to leave one core for the actual program), and the GC-start threshold between

20% and 80%. Our baseline values of GC parameters (reported previously) are medians

of these ranges.

In Table5.4, we present how our GC metrics (throughput, average and maximum

pause times, and minimum heap) depend on GC parameters. The table consists of two

parts. The first part (Rows 3–6) reports the GC metrics for GaS relative to G1 and the

second part (Rows 8–11) relative to CMS. We vary one GC parameter at a time and

keep the remaining 3 parameters at their baseline values. Column 2 corresponds to

the baseline values of all 4 parameters. Each of the following Columns (3–10) reports

the impact of one parameter: TLAB size, GC-start threshold, number of GC threads,

161

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

Met- Base- TLAB [kB] GC Threshold GC Threads Young Gen.[MB]
ric line 1 16 20 80 1 3 2 32

Relative to HotSpot G1
TD 8.40 7.54 7.86 10.29 6.95 5.24 8.15 3.50 12.25

APD 10.12 9.76 10.43 12.77 8.73 14.77 8.29 4.32 31.34
MPD 8.26 7.58 8.34 7.58 9.33 10.76 7.85 5.25 20.89
MHI 3.07 2.30 4.69 3.07 3.86 3.11 3.10 4.63 1.81

Relative to HotSpot CMS
TD 9.97 9.60 9.59 11.19 9.50 7.80 9.85 2.99 13.50

APD 5.52 5.19 5.57 6.48 5.81 6.69 4.44 2.10 13.45
MPD 7.67 6.50 6.94 6.53 8.29 8.59 8.05 3.80 21.68
MHI 5.05 3.33 8.11 5.10 4.60 5.23 5.27 6.26 4.64

Table 5.4: GC parameters’ impact on the GC metrics in Java. Column 2 contains results
for the baseline parameters: 4kB TLAB, 2 GC threads, 50% threshold, and 8MB young
gen. Each subsequent column shows the impact of one GC parameter while the other
3 are kept at the baseline. Legend: TD: throughput decrease [%], APD: average pause
decrease [x], MPD: maximum pause decrease [x], MHI: minimumheap increase [x].

and young generation size. We report GC metrics for two extreme values of each GC

parameter. For each benchmark, we use the minimum heap size in which all experi-

ments for the benchmark run. We report average results across benchmarks (DaCapo

and JBB).

The young generation size has the greatest impact on all GC metrics. For small

sizes (2MB), GaS degrades throughput 3-4% relative to G1 and CMS. For large sizes

(32MB) throughput degradation is 12-14%. GaS converges to G1/CMS performance

as G1/CMS approach non-generational GC.

G1/CMS pause times increase significantly for larger young generation sizes (up

to 22-31 times longer than for GaS). For small sizes, G1/CMS pause times are 2-5

162

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

times worse than for GaS. This is because G1 and CMS are generational hybrids of

concurrent and stop-the-world GC and trade throughput for pause times. Note that GaS

does not have this tradeoff. Finally, large young generation sizes increase the minimum

heap size in G1/CMS because during minor GCs more objects get promoted and, as a

result, there is more pressure on the concurrent GC.

Dedicating fewer threads to GC in all collectors prolongs pause times and decreases

throughput. TLAB size impacts only minimum heap size – largeTLABs require that

GaS uses more heap than G1 and CMS. This is because allocation rate is higher with

large TLABs. GC-start threshold has only a minor impact on the GC metrics.

5.3.3 Python Benchmarks

To evaluate cPython hybrid GC, our BST benchmark creates both cyclic (collected

by tracing) and acyclic (collected by reference counting) garbage. To create cycles we

use self-referencing objects. We investigate 3 configurations: all-cyclic, all-acyclic, and

50% cyclic. Our main evaluation uses the last one. We have evaluated the all-cyclic and

all-acylic configurations relative to the 50% cyclic one using our GC metrics. We have

found that the all-cyclic configuration has shorter pauses (by 21-22%), larger minimum

heap size (by 15%), and 3% worse execution time. The all-acyclic configuration has

shorter pauses (by 49-56%), smaller minimum heap size (by 41%), and better execution

163

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

Met- Base- GC-Start Threshold [number of young unreclaimed objects]
ric line 70 700 7000

RC/CD Rel. RC/CD Rel. RC/CD Rel.
MH 17 7 2.4 [XI] 10 1.7 [XI] 34 0.5 [XI]
AP 0 0.2 – 0.8 – 5.4 –
MP 0 56.6 – 100.3 – 302.9 –
ET 39.3 38.0 3.6 [PI] 36.3 8.4 [PI] 35.3 11.4 [PI]

Table 5.5: GC metrics for GaS and Python RC/CD for different values of the young
generation threshold in RC/CD (70, 700, and 7000). We report minimum heap in MB,
average and maximum pauses, and BST throughput (time per 1000iterations). Column
2 shows the results for GaS in its baseline configuration. Thefollowing columns com-
pare GaS and RC/CD for different thresholds. Legend: MH: minimum heap [MB], AP:
average pause [ms], MP: maximum pause [ms], ET: execution time [ms/103iters], XI:
number of times increase, PI: percent increase.

time (by 5%). When RC/CD relies only on tracing, it imposes more overhead, uses 2x

more heap, and has up to 2x longer pauses than when it uses onlyreference counting.

We allocate 15-level trees in BST. The live data set size does not impact RC/CD in

Python because the cost of tracing in this GC depends mostly on the number of objects

that are reachable from potential cycles (it does not matterif they are live or dead). The

cost of tracing in GaS is proportional to the size of live data.

In Table5.5 we report the GC metrics for GaS and RC/CD. Column 2 shows the

results for GaS that correspond to our baseline GC parameters (2 GC threads, 50%

GC-start threshold, and 4kB TLABs). We report the minimum heap(we instrument

cPython to measure it), pause times, and execution time per BST iteration.

Columns 3–8 compare GaS with RC/CD for 3 different values of the main RC/CD

parameter (the GC-start threshold). For its default value (700) GaS requires 1.7x more

164

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

 0.037
 0.0375

 0.038
 0.0385

 0.039
 0.0395

 0.04
 0.0405

 0.041

 15 20 25 30 35 40 45 50 55 60

T
im

e
[m

s]
 p

er
 It

er
at

io
n

Heap Size [MB]

BST

GaS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 10000

M
M

U

Window [ms]

BST

GaS
RC/CD

Figure 5.9: Results for Python and the BST benchmark. The left plot shows execution
time per BST iteration as a function of heap size for GaS (in RC/CD heap size is not a
GC parameter). The right plot is MMU for GaS and RC/CD. Note that since GaS does
not impose pauses its MMU is at 1.0 across the window sizes.

heap and has 8% lower throughput relative to RC/CD. However, GaSimposes no

pauses, while RC/CD does (up to 100ms, and 0.8ms on average).

Setting the GC-start threshold to 70 results in more frequentGCs in RC/CD. This

results in shorter pauses (0.2ms on average and 57ms maximum), worse throughput

(only 4% better than GaS), and lower minimum heap. Similar space/time tradeoffs

can be observed when the young generation threshold is 7000.Now CD GC is rela-

tively rare but each cycle is expensive. Pause times increase (5.4 ms on average and

303ms maximum), throughput improves (11% better than GaS),and the minimum heap

increases (exceeding 2x GaS).

The left plot in Figure5.9shows how sensitive per-iteration execution time in BST

is on heap size in GaS. BST throughput is 3% better for heap sizes that are 2 times the

minimum. Heap size is not a GC parameter for RC/CD.

165

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

Benchmark Execution Time [s] % GaS Overhead

pybench 3.91 2.05
pystone 4.12 3.40

binary-trees 6.71 3.13
fannkuch 1.95 8.72

mandelbrot 15.48 2.13
meteor-contest 2.26 4.42

n-body 8.44 -0.59
spectral-norm 14.28 3.01

average 7.14 3.28

Table 5.6: Execution time overhead in GaS for standard Python benchmarks relative to
RC/CD.

The right plot in Figure5.9shows MMU for GaS and RC/CD. Since GaS in cPython

has no pauses, its MMU equals 1.0 for all window sizes. In RC/CD, the maximum

pause time is 100ms (we use the default 700 GC-start threshold). RC/CD approaches

GaS utilization for window sizes above 1 second. The MMU plots do not take write

barriers/conditional RC into account (only pause times). InRC/CD we only measure

pause times caused by tracing. Reference counting imposes negligible pauses in BST

because whenever we delete nodes we free one node at a time.

Table5.6shows execution time statistics for the Python benchmarks.These bench-

marks are not memory intensive and do not exercise GaS GC likethe BST benchmark

does. On average, the overhead of GaS extensions is 3%.

166

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

5.3.4 Overhead of Cross-Runtime Calls

We next investigate the performance overhead of other ways of integrating a GC

into an MRE. We first consider the approach that implements theGC in Java (e.g.

MMTk and GCTk) that is then integrated into a C-based runtime. We evaluate the cost

of crossing the runtime boundaries. We measure the overheadincurred by the up/down

calls through the Java Native Interface (JNI) – the mechanism through which Java and

C programs interact. We consider the key GC operations: object allocation and object

scan.

We implement object allocation as a Java methodObject allocate(int size)

which takes object size as input and returns the allocated object. We upcall this method

from C via JNI. Object scan is represented as a native methodint scan(Object

o, Object[] b) whose arguments are a reference to an object to scan and a ref-

erence to a buffer for pointers found in the scanned object. The method returns the

number of references found. We downcall this native method from Java using JNI.

Since our goal is to measure the JNI overhead, theallocate andscan methods do not

perform any processing:allocate returns NULL andscan returns 4 pointers. We dupli-

cate both methods in C and call them directly from C (without gcc inlining) to compare

direct calls with JNI calls.

We run 10 experiments, each consisting of106 calls. On average, when compared to

direct (but not inlined) C calls, JNI upcalls forallocate are 76x slower and downcalls

167

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

for scan are 5x slower. Downcalls are faster than upcalls because theHotSpot JIT

compiler optimizes native calls extensively. For106 calls, upcalls forallocate introduce

225ms of overhead and downcalls forscan incur 92ms of overhead.

The DaCapo benchmarks allocate between 2.4 and 161 million objects (with the

mean of 18 million) whereas the number of live objects duringa GC cycle reaches

between 2.8 thousand and 3.2 million (with the mean of 104 thousand). Thus, the JNI

overhead for allocation can range from 0.54s to 36s of execution time. Similarly, the

JNI overhead for scanning (assuming 25 collections per program execution) can range

from 64ms to 7.4s of execution time.

Such overhead is likely unacceptable for C-based runtimes which typically are

tuned for high performance. MRE-neutral, C-based GC library is both easier to in-

tegrate into such runtimes and offers significantly better performance.

5.3.5 Overhead of Runtime Layering

We next consider another alternative approach to using a single GC for multiple

programming languages: runtime layering. In this study, weinvestigate the cost of

using a production-quality Java runtime to host a non-Java language. In particular, we

compare the performance of Python benchmarks for Jython 2.5.1 (a Python runtime

that executes on top of a JVM – the HotSpot JVM in our case), versus using cPython

v2.6.

168

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

We omit the raw data due to space constraints, and summarize our findings here.

For pybench and pystone, Jython is 2.5x and 1.74x slower thancPython. For the

shootout benchmarks (those which Jython supports without extensive benchmark mod-

ifications) Jython is 2.97x (meteor-contest), 1.34x (spectral-norm), 2.24x (fannkuch),

1.72x (binary-trees), and 2.22x (n-body) slower. On average, cPython is 2.1x faster

than Jython.

Re-using a Java runtime (and Java GC) to implement runtimes forother languages

introduces significant overhead (in addition to being complex and time-consuming from

the engineering standpoint). An alternative, simpler, andmore efficient approach to

incorporating a modern GC and memory management subsystem into a new or extant

C-based runtime is to use a GC library like GaS.

5.3.6 Lines of Code

We next compare GaS, HotSpot G1/CMS, and Python RC/CD using lines-of-code,

to lend insight into the approximate implementation effortrequired for each GC. The

GaS library is around 1100 lines of C/C++. The integration/glue code in both Python

and HotSpot is around 200 lines.

The implementation of G1 and CMS in HotSpot is around 30,000 and 22,000 lines

of C/C++. RC/CD in cPython is 8,400 lines of C (note that reference counting code is

scattered across the whole runtime). This suggests that GaSGC library is simpler to

169

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

implement than G1, CMS, and RC/CD. In addition, 200 lines of the GaS integration

code is 2 orders of magnitude fewer than that which is required to implement a modern

GC from scratch in an MRE.

5.3.7 Results Summary

We have compared GaS with two generational, concurrent GCs for Java and a hy-

brid tracing/reference-counting GC for Python. GaS significantly improves pause times

and MMU across all benchmarks and GCs. GaS requires larger heap sizes and imposes

modest execution time overhead because it is non-generational and non-moving (unlike

G1 and CMS) and concurrent (unlike RC/CD). GaS is non-moving so that it is able to

support runtimes (such as Python) that make assumptions about object addresses.

We also investigate the performance sensitivity to different GC parameters on the

GC metrics. We find that GaS minimum heap sizes and throughputconverge to G1/CMS

and RC/CD once the GC parameters mitigate the generational advantage of these GCs.

We measure the overheads associated with other approaches to implementing a GC in

an MRE (via cross-language calls and via runtime layering) and find that using a GC

library in C-based runtimes is significantly simpler and moreefficient.

170

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

5.4 Related Work

The work most related to GaS is the Boehm GC [35, 34]. Boehm GC is a widely-

used GC library providing a conservative collector for uncooperative runtimes (such

as C and C++). Boehm GC supports stop-the-world serial and parallel collection. In

contrast, GaS focuses on concurrent, on-the-fly GC for cooperative runtimes (precise

roots, write barriers, TLAB allocation etc.) Moreover, theGC interface in Boehm

GC essentially consists of two functions: GCMALLOC and GCREALLOC. GaS

interface is more fine-grain to be able to leverage runtime type-safe mechanisms for

object scanning, finalization, and root dump (GaS and the MRE cooperate to a greater

degree).

GC frameworks such as UMass GC Toolkit [88], GCTk [29], and MMTk [28] are

different from and complementary to GaS. The UMass GC Toolkit (designed in the

context of persistent Smalltalk and Modula-3) focuses on generational copying stop-

the-world GC algorithms. GaS addresses concurrent, on-the-fly GC. GCTk, and MMTk

are GC frameworks written in Java, created in the context of the Jikes RVM. Their goal

is to support a number of different GCs to enable their comparative evaluation and GC

research.

GCTk/MMTk have been used for non-Java languages, although such porting is

not well-documented in the literature. For languages otherthan Java, however, these

171

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

frameworks require crossing the C-Java language boundary for each GC operation (or

translation/reimplementation of the entire framework). Crossing the C-Java language

boundary incurs high overhead (in Section5.3.4we investigate the overhead of such

crossings) and is therefore impractical for C-based runtimes (of which most MREs

are).

GaS takes an alternative approach – the GC library and interface are written in C

and do not require execution of an additional managed runtime (such as a JVM) to

implement and use GC. The MRE-GC interface in GaS also differs from GCTk/MMTk

in terms of granularity and encapsulation. By taking an MRE-neutral approach, GaS

can afford fine-grain MRE-GC library interaction. In contrast, GCTk/MMTk in non-

Java-based MREs must either use coarse-grain MRE-GC library interaction or break

library encapsulation (because of the high cost of cross-language calls). Since MRE-

GC interaction in inherently fine-grain (allocation/scanning/write barriers are frequent),

to achieve good performance, non-Java-based MREs must replicate the GCTk/MMTk

GC implementation in the MRE. GaS supports efficient direct fine-grain calls between

GC and a MRE while maintaining the library encapsulation.

GaS is also simpler and more lightweight than GCTk/MMTk (where the approach

is to support as many different GCs as possible, including object-moving GCs). Unlike

GCTk/MMTk, GaS focuses on concurrent, on-the-fly GC and takesinto account all

restrictions placed on GC by different MREs (e.g. non-movingGC in cPython). GaS

172

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

uses a GC algorithm designed specifically for a portable loosely-coupled GC library.

The approach in GCTk/MMTk is to design the interface so that itsupports diverse

extant GCs.

Another way of reusing a GC implementation between two MREs isto implement

an MRE in a high-level language, e.g. Jython, JRuby are Python/Ruby interpreters that

run on top of a JVM and use JVM GC. The two key issues with such MRE layering

is performance overhead (we investigate this empirically in Section5.3.5), and incom-

plete/incompatible standard libraries (due to the extensive engineering effort required

to make layering work).

Another system, called CoLoRS [164], provides cross-language, type-safe object

sharing using POSIX shared memory for MREs that execute on thesame physical hard-

ware at the same time and interoperate. CoLoRS uses concurrent, on-the-fly GC for the

shared memory region that each MRE maps into its address space. The CoLoRS GC

however is tightly integrated into its runtime, and defines anew object and synchroniza-

tion model for shared objects that it manages. GaS adds per-object headers and relies

on MRE-native object model and synchronization.

VMKit [71] is a framework that eases the development of high-level MREsand thus

enables experimentation with new languages and MREs and/or new language features.

VMKit consists of a low-level and a high-level layer. The low-level layer provides

threading support, GC-based memory management, and a JIT compiler that translates

173

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

language-independent intermediate representation of programs. The high-level layer

defines such aspects as object model, type system, call semantics, and method dispatch.

VMKit glues together LLVM for JIT support, MMTk for GC, and POSIX thread library

for multi-threading. VMKit translates MMTk into the LLVM intermediate representa-

tion in its entirety. VMKit performance, however, is ordersof magnitude worse than

production systems. GaS is orthogonal to VMKit in that GaS can be used as a GC

component in the VMKit framework. Note, however, that GaS can be integrated not

only with MRE frameworks, but also with general- and special-purpose MREs for both

dynamic and static languages.

XIR [154] is a compiler-MRE interface that separates the compiler backend from

an MRE. An XIR extension mechanism allows an MRE to express the machine-level

implementation of object operations. The interface has a modest impact on compilation

time without reducing performance. GaS is similar to XIR in its overall goal however

GaS targets GC and XIR targets JIT compilation.

The idea of modularizing an MRE motivates the design and implementation of La-

dyVM [70]. LadyVM links three third-party software components: LLVM, Boehm GC,

and GNU Classpath, to implement a Java VM. Similarly to VMKit,LadyVM can use

GaS as a replacement for its GC component to enable modern, high-quality, concurrent

GC.

174

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

Compiler libraries like LLVM [102] and VPU [126] enable modular approach to in-

tegrating JITs into VMs. LLVM is a compiler infrastructure designed for compile-time,

link-time, and run-time optimization of programs written in arbitrary programming lan-

guages. LLVM supports a language-independent instructionset and type system. VPU

is a high-level code generation utility that performs most of the complex tasks related

to code generation, including register allocation, and which produces good-quality C

ABI-compliant native code.

JnJVM [152] is a modular JVM that supports dynamic addition or replacement

of its own modules without service interruption and state loss. JnJVM uses dynamic

aspect weaving techniques and component architecture. GaScould potentially be used

in JnJVM as a GC module.

The Common Language Infrastructure (CLI) [112] is an open specification (ECMA335)

that describes the executable code format and runtime environment for multiple, static,

high-level languages to be used on different computer platforms. All CLI-compatible

languages compile to the Common Intermediate Language (CIL),which abstracts away

the platform hardware. CLI is similar to GaS in that it provides GC (among other ser-

vices) for multiple languages but it differs in that CLI uses monolithic architecture with

built-in GC. GaS provides GC in a form of a library and targets multi-language support

via the provision of a cross-MRE GC.

175

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

GNU Classpath [73] is a GNU project to create free core class libraries for use

with virtual machines and compilers for Java. The Classpath library can be used with

different VMs – it has a similar goal to GaS but pertains to core classes (not GC) and

targets Java (not multiple MREs).

XMem [160], Singularity [65], MVM [53], and KaffeOS [10] provide isolation and

sharing between MREs or tasks/processes and implement a common memory man-

agement system across them. GaS GC differs from GCs in these systems in that it is

modular, loosely-coupled, and portable across different MREs and languages.

5.5 Newly-Built Runtimes

The GaS library can be used not only to enhance GC in existing MREs but also

when designing and implementing a new language and/or runtime. In order to inves-

tigate how GaS impacts the process of architecting a new MRE, we build a runtime

for a new scripting language and use the GaS library to implement its memory man-

agement component. Our goal is to determine a minimal set of runtime capabilities

and services that are necessary to support a pauseless, concurrent, on-the-fly GC in

a multi-threaded environment. We design and implement MiniVM, a GC-cooperative

MRE that is able to eliminate the negative impact of GC on program performance and

interactivity, provided that there are enough spare processing cores available. Unlike

176

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

extant GC systems (including real-time and hardware-assisted ones), the MiniVM GC

neither imposes pauses nor significantly slows mutators down, while avoiding complex

MRE architecture.

MiniVM interprets binary programs generated by a source code compiler. The MRE

targets an object-oriented language with dynamic typing and native support for multi-

threading based on share-nothing semantics and explicit communication via message

passing over channels. The language supports user-defined classes, single inheritance,

dynamic dispatch, static and instance methods in classes, global functions, extensibility

via native C code, dynamic field addition at runtime, and closures.

The interpreter is a hybrid stack/register machine. Function code can access ar-

bitrary stack locations within the current frame. Instructions have fixed size and take

up to three operands that identify source and target stack/constant pool locations for a

specific operation. We implement a switch-based non-threaded interpreter.

Threads share the global constant pool and the GaS heap. Per-thread data structures

include: a growable stack, a bounded incoming message queue(FIFO), and a TLAB

for heap allocation. For control we use the C stack so the runtime stack contains only

pointers (no return addresses). This makes it easier to scanstacks concurrently.

In the calling convention that we use, the caller saves all arguments (left to right)

on the stack and creates/destroys stack frames. The return value overwrites the last

argument on the stack. We do not use a frame pointer – stack locations are addressed

177

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

relative to the stack top. Stacks grow in fixed-size chunks asneeded. Each stack frame,

however, is always contiguous.

The builtin types include: string, array, integer, real, thread, and function. Each

object can be evaluated to true/false and used in a conditional statement. We imple-

ment operators such as addition/subtraction as function calls. Operations on per-thread

queues (enqueue and dequeue) block if the queue is full/empty.

User-defined types, strings, and arrays have variable size and grow on demand.

We use a single-word object header that contains a class pointer. The initial size of

variable-size objects is determined based on constructor parameters (e.g. array length)

or compiler-produced hints (e.g. that typeT typically hasf fields). Thus, despite the

lack of static typing, the system is able to keep space consumption close to optimal for

most objects. Each class has one optional superclass and a (potentially empty) set of

instance/static methods.

Dynamic field access, method dispatch, and type lookup take place by name. We

use hash tables with open addressing to implement objects, per-class method dictionar-

ies, and loaded classes (MiniVM supports static class loading only). Method dispatch

always takes constant time because we populate method dictionaries of each type with

all the inherited methods (to avoid walking the class hierarchy on each virtual call).

Open addressing keeps data structures more compact than chaining and reduces the

number of pointer dereferences.

178

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

We allocate permanent runtime data structures, such as classes, constants, and meta-

data in the C heap. The GC does not traverse them. The remaining objects are allocated

in the shared GaS-managed heap. Memory management is the most complex subsys-

tem in MiniVM. GC significantly impacts the design of all other components (even

though GaS is a library that abstracts away the details of theGC implementation). To

fully leverage GaS capabilities and implement pauseless GC,each runtime component

must support asynchronous, concurrent, and precise root dump at an arbitrary point in

time while the program threads execute. In addition, the runtime needs to use the SATB

write barrier for pointer updates in the heap.

We design a GC protocol that enables scanning message queuesand stacks of all ac-

tive threads without introducing GC pauses. Each thread hasa bounded message queue

and a growable stack, which are freed on thread termination.To prevent concurrent

queue/stack scanning while freeing them, we use a global lock that the GC acquires

for root dump and the runtime acquires for each thread start and exit. Using a lock in

this case is acceptable because the system does not guarantee how soon a thread begins

executing instructions after its start and frees its resources after its termination.

Message queues are bounded and provide potentially blocking semantics. There-

fore, the GC can scan a queue with a lock being held, again without introducing pauses

that are unexpected by a program. The same lock is used to synchronize concurrent

179

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

access to a queue. The cost of scanning a queue is fixed and short blocking does not

change the programming model provided by message queues.

Stacks are growable and potentially contain multiple chunks. They must be scanned

concurrently without any locking because their length is unbounded and blocking is not

expected by programs for stack operations. We scan each stack sequentially (bottom-

up) without any synchronization. To guarantee that we obtain a stack snapshot (on-

the-fly GC requires a per-thread snapshot at some point afterGC request and before

marking) we use a write barrier that captures newly-writtenstack pointers. Thus, even

if a sequential scan misses a root, it is still reported by thewrite barrier. Stacks never

shrink in order to avoid freeing stack chunks while the GC scans them. We use a

handshake with each program thread before scanning its stack (the GC waits until the

thread finishes executing the current instruction). This isnecessary because the first GC

phase (flag clearing) might make recently-allocated objects appear unreachable. Once

the current instruction finishes, pointers to such objects are already written to the stack

and can be found during the stack scan.

MiniVM supports C extensions via native functions/methods. The system loads

them via dynamic linking at run-time. We use OS-level POSIX threads. We maintain

a pool of unique constant strings that identify fields, methods, and classes so that on

hash table lookup we can determine string equality by address comparison and without

parsing actual characters. We maintain a double-linked list of active threads.

180

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

The MiniVM instructions enable programs to manipulate the current stack frame,

object fields, and array elements, access constant pool, allocate new objects, create

new threads, send/receive messages, push/pop frames, callfunctions/methods, and take

(un)conditional branches. Instruction operands (integerimmediates) identify stack and

constant pool locations by index.

Although the MiniVM code size is below 3000 lines of C, the system implements

a large subset of modern runtime services such as multithreading, OO support, and

concurrent, pauseless GC. The key advantage of building a newMRE that uses GaS,

compared to incorporating GaS into an existing MRE, is the ability to design the run-

time data structures in a way that can fully leverage modern on-the-fly GC and thus

avoid GC pauses and high overhead, while simplifying the runtime (e.g. by avoiding

safepoints).

5.5.1 GC Evaluation

Although the MiniVM GC imposes no pauses, it incurs certain execution time over-

head due to write barriers and concurrent collection that introduces additional memory

traffic as well as cache pollution. In order to evaluate the worst-case cost of GC in

MiniVM, we implement a simple GC benchmark and use two MiniVMconfigurations:

one with no GC activity and no write barriers and one with constant GC activity and

frequent write barriers.

181

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

Our benchmark allocates a large single-linked list, which stays alive, and is repeat-

edly reversed. If the list length is above the GC-start threshold then GC is active all

the time. Otherwise, GC is never invoked. By reversing the list in place, we generate a

large number of write barriers, both in the heap and on the stack. Thus, we are able to

estimate the upper-bound for the GC and write barrier cost.

Our heap size is 100MB, the list has 800K elements, and is reversed 200 times.

Each program run lasts at least 30 seconds. We use one GC thread (so that there are

enough cores for the GC and program threads). We set the GC-start threshold to 1% and

99% and compile MiniVM with and without write barriers. We repeat each execution

time measurement 10 times.

We find that the write barrier overhead is 4% and the concurrent GC overhead is

3%, which add up to 7% total overhead. Given that this is an upper-bound, in practice

the GC overhead is likely to be around 3%.

5.6 Summary and Conclusions

GaS is a lightweight, cross-MRE, cross-language GC library that provides con-

current, on-the-fly, non-moving GC. GaS can be integrated into MREs for static (e.g.

Java) and dynamic (e.g. Python) languages via a fine-grain, low-overhead GC interface.

GaS is a stand-alone C-based library for GC-cooperative MREs. GaS GC adapts the

182

Chapter 5. Concurrent Collection as a Service: Improving Intra-Runtime Memory
Management Performance and Programming Model Using SharedLibraries

SATB algorithm for loose coupling between GC and an MRE. The GaS library makes

no assumptions about object model, threading, JIT, and memory management strategy

(tracing, reference counting, generations, etc.) in an MRE.We implement GaS and

integrate it within production-quality MREs for Java and Python. Our experimental

evaluation shows that in comparison to built-in, tightly-coupled GCs, GaS can improve

pause times significantly and offers competitive performance even when compared to

generational GCs. The GaS library reduces the development effort required for im-

plementing a state-of-the-art on-the-fly GC. The library canbe used as a modern GC

component both in extant MREs and when building new MREs for newor existing

languages.

The text of this chapter is in part a reprint of the material asit appears in [163].

183

Chapter 6

Type-Safe Sharing for Homogeneous
Runtimes: Improving Cross-Runtime
Memory Management Performance
and Programming Model Using
Shared Memory

In this chapter, we describe an approach to improving cross-runtime memory man-

agement by using OS support for shared memory. Specifically,we discuss the de-

sign and implementation of type-safe, transparent object sharing for co-located Java

runtimes run as separate OS processes. We overview our extensions to such runtime

services as synchronization, class loading, object allocation, and garbage collection,

necessary to implement object sharing. Our experimental evaluation compares sharing

with extant communication mechanisms available on the Javaplatform, such as RMI,

JNDI, JDBC, serialization, and network sockets. Our results indicate that object sharing

improves cross-runtime memory management in two ways. First, it enriches the pro-

184

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

gramming model by introducing shared memory that enables communication without

explicit message passing. Second, it increases throughputand decreases latency by up

to several orders of magnitude compared to state-of-the-art J2SE/J2EE communication

mechanisms by avoiding object serialization and network communication.

6.1 Introduction and Motivation

Developers today predominately build modern, enterprise,component-based, mid-

dleware for portable, distributed applications using type-safe, object-oriented languages,

such as Java, which users execute within managed runtime environments (MREs).

These MREs typically support garbage collection (GC), dynamic class loading, in-

cremental compilation, as well as high-level threading andsynchronization primitives,

among other runtime services. One popular example from thisapplication domain is

JBoss, an application server that provides a complete implementation of the J2EE [93]

specification, and that runs on top of the Java platform [95].

A common architectural design pattern employed by administrators of enterprise

applications is multi-tier deployment that partitions thesystem into independent do-

mains, typically run using separate MRE instances (OS processes). Such isolation im-

proves reliability and helps to manage system complexity byfault containment and

modularity. J2EE-based applications typically comprise at least three tiers: a web

185

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

container (front-end presentation layer), an applicationserver (business logic), and a

database engine (back-end data source) [95, 24, 158].

Multi-tier decomposition, however, necessitates expensive inter-process commu-

nication (IPC) between MREs (isolated components). Since most general-purpose

servers (e.g. web, application, database) are designed foronline transaction processing

(OLTP), in which many clients perform many short transactions simultaneously, com-

munication overhead can constitute a significant portion ofthe observed, end-to-end

response time (especially when multiple isolation units are involved).

To reduce the overhead of cross-MRE IPC, administrators commonly co-locate

multiple tiers on a single machine. Co-location simplifies administration and con-

figuration, enables efficient use of local network communication for IPC, and makes

better use of multi-processor architectures through increased thread-level parallelism.

Emerging multi- and many-core systems are likely to make MRE co-location increas-

ingly commonplace.

Cross-MRE IPC mechanisms cannot depend on co-location, however, since MREs

may alternatively be distributed across different clusternodes or be migrated to achieve

load balancing and more effective utilization of server resources, an increasingly im-

portant operation in virtualizing systems today [116, 120, 148]. Thus, MRE IPC em-

ploys high-overhead implementations of standard communication protocols, such as

remote procedure calls and object serialization, regardless of the proximity of the com-

186

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

municating MREs. These protocols are not optimized for the co-located case because

state-of-the-art MREs offer no support for cross-runtime sharing. At the same time,

efficient inter-process communication mechanisms, such asshared memory, are widely

available as a standard (POSIX) operating system service onmost modern platforms.

To address the growing need for inter-runtime object sharing, we introduce sup-

port for transparent and type-safe, cross-MRE communication and coordination, called

XMem. XMem is an IPC mechanism that enables object sharing between MREs co-

located on the same machine and communication via extant distributed protocols when

physically separated. XMem is transparent in that shared objects are the same as un-

shared objects (in terms of field access, synchronization, GC, and method invocation,

among others), except that XMem disallows pointers from shared objects into MRE-

private storage. To enable efficient object sharing, XMem manipulates virtual memory

mapping to avoid indirection, i.e. all object references inthe system are direct. More-

over, existing communication technologies, e.g. those employed by J2EE or network

sockets, can use XMem without application modification.

XMem guarantees type-safety by ensuring that the MREs employthe same types

for shared objects when the communication medium is shared memory. XMem is also

compatible with core MRE services such as GC, dynamic class loading, and thread

synchronization. XMem coordinates MREs through infrequent, synchronized global

operations that include GC and class loading.

187

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

XMem provides direct object sharing via isolated channels between co-located

MREs isolated as distinct OS processes that avoids the trade-offs inherent to previous

approaches [53, 10] by enabling communication without serialization and datacopy-

ing. XMem extends existing MRE services, abstractions, and libraries as well as intro-

duces their cross-process equivalents, including parallel, cross-MRE class loading and

garbage collection. At the same time, XMem maintains standard, portable interaction

with the lower-level layers of the software/hardware stack.

We implement XMem in the open-source, production-quality HotSpot Java Virtual

Machine. Our experimental evaluation, based on core communication technologies un-

derlying J2EE, as well as using open-source server applications, indicates that XMem

significantly improves throughput and response time by avoiding the overheads im-

posed by object serialization and network communication.

In the sections that follow, we describe the necessary support for object sharing,

multi-threading and management of the shared memory segment (Section6.2). In Sec-

tion 6.3, we present our experimental methodology and empirical evaluation of XMem.

Finally, we contrast related work (Section6.4) and present our conclusions in Sec-

tion 6.5.

188

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

low virtual
addresses

high virtual
addresses

XMem MRE Virtual Address Space (VAS)

MRE
Heap

App.
Heap

LCT GCT App.
Stack

MRE
Stack

SHM
Meta

Shared
Objects

MRE and
App.

Threads

XMem
GlobalOp
Thread

MRE and
App.

Threads

XMem
GlobalOp
Thread

Co-located
MREs

XMem
MRE VAS

Figure 6.1: Co-located XMem MREs, and their virtual address spaces (VAS),that are
attached to a shared memory segment (gray area). The shared region contains meta-
data (SHM-Meta) and shared objects and is mapped at the same virtual address in each
MRE. The GlobalOp thread in each MRE performs infrequent global operations that
XMem synchronizes across attached MREs.

6.2 Design and Implementation

The goal of XMem is to improve communication performance forenterprise-class,

object-oriented, software systems, a popular applicationdomain for web services. XMem

enables transparent IPC via shared-memory between isolated MREs that areco-located

on the same machine; such co-location of related processes is an increasingly common

technique for the exploitation and better utilization of multicore systems. Using XMem,

MREs share objects directly to avoid the overhead that is imposed by distributed com-

munication protocols due to object marshalling and serialization.

To enable direct object sharing, XMem maps the shared memorysegment at the

same location in the virtual address space (VAS) of all attached MREs. Figure6.1

189

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

depicts an example instance of an XMem system. Two MREs attachto the same shared

memory segment (gray area of the VAS) to share objects. We refer to the VAS of

each MRE that is not mapped to the shared memory segment (whitearea of the VAS)

as MRE-private. XMem systems share per-instance, non-static data only – static (per-

class) data is MRE-private since static fields typically record program-specific or MRE-

specific state. Sharing of such fields can violate both type safety and inter-process

resource isolation.

Since we map shared memory to the same virtual address in all MREs, objects

within the shared memory have the same addresses in all MREs. To guarantee mem-

ory and type safety, we disallow pointers from shared objects to private objects via a

write barrier (described further below), since the addressspace of the non-shared ar-

eas in MREs is independent and unrelated across MREs. Regardless of this constraint

however, XMem MREs implement services, such as class loading, GC, allocation, syn-

chronization, compilation, uniformly for shared and MRE-private objects, i.e. XMem

provides object-level transparency.

Key to enabling such transparency efficiently is that (i) theinternal representations

of object types (classes) are the same across all attached MREs, and that (ii) the underly-

ing operating system provides support for virtual memory paging and its manipulation

by user-level processes (the MRE in our case).

190

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

0x200

0x100

Class A

0x200

Class K

0x300

Class X

0x400

Class B

0x800

Class A

0x900

Class K

0x200
0x900

0x300

0x100

Class Z

0x200

Class A

0x300

Class K

0x800

Class A

0x900

Class K

L

C

T

L

C

T

G

C

T

G

C

T

MRE-private K objects Shared K
object

MRE-private K object

Physical Memory Pages

MRE 1 (Private VAS) MRE 2 (Private VAS)SHM VAS

Figure 6.2: Manipulation of VAS mapping so that class pointers resolve to equivalent
MRE-private class representations across attached MREs without copying or moving,
and while enabling direct retrieval of object metadata (fordynamic dispatch, field ac-
cess, etc.). Each box is a virtual page (4KB in size), potentially mapped to physical
memory. Blank boxes are unmapped. We omit mapping lines (dotted with round ends)
for classes other than K, for clarity.

6.2.1 Double Memory Mapping

XMem manipulates the virtual address space to enable directaccess to objects as

well as to their class representations. Objects in most object-oriented language systems

typically contain a reference to an internal representation of the class (type) from which

they are instantiated. This reference enables direct retrieval of object metadata for fast

implementation of common operations such as dynamic dispatch, static field access,

and reflection. These internal representations of classes,however, are MRE-specific

and cannot be shared, as they commonly record application- or MRE-specific state and

provide access to static (private) data. Class pointers, therefore, must resolve to the

MRE-private internal representation of the class.

191

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

To avoid moving (reordering) existing class objects (internal representations) within

each attached MRE (which can be complex and expensive), yet toensure that the same

virtual address refers to the same MRE-private internal representation of the class in

all MREs, XMem aligns class objects to virtual memory page boundaries (we assume

traditional 4KB pages) and manipulates virtual address mapping as depicted in Fig-

ure6.2via double mapping. In the virtual address space (VAS) of each attached MRE

in XMem, there is a global class table (GCT) and a local class table (LCT), both of

which are MRE-private. The LCT holds the representations of both MRE-private and

global classes. LCTs across MREs are independent and unrelated. In contrast, the GCT

in each MRE is identical in structure and layout (class order,count) and has the same

virtual address in MRE-private space.

XMem maps the physical page of a particular (global) class toa virtual page in both

LCT and GCT, to achieve resolution of class pointers within shared objects to private

class representations without copying or moving and without introducing pointer in-

direction. In the example, the class pointer of unshared objects (instances of class K)

refers to the internal class representation in the LCT in their MRE (address 0x200 in

MRE 1 and 0x300 in MRE 2). When the two MREs share an object of type K,XMem

adds an entry for class K to the GCT at the same location in each MRE. Since the

GCTs are identical in each MRE and start at the same virtual address, the class pointer

192

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

in the shared object is the same for both MREs (0x900). We overview the class loading

process that makes use of this implementation in Section6.2.8.

There are two side-effects of this double-mapping. First, in the worst case, XMem

consumes twice the VAS needed for classes (worst case is wheneach MRE-private class

is a globally shared class). This case is uncommon in our experience as the number of

MRE-private classes typically far exceeds that of globally shared classes. Moreover,

such VAS use is negligible for machines with large address spaces (64-bit platforms).

Second, class alignment to virtual page boundaries limits the class size to that of a

virtual page and can cause fragmentation in the LCT (when classes are smaller than the

page size). In practice, we have never found a class object tobe larger than our virtual

page size. However, if this proves to be a limitation, we can reserve a multiple of the

page size for each class. In our implementation, the LCT is thepermanent generation of

the MRE which stores other long-lived data (e.g. MRE data structures, static strings) in

addition to class objects. This data consumes part of each page which helps to reduce

fragmentation. We measure and report the space overhead of fragmentation in Java

benchmarks in Section6.3.2. We plan to investigate the impact of large page sizes on

XMem systems as part of future work.

193

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

6.2.2 Shared-to-Private Pointers

To guarantee that shared objects never refer to private heaps (since such references

are particular to a specific MRE process), XMem piggy-backs onthe extant write bar-

rier implementation of generational garbage collection (GC). Generational GCs are in

widespread use in modern MREs as they provide superior performance which they

achieve by exploiting similarity in object lifetimes and bypartitioning the heap into

distinct, contiguous spaces called generations [155, 166, 99]. These systems allocate

most objects from the young generation, and collect this region frequently since a ma-

jority of objects die young [16, 98]. To enable efficient, independent collection of gen-

erations, generational GCs use a write barrier at every reference store in a program to

track references from older to younger generations. ModernMREs typically also em-

ploy a permanent generation that is rarely collected and that holds long-lived objects

such as internal class representations, constant strings,and MRE data structures.

XMem extends write barriers with two checks needed to compare the source and

destination of a particular pointer against the constant boundary between MRE-private

and shared part of the heap. We need the source check for each pointer store, and

the destination check only for stores to the shared memory. If a program makes an

assignment that violates the XMem constraint, the runtime throws an exception and the

instruction fails. Since we map the shared memory segment tothe same location in

each MRE and the segment has a fixed size, this check is very efficient: it consists of a

194

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

register and constant comparison. Such checks impose negligible overhead on modern

architectures because there is no memory access and the branch direction is typically

highly biased and thus, easily predictable.

6.2.3 Using XMem

Developers make use of XMem via a simple application programming interface

(API). The XMem API for Java comprises the following public static methods declared

in theipc.SharedMemory class:

void sharedModeOn(); boolean isSharedModeOn();

void sharedModeOff(); boolean isShared(Object o);

Object accept(int p); void connect(int p, Object o);

void bind(int p); Object copyToShared(Object o);

To support transparency and backward-compatibility, programs within XMem allocate

objects using the conventionalnew operator, regardless of whether they are allocating

shared or private memory. XMem determines from which region(shared or private)

to allocate using a per-thread allocation mode. Initially,the allocation mode is private.

Programs or libraries change the allocation mode explicitly via thesharedModeOn

andsharedModeOffmethods. The system throws anipc.SharedMemoryExce-

ption to prevent shared-to-private pointers as well as signal binding/connection fail-

ures and out-of-memory errors.

195

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

XMem makes use of the concept ofports to enable co-existence of multiple, iso-

lated communication channels in a single shared memory segment. To initiate commu-

nication, two distinct MREs (to which we refer as a client and aserver) must obtain a

reference to a shared object (to which we refer as a root). A client allocates a root in

shared memory and passes a reference to it to theconnect method along with a port

to which a specific server has been bound via thebind method. The server retrieves

the root from theaccept method. Once the root is exchanged, further communica-

tion proceeds according to an application-specific protocol which commonly includes

monitor synchronization (wait/notify) on the root. Objects shared through a particu-

lar channel are reachable only to threads/MREs that have established the connection.

However, an arbitrary number of threads/MREs can share a specific object if a server

makes a reference to a shared object available to multiple clients (which use distinct

channels for communication with the server).

To enable interoperability with libraries that do not guarantee immutability of the

objects they take as arguments, XMem provides a mechanism for recursive (deep) copy-

ing of objects into the shared memory via thecopymethod. Object cloning, commonly

available from the underlying language (e.g. Java or C#) platform, by default creates

shallow object copies and must be overridden on a per-class basis to support deep cop-

ing. XMem provides this general service uniformly across classes and applications.

XMem uses stack-based, depth-first copying and handles cycles in the object graph

196

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

by maintaining a hash table that maps the already-visited objects to their copies. We

describe how such copying to shared memory interacts with shared-memory garbage

collection in Section6.2.9.

Although, we focus primarily on shared memory, other IPC mechanisms such as

signals and message queues can be built on top of XMem in a straightforward way.

We have integrated XMem, through the use of its API, into existing communication

mechanisms, such as RMI, applying only minimal library modifications. Such XMem-

aware implementations provide two paths of execution that the library routine selects

based on the proximity of the communication target: one thatemploys shared memory

and one that uses traditional distributed communication.

6.2.4 Dual Mode Object Allocation

To enable cross-MRE object sharing, XMem introduces dual-mode (shared or pri-

vate) object allocation. XMem extends the common allocation technique of thread-

local allocation buffers (TLABs). TLABs are used by modern MREsto reduce con-

tention between threads that concurrently perform linear (bump-pointer) allocation from

a common area. This approach requires no synchronization when allocating within a

TLAB. The system allocates TLABs to threads linearly, using more expensive atomic

operations. XMem associates two TLABs with each applicationthread, one in private

and one in shared memory. We do not initialize the latter until the thread performs

197

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

its first allocation into shared memory, e.g. when it first executes anew bytecode

within the XMem shared mode (sharedModeOn()). XMem excludes objects that

the system creates by side-effect of other operations, suchas class loading or lazy data

structure initialization, from allocation in shared memory to prevent unintended object

leaks. XMem also uses private mode for allocation of all internal data structures (data

commonly stored in a permanent area of the heap).

6.2.5 Thread Synchronization

Two locking schemes are commonly used to implement language-level (e.g. Java)

monitors in extant MREs: lightweight locking [135] and biased locking [135]. Biased

locking optimistically assumes that a single thread uses a monitor (i.e. there is no

contention); when this proves not to be the case, biased locking falls back to lightweight

locking. Both lightweight and biased locking require a re-design to work with shared

memory. XMem adapts and employs lightweight locking since it is the basis for both

schemes. We first overview lightweight locking and then describe its implementation

in XMem.

Lightweight Locking. To avoid using OS primitives (a pair consisting of a mutex and

a condition variable) in the common case of uncontended locking, lightweight locking

employs atomic compare-and-swap (CAS) operations. Only when two threads attempt

to lock the same object does the MRE inflate the lightweight lock into a heavyweight

198

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

OS-backed monitor. Lightweight locking improves performance as user-mode locking

is significantly more efficient than system calls.

The MRE stores basic locking information in the object headerwhich occupies one

machine word. The lowest two bits encode one of the three possible states: unlocked

(UL), lightweight-locked (LL), and heavyweight-locked (HL). When an object is LL

(by amonitorenter bytecode), the system inserts a lock record into the stack of

the thread performing the lock acquisition operation. During stack unwinding (which

takes place when an exception is thrown), the system uses lock records to unlock the

objects that are locked in the discarded stack frames. Normally, objects are unlocked

by amonitorexit bytecode generated as part of the epilogue of block-structured

critical sections. Each lock record holds a pointer to the locked object and the original

value of the overwritten object header.

During locking, a thread attempts an atomic CAS on the object header to replace

it with a pointer to the stack-allocated lock record. Lock records are word-aligned,

therefore the two lowest bits are always cleared and do not conflict with the locking state

bits kept in the header. If the CAS succeeds, the thread owns the monitor. Otherwise, a

slow path is taken and the lock is inflated – the object header is CAS-updated to point

to a data structure containing a mutex and a condition variable. This data structure is

stored in private, MRE-managed, memory.

199

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

During the unlock operation of an LL object, a thread tries toCAS-restore the

header that it has stored on the stack. On success, no fall-back is needed and the

fast path is complete. The CAS failure indicates that the lockwas contended for (and

inflated) while it was held. Under such circumstances, it is necessary to notify the

competing (and now waiting) threads that the object is unlocked. These threads are

blocked on the condition variable. When awakened, they unlock the mutex and resume

execution by trying to re-acquire the mutex. The mutex and the condition variable

are multiplexed here: first they are used to wait until the LL object becomes unlocked

and then they are used in a standard way to provide mutual exclusion along with the

wait/notify functionality.

Recursive locking in the lightweight case is based on implicit lock ownership –

if the object header points into the stack of the current thread then the current thread

already owns the lock and in a new lock record on the stack the header field is set to

NULL. When unlocking, a lock record with theNULL header field is ignored. Recursive

locking in the heavyweight case uses a counter located in theaforementioned MRE data

structure.

Lightweight Locking in XMem. The challenges to lightweight locking in XMem

shared memory are three-fold. First, the header of an LL object points into a private

thread stack. Such references cannot be interpreted properly across MREs directly.

Second, heavyweight data structures allocated in MRE-private memory must now be

200

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

accessible to other MREs. Finally, POSIX synchronization primitives by default work

within a single process.

To address these issues, XMem allocates a lock data structure (LDS) in shared

memory, both in case of lightweight and heavyweight lockingand uses POSIX object

attributes to enable cross-process synchronization. LDS reserves space for a mutex and

a conditional variable (which are initialized only in case of inflation). LDS contains

a process identifier (PID) and a thread identifier (TID), thattogether unambiguously

identify the owner, as well as a recursion count, the locked object reference, the binary

flag used for mutex/condition variable multiplexing, and the original object header.

Lock records that are stored on the stack contain only the address of the locked object.

An object header, instead of pointing into a stack, always refers to the corresponding

LDS, when locked.

XMem maintains an LDS pool in SHM-Meta (metadata area in shared memory).

Application threads atomically bulk-allocate multiple LDSes at once from the global

pool to reduce synchronization overhead. Each thread holdsseveral LDSes in a local

queue with a FIFO discipline. An LDS of an LL object is returned to the thread-local

queue when unlocking succeeds (i.e. no contention is detected). An inflated LDS can be

freed only during shared memory GC when the HL shared object becomes unreachable.

Invoking wait/notify on an LL object results in the lock inflation. This is necessary

as these operations require support from the OS. An important aspect of LL is the hash

201

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

value computation. MREs typically store the hash value in theobject header and lazily

initialize it. The hash code, once computed, should never change. Since LL displaces

an object header, a race condition arises when an LL object issimultaneously unlocked

and its hash code is being initialized. Such circumstances force lock inflation and safe

initialization of the hash code (inflated locks are more stable as their unlocking does

not change the object header).

XMem uses this modified LL scheme only in the shared memory – each MRE uses

the original scheme internally as it is more space-efficient. Each lock/unlock operation

checks whether the corresponding object is shared or not anddynamically applies the

appropriate locking scheme.

XMem automatically preserves the guarantees provided by the memory consistency

model of a specific MRE (e.g. the Java Memory Model [109]) since the system consists

of homogeneous MREs.

6.2.6 Global Operations

Each XMem MRE executes a Global Operations (GlobalOp) threadthat performs

five coordinatedglobal operations: attachment, detachment, connection, class loading,

and garbage collection (GC). XMem serializes these, relatively rare, operations using

a global lock (a mutex and a condition variable located in theshared memory). The

system performs every global operation in parallel by all currently attached MREs using

202

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

the GlobalOp thread in each MRE. Since MRE attachment and detachment are global

operations, there is a well-defined set of attached MREs with respect to the current

global operation. This is an important property, as global operations terminate only

when all attached MREs report operation completion. With theexception of GC, global

operations execute concurrently with application threads(i.e. without stopping them).

6.2.7 Attachment, Detachment, and Connection

Two JVM properties,ipc.shm.file andipc.shm.destroy, control MRE-

OS interaction. The first one identifies a shared memory segment to create or attach to

(we employ Linux System V IPC [123]). The second one specifies if an MRE should

mark the segment for destruction upon termination. The OS releases only marked seg-

ments whose attachment count reaches zero. Upon startup, each MRE attempts to

create a new shared memory segment. The creation process fails if the segment already

exists, which causes a fall-back to attachment. The MRE that succeeds in segment

creation, initializes the shared data structures (locatedin SHM-Meta).

MREs that attach/detach to/from an existing segment performa global attach/detach

operation. Attachment takes place after completing the MRE bootstrap procedure and

before invoking the program’smain method. Detachment is performed upon pro-

gram termination. These two global operations are automatic and not accessible via

the XMem API. An MRE can attach only to one segment at a time. However, XMem

203

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

supports multiple communication channels over a single shared memory segment. A

configuration with a single segment per host is most memory-efficient but multiple seg-

ments can be used if needed. Attach and detach operations update a global counter that

tracks the number of attached MREs.

The connection operation establishes a communication channel. Connection allows

two MREs to obtain a reference to a shared object while guaranteeing privacy (other

MREs cannot reach that shared object). It implements semantics similar to that of a

network socket. The arguments passed to theconnect (i.e. a port number and a

shared object), are propagated to other MREs as parameters ofthe global operation.

Each MRE maintains a list of ports to which it is bound. When a connection request

to a locally bound port is detected, an MRE adds the corresponding shared object to

a local queue and awakens the threads that are blocked on theaccept call on the

port. The shared object is then dequeued and returned by theaccept method. XMem

ensures that only one MRE is bound to any port (an atomically-updated boolean table

is kept for this purpose in the shared memory). Since connection is a global operation,

it is serialized with respect to GC, and as a result, the sharedobject (root) has a stable

location while the operation is in progress.

204

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

6.2.8 Global Class Loading

Through global class loading, XMem ensures that a specific class is privately loaded

by, and is the same in, all attached MREs, to guarantee type safety. XMem implements

the latter by comparing the 160-bit SHA-1 hash value computed for the class bytecode,

across MREs. If an MRE encounters a bytecode mismatch, global class loading fails

and an exception is thrown.

Since XMem places no restrictions on MRE-private class loading, the class of a

shared object may or may not be loaded in all attached MREs whenit is instantiated in

shared memory. Therefore, following each object allocation, XMem executes a class

loading barrier which checks if the new object resides in theshared memory. If the ob-

ject is shared, the MRE checks whether its class has been loaded globally. To make this

check fast (note that it is done for each allocation), XMem adds a field (a forwarding

pointer) to each private class object. The forwarding pointer is initially set toNULL to

indicate that the class is loaded only privately. After global class loading, the forward-

ing pointer is set to the GCT address of the class. Following each allocation in shared

memory, the MRE updates the class pointer of the new shared object to the forwarding

pointer. If the check fails, i.e. the class of the new shared object has not been loaded

globally, the MRE initiates global class loading.

Global class loading uses the default system class loader (which corresponds to

theCLASSPATH variable). XMem permits classes defined by user-defined class load-

205

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

ers to be instantiated in the shared memory as long as the corresponding user-defined

class loaders are themselves allocated in the shared memory. However, even though

class loaders can be shared, the internal class representations are always MRE-private.

XMem relies on MRE-private class loader constraints to guarantee type safety in the

presence of lazy class loading, user-defined class loaders,and delegation [104]. No

extension is needed because we first locally load all globally loaded classes and thus,

local constraints are always a superset of global constraints.

6.2.9 Global Garbage Collection

Global GC in XMem identifies and reclaims dead, shared objects (i.e. those that

are not reachable from any attached MRE). The GC is initiated by one of the attached

MREs when allocation of a new TLAB in shared memory fails. In order to interoperate

with different GC algorithms and heap layouts [167, 99], XMem provides a generic

mechanism for identifying root objects in the shared memory. Root objects in this

context are objects directly reachable from one or more MREs by following pointers

that are located on thread stacks, in registers, or in the live part of a private heap.

Once a snapshot of the root objects is obtained, shared memory can be collected in a

conventional way using any tracing collector.

The key challenge is in identifying the root objects withoutresorting to scanning all

the live objects in each MRE. Note that pointers into shared memory can be scattered

206

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

across all generations. At the same time, we can expect the number of such pointers to

be relatively small.

XMem identifies roots by piggy-backing on a fast minor collection (the one con-

fined to the young generation). To enable this, XMem extends acard table mechanism

[169] that supports generational GC so that it tracks pointers from older generations

that point into the young generation or into shared memory. As a result, a young gen-

eration collection is able to detect all root objects that originate from a given MRE

without an exhaustive scan of older generations. For each global GC, XMem triggers a

minor collection in the attached MREs. To perform a minor GC, state-of-the-art MREs

typically employ a parallel copying collector [67] that is executed in a stop-the-world

(STW) fashion as it imposes very short pause times (i.e. concurrent collection [57, 122]

is not necessary).

An XMem system implements global GC of the shared memory segment using

STW parallel copying collection. All attached MREs perform GC in parallel, each

contributing multiple GC threads. MREs synchronize only before and after collection.

A full barrier is needed after all MREs reach a safepoint (i.e.state where application

threads are suspended) because one cannot start moving the shared objects while other

MREs are actively using them. For similar reasons, all GC threads from all MREs

synchronize when leaving a safepoint. Any additional coordination depends on the GC

algorithm used. Although, global GC stops all MREs, it is not unscalable or deadlock-

207

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

prone since bringing an MRE to a safepoint is a low-delay operation robust with regard

to I/O.

Since global GC can interrupt an XMem deep copy from private to shared memory,

we must be careful to avoid introducing temporary shared-to-private pointers during

the copy process. To this end, when we copy an object to its newlocation, we clear its

reference fields (as they may still point to private objects). We update these fields with

the correct values (new locations) when we copy the corresponding objects to shared

memory. Global GC needs to update the entries in the stacks and hash tables used by

XMem copy operation because it is moving objects. We providea new object header to

each shared memory replica to preclude them from inheritingthe synchronization state

of original objects.

Non-global GCs (both minor and major) do not follow pointers that point into the

shared memory. Because of the XMem invariant that no shared-to-private pointers are

allowed, it is correct to stop tracing when a shared object isencountered. GC complete-

ness is preserved because scanning of objects in the shared memory cannot lead to the

discovery of any additional live objects in the private heap. Local GC performance, is

thus the same regardless of the number of objects in shared memory.

The most suitable GC algorithm for shared memory collectiondepends on the de-

mographics and total size of the live shared objects [98]. If XMem is used to share a

large amount of long-lived data, then compacting collectors are most appropriate. On

208

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Bench- Gen. Size [MB] Execution GC Count Class
mark Young+Old Perm. Time [s] Minor Major Count

bloat 40 5 55.3± 0.5 528± 2 1± 0 827
pmd 34 6 19.5± 0.1 495± 1 8± 1 1186
xalan 42 6 49.2± 0.3 1480± 8 107± 4 1179
antlr 8 4 4.5± 0.1 380± 1 5± 0 679
chart 30 9 15.7± 0.1 355± 7 9± 0 1440

eclipse 68 16 66.5± 0.2 551± 3 11± 0 2627
hsqldb 336 5 13.6± 0.1 9± 0 5± 0 736

fop 20 6 2.0± 0.0 19± 0 0± 0 1423
luindex 8 4 7.2± 0.1 260± 8 3± 0 689
lusearch 18 4 8.6± 0.1 706± 1 1± 0 683
jython 8 8 43.1± 0.3 3539± 2 1± 0 1325

jbb/6wh 476 8 90± 0.0 149± 0 4± 0 1296
jbb/8wh 636 8 90± 0.0 116± 1 3± 0 1296
jbb/10wh 780 8 90± 0.0 98± 0 3± 0 1296

Table 6.1: Java benchmarks that we use to evaluate XMem overhead. For each bench-
mark, we report generation sizes, execution time (note thatJbb runs for a fixed period
of time), the number of minor/major collections, and the number of loaded classes.

the other hand, if the primary purpose of XMem is communication between strongly

isolated MREs, then copying collection is a better choice [166]. This is because the

communicating MREs exchange a small number of objects which exhibit relatively

short lifetimes. Generational collection can be used to support a wide range of object

lifetimes. To accommodate short-lived communication behavior typical of J2EE appli-

cations, we implement a non-generational, parallel copying in our XMem prototype.

Parallel copying collectors employ several GC threads to evacuate live objects from

the currently-used source space(s) to the currently-unused target space [85]. Since most

objects are expected to be unreachable, the target space is typically smaller than the

209

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Bench- XMem Overhead
mark Time [%] Space [MB]

bloat 3.5 2.24
pmd 3.5 2.94
xalan 3.4 3.11
antlr 2.8 1.79
chart 1.9 3.74

eclipse 2.3 7.04
hsqldb 0.3 2.00

fop 2.8 3.45
luindex 1.6 1.83
lusearch 2.6 1.79
jython 3.0 3.14

jbb/6wh 0.64 3.59
jbb/8wh 1.78 3.59
jbb/10wh 0.82 3.59

Table 6.2: The overhead introduced by XMem in terms of application throughput (Jbb)
or execution time (Dacapo) and occupancy of the permanent generation.

source space(s) and the worst-case scenario is handled by falling back to the promotion

of overflow objects into older generation(s). In the absenceof a generational heap

layout, half of the space needs to be set aside as a copy reserve.

XMem employs two equal-sized semi-spaces in the shared memory and the col-

lection of the source semi-space is performed in parallel byall attached MREs. This

process is interleaved with local minor GCs so that the objectgraph is traversed only

once. Each MRE uses multiple GC threads, which correspond to schedulable kernel

threads and whose total number equals the number of processors/cores available or

dedicated to each MRE.

210

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

XMem employs a two-level load balancing scheme in the form ofwork stealing

[67]. GC threads that become idle attempt to steal object references from non-empty

marking stacks of other GC threads. Each GC thread is associated with two marking

stacks, which we refer to as the local and shared stack. Intra-MRE load balancing is

limited to local stacks while inter-MRE work stealing uses shared stacks only. MREs

push references to objects residing in the shared memory onto the shared stacks to make

them available to other MREs. Local load balancing is preferred and global stealing is

done only when all local stacks become empty. The stealing target (i.e. the marking

stack/stack entry) is selected randomly.

Global GC is an STW operation that comprises three barriers:prologue, epilogue,

and GC termination. The GC prologue flips the semi-spaces. The GC epilogue for-

wards the pointers in SHM-Meta and deflates heavyweight monitors associated with

dead objects.

To ensure that each live object is processed exactly once, GCthreads claim objects

atomically. Atomic CAS instructions are supported by most processors and can be

used across processes (as they are based on physical rather than virtual addresses).

To reduce contention, each GC thread owns a parallel local allocation buffer (PLAB)

where it copies the objects it has claimed. We allocate PLABs linearly, atomically, and

on-demand, from the target semi-space. The GC first copies anobject to its destination,

and then pushes the addresses of its reference-type fields onto the marking stack (local

211

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

and/or shared). Then, a GC thread tries to CAS-forward the original object header to

the new location. If a thread loses a race to another thread, the GC removes the object

from the PLAB and pops the new pointers off the stack. This order of operations is

motivated by fault-tolerance (Section6.2.11).

6.2.10 Global Meta-Data Management

The SHM-Meta data structures support the runtime and globaloperations of XMem.

They include a descriptor for the current global operation,which contains the opera-

tion code, its input arguments, barrier counters, state flags, and a mutex and condition

variable with which the system serializes the execution of global operations. In ad-

dition, SHM-Meta holds the marking stacks for global GC and atable that records

the meta-information for all globally loaded classes including the class name, defining

class loader (set toNULL if the default system class loader is used), and a bytecode

hash for type-safety verification. SHM-Meta also holds a list of the bound ports that

are currently in use for communication sessions between co-located MREs. Finally,

SHM-Meta contains single-word entries for (i) the number ofattached MREs, (ii) the

number of globally loaded classes, (iii) the boundaries of and current position in the

shared heap (for allocation of new TLABs), and (iv) the start and end of a pool of

global locks that enable cross-MRE monitor synchronization.

212

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

6.2.11 Fault Tolerance

XMem tolerates unexpected MRE termination, between and during global opera-

tions, by implementing a timeout mechanism (based on thepthread timed wait on a

condition). If an MRE fails, the next global operation times out. Upon timeout, XMem

subtracts the number of not-responding MREs from the counterof the attached MREs

and releases any shared locks that were held by the terminated MRE. Connection, and

class loading are global operations that do not require any additional handling upon

timeout.

In case of timed-out detachment and attachment operations,the system needs to

determine whether it was the detaching/attaching MRE that failed (to correctly keep

track of the number of live MREs). This is done based on the PID of the process which

initiated attachment/detachment (XMem sends a signal using thekill system call and

gets an error if the process is dead).

GC requires more complex handling, as the shared stacks of a terminated MRE can

contain pointers stolen from other MREs. These stacks are located in shared memory

so they are not lost and can still be processed. During GC, objects are forwarded to

their new locations only when they have been copied and when their content has been

scanned (and pushed onto a stack). Therefore, copying collection can be interrupted

at any time without losing correctness, provided that whatever is on the stack(s) is

213

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

eventually processed. If a global GC times out, it is sufficient to empty all the marking

stacks located in the shared memory.

6.2.12 Implementation Details

We have implemented XMem in HotSpot [118], an open-source, high-performance

JVM written in C/C++. The heap in HotSpot [85] comprises three generations: young

(where new object allocations take place), old (where long-lived objects are promoted),

and permanent (where classes are stored). HotSpot reservestwo words per object. The

first word (the header) contains the locking state, age bits,and the hash code. The

second word is a pointer to a class object located in the permanent generation. Class

objects encapsulate static fields, a virtual method table, aclass loader reference, and

pointers to other meta-objects that describe methods and fields (among others).

The PTHREAD PROCESS SHARED attribute is set on the POSIX mutexes and

condition variables to enable cross-process synchronization. To create or look up a

shared memory segment, XMem employsshmget. This system call is used with the

IPC PRIVATE key to implement double mapping in LCT and GCT. Global shared

memory segments are identified by a key generated byftok based on a file name.

XMem supports multiple global segments on a single host, differentiated by a file name

(the JVMipc.shm.file property). We implement attachment withshmat, which

allows to specify a virtual address that a segment is mapped to. MRE-private memory is

214

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

allocated usingmmap, which is called with theMAP FIXED flag when pinning GCT at

a specific location. For atomic operations we use the x86cmpxchg instruction. LCT

corresponds to the permanent generation.

6.3 Experimental Evaluation

We evaluate time/space overhead imposed by XMem extensionsby comparing the

performance of standard Java benchmarks run on top of an unmodified HotSpot JVM

and XMem-enabled one. To measure the impact of XMem on communication perfor-

mance (throughput and latency) we use a set of microbenchmarks for common Java

RPC protocols. We also investigate XMem impact on end-to-endapplication perfor-

mance.

6.3.1 Methodology

Our experimental platform is a dedicated machine with a dual-core Intel Core 2

Duo (Conroe B2) processor clocked at 2.66GHz, equipped with 4M16-way L3 cache,

32K 8-way L1 cache, 2GB main memory, and running Debian GNU/Linux 3.0 with the

2.6.17 kernel. We use the HotSpot OpenJDK [118] v7-ea-b18 (Aug. 2007) compiled

with GCC 3.2.3 in the optimized client-compiler (C1) mode. This version of HotSpot

215

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

implements a highly-optimized, state-of-the-art serialization mechanism and uses stan-

dard (not process-shared) mutexes/condition variables.

For our experiments, we employ standard community benchmarks from the Da-

capo [54] and SPECjbb2005 [145] suites to evaluate the impact of XMem on programs

that do not communicate across MREs. We use the large input forDacapo and 6, 8, and

10 warehouses, with 90s runs, for Jbb. To evaluate the impactof using shared memory,

we develop a number of benchmarks ourselves (an approach taken in [107] in a sim-

ilar context), which exercise shared memory and implement the J2EE communication

protocols. We describe these benchmarks with each experiment. We evaluate XMem-

aware implementations of RMI and CORBA, serialization and XML,JNDI, and TCP/IP

sockets. Finally, we evaluate XMem for two server-side applications: Hsqldb [86] and

Tomcat [3]. In all experiments, there are 2 MREs and the shared memory size is 30MB.

Whenever running the original HotSpot JVM, we set the young generation to 30MB.

6.3.2 XMem Overhead

To investigate the overhead introduced by adding support for XMem, we compare

the performance of shared-memory-oblivious applicationsrun on top of an unmodified

HotSpot JVM against our implementation of XMem. In Table6.1 we present basic

statistics for the benchmarks that we use (we report generation sizes, execution times,

the number of major/minor collections, and the number of loaded classes). Table6.2

216

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

summarizes the results. For each benchmark, we employ a heapsize (i.e. total size

of the young and old generation) of twice the minimum. We employ this methodol-

ogy [146] to ensure some GC activity without having GC dominate performance – so

that we are able to measure other sources of overhead potentially introduced by XMem.

We set the permanent generation size to the minimum requiredfor XMem to load all

the necessary classes. The young generation constitutes one fourth of the heap. We

report generation sizes, the number of minor and major GCs, and the number of loaded

classes. For timings, we execute 5 warm-up runs then computethe average and standard

deviation of the next 5 runs.

XMem imposes negligible time overhead which we express as the percentage of

total execution time (for DaCapo) or throughput (for SPECjbb2005). The sources of

overhead are two additional checks per write barrier and internal checks for whether or

not an object is shared. We report absolute values for the space overhead introduced

in the permanent generation (by the page alignment implementation) as this overhead

does not depend on generation sizes (only on the number of loaded classes). The space

overhead ranges from 1MB to 7MB and on average is 3.1MB acrossthe 14 programs.

This overhead is bounded by the meta-data size (as opposed tothe application working

set size).

217

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

0

10

20

30

40

50

60

70

80

90

100

100 / 0 90 / 10 80 / 20 70 / 30 60 / 40 50 / 50
Relative Imbalance in Reachable Objects [%]

A
ve

ra
ge

 G
C

 T
im

e
[m

s]

 Load balancing off

 Load balancing on

Figure 6.3: Global GC pause times with and without inter-MRE load balancing for
different distributions (percentage) of shared objects reachable from individual MREs.
The distribution of reachable objects (imbalance) is shownas a pair of percentage val-
ues, e.g. 90/10 means that 90% of objects are reachable from one MRE and the remain-
ing 10% from the other.

0

0.01

0.02

0.03

0.04

0 25 50 75 100 125
Live Data [thousand of nodes]

A
ve

ra
ge

 G
C

P
au

se
 T

im
e

[s
]

0

0.3

0.6

0.9

1.2

1.5

1 3 5
Live Data [node]

A
ve

ra
ge

 G
C

 P
au

se
 T

im
e

[m
s]

Figure 6.4: Impact of the size of live shared objects on global GC pause times. We
present two views of the same graph to show both throughput and latency of STW
global GC. We use regression to obtain the parameters of the linear relationship between
live data size and GC pause time.

218

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

6.3.3 Global GC Performance

Figure6.3 shows the impact of inter-MRE GC load balancing (work stealing) on

average pause times of global GC. In this experiment, each MRE executes a single GC

thread and can reach only a specific fraction of shared objects. We express the dis-

tribution of reachable objects (imbalance) as a pair of percentage values. For perfect

balance (50/50), load balancing adds a small overhead. For the most imbalanced con-

figuration (100/0), inter-MRE work stealing reduces GC pausetime by 44%. We report

average GC pause times (and standard errors) from 15 GCs. Thisresult indicates that

cross-MRE load balancing is important for efficient GC in an XMem system.

XMem implements STW parallel copying collection and therefore its GC pause

times increase linearly with live data size. Figure6.4presents measurements obtained

using two MREs, each with a single GC thread, where live data consists of a binary

tree comprising a specific number of nodes. We report averageGC pause times for

different live data sizes. Global GC latency (computed by extrapolating GC pause time

for live data size equal to zero) is 0.9ms. Safepoint latencyin a single MRE is 0.7ms on

average. Safepoints are reached concurrently by two MREs (they do not add up). Thus,

there is 0.2ms overhead imposed by XMem to coordinate globalGC across MREs.

Copying throughput is 3.3 million nodes/second (where each node corresponds to 5

small objects). This throughput is identical in case of a single MRE (XMem does not

degrade it).

219

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

6.3.4 Communication Efficiency for Microbenchmarks

We next evaluate the impact of XMem on the performance of Javacommunication

technologies using our microbenchmarks.

RMI and CORBA. RMI [131] enables inter-MRE type-safe remote method calls. A

server registers a remote object using a directory service which is later consulted by the

client to look up the remote object by name. Once a remote reference (proxy) is con-

structed, the client can call remote methods. A client and a server use automatically-

generated stubs and skeletons to (de)marshall arguments and return values. CORBA

[50] employs a more portable transport protocol (IIOP) to interoperate with other run-

times. Our microbenchmark times a remote method call that takes a binary tree of

objects as an input argument and returns another binary treeas an output value. We

employ binary trees as the microbenchmark since they represent a middle-ground in

common data structures: they are neither sparsely-connected (like linked lists) nor

densely-connected (like complex graphs).

Figure6.5(a) shows the average invocation time (y-axis) for an increasing number

of nodes in the binary tree (x-axis). We implement the remotecall using XMem by

allocating binary trees directly in the shared memory. Client-server interaction is co-

ordinated by monitor synchronization. Having allocated a tree, the client notifies the

server that the input is ready. Once the server allocates theoutput tree, the client is

notified that the call is complete. XMem reduces latency 15x and 37x while increas-

220

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

ing throughput (calls/second) 6x and 35x, compared to RMI andCORBA, respectively,

since XMem avoids argument marshalling and network communication.

Serialization and XML. Object serialization [141] provides a type-safe mechanism for

transforming an arbitrary graph of objects implementing thejava.io.Serializable

interface into a binary byte stream which then can be used to reconstruct the original

data structure. A runtime-portable alternative to binary representation is XML. We

compare default and XML-based serialization against theirXMem implementation.

Our microbenchmark times the exchange of an object graph between a server and a

client. A client allocates a binary tree of objects, serializes it and sends the result to the

server over a socket. The server deserializes the tree, allocates a response (being a bi-

nary tree of the same size) and sends it back to the client in a serialized form. In XMem,

we allocate the tree in the shared memory and notify the otherside that the data is ready

(we consider the overhead of copying below). Figure6.5(b) presents the average serial-

ization time (in msecs on y-axis) for a tree of 1–1024 nodes (x-axis). XMem eliminates

the need for serialization and data transfer and thus improves throughput (calls/second)

20x and 391x while reducing latency by around 7000x comparedto default and XML

serialization.

JNDI. JNDI provides access to directory services, such as LDAP or RMI registry,

where clients can look up objects by name as well as evaluate search queries. Our

microbenchmark first binds a specific number of objects in an RMI registry and then

221

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

(a) Remote method invocation time (ms) for
binary tree pass/return (x-axis is node count).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 3 5

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000

Tree Size [node]

T
im

e
[m

s]

 CORBA

 RMI

 XMem

(b) Object serialization time (s) for client/server
binary tree send/receive (x-axis is node count).

0

2

4

6

8

0 2000 4000 6000 8000

Tree Size [node]

T
im

e
[s

]

 XML
 Serialization
 XMem

0.00

0.02

0.04

0.06

0.08

0.10

1 3 5

(c) Object lookup time when a directory server returns
a number (x-axis) of name/object pairs (bindings).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 200 400 600 800 1000

 Result Size [binding]

T
im

e
[m

s] JNDI

 XMem

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5

Figure 6.5: Microbenchmark communication performance. We blow up the axes using
a second graph snapshot to make latency visible. Each graph shows regression lines.

222

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

0.00

0.01

0.02

0.03

0.04

0.05

0 2000 4000 6000 8000

Data Size [byte]
T

im
e

[m
s]

 Socket

 XMem

0.000

0.003

0.006

0.009

0.012

0.015

1 3 5

Figure 6.6: Data transfer time (ms) for client/server array send/receive (x-axis is array
size in bytes).

performs a query that lists all available bindings (name/object pairs). We time the latter

operation only as it is more important (directories are rarely modified). XMem keeps

the bindings in the shared memory and returns an enumerationof their subset in re-

sponse to each query. This enumeration is allocated in the shared memory and returned

to the client by means of a notification. Figure6.5(c) shows the average results gathered

for a varying number of bindings (1–1024). XMem reduces latency 32x and increases

throughput (lookups/second) 240x which can be attributed to copy and transfer avoid-

ance.

TCP/IP Sockets. Network sockets operate at the byte level (as opposed to the object

level) and therefore have no notion of type-safety. However, we compare their effi-

cacy with XMem for completeness. Our microbenchmark measures the time needed to

transfer a byte array of a certain length from a client to a sever and vice versa using

TCP/IP sockets. We implement XMem-based communication by allocating a shared

223

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

byte buffer. Each party writes into the shared buffer and then notifies its peer that the

new data is available. Figure6.6compares the transfer time (in ms) using conventional

sockets for data sizes 1 to 8192 bytes (x-axis). XMem increases throughput and de-

creases latency both by 2x by avoiding network stack interposition and redundant data

copying.

Copying Overhead. Occasionally, an object graph needs to be copied to the shared

memory to ensure full transparency of communication. In case of remote method in-

vocation and object serialization this translates to allocating locally and then copying

an object tree to the shared memory just before notification.In case of sockets, two

copies are necessary in the worst case: first from a local buffer (client side) to a shared

buffer and then from the shared buffer to a local buffer (server side). Since bindings

in directory services are immutable, it is sufficient to copyonly the enumeration ob-

ject encapsulating the query result while leaving the bindings intact. Table6.3 shows

the impact of copying on latency and throughput. We report relative performance of

XMem with copying to existing technologies run on top of HotSpot (HS) and the non-

copying version of XMem. Columns 2 and 4 show latency and throughput for XMem

with copying vs. HotSpot and columns 3 and 5 show these metrics for XMem without

copying vs. XMem with copying. When copying is used, XMem still significantly

outperforms the extant mechanisms (Columns 2 and 4).

224

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Bench- Latency Throughput
mark vs. HS vs. XMem vs. HS vs. XMem
RMI 2.5x 5.8x 2.4x 2.4x

CORBA 6.4x 5.8x 14.3x 2.4x
Serial. 1152x 6.1x 8.3x 2.4x
XML 1204x 6.1x 164x 2.4x
JNDI 6.9x 4.6x 71x 3.4x
Socket 2.2x 1.1x 1.5x 1.6x

Table 6.3: Impact of copying shared data on latency and throughput. Columns 2 and
4 show these metrics for XMem with copying vs. HotSpot and columns 3 and 5 show
these metrics for XMem without copying vs. XMem with copying.

0

1

2

3

4

5

0 200 400 600 800 1000

Result Size [record]

T
im

e
[m

s]

 JDBC/Socket

 JDBC/XMem

0.00

0.02

0.04

0.06

0.08

0.10

1 3 5

Figure 6.7: Application performance: Hsqldb. We report database queryprocessing
time (ms) when a server returns a set of records (x-axis is number of records).

0

1

2

3

4

5

6

0 2000 4000 6000 8000

Content Size [unit page]

T
im

e
[m

s] HTML/Socket

 HTML/XMem

0

1

2

3

4

5

6

1 3 5

Figure 6.8: Application performance: Tomcat. We report request processing time (ms)
when a web server retrieves a web page (x-axis is page size).

225

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

6.3.5 Application Performance

We next evaluate the impact of XMem on the performance of two enterprise appli-

cations. We quantify the improvement in user-perceived throughput and response time

by comparing an unmodified database server (Hsqldb) and a webserver (Tomcat) with

their XMem-based variants.

Hsqldb [86] is a relational SQL database management system that supports in-

memory and disk-based data storage. JBoss uses an embedded Hsqldb database en-

gine by default for persistence and caching. We have modifiedHsqldb 1.8.0 to employ

shared memory. A client allocates an SQL query as a shared string. The server is then

notified, parses the query, and computes the result in the shared memory. Hsqldb main-

tains an object cache in the shared memory. Internal representation of leaf data in the

object cache is based on immutable objects (strings, integers, dates that model SQL

objects). Clients can be given a reference to such objects without a risk of modification

and therefore most data (and metadata) does not need copying. We have encapsulated

interaction over XMem into a JDBC driver for Hsqldb to achievefull transparency. The

server listens for connections both on a network socket and in the shared memory. For

Hsqldb we measure the impact of XMem on end-to-end throughput (queries/second).

Our microbenchmark times theSELECT * FROM T statement executed against a ta-

ble T which contains between 1 and 1024 3-field records. Figure6.7 and Figure6.8

show the results. XMem increases throughput 2.3x and decreases latency 1.4x. The

226

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Hsqldb JDBC driver performs proprietary data serialization, which is unnecessary in

XMem.

Apache Tomcat [3] is an industrial-strength web and servlet container. We have

modified Tomcat 6.0 to optimize local request handling usingXMem. A client and a

server share a byte array and notify each other when sending data. We measure end-

to-end performance (requests/second) when retrieving (HTTPGET method) static web

pages of different sizes (multiples of a unit page size). We use the Apachehttpclient

package to generate conventional HTTP requests. Figure6.8shows the time needed to

retrieve a page of a given size. XMem achieves 4x better throughput and 4x shorter

latency.

6.3.6 Results Summary

Table6.4 summarizes our results in terms of average latency and throughput. We

use least-squares linear regression to obtain latency and throughput as the coefficients in

the equationtime = latency + size/throughput, following [37]. We report through-

put in the units appropriate for each protocol. While microbenchmarks focus on com-

munication efficiency (the only additional processing is initialization/allocation of the

exchanged data), Hsqldb and Tomcat provide insight into theend-to-end application

performance. We observe very significant reduction in latency (over three orders of

magnitude) in case of serialization (default and XML-based) – RMI, CORBA, and

227

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Bench- Latency Throughput
mark HS XMem HS XMem
RMI 0.18 ms 15x 75.8 call/s 6x

CORBA 0.45 ms 37x 12.5 call/s 35x
Serial. 80.4 ms 6977x 21.8 object/s 20x
XML 84.0 ms 7292x 1.11 object/s 391x
JNDI 0.24 ms 32x 833 lookup/s 240x
Socket 0.01 ms 2.3x 279 kB/s 2.3x
Hsqldb 0.06 ms 1.4x 227 query/s 2.3x
Tomcat 4.46 ms 3.9x 104 request/s 4.2x

Table 6.4: Summary of XMem impact on latency and throughput for microbench-
marks and applications. We report average baseline performance (Columns 2 and 4)
and XMem improvement as a multiple of the baseline (Columns 3 and 5).

JNDI use their own, more efficient, serialization and thus benefit less due to XMem.

XML-based serialization yields the most significant throughput increase (over two or-

ders of magnitude) since it uses a verbose representation ofthe object graph and thus

transfers more data.

6.4 Related Work

The key difference between XMem and previously reported systems that coordinate

co-located and isolated applications written in type-safelanguages is that XMem takes a

top-down approach by assuming full isolation between MREs and providing an efficient

and straightforward mechanism for direct object sharing while preserving strong OS-

assisted resource protection as much as possible. Prior work has focused on bottom-up

approaches by introducing weak isolation implemented through replication of basic

228

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

OS facilities within a single OS process. Such systems are much more complex than

XMem, have weaker protection guarantees, and duplicate existing OS mechanisms.

KaffeOS [10], the Multi-tasking Virtual Machine (MVM) [53], and MontyVM [115]

employ a single-application MRE and add support for isolation and multi-tasking.

MVM provides isolation via the Isolate API [92]. Multiple programs (tasks) execute

in a single MRE instance (OS process) and the MRE manages resources and shar-

ing across them. MVM introduces a level of indirection when accessing static fields

and does not support direct object sharing. The system introduces links (communi-

cation channels between tasks) but cannot eliminate the object serialization and data

copying. KaffeOS supports direct object sharing by means ofshared heaps. However,

shared heaps are not garbage collected and are coarse-grained entities reclaimed in full

when they become unreferenced. KaffeOS lacks support for many state-of-the-art MRE

mechanisms like parallel GC and modern synchronization.

Other systems that implement the process/task model withina JVM, include Alta [11],

GVM [11], and J-Kernel [157], as well as a multi-tasking JVM described in [18].

These systems strive to provide resource management and isolation within a single

process without relying on hardware/OS protection. Class-loader-based isolation [52]

is a standard technique commonly employed by applications servers in order to avoid

name space pollution/conflicts between multiple web applications hosted within a sin-

gle JVM. Such isolation, however, does not prevent interference through static fields of

229

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

classes loaded by the system (bootstrap) class loader. Thislast problem was addressed

in [38] by introducing a control access model called object spaceswhere cross-space

object accesses are mediated by a security policy. This approach, however, provides

weak isolation and imposes overhead on inter-space method calls.

XMem does not have the aforementioned limitations and is significantly simpler

than multi-tasking approaches as it leverages the existinginfrastructure both at the MRE

and OS level. At the same time, XMem offers better fault containment – critical errors

do not automatically propagate to other MREs unless a fault affects the shared mem-

ory. This decreases the probability of a failure escalatingto multiple components. In

XMem, MREs are not completely isolated as they share part of their virtual address

spaces. However, XMem is significantly more robust than multi-tasking approaches,

given that resources other than memory are fully isolated and memory itself is only

partially shared. XMem achieves stronger isolation, whileproviding direct object shar-

ing without introducing any level of indirection (unlike the MVM).

The notion of transparent global and local objects in the context of distributed

shared memory (DSM) multi-processors has been used in Split-C [51] and UPC [64].

Unlike XMem, these systems are not type-safe and provide access to global objects at a

different cost than to local objects. JavaSpaces [68] provide DSM for applications that

implement object flows. Object repositories in JavaSpaces are type-safe but the system

uses serialization and provides no shared memory support for co-located application

230

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

components. Other DSM systems for type-safe languages include single-system-image

approaches to implementing a global object space such as cJVM [6], JAVA/DSM [178],

JESSICA [106], Hyperion [108], JavaParty [124], and MultiJav [41]. While XMem tar-

gets sharing between co-located MREs, software DSM focuses mostly on distributed

protocols necessary to guarantee memory consistency and cache coherence models

defining certain semantics for concurrency in a distributedsystem.

Runtime systems for concurrent languages that offer built-in constructs for inter-

process communication include Erlang [8], Occam [117], and Limbo [63]. These sys-

tems build on the algebra of communicating sequential processes [81] and provide

a point-to-point message passing mechanism for lightweight processes with share-

nothing semantics. In contrast, XMem adheres to the shared memory programming

model. Unlike XMem, Erlang is a functional language and requires the shared objects

to be immutable. XMem targets general-purpose imperative procedural languages.

In language-based operating systems [138], such as Singularity [65, 89], JX [74],

JNode [96], Inferno [63], SPIN [27], Oberon [170], and JavaOS [94], processes share

a single address space and use type and control safety provided by a trusted compiler

(via static analysis) to guarantee memory protection and resource isolation without im-

plementing a hardware-assisted reference monitor. Singularity is a micro-kernel OS,

implemented mostly in C#, supporting efficient communication between multiple iso-

lated processes. Its design differs from XMem in several ways. First, XMem leverages

231

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

hardware memory protection, while Singularity provides lightweight software-based

isolation via type-safety (multiple applications executein a single address space). Sec-

ond, Singularity provides message-passing via typed channels and explicit communi-

cation primitives. In contrast, XMem provides a shared-memory-based implicit com-

munication where only the initial handshake employs the channel abstraction. Next,

in Singularity communication is limited to two endpoints and involves the transfer of

ownership of a memory block (there is no data sharing betweenthe sender and the

receiver). XMem enables direct and transparent object sharing between any number

of threads, potentially from distinct MREs. Finally, Singularity employs block-based

reference counting garbage collection while XMem uses morefine-grained tracing GC.

To date, virtual memory manipulation (which is used by XMem to implement dou-

ble mapping of the GCT and LCT) has been used in MREs mostly in the context of

GC [159, 101, 175, 80, 46]. For example, the Compressor [101] employs double map-

ping to enable concurrent compaction, and the Mapping Collector [159] compacts free

space by remapping to avoid object copying.

6.5 Summary and Conclusions

XMem provides type-safe and transparent shared memory for isolated, co-located

MREs that implement the same language. The motivation behindXMem is more effi-

232

Chapter 6. Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

cient, cross-component interaction and communication in enterprise multi-tier applica-

tions deployed on a single host. XMem provides stronger fault and resource isolation

than previously reported systems, while enabling efficientdirect object sharing over pri-

vate channels. To guarantee type-safety, XMem extends state-of-the-art MRE services

such as synchronization, class loading, object allocation, and garbage collection, as

well as introduces global operations to coordinate MREs using a single shared segment.

XMem manipulates virtual memory mapping (via a standard OS interface) to avoid in-

direct memory access. XMem is transparently integrated within the MRE infrastructure

and can be used to optimize existing communication protocols, such as RMI. We im-

plement XMem in the HotSpot JVM and evaluate it empirically.XMem introduces

tolerable space/time overhead while improving efficiency (latency and throughput) of

extant J2SE/J2EE communication mechanisms by up to severalorders of magnitude.

The text of this chapter is in part a reprint of the material asit appears in [160].

233

Chapter 7

Type-Safe Sharing for Heterogeneous
Runtimes: Improving Cross-Runtime
Memory Management Performance
and Programming Model Using
Shared Memory

In this chapter, we describe another approach to improving cross-runtime memory

management by using OS support for shared memory. However, unlike in Chapter6,

which focuses on homogeneous (Java) runtimes, this time we investigate object sharing

between heterogeneous runtimes, for both static and dynamic programming languages.

Specifically, we discuss the design and implementation of type-safe, transparent ob-

ject sharing in a multi-runtime, multi-language system deployed on a shared-memory

multi-core or multi-processor architecture. We overview the design tradeoffs involved

in reconciling the major differences in object models, memory models, type systems,

and core libraries across languages. We describe in detail the mechanisms needed for

234

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

an efficient implementation of object sharing in the multi-language setting, including

type mapping, class versioning, a language-neutral object/memory model, lightweight

monitor synchronization, and a loosely-coupled on-the-flycollector. In addition, we in-

vestigate how to incorporate shared memory support into an unmanaged language (we

focus on C++) while still guaranteeing type- and memory-safety for the shared objects.

Finally, we empirically validate the key benefits of cross-language object sharing: im-

proved communication performance (by avoiding expensive object marshalling) and a

richer programming model (by replacing RPC-style interaction with transparent shared

memory).

7.1 Introduction and Motivation

Large, scalable software systems are increasingly being built using collections of

components to better manage software complexity through reusability, modularity, and

fault isolation. Since each programming language has its own unique combination of

performance, speed of development, and library support, different software components

are often implemented in different languages. As evidence of this, Thrift [143] and Pro-

tocol Buffers [129] have been developed by engineers at Facebook and Google, respec-

tively, to enable more efficient interoperation across multi-language components em-

ployed within their applications and backend services. Forweb applications, different

235

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

languages are better suited for the implementation of different tiers: Ruby, Python, Java,

and JavaScript facilitate fast development of the presentation layer, Java, PHP, Perl,

Python, and Ruby components commonly implement server-sidelogic, and Java, query

languages, and C/C++ are used for a wide range of backend database technologies. The

components of these multi-language, multi-component applications and mashups typ-

ically execute within independent runtime systems (language virtual machines (VMs),

interpreters, etc.) and communicate and interoperate via remote procedure calls (RPC)

and message passing.

Increasingly, administrators co-locate runtimes to better utilize multi-core resources.

This makes it possible to use shared memory for such cross-component communication

as well as for a cross-runtime language-neutral transparent object storage. However,

despite its growing practical value, shared memory has not yet been investigated in

either of these contexts. To evaluate the potential of usingshared memory for cross-

language, safe, transparent communication and object storage, we design and imple-

mentCo-Located Runtime Sharing (CoLoRS). CoLoRS provides direct object sharing

across static and dynamic, object-oriented (OO) languages.

CoLoRS virtualizes VM components that assume a language-specific object/class/-

memory model. In CoLoRS, shared objects retain their language-specific behavior,

including the semantics of virtual method calls, locking, and field access. In addition,

builtin/library data structures, such as collections, transparently map to their shared

236

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

counterparts in the CoLoRS object model. Our key hypothesis isthat sharing objects

across static/dynamic OO languages using shared memory canbe safe, transparent, and

efficient.

CoLoRS defines an object model and memory model that enable language-neutral

object and class sharing across dynamic and static languages. The CoLoRS object

model is a static-dynamic hybrid, which provides the efficiency of a static model with

the flexibility of dynamic class modifications. To enable this, CoLoRS uses an extensi-

ble static model with versioning and type mapping.

In addition, CoLoRS implements a parallel, concurrent, and on-the-fly GC that is

better suited for multi-VM memory management than extant GCs. CoLoRS GC is sim-

pler than state-of-the-art on-the-fly GCs, does not require tight integration into a run-

time, and imposes no system-wide pauses. Moreover, CoLoRS uses a synchronization

mechanism that avoids the complexities of conventional approaches to monitor syn-

chronization, while providing the same semantics and comparable performance. Both

GC and synchronization in CoLoRS are designed specifically forcross-MRE sharing.

To investigate object sharing between dynamic and static OOlanguages, we inte-

grate CoLoRS support within open-source, production-quality runtimes for Java and

Python. We have evaluated CoLoRS efficacy using standard Java and Python bench-

marks and found that CoLoRS extensions impose low execution time overhead. We

237

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

also provide detailed experimental results for the CoLoRS GC algorithm and CoLoRS

synchronization.

An important use case for CoLoRS is cross-language RPC. We have found empiri-

cally that CoLoRS can significantly (up to 2 orders of magnitude) improve the perfor-

mance of such RPC systems as CORBA [50], REST [66], Thrift [143], and Protocol

Buffers [129]. This is because using shared memory in the co-located caseavoids

expensive object serialization. The improvements in communication throughput and

latency due to CoLoRS significantly increase end-to-end transaction performance in

Cassandra [2] (a key-value database), and the Hadoop Distributed File System (HDFS)

server [78].

In the sections that follow, we present the design and architecture of CoLoRS, de-

scribe the key components of our system (Section7.2), including a language-neutral

object/memory model, memory management, garbage collection, and synchronization

support, as well as transparent object sharing via runtime/library virtualization. We

then discuss CoLoRS empirical evaluation (Section7.3), investigate how to implement

CoLoRS support in an unmanaged language (C++) in Section7.4, compare/contrast

CoLoRS with related work (Section7.5), and conclude (Section7.6).

238

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

�����
����	

��
����
����	

Private Heap Private Heap

������
	��	������	

Shared Classes

Shared Heap

Private Classes Private Classes

co-located on a

multi-core system

Shared Classes

Java
threads

Python
threads

CoLoRS
GC threads

Private Classes Private Classes

Figure 7.1: CoLoRS architecture. There is exactly one CoLoRS server process, which
manages the shared memory segment and runs concurrent GC. Runtimes for different
languages (Java and Python in this case) attach to the sharedmemory segment and
allocate/use objects in the shared heap.

7.2 Design and Implementation

A primary design goal of CoLoRS is to provide type-safe, transparent, direct object

sharing between co-located managed runtimes for differentOO languages. This in-

cludes both statically-typed (e.g. Java) and dynamically-typed (e.g. Python) languages.

The key challenge with providing such support are the major differences between lan-

guage implementations, including object/class models, memory models, type systems,

builtin types, standard libraries, and memory management (GC). For instance, dynamic

languages support attribute (member) addition at runtime,while static languages permit

class changes at compile-time only.

239

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Figure7.1shows a high-level view of a CoLoRS system. In this example, twoVM

processes (one for Java and one for Python) are co-located ona multi-core system.

There is exactly one CoLoRS server process which manages the shared heap (this in-

cludes the setup of the shared memory segment, data structure initialization, as well

as support for garbage collection). Each VM process has its own private heap and a

private object/class model and runs its applications threads. In the shared heap, there is

a CoLoRS object/class model which is transparently translated to a private object/class

model in each VM. All VMs map the shared memory segment at the same address in

the virtual address space and use shared objects directly via pointers.

CoLoRS does not allow pointers from the shared heap to any private heap because

of memory/type safety. In our experience, this restrictionis rarely violated in standard

libraries and most existing classes can be shared without any modifications.

Static (class) fields are not subject to sharing because theyoften represent local

resources and sharing them would break resource isolation.For instance (object) fields,

however, CoLoRS supports fully transparent sharing with regard to allocation, GC,

field access, (virtual) method invocation, monitor synchronization, standard libraries,

and class loading.

We do not support code sharing because that would require defining a VM-neutral

language and checking whether two methods are equivalent, which in general is unde-

cidable. Instead, CoLoRS guarantees type-safety for data/state sharing only. To reduce

240

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

the programming effort associated with ensuring that the code/behavior matches across

different languages, methods can be translated between languages automatically. Note

that it is sometimes desirable to have different class implementations/interfaces in dif-

ferent VMs: standard libraries differ across languages andwe do not want to unify

them because programmers are used to existing libraries andthere is a lot of legacy

code written to them. Sharing only instance fields makes CoLoRSmore practical as the

code and static data do not have to match across languages.

A general approach we take in CoLoRS is to define a language-neutral, shared

object model (with respect to non-static data) and then dynamically map it to each

runtime-specific object model. To implement this, we virtualize all runtime components

that rely on a specific object model. Modifications to runtimes are necessary to make

object sharing transparent. In particular, CoLoRS needs to intercept all field accesses

to handle shared objects correctly.

7.2.1 CoLoRS Usage

CoLoRS provides a simple application programming interface (API) for developers.

The CoLoRS API for Java comprises the following methods in theSharedMemory

class (Python has equivalent API):

Object copyToSharedMemory(Object root);

Object allocate(Class objectClass);

241

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Object allocate(Class containerClass, int length);

boolean isObjectShared(Object object);

ObjectRepository findOrCreateRepository(String key);

ObjectChannel findOrCreateChannel(String key);

Type getSharedType(Object object);

CoLoRS supports two ways of creating shared objects: via direct object allocation (the

allocate method) and via deep copying of a private object graph to shared memory

(thecopyToSharedMemory method). Theallocate method has two variants: one for

allocation of fixed-size objects and one for allocation of container objects (which takes

the initial size of a container as a parameter).

Note that we do not support a state model where a thread can switch to the shared

mode and issue regular object allocations to allocate in shared memory (as is done in

related work on cross-JVM sharing [160]). The reason is that the state model requires

complex rules specifying which allocations should target shared memory. For instance,

in a JVM, we must exclude class loading, static initializers, and exception handling

from leaking objects into shared memory.

CoLoRS provides two mechanisms to initiate communication between two run-

times: channels and repositories, both of which are named entities enabling exchange

of a reference to a shared object. TheObjectRepository class provides nonblocking

242

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

get/set functionality while theObjectChannel class supports blocking send/receive

cross-VM semantics. The following code fragments show an idiomatic repository us-

age for two Java processes. The client process:

ObjectRepository r = SharedMemory.findOrCreateRepository(“db”);

synchronized(r){ while(r.get() == null) r.wait();}

The server process:

ObjectRepository r = SharedMemory.findOrCreateRepository(“db”);

synchronized(r){ r.set(root); r.notifyAll();}

For object channels, we have a similar pattern but synchronization/waiting is not nec-

essary because of the blocking behavior of send and receive.

Each repository holds a reference to its root object. Each channel has a fixed ca-

pacity for messages and blocks the sender when full. As long as a shared object is

reachable from any repository, channel, or any VM, it stays alive. Unreachable shared

objects are garbage collected. Channels and repositories are identified by a key (string).

The CoLoRS API enables reflective inspection of the shared typeof a shared ob-

ject via thegetSharedType method. We need this API method because in CoLoRS,

expressions that evaluate to an object class, e.g. object.getClass() in Java, retrieve a

private class to which a specific shared class currently maps. To see the shared class

before mapping to a private class occurs,getSharedType is used. Shared classes are

243

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

regular objects – CoLoRS uses a three-level circular meta-data hierarchy that is fully

traversable by programs wishing to inspect it.

A programmer can check whether an object is in shared memory via theisObject-

Shared method. The system throws aSharedMemoryException to prevent shared-

to-private pointers as well as to signal type mapping failures, out-of-memory errors,

and locking issues.

7.2.2 Shared Memory Segment

CoLoRS uses a dedicated process (CoLoRS server) to manage sharedmemory.

There is one CoLoRS server per OS instance. This server creates, initializes, and de-

stroys the shared memory segment, as well as runs concurrent, parallel GC. That is,

GC continues to function even when no runtimes are currentlyattached. CoLoRS was

designed to be scalable (GC, repositories) therefore havingone server per host is not a

limitation.

To use shared memory, runtimes attach to the shared memory segment (by mapping

it to their virtual address space at the pre-defined, fixed address). The shared memory

segment contains three spaces: metadata space (for state variables and synchroniza-

tion), classes space (for shared types, repositories, and channels), and objects space

(for garbage-collected shared objects). Each VM runs a separate CoLoRS thread which

is responsible for collaboration with the CoLoRS server during GC.

244

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

CoLoRS intercepts all field accesses in the VMs and handles shared and private data

differently. Private fields are read/written in a VM-specific way while shared fields use

CoLoRS accessors.

7.2.3 The CoLoRS Object Model

CoLoRS employs an object model (OM) that aims at transparent and efficient cross-

language object sharing, while supporting both static and dynamic languages. Our pri-

mary goal is maintaining the language-specific OM and object/class semantics while a

VM interacts with shared objects. The rationale behind thisis to avoid introducing a

new unfamiliar programming model. In addition, CoLoRS combines certain character-

istics of static and dynamic OMs in order to support the flexibility of a dynamic model

while providing the efficiency and simplicity of a static model.

CoLoRS Type System

CoLoRS preserves language-specific type-safety without defining new typing rules

by mapping shared types to private types. When mapping a shared typeS to a private

typeP1 in one VM and to private typeP2 in another VM, we guarantee that any field

access permitted byP1 does not violate the field typing constraints imposed byP2 (and

vice versa).

245

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

In the CoLoRS type system, every value is an object (there are noprimitive types

like in Java or C#). This is motivated by dynamic languages like Python and Ruby

which treat everything as an object and therefore require that each value have a unique

identity (address).

Unlike extant systems for cross-language data sharing, CoLoRS does not specify

its own data definition language (DDL). Conventional approaches have resulted in a

number of domain-specific DDLs, e.g. SQL in relational databases, WSDL in web

services, and IDL in CORBA. The primary limitation of DDLs is their static nature and

the necessity for a programmer to master another language. Instead, CoLoRS generates

the shared data model automatically from the native language data model defined by

the programmer. Moreover, this happens dynamically at runtime and only for types that

are used in shared memory.

The CoLoRS OM strives to strike a balance between supporting diverse languages

(both static and dynamic) and staying sufficiently close to each individual language

so that costly runtime data conversions are avoided if possible. Another key design

tradeoff is to support the flexibility of dynamic languages while leveraging the benefits

provided by static typing. In fully static OMs (e.g. Java), object layout is completely

described by classes, fields are efficiently accessed via offsets, each object consumes

only as much memory as necessary for its attribute values, and the data model is fully

documented by classes. On the other hand, in fully dynamic OMs (e.g. Python) classes

246

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

do not describe object attributes, each object maintains a dictionary mapping attribute

names to values, field access is expensive as it takes place via names, and space usage is

suboptimal due to the redundancy across attribute dictionaries. However, unlike static

OMs, dynamic OMs support dynamic attribute addition/removal as well as per-object

attributes.

Several hybrid models have been introduced to mitigate the static-dynamic trade-

offs. A partially static/dynamic OM is used by Google AppEngine, where each object

has a static part (fields described by a class) and a dynamic part (per-object dictionary).

On attribute access, the system first tries to use a static field then falls back to an object

dictionary on failure. Dynamically created attributes do not become part of the static

model. A similar concept has been introduced to Python (via the slots declaration).

The JavaScript V8 runtime implements hidden classes to enable fast, offset-based at-

tribute lookup while supporting dynamic attribute addition and deletion.

Hybrid OM and Versioning

CoLoRS OM is a static-dynamic hybrid, which can be described asan extensible

static model with versioning and type mapping. Our goal is tokeep CoLoRS OM

as static as possible but still allow the flexibility of modifications (add/remove/change

name/type of a field).

247

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Shared classes are always created based on private classes when a private object

gets allocated in (or copied to) shared memory. On each allocation in shared memory,

we inspect the fields of the allocated object and look for a shared class being an exact

match for a given type name and field set. If we do not find an exact match, we create

a new class (or if a class with this name already exists, we create a new shared class

version, having the same class name but a different field set). For example, suppose

that we have the following class in Java:

class Employee{ String name; double salary;}

and we perform shared allocation using:

Employee e = (Employee)SharedMemory.allocate(Employee.class);

If no Employee class is present in shared memory yet, we create one, with twofields

that correspond to the privateEmployee class. Now assume that we add a new field to

theEmployee class, sayEmployee manager; and we repeat the shared allocation as

shown above. This time, CoLoRS will create a new version of the sharedEmployee

class, with three fields. Note that at any point in time there is exactly one private

Employee class (which may evolve in time) and there may be multiple versions of

sharedEmployee class (reflecting the schema evolution). Field removal is handled in

a similar way.

Shared objects use shared classes to describe their layout.Different versions of a

single shared class may have different layouts in memory andfield sets. Shared classes

248

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

are read-only, they do not change. However, shared objects may change their class

pointers (from one version of a particular class to another version of the class). This

can happen both in static and dynamic languages. For example, the following code in

Python, which uses our two-fieldEmployee class:

e = sharedmemory.copyto(Employee(’Smith’, 100))

e.state = ’NY’

adds a new field (calledstate) dynamically. To support this in shared memory, CoLoRS

creates a new version of theEmployee class and changes the current class of thee

object to the new class version. Dynamic field removal (viadel in Python) is handled

similarly.

The advantage of versioning over a pure OO model is lower space consumption. In

conventional OO systems, class evolution takes place via subclassing: to add or hide a

field a new class is created that inherits from the old class. As a result, it is not possible

to remove any attribute and space is consumed forever by unused fields. In contrast,

with versioning, even if classes evolve, the newly-createdobjects always consume the

optimal amount of space.

Type Mapping

To correctly handle multiple class versions in shared memory, CoLoRS uses type

mapping. Each private classP in a VM always has exactly one version which, at any

249

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

given moment, may be mapped to several different versions ofclassP in shared mem-

ory (a one-to-many relationship). Except for builtins (e.g. Integer, String), mapping

only occurs between classes with the same name – programs in different languages

must agree on package/module and class names. We map a sharedfield to a private

field if and only if both have the same name and the same (or convertible) type. In

dynamic languages, we map solely on the field name basis as there are no static types

available.

Since type mapping is a relatively expensive process, we perform it lazily, once per

shared-class-version, and maintain the mapping in a private hash table in each VM.

We also use a reverse mapping table, to avoid shared-type lookup/matching on every

allocation in shared memory. Note that on allocation, we need to obtain the shared

type based on a private type. In contrast, when accessing a field in a shared object, we

perform the mapping from a shared type to the private type.

When CoLoRS allocates a new object in shared memory, it tries to find a shared

class version that exactly matches the private field set of the newly-allocated object. If

no exact match is found, it creates a new shared class version. Consequently, newly-

created objects do not contain fields that were removed from aprivate class due to its

evolution. The rationale behind this is that we want to keep the object size in shared

memory optimal. However, when mapping a shared class to a private class in a context

other than allocation, we allow both private and shared fields to remain unmapped (if

250

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

they do not have a match). When a VM uses an unmapped field in a shared object, we

dynamically add a field to a class. To do so, we create a new shared class version that

contains the previously unmapped field, and change the shared object’s class pointer to

point to the new class version. Note that the shared object’stype does not change, as

seen from the VM’s perspective – all versions of a shared class always map to the same

private class (with the same name).

Although CoLoRS supports dynamic changes, once the data modelis stable, both

space usage and field access work exactly like a fully static model. Also, in the CoLoRS

OM, all object attributes are always present in its class andcan be introspected via

reflection.

Some VMs, such as Java, support class loading that makes it possible to have multi-

ple classes with the same fully-qualified name. CoLoRS supports this via type mapping.

One shared class can map to multiple private classes (e.g. wecan map a single shared

class named a.b.C to all private classes named a.b.C loaded by different class loaders).

Figure7.2shows an example where private classA evolves from a single-field class

containing “int a” into a class with two fields, “int a” and “float b”. Private classA has

exactly one version (the newest one with both fields). SharedclassA has two versions.

Both shared versions are mapped to the private classA so that they can be uniformly

used, despite being distinct types in shared memory. The shared objects space contains

two objects of classA – one allocated for the old version ofA and one allocated for the

251

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

class A

int a

float b

class A

int a

class A

int a

float b

class version
list for Aobject A

a = 1

object A

a = 1

b = 0.1

class
pointer

class
pointer

shared memory

objects space classes space
private

memory

Private
class A with
field “float b”

added

shared to private
mapping (many-to-one)

Figure 7.2: An example illustrating CoLoRS versioning and type mapping asprivate
classA evolves by having a field added.

new version ofA. Note that each shared object uses only as much space as necessary

for its attribute set. Both objects have the same type in a VM, and the VM may access

both fields (a andb) in both objects. On access to a non-existent field (b in this case)

in older shared objects, CoLoRS will expand the object to make room for the new field

(initializing the new field to 0).

Reconsidering the example in Figure7.2in the case when classA evolves by having

theb field removed, we have a similar situation. Private classA again has exactly one

version (the newest one, with one fielda). Shared classA has two versions, both

mapped to the same private typeA. Field b remains unmapped as it can never be used

by the VM and this field is simply ignored in those shared objects that have it. Note

that newly-allocated shared objects do not reserve a slot for field b, thus using optimal

252

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

amount of space. In contrast, OO inheritance does not allow removal of a field from an

object (unused inherited fields continue to consume slots inobjects). Field renaming is

equivalent to field removal followed by a field addition.

Note that using CoLoRS cannot lead to broken program invariants because match-

ing fields can never remain unmapped. Thus, if class implementations across languages

match and preserve some invariant in each language, CoLoRS will preserve this invari-

ant too.

Built-In Types and Libraries

CoLoRS provides full transparency for builtin types (e.g. strings, integers, lists, and

sets). Builtin types differ significantly across languages and at the same time are fre-

quently used by programs and libraries. CoLoRS preserves language-specific interfaces

for builtin types by virtualizing the builtin implementation and/or standard libraries in

each runtime. Library virtualization amounts to modifyingthe code of library methods

so that these methods check whether any of the method arguments (including the re-

ceiver, if any) is a shared object and, if so, to execute a different implementation of the

method.

CoLoRS defines a set of builtin types which we identify in Table7.1 with their

mappings in Java and Python.

253

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

We support 64-bit integers, which can be mapped to Pythonint and to any integer

type in Java, both primitive, e.g.int, short, and reference, e.g.Long, Integer. Having

only one integer type allows us to avoid complex rules for field mapping during schema

evolution. For example, if we supportedint andshort as distinct integer types in shared

memory, then we would have to define complex semantics for changing the field type

from int to short and vice versa, i.e. when we create a new field dynamically andwhen

we reuse existing integer field.

We use a similar approach in case of floating-point types, supporting only 64-bit

IEEE floats. The CoLoRS 64-bit float can be used in Java as any floating point type, e.g.

double or Float. We do overflow/underflow checks when reading/writing integer/float

fields requires conversion.

For non-container types, we also provideboolean andstring. As in Thrift [143],

CoLoRS defines three container types:list, set, andmap. Containers are untyped (i.e.

may contain objects of different types at the same time). This is because we cannot

automatically infer the container element type (at least inJava and Python), even if the

container is not empty. To support a compact byte array representation we provide the

binary type, suitable for blobs. Note that in Java, a sharedlist can be used as an array

(of any type) and as aList. The rationale behind this is transparency – we want to

support Java arrays even though CoLoRS and Python do not have arrays so that we do

not change the Java programming model. Non-container types(integer, float, boolean,

254

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

and string) are immutable. Builtin objects always have exactly one version, exactly one

mapping to a private type, and do not have any programmer-visible fields.

In order to use shared objects along with private objects in asingle hash-based

container, hash codes and equal-to methods must agree across runtimes. We unify

them for Java and Python builtin types. For shared objects, CoLoRS provides default

hash code generation, equal-to methods, and less-then methods (all based on object

addresses). They can be overridden by programmers.

For programmer convenience, CoLoRS automatically copies non-container types

(e.g. integer, string) to shared memory. On field assignment/array store, the system

checks whether the assignment uses a private r-value and a shared l-value. If so, and the

r-value is of a non-container type, CoLoRS silently calls thecopyToSharedMemory

method on the r-value, instead of throwing an exception. This mechanism is particularly

useful for constructors.

Static Languages

In static languages, object fields are typed and typically accessed using field off-

sets. Since CoLoRS uses a mostly-static OM, it also identifies fields in shared objects

by their offsets. Private and shared field offsets may differso it is necessary to map

between them. Unidirectional mapping from the private offset to the shared offset is

sufficient because VMs always access shared fields using the context of a private type.

255

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Shared Java Python

integer byte, short, int, long, char, Byte,
Short, Integer, Long, Character int

float float, double, Float, Double float
boolean boolean, Boolean bool
string String str
binary byte[] bytearray

list List, ArrayList, Object[], int[],
float[], T[], ... list, tuple

set Set, HashSet set, frozenset
map Map, HashMap dict

Table 7.1: Builtin types supported by CoLoRS and their mappings to Java andPython
builtin types. For transparent and convenient use by programmers, multiple mappings
are possible per shared type.

To make this mapping efficient, we associate a field-offset-table with each pair (S,P)

where S is a shared type mapped to private type P. Whenever we access a shared field

in a shared object, we index the appropriate field-offset-table with the private field offset

and obtain the shared field offset.

When inspecting a class of a shared object (e.g. via object.getClass() in Java) we al-

ways get a unique private class as a result. For example,integer maps toSharedInteger

while list maps toSharedList. However, to ensure transparency, shared builtins can

map to multiple different private types. In OO languages, this can be implemented

via multiple inheritance. For instance, if we can makeSharedList inherit fromList,

Object[], ArrayList, etc. then representing sharedlist as privateSharedList is cor-

rect in all possible mappings. However, some languages (e.g. Java) do not support

multiple inheritance or inheritance of array types. We instead simulate both by modi-

256

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

fying the runtime so thatSharedList can be cast to any of the private types that shared

list maps to. We apply a similar approach forinteger andfloat.

Each private class maps to a unique shared class. A general rule that we use is that

whenever we allocate private typeP as shared typeS, we must later be able to use the

shared typeS asP .

Type mapping may cause class loading in a VM. This is because whenever we

encounter an instance of a shared typeT , which maps to a private typeU , we must

load classU . Thus, CoLoRS introduces a new class loading barrier (in VMs that use

dynamic loading).

Since in static languages, the static type of a field is available, we permit certain

conversions while mapping shared fields to private fields. Let us denote any private

class to which a shared classS maps as map(S). For a given field of shared typeS and

of private typeP , CoLoRS allows both upcasts and downcasts during mapping.

Upcasts occur if classP is a superclass of class map(S) or class map(S) implements

interfaceP . For instance, we have an upcast when we map a field of shared type

list to a field of private typeList (because map(list) = SharedList andSharedList

implements theList interface). Or we have an upcast when we map a field of shared

type string to a field of private typeObject, becauseObject is a superclass of class

map(string) = String. Upcasts are most useful to support interface-type privatefields,

such asList in Java.

257

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Downcasts take place if classP subclasses map(S). For example, there is a down-

cast if a field of shared typelist is mapped to a field of private typeString[], because

String[] subclassesObject[] = map(list). Thanks to downcasts, private arrays (whose

elements are typed) can conveniently access shared lists (whose elements are untyped).

To ensure type safety, downcasts require a read barrier which checks the actual

object type on each read access. Upcasts represent a covariant type operator (analogous

to the array upcasts in Java) and therefore require a write barrier that checks the type of

the stored object against the expected static type.

Dynamic Languages

In dynamic languages, fields are accessed by name (not by offsets) and static field

types are not available. Therefore, when creating a new shared class or comparing to

an existing one, CoLoRS relies on actual types of all non-null attributes in a particular

object (i.e. the one being copied to shared memory). This results in type concretiza-

tion – shared classes created by dynamic runtimes always have the most derived field

types. Such concretized types can be later used by static runtimes without any problems

because static runtimes allow upcasts during type mapping.

We ignore NULL fields as for them no static (concretized) typecan be inferred.

When looking for an exact type match (during copying to sharedmemory), we allow

type conversions (upcasts and downcasts). No read barrier is necessary as dynamic

258

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

languages do not guarantee any particular type for any field.However, each field store

must verify the type of the stored object against an appropriate static shared type (via a

write barrier).

When mapping a shared typeS to a private typeP , we do not map fields, as we do

not have field types and offsets inP . Instead, we just create a hash table mapping field

names to shared offsets. This speeds up attribute access (which is done via names).

Since multiple private types can be mapped to a single sharedtype (e.g.list andtuple

in Python both map to sharedlist), we employ multiple inheritance if possible (e.g. in

Python) or we extend the runtime to simulate it for the types in question.

CoLoRS uses reverse mapping to avoid shared class lookup on each allocation.

Reverse mapping can improve performance only if private instances of a single private

class have similar attribute sets (a natural property but one that is not always enforced

by dynamic languages). Otherwise, the system might end up relying on dynamic field

addition frequently as some objects’ types may be mapped to static types that have too

few static attributes.

7.2.4 The CoLoRS Memory Model

CoLoRS defines a memory model (MM) that builds on and simplifies memory mod-

els supported by mainstream languages. CoLoRS MM is equivalent to the Java MM for

programs that do not contain data races. Java programs that rely onvolatile andfinal

259

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

fields or other race-related aspects of the Java MM may work incorrectly with CoLoRS

because shared object fields drop their Java-specific modifiers. Python does not define

any MM so using CoLoRS cannot break extant Python programs.

Following the Java Memory Model (JMM) approach and recent standardization

effort for the C++ MM [33], CoLoRS guarantees sequentially consistent semantics

only to programs that are properly synchronized (i.e. thosethat do not contain data

races). A data race occurs when multiple threads can access the same object field at the

same time and at least one of them performs a write.

Similarly to Java and C#, CoLoRS provides monitor synchronization. Monitors

provide mutual exclusion for threads and restrict re-ordering of memory accesses. Mon-

itor entry has load acquire semantics (downward fence) while monitor exit has store

release semantics (upward fence). Full memory fence is not supported in CoLoRS

(following Java and C# design) – a pair of downward and upward fences does not con-

stitute a full fence. In CoLoRS, monitors are fault-tolerant:if a VM dies while holding

a monitor, subsequent acquisitions of this monitor do not result in a deadlock or access

to corrupted data, but throw a runtime exception before entering a critical section.

Like the JMM (and unlike the C++ MM), CoLoRS must guarantee basictype- and

memory-safety even in the presence of data races. Therefore, in CoLoRS, all pointer

stores and loads are always safe (even with data races). Thisproperty is relatively easy

to implement (an aligned machine-word-wide load/store is atomic on most architec-

260

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

tures). This property is not strictly necessary for type-safety in case of primitive values,

like integer or float, and therefore CoLoRS does not guarantee it for non-pointer fields.

Operations like shared class creation or dynamic field addition are always thread-safe

because they are rare and can be internally protected by a lock.

Note that CoLoRS MM avoids many of the complexities of the JMM bysupporting

only instance field sharing (no statics, no methods, no constructors) and ignoring field

modifiers likefinal andvolatile. Unlike C++ MM, CoLoRS MM does not support

atomic operations and thetrylock functionality, which simplifies the model signifi-

cantly.

7.2.5 Monitor Synchronization

The CoLoRS synchronization mechanism is an adaptation and simplification of

extant, commonly-used schemes, which are inadequate for CoLoRS because of their

complexity, tight integration with VM services, and reliance on the ability to stop all

the threads.

State-of-the-art high-performance VMs, like HotSpot JVM,use biased locking [135]

to avoid atomic CAS operations in the common case. However, biased locking requires

safepoint support – it occasionally needs to stop all the threads to recover from its

speculative behavior. Safepoints are needed for bias revocation (when a thread must

manipulate the stack of the current bias owner) as well as forbulk rebiasing (to walk all

261

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

thread stacks to search for currently held monitors). One ofthe design goals in CoL-

oRS is to avoid stopping all VMs at once – such system-wide safepoints are inherently

unscalable and introduce lengthy pauses. Therefore, biased locking is not suitable for

CoLoRS.

Another commonly-used locking scheme is lightweight locking [135], which strives

to avoid using OS primitives in the common case by relying on atomic CAS opera-

tions. We have investigated the efficacy of this approach andfound that in modern

OSes that provide futexes (fast user-mode locking primitives), lightweight locking per-

forms worse that an OS mutex. In older OSes, OS-backed synchronization was slow

because it required kernel entry/exit. Linux implements futexes that in the uncontended

case perform one atomic CAS in user-mode for each pair of lock and unlock opera-

tions. In contrast, lightweight locking needs two atomic CASes [135] per uncontended

lock-unlock pair. We have compared the performance of pthread-based locking and

lightweight locking in the uncontended case. We measured the time needed to do one

lock and one unlock. Our results show that lightweight locking is slower: on a dual-

core Intel Core2 by 31%, and on a quad-core Intel Xeon by 45%. Therefore, we have

designed CoLoRS to use OS primitives (POSIX mutexes based on futexes) directly.

Most extant monitor implementations (e.g. HotSpot JVM) reserve a word in the

object header to assign a lock pointer to an object once a lockis needed. The presence

of such a pointer leads to significant design complexity in extant systems because once

262

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

the pointer is set, one can only clear it when all threads are stopped or the object has

become unreachable. CoLoRS does not ever stop-the-world (halt/safepoint all threads

in the system), hence we take a different approach.

Instead of using a pointer to a monitor, we hash the object address (shared objects do

not move in CoLoRS) into a fixed-size table of monitors kept in shared memory. Since

few objects are used as monitors at a time, it is unlikely thatmultiple simultaneously-

locked objects will ever hash to the same monitor-table entry (i.e. hash conflicts are

rare). To avoid deadlocks and decreasing concurrency level, we detect conflicts in the

hash table and use a collision chain to ensure that each object gets a unique monitor.

Hash-based locking is also used in GCJ [69] (GNU static Java compiler) in order to

reduce the object header size. GCJ, however, uses both light-and heavy-weight locks.

We use mutextrylock() to avoid blocking the acquiring thread in case there is a con-

flict in the lock-hash-table. We also tag lock-hash-table entries with an object pointer,

once a lock is successfully acquired via mutextrylock(). Each thread locking object

O first checks if a hash-table entry is tagged with O. If so, thethread proceeds to mu-

tex trylock(). Otherwise, if the entry is tagged with P != O, we re-hash to find another

entry. If there is no tag there, we proceed to mutextrylock(). Dead-object tags are

cleared asynchronously by GC – for each conflict chain, GC creates and locks a new

untagged chain entry, thus temporarily stopping chain expansion (all threads will block

on mutextrylock() in that GC-created entry). GC then clears the dead tags in the chain,

263

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

and finally, notifies the blocked threads to repeat their locking from scratch (the re-do

flag is set on the GC-created entry and the GC releases the mutex).

The above synchronization scheme can be transparently integrated into Java based

on Java monitors. Python does not support the monitor abstraction (locks are not asso-

ciated with objects) and therefore needs to be extended withdedicated API for monitors

(similar to Java).

7.2.6 Garbage Collection

Since CoLoRS targets multi- and many-core systems and avoids system-wide safe-

points, the most appropriate GC algorithm for shared objects is parallel (i.e. using

multiple GC threads), concurrent (i.e. performing most work without stopping the

application), and on-the-fly (i.e. stopping at most one thread at a time) GC. In addi-

tion, CoLoRS needs a non-moving, mark-sweep-style GC becausesome runtimes (e.g.

Python) assume that objects do not move and other ones (e.g. Mono for C#) use con-

servative stack scanning.

We have found extant on-the-fly mark-sweep GCs to be unsuitable given the CoL-

oRS architecture and requirements. Therefore, we have designed a variation of snapshot-

at-the-beginning (SATB) GC, which is parallel, concurrent, and on-the-fly.

264

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

The state-of-the-art in on-the-fly GC systems include thosethat employ the Doligez-

Leroy-Gonthier [60] algorithm and its extensions by Domani et al. [61, 62] for genera-

tional heap layout and multiprocessors without sequentialconsistency.

State-of-the-art, snapshot-based, on-the-fly GC algorithms require multiple (three to

start the collection cycle) system-wide handshakes with all the threads. The mutators

must check whether they need to respond to handshakes regularly during their normal

operation. For scalability, we designed CoLoRS to work at the granularity of VMs,

not individual threads. The handshakes would require keeping track of all threads in

all VMs. In addition, we do not want to require VMs to implement the per-thread

handshake-polling mechanism, as it is not generally supported in VMs.

A design goal of CoLoRS GC is to abstract away private VM memory management

to one operation: shared root report, without imposing any specific implementation

details. As a result, we have designed an on-the-fly GC that does not use handshakes

and works at the VM level (not thread level). In addition, theCoLoRS GC is simpler

(as it does not have any phase transitions) and guarantees termination (some previous

algorithms unreliably depend on the relative speed of the collector and mutation rate

for termination).

CoLoRS uses thread-local allocation buffers (TLABs) to reduceallocation cost.

Each thread performs bump-pointer unsynchronized allocation in its own TLAB. Once

the TLAB is exhausted, it is retired, and the thread requestsa new one. VMs request

265

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

TLAB- and large-object-allocation directly from the objectspace. The freelist contains

all unallocated blocks whose size is at least the TLAB size. The freelist is protected by

a lock.

GC Algorithm

Our GC comprises four concurrent phases: flag clearing, rootreport, marking, and

sweeping. The CoLoRS server initiates a new GC cycle as soon as the heap usage

crosses a specified threshold. The main GC thread is awoken byan allocating thread

once this happens. CoLoRS GC imposes no pauses. If a VM is capable of reporting

shared roots without causing internal pauses (e.g. as Python can), then the system never

needs to pause any threads.

Flag clearing. The main GC thread first clears all GC-related flags in the heap.This

operation is fully concurrent. Each object has three GC flags: pending (i.e. it needs to

be recursively marked), marked (i.e. it has been recursively marked), and recent (it has

been recently allocated).

Unlike in extant SATB GCs, in CoLoRS, the snapshot mode is activeall the time.

This simplifies the algorithm as it avoids complex state transitions and handshakes. The

snapshot mode means that all objects are allocated live (i.e. with the recent flag set) and

mutators use a write barrier: on pointer stores they mark theoverwritten pointer as live

266

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

(i.e. they set the pending flag). When GC scans a live object it sets its marked flag.

During the flag-clearing heap scan, the main GC thread also computes a fully-balanced

heap partitioning that is used later on for parallel scanning. The key system invariant

is that it is always possible to sequentially scan all blocksin the heap, without any

synchronization. We carefully design allocation procedures so that we do not break

this invariant.

GC flag clearing has a similar effect to activating the snapshot mode from scratch

in other algorithms, but does not require handshakes. Once GC flags are cleared, the

main GC thread requests root dumps from all attached VMs.

Root report. Each VM must be able to identify pointers into shared memory in its

private heap/stacks in an efficient way. In VMs using tracingGC this is straightforward

– we either scan the whole heap (non-generational GC) or use a card table (generational

GC). In the latter case (e.g. in Java), we extend the card tableso that we can quickly find

not only pointers from the old generation(s) to the young generation but also pointers

from the old generation(s) to shared memory. To report shared roots in this case, we

simply trigger a fast minor collection and efficiently find all pointers to shared memory.

In VMs which use reference counting GC (e.g. cPython), CoLoRS can track shared

roots as they are created and destroyed, thus being able to report them any time without

any processing. For each shared reference, we create a smallproxy object in private

267

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

memory with reference count set to one. Once the proxy objectbecomes unreachable

(which we know immediately thanks to reference counting) wereclaim it and forget the

shared root. Note that only private references can exist to the proxy object since there

are no shared-to-private pointers.

CoLoRS requests roots from each VM and waits until all reports arrive. To report a

shared root, a VM sets the object’s pending flag. To ensure store visibility, a memory

fence takes place on both sides once the reporting completes. CoLoRS does not use

timeouts because it detects VM termination in a reactive wayvia TCP/IP sockets. Ter-

mination is noticed right away and the exited VM is removed from the waiting-for-roots

list.

Marking. As soon as all roots are reported, the main GC thread initiates parallel, con-

current marking done by several worker GC threads. Each worker thread scans its own

heap partition looking for pending objects, and recursively marks them using depth-

first search. To ensure dynamic load balancing during marking, worker GC threads

employ randomized work stealing. GC threads use barrier synchronization to meet at

subsequent GC phases.

Once first marking completes, the main GC thread enters a loop. During each iter-

ation, CoLoRS performs parallel, concurrent marking from pending objects. However,

this time it stops marking the object graph once its sees an object with the recent flag

268

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

set. The loop terminates when no new objects have been marked. Stopping marking on

recently-allocated objects guarantees GC termination – there is a finite number of “old”

objects in the heap when the GC starts, and all the newly-allocated objects are being

flagged as recent. Therefore, GC must finish in a finite number of steps.

This scheme is correct because after the 1st iteration, a recently-allocated object

cannot have a pointer to an object that is live but otherwise unreachable and invisible

to GC (and thus it cannot be incorrectly left unmarked). Notethat such a situation may

occur during the first marking pass, which marks from the VM roots. Our snapshot

write barrier (SATB WB) does not capture root pointer updates –it only captures heap

stores. Suppose that rootr points to objectO, and a new objectN is allocated having

its only pointer set toO. If root r is later updated to point toN , we end up with a

newly-allocated objectN that has a pointer to a live objectO that is reachable only

throughN . The reason for this is that we do not notice root updates. Such a situation

is impossible from the second marking on, as during 2nd and subsequent markings we

ignore roots and mark from the pending flags only (i.e. from heap objects that are

protected by SATB WB). Reconsidering our example in the heap context: objectO is

marked as pending onr update, and will be marked/scanned even if we stop marking

on objectN (which has its recent flag set).

269

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Sweeping. As soon as the marking loop terminates, CoLoRS moves on to concur-

rent, parallel sweep. Each worker GC thread scans its heap chunk trying to find the

first potentially-free (candidate) block. This scan is donewithout synchronizing with

mutators that are actively allocating objects. Once a GC thread finds a candidate block,

it acquires the freelist lock and continues the scan as long as it encounters reclaimable

blocks. Finally, it removes all found dead blocks from the freelist and inserts one coa-

lesced block into the freelist. The GC thread releases the freelist lock and looks for the

next candidate block. Our GC-mutator contract guarantees that all block headers are

always parsable.

7.2.7 Implementation Details

CoLoRS can work under any OS that supports adequate IPC functionality. We have

implemented CoLoRS in HotSpot JVM 1.6 and cPython 3.1 under Linux.

The first step in the process of extending a VM with CoLoRS support is to determine

the VM object/class model, its relationship to the CoLoRS OM, memory management

(GC) algorithm(s), and operations that use objects, typically field access, method calls,

synchronization, etc. Next, we define type mapping for builtins and user-defined types,

and add any runtime extensions (such as multiple inheritance) to support it. The next

step is heap access virtualization which amounts to extending an interpreter, a JIT com-

piler, or both, to provide a separate control path for handling shared objects. Depending

270

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

on a VM, other components may need similar extensions, e.g. the GC subsystem. Typ-

ically, we must intercept all program instructions that read/write heap objects. Next,

we insert calls to the CoLoRS API along the newly added control paths. This step

translates VM-specific operations into VM-neutral operations (e.g. getting an attribute

by name into getting a field by offset). Lastly, we add GC runtime support – we im-

plement a dedicated CoLoRS thread and the shared-root-dump operation in the private

GC system.

7.2.8 Shared Memory Layout

The CoLoRS shared memory segment contains three spaces: metadata, classes, and

objects. The objects space is a garbage-collected mark-sweep heap with TLAB/free-

list allocation. The classes space is a bump-pointer space for immortal objects that

contains shared classes, class version lists, and registered object repositories/channels.

The metadata space contains pointers to all builtin types (in the classes space), pointers

to the repositories/channels hash tables (mapping names torepositories/channels), a

pointer to class versions hash table (mapping names to classversion lists), as well as

user-level monitors, internal system locks, the freelist head, space usage statistics, and

the bump-pointer top (for the classes space).

Each CoLoRS monitor has its POSIX mutex and condition variable. We use the

PTHREAD PROCESSSHARED flag to make the POSIX mutexes and conditions work

271

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

across OS processes. In addition, monitors use the recursion count (to avoid re-locking

by the same thread) as well as owner ID (VM ID plus thread ID).

The CoLoRS server maintains additional state (metadata) in private memory to

manage GC threads, and to track the attached VMs. For each attached VM, there is

a dedicated monitoring thread, which detects VM termination using an open TCP/IP

connection to a VM. On VM termination, the monitoring threadreceives an error when

reading from a closed socket. Note that OS-level IPC (e.g. sockets) is the only reliable

way of detecting process termination without resorting to timeout/keep-alive solutions.

This is because in Unix systems certain signals (e.g. the KILL signal) cannot be inter-

cepted.

We group class versions into lists based on their name. Object repositories/channels

and classes are permanent entities – we do not collect them asthey are small and

reusable. Object repositories/channels are treated as GC roots during GC.

GC flags are implemented as one-byte-wide fields because of concurrent access.

We assume that writes issued by a particular thread are visible to other threads in the

order they are issued (sequential consistency guarantees this).

The objects space is a contiguous sequence of blocks. Each block can be an object, a

free chunk (part of the freelist), or a TLAB. The block header contains two fields: block

length and block type. This enables quick traversal of the heap without parsing actual

objects – a key property for our concurrent GC. TLAB blocks contain an owner ID,

272

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

which identifies the VM that is currently using the TLAB. This enables us to reclaim

TLABs orphaned by asynchronously terminated VMs.

To provide transparent object sharing, CoLoRS intercepts allVM operations that

access heap memory. To efficiently check whether an object isshared, CoLoRS uses a

constant border between private and shared area in the virtual memory. Each memory-

related operation, such as field access, compares the pointer value against this constant

border.

7.2.9 HotSpot JVM

In static runtimes with high-performance, adaptively optimizing compilers, border-

checks may be expensive as they make the intermediate code larger and more difficult

to optimize. Therefore, in our CoLoRS implementation in the HotSpot JVM server

compiler, we compile methods in two modes: CoLoRS-aware and CoLoRS-safe. The

CoLoRS-aware mode is used for methods in which shared memory has been deter-

mined (via profiling during interpretation) to be commonly-used. For such methods,

border-checking overhead and the additional code that handles the shared pointers are

acceptable.

The remaining methods (a vast majority in practice) are compiled in the CoLoRS-

safe mode, where private pointers are the common case. The CoLoRS-safe methods

contain only the minimum number of border-checks needed to take a trap on shared

273

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

pointers. Such traps deoptimize the method and recompile itas CoLoRS-aware, run-

ning the method in the interpreted mode in the meantime. The CoLoRS-aware methods

use fast upcalls to C to handle shared pointers (CoLoRS is implemented in C). If fast

upcalls fail (e.g. because class loading is needed), we bailout to the interpreter.

In CoLoRS-safe methods, we combine null checks with shared-border checks. As-

suming that shared memory area is at lower virtual addressesthan the private area,

checking if a pointer is below the border detects both NULL pointers and shared point-

ers. If the check passes, we trap to the interpreter, which finds the actual cause of a trap

itself (the trap cost is not a problem as it is the uncommon case path). In CoLoRS-aware

methods we guard virtual method calls to prevent calling into a CoLoRS-safe method

with a shared receiver (such calls need a trap). CoLoRS-safe methods must translate

user-provided null checks into null-and-border checks to avoid eliding border checks

along with null checks.

We also perform approximate data flow analysis which conservatively computes all

methods which can operate on a pointer to a shared object. Theanalysis exploits the

fact that shared pointers can only be produced by the methodsfrom the CoLoRS API.

We dynamically and incrementally build the call graph as classes are loaded. In the

graph, nodes represent methods and there is an edge from nodem to n, if methodm

can pass/return a reference to methodn. In case of interface methods, we have addi-

tional edges leading to all implementors of a particular method. We divide all loaded

274

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

methods into two classes: private and potentially-shared.Private methods can never

reach shared objects. If any potentially-shared method contains theputstatic byte-

code, then we assume all methods containing thegetstatic bytecode to be potentially-

shared. Otherwise, if a method is reachable from a potentially-shared method in the

call graph, that method is also considered potentially-shared. Potentially-shared meth-

ods are compiled as either CoLoRS-aware or CoLoRS-safe, depending on the profiling

data. Private methods do not contain any instrumentation. If class loading makes a

previously-private method potentially-shared, we make the method non-entrant and re-

compile it.

CoLoRS intercepts all bytecode instructions that access objects in the heap (both

fields and object header): putfield, getfield, arrayload, arraystore, invoke, monitor-

related ones, arraylength, and objectclass. We extend the HotSpot template interpreter

and the server compiler (both targeting amd64). In addition, we virtualize the HotSpot

runtime written in C (biased locking, GC, class loading, JNI,JVM, JMM, JVMTI).

Several internal classes are not allowed to be in instantiated in shared memory (e.g.

Thread, ClassLoader) – they are VM-specific and do not make sense in the context of

other VMs.

275

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

7.2.10 cPython Runtime

We virtualize shared objects via private proxy objects, each containing a forwarding

pointer to a shared object and a normal Python header (comprising private type and a

reference count). This design choice is dictated by the factthat Python uses reference

counting GC and CoLoRS uses tracing GC (so there is no referencecounts in shared

object headers). The cost of one level of indirection is compensated by the fact that

we do not need to perform type mapping on each shared object access – proxy objects

have their private type computed once. All proxy objects have the same size and are

bucket-allocated in a dedicated memory region (for fast border checks). Deallocation

takes place once a reference count drops to zero. Thus, the number of proxies never

exceeds the number of private-to-shared pointers. Findingshared roots in such a setting

is fast and amounts to a linear scan of the proxy object region.

Proxy objects also simplify Python runtime virtualization, as the Python interpreter

dispatches basic operations such as field access, method call, and operator evaluation,

based on object type (note that proxies already have the proper private type set). We

provide a new private type for each builtin shared type, and the interpreter automati-

cally invokes the right implementation (shared/private).Python VM allocates only one

global TLAB because the interpreter is single-threaded andsimulates multi-threading

by context-switching between program threads. The Python runtime component most

276

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

complex to virtualize are standard libraries and builtin types, which provide rich, com-

plex interfaces (e.g. for sorting, concatenation, set algebra, etc).

7.3 Experimental Evaluation

An important practical use case for CoLoRS is improving communication perfor-

mance of RPC in the co-located case. We evaluate CoLoRS in this context because

there are cross-language RPC frameworks, such as CORBA, Thrift, Protocol Buffers,

and REST, to which we can compare. CoLoRS, however, provides significantly more

functionality over extant cross-language RPC systems by enabling direct, type-safe,

and transparent object sharing.

We compare CoLoRS-based RPC against extant RPC frameworks in terms of com-

munication performance (i.e. latency and throughput). We also evaluate end-to-end

server-client performance (response time and transactionrate) for two applications:

Cassandra and HDFS. Finally, we measure the overhead of CoLoRS in programs that

do not employ shared memory, using standard community benchmarks for Java and

Python.

277

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

7.3.1 Methodology

Our experimental platform is a dedicated machine with a quad-core Intel Xeon and

8GB main memory. Each core is clocked at 2.66GHz and has 6MB cache. We run

64-bit Ubuntu Linux 8.04 (Hardy) with the 2.6.24 SMP kernel.

We use HotSpot JVM from OpenJDK 6 build 16 (April 2009) compiled with GCC

4.2.4 in the 64-bit mode. Our configuration employs the server (C2) compiler, biased

locking, and parallel GC (copying in the young generation and compacting in the old

generation). For the Python runtime we use the open-source cPython 3.1.1 (released

August 2009) compiled with GCC 4.2.4 in the 64-bit mode.

To measure CoLoRS overhead in Java, we use DaCapo’08 and SPECjbb (’00 and

’05). We set the heap size to 3.5x the live data size so that GC activity does not dominate

performance and so that we capture all sources of overhead. We use the default input

for DaCapo and 5 warehouses, with 90s runs, for SPECjbb.

In Python, we evaluate CoLoRS overhead using PyBench (a collection of tests that

provides a standardized way to measure the performance of Python implementations),

a set of Shootout cPython benchmarks (from [49]), and PyStone (a standard synthetic

Python benchmark).

In all experiments, we repeat each measurement a minimum of seven times. For

experiments that employ shared memory, we perform sufficient iterations to guarantee

278

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Thruput in calls/ms; CoLoRS/RPC in parenthesis
RPC boolean integer float string

CORBA 173.22 (11) 82.67 (26) 83.20 (27) 75.96 (15)
ProtoBuf 31.73 (59) 30.98 (70) 34.32 (65) 26.43 (43)

REST 23.17 (81) 22.45 (97) 21.89 (102) 22.94 (50)
Thrift 237.04 (8) 283.23 (8) 274.37 (8) 149.08 (8)

CoLoRS 1876.08 (1) 2175.32 (1) 2231.45 (1) 1144.87 (1)

Table 7.2: Throughput for the microbenchmarks for builtins. For each data type,
we show the throughput in calls per millisecond; in parentheses, we show the CoL-
oRS/RPC throughput ratio.

that GC is performed by CoLoRS. We report average values. The standard deviation is

below 5% in all cases.

CoLoRS reserves 256MB in shared memory for objects and 64MB forclasses. We

use 32KB TLABs, and 2 parallel GC threads. In each experiment,we employ two

co-located runtimes: Python and Java. Whenever running an unmodified (CoLoRS-

unaware) JVM, we set its heap size to 300MB so that its privatememory is comparable

in size to the shared memory.

Note that our results underestimate CoLoRS potential since weimplement CoL-

oRS in Python 3.1 and compare its communication performance with RPCs running on

Python 2.6. This is because the RPC frameworks that we use havenot yet been ported

to Python 3.1. To quantify this difference we evaluate the performance of Python 3.1

relative to Python 2.6. The last column in Table7.7shows the overhead of Python 3.1

relative to Python 2.6 across our set of benchmarks. On average, Python 3.1 is slower

by 20%.

279

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Thruput in calls/ms; CoLoRS/RPC in parenthesis
RPC tree:1 tree:2 tree:3 tree:4

CORBA 14.67 (13) 4.68 (15) 1.83 (17) 0.86 (17)
ProtoBuf 2.85 (68) 0.88 (78) 0.36 (85) 0.17 (91)

REST 8.73 (22) 2.66 (26) 0.91 (34) 0.31 (49)
Thrift 15.38 (13) 4.27 (16) 1.80 (17) 0.87 (17)

CoLoRS 193.66 (1) 68.61 (1) 30.61 (1) 15.08 (1)

Table 7.3: Throughput for the microbenchmarks for user-defined types.For each data
type, we show the throughput in calls per millisecond; in parentheses, we show the
CoLoRS/RPC throughput ratio.tree : n means the type is a full binary tree of depthn.

Latency in ms; RPC/CoLoRS in parenthesis
RPC boolean integer float string

CORBA 0.62 (14) 0.65 (19) 0.62 (14) 0.63 (14)
ProtoBuf 0.22 (5) 0.31 (9) 0.21 (5) 0.23 (5)

REST 3.89 (90) 3.89 (113) 4.00 (89) 3.92 (90)
Thrift 0.09 (2) 0.10 (3) 0.11 (3) 0.12 (3)

CoLoRS 0.04 (1) 0.03 (1) 0.04 (1) 0.04 (1)

Table 7.4: Latency for the microbenchmarks for builtins. For each datatype, we show
the latency in milliseconds; in parentheses, we show the RPC/CoLoRS latency ratio.

Latency in ms; RPC/CoLoRS in parenthesis
RPC tree:1 tree:2 tree:3 tree:4

CORBA 0.68 (17) 0.82 (15) 1.13 (17) 1.92 (19)
ProtoBuf 0.55 (14) 1.32 (23) 2.90 (44) 6.02 (58)

REST 4.07 (101) 4.80 (85) 7.35 (111) 9.94 (96)
Thrift 0.19 (5) 0.35 (6) 0.74 (11) 1.38 (13)

CoLoRS 0.04 (1) 0.06 (1) 0.07 (1) 0.10 (1)

Table 7.5: Latency for the microbenchmarks for user-defined types. Foreach data
type, we show the latency in milliseconds; in parentheses, we show the RPC/CoLoRS
latency ratio.tree : n means the type is a full binary tree of depthn.

280

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

7.3.2 CoLoRS Impact on Communication Performance

We first evaluate the performance potential of CoLoRS-based RPCusing communi-

cation microbenchmarks with a range of message types and sizes. We implement equiv-

alent microbenchmarks using RPC frameworks for CORBA, Thrift,Protocol Buffers,

and REST. We compare RPC latency and throughput (call rate).

For the implementation of the microbenchmarks, we use a Python client and a

Java server. Whenever possible we employ RPC methods with fully symmetric in-

put and output (i.e. returning a data structure similar to the data structure passed in

as an argument). This ensures that the server and the client exercise data structure

(de-)serialization in a symmetric way.

To evaluate RPC throughput, we vary method input/output sizebetween 1 to 1024

units and measure mean time per method call. Next, we use least-squares linear regres-

sion to compute throughput from the coefficients in the equation time = latency +

size/throughput. We calculate latency as the mean time needed per call for unit in-

put/output. We employ this methodology because we have observed that for small input

sizes the functiontime(size) is sometimes non-linear and approximating it by a line

leads to an inaccurate latency estimation.

Each RPC method call takes a list as input and returns a list as output. List sizes

vary between 1 and 1024. For each list size we do 10 experiments and use their average

in the calculation above. We use several different objects as list elements, including

281

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Figure 7.3: Average execution time (in seconds) for CoLoRS (left) and CORBA (right)
experiments.

built-in primitive types (string, integer, float, and boolean) and user-defined types. For

the latter we employ binary trees, the depth for which rangesbetween 1 and 4 levels,

and each node contains 4 primitive fields. This enables us to investigate both shallow-

and deeply-linked data structures. The above choice is alsodictated by the limitations

of extant RPC frameworks which support a small set of builtinsand do not support

recursive data structures. (Note that CoLoRS provides a richer and more flexible object

model than these RPC systems.)

We implement an RPC endpoint in CoLoRS as a message queue on whicha server

waits for messages (call requests). Each message is an object encapsulating input and

output. A client issues a call by allocating a message object(and the associated input) in

shared memory, enqueuing it, and notifying the server. The server removes the request

282

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

from the queue and generates the output in shared memory. Finally, the server notifies

the client that the result is ready (as the output field in the message object).

For all experiments, we report throughput as the number of calls per millisecond,

and latency in milliseconds. Due to space constraints, we only present timings graphs

that compare CORBA to CoLoRS. This data is shown in Figure7.3. The x-axis is

message size and the y-axis is time in seconds. This data is representative of all of the

RPC experiments. We summarize the latency and throughput of each below.

Table 7.2 and Table7.3 show throughput across all microbenchmarks and RPC

systems. We report both absolute values and relative improvement due to CoLoRS.

Table7.4 and Table7.5 use a similar format but presents results for our latency mea-

surements.

CORBA. The Common Object Request Broker Architecture (CORBA) [50] stan-

dardizes object-oriented RPC across different platforms, languages, and network proto-

cols. A client and a server use automatically-generated stubs and skeletons to (de)marshall

arguments and return values for methods specified in the Interface Definition Language

(IDL). To implement our CORBA benchmarks, we use theorg.omg.CORBA package

and theidlj compiler in Java and theFnorb module and thefnidl compiler in Python.

Our measurements indicate that, compared to CORBA, CoLoRS achieves 11–27 times

better throughput and 14–19 times lower latency.

283

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Thrift. Thrift is a framework originally developed at Facebook for scalable cross-

language RPC. Like CORBA, Thrift requires a language-neutral interface specification

from which it generates client/server template code. However, Thrift is simpler and

much more lightweight than CORBA. We use Apache Thrift version2008/04/11. Our

experiments show that CoLoRS improves throughput by 8–17 times and latency by 2–

13 times, over Thrift. We also find that Thrift achieves much better performance for

builtin types than for user-defined types.

Protocol Buffers. Protocol Buffers (PB) are a language-neutral, platform-neutral, ex-

tensible mechanism for serializing structured data, developed by Google engineers as

a more efficient alternative to XML [129]. To use PB, developers specify message

types in a.proto file, and a PB compiler generates data access classes that allow to

parse/encode objects into a bytes buffer/stream. We use PB version 2.2.0, which in-

cludes message parsers and builders but does not support RPC. Therefore, we imple-

ment RPC on top of PB by using PB serialization and communication over TCP/IP

sockets. We maintain a single TCP connection throughout eachexperiment. Each mes-

sage that we send from a client to a server, contains a method tag, message length,

and PB-serialized data structure (method input). CoLoRS improves the throughput of

PB-RPC by 43–91 times and latency by 5–58 times.

284

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

REST. REpresentational State Transfer (REST) [66] is a client-server architecture

based on HTTP/1.0 where requests and responses are built around the transfer of rep-

resentations of resources. REST provides stateful RPC by exchanging documents that

capture the current or intended state of a resource. Individual resources are identified

in requests by URIs. In our benchmarks, we define a single resource stored on a server

and identified byhttp://localhost:8080/db/items. A representation of this

resource is an XML document containing all stored items. Clients sendGET requests

to the resource URI, and parse the resulting XML document. This document contains

a varying number of items (1–1024), where each item is eithera primitive or a user-

defined object. We employ the Pythonrestful lib to implement the client and the Java

restlet (version 1.1.6) for the server. Relative to REST, CoLoRS throughput is 22–102

times higher and latency is 85–113 times lower. REST has the highest latency among

all of the RPC technologies that we investigate because of theverbose data format and

parsing overhead of XML.

7.3.3 CoLoRS Garbage Collection

We gathered basic GC statistics for our Java-Python microbenchmarks. The results

are similar across all the payloads that we use (described inthe previous section). Below

we discuss the experimental data obtained for 4-level binary trees.

285

http://localhost:8080/db/items

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

We set the GC triggering threshold to 70%. Average time between subsequent GC

cycles is 1458ms while average GC cycle time is 325ms (GC is active 18% of the

time). Note that GC runs concurrently in a separate process.The clearing phase takes

94ms on average (29% GC cycle). The root dump phase was 1.2ms on average (below

0.4% GC cycle). In the HotSpot JVM, each root dump request causes a STW pause

which averages at 0.8ms (with the maximum pause of 2.9ms). IncPython there is no

pauses. The marking phase takes 116ms on average (36% GC cycle). Two object graph

scanning iterations suffice on average (the maximum is 3). The sweep phase averages

at 113ms (35% GC cycle). The dominating GC phases are marking, sweeping, and

clearing, each taking around 1/3 of each GC cycle.

7.3.4 CoLoRS Impact on End-to-End Performance

To lend insight into the CoLoRS potential when used by actual applications, we

investigate two popular server-side software systems: Cassandra [2] version 0.4.1 and

HDFS [78] version 0.20.1. Cassandra is a highly scalable, eventuallyconsistent, dis-

tributed, structured, peer-to-peer, key-value store developed by Facebook engineers.

HDFS is the Hadoop Distributed File System – a file system server that provides repli-

cated, reliable storage of files across cluster resources. Both of these systems are em-

ployed for a wide range of web applications, e.g. MapReduce, HBase (open-source

BigTable implementation), email search, etc.

286

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Cassandra and HDFS both expose Thrift-based interfaces. These interfaces provide

a set of query/update methods which use relatively complex data structures (e.g. maps).

Query methods are natural candidates for in-memory result caching, recently a common

approach to scaling up servers (e.g. MemchacheD, MySQL cache). If caching is used,

then in the common case (i.e. on cache hit), server processing is minimal and therefore

communication constitutes a large portion of the end-to-end performance.

In systems with in-memory caching, CoLoRS can improve performance in two

ways. First, it can reduce RPC cost by avoiding serialization. Second, part of the

in-memory cache can be kept in shared memory – immutable objects such as strings

can be shared by multiple clients without the risk of interference. As a result, CoL-

oRS can provide copy semantics without actually copying data. To investigate both

these scenarios, we extend Cassandra and HDFS with in-memorycaches for particular

queries and evaluate the efficacy of using CoLoRS for these queries, on end-to-end per-

formance. Note that when caching is used, the benchmarks exercise not only copying

to shared memory but also frequent access to shared objects (which includes translation

overhead).

For Cassandra, we implement caching for theget key range query (parameterized

by table name, column family, start value, end value, maximum keys count, and con-

sistency level). The query returns a list of keys matching the given criteria. Updaters,

such as insert and remove, detect conflicting modifications and invalidate the cache ac-

287

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Figure 7.4: Average execution time (in seconds) for Cassandra (left) andHDFS (right)
vs. CoLoRS.

cordingly. The cache is kept on the server and maps inputs (serialized to a string) to

responses. Cached responses are partially in shared memory (strings are immutable).

Thus, CoLoRS has the potential for improving performance by avoiding serialization

and reducing copying overhead.

For HDFS, we implement an in-memory cache for thelistStatus call, which, given

a directory name, generates a list ofFileStatus objects, each describing file attributes,

name, owner, permissions, length, and modification time. The cache is a map from path

name to responses, which we partially store in shared memory. Cache invalidation hap-

pens on conflicting file system operations: create, append, write, rm, rename, mkdirs,

chmod, and chown.

288

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Throughput Latency
Server queries CoLoRS in App/

Application per ms /App ms CoLoRS
Cassandra 249.50 19 0.12 3

HDFS 12.03 20 0.19 3

Table 7.6: End-to-end performance for Cassandra and HDFS with caching.The third
and fifth column show number of times improvement due to CoLoRS for throughput
and latency, respectively.

Figure 7.4 presents the timing data for Cassandra and CoLoRS (left graph) and

HDFS and CoLoRS (right graph). The x-axis is message size and the y-axis is time

in seconds. We use this data to compute latency and throughput, which we summarize

in Table 7.6. Columns 2–3 show transaction rate (per millisecond) while Columns

4–5 present response time (in ms). We use one cache warmup iteration followed by

10 iterations during each of which we vary the query result size between 1 and 1024

entries. In each column group, we report measurements for the server without CoLoRS

and the relative improvement due to CoLoRS. For cache-enabledCassandra, CoLoRS

improves transaction rate by 19 times and reduces response time by 3 times. For cache-

enabled HDFS, CoLoRS improves transaction rate by 20 times anddecreases response

time by 3 times.

7.3.5 CoLoRS Overhead

To implement CoLoRS, we virtualize components of Java and Python runtimes.

This includes standard libraries, object field access, synchronization, method dispatch,

289

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Bench- Python 3.1 CoLoRS 3.1 Python 2.6
mark time (s) % OHead % Impr

binary-trees 6.79 3.39 -0.44
fannkuch 1.97 4.57 24.68

mandelbrot 15.32 7.18 66.52
meteor-contest 2.25 1.78 32.35

n-body 8.67 2.08 7.04
spectral-norm 14.31 5.73 18.85

pybench 3.92 5.20 1.18

pystone 4.09 5.87 12.98

Average 7.17 4.48 20.40

Table 7.7: The overhead of CoLoRS support for Python (and for the use of Python
v3.1 over v2.6). Column 2 is execution time in seconds. Column 3shows the percent
degradation due to CoLoRS. Column 4 shows the percent improvement in performance
when we use Python 2.6 (over 3.1).

interpreter, dynamic compiler, allocation, and GC. Doing soprovides transparency, but

introduces execution time overhead. To evaluate this overhead, we compare unmodified

release versions of Python 3.1 and Java 1.6 with their CoLoRS counterparts.

Table7.7 shows Python results. In Column 2, we report per-benchmark execution

times for unmodified Python 3.1. Next, in Column 3, we present the CoLoRS overhead

– percentage increase in execution times relative to Column 2. Across our benchmarks,

the average CoLoRS overhead is 4%. Note that scripting languages are not concerned

with enabling high-performance (they are interpreted and much slower than statically

compiled code).

Table7.8 shows the Java results. For each benchmark, we report its heap size and

execution time (for DaCapo – the top 11 benchmarks) or throughput (for SPECjbb),

290

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Bench- Heap ET CoLoRS Support
mark Size or TP % Overhead
antlr 7 2.40 8.4
bloat 28 6.34 6.3
chart 42 6.19 6.1

eclipse 115 24.54 4.7
fop 28 2.11 7.7

hsqldb 280 3.35 3.6
jython 3 8.35 4.5
luindex 7 7.50 9.0
lusearch 45 4.25 1.4

pmd 56 6.92 8.6
xalan 105 5.97 -0.6

jbb’00 900 112726 5.3
jbb’05 900 54066 1.3

Table 7.8: The overhead of CoLoRS runtime support for Java. Column 3 is execution
time (ET) in seconds for all but jbb’00 and jbb’05 for which wereport throughput (TP).
Column 4 shows the percent degradation due to CoLoRS.

and percentage CoLoRS overhead (Column 4). Across the benchmarks, the average

CoLoRS overhead is 5%.

7.3.6 Sockets vs. Shared Memory

We also investigate the relative performance of shared-memory-based transport

(SMTx) and local-socket-based transport (LSTx). This enables us to determine how

much performance improvement is due to the use of shared memory versus of sockets

and due to avoiding object serialization.

In this experiment, we extend the Thrift RPC framework for Java with SMTx and

compare it with the LSTx already built into Thrift (using ourmicrobenchmarks de-

291

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

scribed in Section7.3.2). We have implemented SMTx in Thrift on top of a bidirec-

tional FIFO channel in a shared memory segment and POSIX mutexes/conditions. We

focus on Java and Thrift here because of their high-performance characteristics.

We observe that Thrift over LSTx attains better throughput –the improvement

ranges from 1.7x (for the integer payload) to 3.2x (for 4-level binary trees) and averages

at 2.7x. At the same time, Thrift over SMTx has lower latency for small messages (by

up to 29% for the integer payload) and higher latency for larger payloads (by up to 0.8x

for 4-level binary trees), while averaging at 9% lower latency than Thrift over LSTx.

The fact that Thrift/LSTx achieves better overall communication performance than

Thrift/SMTx can be attributed to a more efficient sockets implementation (in the kernel)

than our shared-memory queue implementation (in user-land). In the kernel, there is

more control over memory mapping and thread scheduling, both of which can be used

to optimize sockets implementation (e.g. to reduce the amount of copying and thread

context switching).

Based on this experiment, we can conclude that CoLoRS improves throughput and

latency because it avoids serialization and not because it uses shared memory instead

of sockets.

292

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

7.3.7 Results Summary

CoLoRS can improve communication performance significantly when runtimes ex-

ecuting interoperating components (potentially written in different languages) are co-

located on the same physical system, compared to extant type-safe cross-language

RPCs (latency 2–113 times and throughput 8–102 times). In systems with short request

processing times (e.g. servers with caches) this improvement can translate to large end-

to-end performance gains (19–20x for transaction rates and3x for response times). As

more and more components are co-located on multi-cores and caches become prevalent

in servers, object sharing systems like CoLoRS have a growing potential for increasing

performance of multi-component, multi-language systems.

7.4 C/C++ Support for CoLoRS

The main challenges in implementing CoLoRS for unmanaged programming lan-

guages, such as C/C++, that provide no language/runtime support for automatic mem-

ory management, threading, concurrency, synchronization, and type reflection, are the

following:

• Guaranteeing type-safety for the objects in the shared memory while preserving

pointer arithmetic, unsafe memory accesses, and uncheckedtype casts (useful for

systems programming) in the private memory.

293

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

• Providing transparent access to private and shared objectsin terms of field load/store,

virtual dispatch, pointer and operator usage, builtin primitive types, and the stan-

dard library (STL, at least for string, map, list, and set).

• Extending the language runtime to include sufficient reflective information to en-

able implementation of class mapping, recursive object graph traversal/copying,

and dynamic field offset translation.

• Extending the memory management subsystem with support fortechniques typ-

ically used by modern managed runtimes, such as multithreaded allocation in

TLABs, precise root scanning, concurrent pauseless garbagecollection, etc.

• Providing monitor synchronization semantics in a form of a library and reconcil-

ing the CoLoRS memory model with the C/C++ memory model.

To address these issues, one can either modify the C/C++ compiler (e.g. gcc) or use

source-to-source C/C++ code translation. We have taken the latter approach because

it is simpler and provides portability across the C/C++ compilers. Before compiling

a C/C++ program that uses shared memory to an executable binary, CoLoRS trans-

lates the program source code into its CoLoRS-safe equivalent(by using pointer/field

wrappers, templates, and operator overloading).

294

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

7.4.1 Type Safety

To guarantee type- and memory-safety in the shared memory, CoLoRS intercepts

all pointer-based memory accesses as well as pointer arithmetic. Unsafe pointers to the

objects in the shared memory (produced for instance via pointer arithmetic or arbitrary

type casts) are disallowed. As soon as a program creates suchan unsafe shared pointer,

an exception is thrown. Although shared pointers cannot be manipulated, unsafe point-

ers in the private memory are allowed and normal pointer arithmetic still works for

them.

CoLoRS achieves memory safety by wrapping all pointers in the program source

code in an object and redefining pointer-related operators.Thus, the system can detect

all pointer manipulations and check that all pointers to shared objects are correct and

that there are no shared-to-private pointers.

For each local/global variable, function argument, and object field whose type isT*

we change the type toxptr<T>. Thexptr template class mimics pointer behavior

by operator overloading and implicit type conversion.

7.4.2 Transparency

Shared memory objects can be accessed only via pointers. Although C/C++ sup-

ports both pointer and value types, shared data cannot be used in a non-pointer context.

For example, assuming that we have pointerp of typeA*, expressions likep->name,

295

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

p->print() are allowed, however expressions like*p, p[2] are disallowed. The

reason is that a non-pointer context requires copying, and copying data from the shared

memory to private memory is not supported because of the potential ambiguity of type

mapping in CoLoRS (one-to-many mapping relationship, e.g. shared classinteger

maps to C/C++ int/char/long etc.) Another reason is that even if copying to private

memory worked, updates likep[2].name = NULL;, would be lost as they would

execute on private copies.

C++ references are not supported because obtaining a C++ reference to a shared

object requires going through a non-pointer context, e.g.A &r = *p;. Supporting

references would require substantial parsing/translation effort (to optimize away the

non-pointer context in cases where no actual copying is meant by the programmer).

CoLoRS uses C++ exceptions to signal errors (sharedmemoryexceptionis thrown

on error). In C++, type hierarchy does not have a single root (unlike java.lang.Object

in Java) and therefore the CoLoRS API relies on templates (the CoLoRS API functions

are generated for the types that actually use them instead ofhaving one implementation

for the root type).

Share-able classes may contain only builtin types and pointers. Integer builtins

(char, short, int, long, long long, and theirunsigned variations) map to

integer. Floating point builtins (float, double, andlong double) map to

296

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

float. C++bool maps toboolean. Additional predefined mappings exist for STL

string, list, set, andmap. Below, we show an example share-able C++ class.

class Person {
string *name;
double salary;
Person *manager;

};

Fieldsname andmanager are pointers because they are non-scalar.

C++ uses namespaces for identifier scope management. CoLoRS type mapping re-

lies on fully-qualified class names. In C++, CoLoRS builds fully-qualified class names

using subsequent nested namespaces and dot as a separator.

7.4.3 Programming Interface

The CoLoRS C++ API is equivalent to the CoLoRS Java API (i.e. it supports

repositories, copying to shared memory, direct allocation, pointer testing for being

private/shared, and reflection). CoLoRS adds the monitor synchronization API (lock,

unlock, wait, notify, and notifyall) because C++ lacks support for monitors in the lan-

guage. The memory model imposed by the synchronization API is consistent with the

C++ memory model (i.e. semantics is given only to properly-synchronized programs).

The CoLoRS API uses templates with generic code for user-defined classes and tem-

plate specializations for builtins.

297

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

7.4.4 Type Reflection

We extend the C++ runtime with reflective information becausethe C++ RTTI does

not support inspecting field types, inheritance hierarchy,and member functions. With

source-to-source translation, gathering reflection data is straightforward. While pars-

ing/translating a class definition, we collect typing information and emit it as soon as

the class is processed. For each field in a class we record its name, type, offset, and size

(the last two are necessary because when copying a private object to the shared memory

we need to read it field by field).

7.4.5 Pointers, Fields, and Pointers to Members

We virtualize pointers, fields, and pointers to members, using three main wrappers:

xptr for pointers,xfld for fields, andxoff for pointers to members. Thexptr

template class looks as follows.

template <class T>
class xptr {

T* forward;
long index;

};

The class contains the actual pointer (forward) and its index in the table ofxptr objects

(this table is used for garbage collection in the shared memory). Thus, wrapped pointers

are twice bigger than regular C/C++ pointers.

298

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Since C/C++ supports pointers to pointers,xptr objects might form a chain. For

exampleA** p, becomesxptr<xptr<A>>. The xptr class overloads pointer

arithmetic and implicit conversion to and fromT*.

Each non-static field is wrapped inxfld, a template class parameterized by field

type (T), field index (I), and the enclosing class type (H), asshown below.

template <class T, int I, class H>
class xfld<T, I, H> {

T value;
};

For our examplePerson class, the following field wrapping is generated by the trans-

lator:

class Person {
xfld<xptr<xlang_string>, 0, Person> name;
xfld<double, 1, Person> salary;
xfld<xptr<Person>, 2, Person> manager;
};

Note that in this case there is no space overhead (the actual field value is the only field

in thexfld wrapper).

Template parameters<T,I,H> are necessary to transparently implement field ac-

cess. Suppose that we executep->salary = 100; on a shared pointerp. This

invokes the assignment operator in thexfld wrapper. The implementation of this op-

erator must compute the actual receiver (shared object address), get the shared type of

the receiver, map this shared type to a local type, compute the shared field offset based

299

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

on the mapping, and do the actual field store. The holder (H) and index (I) parameters

are needed to compute the receiver (p - local offset(salary)) as well as to perform

type mapping.

Thexfld class overloads a number of operators to emulate regular field behavior

(arithmetic/comparison operators to support numeric/pointer fields, conversion to and

from T, assignment operators, etc.)

We use thexoff wrapper to support C++ pointers to fields in the shared memory.

The wrapper contains only the field index, as shown below.

template <class M, class T>
class xoff {

int index;
};

During translation, pointers to fields are replaced withxoff, e.g. int A::*p be-

comesxoff<int, A> p. For transparency, thexptr class defines the->* opera-

tor that takesxoff (xoff<int, A> in this case) as a parameter and returnsxfld.

Thexoff class has an implicit conversion from all potential pointers to fields (in this

case fromxfld<int, I, A> A::*p for all I used in A). Since C++ does not allow

the dot operator to be overloaded, we translate expressionslike a.*p into(&a)->*p.

300

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

7.4.6 Class Mapping and Loading

We maintain a mapping from shared classes to private classesas well as mapping

from full private class names to private classes. The latteris needed whenever an un-

mapped shared class is encountered (to find a private class for it by name). The former

is used during each field access/virtual call for offset mapping/dynamic dispatch emu-

lation.

We use STLmap to implement both mappings (by shared class and by full name).

Each entry in the by-shared-class mapping contains a private class pointer and a vector

for field offset mapping. This mapping is built dynamically,as classes are encountered

in the shared memory.

For performance reasons, each thread caches recently-usedmappings in thread-

local (POSIX TLS) partial copies of the two global maps. Thanks to this, mapping can

be done without synchronization in the common case. The global maps are consulted

only if the lookup fails in the cached maps.

7.4.7 Garbage Collection

CoLoRS GC requires each attached VM/MRE to report all pointers (roots) to the

shared memory on request. C/C++ does not have any mechanism forprecise stack scan-

ning, safepoints, and locating pointers in the heap. However, we can reuse thexptr

wrappers for finding all shared roots. To do that, we introduce the root table – allxptr

301

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

instances present in the private memory that wrap shared pointers are registered in the

root table. Threads bulk-allocate multiple root table entries to reduce synchronization

overhead. On construction, anxptr object registers itself in the root table, and on

destruction it deregisters itself. Thus, roots can be reported any time by scanning the

root table. The system uses a write barrier when registeringa shared pointer to ensure

that all pointers are captured even if a sequential scan (over the root table) misses a

root. The root dump is fully concurrent, we do not need to stopany threads (CoLoRS

GC imposes no pauses). This is consistent with the C/C++ programming model, where

there are no asynchronously-triggered pauses.

7.4.8 Virtual Dispatch

The C++ virtual call mechanism is based on a virtual table pointer present in each

object whose class has a virtual function. The C++ ABI mandatesthis pointer to be

the first word in an object. Dynamic dispatch in C++ first fetches the virtual table

pointer, then loads the function address from the table, andfinally calls the function.

We cannot use it directly on shared objects. However, we can reuse it by introducing

proxy objects. Proxy objects are created based on private classes. We first map a shared

class to a private class, then create a proxy object, performa C++ native dispatch on the

proxy, and finally statically call the right function for theoriginal (shared) receiver. For

example, suppose we have classAwhich defines a single virtual functionf, as shown in

302

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

the code fragment below. The translator replaces classA with its instrumented version

that has two additional functions.

// original code:
class A {
public:

virtual void f(int a) {
/* f code */

}
};

// generated code:
class A {
public:
virtual void f_xlang(int a) {

/* f code */
}
virtual void f_xlang2(int a) {

A* xlang_recv = xlang_fix_receiver(this);
xlang_recv->A::f_xlang(a);

}
inline void f(int a) {
if (not_in_shared_memory(this)) {

f_xlang(a);
} else {

XLangVTBLWrapper xlang_wrapper;
A* xlang_recv = xlang_receiver(this,

&xlang_wrapper);
xlang_recv->f_xlang2(a);

}
};

Note that the original functionf is no longer virtual, it is statically-bound and inlined.

In that function, we first check if we have to deal with a sharedobject. If not, we

simply proceed to a regular C++ dynamic dispatch on the current receiver. Otherwise,

303

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

we create a proxy object on the stack. This is accomplished bythexlang_receiver

function, which initializes both fields of the proxy object.

class XLangVTBLWrapper { // proxy
public:

void *vtbl_pointer;
void *shared_object;

};
template <class T>
T* xlang_receiver(T *t, XLangVTBLWrapper *w) {
w->shared_object = (void*)t; // receiver
// map shared type of t to local type lc
w->vtbl_pointer = lc->vtbl_pointer;
return (T*)w; // return the wrapper

}

The shared receiver (t) is stored in the proxy object for future use. At the same time,

we map the shared class oft to a private class. This private class is used to set up the

virtual table pointer (the first word) of the proxy object.

Once the proxy is initialized, we perform a normal C++ dispatch on it. After the

dispatch, we end up in thef_xlang2 function, where we restore the previously-saved

shared receiver and call statically the function that corresponds to the function we ended

up in.

Since most functions in C++ programs are static (non-virtual) we perform the above

transformation only for classes that have virtual functions. Determining if a function is

virtual requires walking up the class hierarchy, thereforeto simplify the translator we

conservatively find all virtual functions by name – if a specific name occurred earlier in

the context of a virtual function we assume that the functionis virtual.

304

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

To obtain a virtual table pointer for a private class (we needit to set up a proxy)

in a portable way, we create an object instance for each classwith virtuals, before

the program starts. To do that, we emit an empty constructor chain (for inheritance

and membership relationships) and call this empty constructor chain to silently (i.e.

without any side effects) instantiate and delete an object.We save the first word as a

virtual table pointer for later use.

7.4.9 Standard Libraries

We virtualize STLstring, list, set, andmap so that shared and private in-

stances of these classes can be used transparently. Our general approach is to implement

a wrapper class with the same API as the original class. Each API function first checks

whether a private or local implementation of the function should be used. For the pri-

vate case, we delegate to the wrapped instance. For instance, for std::string the

wrapper class is the following.

class xlang_string {
std::string value;

public:
size_t size() const {

if (not_in_shared_memory(this))
return value.size();

// shared implementation
} ...

};

305

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

The translator replaces allstd::string occurrences in the program source with

xlang_string.

7.4.10 Implementation Details

We use JavaCC, an open-source recursive-descent parser generator for Java that

supports variable look-ahead LL(k) grammars. We modify a publicly available ANSI

C/C++ grammar for JavaCC to implement a single-pass translator. The translator

builds no abstract syntax tree and mostly copies input to output. Occasionally, a se-

quence of tokens is buffered and processed together, for example to emit pointer/field

wrappers. While parsing the input, the translator gathers reflective information about

classes/fields, which is then emitted once a particular class gets fully parsed. The trans-

lator does not perform any syntactic/semantic correctnesschecks (we assume that the

input code compiles correctly because this can be easily checked before the translation

begins).

For efficient direct allocation in the shared memory and fastobject graph copying,

each private class has a pointer to a shared class that fully matches the private class.

This avoids repetitive class comparison/lookup.

The shared memory segment is mapped at a pre-defined address in virtual memory.

Thus, border checks are inlined comparisons with constants(macros) that the C/C++

compiler can regroup and optimize away.

306

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

Bench- CoLoRS CORBA Proto.-Buff. Thrift
mark Thr. Lat. Thr. Lat. Thr. Lat. Thr. Lat.

[call/ms] ms [rel.] [rel.] [rel.] [rel.] [rel.] [rel.]
boolean 18.47 19.97 1.69 5.51 3.04 2.19 5.59 3.21
integer 6.86 28.44 3.07 3.90 1.34 1.55 2.35 2.22
float 5.98 35.40 2.97 3.05 1.46 1.35 2.16 1.76
string 1.99 16.70 2.44 6.93 2.99 3.43 2.37 3.93
1-tree 0.61 29.30 1.54 6.72 1.46 2.55 1.96 2.48
2-tree 0.24 25.00 1.97 5.97 1.70 2.75 2.51 2.95
3-tree 0.11 19.92 2.16 11.25 1.85 4.33 2.78 4.63
4-tree 0.05 43.75 2.47 11.54 2.09 2.59 3.10 3.21

average 4.29 27.31 2.29 6.86 1.99 2.59 2.85 3.05

Table 7.9: Microbenchmark performance for CoLoRS, CORBA, Protocol Buffers,
and Thrift. Columns 2 and 3 show absolute throughput (calls per millisecond) and
latency (in milliseconds) for CoLoRS. Columns 4–9 show relative throughput degra-
dation and relative latency increase compared to CoLoRS (we report number of times
degradation/increase).

7.4.11 Experimental Evaluation

We compare the performance of CORBA, Protocol Buffers, and Thrift with the RPC

implemented on top of CoLoRS. We use a C++ client and a Java serverand employ the

same communication microbenchmarks and methodology as in our Python-Java experi-

ments. For the CORBA C++ client we use omniORB 4.1.4. We extend Protocol Buffers

with the TCP/IP transport and send the serialized messages using the TCPNODELAY

flag.

Table7.9 summarizes the results. We report per-microbenchmark throughput and

latency: absolute values for CoLoRS and relative values for CORBA, Protocol Buffers,

and Thrift (number of times throughput degradation and number of times latency in-

307

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

crease compared to CoLoRS). On average, CoLoRS throughput is better by 2x to 3x,

and CoLoRS latency is shorter by 3x to 7x. Among all RPCs, CORBA has the highest

latency and Thrift has the lowest throughput.

7.5 Related Work

CoLoRS is unique in that it supports type-safe, transparent, and direct object shar-

ing via shared memory between managed runtimes for different static/dynamic object-

oriented languages. To enable this, CoLoRS defines a language-neutral object/memory

model as well as a synchronization mechanism and concurrent/on-the-fly GC, all de-

signed specifically for multi-VM cross-language object sharing.

CoLoRS takes a top-down approach to object sharing. That is, weassume full iso-

lation between the runtimes via operating system (OS) process semantics and provide

a mechanism for object sharing within this context. Severalprevious systems [53, 10,

65, 115] took a bottom-up approach by executing multiple applications in a single OS

process and providing software-based isolation between them.

State-of-the-art systems that support type-safe, cross-language communication for

OO languages, such as OMG CORBA [50], Apache Thrift [143], Google Protocol

Buffers [129], SOAP, and REST, target distributed systems and rely on message-passing

and data serialization. CoLoRS differs from these systems in that it targets co-location

308

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

and transparent shared memory (as opposed to explicit message passing). Although

one can use CoLoRS to implement an efficient cross-language RPC for the co-located

case (similar in spirit to LRPC [26]), CoLoRS is more general than RPC systems and

differs from them in terms of both architecture and programming model.

XMem [160] provides direct object sharing between JVMs. XMem also takes a top-

down and transparent approach, but does not support sharingbetween heterogeneous

languages and requires global synchronization across runtimes (which CoLoRS avoids)

for such operations as garbage collection, class loading, shared memory attach/detach,

and communication channel establishment.

Systems supporting communication between isolated tasks within a single-language,

single-process runtime include Erlang [7], KaffeOS [10], MVM [53], Alta [11], GVM [11],

and J-Kernel [157]. These systems take a bottom-up approach which provides weaker

isolation (i.e. weaker protection guarantees than the CoLoRSapproach) and is more

complex to implement. Unlike CoLoRS, they replicate OS mechanisms within a single

OS process instead of leveraging existing hardware-assisted inter-process isolation.

Language-based operating systems also provide mechanismsfor communication

and interoperation between processes [138, 65, 89, 74, 96, 63, 27, 170, 94]. Such sys-

tems typically implement support for light-weight processes that share a single address

space and provide compiler support to guarantee type and control safety within and

between processes. To facilitate the latter, these systemsrequire that the components

309

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

(processes/tasks) be written in the same safe/checkable language. In addition, since

CoLoRS is not an operating system, it is significantly simpler.

Some concurrent languages provide direct support for inter-process communica-

tion between light-weight processes [8, 117, 63] written in the same language. The

key difference between these systems and CoLoRS is that they employ share-nothing

semantics for message-based communication whereas CoLoRS provides support for

direct object sharing when runtimes are co-located on the same physical machine.

CoLoRS is also distinct from distributed shared memory and single system image

runtimes for clusters such as MultiJav [41], cJVM [6], JESSICA [106], Split-C [51],

and UPC [64]. In contrast to them, CoLoRS provides a uniform cost for accessing all

objects (private and shared) and does not target distributed computing. These systems

provide sharing between code written in the same language, and focus on guarantee-

ing memory consistency and cache coherence for concurrent access to objects across

multiple machines.

7.6 Summary and Conclusions

CoLoRS provides cross-language, cross-runtime, type-safe shared memory for co-

located MREs. CoLoRS defines a language-neutral object/class/memory model for

static and dynamic OO languages, as well as an on-the-fly, concurrent GC and a mon-

310

Chapter 7. Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime
Memory Management Performance and Programming Model UsingShared Memory

itor synchronization mechanism both adapted and extended to support language- and

runtime-independent object sharing.

We implement and evaluate CoLoRS within runtimes for Python and Java. CoLoRS

imposes low overhead when there is no use of shared memory (4%for Python and 5%

for Java) due to virtualization of runtime services and libraries. An important use case

for CoLoRS is improving the performance of RPC protocols in the co-located case. We

have found that for microbenchmarks CoLoRS increases throughput by 8–102 times

and reduces latency by 2–113 times. CoLoRS improves the performance for the cache-

enabled Cassandra database and HDFS by 19–20 times for throughput and 3 times for

latency. In summary, CoLoRS enables type-safe, object sharing across OO languages

in a transparent and efficient way.

The text of this chapter is in part a reprint of the material asit appears in [164].

311

Chapter 8

Conclusion

In this dissertation, we investigate techniques for improving memory management

in multi-language, multi-runtime systems that co-locate multiple isolated components

on multi-core shared-memory architectures. Such systems are becoming increasingly

common because of a number of reasons. First, in order to enhance programmer pro-

ductivity, developers more and more often use high-level, type-safe, object-oriented,

and portable programming languages, and execute applications within managed run-

times. Second, to manage software complexity, architects typically divide systems into

multiple components, which execute in separate runtimes for resource and fault iso-

lation. Third, to reduce development time, each component is usually implemented

using the programing language that is most suitable to its functionality, dependencies,

and performance requirements. Finally, administrators increasingly co-locate multiple

components to utilize the resources of multi-core architectures and reduce the cross-

component communication overhead.

312

Chapter 8. Conclusion

The goal of our work is to improve the performance and programming model of

multi-language, multi-runtime systems deployed on multi-core machines by leveraging

OS support for memory management. We investigate new techniques for both intra-

runtime (object allocation and garbage collection) and cross-runtime (object sharing,

message passing, and remote procedure calls) memory management. More specifically,

we design, implement, and evaluate MRE extensions that enable better coordination

across the memory management subsystems in the OS kernel andin an MRE. These

extensions are described in detail in Chapters3–7 and leverage OS support for:

• Virtual memory. Since unreachable objects form large clusters in the heap, they

can be effectively managed at the granularity of virtual pages instead of individ-

ual objects. To improve the performance of intra-runtime memory management,

we develop two collectors, MC and YP, that exploit this statistical property and

use the OS virtual memory subsystem. MC leverages page remapping opera-

tions to implement partial compaction in virtual memory. Itunmaps individual

empty pages and maps them as a new contiguous region in virtual memory. As

MC moves dead space instead of live space, it avoids costly object copying and

pointer updates, which results in higher throughput and shorter pauses. YP lever-

ages the kernel page reference bits to estimate the percentage of the heap that is

reclaimable and guide the GC triggering mechanism accordingly to avoid unpro-

313

Chapter 8. Conclusion

ductive collections. This allows to reduce the number of GCs and thus increase

throughput and MMU.

• Shared libraries. We design and implement a portable and lightweight shared

library that enables integration of parallel and concurrent GC into existing or new

managed runtimes. The library decouples the GC implementation from MRE in-

ternals via a C interface. It improves intra-runtime memorymanagement in two

ways. First, by increasing MRE modularity, the library simplifies the program-

ming model for MRE developers. Second, by providing an efficient, optimized

GC implementation, it improves MRE performance.

• Shared memory. For cross-runtime memory management, we develop type-

safe, transparent object sharing that uses OS shared memorysegments and the

associated OS inter-process synchronization primitives.We investigate cross-

runtime sharing in a single-language (Java) and multi-language (Java, Python,

C++) setting. In both cases we virtualize such runtime services and components

as object allocation, GC, field access, method dispatch, monitor synchronization,

class loading, and system libraries. We find that direct object sharing increases

throughput and decreases latency by up to several orders of magnitude compared

to state-of-the-art type-safe cross-runtime communication protocols based on re-

mote method invocation and messaging that require object serialization. In addi-

314

Chapter 8. Conclusion

tion to improving performance, shared memory also enrichesthe programming

model by adding the ability of sharing that has not been available in managed

runtimes to date and that is more natural than explicit message passing for many

applications.

Detailed empirical evaluation of our MRE extensions shows that they enable perfor-

mance improvements both in intra-runtime (GC) and cross-runtime (inter-MRE com-

munication) memory management. In addition, they enhance the programming model

for both application and MRE developers through new communication primitives and

by simplifying MRE implementation through separation of concerns, respectively.

8.1 Contributions and Impact

In this section, we summarize our main contributions and discuss their impact. Our

primary contribution is improving performance and programming model of state-of-

the-art memory management within and across managed runtimes by better cross-layer

coordination, specifically OS support for MREs. Other contributions that we make

in this dissertation include reducing complexity and increasing modularity of MREs,

exploiting statistical properties exhibited by programs at runtime, developing better

techniques for garbage collection and direct object sharing, as well as leveraging recent

315

Chapter 8. Conclusion

hardware and software trends (multi-cores, co-location, large 64-bit address spaces,

etc.) to improve the efficiency of memory management systems.

The results of our research have appeared in the proceedingsof high-impact-factor

peer-reviewed conferences such as PLDI, ASPLOS, and OOPSLA. Type-safe, trans-

parent shared memory across different, static and dynamic languages has never been

investigated in the literature before. Besides their scientific impact, our contributions

have a significant practical value. MREs and type-safe languages with automatic mem-

ory management have become the major development platform for both applications

and systems. A wide array of software technologies today, ranging from deskside appli-

cations to enterprise middleware, rely on MREs for object-oriented languages, garbage

collection, and type-safe RPCs. Improving performance and programming model of

such systems deployed in production settings has the potential to impact many users

and developers.

Below we describe our key contributions in more detail and explain how they relate

to the specific techniques and systems discussed in Chapters3–7.

• Improved cross-layer interaction. We develop new ways of improving the in-

tegration of MREs with the underlying OS and making memory management

in MREs OS-aware. Our results demonstrate that MREs can significantly ben-

efit from more cooperative interaction with the lower-levellayers of the soft-

ware/hardware stack, while maintaining standard and portable MRE-OS inter-

316

Chapter 8. Conclusion

faces (e.g. system calls, kernel modules, shared libraries, IPC mechanisms, and

shared memory).

We identify new uses for the OS virtual memory support in MREs:MC (Chap-

ter 3) uses page (re)mapping for efficient compaction, YP (Chapter4) leverages

the page reference bits for accurate yield prediction, and XMem (Chapter6) ex-

ploits the level of indirection provided by virtual memory for double class map-

ping. XMem and CoLoRS (Chapter7) are the first MRE systems described in

the literature that integrate OS support for shared memory and inter-process syn-

chronization into a managed runtime for the purpose of type-safe object sharing

and coordination across different OS processes. GaS (Chapter 5) is currently the

only shared library with C/C++ linkage that encapsulates a concurrent, on-the-fly

GC for GC-cooperative runtimes.

• Significant performance increase.We contribute several system and algorith-

mic techniques that reduce the overhead imposed by paralleland concurrent GC

used in state-of-the-art MREs. Our experimental evaluationshows that these

contributions enable significant improvements in program execution time and/or

GC pause times (responsiveness). These performance gains are due to low-cost

page-based virtual compaction (MC), predicting and skipping unproductive col-

lections (YP), and integrating an on-the-fly low-pause library-based GC into an

317

Chapter 8. Conclusion

MRE (GaS). To date, page reference bits have not been used to optimize GC

triggering (YP is the first system to leverage them in this context).

In addition, we optimize RPC performance by introducing cross-MRE and cross-

language shared memory to avoid data structure serialization and copying in the

co-located case. We observe orders of magnitude improvements in throughput

and latency which translate to significant end-to-end performance gains. Presently,

CoLoRS is the only system that can speed up local RPC across different type-safe

languages.

• Enhanced programming model.To date, managed runtimes for safe languages

have supported only message passing and RPC as means of cross-runtime com-

munication. We enrich this programming model by providing the abstraction of

type-safe shared memory as an alternative. Cross-MRE object sharing has not

been investigated before and general-purpose languages have lagged behind the

OS IPC in the scope of supported primitives. Shared memory can improve per-

formance in the co-located case as well as it is a more naturalcommunication

mechanism and a system model for certain applications. One potential practical

use case is improving communication performance for cross-language RPC in

systems like backend servers at Google and Facebook that often co-locate differ-

ent components. Another possible application are server-side systems such as the

318

Chapter 8. Conclusion

Oracle database [119] that are increasingly written in safe languages and whose

architecture comprises a set of isolated OS processes and a shared memory seg-

ment. Multi-tiered enterprise web applications, which usemultiple languages

(e.g. PHP for the presentation layer, and Java/C++ for the database layer) and

run in independent runtimes can benefit from efficient local RPCs. HPC systems

using OO languages (C++, Java, etc.) and deployed on clustersof multi-core

machines can use object sharing as a lightweight message passing replacement

for co-located isolated worker processes.

Our contributions also improve the programming model for MREdevelopers.

Memory management is one of the most complex subsystems in managed run-

times. Providing state-of-the-art on-the-fly GC, notoriousfor its implementation

complexity, as a reusable library (GaS) reduces the development effort required

for building new or improving existing MREs.

• New memory management techniques and algorithms.To enable better cross-

layer memory management in the OS and MREs we developed a number of new

GC techniques. We designed them specifically for more cooperative GC-OS in-

teraction. This involved adapting extant algorithms and designing new ones, re-

moving dependencies on runtime services, as well as decoupling and abstracting

away the GC internals. Thus far, our GC systems have been usedby researches

319

Chapter 8. Conclusion

from Zurich, Switzerland, at the University of Salzburg andUniversity of Texas

at Austin, as well as at AMD Operating System Research Center inDornach,

Germany.

MC is the first nearly-one-phase compactor (other GCs that implement com-

paction have two or more phases) and uses one of the simplest algorithms (avoid-

ing object moving and pointer adjustment), which is equally-easy to employ in

both stop-the-world and concurrent GCs. XMem and CoLoRS use parallel and

concurrent GC that is adapted to work with isolated and scattered address spaces.

GCs in these systems delegate the root dump operation to the currently attached

managed runtimes. In addition, XMem and CoLoRS reduce the MRE-GC in-

terface to a minimum to avoid tight coupling and the resulting lack of fault-

tolerance. Both GaS and CoLoRS adapt the SATB GC algorithm by Doligez,

Leroy and Gonthier to decouple GC from the runtime services.This adaptation

introduces an additional phase and removes dependencies onglobal handshakes

and per-thread write barrier buffers. To the best of our knowledge, this is the sim-

plest and most decoupled on-the-fly GC published today. YP introduces a novel

GC triggering mechanism based on page reference bits whose adaptive prediction

is guided by the feedback from GC. YP is the first GC system that uses program

reference behavior to optimize the GC frequency and timing.

320

Chapter 8. Conclusion

• Type-safe object sharing across languages.When we started this dissertation

work, object sharing systems were either limited to a singlelanguage (mostly

Java) or to a single OS process (e.g. KaffeOS, MVM). In addition, the design

of most such systems was based on the top-down approach, which is complex,

provides weak software-only isolation, and duplicates OS cross-process resource

protection. Distributed shared memory systems (e.g. cJVM,MultiJav) not only

targeted one language but also focused only on optimizing the distributed proto-

cols while ignoring co-location. At the same time, OS support for shared mem-

ory, despite having been standardized and used in production for decades, was

neither exploited by managed runtimes nor exposed to application developers at

the level of abstraction matching the programming language. In consequence,

programs written in high-level languages had to rely on expensive message pass-

ing protocols and occasionally adjust the programming model to fit the available

abstractions.

Two our most important contributions, XMem and CoLoRS, significantly changed

the landscape of type-safe, cross-runtime and cross-language communication.

We took a different, bottom-up design approach and built lightweight shared

memory for OO languages that reuses extant IPC facilities and strong OS inter-

process isolation. CoLoRS is the first system that provides cross-language direct

sharing for co-located runtime processes. It addresses a number of previously-

321

Chapter 8. Conclusion

unexplored research questions and design tradeoffs pertaining to such aspects as

language-neutral object model and memory model, efficient support for dynamic

translation between language-specific and shared object layouts, type-safety in

hybrid static and dynamic type systems, and decoupled but transparent GC and

synchronization. CoLoRS is currently used by AppScale [44], a multi-language

distributed cloud system, to optimize communication between intermittently co-

located components.

• Reduced system complexity.While designing all the systems that we contribute

herein, we strived to leverage OS support not only to improveperformance and

enhance the programming model but also to reduce the complexity of subsystems

and services implemented by managed runtimes. A primary design goal of GaS

is to simplify MREs by decoupling GC as a library that exposes awell-defined

API. GaS adapts the SATB on-the-fly algorithm to avoid phase transitions, hand-

shakes, and signal polling, all of which complicate the GC implementation. MC

significantly simplifies concurrent compaction by moving (via remapping) dead

space instead of relocating live objects and fixing pointers. XMem uses double

page mapping to simplify dynamic class resolution and avoidintroducing a level

of indirection for dynamic dispatch and type reflection. CoLoRS leverages fast

mutex implementations in modern OS (based on user-mode atomic operations) to

simplify monitor implementation by obviating the need for lightweight locking.

322

Chapter 8. Conclusion

YP exploits dead object clustering and the OS page replacement mechanism to

avoid the complexity of heuristics used in extant systems and reduce the problem

of prediction to counting not-recently-referenced pages.

• Improved decoupling and modularity. The MRE extensions that we contribute

increase the MRE modularity by making the memory management subsystem

loosely coupled with the runtime internals. GaS decouples on-the-fly GC from

MREs via a simple C interface. The GaS library makes no assumptions about

the object model, threading support, dynamic compiler, andheap management

framework used by a managed runtime. Both GaS and CoLoRS remove the

dependencies of the SATB GC on global safepoints and conditional multi-state

write barriers. In addition, CoLoRS adapts the tightly-coupled lightweight and

biased locking schemes in order to separate out the monitor implementation from

the MRE. XMem and CoLoRS also modularize the GC by division of responsi-

bility: MREs implement the root dump operation while tracingand sweeping is

done by the shared memory server.

• Better leverage of statistical properties of programs.We develop and evaluate

the effectiveness of new uses for the widely-known statistical observation that

dead objects cluster together in the heap. This property underpins the design of

MC and YP. MC exploits clustering to implement fast partial compaction with a

323

Chapter 8. Conclusion

high degree of defragmentation. YP leverages clustering toestimate the percent-

age of the heap occupied by dead objects by exploiting the fact that dead clusters

are not referenced.

We optimize most mechanisms for the common case that we either establish ex-

perimentally or infer from well-known program properties.XMem and CoLoRS

implement TLAB allocation that avoids free-list access andthe associated syn-

chronization overhead for small-to-medium objects. CoLoRS optimizes method

instrumentation in the compiled code by assuming that most methods use only

private data. CoLoRS hash-based monitors exploit the fact that there are few con-

flicts in the table. GaS GC assumes that most mutations happento the recently-

allocated objects. CoLoRS object model is designed around theassumption that

dynamic field additions are relatively rare and thus most objects are allocated in

one contiguous chunk.

• Exploiting architectural advances to reduce design tradeoffs. One of our re-

search goals is to leverage recent hardware trends and extant OS support to elimi-

nate or diminish the design tradeoffs present in state-of-the-art memory manage-

ment systems. MC uses large 64-bit virtual address space to enable non-moving

compaction and avoid the tradeoff between the cost of defragmentation and al-

location speed. In addition, MC provides a simple concurrent compacting GC

324

Chapter 8. Conclusion

that does not synchronize with mutators, eliminating the system complexity vs.

concurrent defragmentation tradeoff. XMem and CoLoRS leverage multi-core

architectures and co-location to reduce the tradeoff between modularity/isolation

and cross-component communication performance. GaS addresses the tight in-

tegration vs. GC performance tradeoff. YP enables better dynamic control over

the space/time tradeoff in MREs that use GC.

• Comprehensive experimental evaluation.For each of our systems, we perform

a comprehensive experimental evaluation based on standardcommunity bench-

marks and open-source applications. Our microbenchmarks are modeled after

actual application behavior. We use a variety of metrics, including execution

time, pause times, MMU, throughput, latency, and scalability. Our evaluation

uses production-quality infrastructure: HotSpot JVM and cPython are the most

widely-used, most efficient, and sophisticated runtimes for Java and Python avail-

able today. We compare our systems to state-of-the-art GCs and RPCs used in

both research and production settings. Our methodology, metrics, and experi-

mental setup reflect the best practices used in the memory management commu-

nity.

• Open-source implementation. We contribute our implementations as open-

source GPL projects available for download for free. The code base for MC,

325

Chapter 8. Conclusion

YP, and XMem has been already used by other researchers. Our implementa-

tions require standard, portable OS services and librariesand have been tested

under various Linux distributions on several different architectures.

In summary, our contributions advance state-of-the-art inmemory management pri-

marily by improving performance and programming model, andsecondarily by simpli-

fying and modularizing the MRE architecture. They include novel systems and algo-

rithmic techniques that have the potential to impact end users, application and MRE

designers and developers, as well as programing language researchers.

8.2 Future Research Directions

In this section, we identify several avenues for future research work. Our contribu-

tions described in this dissertation motivate and facilitate designing and building new

systems that further advance state-of-the-art in memory management, MREs, and be-

yond. We discuss a number of research directions that we believe are worth exploring

based on our empirical results and observations as well as design and implementation

intuition that we have gained while developing the systems we described in Chapters3–

7. We overview both extensions to our contributions and completely new research

projects along with their potential impact.

326

Chapter 8. Conclusion

Type-safe, transparent shared memory provided by CoLoRS can be a starting point

for a number of different research paths. We identify and briefly overview the most

interesting and promising ones below.

• Distributed shared memory. Cross-language, transparent, and lightweight shar-

ing across a cluster of machines has never been investigatedbefore. Previous

work is limited to single-language systems, such as cJVM [6] and MultiJav [41]

for Java. These single-system-image approaches are complex and heavyweight

because they support whole-system-state sharing and thread migration.

• Support for other object-oriented languages.Other popular, type-safe, man-

aged languages like Ruby, PHP, and C# may substantially benefitfrom shared

memory as they are often used in enterprise web backends thatare communication-

intensive and rely on high-overhead RPC protocols. Support for additional lan-

guages would also verify the generality and usability of theCoLoRS object

model.

• Virtualization support and sharing across guest OSes.CoLoRS may be ex-

tended to support object sharing across managed runtimes that execute in sepa-

rate OS instances run in a virtualized environment. Vshmem [177] is a recent

Linux extension that enables using shared memory segments across guest OSes

327

Chapter 8. Conclusion

executed on a single hypervisor. By leveraging the Vshmem API, CoLoRS can

support cross-OS cross-runtime sharing.

• Better fault-tolerance for critical sections. An interesting research question is

whether critical sections (delimited by monitor entry/exit) in the shared memory

can tolerate arbitrary process failures. One possible approach to providing such

fault-tolerance is using transactional memory. At the other end of the spectrum is

limiting the programming model to atomic operations and dropping support for

full monitor semantics.

• Support for static fields and code.CoLoRS currently provides only instance-

field sharing but it can be extended with support for static fields with reasonable

design and implementation effort. Another way to improve the system prac-

ticality, is to facilitate sharing of method code across languages. This can be

accomplished either by extending CoLoRS or by providing additional tools, for

instance for automating code generation via cross-language translation.

• Fully transparent RPCs: automatic local/remote protocol selection.Optimiz-

ing the performance of RPC protocols in the co-located case byusing CoLoRS

should not require any changes to the application code. To enable this, CoLoRS

requires a co-location discovery mechanism (that identifies when communicating

328

Chapter 8. Conclusion

VMs start/stop being co-located) to drive automatic selection between local and

remote protocols.

We believe that leveraging OS support for MREs can be extendedmuch further.

Below, we describe a number of potential research directionsthat seem worth exploring

and might lead to interesting results.

• Fully-virtual compaction via multiple page mappings. Instead of remapping

empty virtual pages, we can remap multiple mostly-empty pages into a single

page in a way that prevents overlapping of live objects in theaddress space.

• Concurrent moving GC as an OS module to avoid the cost of signal handlers.

Certain concurrent GCs that compact the heap are expensive because they rely on

page protection and frequent SEGV signals which require crossing the process-

kernel boundary. Implementing part of the concurrent GC as akernel module can

eliminate this overhead.

• Elimination of the overhead of virtual calls via virtual memory mapping.

The level of indirection provided by virtual memory can be used to devirtualize

megamorphic call sites that cannot benefit from profiling, inline caches, and other

dispatch optimizations used by managed runtimes.

• Cooperative thread context switching in the kernel.Extant OSes implement

thread context switching without the knowledge of criticalsections in the appli-

329

Chapter 8. Conclusion

cation code. This can lead to unproductive switches, for example, while a thread

executes within a critical section. MREs could avoid this by making monitor

synchronization cooperative with the kernel task scheduler.

• Using page dirty bits to improve memory management.Existing GC systems

do not take advantage of page dirty bits, a hardware-assisted mechanism used by

OSes to implement page replacement. Potential uses of dirtybits include write

barrier elimination and efficient detection of heap properties at run-time.

• Exploiting clustering and other statistics.The empirical observation that dead/live

objects cluster together may be exploited to a larger extentby MREs to imple-

ment different variants of page-based memory management. Other properties

exhibited by modern programs, such as the fact that older objects have less frag-

mentation than younger ones [162], can also lead to better GC performance.

• Decoupling other MRE components as simple libraries.In addition to mem-

ory management, several other MRE subsystems may benefit frombeing engi-

neered as reusable libraries, for example, dynamic compiler, interpreter, profiler,

standard language libraries, etc.

• GC for non-uniform memory architectures. Many-core NUMA machines re-

quire a different approach to memory management, where the GC is aware of dif-

330

Chapter 8. Conclusion

ferent memory access costs in the address space. Most extantGC algorithms and

techniques assume uniform memory access and are thus unsuitable for NUMA.

In summary, our contributions open up several promising research opportunities

in memory management and can be a foundation for further improvements in MRE

performance, programming model, and architecture, as wellas system modularity and

MRE-OS coordination.

331

Bibliography

[1] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An efficient parallel heap
compaction algorithm. InOOPSLA, 2004.

[2] Apache Cassandra Project.http://cassandra.apache.org.

[3] Apache Tomcat.http://tomcat.apache.org.

[4] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on stock
multiprocessors.ACM SIGPLAN Notices, 23(7):11–20, 1988.

[5] A. W. Appel and K. Li. Virtual memory primitives for user programs. ACM
SIGPLAN Notices, 26(4):96–107, 1991.

[6] Y. Aridor, M. Factor, and A. Teperman. cJVM: A single system image of a JVM
on a cluster. InICPP, 1999.

[7] J. Armstrong. Erlang – a survey of the language and its industrial applications.
In 9th ESIAP, 1996.

[8] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams.Concurrent Program-
ming in Erlang. Prentice-Hall, 1996.

[9] M. J. Bach.The Design of the UNIX Operating System. Prentice-Hall, 1986.

[10] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS:Isolation, resource
management, and sharing in Java. InOSDI, 2000.

[11] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Java operating
systems: Design and implementation. Technical report, Univ. of Utah, 1998.

[12] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbage collecor with low
overhead and consistent utilization. InPOPL, 2003.

[13] D. F. Bacon and V. Rajan. Concurrent cycle collection in reference counted
systems. InECOOP, 2001.

332

http://cassandra.apache.org
http://tomcat.apache.org

Bibliography

[14] H. G. Baker. Cache-conscious copying collection. InOOPSLA, 1991.

[15] H. G. Baker. The Treadmill, real-time garbage collection without motion sick-
ness.ACM SIGPLAN Notices, 27(3):66–70, Mar. 1992.

[16] H. G. Baker. ‘Infant mortality’ and generational garbage collection.ACM SIG-
PLAN Notices, 28(4), Apr. 1993.

[17] H. G. Baker and C. E. Hewitt. The incremental garbage collection of processes.
Technical report, MIT Press, 1977.

[18] D. Balfanz and L. Gong. Experience with secure multi-processing in Java. In
ICDCS, 1998.

[19] K. Barabash, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. Leikehman, Y. Os-
sia, A. Owshanko, and E. Petrank. A parallel, incremental, mostly concurrent
garbage collector for servers.TOPLAS, 27(6):1097–1146, 2005.

[20] K. Barabash, Y. Ossia, and E. Petrank. Mostly concurrentgarbage collection
revisited. InOOPSLA, 2003.

[21] D. A. Barrett and B. G. Zorn. Using lifetime predictors to improve memory
allocation performance. InPLDI, 1993.

[22] J. F. Bartlett. Compacting garbage collection with ambiguous roots. Technical
report, DEC Western Research Laboratory, 1988.

[23] J. F. Bartlett. Mostly-Copying garbage collection picksup generations and C++.
Technical report, DEC Western Research Laboratory, 1989.

[24] BEA WebLogic Application Server.http://www.bea.com.

[25] O. Ben-Yitzhak, I. Goft, E. Kolodner, K. Kuiper, and V. Leikehman. An algo-
rithm for parallel incremental compaction. InISMM, 2002.

[26] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. Lightweight
remote procedure call.ACM Trans. Comput. Syst., 8(1), 1990.

[27] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. J. Eggers. Extensibility, safety and performance in the SPIN
operating system. InSOSP, 1995.

[28] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High perfor-
mance garbage collection in Java with MMTk. InICSE, 2004.

333

http://www.bea.com

Bibliography

[29] S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B. Moss. Beltway: Getting
around garbage collection gridlock. InPLDI, 2002.

[30] S. M. Blackburn and K. S. McKinley. Ulterior reference counting: Fast garbage
collection without a long wait. InOOPSLA, 2003.

[31] H.-J. Boehm. Space efficient conservative garbage collection. InPLDI, 1993.

[32] H.-J. Boehm. Reducing garbage collector cache misses. InISMM, 2000.

[33] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory
model. InPLDI, 2008.

[34] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel garbage collection.
ACM SIGPLAN Notices, 26(6), 1991.

[35] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative environ-
ment.Software Practice and Experience, 18(9):807–820, 1988.

[36] V. Braberman, F. Ferńandez, D. Garbervetsky, and S. Yovine. Parametric predic-
tion of heap memory requirements. InISMM, 2008.

[37] F. Breg and C. D. Polychronopoulos. Java virtual machine support for object
serialization. InJava Grande, 2001.

[38] C. Bryce and C. Razafimahefa. An approach to safe object sharing. SIGPLAN
Not., 35(10), 2000.

[39] D. Buytaert, K. Venstermans, L. Eeckhout, and K. De Bosschere. GCH: Hints
for triggering garbage collections.THPEAC, 1(1), 2007.

[40] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster
computing. InOOPSLA, 2005.

[41] X. Chen and V. H. Allan. MultiJav: A distributed shared memory system based
on multiple Java virtual machines. InPDPTA, 1998.

[42] C. J. Cheney. A non-recursive list compacting algorithm.Communications of
the ACM, 13(11):677–8, Nov. 1970.

[43] P. Cheng and G. Blelloch. A parallel, real-time garbage collector. InPLDI, 2001.

334

Bibliography

[44] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman,and R. Wol-
ski. AppScale: Scalable and Open AppEngine Application Development and
Deployment. InICCC, 2009.

[45] T. W. Christopher. Reference count garbage collection.SPE, 14(6), 1984.

[46] C. Click, G. Tene, and M. Wolf. The Pauseless GC algorithm.In VEE, 2005.

[47] J. Cohen and A. Nicolau. Comparison of compacting algorithms for garbage
collection.TOPLAS, 5(4):532–553, 1983.

[48] D. Cohn and S. Singh. Predicting lifetimes in dynamically allocated memory. In
ANIPS, 1997.

[49] Computer Language Benchmarks Game. Language Performance Comparisons.
http://shootout.alioth.debian.org.

[50] CORBA Specification.http://www.omg.org.

[51] D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. A. Yelick. Parallel programming in Split-
C. In SC, 1993.

[52] G. Czajkowski. Application isolation in the Java virtual machine. InOOPSLA,
2000.

[53] G. Czajkowski and L. Daynes. Multitasking without compromise: A virtual
machine evolution. InOOPSLA, 2001.

[54] The DaCapo Benchmark Suite.http://dacapobench.org.

[55] Dell Desktops and Servers.http://www.dell.com.

[56] A. Deshpande and D. Riehle. The total growth of open source. InOSS, 2008.

[57] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage collection.
In ISMM, 2004.

[58] A. Diwan, D. Tarditi, and J. E. B. Moss. Memory subsystem performance of
programs using copying garbage collection. InPOPL, 1994.

[59] D. Doligez and G. Gonthier. Portable, unobtrusive garbage collection for multi-
processor systems. InPOPL, 1994.

335

http://shootout.alioth.debian.org
http://www.omg.org
http://dacapobench.org
http://www.dell.com

Bibliography

[60] D. Doligez and X. Leroy. A concurrent, generational garbage collector for a
multithreaded implementation of ML. InPOPL, 1993.

[61] T. Domani, E. K. Kolodner, E. Lewis, E. E. Salant, K. Barabash, I. Lahan, Y. Lev-
anoni, E. Petrank, and I. Yanorer. Implementing an on-the-fly garbage collector
for Java.SIGPLAN Not., 36(1), 2001.

[62] T. Domani, E. K. Kolodner, and E. Petrank. A generational on-the-fly garbage
collector for Java.SIGPLAN Not., 35(5), 2000.

[63] S. Dorward, R. Pike, D. L. Presotto, D. Ritchie, H. Trickey, and P. Winterbottom.
Inferno. InCOMPCON, 1997.

[64] T. El-Ghazawi, W. Carlson, and J. Draper. UPC Language Specifications V,
2001.http://upc.gwu.edu.

[65] M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, and
S. Levi. Language support for fast and reliable message-based communication
in Singularity OS. InEuroSys, 2006.

[66] R. T. Fielding. Architectural styles and the design of network-based software
architectures. Technical report, Univ. of California, Irvine, 2000.

[67] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel garbage collection for
shared memory multiprocessors. InUSENIX JVM, 2001.

[68] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces Principles, Patterns, and
Practice (Jini Series). Pearson Education, 1999.

[69] The GNU Compiler for the Java Programming Language.http://gcc.gnu.
org/java.

[70] N. Geoffray, G. Thomas, C. Clément, and B. Folliot. A lazy developer approach:
Building a JVM with third party software. InPPPJ, 2008.

[71] N. Geoffray, G. Thomas, J.Lawall, G. Muller, and B. Folliot. VMKit: a Substrate
for Managed Runtime Environments. InVEE, 2010.

[72] P. Gepner and M. Kowalik. Multi-core processors: New way to achieve high
system performance. InPARELEC, 2006.

[73] GNU Classpath.http://www.gnu.org/software/classpath.

336

http://upc.gwu.edu
http://gcc.gnu.org/java
http://gcc.gnu.org/java
http://www.gnu.org/software/classpath

Bibliography

[74] M. Golm, M. Felser, C. Wawersich, and J. Kleinoder. The JXoperating system.
In USENIX ATC, 2002.

[75] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-
Wesley, 1997.

[76] Open Source Software in Java.http://java-source.net.

[77] C. Grzegorczyk, S. Soman, C. Krintz, and R. Wolski. Isla Vista heap sizing:
Using feedback to avoid paging. InCGO, 2007.

[78] Hadoop File System (HDFS).http://hadoop.apache.org.

[79] M. Hertz, Y. Feng, and E. Berger. Page-level cooperativegarbage collection.
Technical report, Univ. of Massachusetts, 2004.

[80] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection without paging. In
PLDI, 2005.

[81] C. A. R. Hoare. Communicating sequential processes.Commun. ACM, 26(1),
1983.

[82] A. L. Hosking. Portable, mostly-concurrent and mostly-copying garbage collec-
tion for multi-processors. InISMM, 2004.

[83] A. L. Hosking and J. E. B. Moss. Protection traps and alternatives for memory
management of an object-oriented language. InSOSP, 1993.

[84] A. L. Hosking, J. E. B. Moss, and D. Stefanović. A comparative performance
evaluation of write barrier implementations. InOOPSLA, 1992.

[85] HotSpot Java Virtual Machine GC.http://java.sun.com/javase/
technologies/hotspot.

[86] Hsqldb.http://www.hsqldb.org.

[87] R. L. Hudson and J. E. B. Moss. Incremental garbage collection for mature
objects. InIWMM, 1992.

[88] R. L. Hudson, J. E. B. Moss, A. Diwan, and C. F. Weight. A language-
independent garbage collector toolkit. Technical report,Univ. of Massachusetts,
1991.

[89] G. C. Hunt and J. R. Larus. Singularity: Rethinking the software stack.Operat-
ing Systems Review, 41(2):37–49, 2007.

337

http://java-source.net
http://hadoop.apache.org
http://java.sun.com/javase/technologies/hotspot
http://java.sun.com/javase/technologies/hotspot
http://www.hsqldb.org

Bibliography

[90] H. Inoue, D. Stefanović, and S. Forrest. Object lifetime prediction in Java. Tech-
nical report, Univ. of New Mexico, 2003.

[91] Intel 64 and IA-32 Architectures Software Developer’sManual. Vol. 3A. System
Programming Guide.

[92] Isolate API. JSR-121.http://jcp.org.

[93] Java 2 Enterprise Edition.http://java.sun.com/javaee/.

[94] JavaOS : A Standalone Java Environment, 1996. Sun Microsystems.

[95] JBoss Enterprise Middleware.http://www.jboss.com.

[96] JNode.http://www.jnode.org.

[97] R. Jones. Dynamic memory management: Challenges for today and tomorrow.
In ILC, 2007.

[98] R. Jones and C. Ryder. Garbage collection should be lifetime aware. In
ICOOOLPS, 2006.

[99] R. E. Jones.Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. John Wiley and Sons, 1996.

[100] H. B. M. Jonkers. A fast garbage compaction algorithm.Information Processing
Letters, 9(1), 1979.

[101] H. Kermany and E. Petrank. The Compressor: Concurrent, incremental and
parallel compaction. InPLDI, 2006.

[102] C. Lattner and V. Adve. LLVM: A Compilation Framework forLifelong Pro-
gram Analysis & Transformation. InCGO, 2004.

[103] D. Lea. A memory allocator, 1997.http://gee.cs.oswego.edu/dl/
html/malloc.html.

[104] S. Liang and G. Bracha. Dynamic class loading in the Javavirtual machine. In
OOPSLA, 1998.

[105] The Linux Documentation Project.http://tldp.org/.

[106] M. J. M. Ma, C.-L. Wang, and F. C. M. Lau. JESSICA: Java-enabled single-
system-image computing architecture.J. Parallel Distrib. Comput., 60(10),
2000.

338

http://jcp.org
http://java.sun.com/javaee/
http://www.jboss.com
http://www.jnode.org
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
http://tldp.org/

Bibliography

[107] J. Maassen, R. V. Nieuwpoort, R. Veldema, H. E. Bal, T. Kielmann, C. J. H.
Jacobs, and R. F. H. Hofman. Efficient Java RMI for parallel programming.
Programming Languages and Systems, 23(6), 2001.

[108] M. Macbeth, K. McGuigan, and P. Hatcher. Executing Java threads in parallel in
a distributed-memory environment. InCASCON, 1998.

[109] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. SIGPLAN Not.,
40(1), 2005.

[110] S. Marion, R. Jones, and C. Ryder. Decrypting the Java genepool. In ISMM,
2007.

[111] J. Mauro and R. McDougall.Solaris Internals (2nd Edition). Prentice Hall,
2006.

[112] E. Meijer and J. Gough. Technical overview of the CommonLanguage Runtime,
2000. Microsoft.

[113] Microsoft .NET Framework.http://www.microsoft.com/net/.

[114] D. Modberger and S. Eranian.IA-64 Linux Kernel: Design and Implementation.
Prentice Hall, 2002.

[115] The Project Monty Virtual Machine, 2002. Sun Microsystems.

[116] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparentmigration for virtual
machines. InUSENIX Technical Conference, 2005.

[117] Occam Programming Manual, 1984. Inmos Corporation.

[118] Open Source J2SE.http://openjdk.java.net.

[119] Oracle Database Concepts 11g Release 1, 2007. Chapter 8: Memory Architec-
ture.

[120] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and implementation of
Zap: A system for migrating computing environments. InOSDI, 2002.

[121] Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. Leikehman, and A. Ow-
shanko. A parallel, incremental and concurrent GC for servers. InPLDI, 2002.

[122] Y. Ossia, O. Ben-Yitzhak, and M. Segal. Mostly concurrent compaction for
mark-sweep GC. InISMM, 2004.

339

http://www.microsoft.com/net/
http://openjdk.java.net

Bibliography

[123] M. Perry. Shared Memory Under Linux, 1999.http://fscked.org/
writings/SHM/shm.html.

[124] M. Philippsen and M. Zenger. JavaParty — transparent remote objects in Java.
Concurrency: Practice and Experience, 9(11), 1997.

[125] P. P. Pirinen. Barrier techniques for incremental tracing. In ISMM, 1998.

[126] I. Piumarta. The virtual processor: fast, architecture-neutral dynamic code gen-
eration. InVMRTS, 2004.

[127] T. Printezis and D. Detlefs. A generational mostly-concurrent garbage collector.
In ISMM, 2000.

[128] T. Printezis and D. Detlefs. A generational mostly-concurrent garbage collector.
SIGPLAN Not., 36(1), 2001.

[129] Protocol Buffers. Google’s Data Interchange Format.http://code.
google.com/p/protobuf.

[130] R. Rashid, A. Tevanian, M. Young, et al. Machine-independent virtual mem-
ory management for paged uniprocessor and multiprocessor architectures. In
ASPLOS, 1987.

[131] Java RMI Specification.http://java.sun.com.

[132] G. Rodriguez-Rivera, M. Spertus, and C. Fiterman. A non-fragmenting, non-
moving garbage collector. InISMM, 1998.

[133] N. Röjemo. Generational garbage collection without temporaryspace leaks for
lazy functional languages. InIWMM, 1995.

[134] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allocated ob-
jects. InPOPL, 1988.

[135] K. Russell and D. Detlefs. Eliminating synchronization-related atomic opera-
tions with biased locking and bulk rebiasing.SIGPLAN Not., 41(10), 2006.

[136] N. Sachindran and E. Moss. MarkCopy: Fast copying GC with less space over-
head. InOOPSLA, 2003.

[137] K. Sagonas and J. Wilhelmsson. Mark and split. InISMM, 2006.

[138] F. B. Schneider, G. Morrisett, and R. Harper. A language-based approach to
security.LNCS, 2001.

340

http://fscked.org/writings/SHM/shm.html
http://fscked.org/writings/SHM/shm.html
http://code.google.com/p/protobuf
http://code.google.com/p/protobuf
http://java.sun.com

Bibliography

[139] M. L. Seidl and B. Zorn. Low cost methods for predicting heap object behavior.
In WFDO, 1999.

[140] J. Seligmann and S. Grarup. Incremental mature garbage collection using the
train algorithm. InECOOP, University of Aarhus, 1995.

[141] Java Object Serialization Specification.http://java.sun.com.

[142] A. Silberschatz.Operating System Concepts. John Wiley and Sons, 2004.

[143] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable Cross-Language
Services Implementation, 2007.

[144] P. Sobalvarro. A lifetime-based garbage collector for Lisp systems on general-
purpose computers. Technical report, MIT, 1988.

[145] SPEC.http://www.spec.org.

[146] D. Stefanovic, M. Hertz, S. M. Blackburn, K. S. McKinley, and J. E. B. Moss.
Older-first garbage collection in practice: Evaluation in aJava virtual machine.
In MSP, 2002.

[147] W. R. Stevens.Advanced Programming in the UNIX Environment. Addison-
Wesley, 1992.

[148] T. Suezawa. Persistent execution state of a Java virtual machine. InJava Grande,
2000.

[149] A. Tanenbaum.Operating Systems: Design and Implementation. Prentice Hall,
1987.

[150] A. Tanenbaum.Modern Operating Systems. Prentice Hall, 1992.

[151] B. H. Tay and A. L. Ananda. A survey of remote procedure calls. SIGOPS Oper.
Syst. Rev., 24(3), 1990.

[152] G. Thomas, N. Geoffray, C. Clément, and B. Folliot. Designing highly flexible
virtual machines: the JnJVM experience.Softw. Pract. Exper., 38(15), 2008.

[153] TIOBE Index.http://www.tiobe.com.

[154] B. Titzer, T. Wurthinger, D. Simon, and M. Cintra. Improving Compiler-Runtime
Separation with XIR. InVEE, 2010.

341

http://java.sun.com
http://www.spec.org
http://www.tiobe.com

Bibliography

[155] D. M. Ungar. Generation scavenging: A non-disruptivehigh performance stor-
age reclamation algorithm.ACM SIGPLAN Notices, 19(5):157–167, 1984.

[156] The VolanoMark Benchmark.http://www.volano.com/benchmarks.
html.

[157] T. von Eicken, C.-C. Chang, G. Czajkowski, C. Hawblitzel, D.Hu, and
D. Spoonhower. J-Kernel: A capability-based operating system for Java. In
SIP, 1999.

[158] IBM WebSphere Application Server.http://www.ibm.com.

[159] M. Wegiel and C. Krintz. The Mapping Collector: Virtual memory support for
generational, parallel, and concurrent compaction. InASPLOS, 2008.

[160] M. Wegiel and C. Krintz. XMem: Type-Safe, Transparent,Shared Memory for
Cross-Runtime Communication and Coordination. InPLDI, 2008.

[161] M. Wegiel and C. Krintz. Dynamic prediction of collection yield for managed
runtimes. InASPLOS, 2009.

[162] M. Wegiel and C. Krintz. The single-referent collector: Optimizing compaction
for the common case.ACM Trans. Archit. Code Optim., 6, 2009.

[163] M. Wegiel and C. Krintz. Concurrent collection as an operating system service
for cross-runtime cross-language memory management. Technical Report 15,
University of California, Santa Barbara, 2010.

[164] M. Wegiel and C. Krintz. Cross-language, type-safe, andtransparent object shar-
ing for co-located managed runtimes. InOOPSLA, 2010.

[165] P. R. Wilson. Uniprocessor garbage collection techniques. InIWMM, 1992.

[166] P. R. Wilson. Uniprocessor garbage collection techniques. Technical report,
Univ. of Texas, 1994.

[167] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage alloca-
tion: A survey and critical review. InIWMM, 1995.

[168] P. R. Wilson, M. S. Lam, and T. G. Moher. Caching considerations for genera-
tional garbage collection. InLFP, 1992.

[169] P. R. Wilson and T. G. Moher. A card-marking scheme for controlling intergen-
erational references in generation-based garbage collection on stock hardware.
ACM SIGPLAN Notices, 24(5):87–92, 1989.

342

http://www.volano.com/benchmarks.html
http://www.volano.com/benchmarks.html
http://www.ibm.com

Bibliography

[170] N. Wirth and J. Gutknecht.Project Oberon: the design of an operating system
and compiler. ACM Press/Addison-Wesley, 1992.

[171] D. S. Wise. Stop-and-copy and one-bit reference counting. Technical report,
Indiana University, 1993.

[172] D. S. Wise and D. P. Friedman. The one-bit reference count. BIT, 17(3):351–9,
1977.

[173] F. Xian, W. Srisa-an, and H. Jiang. MicroPhase: An approach to proactively
invoking garbage collection for improved performance. InOOPSLA, 2007.

[174] T. Yang, E. D. Berger, M. Hertz, S. F. Kaplan, and J. E. B. Moss. Autonomic
heap sizing: Taking real memory into account. InISMM, 2004.

[175] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM: Virtual memory
support for garbage-collected applications. InOSDI, 2006.

[176] Z. Yang and K. Duddy. Corba: A platform for distributed object computing
(a state-of-the-art report on omg/corba).Operating Systems Review, 30:4–31,
1996.

[177] L. Youseff and R. Wolski. Vshmem: Shared-memory os-support for multicore-
based hpc systems. Technical report, University of California, Santa Barbara,
2009.

[178] W. Yu and A. L. Cox. Java/DSM: A platform for heterogeneous computing.
Concurrency: Practice and Experience, 9(11), 1997.

[179] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and M. Ogihara. Program-
level adaptive memory management. InISMM, 2006.

[180] B. Zorn. Comparing mark-and-sweep and stop-and-copy garbage collection. In
LFP, 1990.

[181] B. Zorn. The measured cost of conservative garbage collection. Software Prac-
tice and Experience, 23:733–756, 1993.

[182] B. Zorn and M. Seidl. Segregating heap objects by reference behavior and life-
time. InASPLOS, 1998.

343

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	Thesis Question
	Dissertation Organization

	Background
	Intra-Runtime Memory Management
	State-of-the-Art GC Techniques
	OS-Assisted GC
	Limitations

	Cross-Runtime Memory Management
	State-of-the-art Inter-Process Communication
	Cross-Runtime Communication and Coordination
	Limitations

	Efficient Compaction by Mapping: Improving Intra-Runtime Memory Management Performance Using Virtual Memory
	Introduction and Motivation
	Design and Implementation
	Stop-the-World/Concurrent Marking
	Stop-the-World Unmapping
	Concurrent Unmapping
	Bounding Space Overhead
	Implementation Details

	Experimental Evaluation
	Benchmarks
	Methodology
	Clustering
	Stop-the-World Compactors
	Concurrent Compactors
	Stop-the-World/Concurrent Tradeoffs
	Unmapping Overhead
	Other Benchmarks

	Related Work
	The Compressor
	The HotSpot Compactor
	The IBM Compactor
	The Flood Compactor
	The Pauseless GC
	Virtual Memory Support for GC

	Summary and Conclusions

	Dynamic Prediction of Collection Yield: Improving Intra-Runtime Memory Management Performance Using Virtual Memory
	Introduction and Motivation
	Design and Implementation
	Yield Predictor Design
	Yield Prediction Process
	Implementation Details
	Kernel Extensions
	Alternative Approaches

	Experimental Evaluation
	Methodology
	Dead Object Clustering
	Collection Yield
	Prediction Accuracy and Cost
	Impact on Applications
	Other Parameter Values

	Related Work
	Summary and Conclusions

	Concurrent Collection as a Service: Improving Intra-Runtime Memory Management Performance and Programming Model Using Shared Libraries
	Introduction and Motivation
	Design and Implementation
	GaS Interface
	Heap Layout
	GC Algorithm
	Tracing GC
	Reference Counting GC
	GaS Extensions
	Implementation Details

	Experimental Evaluation
	Methodology
	Java Benchmarks
	Python Benchmarks
	Overhead of Cross-Runtime Calls
	Overhead of Runtime Layering
	Lines of Code
	Results Summary

	Related Work
	Newly-Built Runtimes
	GC Evaluation

	Summary and Conclusions

	Type-Safe Sharing for Homogeneous Runtimes: Improving Cross-Runtime Memory Management Performance and Programming Model Using Shared Memory
	Introduction and Motivation
	Design and Implementation
	Double Memory Mapping
	Shared-to-Private Pointers
	Using XMem
	Dual Mode Object Allocation
	Thread Synchronization
	Global Operations
	Attachment, Detachment, and Connection
	Global Class Loading
	Global Garbage Collection
	Global Meta-Data Management
	Fault Tolerance
	Implementation Details

	Experimental Evaluation
	Methodology
	XMem Overhead
	Global GC Performance
	Communication Efficiency for Microbenchmarks
	Application Performance
	Results Summary

	Related Work
	Summary and Conclusions

	Type-Safe Sharing for Heterogeneous Runtimes: Improving Cross-Runtime Memory Management Performance and Programming Model Using Shared Memory
	Introduction and Motivation
	Design and Implementation
	CoLoRS Usage
	Shared Memory Segment
	The CoLoRS Object Model
	The CoLoRS Memory Model
	Monitor Synchronization
	Garbage Collection
	Implementation Details
	Shared Memory Layout
	HotSpot JVM
	cPython Runtime

	Experimental Evaluation
	Methodology
	CoLoRS Impact on Communication Performance
	CoLoRS Garbage Collection
	CoLoRS Impact on End-to-End Performance
	CoLoRS Overhead
	Sockets vs. Shared Memory
	Results Summary

	C/C++ Support for CoLoRS
	Type Safety
	Transparency
	Programming Interface
	Type Reflection
	Pointers, Fields, and Pointers to Members
	Class Mapping and Loading
	Garbage Collection
	Virtual Dispatch
	Standard Libraries
	Implementation Details
	Experimental Evaluation

	Related Work
	Summary and Conclusions

	Conclusion
	Contributions and Impact
	Future Research Directions

	Bibliography

