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Abstract
Advanced scienti�c applications require coupling distributed sensor
networks with centralized high-performance computing facilities. Cit-
rus Under Protective Screening (CUPS) exempli�es this need in digital
agriculture, where citrus research facilities are instrumented with
numerous sensors monitoring environmental conditions and detecting
protective screening damage. CUPS demands access to computational
�uid dynamics codes for modeling environmental conditions and
guiding real-time interventions like water application or robotic re-
pairs. These computing domains have contrasting properties: sensor
networks provide low-performance, limited-capacity, unreliable data
access, while high-performance facilities o�er enormous computing
power through high-latency batch processing. Private 5G networks
present novel capabilities addressing this challenge by providing low
latency, high throughput, and reliability necessary for near-real-time
coupling of edge sensor networks with HPC simulations. This work
presents xGFabric, an end-to-end system coupling sensor networks
with HPC facilities through Private 5G networks. The prototype con-
nects remote sensors via 5G network slicing to HPC systems, enabling
real-time digital agriculture simulation.
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CCS Concepts
• Networks! Error detection and error correction;Wide area net-
works; Short-range networks; Network performance analysis;
• Computing methodologies! Real-time simulation;Mas-
sively parallel and high-performance simulations; • Hard-
ware ! Wireless integrated network sensors; • Security and
privacy! Security protocols.
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1 Introduction
The ability to couple large-scale computing facilities with scienti�c
instruments and sensors (of all scales) so that they can function
together as a single system has emerged as a key requirement for
new scienti�c discovery. Mitigating the e�ects of climate change
on agriculture and ensuring U.S. energy independence both re-
quire modeling and responding to dynamically changing physical
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Figure 1: End to End Coupling of Sensor Networks and HPC
xGFabric provides an end-to-end system for coupling sensor networks
through edge servers to HPC facilities, navigating extraordinary di�er-
ences in reliability, performance, and responsiveness across the layers.

phenomena (e.g. pathogen virulity, propagation and their depen-
dence on external conditions, etc.) that are di�cult to predict. While
predictions of the relevant phenomena will improve, key to this
improvement is the ability to study such phenomena at ever smaller
time scales in as close to real time as possible.

CUPS (Citrus Under Protective Screening) is an example of a
novel digital agricultural application poised to bene�t from the end-
to-end coupling of sensor networks with HPC capability. CUPS is a
new pest-remediation strategy under study by the citrus industry
as a sustainable way to protect citrus orchards from huanglongbing
(HLB) “citrus greening” disease [14]. Careful monitoring and control
of the growing conditions inside a CUPS facility is critical to their
commercial success at scale. CUPS can make use of HPC for large-
scale sensor data processing and for advanced modeling, simulation,
and machine learning applications that support sustainable farming
practices in this complex setting.

To prototype this concept, we have constructed �GF�����, a
novel distributed system that combines an agricultural sensor net-
work in a facility located in a remote area, connected by a Private
5G wireless network to the commodity Internet. Sensor data from
the CUPS is collected, summarized, and conveyed over the Private
5G network via the CSPOT (Serverless Platform of Things in C)
distributed runtime system, where it is distributed to HPC facilities
at both campus infrastructure and national computing facilities.
The arrival of data triggers the execution of a Computational Fluid
Dynamics (CFD) simulation of the air�ow and heat transfer inside
the CUPS (a 100,000 cubic meter screen house) to predict internal
conditions based on sensor measurements at the boundaries. These
results can be returned to the site operator to guide the application
of water, pesticides, or to detect failures of the protective screening.

We evaluate the capability of the �GF����� prototype in several
dimensions. We measure the performance and capacity of the Pri-
vate 5G wireless network, the performance of reliable data delivery
via CUPS, and the runtime and speedup of CFDs on multiple HPC
platforms. We observe that the end-to-end performance meets the
real-time requirements to satisfy the CUPS facility.

Figure 2: Citrus Under Protective Screening
CUPS is an agricultural research pilot for testing control of huang-
longbing citrus greening disease. The facility is equipped with a sensor
network for detecting local conditions.

Our contributions are to demonstrate that Private 5G networks
o�er novel capabilities that can be exploited and extended to pro-
vide the low latency, high throughput, and reliability needed to
perform the near-real-time coupling of edge sensor networks with
simulations running in HPC facilities. Speci�cally, the coupling
of large-scale systems with scienti�c instruments, sensors, and
actuators at all scales requires a new approach to adaptive work-
�ow management and new system software abstractions. We also
demonstrate the capabilities of a new software fabric that uni�es
resources at all device scales – from sensors to large-scale, batch
controlled machines – across di�erent network infrastructures.
This full-stack platform is capable of delivering “in-the-loop” high-
performance computing capabilities to distributed applications to
support decision making in real time.

2 Application: Citrus Under Protective
Screening (CUPS)

The citrus production industry is currently developing remediation
strategies for the Asian citrus psyllid which carries the huang-
longbing (HLB) “citrus greening” disease. HLB has devastated the
commercial citrus industry in Florida and Texas with an annual
cost of more than $1B US [14]. From a biosafety perspective, HLB is
a signi�cant vector. Pesticides and disease-resistant cultivars have,
so far, proved ine�ective. Its e�ect on citrus production in the south
has been rapid and irreversible.

In California, where the disease is present but not yet epidemic,
growers are experimenting with siting orchards inside large, protec-
tive screen houses. The Citrus Under Protective Screening (CUPS)
project is an at-scale pilot for screen-house citrus production located
at the Lindcove Research Extension Center in Exeter, California,
shown in Figure 2. While CUPS is speci�cally testing HLB control,
it represents an approach that is e�ective against any insect-born
pathogen for which typical husbandry practices are ine�ective.

The goal of CUPS is to understand the growing environment and
commercial agricultural viability of screen-house citrus production.
Citrus trees have useful production lifetimes that exceed 20 years.
CUPS is e�ective as long as the trees that are introduced into the
screen house are disease free and the screen remains in tact. For
commercial viability, the screen houses must be large (covering
several acres each) and they must accommodate tree canopy and
harvesting equipment that require 25 to 30 feet of vertical space.
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Detecting and rapidly repairing screen breaches in the commer-
cial scale CUPS is a critical open problem.While industrial accidents
that cause screen damage can be detected and rapidly reported by
workers, unobserved events (e.g. bird strike, foraging fauna, dam-
age concomitant with theft, etc.) can cause screen breeches that
must be detected.

Our team has been working to instrument and analyze the grow-
ing environment within the at-scale CUPS structure in Exeter. As
part of that on-going work, we have developed a Computational
Fluid Dynamics (CFD) model that can model to predict air�ow
within a CUPS screen house in near real-time based on instanta-
neous wind, temperature, and humidity measurements taken and
the screen boundaries (both inside and outside). Analytically, the
goal of the model is to provide growers with decision support for
input events such as pesticide or fertilizer spraying, frost preven-
tion, etc. where the grower must make a decision regarding timing,
location, and quantity of input to apply.

However, we are also exploring whether the model can detect
screen breech. Speci�cally, once the model is calibrated, a deviation
between predicted and measured air�ow can portend a possible
screen breech and, perhaps, an area of the structure where the
breech may have occurred. Note that we plan to structure the
coupling of real-time senor data with CFD as a “digital twin” in
which the true atmospheric conditions within the structure are
“twinned” by the results of the CFD model for the interior of the
structure. The model results will inform both modality changes in
the sensing infrastructure and data calibrations (back tested against
historical data) that are necessary to maintain model accuracy.

Our team will also be deploying a Farm-NG [8] wheeled robot
with autonomous-driving capability within the CUPS structure. As
a driver for �GF����� research, our plan is to investigate whether
it will be possible to detect a potential breech (using a large-scale
HPC machine to run the CFDmodel which is parameterized by real-
time in situ boundary conditions), compare the modeled air�ow to
measurements taken for the same time period within the structure,
and if they do not match, dispatch the robot to surveil the region of
the screen where a breech may have occurred using an on-board
camera. The �GF����� digital-physical fabric will incorporate robot-
based sensing and robot route planning, thereby linking it to, and
augmenting the CFD-based digital twin for the screen structure.

This ambitious application illustrates how a digital-physical fab-
ric can enable new biosecurity capabilities. However, to bring it to
fruition requires the ability to amalgamate computational resources
at all scales, and to “close the loop” between sensing, computing
and storage, and actuation.

3 XGFabric Architecture
The �GF����� architecture is shown in Fig. 3. To the best of our
knowledge, �GF����� is the �rst end-to-end distributed system to
seamlessly integrate �eld wireless sensor networks with high-
performance computing (HPC) work�ows in real time. This
integration results from a full-stack, multi-scale software approach
uni�es devices using a private 5G wireless network architecture,
with edge, cloud, and HPC systems using the the CSPOT (Server-
less Platform of Things in C) [22] distributed runtime and the the
L������ [6] data�ow system.

3.1 Overview
Note that the �GF����� software stack (described below) is de-
signed to run natively (on microcontrollers), as a runtime using
Linux, or as a containerized guest. Thus it is complementary to
large-scale deployment infrastructure such as Sage [2, 15] which
includes Waggle [21] as a software stack, or the Array of Things [3].
It di�ers from these approaches in that it is full-stack (including a
network-transparent data�ow programming environment), it in-
cludes support for managing HPC workloads, and it targets 5G/6G
wireless infrastructure at the edge. Interfacing �GF����� to Sage
via Waggle is the subject of our future research e�orts.

The �GF����� architecture uses theCSPOT log-based, distributed
event system to implement reliable, delay-tolerant networking, end-
to-end, from devices in a private 5G network to a batch-controlled
HPC machine and vice versa. �GF����� leverages this delay tol-
erance in three ways: �rst, devices operating in remote locations
using 5G connectivity can be subject to frequent network inter-
ruption. Because all program state is logged, programs can simply
pause until connectivity is restored. Secondly, CSPOT logs are im-
plemented in persistent storage, so power-loss (which is frequent
in remote IoT settings) and other device failures that do not destroy
the log storage are treated in the same way as network interruption.
Since all program state updates are implemented as log appends,
a “failure to append” to some program log, which results either
from network interruption or node failure, is simply retried until
it succeeds or the application terminates the computation. Third,
�GF����� uses this delay-tolerance to mask batch-queing delays
on HPC systems that are batch-controlled. Data is “parked” in logs
on storage accessible by the compute nodes of a cluster and fetched
once the nodes become active.

In the following, we provide details on each of the �GF�����
components: the sensor network, the private 5G wireless network,
the CSPOT distributed runtime system, the L������ data �ow
language, the HPC interface, and �nally the end-to-end operation.

3.2 Remote Sensor Network
The sensor network layer in xGFabric consists of edge devices used
to collect, pre-process, and transmit physical-world data in real time.
These devices connect exclusively through a private 5G cellular net-
work, which provides the uplink channel for transmitting data to
centralized compute or storage infrastructure. The edge devices pri-
marily include Raspberry Pi 4 units equipped with 5G USB modems.
Each unit runs a software agent called CSPOT, which continuously
forwards sensor data using standard IP networking protocols to
external endpoints. The system supports multiple concurrently
connected user equipments (UE), each transmitting independently.
The use of a private 5G network enables precise control over ra-
dio resources and performance at the edge. This sensor network
forms the entry point into xGFabric’s virtualized data collection
pipeline, supporting modular, replicable deployments across mul-
tiple locations and ensuring high availability and robust wireless
connectivity.
3.3 Private 5G Wireless Network
5G networks provide the connectivity needed to access sensor
networks in remote locations. Network slicing [1], a key capabil-
ity of 5G, enables the creation of multiple virtual networks slices
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Figure 3: �GF����� Architecture and Sample Output
xGFabric connects a remote sensor network (left) with an HPC facility (right). In this prototype, a sensor network at UNL (U. Nebraska-Lincoln)
consists of Raspberry Pis running the CUPS distributed runtime system. These are connected by a private 5G network to the commodity Internet,
and communicate with a network of CUPS nodes at UCSB (U. California - Santa Barbara), ND (U. Notre Dame), and other facilities. At ND, the
Controller process dispatches a pilot job, constructs the input data for OpenFOAM, and runs the CFD code when su�cient sensor data arrives.

within the same physical infrastructure, each tailored to di�erent
application demands. This allows the network to simultaneously
support diverse use cases such as low-latency control systems, high-
throughput video, or lightweight IoT tra�c.

For the �GF����� prototype we deploy two private 5G wire-
less networks that support both development and production en-
vironments, built using the open-source srsRAN[18] stack and
Open5GS[11] core for standalone 5G functionality and a custom-
made CI/CD work�ow. The underlying hardware architecture cen-
ters around a single compute device that hosts both the develop-
ment and production private 5G network functions. The device is
equipped with an Intel Core i7 processor, 32 GB of DDR4 memory,
and 1 TB of solid-state storage, running Ubuntu 24.04 LTS. Net-
work connectivity is handled via a high-performance Intel 82599ES
10-Gigabit Ethernet network interface card, and wireless capabili-
ties are supplemented with onboard Wi-Fi. Two software-de�ned
radios (SDRs)—a USRP B210 [7] and a USRP B200 [7] from Ettus Re-
search—serve as the RF frontends for the two private 5G networks.
These SDRs are connected to an OctoClock [7] timeserver to enable
precise time synchronization across the system.

Both the development and production private 5G networks are
deployed using Docker [5] containers. Each network instance in-
cludes a gNodeB (gNB) component that interfaces with its corre-
sponding SDR and handles radio access network (RAN) operations,
including scheduling, modulation, and UE signaling. Moreover,
each instance runs a containerized 5G core network stack using
Open5GS [11], which provides a full suite of standalone (SA) 5G
core functionalities (i.e., subscriber authentication, session and mo-
bility management, policy enforcement, and data routing).

The development and production private 5G instances utilize
di�erent sets of UEs for testing and validation. In the development
instance, we connect a Google Pixel 6a commercial o�-the-shelf
(COTS) smartphone and two Raspberry Pi 5 devices, each con�g-
ured with an RM530N-GL 5G USB modem [13]. In the produc-
tion instance, we connect two Raspberry Pi 4 units, each paired
with its own RM530N-GL dongle. All UEs rely on programmable

sysmoISIM-SJA5 [19] SIM cards for registration and authentica-
tion with the 5G core network. These SIM cards are provisioned
using the open-source pysim [12] toolkit, allowing for �exible and
consistent identity management across both environments.

By supporting two parallel private 5G networks within the same
physical infrastructure, we ensure �exibility in experimentation
and deployment. The development instance allows for safe testing
of new features such as network slicing, while the production in-
stance maintains a consistent baseline for evaluating performance,
reliability, and multi-UE scenarios. This architecture provides a
foundation for continuous innovation in private 5G and future
6G systems, while preserving stability and reliability in produc-
tion scenarios. The evaluation results below are acquired from the
production environment.
3.4 CSPOT Distributed Runtime System
CSPOT is a distributed runtime system that provides reliable multi-
node communication built on log based storage. It is designed func-
tion at all device scales, from microcontrollers to edge-based com-
puters to large-scale HPC and cloud systems. It uses logs (which
are simple to implement e�ciently at all scales) as persistent pro-
gram variables. As a result, a CSPOT program can be interrupted
at any moment and the current program state will be available in
persistent storage so that the program can be immediately resumed
after the interruption.

Another feature of the log-based event system that underpins
�GF����� is that it is highly concurrent. In particular, only the
assignment of a unique sequence number with a speci�c log en-
try appended to a log must be implemented atomically. Logs are
otherwise accessible concurrently. Further, to obviate the need for
lock-recovery for locks that span network connections, CSPOT
does not include a lock function as part of its API. Internally, the
CSPOT implementation uses locks to implement atomic sequence
number assignment, but it does so in a way that prevents locks from
being held while a thread is waiting for network communication.

As a result, a CSPOT append operation fails in only one of two
ways. Either the append fails, and the API call returns an error, or
the append succeeds but the sequence number associated with the
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append (to be returned from the API call) is lost, generating an
error. Retrying the append until a sequence number is successfully
returned ensures data integrity, but deduplication of the CSPOT
logs is necessary to implement “exactly once” delivery semantics.
This feature greatly enhances crash resilience and network partition
tolerance, but it makes CSPOT non-intuitive for developers familiar
with more conventional concurrency management mechanisms.

In particular, there is no way in aCSPOT program to �re an event
only after multiple appends (to the same or di�erent logs) have
occurred. Event handlers are the only computational mechanism
and a handler can only be triggered by a single log append (to avoid
locking by handlers waiting for future events). As a result, a CSPOT
program can always make progress (no handler blocks waiting for
another handler) but handler code must parse and scan the logs to
implement multi-event synchronization.

3.5 L������ Data�ow System
To improve programmability over using logs and events as na-
tive programming abstractions, �GF����� includes a distributed
data�ow [17] programming environment, called L������, that
hides CSPOT synchronization complexity within a relatively con-
ventional data�ow framework. L������ implements a strongly-
typed applicative language with strict [9] semantics using CSPOT
as its runtime system. Note that CSPOT’s implementation of logs
makes each log a “single-assignment” variable from the program-
ming language perspective. Thus it is possible to implement func-
tional programming semantics (such as strict, applicative data�ow)
using CSPOT. As a result, L������ shares CSPOT’s failure re-
siliency and crash-consistency properties [23] while implementing
(on behalf of the programmer) many of the optimizations needed
to avoid log scans during synchronization.

While L������ is strongly-typed, it allows the developer to spec-
ify application-speci�c types. Thus any computation that produces
the same outputs from a given set of inputs (e.g. any “stateless” com-
putation) can be embedded within a L������ computational node
and “�red” as part of a L������ data�ow program. For example,
it is possible to treat a large-scale Computational Fluid Dynam-
ics (CFD) application as a single node within an encompassing
L������ program that handles the CFD inputs and outputs.

Note that CSPOT and L������ are network transparent and
support multiple network protocols within the same application de-
ployment. As such, they manage the network fabric on behalf of the
application. Thus, an �GF����� application need not interact with
the 5G network con�guration interface directly. Instead, they oper-
ate a network slicing interface to con�gure the private 5G network
according to the connectivity needs of a speci�c deployment.

3.6 HPC Pilot Interface
�GF����� uses the Pilot [20] mechanism fromRadical-Cybertools to
dynamically con�gure the HPC environment for large-scale parallel
computations. The aim of the pilot and its scheduling/placement
algorithm is to bridge real-time data �ows with HPC simulations.
Interactive pilots ensure rapid responsiveness, ideal for real-time
tasks, whereas batch pilots optimize throughput and resource uti-
lization for compute-intensive tasks at the cost of latency from
scheduling. The Pilot Controller currently initiates an initial pilot

using a single node and employs the following decision logic to
dynamically allocate resources:

(1) Assess incoming data size ⇡ and choose nodes #A4@ :

#A4@ = max
✓
1,

⇡

C⌘A4B⌘>;3

◆
(1)

(2) Evaluate currently available nodes #0E08; :

#0E08; =
’

?2active pilots
=>34B (?) (2)

(3) Decide whether to submit a new pilot:

Submit Pilot =

(
No, #0E08; � #A4@

Yes, #0E08; < #A4@
(3)

(4) Determine pilot submission parameters:

=>34B = min(system nodes,#A4@), (4)

AD=C8<4 = min(max system runtime, estimated task runtime)
(5)

As future work, we plan to explore proactive (starting pilots early)
and reactive (starting pilots on-time) strategies to further enhance
system responsiveness and e�ciency. Proactive pilots reduce la-
tency but may incur idle resource overhead, while reactive pilots
minimize idle resources but can introduce startup delays.

3.7 End-to-End Operation
In Fig. 3, �GF����� is depicted in the context of a working, end-
to-end application that dynamically triggers a CFD computation
in response to changing localized atmospheric conditions in an
agricultural setting.

As shown in Fig. 3, atmospheric measurements from sensors are
gathered through a private 5G network at UNL, and relayed to a
data repository located at UCSB using native CSPOT. In addition, a
L������ program distributed between UNL and UCSBmonitors the
telemetry stream to detect when conditions change. The measure-
ment errors from the atmospheric sensors (commodity commercial
agricultural weather stations) are high enough so that consecutive
readings may not be statistically determinable to be “di�erent” and,
thus, an updated CFD calculation would potentially waste HPC
resources computing a new result that is statistically indistinguish-
able from the previous result. When the L������ change-detection
program determines that conditions have meaningfully changed, it
triggers the Pilot to launch a new CFD computation on the HPC
machine located at ND. The Pilot gathers the most recent atmo-
spheric telemetry from the CSPOT logs at at UCSB and launches
a preprocessing pipeline to generate input �les and meshing co-
ordinates for the CFD computation (which is implemented using
OpenFOAM [4]). Once these �les have been prepared, the Pilot
launches the computation in the ND batch queue and waits for the
results to be generated as a set of output rasterized �les.

4 Evaluation
We evaluate the individual elements of �GF����� to demonstrate
that performance goals are achieved for the private 5G network,
the communication latency of the CSPOT sensor network, and the
response time of the OpenFOAM simulation code.

2321



SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA Kurafeeva et al.

Figure 4: Single-user Uplink Throughput Across Devices

4.1 Private 5G Wireless Communications
To evaluate the performance of the private 5G network, we conduct
three experiments. First, we measure single-user uplink throughput
across varying bandwidths, duplexing modes, and device types.
Second, we extend the setup to a two-user scenario to assess si-
multaneous uplink performance. Third, we evaluate the e�ect of
network slicing on throughput by con�guring two user equipments
on distinct slices with complementary PRB allocations. The single-
user and two-user uplink tests are also compared to results from
our previously deployed private 4G wireless network.

In Fig. 4, it is shown how uplink throughput performance varies
across di�erent bandwidths, duplexing modes, and user devices
in a single-user scenario. First, a laptop connected to a 4G Fre-
quency Division Duplex (FDD) network using the SIM7600G-H 4G
modem [16] is tested. Starting at 5 MHz, the bandwidth is progres-
sively increased to 10, 15, and 20 MHz, while collecting 100 iperf3
uplink throughput samples at each step. The same experiment is
then repeated using a Raspberry Pi (RPi) with the same 4G modem,
and again with a commercial smartphone. For the 5G experiments,
a laptop equipped with the RM530N-GL 5G modem is connects
to the 5G FDD network, and an uplink throughput is measured at
bandwidths 5MHz, 10MHz, 15MHz, and 20MHz, with 100 iperf3
samples are collected at each step. The same procedure is repeated
using a Raspberry Pi keeping the same 5G modem, followed by a
commercial smartphone. Next, experiments are conducted on a 5G
Time Division Duplex (TDD) network. A laptop with the RM530N-
GL modem is connected and tested at bandwidths 10MHz, 15MHz,
20MHz, 30MHz, 40MHz, and 50MHz, collecting 100 samples at each
setting. This is repeated using the RPi and the smartphone. These
experiments allow a comprehensive comparison of how bandwidth,
duplexing mode, and device type in�uence uplink throughput in
private cellular networks.

The results in Fig. 4 demonstrate that uplink throughput scales
with bandwidth but is signi�cantly in�uenced by device type and
duplexing mode. In 4G FDD network, the smartphone achieves
the highest throughput at 20 MHz (43.83 Mbps), outperforming
both the laptop (10.41 Mbps) and the RPi (2.23 Mbps). The limited
performance of the laptop and RPi beyond 10 MHz is likely due
to constraints imposed by the external 4G modem used in these
setups. In 5G FDD network, all devices show marked improvement,
with the smartphone reaching 58.89 Mbps, the RPi 52.36 Mbps, and
the laptop 40.83 Mbps. In 5G TDD network, the RPi achieves the
highest overall throughput (65.97 Mbps at 50 MHz), outperforming

Figure 5: Two-user Uplink Throughput Across Devices

both the laptop (58.31 Mbps) and the smartphone (14.40 Mbps).
Throughput variability increases with bandwidth, particularly in
TDD mode. Overall, while smartphones lead in 4G, laptops and
RPis o�er competitive—and in TDD, superior—performance in 5G
networks when paired with capable modems.

In Fig. 5, we show how the uplink throughput performance varies
across di�erent channel bandwidths, duplexing modes, and user
devices in a two-user scenario. First, two laptops equipped with
SIM7600G-H 4G modems are connected to a 4G FDD network oper-
ating at 5MHz channel bandwidth. Both devices simultaneously per-
form iperf3 uplink tests, and 100 throughput samples are collected.
The same experiment is repeated at 10, 15, and 20 MHz bandwidths.
This process is then repeated using two Raspberry Pis with the
same 4G modems, followed by two commercial smartphones. For
the private 5G network, experiments are �rst conducted in FDD
mode. Two laptops equipped with RM530N-GL 5G modems are
connected to the 5G FDD network, and simultaneous iperf3 uplink
tests are performed at 5, 10, 15, and 20 MHz channel bandwidths,
with 100 samples collected at each setting. The same procedure
is then repeated using two Raspberry Pis with the same 5G mo-
dem, followed by two commercial smartphones. Next, the same set
of experiments is conducted on a 5G TDD network. Two laptops
equipped with RM530N-GL modems are �rst connected to the TDD
network, and simultaneous iperf3 uplink tests are performed at
10, 15, 20, 30, 40, and 50 MHz bandwidths. The experiment is then
repeated using two Raspberry Pis with the same 5G modem, and
�nally, two commercial smartphones.

In the two-user scenario, similar to the single-user case, through-
put distribution and scaling vary notably across devices and net-
work types. On the 4G FDD network, smartphones scale well up to
15 MHz—reaching 35.5 Mbps—before dropping at 20 MHz, likely
due to SDR sampling constraints. Laptops peak at 36.1 Mbps at
15 MHz but show uneven user allocation, while Raspberry Pis de-
grade with bandwidth due to 4G modem limitations. In the 5G FDD
network, laptops scale from 9.9 Mbps to 45.7 Mbps with balanced
performance. Raspberry Pis achieve similar results, peaking at 45.4
Mbps at 20 MHz with fair sharing. The 5G TDD network o�ers
strong scalability at wider bandwidths: laptops reach 65.2 Mbps at
40 MHz before dropping at 50 MHz due to SDR limitations, while
Raspberry Pis peak at 53.8 Mbps. Both FDD and TDD modes deliver
high and evenly distributed uplink throughput, with TDD sup-
porting broader bandwidth scaling and FDD demonstrating strong,
reliable performance within its operational range.

In Fig. 6, we show the results of slicing experiment conducted
on the private 5G TDD network with a total bandwidth of 40MHz.
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Figure 6: Two-user Uplink Throughput on a 40 MHz Private
5G TDD Network With Varying PRB Slice Ratios

Two raspberry pi’s equipped with RM530N-GL 5G modems are
simultaneously connected to the network, each assigned to a di�er-
ent network slice. The system is con�gured with nine slice pro�les,
where each slice corresponds to a �xed allocation of physical re-
source blocks (PRBs), the fundamental units used to allocate radio
frequency spectrum in 5G. These slices range from 10% (slice 1) to
90% (slice 9) of the total available PRBs. In the �rst con�guration,
RPi1 is assigned to slice 1 (10% PRBs), while RPi2 is assigned to
slice 9 (90% PRBs). An iperf3 uplink throughput test is performed
simultaneously on both devices, and 100 samples are collected per
device. In the next con�guration, Rpi1 is assigned to slice 2 (20%),
and RPi2 to slice 8 (80%). This pattern continues with RPi1 progress-
ing from slice 1 to slice 9, and RPi2 in reverse from slice 9 to slice 1,
maintaining complementary PRB ratios that always sum to 100%.

The results also show a clear correlation between PRB alloca-
tion and uplink throughput. As each Raspberry Pi is assigned a
larger share of the network slice, throughput increases consistently.
RPi1 achieves 4.95Mbps at 10% PRB allocation and scales up to
34.73Mbps at 90%, while RPi2, assigned the complementary share
in each con�guration, increases from 5.14Mbps to 43.47Mbps. Mid-
point allocations, such as 50%, yield comparable results—RPi1 and
RPi2 achieve 23.91Mbps and 25.22Mbps, respectively. Standard de-
viations remain within a narrow 3–5Mbps range, indicating stable
performance across all slice levels. Throughput generally scales in
proportion to the assigned PRBs, demonstrating that the slicing
con�guration e�ectively partitions radio resources. Overall, the
experiment con�rms that network slicing enables controlled and
predictable resource allocation in the private 5G network.

4.2 CSPOT Sensor Network
From a performance perspective, end-to-end, the application con-
sists of two data paths. The �rst transmits telemetry data to be used
to determine the initial conditions of the CFD simulation from UNL
to UCSB every 5 minutes. This 5-minute interval is the reporting
interval of the weather stations deployed in and around the CUPS.
On the second data path, a Laminar program reads the most recent
6 telemetry values (covering the most recent 30 minutes) and com-
pares them to the previous 30-minute period using three di�erent
tests of statistical di�erence. If conditions have changed in a way
that is statistically measurable under the assumptions of the tests, it
generates an alert indicating that a new CFD simulation is needed.

Table 1: CSPOTMessage Latency for 1KB payload.

Path Latency Avg. (ms) Latency SD (ms)

UNL->UCSB (5G+Int.) 101 17
UNL->UCSB (Internet) 17 0.8
UCSB->ND (Internet) 92 1

The alert status is stored in a CSPOT log at UCSB and fetched to
ND on a 30-minute duty cycle. The Laminar program components
can be deployed either within the private 5G network or at UCSB
in any combination. We execute the statistical tests and a voting
algorithm to arbitrate between them at UCSB in this study.

Because both the telemetry data path and the Laminar data
path use CSPOT as a message transport, we report the CSPOT
message performance for the prototype. We measure the time to
deliver 1 1 ⌫ message payload, 30 times back-to-back. (The �rst
of 30 measurements is discarded because of the initial connection
start-up penalty.) Further, each message is acknowledged with a
sequence number after the data has been appended to a log in
persistent storage. Table 1 shows the average latency for delivering
a 1KB message payload to persistent storage at the end of a log.

Three con�gurations are measured. ‘UCSB->UNL (5G+Int.)‘ mea-
sures the latency from a client at UNL carried over the 5G network
and the public internet to the �GF����� node at UCSB. ‘UNL->UCSB
(Internet)‘ is the same measurement, but moving the client to a
wired Ethernet connection to the Internet, skipping the 5G wireless
network. ‘UCSB->ND‘ measures between CSPOT nodes at UCSB
and ND over the public Internet.

Note that the current CSPOT internal messaging protocol (which
uses ZeroMQ [10] as a transport) is optimized for reliability and not
message latency. For example, to append data to a remote CSPOT
log requires the client to request the size of a log element (which
is �xed for each log and stored with the log as part of its header)
from the site where the log is hosted before the data is actually
sent from the client to the log. This size is used to determine the
size of the message sent from the client carrying the element to be
appended. Earlier versions of CSPOT focused on message latency
used caching of the element size on the client side to avoid fetching
the element size each time. This optimization e�ectively halves the
message latency, but causes the append to fail if the log element
size is changed on the server side without a client cache update.

While these and other optimizations are possible, for the proto-
type �GF����� application where new telemetry data is available
every 300 seconds and change-detection is performed by the Lami-
nar program every 30minutes, further reducing themessage latency
by as much as an order of magnitude will not appreciably a�ect
application performance. For example, the e�ect of moving the
telemetry sources from the private 5G network (latency 101ms) to
the Internet directly (17ms) – an order of magnitude improvement
in message latency – would be imperceptible end-to-end.

This result shows that the current production CUPS deployment,
that uses a combination of 900MHz and long-distance Wi-Fi con-
nectivity in and around the CUPS, could be replaced by a private 5G
network without ill e�ect. Doing so, in the future, will obviate the
current solar and battery power distribution infrastructure, thereby
drastically reducing the maintenance cost.
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4.3 HPC Simulation Portability
Future deployments of �GF����� will make use of varying HPC
sites in order to exploit the changing availability and performance
of di�erent facilities. To that end, the simulation was successfully
deployed and evaluated across three distinct HPC environments:
Notre Dame’s Center for Research Computing (CRC), Purdue’s
ANVIL, and the University of Texas’ Advanced Computing Center’s
(TACC) Stampede3. This multi-site deployment strategy enabled as-
sessment of portability challenges and performance characteristics
across heterogeneous facilities.

Some practical di�erences between sites are easily observed,
such as operating system and batch scheduler. Anticipating these
and future di�erences requires developing scripts that perform
various checks, resource allocation speci�cations, and user prompts
within the scripts for each computing environment, along with the
use of Miniconda to capture and deploy Python components. This
strategy ensures reproducible builds by maintaining explicit version
speci�cations for all packages and libraries.

The primary portability challenge emerged from variations in
pre-installed software modules across the computing sites. Each
HPC system provided di�erent versions of OpenFOAM and Par-
aView with distinct dependency requirements and compilation
con�gurations. The ParaView installations varied in their graph-
ics library dependencies. This heterogeneity created several issues
when creating display environments for rendering the VTK output
�les generated by the OpenFOAM simulations.

To resolve the visualization rendering challenges, a front-end
SSH-based solution was implemented that requires users to es-
tablish display-forwarded connections to head nodes for o�screen
rendering.While batch job submissionwith embedded environment
variables represents an alternative approach, the complexity of dy-
namically detecting graphics library con�gurations and available
virtual display systems across diverse HPC environments proved
prohibitive. Speci�cally, Notre Dame and ANVIL systems utilized
OpenGL-compiled ParaView with X.Org display servers supporting
virtual framebu�er allocation, while Stampede3 employed Mesa-
compiled ParaView. ANVIL’s con�guration presented additional
constraints, lacking support for both virtual framebu�er and Mesa
environment pass-through capabilities.

Computational performance remained relatively consistent across
all three deployment sites. Fig. 7 shows the performance of full CFD
computation (including mesh generation) obtained at Notre Dame
on a single node as a function of core count. The data points show
the mean total execution time for each core count, and the whiskers
show ± two standard deviations over 10 runs of each size, approxi-
mating a 0.95 con�dence interval. With 64 cores, the average total
time required to complete the simulation is 420.39 seconds with a
standard deviation of 36.29 seconds. All three systems provided sim-
ilar performance, validating the portability approach’s e�ectiveness
across HPC infrastructures.

4.4 End to End Performance
The end-to-end performance of �GF����� is dominated by the time
to prepare, queue, and execute the CFD simulation. The telemetry
data needed to generate the input �les needed by OpenFOAM is

Figure 7: OpenFOAM Performance
Single-node speedup curve for OpenFOAM simulation on 64-core single
node, 10 runs per core count, mean and 2 standard deviations shown.

available every 300 seconds and requires approximately 200 mil-
liseconds to transfer from the 5G network at UNL to the head node
of the cluster at ND via the data repository at UCSB (cf. Table 1).

If a 64 core machine were dedicated to this application, it could
sustain a rate of one simulation produced approximately every
7 minutes. However, these simulations are retrospective. That is,
they simulate the conditions that existed at the time just before the
simulation was initiated – not when it has completed. Recall that
the Laminar program that can trigger a statistical change requires
30minutes of telemetry data. Thus, with 64 cores, �GF����� is able
to generate a CFD simulation that is valid for a minimum of 23
minutes (the 23minutes remaining after the 7minutes of simulation
completes) up to the next change in wind speed.

However, making use of a shared computing facility also results
in queueing delay, which varies with the o�ered load, the requested
machines, the system capacity, and the scheduling discipline. Dur-
ing the course of this project, the queueing delay at Notre Dame
varied from zero to 24 hours at various points, and other facilities
were no di�erent. The Pilot controller (Section 3.6) is designed to
sidestep this by submitting a pilot placeholder in advance, and then
"activating" the pilot as needed to achieve real-time response.

Note that multi-node execution (using MPI) does not generate
a speedup for the total application. The OpenFOAM computation,
itself, runs fastest on 2 nodes, each with 64 cores. However, the
total application (which includes both input-�le generation and
output postprocessing) slows down (despite the faster OpenFOAM
time) when executed on more than one node. However, �GF�����
is able to deploy the application to the best con�guration possible
given its performance needs, end-to-end.

5 Conclusions and Future Work
�GF����� is a new, full-stack software platform designed to use
5G, (and emerging 6G) networking technologies to deliver HPC “in-
the-loop” – real-time or near real-time distributed applications that
require high-performance computing components. This prototype
demonstrates the ability to leverage 5G/6G connectivity in remote,
low infrastructure settings such as commercial digital agriculture.
It also demonstrates the ability to use a single software stack on all
devices in an IoT deployment, at all device scales, including HPC
machines. Moving forward, we plan to extend �GF����� in several
important ways: First, we will incorporate the ability to use the
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dynamic control mechanisms available for 5G to implement IoT-
tailored slicing techniques as a way of optimizing remote network
usage. Second, we will develop the Pilot infrastructure to tune
resource allocations in order to better avoid batch queueing delays.
Finally, we will exploit the simulation results to perform real-time
interventions in the CUPS facility.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

A Overview of Contributions and Artifacts
A.1 Paper’s Main Contributions

⇠1 Designing an end-to-end system for coupling sensor net-
works with HPC facilities through Private 5G networks to
enable real-time-digital agriculture simulation.

⇠2 Demonstrating the ability to leverage 5G/6G connectivity
in remote, low infrastructure settings such as commercial
digital agriculture.

⇠3 Demonstrating the ability to use a single software stack
on all devices in an IoT deployment, at all device scales,
including HPC machines.

A.2 Computational Artifacts
�1 Full Artifact Repository (DOI: 10.5281/zenodo.16696837)
�2 Full Artifact Repository (github.com/UNL-CPN-Lab)

Artifact ID Contributions
Supported

Related Paper Elements

�1 ⇠1,⇠3 Figures 3, 7
�2 ⇠1,⇠2 Figures 4, 5, 6

B Artifact Identi�cation
B.1 Computational Artifact �1

Relation To Contributions
The artifact provided, (�1), includes the source code for the simula-
tions to ensure and verify the reproducibility of the artifact. It also
includes the plotting tools used to generate the original �gures in
the paper. The experiments were designed to be run on the head
node and a compute node of an HPC cluster.

Expected Results
Figure 3:

The replication of Figure 3 produces a PNG �le depicting the
�nal result from the CFD simulation of the CUPS farm. The �gure
shows the simulation of the air�ow around the farm, with the wind
velocity represented by color gradients. The simulation is based on
a 3D model of the farm.

Figure 7:
The replication of Figure 7 produces a plot depicting the mean

total runtime of the OpenFOAM simulation with varying number of
cores on a single compute node. The plot shows the mean total run-
time for each total number of threads, with error bars representing
the 2 standard deviations across multiple runs.

Expected Reproduction Time (in Minutes)
The artifact contains the source code and data to reproduce the
speedup curve results presented in the paper.

1) Artifact Setup: Once downloaded and con�gured, the artifact
can be executed in less than 10 minutes.

2) Artifact Execution: The execution time of the artifact can
varying greatly depending on queue times, number of jobs
submitted concurrently, and number of cores. In total, the
execution of one run for Figure 3 took around 15 minutes.
For Figure 7, the total execution time was around 13 hours
(780 minutes) with no queuing delay.

3) Artifact Analysis: For Figure 3, there is no analysis to be done.
For Figure 7, the analysis of the results and generation of
the �gures can be done in less than 5 minutes once all the
experiments have been executed.

Artifact Setup (incl. Inputs)
Hardware. Computation is executed on both head nodes and com-
pute nodes. The compute node should have UGE as its batch sched-
uler. A front-end node with display environment variables is re-
quired for rendering the CFD simulations.

So�ware. The artifact should be executed on a Linux based machine
with Bash, Python, and Pip installed.

Datasets / Inputs. The data for the artifact is provided in a zip �le in
the directory where it is used. The data includes the all necessary
OpenFOAM �les.

Installation and Deployment. The �rst thing that the user needs to
do is to access the head node of an HPC cluster with their display en-
vironment variables passed through via SSH. This is accomplished
by adding the “-Y” �ag when connecting to the front-end (e.g., ssh
-Y user@HPC). Next, the user will install the necessary Pip packages
listed in the requirements �le.

Artifact Execution
The user will run the experiments by running either “sh runme.sh
-t=<number of threads>” to run a single experiment or run them
in batches with “sh simulations.sh”. If the user chooses the use
the simulations �le, they will �rst have to customize it with how
many and which kind of runs they want.

Artifact Analysis (incl. Outputs)
Once each experiments are complete, a user can run “sh render.sh
<name of experiment>” for Figure 3 and/or “python graph-
ing.py” for Figure 7. Notably, values are to be copied manually
into the CSV �le for replications of Figure 7. The values are to be
retrieved from the result_time logs. Each line of the CSV �le with
include: the experiment number and the total time that that the
experiment took to run for the varying number of threads.

B.2 Computational Artifact �2

Relation To Contributions
The artifact (�2) provided contains the source code used to build
and deploy the 4G and the 5G network. It also includes a data
folder containing all the experimental results, as well as plotting
code used to reproduce Figures 4, 5, and 6 from the paper.
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Repository Structure:
• build-4G-network/: Contains source code used to build
and deploy the private 4G network

• build-5G-network/: Contains source code used to build
and deploy the private 5G network

• data/: Contains raw iperf3 JSON output collected during
all experiments, categorized by device, duplexing mode, and
bandwidth setting.

• visualize/visualize.ipynb: Jupyter Notebook used to
parse the experimental data and generate the plots shown
in Figures 4, 5, and 6.

The repository supports full reproduction of the experiments and
�gures in the paper. Detailed setup and execution steps are provided
in the README.md.

Expected Results
Figure 4:

The replication of Figure 4 produces a PDF �le depicting how
uplink throughput performance varies across di�erent bandwidths,
duplexing modes, and user devices in a single-user scenario.

Figure 5:
The replication of Figure 5 produces a PDF �le depicting how

the uplink throughput performance varies across di�erent channel
bandwidths, duplexing modes, and user devices in a two-user
scenario.

Figure 6:
The replication of Figure 5 produces a PDF �le depicting how

the results of slicing experiment conducted on the private 5G TDD
network with a total bandwidth of 40MHz.

Expected Reproduction Time (in Minutes)
The artifact contains the source code and data to reproduce the re-
sults presented in the paper. To generate the exact �gures, the setup
and execution can be skipped since the original data is included
with the artifact.

1) Artifact Setup: Once downloaded, the artifact needs to be
setup with docker. The docker process can take up to 30
minutes.

2) Artifact Execution: The execution time of the artifact can take
up to 120 minutes to run all the experiments.

3) Artifact Analysis: The analysis of the results and generation
of the �gures can be done in less than 2 minutes once all the
experiments have been executed.

Artifact Setup (incl. Inputs)
Hardware. To run the experiments the user will need a Host Com-
puter Running with 10th gen or later intel chip with at least 16GB
RAM and an SDR (B210) connected over USB 3.0.

So�ware. The artifact should be executed on either a Ubuntu or
MacOS based machine with Bash, Python, Pip, and Docker installed

Datasets / Inputs. The data for the artifact is provided in the data
folder. The data can also be generated from the user.

Installation and Deployment. Detailed setup and execution steps
are provided in a README �le for the 4G, 5G, and visualization
folders.

Artifact Execution
The artifact can be executed by building the docker images, com-
posing the docker images, and then running the “data/script.sh”
�le. At least 10-15 runs should be conducted for each device and
network type for a su�cient sample size.

Artifact Analysis (incl. Outputs)
The outputs are JSON �les that go into subfolder within the data
folder. Each JSON �le consists of metrics such as: host IP, destination
IP, start time, end time, seconds, bytes, bits per seconds, etc.

Artifact Evaluation (AE)

Artifact Setup (incl. Inputs)
The user needs to copy and paste the times from the “result_time”
log �le into the corresponding CSV �les located in “data/data.csv”.

Artifact Execution
For Figure 3:

The user will copy the name of the folder of the completed run
(e.g., cups_structure_25-07-29_14_07_57) and use it in the following
command: “sh render.sh <name of folder>”. This will generate
a PNG �le in the �gures folder showing the completed CFD simula-
tion of the farm. Note: the CFD output in Figure 3 was from a run
with 64 threads.

For Figure 7:
The user will run at least 10 simulations for each number of

threads for statistical signi�cance. After all runs have �nished and
the times have been manually copied into the “data/data.csv” �le,
the user will run the “graphing.py” �le. This will plot and save
the graph as a PDF to the �gures folder.

Artifact Analysis (incl. Outputs)
The user can run the plotting �le located, “graphing.py”, to gen-
erate and save the �gures.

C.1 Computational Artifact �2

Artifact Setup (incl. Inputs)
When running the Jupyter Notebook, make sure that the NumPy
and Matplotlib packages are installed. The data should already be
available in the data folders.

Artifact Execution
Simply run all the cells of the Jupyter Notebook to generate the
�gures.

Artifact Analysis (incl. Outputs)
Figures 4, 5, and 6 are saved from the Jupyter Notebook as PDFs.
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