
XMem: Type-Safe, Transparent, Shared Memory for
Cross-Runtime Communication and Coordination

Michal Wegiel Chandra Krintz
Computer Science Department

Univ. of California, Santa Barbara
{mwegiel,ckrintz}@cs.ucsb.edu

Abstract
Developers commonly build contemporary enterprise applications
using type-safe, component-based platforms, such as J2EE, and ar-
chitect them to comprise multiple tiers, such as a web container,
application server, and database engine. Administrators increas-
ingly execute each tier in its own managed runtime environment
(MRE) to improve reliability and to manage system complexity
through the fault containment and modularity offered by isolated
MRE instances. Such isolation, however, necessitates expensive
cross-tier communication based on protocols such as object se-
rialization and remote procedure calls. Administrators commonly
co-locate communicating MREs on a single host to reduce com-
munication overhead and to better exploit increasing numbers of
available processing cores. However, state-of-the-art MREs offer
no support for more efficient communication between co-located
MREs, while fast inter-process communication mechanisms, such
as shared memory, are widely available as a standard operating sys-
tem service on most modern platforms.

To address this growing need, we present the design and imple-
mentation of XMem – type-safe, transparent, shared memory sup-
port for co-located MREs. XMem guarantees type-safety through
coordinated, parallel, multi-process class loading and garbage col-
lection. To avoid introducing any level of indirection, XMem ma-
nipulates virtual memory mapping. In addition, object sharing in
XMem is fully transparent: shared objects are identical to local ob-
jects in terms of field access, synchronization, garbage collection,
and method invocation, with the only difference being that shared-
to-private pointers are disallowed. XMem facilitates easy integra-
tion and use by existing communication technologies and software
systems, such as RMI, JNDI, JDBC, serialization/XML, and net-
work sockets.

We have implemented XMem in the open-source, production-
quality HotSpot Java Virtual Machine. Our experimental evalua-
tion, based on core communication technologies underlying J2EE,
as well as using open-source server applications, indicates that
XMem significantly improves throughput and response time by
avoiding the overheads imposed by object serialization and network
communication.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Dynamic Storage
Management, Classes and Objects; D.3.4 [Programming Lan-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

guages]: Processors – Run-Time Environments, Memory Manage-
ment (Garbage Collection), Compilers, Optimization
General Terms Design, Experimentation, Languages, Manage-
ment, Measurement, Performance
Keywords Interprocess Communication, Managed Runtimes,
Shared Memory, Transparent, Type-Safe, Garbage Collection, Syn-
chronization, Class Loading, Parallel

1. Introduction
Developers today predominately construct modern, enterprise,
component-based, middleware for portable, distributed applica-
tions using type-safe, object-oriented languages, such as Java,
which users execute within managed runtime environments (MREs).
These MREs typically support garbage collection (GC), dynamic
class loading, incremental compilation, as well as high-level thread-
ing and synchronization primitives, among other runtime services.
One popular example from this application domain is JBoss, an
application server that provides a complete implementation of the
J2EE [32] specification, and that is architected on top of the Java
platform [34].

A common architectural design pattern employed by adminis-
trators of enterprise applications is multi-tier deployment that par-
titions the system into independent domains, typically run using
separate MRE instances (OS processes). Such isolation enables
fault containment and modularity as well as more aggressive spe-
cializations in the MREs (e.g., using the best-performing compila-
tion strategy or garbage collection system for a particular applica-
tion, set of activities, or domain). J2EE-based applications typically
comprise at least three tiers: a web container (front-end presenta-
tion layer), an application server (business logic), and a database
engine (back-end data source) [34, 8, 60].

Multi-tier decomposition, however, necessitates expensive inter-
process communication (IPC) between MREs (isolated compo-
nents). Since most general-purpose servers (e.g., web, applica-
tion, database) are designed for online transaction processing, in
which many clients perform many short transactions simultane-
ously, communication overhead can constitute a significant portion
of the observed, end-to-end response time (especially when multi-
ple isolation units are involved).

To reduce the overhead of MRE IPC, administrators commonly
co-locate multiple tiers on a single machine. Co-location simpli-
fies administration and configuration, enables efficient use of local
network communication for IPC, and makes better use of multi-
processor architectures through increased thread-level parallelism.
Emerging multi- and many-core systems are likely to make MRE
co-location increasingly commonplace.

Cross-MRE IPC mechanisms cannot depend on co-location,
however, since MREs may alternatively be distributed across differ-
ent cluster nodes or be migrated to achieve load balancing and more

effective utilization of server resources, an increasingly important
operation in virtualizing systems today [44, 47, 57]. Thus, MRE
IPC employs high-overhead implementations of standard commu-
nication protocols, such as remote procedure calls and object seri-
alization, regardless of the proximity of the communicating MREs.

We introduce support for transparent and type-safe, cross-MRE
communication and coordination, called XMem. XMem is an IPC
mechanism that enables object sharing between MREs co-located
on the same machine and communication via extant distributed
protocols when physically separated. XMem is transparent in that
shared objects are the same as unshared objects (in terms of field
access, synchronization, GC, and method invocation, among oth-
ers), except that XMem disallows pointers from shared objects into
MRE-private storage. To enable efficient object sharing, XMem
manipulates virtual memory mapping to avoid indirection, i.e., all
object references in the system are direct. Moreover, existing com-
munication technologies, e.g., those employed by J2EE or network
sockets, can use XMem without application modification.

XMem guarantees type-safety by ensuring that the MREs em-
ploy the same types for shared objects when the communication
medium is shared memory. XMem is also compatible with core
MRE services such as GC, dynamic class loading, and thread syn-
chronization. XMem coordinates MREs through infrequent, syn-
chronized global operations that include GC and class loading.
In summary, we make the following contributions with this work:

• Improved integration of MREs with the underlying system.
XMem provides a new, efficient communication mechanism
while maintaining standard, portable interaction with the lower-
level layers of the software/hardware stack.

• Direct object sharing via isolated channels between co-located
MREs isolated as distinct OS processes that avoids the trade-
offs inherent to previous approaches [17, 4] by enabling com-
munication without serialization and data copying.

• Extensions to the MRE services and abstractions, including
parallel, cross-process class loading and garbage collection.
XMem implements changes to MRE subsystems and system li-
braries to enable transparent and efficient use of shared memory
support when available.

• Empirical evaluation of XMem that quantifies the reduction in
response time and the increase in throughput in the context of
the most commonly-used J2EE communication technologies,
such as JDBC, JNDI, and RMI, as well as a database server and
a web server.

In the sections that follow, we describe the necessary support of
object sharing (Section 2), of multi-threading (Section 3) and man-
agement of the shared memory segment (Section 4). In Section 5,
we present the implementation details of our prototype as well as
our experimental methodology and empirical evaluation of XMem.
Finally, we contrast related work (Section 6) and present our con-
clusions and our future directions in Section 7.

2. XMem: Transparent Object Sharing
The goal of XMem is to improve communication performance for
enterprise-class, object-oriented, software systems, a popular appli-
cation domain for web services. XMem enables transparent IPC via
shared-memory between isolated MREs that are co-located on the
same machine; such co-location of related processes is an increas-
ingly common technique for the exploitation and better utilization
of multicore systems. Using XMem, MREs share objects directly
to avoid the overhead that is imposed by distributed communication
protocols due to object marshalling and serialization.

To enable direct object sharing, XMem maps the shared mem-
ory segment at the same location in the virtual address space (VAS)

low virtual
addresses

high virtual
addresses

XMemMRE Virtual Address Space (VAS)

MRE
Heap

App.
Heap

LCT GCT App.
Stack

MRE
Stack

SHM
Meta

Shared
Objects

MRE and
App.
Threads

XMem
GlobalOp
Thread

MRE and
App.
Threads

XMem
GlobalOp
Thread

Co-located
MREs

XMem
MRE VAS

Figure 1. Co-located XMem MREs, and their virtual address
spaces (VAS), that are attached to a shared memory segment
(gray area). The shared region contains meta-data (SHM-Meta)
and shared objects and is mapped at the same virtual address in
each MRE. The GlobalOp thread in each MRE performs infrequent
global operations that XMem synchronizes across attached MREs.

of all attached MREs. Figure 1 depicts an example instance of
an XMem system. Two MREs attach to the same shared mem-
ory segment (gray area of the VAS) to share objects. We refer to
the VAS of each MRE that is not mapped to the shared memory
segment (white area of the VAS) as MRE-private. XMem systems
share per-instance, non-static data only – static (per-class) data is
MRE-private since static fields typically record program-specific
or MRE-specific state. Sharing of such fields can violate both type
safety and inter-process resource isolation.

Since we map shared memory to the same virtual address in all
MREs, objects within the shared memory have the same addresses
in all MREs. To guarantee memory and type safety, we disallow
pointers from shared objects to private objects via a write barrier
(described further below), since the address space of the non-shared
areas in MREs is independent and unrelated across MREs. Regard-
less of this constraint however, XMem MREs provide services,
such as class loading, GC, allocation, synchronization, compila-
tion, uniformly for shared and MRE-private objects, i.e., XMem
provides object-level transparency.

Key to enabling such transparency efficiently is that (i) the
internal representations of object types (classes) are the same across
all attached MREs, and that (ii) the underlying operating system
provides support for virtual memory paging and its manipulation
by user-level processes (the MRE in our case).

2.1 VAS Manipulation

XMem manipulates the virtual address space to enable direct ac-
cess to objects as well as to their class representations. Objects
in most object-oriented language systems typically contain a ref-
erence to an internal representation of the class (type) from which
they are instantiated. This reference enables direct retrieval of ob-
ject metadata for fast implementation of common operations such
as dynamic dispatch, field access, and dynamic compilation. These
internal representations of classes, however, are MRE-specific and
cannot be shared, as they commonly record application- or MRE-
specific state and provide access to static (private) data. Class point-
ers, therefore, must resolve to the MRE-private internal representa-
tion of the class.

To avoid moving (reordering) existing class objects (internal
representations) within each attached MRE (which can be complex
and expensive), yet to ensure that the same virtual address refers
to the same MRE-private internal representation of the class in all

0x200

0x100

Class A

0x200

Class K

0x300

Class X

0x400

Class B

0x800

Class A

0x900

Class K

0x200
0x900

0x300

0x100

Class Z

0x200

Class A

0x300

Class K

0x800

Class A

0x900

Class K

L

C

T

L

C

T

G

C

T

G

C

T

MRE-private K objects Shared K
object

MRE-private K object

Physical Memory Pages

MRE 1 (Private VAS) MRE 2 (Private VAS)SHM VAS

Figure 2. Manipulation of VAS mapping so that class pointers re-
solve to equivalent MRE-private class representations across at-
tached MREs without copying or moving, and while enabling di-
rect retrieval of object metadata (for dynamic dispatch, field access,
etc.). Each box is a virtual page (4KB in size), potentially mapped
to physical memory. Blank boxes are unmapped. We omit mapping
lines (dotted with round ends) for classes other than K, for clarity.

MREs, XMem aligns class objects to virtual memory page bound-
aries (we assume traditional 4KB pages) and manipulates virtual
address mapping as depicted in Figure 2 via double mapping. In
the virtual address space (VAS) of each attached MRE in XMem,
there is a global class table (GCT) and a local class table (LCT),
both of which are MRE-private. The LCT holds the representations
of both MRE-private and global classes. LCTs across MREs are
independent and unrelated. In contrast, the GCT in each MRE is
identical in structure and layout (class order, count) and has the
same virtual address in MRE-private space.

XMem maps the physical page of a particular (global) class to
a virtual page in both LCT and GCT, to achieve resolution of class
pointers within shared objects to private class representations with-
out copying or moving and without introducing pointer indirection.
In the example, the class pointer of unshared objects (instances of
class K) refers to the internal class representation in the LCT in
their MRE (address 0x200 in MRE 1 and 0x300 in MRE 2). When
the two MREs share an object of type K, XMem adds an entry for
class K to the GCT at the same location in each MRE. Since the
GCTs are identical in each MRE and start at the same virtual ad-
dress, the class pointer in the shared object is the same for both
MREs (0x900). We overview the class loading process that makes
use of this implementation in Section 4.2.

There are two side-effects of this double-mapping. First, in the
worst case, XMem consumes twice the VAS needed for classes
(worst case is when each MRE-private class is a globally shared
class). This case is uncommon in our experience as the number of
MRE-private classes typically far exceeds that of globally shared
classes. Moreover, such VAS use is negligible for machines with
large address spaces (64-bit platforms). Second, class alignment to
virtual page boundaries limits the class size to that of a virtual page
and can cause fragmentation in the LCT (when classes are smaller
than the page size). In practice, we have never found a class object
to be larger than our virtual page size. However, if this proves to
be a limitation, we can reserve a multiple of the page size for each
class. In our implementation, the LCT is the permanent generation
of the MRE which stores other long-lived data (e.g., MRE data
structures, static strings) in addition to class objects. This data
consumes part of each page which helps to reduce fragmentation.

We measure and report the space overhead of fragmentation in Java
benchmarks in Section 5.2. We plan to investigate the impact of
large page sizes on XMem systems as part of future work.

2.2 Shared-to-Private Pointers

To guarantee that shared objects never refer to private heaps
(since such references are particular to a specific MRE process),
XMem piggy-backs on the extant write barrier implementation
of generational garbage collection (GC). Generational GCs are in
widespread use in modern MREs as they provide superior perfor-
mance which they achieve by exploiting similarity in object life-
times and by partitioning the heap into distinct, contiguous spaces
called generations [58, 62, 37]. These systems allocate most objects
from the young generation, and collect this region frequently since
a majority of objects die young [6, 36]. To enable efficient, indepen-
dent collection of generations, generational GCs use a write barrier
at every reference store in a program to track references from older
to younger generations. Modern MREs typically also employ a per-
manent generation that is rarely collected and that holds long-lived
objects such as internal class representations, constant strings, and
MRE data structures.

XMem extends write barriers with two checks needed to com-
pare the source and destination of a particular pointer against the
constant boundary between MRE-private and shared part of the
heap. We need the source check for each pointer store, and the des-
tination check only for stores to the shared memory. If a program
makes an assignment that violates the XMem constraint, the run-
time throws an exception and the instruction fails. Since we map
the shared memory segment to the same location in each MRE and
the segment has a fixed size, this check is very efficient: it consists
of a register and constant comparison. Such checks impose negligi-
ble overhead on modern architectures because there is no memory
access and the branch direction is typically highly biased and thus,
easily predictable.

2.3 Using XMem

Developers make use of XMem via a simple application program-
ming interface (API). The XMem API for Java comprises the fol-
lowing public static methods declared in the ipc.SharedMemory
class:
void sharedModeOn(); boolean isSharedModeOn();

void sharedModeOff(); boolean isShared(Object o);

Object accept(int p); void connect(int p, Object o);

void bind(int p); Object copyToShared(Object o);

To support transparency and backward-compatibility, programs
within XMem allocate objects using the conventional new operator,
regardless of whether they are allocating shared or private memory.
XMem determines from which region (shared or private) to allocate
using a per-thread allocation mode. Initially, the allocation mode is
private. Programs or libraries change the allocation mode explicitly
via the sharedModeOn and sharedModeOff methods. The system
throws an ipc.SharedMemoryException to prevent shared-to-
private pointers as well as signal binding/connection failures and
out-of-memory errors.

XMem makes use of the concept of ports to enable co-existence
of multiple, isolated communication channels in a single shared
memory segment. To initiate communication, two distinct MREs
(to which we refer as a client and a server) must obtain a refer-
ence to a shared object (to which we refer as a root). A client al-
locates a root in shared memory and passes a reference to it to the
connect method along with a port to which a specific server has
been bound via the bind method. The server retrieves the root from
the accept method. Once the root is exchanged, further communi-
cation proceeds according to an application-specific protocol which
commonly includes monitor synchronization (wait/notify) on the
root. Objects shared through a particular channel are reachable only

to threads/MREs that have established the connection. However, an
arbitrary number of threads/MREs can share a specific object if a
server makes a reference to a shared object available to multiple
clients (which use distinct channels for communication with the
server).

To enable interoperability with libraries that do not guarantee
immutability of the objects they take as arguments, XMem provides
a mechanism for recursive (deep) copying of objects into the shared
memory via the copy method. Object cloning, commonly available
from the underlying language (e.g., Java or C#) platform, by default
creates shallow object copies and must be overridden on a per-
application basis to support deep coping. XMem provides this
general service uniformly across applications. XMem uses stack-
based, depth-first copying and handles cycles in the object graph
by maintaining a hash table that maps the already-visited objects
to their copies. We describe how such copying to shared memory
interacts with shared-memory garbage collection in Section 4.3.

Although, in this work, we focus primarily on shared memory,
other IPC mechanisms such as signals and message queues can be
built on top of XMem in a straightforward way. We have integrated
XMem, through the use of its API, into existing communication
mechanisms, such as RMI, applying only minimal library modifi-
cations. Such XMem-aware implementations provide two paths of
execution that the library routine selects based on the proximity of
the communication target: one that employs shared memory and
one that uses traditional distributed communication.

3. XMem Runtime Support
To enable cross-MRE object sharing, XMem extends the MRE
multi-threading implementation by adding dual mode (shared or
private) object allocation and support for cross-process synchro-
nization based on shared object monitors. XMem automatically
preserves the guarantees provided by the memory consistency
model of a specific MRE (e.g., the Java Memory Model [43]) since
the system consists of homogeneous MREs.

3.1 Dual Mode Object Allocation

XMem extends the common allocation technique of thread-local
allocation buffers (TLABs). TLABs are used by modern MREs to
reduce contention between threads that concurrently perform lin-
ear (bump-pointer) allocation from a common area. This approach
requires no synchronization when allocating within a TLAB. The
system allocates TLABs to threads linearly, using more expensive
atomic operations. XMem associates two TLABs with each appli-
cation thread, one in private and one in shared memory. We do not
initialize the latter until the thread performs its first allocation into
shared memory, e.g., when it first executes a new bytecode within
the XMem shared mode (sharedModeOn()). XMem excludes ob-
jects that the system creates by side-effect of other operations, such
as class loading or lazy data structure initialization, from allocation
in shared memory to prevent unintended object leaks. XMem also
uses private mode for allocation of all internal data structures (data
commonly stored in a permanent area of the heap).

3.2 Thread Synchronization

Two locking schemes are commonly used to implement language-
level (e.g., Java) monitors in extant MREs: lightweight locking [52]
and biased locking [52]. Biased locking optimistically assumes
that a single thread uses a monitor (i.e., there is no contention);
when this proves not to be the case, biased locking falls back to
lightweight locking. Both lightweight and biased locking require a
re-design to work with shared memory. XMem adapts and employs
lightweight locking since it is the basis for both schemes. We first
overview lightweight locking and then describe its implementation
in XMem.

Lightweight Locking. To avoid using OS primitives (a pair con-
sisting of a mutex and a condition variable) in the common
case of uncontended locking, lightweight locking employs atomic
compare-and-swap (CAS) operations. Only when two threads at-
tempt to lock the same object does the MRE inflate the lightweight
lock into a heavyweight OS-backed monitor. Lightweight locking
improves performance as user-mode locking is significantly more
efficient than system calls.

The MRE stores basic locking information in the object header
which occupies one machine word. The lowest two bits encode
one of the three possible states: unlocked (UL), lightweight-locked
(LL), and heavyweight-locked (HL). When an object is LL (by a
monitorenter bytecode), the system inserts a lock record into
the stack of the thread performing the lock acquisition operation.
During stack unwinding (which takes place when an exception is
thrown), the system uses lock records to unlock the objects that
are locked in the discarded stack frames. Normally, objects are
unlocked by a monitorexit bytecode generated as part of the
epilogue of block-structured critical sections. Each lock record
holds a pointer to the locked object and the original value of the
overwritten object header.

During locking, a thread attempts an atomic CAS on the object
header to replace it with a pointer to the stack-allocated lock record.
Lock records are word-aligned, therefore the two lowest bits are
always cleared and do not conflict with the locking state bits kept
in the header. If the CAS succeeds, the thread owns the monitor.
Otherwise, a slow path is taken and the lock is inflated – the object
header is CAS-updated to point to a data structure containing a
mutex and a condition variable. This data structure is stored in
private, MRE-managed, memory.

During the unlock operation of an LL object, a thread tries to
CAS-restore the header that it has stored on the stack. On success,
no fall-back is needed and the fast path is complete. The CAS fail-
ure indicates that the lock was contended for (and inflated) while
it was held. Under such circumstances, it is necessary to notify the
competing (and now waiting) threads that the object is unlocked.
These threads are blocked on the condition variable. When awak-
ened, they unlock the mutex and resume execution by trying to re-
acquire the mutex. The mutex and the condition variable are multi-
plexed here: first they are used to wait until the LL object becomes
unlocked and then they are used in a standard way to provide mu-
tual exclusion along with the wait/notify functionality.

Recursive locking in the lightweight case is based on implicit
lock ownership – if the object header points into the stack of the
current thread then the current thread already owns the lock and in
a new lock record on the stack the header field is set to NULL. When
unlocking, a lock record with the NULL header field is ignored.
Recursive locking in the heavyweight case uses a counter located
in the aforementioned MRE data structure.

Lightweight Locking in XMem. The challenges to lightweight
locking in XMem shared memory are three-fold. First, the header
of an LL object points into a private thread stack. Such refer-
ences cannot be interpreted properly across MREs directly. Sec-
ond, heavyweight data structures allocated in MRE-private mem-
ory must now be accessible to other MREs. Finally, POSIX syn-
chronization primitives by default work within a single process.

To address these issues, XMem allocates a lock data structure
(LDS) in shared memory, both in case of lightweight and heavy-
weight locking and uses POSIX object attributes to enable cross-
process synchronization. LDS reserves space for a mutex and a
conditional variable (which are initialized only in case of infla-
tion). LDS contains a process identifier (PID) and a thread identifier
(TID), that together unambiguously identify the owner, as well as
a recursion count, the locked object reference, the binary flag used
for mutex/condition variable multiplexing, and the original object

header. Lock records that are stored on the stack contain only the
address of the locked object. An object header, instead of pointing
into a stack, always refers to the corresponding LDS, when locked.

XMem maintains an LDS pool in SHM-Meta (metadata area in
shared memory). Application threads atomically bulk-allocate mul-
tiple LDSes at once from the global pool to reduce synchroniza-
tion overhead. Each thread holds several LDSes in a local queue
with a FIFO discipline. An LDS of an LL object is returned to the
thread-local queue when unlocking succeeds (i.e., no contention is
detected). An inflated LDS can be freed only during shared mem-
ory GC when the HL shared object becomes unreachable.

Invoking wait/notify on an LL object results in the lock infla-
tion. This is necessary as these operations require support from
the OS. An important aspect of LL is the hash value computation.
MREs typically store the hash value in the object header and lazily
initialize it. The hash code, once computed, should never change.
Since LL displaces an object header, a race condition arises when
an LL object is simultaneously unlocked and its hash code is being
initialized. Such circumstances force lock inflation and safe ini-
tialization of the hash code (inflated locks are more stable as their
unlocking does not change the object header).

XMem uses this modified LL scheme only in the shared mem-
ory – each MRE uses the original scheme internally as it is more
space efficient. Each lock/unlock operation checks whether the cor-
responding object is shared or not and dynamically applies the ap-
propriate locking scheme.

4. Shared Memory Segment Management
Each XMem MRE executes a Global Operations (GlobalOp) thread
that performs five coordinated global operations: attachment, de-
tachment, connection, class loading, and garbage collection (GC).
XMem serializes these, relatively rare, operations using a global
lock (a mutex and a condition variable located in the shared mem-
ory). The system performs every global operation in parallel by all
currently attached MREs using the GlobalOp thread in each MRE.
Since MRE attachment and detachment are global operations, there
is a well-defined set of attached MREs with respect to the current
global operation. This is an important property, as global operations
terminate only when all attached MREs report operation comple-
tion. With the exception of GC, global operations execute concur-
rently with application threads (i.e., without stopping them).

4.1 Attachment, Detachment, and Connection

Two JVM properties, ipc.shm.file and ipc.shm.destroy,
control MRE-OS interaction. The first one identifies a shared
memory segment to create or attach to (we employ Linux Sys-
tem V IPC [49]). The second one specifies if an MRE should
mark the segment for destruction upon termination. The OS re-
leases only marked segments whose attachment count reaches zero.
Upon startup, each MRE attempts to create a new shared memory
segment. The creation process fails if the segment already exists,
which causes a fall-back to attachment. The MRE that succeeds in
segment creation, initializes the shared data structures (located in
SHM-Meta).

MREs that attach/detach to/from an existing segment perform a
global attach/detach operation. Attachment takes place after com-
pleting the MRE bootstrap procedure and before invoking the pro-
gram’s main method. Detachment is performed upon program ter-
mination. These two global operations are automatic and not acces-
sible via the XMem API. An MRE can attach only to one segment
at a time. However, XMem supports multiple communication chan-
nels over a single shared memory segment. A configuration with a
single segment per host is most memory-efficient but multiple seg-
ments can be used if needed. Attach and detach operations update
a global counter that tracks the number of attached MREs.

The connection operation establishes a communication channel.
Connection allows two MREs to obtain a reference to a shared
object while guaranteeing privacy (other MREs cannot reach that
shared object). It implements semantics similar to that of a network
socket. The arguments passed to the connect (i.e., a port number
and a shared object), are propagated to other MREs as parameters
of the global operation. Each MRE maintains a list of ports to which
it is bound. When a connection request to a locally bound port is
detected, an MRE adds the corresponding shared object to a local
queue and awakens the threads that are blocked on the accept call
on the port. The shared object is then dequeued and returned by the
accept method. XMem ensures that only one MRE is bound to any
port (an atomically-updated boolean table is kept for this purpose
in the shared memory). Since connection is a global operation, it
is serialized with respect to GC, and as a result, the shared object
(root) has a stable location while the operation is in progress.

4.2 Global Class Loading

Through global class loading, XMem ensures that a specific class
is privately loaded by, and is the same in, all attached MREs, to
guarantee type safety. XMem implements the latter by comparing
the 160-bit SHA-1 hash value computed for the class bytecode,
across MREs. If an MRE encounters a bytecode mismatch, global
class loading fails and an exception is thrown.

Since XMem places no restrictions on MRE-private class load-
ing, the class of a shared object may or may not be loaded in all at-
tached MREs when it is instantiated in shared memory. Therefore,
following each object allocation, XMem executes a class loading
barrier which checks if the new object resides in the shared mem-
ory. If the object is shared, the MRE checks whether its class has
been loaded globally. To make this check fast (note that it is done
for each allocation), XMem adds a field (a forwarding pointer) to
each private class object. The forwarding pointer is initially set to
NULL to indicate that the class is loaded only privately. After global
class loading, the forwarding pointer is set to the GCT address of
the class. Following each allocation in shared memory, the MRE
updates the class pointer of the new shared object to the forwarding
pointer. If the check fails, i.e., the class of the new shared object has
not been loaded globally, the MRE initiates global class loading.

Global class loading uses the default system class loader (which
corresponds to the CLASSPATH variable). XMem permits classes
defined by user-defined class loaders to be instantiated in the shared
memory as long as the corresponding user-defined class loaders are
themselves allocated in the shared memory. However, even though
class loaders can be shared, the internal class representations are al-
ways MRE-private. XMem relies on MRE-private class loader con-
straints to guarantee type safety in the presence of lazy class load-
ing, user-defined class loaders, and delegation [39]. No extension is
needed because we first locally load all globally loaded classes and
thus, local constraints are always a superset of global constraints.

4.3 Global Garbage Collection

Global GC in XMem identifies and reclaims dead, shared objects
(i.e., those that are not reachable from any attached MRE). The
GC is initiated by one of the attached MREs when allocation of
a new TLAB in shared memory fails. In order to interoperate with
different GC algorithms and heap layouts [63, 37], XMem provides
a generic mechanism for identifying root objects in the shared
memory. Root objects in this context are objects directly reachable
from one or more MREs by following pointers that are located on
thread stacks, in registers, or in the live part of a private heap. Once
a snapshot of the root objects is obtained, shared memory can be
collected in a conventional way using any tracing collector.

The key challenge is in identifying the root objects without re-
sorting to scanning all the live objects in each MRE. Note that
pointers into shared memory can be scattered across all genera-

tions. At the same time, we can expect the number of such pointers
to be relatively small.

XMem identifies roots by piggy-backing on a fast minor col-
lection (the one confined to the young generation). To enable this,
XMem extends a card table mechanism [64] that supports gener-
ational GC so that it tracks pointers from older generations that
point into the young generation or into shared memory. As a result,
a young generation collection is able to detect all root objects that
originate from a given MRE without an exhaustive scan of older
generations. For each global GC, XMem triggers a minor collec-
tion in the attached MREs. To perform a minor GC, state-of-the-art
MREs typically employ a parallel copying collector [23] that is ex-
ecuted in a stop-the-world (STW) fashion as it imposes very short
pause times (i.e., concurrent collection [19, 48] is not necessary).

An XMem system implements global GC of the shared mem-
ory segment using STW parallel copying collection. All attached
MREs perform GC in parallel, each contributing multiple GC
threads. MREs synchronize only before and after collection. A full
barrier is needed after all MREs reach a safepoint (i.e., state where
application threads are suspended) because one cannot start mov-
ing the shared objects while other MREs are actively using them.
For similar reasons, all GC threads from all MREs synchronize
when leaving a safepoint. Any additional coordination depends on
the GC algorithm used. Although, global GC stops all MREs, it
is not unscalable or deadlock-prone since bringing an MRE to a
safepoint is a low-delay operation robust with regard to I/O.

Since global GC can interrupt an XMem deep copy from private
to shared memory, we must be careful to avoid introducing tempo-
rary shared-to-private pointers during the copy process. To this end,
when we copy an object to its new location, we clear its reference
fields (as they may still point to private objects). We update these
fields with the correct values (new locations) when we copy the cor-
responding objects to shared memory. Global GC needs to update
the entries in the stacks and hash tables used by XMem copy oper-
ation because it is moving objects. We provide a new object header
to each shared memory replica to preclude them from inheriting the
synchronization state of original objects.

Non-global GCs (both minor and major) do not follow pointers
that point into the shared memory. Because of the XMem invariant
that no shared-to-private pointers are allowed, it is correct to stop
tracing when a shared object is encountered. GC completeness is
preserved because scanning of objects in the shared memory cannot
lead to the discovery of any additional live objects in the private
heap. Local GC performance, is thus the same regardless of the
number of objects in shared memory.

The most suitable GC algorithm for shared memory collec-
tion depends on the demographics and total size of the live shared
objects [36]. If XMem is used to share a large amount of long-
lived data, then compacting collectors are most appropriate. On the
other hand, if the primary purpose of XMem is communication be-
tween strongly isolated MREs, then copying collection is a better
choice [62]. This is because the communicating MREs exchange
a small number of objects which exhibit relatively short lifetimes.
Generational collection can be used to support a wide range of ob-
ject lifetimes. To accommodate short-lived communication behav-
ior typical of J2EE applications, we implement a non-generational,
parallel copying in our XMem prototype.

Parallel copying collectors employ several GC threads to evac-
uate live objects from the currently-used source space(s) to the
currently-unused target space [28]. Since most objects are expected
to be unreachable, the target space is typically smaller than the
source space(s) and the worst-case scenario is handled by falling
back to the promotion of overflow objects into older generation(s).
In the absence of a generational heap layout, half of the space needs
to be set aside as a copy reserve.

XMem employs two equal-sized semi-spaces in the shared
memory and the collection of the source semi-space is performed
in parallel by all attached MREs. This process is interleaved with
local minor GCs so that the object graph is traversed only once.
Each MRE uses multiple GC threads, which correspond to schedu-
lable kernel threads and whose total number equals the number of
processors/cores available or dedicated to each MRE.

XMem employs a two-level load balancing scheme in the form
of work stealing [23]. GC threads that become idle attempt to
steal object references from non-empty marking stacks of other GC
threads. Each GC thread is associated with two marking stacks,
which we refer to as the local and shared stack. Intra-MRE load
balancing is limited to local stacks while inter-MRE work stealing
uses shared stacks only. MREs push references to objects residing
in the shared memory onto the shared stacks to make them available
to other MREs. Local load balancing is preferred and global steal-
ing is done only when all local stacks become empty. The stealing
target (i.e., the marking stack/stack entry) is selected randomly.

Global GC is an STW operation that comprises three barriers:
prologue, epilogue, and GC termination. The GC prologue flips the
semi-spaces. The GC epilogue forwards the pointers in SHM-Meta
and deflates heavyweight monitors associated with dead objects.

To ensure that each live object is processed exactly once, GC
threads claim objects atomically. Atomic CAS instructions are sup-
ported by most processors and can be used across processes (as
they are based on physical rather than virtual addresses). To reduce
contention, each GC thread owns a parallel local allocation buffer
(PLAB) where it copies the objects it has claimed. We allocate
PLABs linearly, atomically, and on-demand, from the target semi-
space. The GC first copies an object to its destination, and then
pushes the addresses of its reference-type fields onto the marking
stack (local and/or shared). Then, a GC thread tries to CAS-forward
the original object header to the new location. If a thread loses a
race to another thread, the GC removes the object from the PLAB
and pops the new pointers off the stack. This order of operations is
motivated by fault-tolerance (Section 4.5).

4.4 Global Meta-Data Management

The SHM-Meta data structures support the runtime and global op-
erations of XMem. They include a descriptor for the current global
operation, which contains the operation code, its input arguments,
barrier counters, state flags, and a mutex and condition variable
with which the system serializes the execution of global operations.
In addition, SHM-Meta holds the marking stacks for global GC and
a table that records the meta-information for all globally loaded
classes including the class name, defining class loader (set to NULL
if the default system class loader is used), and a bytecode hash for
type-safety verification. SHM-Meta also holds a list of the bound
ports that are currently in use for communication sessions between
co-located MREs. Finally, SHM-Meta contains single-word entries
for (i) the number of attached MREs, (ii) the number of globally
loaded classes, (iii) the boundaries of and current position in the
shared heap (for allocation of new TLABs), and (iv) the start and
end of a pool of global locks that enable cross-MRE monitor syn-
chronization.

4.5 Fault Tolerance

XMem tolerates unexpected MRE termination, between and during
global operations, by implementing a timeout mechanism (based
on the pthread timed wait on a condition). If an MRE fails, the
next global operation times out. Upon timeout, XMem subtracts the
number of not-responding MREs from the counter of the attached
MREs and releases any shared locks that were held by the termi-
nated MRE. Connection, and class loading are global operations
that do not require any additional handling upon timeout.

Bench- Generation Size [MB] Execution Number of GCs Number of XMem Overhead
mark Young+Old Permanent Time [s] Minor Major Classes Time [%] Space [MB]
bloat 40 5 55.3 ± 0.5 528 ± 2 1 ± 0 827 3.5 2.24
pmd 34 6 19.5 ± 0.1 495 ± 1 8 ± 1 1186 3.5 2.94
xalan 42 6 49.2 ± 0.3 1480 ± 8 107 ± 4 1179 3.4 3.11
antlr 8 4 4.5 ± 0.1 380 ± 1 5 ± 0 679 2.8 1.79
chart 30 9 15.7 ± 0.1 355 ± 7 9 ± 0 1440 1.9 3.74

eclipse 68 16 66.5 ± 0.2 551 ± 3 11 ± 0 2627 2.3 7.04
hsqldb 336 5 13.6 ± 0.1 9 ± 0 5 ± 0 736 0.3 2.00

fop 20 6 2.0 ± 0.0 19 ± 0 0 ± 0 1423 2.8 3.45
luindex 8 4 7.2 ± 0.1 260 ± 8 3 ± 0 689 1.6 1.83
lusearch 18 4 8.6 ± 0.1 706 ± 1 1 ± 0 683 2.6 1.79
jython 8 8 43.1 ± 0.3 3539 ± 2 1 ± 0 1325 3.0 3.14

jbb/6wh 476 8 90 ± 0.0 149 ± 0 4 ± 0 1296 0.64 3.59
jbb/8wh 636 8 90 ± 0.0 116 ± 1 3 ± 0 1296 1.78 3.59
jbb/10wh 780 8 90 ± 0.0 98 ± 0 3 ± 0 1296 0.82 3.59

Table 1. The overhead introduced by XMem in terms of application throughput (Jbb) or execution time (Dacapo) and occupancy of the
permanent generation. For each benchmark we report generation sizes, execution time (note that Jbb runs for a fixed period of time), the
number of minor/major collections, and the number of loaded classes.

In case of timed-out detachment and attachment operations, the
system needs to determine whether it was the detaching/attaching
MRE that failed (to correctly keep track of the number of live
MREs). This is done based on the PID of the process which initi-
ated attachment/detachment (XMem sends a signal using the kill
system call and gets an error if the process is dead).

GC requires more complex handling, as the shared stacks of
a terminated MRE can contain pointers stolen from other MREs.
These stacks are located in shared memory so they are not lost and
can still be processed. During GC, objects are forwarded to their
new locations only when they have been copied and when their
content has been scanned (and pushed onto a stack). Therefore,
copying collection can be interrupted at any time without losing
correctness, provided that whatever is on the stack(s) is eventually
processed. If a global GC times out, it is sufficient to empty all the
marking stacks located in the shared memory.

5. Implementation and Evaluation
We have implemented XMem in HotSpot [46], an open-source,
high-performance JVM written in C/C++. The heap in HotSpot [28]
comprises three generations: young (where new object allocations
take place), old (where long-lived objects are promoted), and per-
manent (where classes are stored). HotSpot reserves two words per
object. The first word (the header) contains the locking state, age
bits, and the hash code. The second word is a pointer to a class
object located in the permanent generation. Class objects encapsu-
late static fields, a virtual method table, a class loader reference,
and pointers to other meta-objects that describe methods and fields
(among others).

The PTHREAD PROCESS SHARED attribute is set on the POSIX
mutexes and condition variables to enable cross-process synchro-
nization. To create or look up a shared memory segment, XMem
employs shmget. This system call is used with the IPC PRIVATE
key to implement double mapping in LCT and GCT. Global shared
memory segments are identified by a key generated by ftok based
on a file name. XMem supports multiple global segments on a sin-
gle host, differentiated by a file name (the JVM ipc.shm.file
property). We implement attachment with shmat, which allows
to specify a virtual address that a segment is mapped to. MRE-
private memory is allocated using mmap, which is called with the
MAP FIXED flag when pinning GCT at a specific location. For
atomic operations we use the x86 cmpxchg instruction. LCT corre-
sponds to the permanent generation.

5.1 Methodology

Our experimental platform is a dedicated machine with a dual-
core Intel Core 2 Duo (Conroe B2) processor clocked at 2.66GHz,
equipped with 4M 16-way L3 cache, 32K 8-way L1 cache, 2GB
main memory, and running Debian GNU/Linux 3.0 with the 2.6.17
kernel. We use the HotSpot OpenJDK [46] v7-ea-b18 (Aug. 2007)
compiled with GCC 3.2.3 in the optimized client-compiler (C1)
mode. This version of HotSpot implements a highly-optimized,
state-of-the-art serialization mechanism and uses standard (not
process-shared) mutexes/condition variables.

For our experiments, we employ standard community bench-
marks from the Dacapo [18] and SPECjbb2005 [55] suites to eval-
uate the impact of XMem on programs that do not communicate
across MREs. We use the large input for Dacapo and 6, 8, and 10
warehouses, with 90s runs, for Jbb. To evaluate the impact of us-
ing shared memory, we develop a number of benchmarks ourselves
(an approach taken in [41] in a similar context), which exercise
shared memory and implement the J2EE communication protocols.
We describe these benchmarks with each experiment. We evaluate
XMem-aware implementations of RMI and CORBA, serialization
and XML, JNDI, and TCP/IP sockets. Finally, we evaluate XMem
for two server-side applications: Hsqldb [29] and Tomcat [1]. In
all experiments, there are 2 MREs and the shared memory size is
30MB. Whenever running the original HotSpot JVM, we set the
young generation to 30MB.

5.2 XMem Overhead

To investigate the overhead introduced by adding support for
XMem, we compare the performance of shared-memory-oblivious
applications run on top of unmodified HotSpot JVM against our im-
plementation of XMem. Table 1 summarizes the results. For each
benchmark, we employ a heap size (i.e., total size of the young and
old generation) of twice the minimum (the same methodology that
is used in [56]). We employ this methodology to ensure some GC
activity without having GC dominate performance – so that we are
able to measure other sources of overhead potentially introduced
by XMem. We set the permanent generation size to the minimum
required for XMem to load all the necessary classes. The young
generation constitutes one fourth of the heap. We report genera-
tion sizes, the number of minor and major GCs, and the number
of loaded classes. For timings, we execute 5 warm-up runs then
compute the average and standard deviation of the next 5 runs.

XMem imposes negligible time overhead which we express as
the percentage of total execution time (for DaCapo) or throughput

0

10

20

30

40

50

60

70

80

90

100

100 / 0 90 / 10 80 / 20 70 / 30 60 / 40 50 / 50
Relative Imbalance in Reachable Objects [%]

A
ve

ra
ge

 G
C

 T
im

e
[m

s]

 Load balancing off

 Load balancing on

Figure 3. Global GC pause times with and without inter-MRE load
balancing for different distributions (percentage) of shared objects
reachable from individual MREs.

0

0.01

0.02

0.03

0.04

0 25 50 75 100 125
Live Data [thousand of nodes]

A
ve

ra
ge

 G
C

P
au

se
 T

im
e

[s
]

0

0.3

0.6

0.9

1.2

1.5

1 3 5
Live Data [node]

A
ve

ra
ge

 G
C

 P
au

se
 T

im
e

[m
s]

Figure 4. Impact of the size of live shared objects on global GC
pause times. We present two views of the same graph to show both
copying throughput and global safepoint latency.

(for SPECjbb2005). The sources of overhead are two additional
checks per write barrier and internal checks for whether or not an
object is shared. We report absolute values for the space overhead
introduced in the permanent generation (by the page alignment
implementation) as this overhead does not depend on generation
sizes (only on the number of loaded classes). The space overhead
ranges from 1MB to 7MB and on average is 3.1MB across the
14 programs. This overhead is bounded by the meta-data size (as
opposed to the application working set size).

5.3 Global GC Performance

Figure 3 shows the impact of inter-MRE GC load balancing (work
stealing) on average pause times of global GC. In this experi-
ment, each MRE executes a single GC thread and can reach only
a specific fraction of shared objects. We express the distribution
of reachable objects (imbalance) as a pair of percentage values.
For perfect balance (50/50), load balancing adds a small overhead.
For the most imbalanced configuration (100/0), inter-MRE work
stealing reduces GC pause time by 44%. We report average GC
pause times (and standard errors) from 15 GCs. This result indi-
cates that cross-MRE load balancing is important for efficient GC
in an XMem system.

XMem implements STW parallel copying collection and there-
fore its GC pause times increase linearly with live data size. Figure
4 presents measurements obtained using two MREs, each with a
single GC thread, where live data consists of a binary tree compris-

ing a specific number of nodes. We report average GC pause times
for different live data sizes. Global GC latency (computed by ex-
trapolating GC pause time for live data size equal to zero) is 0.9ms.
Safepoint latency in a single MRE is 0.7ms on average. Safepoints
are reached concurrently by two MREs (they do not add up). Thus,
there is 0.2ms overhead imposed by XMem to coordinate global
GC across MREs. Copying throughput is 3.3 million nodes/second
(where each node corresponds to 5 small objects). This throughput
is identical in case of a single MRE (XMem does not degrade it).

5.4 Communication Efficiency for Microbenchmarks

We next evaluate the impact of XMem on the performance of Java
communication technologies using our microbenchmarks.
RMI and CORBA. RMI [51] enables inter-MRE type-safe remote
method calls. A server registers a remote object using a direc-
tory service which is later consulted by the client to look up the
remote object by name. Once a remote reference (proxy) is con-
structed, the client can call remote methods. A client and a server
use automatically-generated stubs and skeletons to (de)marshall ar-
guments and return values. CORBA [14] employs a more portable
transport protocol (IIOP) to interoperate with other runtimes. Our
microbenchmark times a remote method call that takes a binary tree
of objects as an input argument and returns another binary tree as
an output value. We employ binary trees as the microbenchmark
since they represent a middle-ground in common data structures:
they are neither sparsely-connected (like linked lists) nor densely-
connected (like complex graphs).

Figure 5(a) shows the average invocation time (y-axis) for an
increasing number of nodes in the binary tree (x-axis). We im-
plement the remote call using XMem by allocating binary trees
directly in the shared memory. Client-server interaction is coor-
dinated by monitor synchronization. Having allocated a tree, the
client notifies the server that the input is ready. Once the server al-
locates the output tree, the client is notified that the call is complete.
XMem reduces latency 15x and 37x while increasing throughput
(calls/second) 6x and 35x, compared to RMI and CORBA, respec-
tively, since XMem avoids argument marshalling and network com-
munication.
Serialization and XML. Object serialization [54] provides a type-
safe mechanism for transforming an arbitrary graph of objects im-
plementing the java.io.Serializable interface into a binary
byte stream which then can be used to reconstruct the original data
structure. A runtime-portable alternative to binary representation
is XML. We compare default and XML-based serialization against
their XMem implementation. Our microbenchmark times the ex-
change of an object graph between a server and a client. A client
allocates a binary tree of objects, serializes it and sends the result to
the server over a socket. The server deserializes the tree, allocates a
response (being a binary tree of the same size) and sends it back to
the client in a serialized form. In XMem, we allocate the tree in the
shared memory and notify the other side that the data is ready (we
consider the overhead of copying below). Figure 5(b) presents the
average serialization time (in msecs on y-axis) for a tree of 1–1024
nodes (x-axis). XMem eliminates the need for serialization and data
transfer and thus improves throughput (calls/second) 20x and 391x
while reducing latency by around 7000x compared to default and
XML serialization.
JNDI. JNDI provides access to directory services, such as LDAP or
RMI registry, where clients can look up objects by name as well as
evaluate search queries. Our microbenchmark first binds a specific
number of objects in an RMI registry and then performs a query
that lists all available bindings (name/object pairs). We time the
latter operation only as it is more important (directories are rarely
modified). XMem keeps the bindings in the shared memory and
returns an enumeration of their subset in response to each query.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 3 5

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000

Tree Size [node]

T
im

e
[m

s]

 CORBA

 RMI

 XMem

0

2

4

6

8

0 2000 4000 6000 8000

Tree Size [node]

T
im

e
[s

]

 XML
 Serialization
 XMem

0.00

0.02

0.04

0.06

0.08

0.10

1 3 5
(a) Remote method invocation time (ms) for (b) Object serialization time (s) for client/server
binary tree pass/return (x-axis is node count). binary tree send/receive (x-axis is node count).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 200 400 600 800 1000

 Result Size [binding]

T
im

e
[m

s] JNDI

 XMem

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5

0.00

0.01

0.02

0.03

0.04

0.05

0 2000 4000 6000 8000

Data Size [byte]
T

im
e

[m
s]

 Socket

 XMem

0.000

0.003

0.006

0.009

0.012

0.015

1 3 5
(c) Object lookup time when a directory server returns (d) Data transfer time (ms) for client/server array

a number (x-axis) of name/object pairs (bindings). send/receive (x-axis is array size in bytes).

Figure 5. Microbenchmark communication performance. We blow up the axes using a second graph snapshot to make latency visible. We
include regression lines on each graph.

This enumeration is allocated in the shared memory and returned to
the client by means of a notification. Figure 5(c) shows the average
results gathered for a varying number of bindings (1–1024). XMem
reduces latency 32x and increases throughput (lookups/second)
240x which can be attributed to copy and transfer avoidance.
TCP/IP Sockets. Network sockets operate at the byte level (as op-
posed to the object level) and therefore have no notion of type-
safety. However, we compare their efficacy with XMem for com-
pleteness. Our microbenchmark measures the time needed to trans-
fer a byte array of a certain length from a client to a sever and vice
versa using TCP/IP sockets. We implement XMem-based commu-
nication by allocating a shared byte buffer. Each party writes into
the shared buffer and then notifies its peer that the new data is avail-
able. Figure 5(d) compares the transfer time (in ms) using conven-
tional sockets for data sizes 1 to 8192 bytes (x-axis). XMem in-
creases throughput and decreases latency both by 2x by avoiding
network stack interposition and redundant data copying.
Copying Overhead. Occasionally, an object graph needs to be
copied to the shared memory to ensure full transparency of com-
munication. In case of remote method invocation and object seri-
alization this translates to allocating locally and then copying an
object tree to the shared memory just before notification. In case
of sockets, two copies are necessary in the worst case: first from a
local buffer (client side) to a shared buffer and then from the shared
buffer to a local buffer (server side). Since bindings in directory
services are immutable, it is sufficient to copy only the enumera-
tion object encapsulating the query result while leaving the bind-
ings intact. Table 2 shows the impact of copying on latency and
throughput. We report relative performance of XMem with copy-

Bench- Latency Throughput
mark vs. HS vs. XMem vs. HS vs. XMem
RMI 2.5x 5.8x 2.4x 2.4x

CORBA 6.4x 5.8x 14.3x 2.4x
Serial. 1152x 6.1x 8.3x 2.4x
XML 1204x 6.1x 164x 2.4x
JNDI 6.9x 4.6x 71x 3.4x

Socket 2.2x 1.1x 1.5x 1.6x

Table 2. Impact of copying shared data (so that both client and
server operate on their own instance) on latency and throughput.
Columns 2 and 4 show these metrics for XMem with copying
vs. HotSpot and columns 3 and 5 show these metrics for XMem
without copying vs. XMem with copying.

ing to existing technologies run on top of HotSpot (HS) and the
non-copying version of XMem. Columns 2 and 4 show latency and
throughput for XMem with copying vs. HotSpot and columns 3 and
5 show these metrics for XMem without copying vs. XMem with
copying. When copying is used, XMem still significantly outper-
forms the extant mechanisms (Columns 2 and 4).

5.5 Application Performance

We next evaluate the impact of XMem on the performance of
two enterprise applications. We quantify the improvement in user-
perceived throughput and response time by comparing an unmodi-
fied database server (Hsqldb) and a web server (Tomcat) with their
XMem-based variants.

Hsqldb [29] is a relational SQL database management system
that supports in-memory and disk-based data storage. JBoss uses an

0

1

2

3

4

5

0 200 400 600 800 1000

Result Size [record]

T
im

e
[m

s]

 JDBC/Socket

 JDBC/XMem

0.00

0.02

0.04

0.06

0.08

0.10

1 3 5

0

1

2

3

4

5

6

0 2000 4000 6000 8000

Content Size [unit page]

T
im

e
[m

s] HTML/Socket

 HTML/XMem

0

1

2

3

4

5

6

1 3 5
(a) Database query processing time (ms) when a server (b) Request processing time (ms) when a web server

returns a set of records (x-axis is number of records) retrieves a web page (x-axis is page size)

Figure 6. Application performance: (a) shows Hsqldb data; (b) shows Tomcat data. We blow up the axes using a second graph snapshot to
make latency visible. We include regression lines on each graph.

Bench- Latency Throughput
mark HS XMem HS XMem
RMI 0.18 ms 15x 75.8 call/s 6x

CORBA 0.45 ms 37x 12.5 call/s 35x
Serial. 80.4 ms 6977x 21.8 object/s 20x
XML 84.0 ms 7292x 1.11 object/s 391x
JNDI 0.24 ms 32x 833 lookup/s 240x

Socket 0.01 ms 2.3x 279 kB/s 2.3x
Hsqldb 0.06 ms 1.4x 227 query/s 2.3x
Tomcat 4.46 ms 3.9x 10

4 request/s 4.2x

Table 3. Summary of XMem impact on latency and throughput
for microbenchmarks and applications. We report average baseline
performance (Columns 2 and 4) and XMem improvement as a
multiple of the baseline (Columns 3 and 5).

embedded Hsqldb database engine by default for persistence and
caching. We have modified Hsqldb 1.8.0 to employ shared mem-
ory. A client allocates an SQL query as a shared string. The server
is then notified, parses the query, and computes the result in the
shared memory. Hsqldb maintains an object cache in the shared
memory. Internal representation of leaf data in the object cache
is based on immutable objects (strings, integers, dates that model
SQL objects). Clients can be given a reference to such objects
without a risk of modification and therefore most data (and meta-
data) does not need copying. We have encapsulated interaction over
XMem into a JDBC driver for Hsqldb to achieve full transparency.
The server listens for connections both on a network socket and in
the shared memory. For Hsqldb we measure the impact of XMem
on end-to-end throughput (queries/second). Our microbenchmark
times the SELECT * FROM T statement executed against a table T
which contains between 1 and 1024 3-field records. Figure 6(a)
shows the results. XMem increases throughput 2.3x and decreases
latency 1.4x. The Hsqldb JDBC driver performs proprietary data
serialization, which is unnecessary in XMem.

Apache Tomcat [1] is an industrial-strength web and servlet
container. We have modified Tomcat 6.0 to optimize local request
handling using XMem. A client and a server share a byte array
and notify each other when sending data. We measure end-to-
end performance (requests/second) when retrieving (HTTP GET
method) static web pages of different sizes (multiples of a unit
page size). We use the Apache httpclient package to generate
conventional HTTP requests. Figure 6 (b) shows the time needed to
retrieve a page of a given size. XMem achieves 4x better throughput
and 4x shorter latency.

5.6 Results Summary

Table 3 summarizes our results in terms of average latency and
throughput. We use least-squares linear regression to obtain la-
tency and throughput as the coefficients in the equation time =

latency + size/throughput, following [10]. We report through-
put in the units appropriate for each protocol. While microbench-
marks focus on communication efficiency (the only additional pro-
cessing is initialization/allocation of the exchanged data), Hsqldb
and Tomcat provide insight into the end-to-end application perfor-
mance. We observe very significant reduction in latency (over three
orders of magnitude) in case of serialization (default and XML-
based) – RMI, CORBA, and JNDI use their own, more efficient,
serialization and thus benefit less due to XMem. XML-based seri-
alization yields the most significant throughput increase (over two
orders of magnitude) since it uses a verbose representation of the
object graph and thus transfers more data.

6. Related Work
The key difference between XMem and previously reported sys-
tems that coordinate co-located and isolated applications written in
type-safe languages is that XMem takes a top-down approach by
assuming full isolation between MREs and providing an efficient
and straightforward mechanism for direct object sharing while pre-
serving strong OS-assisted resource protection as much as possible.
Prior work has focused on bottom-up approaches by introducing
weak isolation implemented through replication of basic OS facili-
ties within a single OS process. Such systems are much more com-
plex than XMem, have weaker protection guarantees, and duplicate
existing OS mechanisms.

KaffeOS [4] and the Multi-tasking Virtual Machine (MVM) [17]
employ a single-application MRE and add support for isolation and
multi-tasking. MVM provides isolation via the Isolate API [31].
Multiple programs (tasks) execute in a single MRE instance (OS
process) and the MRE manages resources and sharing across them.
MVM introduces a level of indirection when accessing static fields
and does not support direct object sharing. The system introduces
links (communication channels between tasks) but cannot elimi-
nate the object serialization and data copying. KaffeOS supports
direct object sharing by means of shared heaps. However, shared
heaps are not garbage collected and are coarse-grained entities re-
claimed in full when they become unreferenced. KaffeOS lacks
support for many state-of-the-art MRE mechanisms like parallel
GC and modern synchronization.

Other systems that implement the process/task model within a
JVM, include Alta [5], GVM [5], and J-Kernel [59], as well as a
multi-tasking JVM described in [7]. These systems strive to provide

resource management and isolation within a single process with-
out relying on hardware/OS protection. Class-loader-based isola-
tion [16] is a standard technique commonly employed by applica-
tions servers in order to avoid name space pollution/conflicts be-
tween multiple web applications hosted within a single JVM. Such
isolation, however, does not prevent interference through static
fields of classes loaded by the system (bootstrap) class loader. This
last problem was addressed in [11] by introducing a control access
model called object spaces where cross-space object accesses are
mediated by a security policy. This approach, however, provides
weak isolation and imposes overhead on inter-space method calls.

XMem does not have the aforementioned limitations and is sig-
nificantly simpler than multi-tasking approaches as it leverages the
existing infrastructure both at the MRE and OS level. At the same
time, XMem offers better fault containment – critical errors do not
automatically propagate to other MREs unless a fault affects the
shared memory. This decreases the probability of a failure escalat-
ing to multiple components. In XMem, MREs are not completely
isolated as they share part of their virtual address spaces. However,
XMem is significantly more robust than multi-tasking approaches,
given that resources other than memory are fully isolated and mem-
ory itself is only partially shared. XMem achieves stronger isola-
tion, while providing direct object sharing without introducing any
level of indirection (unlike the MVM).

The notion of transparent global and local objects in the context
of distributed shared memory (DSM) multi-processors has been
used in Split-C [15] and UPC [21]. Unlike XMem, these systems
are not type-safe and provide access to global objects at a differ-
ent cost than to local objects. JavaSpaces [24] provide DSM for
applications that implement object flows. Object repositories in
JavaSpaces are type-safe but the system uses serialization and pro-
vides no shared memory support for co-located application compo-
nents. Other DSM systems for type-safe languages include single-
system-image approaches to implementing a global object space
such as cJVM [2], JAVA/DSM [67], JESSICA [40], Hyperion [42],
JavaParty [50], and MultiJav [12]. While XMem targets sharing
between co-located MREs, software DSM focuses mostly on dis-
tributed protocols necessary to guarantee memory consistency and
cache coherence models defining certain semantics for concurrency
in a distributed system.

Runtime systems for concurrent languages that offer built-in
constructs for inter-process communication include Erlang [3], Oc-
cam [45], and Limbo [20]. These systems build on the algebra of
communicating sequential processes [27] and provide a point-to-
point message passing mechanism for lightweight processes with
share-nothing semantics. In contrast, XMem adheres to the shared
memory programming model. Unlike XMem, Erlang is a func-
tional language and requires the shared objects to be immutable.
XMem targets general-purpose imperative procedural languages.

In language-based operating systems [53], such as Singu-
larity [22, 30], JX [25], JNode [35], Inferno [20], SPIN [9],
Oberon [65], and JavaOS [33], processes share a single address
space and use type and control safety provided by a trusted com-
piler (via static analysis) to guarantee memory protection and re-
source isolation without implementing a hardware-assisted ref-
erence monitor. Singularity is a micro-kernel OS, implemented
mostly in C#, supporting efficient communication between mul-
tiple isolated processes. Its design differs from XMem in several
ways. First, XMem leverages hardware memory protection, while
Singularity provides lightweight software-based isolation via type-
safety (multiple applications execute in a single address space).
Second, Singularity provides message-passing via typed channels
and explicit communication primitives. In contrast, XMem pro-
vides a shared-memory-based implicit communication where only
the initial handshake employs the channel abstraction. Next, in Sin-

gularity communication is limited to two endpoints and involves
the transfer of ownership of a memory block (there is no data shar-
ing between the sender and the receiver). XMem enables direct
and transparent object sharing between any number of threads, po-
tentially from distinct MREs. Finally, Singularity employs block-
based reference counting garbage collection while XMem uses
more fine-grained tracing GC.

To date, virtual memory manipulation (which is used by XMem
to implement double mapping of the GCT and LCT) has been used
in MREs mostly in the context of GC [61, 38, 66, 26, 13]. For
example, the Compressor [38] employs double mapping to enable
concurrent compaction, and the Mapping Collector [61] compacts
free space by remapping to avoid object copying.

7. Conclusions
We present XMem, type-safe and transparent shared memory for
isolated, co-located MREs. The motivation behind XMem is more
efficient, cross-component interaction and communication in enter-
prise multi-tier applications deployed on a single host. XMem pro-
vides stronger fault and resource isolation than previously reported
systems, while enabling efficient direct object sharing over private
channels. To guarantee type-safety, XMem extends state-of-the-art
MRE services such as synchronization, class loading, object alloca-
tion, and garbage collection, as well as introduces global operations
to coordinate MREs using a single shared segment. XMem manip-
ulates virtual memory mapping (using a standard OS interface) to
avoid indirect memory access. XMem is transparently integrated
within the MRE infrastructure and can be used to optimize exist-
ing communication protocols, such as RMI. We implement XMem
in the HotSpot JVM and evaluate it empirically. XMem introduces
tolerable space/time overhead while improving efficiency (latency
and throughput) of extant J2SE/J2EE communication mechanisms
by up to several orders of magnitude.

As part of future work, we plan to extend XMem to heteroge-
neous MREs. Currently XMem requires that the attached MREs
implement the same object model and have the same internal rep-
resentation of classes (types). We are investigating ways to support
shared memory communication and coordination between different
Java Virtual Machines as well as between different language virtual
execution environments to enable better cross-language interaction
that is simple and easy to use. In addition, we are investigating sim-
ilar approaches for IPC between other virtualization systems, e.g.,
virtual machine monitors and full system virtual machines.

Acknowledgments
We thank the anonymous reviewers for providing insightful com-
ments on this paper. This work was funded in part by NSF grants
CCF-0444412, CNS-CAREER-0546737, and CNS-0627183.

References
[1] Apache Tomcat. http://tomcat.apache.org.

[2] Y. Aridor, M. Factor, and A. Teperman. cJVM: A single system image
of a JVM on a cluster. In ICPP, 1999.

[3] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent
Programming in Erlang. Prentice-Hall, 1996.

[4] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS:
Isolation, resource management, and sharing in Java. In OSDI,
2000.

[5] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Java
operating systems: Design and implementation. Technical report,
Univ. of Utah, 1998.

[6] H. G. Baker. Infant mortality and generational garbage collection.
SIGPLAN Not., 28(4), 1993.

[7] D. Balfanz and L. Gong. Experience with secure multi-processing in
Java. In ICDCS, 1998.

[8] BEA WebLogic Application Server. http://www.bea.com.

[9] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. J. Eggers. Extensibility, safety and
performance in the SPIN operating system. In SOSP, 1995.

[10] F. Breg and C. D. Polychronopoulos. Java virtual machine support
for object serialization. In Java Grande, 2001.

[11] C. Bryce and C. Razafimahefa. An approach to safe object sharing.
SIGPLAN Not., 35(10), 2000.

[12] X. Chen and V. H. Allan. MultiJav: A distributed shared memory
system based on multiple Java virtual machines. In PDPTA, 1998.

[13] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In
VEE, 2005.

[14] CORBA Specification. http://www.omg.org.

[15] D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A. Krish-
namurthy, S. Lumetta, T. von Eicken, and K. A. Yelick. Parallel
programming in Split-C. In SC, 1993.

[16] G. Czajkowski. Application isolation in the Java virtual machine. In
OOPSLA, 2000.

[17] G. Czajkowski and L. Daynes. Multitasking without compromise: A
virtual machine evolution. In OOPSLA, 2001.

[18] The DaCapo benchmarks. http://dacapobench.org.

[19] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage
collection. In ISMM, 2004.

[20] S. Dorward, R. Pike, D. L. Presotto, D. Ritchie, H. Trickey, and
P. Winterbottom. Inferno. In COMPCON, 1997.

[21] T. El-Ghazawi, W. Carlson, and J. Draper. UPC Language
Specifications V, 2001.

[22] M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt,
J. R. Larus, and S. Levi. Language support for fast and reliable
message-based communication in Singularity OS. In EuroSys, 2006.

[23] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel garbage
collection for shared memory multiprocessors. In JVM, 2001.

[24] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles,
Patterns, and Practice (Jini Series). Pearson Education, 1999.

[25] M. Golm, M. Felser, C. Wawersich, and J. Kleinoder. The JX
operating system. In USENIX Annual Technical Conference, 2002.

[26] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection without
paging. In PLDI, 2005.

[27] C. A. R. Hoare. Communicating sequential processes. Commun.
ACM, 26(1), 1983.

[28] HotSpot Java Virtual Machine GC. http://java.sun.com/
javase/technologies/hotspot.

[29] Hsqldb. http://www.hsqldb.org.

[30] G. C. Hunt and J. R. Larus. Singularity: Rethinking the software
stack. Operating Systems Review, 41(2):37–49, 2007.

[31] Isolate API. JSR-121. http://jcp.org.

[32] Java 2 Enterprise Edition. http://java.sun.com/javaee/.

[33] JavaOS : A Standalone Java Environment. Sun Microsystems, 1996.

[34] JBoss Enterprise Middleware. http://www.jboss.com.

[35] JNode. http://www.jnode.org.

[36] R. Jones and C. Ryder. Garbage collection should be lifetime aware.
In ICOOOLPS, 2006.

[37] R. E. Jones. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley and Sons, 1996.

[38] H. Kermany and E. Petrank. The Compressor: Concurrent,
incremental and parallel compaction. In PLDI, 2006.

[39] S. Liang and G. Bracha. Dynamic class loading in the Java virtual
machine. In OOPSLA, 1998.

[40] M. J. M. Ma, C.-L. Wang, and F. C. M. Lau. JESSICA: Java-enabled
single-system-image computing architecture. J. Parallel Distrib.
Comput., 60(10), 2000.

[41] J. Maassen, R. V. Nieuwpoort, R. Veldema, H. E. Bal, T. Kielmann,
C. J. H. Jacobs, and R. F. H. Hofman. Efficient Java RMI for parallel
programming. Programming Languages and Systems, 23(6), 2001.

[42] M. Macbeth, K. McGuigan, and P. Hatcher. Executing Java threads
in parallel in a distributed-memory environment. In CASCON, 1998.

[43] J. Manson, W. Pugh, and S. V. Adve. The Java memory model.
SIGPLAN Not., 40(1), 2005.

[44] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration
for virtual machines. In USENIX Technical Conference, 2005.

[45] Occam Programming Manual. Inmos Corporation, 1984.

[46] Open Source J2SE. http://openjdk.java.net.

[47] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and imple-
mentation of Zap: A system for migrating computing environments.
In OSDI, 2002.

[48] Y. Ossia, O. Ben-Yitzhak, and M. Segal. Mostly concurrent
compaction for mark-sweep GC. In ISMM, 2004.

[49] M. Perry. Shared Memory Under Linux, 1999. http://fscked.
org/writings/SHM/shm.html.

[50] M. Philippsen and M. Zenger. JavaParty — transparent remote objects
in Java. Concurrency: Practice and Experience, 9(11), 1997.

[51] Java RMI Specification. http://java.sun.com.

[52] K. Russell and D. Detlefs. Eliminating synchronization-related
atomic operations with biased locking and bulk rebiasing. SIGPLAN
Not., 41(10), 2006.

[53] F. B. Schneider, G. Morrisett, and R. Harper. A language-based
approach to security. Lecture Notes in CS, 2001.

[54] Java Object Serialization Specification. http://java.sun.com.

[55] SPEC. http://www.spec.org.

[56] D. Stefanovic, M. Hertz, S. M. Blackburn, K. S. McKinley, and
J. E. B. Moss. Older-first garbage collection in practice: Evaluation
in a Java virtual machine. In MSP, 2002.

[57] T. Suezawa. Persistent execution state of a Java virtual machine. In
Java Grande, 2000.

[58] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. SIGPLAN Not., 19(5),
1984.

[59] T. von Eicken, C.-C. Chang, G. Czajkowski, C. Hawblitzel, D. Hu,
and D. Spoonhower. J-Kernel: A capability-based operating system
for Java. In Secure Internet Programming, 1999.

[60] IBM WebSphere Application Server. http://www.ibm.com.

[61] M. Wegiel and C. Krintz. The Mapping Collector: Virtual memory
support for generational, parallel, and concurrent compaction. In
ASPLOS, 2008.

[62] P. R. Wilson. Uniprocessor garbage collection techniques. Technical
report, Univ. of Texas, 1994.

[63] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. In IWMM, 1995.

[64] P. R. Wilson and T. G. Moher. A card-marking scheme for controlling
intergenerational references in generation-based garbage collection
on stock hardware. SIGPLAN Not., 24(5), 1989.

[65] N. Wirth and J. Gutknecht. Project Oberon: the design of an operating
system and compiler. ACM Press/Addison-Wesley, 1992.

[66] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM:
Virtual memory support for garbage-collected applications. In OSDI,
2006.

[67] W. Yu and A. L. Cox. Java/DSM: A platform for heterogeneous
computing. Concurrency - Practice and Experience, 9(11), 1997.

