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ABSTRACT
A future is a simple and elegant construct that programmers can
use to identify potentially asynchronous computation and to intro-
duce parallelism into serial programs. In its recent 5.0 release, Java
provides an interface-based implementation of futures that enables
users to encapsulate potentially asynchronous computation and to
define their own execution engines for futures. In prior work, we
have proposed an alternative model, called directive-based lazy fu-
tures (DBLFutures), to support futures in Java, that simplifies Java
programmer effort and improves performance and scalability of
future-based applications. In the DBLFuture model, programmers
use a new directive, “@future”, to specify potentially concurrent
computations within a serial program. DBLFutures enable pro-
grammers to focus on the logic and correctness of a program in
the serial version first, and then to introduce parallelism gradually
and intuitively. Moreover, DBLFutures provide greater flexibility
to the Java virtual machine for efficient future support.

In this paper, we investigate the exception handling aspect of
futures in Java. In Java 5.0 Future APIs, exceptions of future ex-
ecution are propagated to the point in the program at which future
values are queried (used). We show that this exception handling
model is not appropriate or desirable for DBLFutures. Instead, we
propose an as-if-serial exception handling mechanism for DBL-
Futures in which the system delivers exceptions at the same point
as they would be delivered if the program was executed sequen-
tially. Our approach, we believe, provides programmers with in-
tuitive exception handling behavior and control. We present the
design and implementation of our approach within the DBLFuture
framework in the Jikes Research Virtual Machine. Our results show
that our implementation introduces negligible overhead for appli-
cations without exceptions, and guarantees serial semantics of ex-
ception handling for applications that throw exceptions.
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1. INTRODUCTION
An exception handling mechanism is a language control struc-

ture that allows programmers to specify the behavior of the pro-
gram when an exceptional (unusual) event occurs [9]. Exception
handling is key for software fault tolerance and enables developers
to produce reliable, robust software systems. Many languages sup-
port exception handling as an essential part of the language design,
including CLU [27], Ada95 [18], C++ [34], Java [14], Eiffel [29],
and others.

As multi-processor computer systems become increasingly pop-
ular, many parallel programming languages or constructs [8, 2, 23,
26] have been proposed to enable programmers to express poten-
tial parallelism in programs easily so that the extra computation re-
sources could be exploited. It is important to extend the exception
handling mechanism to the concurrent context for fault tolerance
and error recovery. However, exception handling semantics in a
concurrent system are much more complex than for a serial envi-
ronment. Their implementation requires careful design and must
be implemented efficiently.

In this work, we investigate how to support exception handling in
the context of the future parallel programming construct in the Java
programming language. A future is a simple and elegant construct
that programmers can use to identify potentially asynchronous com-
putation and to introduce parallelism into serial programs. It was
first introduced in Multilisp [16], and has been supported by many
languages including Java J2SE 5.0 [23] and X10 [8]. In our prior
work [39], we propose a new implementation of futures in Java
that we refer to as Directive-based Lazy Futures, and DBLFutures
for short. In the DBLFuture model, programmers use a future di-
rective, denoted as a new Java annotation, @future, to specify
potentially concurrent computations within a serial program, and



leave the decisions of when and how to execute these computa-
tions to the Java virtual machine (JVM). The DBLFuture-aware
JVM recognizes the future directive in the source and makes effec-
tive scheduling decision automatically and adaptively by exploit-
ing its runtime services (recompilation, scheduling, allocation, per-
formance monitoring) and its direct access to detailed, low-level,
knowledge of system and program behavior that are not available
at the library level.

A key design goal of DBLFutures and our work in general, is to
enable programmers to develop and reason about serial programs
first and then introduce parallelism gradually and intuitively. We
take this approach to simplify the process of parallel programming
to improve programmer productivity so that more applications can
take advantage of the current and next generation of systems with
multiple processing cores. In a DBLFuture program, if we elide
the future annotations, the program is in its serial form. As a re-
sult, programmers write their program as if it were serial and then
identify code regions that can be safely executed in parallel and
capture the return value from calls to these functions using an an-
notated local variable. Our goal with this paper, thus, is to maintain
these as-if-serial semantics and introduce a novel exception han-
dling mechanism into DBLFutures.

In Java 5.0 Future APIs [23], exceptions from future execution
are propagated to the point in the program at which future val-
ues are queried (used). Our as-if-serial exception handling mech-
anism delivers exceptions to the same point that they are delivered
if the program is executed sequentially. In particular, an exception
thrown and uncaught by a future thread will be delivered to the
invocation point of the future call instead of the use point of the fu-
ture value. Given this ”as-if-serial” property, our approach provides
programmers with more intuitive understanding of the exception
handling behavior and control. We present the design and imple-
mentation of our exception handling mechanism within the DBL-
Future framework on the Jikes Research Virtual Machine. Our re-
sults show that our implementation introduces negligible overhead
for applications without exceptions, and guarantees serial seman-
tics of exception handling for applications that throw exceptions.

2. BACKGROUND
We first overview the state of the art in Java Future support and

implementation. We begin with the existing Future APIs in Java
5.0, and then give an overview of directive-based lazy futures, a
technique that we have developed as part of prior work [39].

2.1 Java 5.0 Future APIs

Version 5.0 of the Java programming language introduces a fu-
ture feature via a set of APIs in the java.util.concurrent
package. The primary APIs include Callable, Future, and
Executor. Figure 1 shows code snippets of these interfaces.

Using the Java 5.0 Future APIs, programmers encapsulate a po-
tentially parallel computation in a Callable object and submit it
to an Executor for execution. The Executor returns a Future
object that the current thread can use to query the computed re-
sult later via its get() method. The current thread immediately
executes the code right after the submitted computation (i.e., the
continuation) until it invokes the get() method of the Future
object, at which point it blocks until the submitted computation fin-

public interface Callable<T>{
T call() throws Exception;

}

public interface Future<T>{
...
T get() throws InterruptedException,

ExecutionException;
}

public interface ExecutorService extends Executor{
...
<T> Future<T> submit(Callable<T> task)

throws RejectedExecutionException,
NullPointerException;

}

Figure 1: The java.util.concurrent futures API

public class Fib implements Callable<Integer>
{
ExecutorService executor = ...;
private int n;

public Integer call() {
if (n < 3) return n;
Future<Integer> f = executor.submit(new Fib(n-1));
int x = (new Fib(n-2)).call();
try{

return x + f.get();
}catch (ExecutionException ex){

...
}

}
...

}

Figure 2: The Fibonacci program using Java 5.0 futures API

ishes and the result is ready. The Java 5.0 library provides several
implementations of Executor with various scheduling strategies.
Programmers can also implement their own customized Executors
that meet their special scheduling requirements. We refer to this
programming model as J5Future in this paper. Figure 2 shows a
simplified program for computing the Fibonacci number (Fib) us-
ing the Java 5.0 Future interfaces.

There are several drawbacks of the J5Future programming model.
First, given that the model is based on interfaces, it is non-trivial
to convert serial versions of programs to parallel versions since
programmers must reorganize the programs to match the provided
interfaces, e.g., wrapping potentially asynchronous computations
into objects. Secondly, the multiple levels of encapsulation of this
model results in significant, but unnecessary, memory consumption
which can degrade performance significantly due to the extra mem-
ory management overhead. Finally, to achieve high-performance
and scalability, it is vital for a future implementation to make ef-
fective scheduling decisions, e.g., to spawn futures only when the
overhead of parallel execution can be amortized by doing so. Such
decisions must consider both the granularity of computation and the
underlying resource availability. However, in the J5Future model,
the scheduling components (Executors) are implemented at the li-
brary level, i.e., outside and independent of the runtime. As a re-
sult, these components are unable to acquire accurate information
about either computation granularity or underlying resource avail-
ability that is necessary to make good scheduling decisions. Poor
scheduling decisions can severely degrade performance and scala-
bility, especially for applications with fine-grained parallelism.



2.2 Overview of DBLFutures
To simplify programmer effort and to improve performance and

scalability of future-based applications in Java, in prior work [39],
we propose a new implementation of futures in Java that we refer
to as Directive-based Lazy Futures (DBLFutures).

The syntax of DBLFutures is very simple. We introduce a future
directive, denoted as a new Java annotation, @future, for Java
source code. Programmers use this directive to annotate local vari-
ables that are placeholders of results that are returned by calls to
potentially concurrent functions. If a function call stores its return
value to an annotated local variable, the DBLFuture system identi-
fies the call as an invocation of a future.

Figure 3 shows the much simpler version of Fib that uses this
model. Note that using DBLFutures, the parallel version of a pro-
gram is the same syntactically as its serial version except for fu-
ture annotations on a subset of local variable declarations (the goal
of our work). Programmers using DBLFutures can focus their ef-
forts on the logic and correctness of a program in the serial version
first, and then introduce parallelism to the program gradually and
intuitively. Note that such a methodology is not appropriate for
all concurrent programs or for expert parallel programmers. It is,
however, a methodology that enables novices to take advantage of
available processing cores efficiently and with little effort. In this
work, we target at the programs that developers produce using this
methodology.

public class Fib
{

public int fib(int n) {
if (n < 3) return n;
@future int x = fib(n-1);
int y = fib(n-2);
return x + y;

}
...

}
Figure 3: The Fibonacci program using DBLFutures

To exploit the services and knowledge of the execution envi-
ronment that are not available at the library level, and to relieve
programmers of the burden of future scheduling, we implemented
DBLFuture as an extension to the Java Virtual Machine (JVM). We
provide a complete description of the DBLFuture implementation
in [39] and [40]. In summary, our DBLFuture system facilitates:

• Lazy spawning. Similar to Mohr et al. [30], our system al-
ways treats a future function call the same as a normal call
initially, i.e., executes it on the current thread’s stack. The
continuation of the future will be spawned to a new thread
only if the system decides that it’s beneficial to do so based
on runtime information. The laziness is the key to efficiently
support fine-grained futures. Note, however, that the scope of
a future call is the method in which it is implemented. That
is, the continuation is the execution of the current method
following the future call up to the return of the method.

• Low-overhead monitoring system. Our system leverages
the sampling system that is common to JVMs for support
of adaptive optimization, to extract accurate and low-level
program (e.g. long running methods) and system informa-
tion (e.g. number of available processors) with low over-

head. Such information is the key for effective scheduling
decisions.

• Volunteer stack splitting. As opposed to the commonly
used work-stealing approach [30, 12], a thread in our DBL-
Future system voluntarily splits its stack and spawns its con-
tinuation using a new thread. The system performs such
splits at thread-switch points (method entries and loop back-
edges), when the monitoring system identifies an unspawned
future call as long-running (“hot” in adaptive-optimization
terms). The current thread (to which we refer to as the fu-
ture thread) continues to execute the future and its method
invocations as before; the system creates a new continuation
thread, copies all the frames prior to the future frame from
the future thread’s stack to the stack of the new thread. The
system then initiates concurrent execution of the new thread,
as if the future call had returned. The system also changes the
return address of the future call to a special stub, which stores
the return value appropriately for use (and potential synchro-
nization) when the future call returns on the future thread.
With the volunteer stack splitting mechanism, we avoid the
synchronization overhead incurred by work-stealing, which
can be significant in a Java system [10].

• Compatibility with the Java thread system. Instead of us-
ing the popular worker-crew approach, i.e., a fixed number
of special workers execute queued futures one by one, our
system executes futures directly on the current Java execu-
tion stack and relies on stack splitting to generate extra par-
allelism. Each volunteer stack split results in two regular
Java threads, the future and the continuation, both of which
are then handed to the internal JVM threading system for
efficient scheduling. This feature makes futures compatible
with Java threads and other parallel constructs in our system.

• Low memory consumption. In the J5Future model, the sys-
tem must always generate wrapper objects (Future, Call-
able, etc.) even if the future is not spawned to another
thread since the object creation is hard-coded in the pro-
gram. In contrast, the simple and annotation-based specifi-
cation of DBLFutures provide greater flexibility to the JVM.
In our system, the JVM treats annotated local variables as
normal local variables until the corresponding future is split,
at which point a Future object is created and replaces the
original local variable adaptively. We thus, avoid object cre-
ation which translates into significant performance gains.

In summary, our DBLFuture implementation is very efficient and
scalable since it exploits the powerful adaptivity of the JVM that
is enabled by its runtime services (recompilation, scheduling, allo-
cation, performance monitoring) and its direct access to detailed,
low-level, knowledge of system and program behavior.

3. AS-IF-SERIAL EXCEPTION HANDLING
A key feature of the Java programming language is its excep-

tion handling mechanism that enables robust and reliable program
execution and control. In this work, we consider how to imple-
ment this feature in coordination with Java futures. Our goal is to
identify a design that is both compatible with the original language



design and that preserves our as-if-serial program implementation
methodology. In our prior work [39], we focused on the efficient
implementation aspect of DBLFutures without regard for exception
handling. In this section, we describe how we can support excep-
tion handling in the DBLFuture system.

One way to support exception handling for futures is to propa-
gate exceptions to the use point of future return values, as is done
in the J5Future model. Using the Java 5.0 Future APIs, the get()
method of the Future interface can throw an exception with type
ExecutionException (Figure 1). If an exception is thrown
and not caught during the execution of the submitted future, the Ex-
ecutor intercepts the thrown exception, wraps the exception in an
ExecutionException object, and saves it within the Future
object. When the continuation queries the returned value of the
submitted future via the get() method of the Future object, the
method throws an exception with type ExcecutionException.
The continuation can then inspect the actual exception using the
Throwable.getCause() method. Note that the class
ExecutionException is defined as a checked exception [14,
Sec. 11.2] [23]. Therefore, the calls to Future.get() are re-
quired by the Java language specification to be enclosed by a a
try-catch block (unless the caller throws this exception). Without
this encapsulation, the compiler raises a compiler-time error at the
point of the call. Figure 2 includes the necessary try-catch block in
the example.

We can apply a similar approach to support exceptions in the
DBLFuture system. For the future thread, in case of exceptions,
instead of storing returned value into the Future object that the
DBLFuture system creates during stack splitting, and then termi-
nating, we can save the thrown and uncaught exception object in
the Future object, and then terminate the thread. The continua-
tion thread can then extract the saved the exception at the use points
of the return value (the use of the annotated variable after the future
call). That is, we can propagate exceptions from the future thread
to the continuation thread via the Future object.

One problem with this approach is that it compromises one of
the most important advantages of the DBLFuture model, i.e., that
programmers code and reason about the logic and correctness of
applications in the serial version first, and then introduce paral-
lelism incrementally by adding future annotations. In particular,
we are introducing inconsistencies with the serial semantics when
we propagate exceptions to the use-point of the future return value.
We believe that by violating the as-if-serial model, we make pro-
gramming futures less intuitive.

For example, we can write a simple function f1() that returns
the sum of return values of A() and B(). The invocation of A()
may throw an exception, in which case, we use a default value
for the function. In addition, A() and B() can execute concur-
rently. In Figure 4 (a), we show the corresponding serial version for
this function, in which the try-catch clause wraps the point where
the exception may be thrown. Using the aforementioned future
exception-handling approach in which the exceptions are received
at the point of the first use of the future return value, programmers
must write the function as we show in Figure 4(b). In this case, the
try-catch clause wraps the use point of return value of the future. If
we elide the future annotation from this program (which produces
a correct serial version using DBLFutures without exception han-
dling support), the resulting version is not a correct serial version

public int f1() {
@future int x;
try{

x = A();
}catch (Exception e){

x = default;
}
int y = B();
return x + y;

}

public int f1() {
@future int x;
x = A();
int y = B();
try {

return x + y;
}catch (Exception e){

return default + y;
}

}

(a) (b)

Figure 4: Examples for two different approaches to exception
handling for DBLFutures

1 public int f2() {
2 @future int x;
3 int w, y, z;
4 try{
5 w = A();
6 x = B(); // a future function call
7 y = C();
8 }catch (Exception1 e){
9 x = V1;
10 }catch (Exception2 e){
11 y = V2;
12 }
13 z = D();
14 return w + x + y + z;
15 }

Figure 5: A simple DBLFuture program with exceptions

of the program due to the exception handling.
To address this limitation, we propose as-if-serial exception se-

mantics for DBLFutures. That is, we propose to implement excep-
tion handling in the same way as is done for serial Java programs.
In particular, we deliver any uncaught exception thrown by a future
function call to its caller at the invocation point of the future call.
Moreover, we continue program execution as if the future call has
never executed in parallel to its continuation.

We use the example in Figure 5 to illustrate our approach. We
assume that the computation granularity of B() is large enough
to warrant its parallel execution with its continuation. There are a
number of ways in which execution can progress:

case 1: A(), B(), C(), and D() all finish normally, and the
return value of f2() is A()+B()+C()+D().

case 2: A() and D() finish normally, but the execution of B()
throws an exception of type Exception1. In this case, we propa-
gate the uncaught exception to the invocation point of B() in f2()
at line 6, and the execution continues in f2() as if B() is invoked
locally, i.e., the effect of line 5 is preserved, the control is handed
to the exception handler at line 8, and the execution of line 7 is
ignored regardless whether C() finishes normally or abruptly. Fi-
nally the execution is resumed at line 13. The return value of f2()
is A()+V1+0+D().

case 3: A(), B(), and D() all finish normally, but the execution
of C() throws an exception in type Exception2. In this case, the
uncaught exception of C()will not be delivered to f2() until B()
finishes its execution and the system stores its return value in x.
Following this, the system hands control to the exception handler
at line 10. Finally, the system resumes execution at line 13. The
return value of f2() is A()+B()+V2+D().



Note that our current as-if-serial exception semantics for DBL-
Futures is as-if-serial in terms of the control flow of exception de-
livering. True as-if-serial semantics requires that the global side
effects of parallel execution of a DBLFuture program is consistent
with that of the serial execution. For example, in case 2 of the
above example, any global side effects of C() must also be un-
done to restore the state to be the same as if C() is never executed
(since semantically C()’s execution is ignored due to the excep-
tion thrown by B()). However, this side effect problem is orthog-
onal to the control problem of exception delivering that we address
in this paper. We plan to use techniques such as transactional mem-
ory [36] to enable true as-if-serial semantics for DBLFutures as part
of our future work.

4. IMPLEMENTATION
To implement exception handling for DBLFutures, we extend

a DBLFuture-aware Java Virtual Machine implementation that is
based on the Jikes Research Virtual Machine (JikesRVM) [22]. In
this section, we detail this implementation.

4.1 Total ordering of threads
To enable as-if-serial exception handling semantics, we must

track and maintain a total order on thread termination across threads
that originate from the same context and execute concurrently. We
define this total order as the order in which the threads would termi-
nate if the program was executed serially. We detail how we make
use of this ordering in Section 4.3.

To maintain this total order during execution, we add two new
references, futurePrev and futureNext, to the virtual ma-
chine thread representation with which we link related threads in
an acyclic, doubly linked list. We establish thread order at future
splitting points, since future-related threads are only generated at
these points. Upon a split event, we set the future thread as the
predecessor of the newly created, continuation, thread since this is
how the the threads are executed in the serial execution. If the fu-
ture thread already has a successor, we add the new continuation
thread between the future thread and its successor in the linked list.

Figure 6 gives an example of this process. Stacks in this figure
grow upwards. Originally, thread T1 is executing f(). The future
function call A() is initially executed on the T1’s stack according
to the lazy spawning principle of our system. Later, the system
decides to split T1’s stack and spawns a new thread T2 to execute
A()’s continuation in parallel to A(). At this point, we link T1
and T2 together. Then, after T2 executes the second future function
call, B(), long enough to trigger splitting, the system again decides
to split the execution. At this point, the system creates thread T3 to
execute B()’s continuation, and links T3 to T2 (as T2’s successor).

An interesting case is if there is a future function call in A()
(D() in our example) that has a computation granularity that is
large enough to trigger splitting again. In this case, T1’s stack is
split again, the system creates a new thread, T4, to execute D()’s
continuation. Note that we must update T2’s predecessor to be T4
since, if executed sequentially, the rest of A() after the invocation
point of D() is executed before B().

The black lines in the figure denote the split points on the stack
for each step. The shadowed area of the stack denotes the stack
frames that are copied to the continuation thread. These frames

public int f() {
@future int x, y;
int z;
try{

x = A(); //split point 1
y = B(); //split point 2

}catch(Exception1 e){
...

}
z = C();
return x + y + z;

}

public int A()
throws Exception1{

@future int u;
int v;
u = D(); //split point 3
v = E();
return u + v;

}

Figure 6: Example of establishing total ordering of threads.

are not reachable by the original future thread once the split oc-
curs since the future thread terminates once it completes the future
function call and saves the return value.

4.2 Choosing a Thread to Handle
the Exception

One important implementation design decision is the choice of
thread context in which we should handle the exception. For exam-
ple, in Figure 6, if A() throws an exception with type Exception1
after the first split event, we have the choice of handling the excep-
tion in T1 or T2.

Intuitively, we should choose T2 as the handling thread since it
seems from the source code that after splitting, everything after the
invocation point of A() is handed to T2 for execution, including
the exception handler. T1 only has context up to the return point of
A(), when it will store the future value and then terminate itself.

The problem is that the exception delivery mechanism in our
JVM is synchronous, i.e., whenever an exception is thrown, the
system searches for a handler on the current thread’s stack based on
the PC (program counter) of the throwing point. T2 does not have
the throwing context, and will only synchronize with T1 when it
uses the value of x. Thus, we must communicate the throwing con-
text on T1 to T2 and inform T2 to pause its current execution at
some point to execute the handler. This asynchronous exception
delivering mechanism can be very complex to implement.

Fortunately, since our system operates on the Java stack directly
and always executes the future function call on the current thread’s



void futureStore(T value) {
if (currentThread.futurePrev != null) {
while (currentThread.commitStatus == UNNOTIFIED){

wait;
}

} else {
currentThread.commitStatus = READY;

}
Future f = getFutureObject();
if (currentThread.commitStatus == ABORTED){
currentThread.futureNext.commitStatus = ABORTED;
f.notifyAbort();
cleanup and terminate currentThread;

} else {
currentThread.futureNext.commitStatus = READY;
f.setValue(value);
f.notifyReady();
terminate currentThread;

}
}

Figure 7: Algorithm for the future value storing point

stack, and spawns the continuation, we have a much simpler im-
plementation option. Note that the shadowed area on T1’s stack
after the first split event is logically not reachable by T1. Physi-
cally, however, these frames are still on T1’s stack. As a result, we
can simply undo the splitting as if the splitting never happened via
clearing the split flag of the first shadowed stack frame (the caller of
A() before splitting), which makes the stack reachable by T1 again.
Then, the exception can be handled on T1’s context normally using
the existing synchronous exception delivering mechanism of the
JVM.

This observation significantly simplifies our implementation. Now,
T2 and all threads that originate from T2 can be aborted as if they
were never generated. If some of these threads have thrown an
exception that is not caught within its own context, the thrown ex-
ception can also be ignored.

4.3 Enforcing Total Order
on Thread Termination

In section 4.1, we discuss the way to establish a total order across
related future threads. In this section, we describe how we use this
ordering to preserve as-if-serial exception semantics for DBLFu-
tures. Note that these related threads can execute concurrently, we
simply require that their termination (commit) be ordered.

First, we add a field, called commitStatus, to the internal
thread representation of the virtual machine. This field has three
possible values: UNNOTIFIED,READY,ABORTED.UNNOTIFIED
is the default and initial value of this field. A thread checks its
commitStatus at three points: (i) the future return value store
point, (ii) the first future return value use point, and (iii) the excep-
tion delivery point.

Figure 7 shows the pseudocode of the algorithm that we use at
the future return value store point. The pre-condition of this func-
tion is that the continuation of the current future function call is
spawned on another thread, and thus, a Future object is already
created as the placeholder that both the future and continuation
thread have access to.

This function is invoked by a future thread after it finishes the
future function call normally, i.e., without any exceptions. First, if
the current thread has a predecessor, it waits until its predecessor
finishes either normally or abruptly, at which point, the commitSta-

T futureLoad() {
Future f = getFutureObject();
while (!f.isReady() &&

!currentThread.commitStatus == ABORTED){
wait;

}
if (currentThread.commitStatus == ABORTED){

if (currentThread.futureNext != null) {
currentThread.futureNext.commitStatus

= ABORTED;
}
cleanup and terminate currentThread;

} else {
return f.getValue();

}
}

Figure 8: Algorithm for the future return value use point

tus of the current thread is changed from UNNOTIFIED to either
READY or ABORTED by its predecessor. If the commitStatus is
ABORTED, the current thread notifies its successor to abort. In ad-
dition, the current thread notifies the thread that is waiting for the
future value to abort. The current thread then performs any neces-
sary cleanup and terminates itself. Note that a split future thread
always has a successor. If the commitStatus of the current thread is
set to READY, it stores the future value in the Future object, and
wakes up any thread waiting for the value (which may or may not
be its immediate successor), and then terminates itself.

The algorithm for the future return value use point (Figure 8)
is similar. This function is invoked by a thread when it attempts
to use the return value of a future function call that is executed in
parallel. The current thread will wait until either the future value is
ready or it is informed by the system to abort. In the former case,
this function simply returns the available future value. In the latter
case, the current thread first informs its successor (if there is any)
to abort also, and then cleans up and terminates itself.

The algorithm for the exception delivering point is somewhat
more complicated. Figure 9 shows the pseudocode of the existing
exception delivering process in our JVM augmented with our sup-
port to as-if-serial semantics. We omit some unrelated details for
clarity. The function is a large loop that searches for an appropriate
handler block on each stack frame, from the newest (most recent)
to the oldest. If no handler is found on the current frame, the stack
is unwound by one frame. Finally, if the function finds no han-
dler on the entire stack, it reports the exception to the system, and
terminates the current thread.

To support as-if-serial exception semantics, we make two mod-
ifications to this process. First, at the beginning of each iteration,
the current thread checks whether the current stack frame is for a
spawned continuation that has a split future. If so, it checks whether
the current thread has already been aborted by its predecessor. In
this case, instead of delivering the exception, it notifies its succes-
sor (if there is any) to abort, cleans up, and then terminates itself.
Note that the system only does this checking for a spawned contin-
uation frame. If a handler is found before reaching such a spawned
continuation frame, the exception will be delivered as usual since in
that case, the exception is within the current thread’s local context.

The second modification is prior stack unwinding. The current
thread checks if the current frame belongs to a future function call
that has a spawned continuation. In this case, we must rollback the
splitting decision, and reset the caller frame of the current frame



Bench- #proc=1 #proc=2 #proc=4
marks Base EH Diff T Base EH Diff T Base EH Diff T

AdapInt 29.36 (0.09) 27.96 (0.18) -4.8% -31.79 15.02 (0.25) 15.40 (0.81) 2.5% 1.97 8.47 (1.01) 8.67 (1.35) 2.4% 0.53
FFT 7.89 (0.03) 7.78 (0.03) -1.5% -11.49 4.92 (0.08) 5.03 (0.10) 2.2% 3.78 4.24 (0.09) 4.18 (0.10) -1.6% -2.33
Fib 16.47 (0.13) 17.04 (0.06) 3.5% 17.81 8.34 (0.09) 8.48 (0.06) 1.7% 5.94 4.26 (0.02) 4.33 (0.04) 1.6% 6.47
Knapsack 11.27 (0.04) 10.79 (0.03) -4.3% -41.78 6.36 (0.16) 6.35 (0.14) -0.2% -0.22 4.40 (0.19) 4.40 (0.15) 0.1% 0.07
QuickSort 8.11 (0.04) 8.01 (0.03) -1.3% -9.20 4.31 (0.08) 4.28 (0.04) -0.5% -1.07 2.52 (0.03) 2.54 (0.03) 0.9% 2.34
Raytracer 21.22 (0.09) 20.91 (0.07) -1.4% -12.12 11.18 (0.10) 11.28 (0.14) 0.9% 2.56 6.26 (0.07) 6.33 (0.07) 1.1% 3.27

Table 1: Overhead and scalability of the as-if-serial exception handling for DBLFutures

void deliverException(Exception e) {
while (there are more frames on stack){
if (the current frame has a split future) {

while (currentThread.commitStatus == UNNOTIFIED){
wait;

}
if (currentThread.commitStatus == ABORTED){

if (currentThread.futureNext != null) {
currentThread.futureNext.commitStatus = ABORTED;

}
cleanup and terminate currentThread;

}
}
search for a handler for e in the compiled method
on the current stack;
if (found a handler) {

jump to the handler and resume execution there;
// not reachable

}
if (the current frame is for a future function call

&& its continuation has been spawned) {
if (currentThread.futurePrev != null) {

while (currentThread.commitStatus == UNNOTIFIED){
wait;

}
} else {

currentThread.commitStatus = READY;
}
currentThread.futureNext.commitStatus = ABORTED;
Future f = getFutureObject();
f.notifyAbort();
if (currentThread.commitStatus == ABORTED){

cleanup and terminate currentThread;
}else{

reset the caller frame to non-split status;
}

}
unwind the stack frame;

}
// No appropriate catch block found
report the exception and terminate;

}

Figure 9: Algorithm for the exception delivering point

to be the next frame on the local stack. This enables the system to
handle the exception on the current thread’s context (where the ex-
ception is thrown) as if no splitting occurred. In addition, the thread
notifies its successor and any thread that is waiting for the future
value to abort since the future call finishes with an exception. The
thread must still needs wait for the committing notification from
its predecessor (if there is any). In case for which it is aborted, it
cleans up and terminates, otherwise, it reverses splitting decision
and unwinds the stack.

Note that our algorithm only enforces the total termination order
when a thread finishes its computation and is about to terminate, or
when a thread attempts to use a value that is asynchronously com-
puted by another thread, at which point it will be blocked anyway
if the value is not ready yet. Therefore, our algorithm does not pre-

vent threads from executing in parallel in any order, and thus, does
not sacrifice the parallelism in programs.

5. PERFORMANCE EVALUATION
Although the as-if-serial exception handling semantics are very

attractive for programmer productivity since it significantly simpli-
fies the task of writing and reasoning about DBLFuture programs
with exceptions, it is important that it does not introduce signifi-
cant overhead. In particular, it should not slow down applications
for programs that throw no exceptions. If it does so, it compromises
the original intension of the DBLFuture programming model which
is to introduce parallelism easily, and to achieve better performance
when there are available computational resources. In this section,
we provide an empirical performance evaluation of our implemen-
tation to evaluate its overhead.

Our implementation is based on the previous DBLFuture system
that is an extension to the popular, open-source Jikes Research Vir-
tual Machine (JikesRVM) [22] (x86 version 2.4.6) from IBM Re-
search. The test machine we use is a 4-processor box (Intel Pentium
3(Xeon) xSeries 1.6GHz, 8GB RAM, Linux 2.6.9). We only report
data for the adaptively optimizing JVM configuration compiler [3]
(with pseudo-adaptation (PA) [4] to reduce non-determinism) since
results for the non-optimizing compiler are similar.

The benchmarks that we investigate are from the benchmark
suite in the Satin system [35]. Each implements varying degrees
of fine-grained parallelism. At one extreme is Fib which computes
very little but creates a very large number of potentially concurrent
methods. At the other extreme is FFT and Raytracer which imple-
ment few potentially concurrent methods, each with large compu-
tation granularity. Moreover, no future threads in these benchmarks
finished exceptionally. We execute each experiment 20 times and
present the average performance data in Table 1.

Table 1 has three sections, each for results with 1, 2, and 4 pro-
cessors, respectively. The first column of each section is the mean
execution time (in seconds) for each benchmark in the DBLFu-
ture system without exception handling support (denoted as Base
in the table). We show the standard deviation across runs in the
parentheses. The second column of each section is the mean ex-
ecution time (in seconds) and standard deviation (in parentheses)
in the DBLFuture system with the as-if-serial exception handling
support (denoted as EH in the table). The third column is the per-
cent degradation (or improvement) of the DBLFuture system with
exception handling support.

To ensure that these results are statistically meaningful, we con-
duct the independent t-test [13] on each set of data, and present the
corresponding t values in the last column of each section. For ex-
periments with sample size 20, the t value must larger than 2.093 or



smaller than -2.093 to make the difference between Base and EH
statistically significant with 95% confidence. We highlight those
overhead numbers that are statistically significant in the table.

This table shows that our implementation of the as-if-serial ex-
ception handling support for DBLFutures introduces only negligi-
ble overhead for some benchmarks. The maximum percent degra-
dation is 3.5%, which occurs for Fib when one processor is used.
Most of the overhead numbers are less than 2%.

These results may seem counter-intuitive since we enforce a to-
tal termination order across threads to support the as-if-serial ex-
ception semantics. However, our algorithm only does so (via syn-
chronization of threads) at points at which a thread either operates
on a future value (stores or uses) or delivers an exception. Thus,
our algorithm delays termination of the thread, but does not pre-
vent it executing its computation in parallel to other threads. For a
thread that attempts to use a future value, if the value is not ready,
this thread will be blocked anyway. Therefore, our requirement that
threads check for an aborted flag comes for free.

Moreover, half of the performance results show that our EH ex-
tensions actually improve performance (all negative numbers). This
phenomenon is common in the 1-processor case especially. It is
difficult for us to pinpoint the reasons for the improved perfor-
mance phenomenon due to the complexity of JVMs and the non-
determinism inherent in multi-threaded applications. We suspect
that our system slows down thread creation to track total ordering
and by doing so, it reduces both thread switching frequency and the
resource contention to improve performance.

In terms of scalability, our results do not show a relative increase
in overhead when we introduce more processors. Although we only
experiment with up to 4 processors, given the nature of our imple-
mentation, we believe that the overhead will continue to be low
given additional processors.

In summary, our system guarantees the as-if-serial exception han-
dling semantics for future-based applications that throw exceptions.
Moreover, our implementation of these semantics introduce little
overhead for applications without exceptions.

6. RELATED WORK

Many early languages that support futures (e.g. [16, 6]) do not
provide concurrent exception handling mechanisms among the tasks
involved. This is because these languages do not have built-in ex-
ception handling mechanisms, even for the serial case. This is also
the case for many other parallel languages that originate from se-
rial languages without exception handling support, such as Fortran
90 [11], Split-C [24], Cilk [5], etc.

For concurrent programming languages that do support excep-
tion handling, most of them focus on the exception handling mech-
anism within thread boundaries, but have none or limited support
for concurrent exception handling. For example, for normal Java [14]
threads, exceptions that are not handled locally by a thread will
not be automatically propagated to other threads, instead, they are
silently dropped ”on-the-floor”. The C++ extension Mentat [15]
does not address the exception handling problem at all. In OpenMP
[31], a thrown exception inside a parallel region must be caught by
the same thread that threw the exception and the execution must be
resumed within the same parallel region.

Most of more recent languages that adopt futures (e.g. [23, 8,

1]) do provide concurrent exception handling for futures to some
extent. For example, in Java, while future values are queried via in-
voking Future.get(), an ExecutionException is thrown
to the caller if the future computation terminates abruptly[23]. Sim-
ilar exception propagation strategy is used by the Java Fork/Join
Framework [25], which supports the divide-and-conquer parallel
programming style in Java. In Fortress [1], the spawn statement is
conceptually a future construct. The parent thread queries the value
returned by the spawned thread via invoking its val() method.
When a spawned thread completes exceptionally, the exception is
deferred. Any invocation of val() then throws the deferred ex-
ception. This is similar to the J5Future model (Figure 1).

X10 [8] proposes a rooted exception model, that is, if activity
A is the root-of activity B and A is suspended at a statement
awaiting the termination of B, exceptions thrown in B are propa-
gated to A at that statement while B terminates. Currently, only the
finish statement marks code regions as a root activity. We ex-
pect that future versions of the language may soon introduce more
such statements, including the force() method, which extracts
the value of a future computation.

The primary difference between our as-if-serial exception han-
dling model for futures and the above approaches is the point at
which exceptions are propagated. In these languages, exceptions
raised in the future computation that cannot be handled locally are
propagated to the thread that spawns the computation when it at-
tempts to synchronize with the spawned thread, such as using the
returned value. While in our model, asynchronous exceptions are
propagated to the invocation point of the future function call as if
the call is executed locally. In this sense, the exception handling
mechanism for the Java Remote Method Invocation model [21] is
closer to our approach since the exception context where remote
execution exceptions are propagated back to the caller thread is the
invocation point of the remote method. However, an RMI is usually
blocking while a future call is asynchronous.

JCilk [26, 10] is the one most related to our work. JCilk is a
Java-based multithreaded language that enables a ”Cilk-like” par-
allel programming model in Java. It strives to provide a faithful
extension of the semantics of Java’s serial exception mechanism,
that is, if we elide JCilk primitives from a JCilk program, the result
program is a working serial Java program. In JCilk, an exception
thrown and uncaught in a spawned thread is propagated to the in-
vocation context in the parent thread, which is same as our model.

However, there are several major differences between these two.
First, JCilk does not enforce ordering among spawned threads be-
fore the same sync statement. If multiple spawned threads throw
exceptions simultaneously, the runtime randomly picks one to han-
dle, and aborts all other threads in the same context. In our model,
even when there are several futures spawned in the same try-catch
context, there is always a total ordering among them, and our sys-
tem selects and handles exceptions in their serial order. In this
sense, JCilk does not maintain serial semantics to the same degree
as our model does. Secondly, JCilk requires a spawn statement
surrounded by a special cilk try if exceptions are possible. In
our DBLFuture model, normal Java try clause is sufficient. Fi-
nally, since JCilk is implemented at library level, it requires very
complicated source level transformation, code generation, and run-
time data structures to support concurrent exception correctly (e.g.,
catchlet, finallet, try tree, etc.), whereas our imple-



mentation is much simpler thanks to the direct access to Java call
stacks and the stack splitting technique.

There are only a few concurrent object-oriented languages that
have built-in concurrent exception handling support, e.g., DOOCE
[17], Arche [19, 20], etc. DOOCE addresses the problem of han-
dling multiple exceptions thrown concurrently in the same try
block by extending the catch statement to take multiple parame-
ters. Also, multiple catch blocks are allowed to associated with
one try block. In case of exceptions, all catch blocks that match
thrown exceptions, individually or partially, will be executed. In
addition, DOOCE supports two kinds of model for the timing of
acceptance and the action of exception handling: (1) waiting for
all subtasks to complete, either normally or abruptly, before start-
ing handling exceptions (using the normal try clause); (2) if any
of the participated objects throws an exception, the exception is
propagated to other objects immediately via a notification message
(using the try noti clause). In addition to the common termina-
tion model ( [33], i.e., execution is resumed after the try-catch
clause), DOOCE supports resumption via the resume or retry
statement in the catch block, which resumes execution at the ex-
ception throwing point or the start of the try block.

Arche proposes a cooperation model for exception handling. In
this model, there are two kinds of exceptions: global and con-
certed. If a process terminates exceptionally, it signals a global ex-
ception, which is propagated to other processes that communicate
synchronously with it. For multiple concurrent exceptions, Arche
allows programmers to define a customized resolution function that
takes all exceptions as input parameters and returns a concerted ex-
ception that can be handled in the context of the calling object.

Other prior works (e.g. [32, 28, 7, 33, 38]) have focused on gen-
eral models for exception handling in distributed systems. These
models usually assume that processes participating in a parallel
computation are organized coordinately in a structure, such as a
conversation [32] or an atomic action [28]. Processes can enter
such a structure asynchronously, but have to exit the structure syn-
chronously. In case that one process throws an exception, all other
processes will be informed and an appropriate handler is invoked
for all participants. With regards to the problem of handling con-
currently signalled exceptions, a technique, called exception reso-
lution [7] is used. Multiple exceptions are resolved to a single one
based on different resolution strategies, such as the exception reso-
lution tree [7], the exception resolution graph [37], or user defined
resolution functions [19].

Our exception handling mechanism for DBLFutures is different
from other work in concurrent exception handling in that the inten-
tion of preserving serial semantics grants our model special prop-
erties that simplify the implementation significantly. For example,
the exception resolution strategy of our model is very simple: pick
the one that should occur first in the serial semantics. Also, al-
though our model organizes involved threads in a structured way (a
double linked list), one thread does not need to synchronize with all
other threads in the group before exiting like the way conversation
and atomic action work. Instead, threads in our system only com-
municate with their predecessors and successors, and exit accord-
ing to a total order defined by the serial semantics of the program.

Safe Java futures are described in [36]. Their system uses object
versioning and task revocation to enforce the semantic transparency
of futures automatically so that programmers are freed from rea-

soning about the side-effects of future executions and ensuring cor-
rectness. This transaction style support is complementary to our
as-if-serial exception handling model, and we plan to integrate it
into our system as part of future work. Note that the authors of this
work do mention that an uncaught exception thrown by the future
call will be delivered to the caller at the point of invocation of the
run method, which is similar to our as-if-serial model. However it
is unclear as to how (or if) they implemented this since the authors
provide no details on their design and implementation.

7. CONCLUSIONS
In this paper, we propose an as-if-serial exception handling mech-

anism for the DBLFutures. DBLFuture is a simple parallel pro-
gramming extension of Java that enables programmers to use fu-
tures in Java [39]. Our as-if-serial exception handling mechanism
delivers exceptions at the same point as they are delivered if the pro-
gram is executed sequentially. In particular, an exception thrown
and uncaught by a future thread will be delivered to the invocation
point of the future call. In contrast, in the Java 5.0 implementa-
tion of futures exceptions of future execution are propagated to the
point in the program at which future values are queried (used).

We show that the as-if-serial exception handling mechanism in-
tegrates easily into the DBLFuture system and preserves serial se-
mantics so that programmers can intuitively understand the excep-
tion handling behavior and control in their parallel Java programs.
With DBLFutures and as-if-serial exception handling, program-
mers can focus on the logic and correctness of a program in the
serial version, including its exceptional behavior, and then intro-
duce parallelism gradually and intuitively. We present the design
and implementation of our exception handling mechanisms based
on the DBLFuture framework in the Jikes Research Virtual Ma-
chine. Our results show that our implementation introduces negli-
gible overhead for applications without exceptions, and guarantees
serial semantics of exception handling for applications that throw
exceptions.
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