
Simulation-Based Augmented Reality for Sensor Network
Development ∗

Ye Wen Wei Zhang
Department of Computer Science

UC, Santa Barbara

{wenye,wei}@cs.ucsb.edu

Rich Wolski
Department of Computer Science

UC, Santa Barbara

rich@cs.ucsb.edu

Navraj Chohan
Department of Computer Science

UC, Santa Barbara

nlake44@gmail.com

Abstract
Software development for sensor network is made diffi-

cult by resource constrained sensor devices, distributed sys-
tem complexity, communication unreliability, and high labor
cost. Simulation, as a useful tool, provides an affordable way
to study algorithmic problems with flexibility and control-
lability. However, in exchange for speed simulation often
trades detail that ultimately limits its utility. In this paper,
we propose a new development paradigm,simulation-based
augmented reality, in which simulation is used to enhance
development on physical hardware by seamlessly integrat-
ing a running simulated network with a physical deployment
in a way that is transparent to each. The advantages of such
an augmented network include the ability to study a large
sensor network with limited hardware and the convenience
of studying a part of the physical network with simulation’s
debugging, profiling and tracing capabilities. We implement
theaugmented realitysystem based on a sensor network sim-
ulator with high fidelity and high scalability. Key to the de-
sign are “super” sensor nodes which are half virtual and half
physical that interconnect simulation and physical network
with fine-grained traffic forwarding and accurate time syn-
chronization. Our results detail the overhead associated with
integrating live and simulated networks and the timing accu-
racy between virtual and physical parts of the network. We
also discuss various application scenarios for our system.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]

General Terms
Experimentation, Performance

∗This work was supported by grants from Intel/UCMicro, Mi-
crosoft, and the National Science Foundation (No. EHS-0209195
No. CNF-0423336, and No. NGS-0204019).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’07,November 6–9, 2007, Sydney, Australia.
Copyright 2007 ACM 1-59593-763-6/07/0011 ...$5.00

Keywords
Sensor Network, Simulation, Debugging

1 Introduction
Technological advances in CMOS integrated circuits, low

power wireless and microelectromechanical systems make
it possible to embed tiny, digitally controlled sensor de-
vices that include computation and communication capabil-
ities into the environment. These non-intrusive computers
aggregate into wireless sensor networks (WSNs) that can
be programmed to work in concert to monitor phenomena
in settings where larger, more functional machines would
perturb the environment under study. However, the techno-
logical characteristics of wireless sensor networks, including
limited processing and energy resources and unreliable and
fluctuating network performance, raise extensive distributed
systems software development challenges, especially for ap-
plication debugging and profiling. In particular, usingin situ
physical deployments for application development is costly,
labor intensive, and may be infeasible in some settings.

Because of these difficulties, simulation is widely adopted
as a practical method to study sensor network behavior and
verify application designs. As a consequence, numerous
simulation tools [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] have
been developed for sensor networks which share many ad-
vantages over the use of physical deployments. They are low
cost, produce repeatable results, are controllable and flexible,
and provide meaningful insights into the behavior of the sys-
tem in study from both broad and detailed perspectives. Us-
ing simulation to eliminate algorithmic errors in applications
before deployment to a physical network has resulted in sig-
nificant labor and cost savings. However, to date, simulation
has not been able to completely supplant the use of physi-
cal hardware. While it cuts the development time necessary
to achieve functionality, sensor network engineers must still
conduct significant debugging and verification activities us-
ing physical devices.

One of the primary impediments to the greater success
of simulation as a software engineering tool stems from the
lack of an accurate model for ensemble behavior. High-level
functional simulators [1, 2, 3, 10, 11, 12] model the pro-
cess of radio communication in terms of the interactions of
events. As a result, they achieve excellent simulation perfor-
mance but normally do not provide accurate timing informa-
tion which is critical for debugging and power optimization.

Full-system simulators [4, 5] are able to emulate sensor de-
vice hardware at the machine cycle level so individual de-
vice timings are correct, but they lack an accurate, yet scal-
able method of modeling the timings associated with radio
communication making simulation of a sizable network of
sensors problematic.

One approach to overcoming this shortfall is to com-
bine simulated sensor devices with “live” physical devices
to improve simulation fidelity. Many simulation systems and
testbeds [2, 13, 6, 7, 8, 14] support “hybrid simulation”, a
method that uses real sensor hardware to perform radio com-
munication which is initiated by and delivered to simulated
sensor devices. In this mode of operation, actual sensor com-
munication hardware replaces the radio and sensing models
in the simulator. Radio traffic and sensor data are routed in
between the simulator and the sensor device which is then
responsible for implementing the communication and sens-
ing and then passing the results back to the simulation. In
this way, hybrid simulation achieves higher fidelity in radio
transmission and environment sensing than pure simulation.
Although this method of enhancing fidelity is interesting and
useful, it does not enable investigations at scale (a potential
benefit of simulation) since it requires the same amount of
hardware as in a physical deployment.

Thus we propose a new scheme of hybrid simulation. In-
stead of using real hardware to enhance simulations, we pro-
pose to use high-fidelity simulations as a partner to a physical
hardware deployment. To distinguish from the conventional
hybrid simulation, we borrow a term from computer graph-
ics area [15] and call itsimulation-based augmented reality
for sensor networks. Intuitively, we want to create a sensor
network deployment that is partially physical and partially
virtual (i.e. simulated). A key requirement, however, is that
the delineation between virtual and physical devices, com-
munication, etc. is completely transparent to applications
that are running in an augmented sensor network. In such a
deployment, reality (real hardware network) is “augmented”
with simulation from various perspectives:

• Simulated devices can be used to extend the scale of the
network under study. It is possible to study a larger net-
works by running critical parts of the application on real
hardware and using simulated augmentation to generate
meaningful test inputs, control the boundaries, etc.

• Simulated devices can be used to inject traffic or profile
application execution seamlessly throughout a deploy-
ment without application or operating system modifi-
cation, and these functions can be moved between net-
work components easily. Since the application and/or
OS cannot determine which sensors are real and which
are virtual from the communication topology or com-
munication method, it is possible to move an applica-
tion “probe” through the sensor network by changing
the sensors that being simulated.

• Augmented networks provide a progressive transition
from simulation to deployment during development.
By incrementally changing the ratio between physi-
cal nodes and virtual nodes and selectively picking the
configuration, the testing environment makes a smooth

transition from high flexibility to high fidelity, which
best reflects the shifting of requirements at different de-
velopment stages.

To achieve these goals, the simulated devices must be able
to be interchanged with physical ones without modification
to the system under study (i.e. it must support transparent
execution of application binaries). In addition, the simula-
tion of an ensemble of devices (and not just the individuals)
must be high fidelity, and it must scale. In previous work [9]
we developed a scalable, high-fidelity ensemble simulator
designed for execution on distributed-memory clusters to
achieve performance. The simulator also supports a non-
intrusive, multi-level debugging facility [16] as a fully in-
tegrated system component. We use these tools to develop
an infrastructure for the simulation-based augmented reality
system.

To achieve seamless interaction, there must be a way to
deliver radio traffic from/to the real sensor devices with min-
imal performance impact in the form of introduced overhead.
Although it is possible to extend existing hybrid simula-
tion facilities to support such radio traffic forwarding. Their
coarse (packet-level) forwarding granularity and lack of pre-
cise time synchronization make it difficult to obtain uni-
formly accurate timing across the complete augmented net-
work. Under our approach, we couple a subset of the phys-
ical devices with simulated devices into “super nodes” that
stream data between simulation and live networks at the byte
level. Compared to previous hybrid simulation work, our de-
sign and implementation of proxy-based traffic forwarding
achieve higher timing precision for the purpose of seamless
interaction. Note that our intention is to intermingle sim-
ulated devices that use a radio simulation to communicate
with physical devices that communicate using the physical
radios. Super nodes only facilitate the bridging of commu-
nication between the two environments and in particular, are
not required for all simulated sensors.

Note also that although our system focuses on using simu-
lation to enhance and augment development on physical net-
work deployment, it can also benefit the typical hybrid sim-
ulation methodology. That is, the communication forward-
ing functionality implemented by super nodes can be used in
“traditional” hybrid simulations for better results. Further-
more, in an augmented network, physical deployment can be
considered as a realistic radio traffic environment to generate
useful test input for more realistic simulation.

In summary, we developed a system that fuses simulation
with real sensor networks in a seamless and transparent man-
ner, such that the scalability, flexibility and controllability of
simulation can be used to facilitate easier and better devel-
opment. Our system is based on our previous works [9, 16],
a scalable distributed sensor network simulator. The con-
tribution of this paper is the extension of the base simula-
tor to support the proposed augmented reality of sensor net-
works, which includes, most importantly, the design and im-
plementation of a “super node” for bridging simulated net-
work and physical network, and relevant improvements to
the base simulator on radio models and randomness models.
We evaluate the performance of our system and discuss var-
ious usage anecdotes in this paper.

In the rest of the paper, we first briefly introduce our dis-
tributed sensor simulation system as the foundation of our
work in Section 2. Then we present the design for intercon-
necting simulation with real sensor network in Section 3. We
evaluate our system in Section 4 and discuss application sce-
narios in Section 5. In Section 7, we discuss related work
and in Section 8 we conclude the paper.

2 Foundation: An Accurate and Scalable Sen-
sor Network Simulator

In an augmented simulation, virtual sensor nodes are used
to extend and enhance a physical, real sensor network. Ap-
plications executed in this augmented network see no differ-
ence between the virtual part and the real part, in terms of
the hardware they can access, the timing characteristics of
their execution and the information they get from others. To
create such a seamless, transparent execution environment,
the simulation system to be used must be accurate enough
to provide a convincing imitation of real sensor devices, and
fast enough to interact with real sensors in real time. An-
other critical requirement of the simulation system is scal-
ability. The quantity of available sensor network hardware
is inevitably limited. Thus the ability to scale beyond what
is convenient to deploy is one advantage that makes simula-
tions attractive and useful to complement a physical deploy-
ment.

We developed a parallel distributed sensor network sim-
ulator for execution on clusters that is not only accurate at
cycle level, but also fast and scalable [9]. We believe such
simulation system lays a solid foundation for the augmented
sensor reality. In this section, we briefly introduce the rele-
vant design aspects of our distributed simulation system and
explain how the features are important for an augmented net-
work.

2.1 Accurate Full-System Simulation
The core of our simulator is a full-system hardware sim-

ulation component with extensive support for various pop-
ular sensor network devices, including mote [17] devices
(Mica2 and MicaZ), Stargate device and iPAQ devices. At
the current stage, only mote simulation can achieve faster
than real time speed and thus can be used to augment real
sensor devices. We only discuss the simulation of Mica2 de-
vice throughout the remaining paper.

Specifically, we model the core components of a Mica2
sensor device, including the AVR instruction set, the AT-
mega128L microcontroller with most on-chip functions, the
on-board flash, the Serial ID chip, the CC1000 radio chip,
the LEDs and the sensor boards. These features are enough
to support the transparent execution (i.e. running an unmod-
ified binary) of most sensor network applications, includ-
ing complex ones like Deluge, TinyDB and Surge, and all
TinyOS [18] components.

The hardware simulation is driven by an AVR instruction
interpreter. On a typical desktop PC (Intel Xeon 2.8GHz),
the simulated processor runs approximately 10 times faster
than real time speed. A virtual clock is maintained to record
the progress of execution. The interpreter advances the clock
cycle-by-cycle according to the cycle count of each instruc-
tion. Asynchronous hardware events are registered and is-

sued through an event queue. Event timings are obtained
either from hardware specifications, which are typical val-
ues, or gathered with hardware benchmarking. Overall, this
hardware simulation can achieve cycle-accuracy. We detail
this accuracy more completely in Section 4.

2.2 Scalable Parallel Distributed Simulation
Cycle-accurate full-system hardware simulation is com-

plex and computationally expensive. Moreover, if an en-
semble of sensors is to be simulated, the virtual clocks of
the individual devices must be synchronized [5]. Previous
systems [4] rely on shared memory and lock-step clock syn-
chronization between separate device emulations. As a re-
sult, they must execute on shared-memory multi-processors
(SMPs) to achieve scale. Both the expense of these SMP
systems and ultimately the limit they place on the size of the
simulations they support have prompted us to develop a dis-
tributed parallel environment suitable for cluster implemen-
tation.

To do so, we have developed a message-based clock syn-
chronization protocol that is low-latency enough to work on
tightly coupled but distributed memory machines (e.g. clus-
ters.) The execution model of our parallel simulation can
be described as follows. Each sensor node is simulated in
an independent operating system thread to exploit the hard-
ware parallelism. Virtual clock synchronization happens
only during communications. Two communicating sensor
nodes build a causal relationship and thus have to exchange
clock values to ensure the correct order of transmitted mes-
sages.

To model the radio communication, each sensor node
maintains a radio media structure that buffers radio data.
Two operations,Write andRead, can be performed on the
radio media. The neighbors of the sensor node, i.e. nodes
within its maximal transmission range, canWrite (send) ra-
dio data to the radio media. The written radio data is time-
stamped and buffered. Sensor node itselfReads(receives
or senses channel) from the buffer to retrieve received ra-
dio data. With this model, the radio sender is free to send
anytime since all the sent data is time-stamped and buffered.
The synchronization burden falls on the receiver. The radio
receiver has to maintain synchronous execution with poten-
tial senders and assemble correct radio data from the radio
media structure. We thus design the following synchroniza-
tion protocol for distributed simulation:

1. A node that reads must wait for all its neighbors to catch
up with its current clock time to make sure it will re-
ceive all the data it potentially should receive;

2. All nodes must periodically broadcast their clock up-
dates to neighbors to notify others of their progresses;

3. Before any wait, a node must first send its clock update
to avoid loop waiting;

4. Data byte is always sent with a clock update at the end
of its last bit transmission to avoid broken bytes.

Rule 1 is the key rule to achieve synchronization. Rule 2
and rule 3 function similar to the “null message” in parallel
distributed discrete event simulation (PDES) to avoid loop
waiting. Rule 4 is necessary because we transmit radio data

in byte units.
The above protocol captures the essential synchronization

relationship in sensor communications and has the ability to
scale in the distributed environment. However, according to
our analysis [9], the realization of this ability depends criti-
cally on a good load balancing scheme. Since the simulation
of sensor nodes has to be distributed among multiple ma-
chines and the inter-host synchronization overhead and mes-
saging results in actual inter-machine communication, load
balancing a given simulation can be converted into a classic
graph partition problem [19, 20, 21] for which many good
solutions exist. We use a state-of-the-art partitioning pack-
age, Chaco [22], to automatically assign simulated sensor
devices to machine nodes in a cluster so as to minimize the
inter-process communication overhead.

2.3 Fidelity-Enhancing Pluggable Models
In a perfect augmented reality system, virtual entities are

indistinguishable from corporeal ones not only in terms of
function, but also in terms of performance profile. Thus ra-
dio transmission lossiness and delays, power consumption,
etc. should all be indistinguishable in simulation andin situ.
At present, achieving this “Turing Test” level of faithfulness
remains a challenge for several aspects of sensor interaction,
most especially radio communication. To allow for the pos-
sibility of incorporating new models, the simulation frame-
work supports pluggable extensions. New radio, power, and
sensing models can be added without reengineering the over-
all system. The current implementation also includes basic
models described elsewhere in the literature [23, 24, 25, 26].

2.3.1 Radio Model
Our basic radio model is similar to that used by

TOSSIM [1] and Avrora [4]. Radio packets are transmit-
ted in a lossy way according to a reception rate specified for
each link. The conflict radio transmission data is bitORed
so that the “hidden terminal” effect [23] can be simulated.

The links’ channel loss parameters can be specified man-
ually by developers. A more interesting approach that is
also supported is the ability to derive a statistical chan-
nel loss model from measurement data of physical deploy-
ment [24, 25, 26]. In this approach, a large set of radio trans-
mission data is collected using different parameters. The
trace data is then “mined” using statistical methods to derive
distributional descriptions of characteristics, such as recep-
tion rate.

We find that this approach is especially applicable in our
system. In an augmented system, virtual sensor nodes co-
exist with real ones. The distribution of channel character-
istics can be estimated using real sensor nodes and applied
to virtual nodes. In this way, the virtual portion of the net-
work resembles the physical network in terms of its summary
statistics (e.g. mean, quantiles, variance, etc.) We term this
methodself-reflected feedback. Our experience with the use
of empirically gathered statistical samples to build a radio
model is that the resulting ensemble simulations are more
accurate than when fixed parameterizations are used.

The process of self-reflected feedback can be performed
offline or online. In the offline version, reception rates are
collected on the physical part of the network and then embed-

ded into simulation. Alternatively, this sampling and model
fitting can also occur online. In this approach first instru-
ment the applications running on real sensor nodes to per-
form benchmarking in the background. The reception rates
are collected at the virtual/real boundary by super nodes and
stored in a database. The live distribution is then computed
from the database to dynamically adjust the reception rate,
loss rate, etc. for the virtual sensor nodes. The online method
can adapt to the temporal variations in the network, and thus
is more realistic. In this work, we report results only for the
offline method as the online system is not yet fully opera-
tional.

2.3.2 Randomness Model
We observe that non-determinism (which we model as

randomness) is important to high-fidelity simulations. For
the purposes of statistically accurate simulations we see two
important types of randomness on real sensor hardware. The
first is time randomness, including the non-deterministic sys-
tem start and time drift due to the imperfection in the crys-
tals used to implement the clock signals on each device. The
second is radio randomness, including the background inter-
ference and temporal variation of radio transmission.

We currently include two randomness modeling features
in the simulation. The first is to set up random initial clock
value for each device simulation thread to prevent inter-
locking of simulation. The second is to model the back-
ground interference in a simple way. We observed that in a
sensor network, even when there is no active node, the radio
of a transmitting node will still back off after checking the
channel with RSSI. We thus implement an non-deterministic
RSSI operation in the simulation to emulate this behavior.
We are considering the time drift and temporal variation of
radio transmission in future work.

2.3.3 Power and Battery Model
A number of power models for sensor network devices

have been proposed and investigated in the literature [27, 28,
29]. These models are typically based on the measurements
obtained by using benchmarks to exercise the sensor device
in various modes yielding different levels of fidelity. In this
work, we incorporate one such model [27] in our simulator.

We also provide a simple linear battery model. Sev-
eral battery models have been proposed in the literature[30,
31, 32]. The linear model is the simplest, again represent-
ing the ideal case in debugging and “back-of-the-envelope”
settings. Moreover, in fast, lower-fidelity simulations of
“steady-state”, a linear model is often preferred since the
middle of the discharge curve is often close to linear [33].

2.4 Debugging and Profiling Facilities
One of the main motivations for the augmented reality

system is to support online tracing and profiling for debug-
ging sensor network applications. Our simulator provides
several such useful facilities [16]. The first feature we have
introduced is virtual debugging hardware. We designate
three virtual registers, allocated in reserved register space of
ATmega128L microcontroller to build a bi-directional com-
munication channel between simulation and simulated pro-
gram. These three registers can be used by applications to
output debugging or profiling information. Since the access

to the debugging registers is just one load/store instruction,
little overhead is introduced to the simulation, and thus is
barely intrusive. Also, since accessing the debugging regis-
ters when the code is running on a physical device generates
“noops” in the instruction stream the transparency of our sys-
tem is still maintained.

We also build profiling mechanisms into the simulator,
which we calldebugging points. Debugging points are the
access points to the internal states of the simulation, includ-
ing program status, important hardware status and synthetic
hardware events. Debugging points can be used to profile the
execution of sensor applications.

Another important feature of our simulator is the support
of checkpoints. Checkpoints are used in our simulator to
support “time traveling” [34, 35] with which we can quickly
return to a history point in a trace and replay the simulation.
In an augmented reality setting, with the existence of real
hardware, it is harder to achieve time traveling since phys-
ical process is irreversible. However, by recording all the
incoming radio traffic at the virtual/real boundary for the vir-
tual portion of the network, we are still able to replay the
execution of virtual part, which is possibly useful in some
situations.

3 Super Nodes: Bridging Reality and Simula-
tion

Similar to hybrid simulation, we attach a real sensor de-
vice to a simulated device via a serial interface, to bridge
traffic between virtual and real networks. Thesesuper nodes
exploit the much faster than real time performance of the de-
vice simulation to stream bytes between the simulation and
live network while introducing minimal overhead. Figure 1

Virtual Real

Real Sensor Node

Super Sensor Node

Vritual Sensor Node

Figure 1. Augmented network

illustrates three types of sensor nodes in an augmented net-
work. The squares represent real sensor nodes, and circles
represent virtual nodes in simulation. The super nodes con-
sist of an artificially fast virtual node connected to a physical
node via a serial interface. It can still behave as a real-time
virtual node by delaying the updates to its virtual clock, but
it passes data at the maximum transfer rate possible. The
assignment of super nodes is determined by the aggregate
radio range of real sensor nodes. All the virtual nodes within
that range need to be equipped as super nodes since they all

have the possibility to communicate with real sensor nodes.
Note that although the graph shows a clear division between
the virtual nodes and physical nodes, in reality, the network
topology is not restricted to such patterns. Virtual nodes can
be deployed anywhere in the space as long as any of them
that can communicate with real sensor nodes is equipped as
a super node.

There are two problems in the design of a super node.
First, the virtual world time and real world time have to be
synchronized to ensure the correct radio communication be-
tween them. This problem has been addressed in most hybrid
simulation systems [2, 14, 6]. However, since these previ-
ous systems are based on high-level functional simulation,
which is not able to advance virtual clock precisely accord-
ing to program execution, it is difficult to achieve precision.
Some systems [2] do not synchronize at all and leave it for
future work. The others [13, 14, 6] use coarse time estima-
tion in the event simulation. Since we run virtual node on
cycle-accurate simulator, the program performance is accu-
rately timed. It becomes possible to precisely synchronize
virtual time with real wall clock time.

The second problem is the accuracy of radio reception via
the radio proxy device. In the perfect scenario, we would
want to build sensor radio (e.g. CC1000 radio or Zigbee
radio) directly into the simulation host (e.g. by attaching
communication peripherals to the cluster nodes running the
simulation). Then all the radio functionality could be con-
trolled directly from within the simulation without the useof
an intermediate sensor device to act as a proxy. The cost of
these peripherals, however, and their correct programming
substantially increases both the cost and complexity associ-
ated with the simulation environment. We thus use a real
sensor device attached via serial line to the simulation host,
which is feasible and flexible. The problem is that there
is a non-negligible delay introduced by sending radio data
through the serial line (Mica2 serial speed is 56KB/second,
and radio speed is at 19KB/second – only a factor of three
slower). Also, since we access the radio function indirectly
through the physical proxy sensor device, it is impossible to
capture every bit actually transmitted. Despite these limi-
tations, however, we find that a careful engineering of the
super nodes can minimize their overall impact.

Figure 2 shows the structure of the super node (right) and
compares it with a normal virtual node (left). A virtual node
uses a radio node component to synchronize and communi-
cate with other nodes. A super node needs to talk to both
virtual nodes and real sensors. It thus supports two radio
interfaces: a virtual interface (i.e. radio node) and a phys-
ical interface. The physical interface has “incarnations”in
both physical space and virtual space, which are connected
via serial line. In physical space, a real sensor device is used
to actually transmit the radio data, which is controlled by a
TinyOS application,Cyborg, using an instrumented version
of the MAC layer. In virtual space, a thread, calledshadow,
interacts with super node’s radio simulation and synchro-
nizes the virtual time with wall clock time (i.e. real world
time).

The process of radio communication for a super node
is described as follows. Since the simulation models radio

Real Sensor

as Radio Proxy

Serial Connection

Virtual Real

Virtual Clock

Interpreter

Haredware Model

Radio

Model

Radio Node

Virtual Node

Virtual Clock

Interpreter

Hardware Model

Radio

Model

Radio

Node

Shadow

Node

Wall Clock

Super Node

Cyborg

Figure 2. Comparison of a virtual node and a super node

communication at the byte level, we want to forward radio
traffic from real space at the same granularity. We thus mod-
ified the MAC layer of TinyOS radio protocol stack to in-
tercept every received byte so that it can be forwarded via
serial the port toshadowas soon as possible.Shadowthen
time-stamps the received bytes and buffers them in the super
node’s radio media data structure as we described in Sec-
tion 2. Note that in this the algorithm forwards not only suc-
cessfully received packets but also corrupted packets. This
functionality is desirable because the super node’s radio en-
vironment is half-virtual and half-real and it needs every ra-
dio byte in both spaces (corrupt and otherwise) to model cor-
rectly radio function, especially collision detection. How-
ever, the system still misses some radio signals that escape
the packet recognition process in the MAC layer. Currently,
there is no direct way in the radio hardware to enable the cap-
ture of every radio bit transmitted within range. If such a tap
were made available in future devices, we believe we could
exploit it to improve the accuracy of augmented simulations
accordingly.

Another issue is the delay of forwarding. Theoretically, a
radio byte is forwarded to the radio simulation of super node
after slightly more than 1/3 of a byte time (140 microsec-
onds or 1024 mote CPU cycles). This delay can be reduced
by increasing serial speed of the mote hardware design in the
future.

A B

wait

update

wait

update

A B

wait

update

wait

update

Full Synchronization Semi Synchronization

Figure 3. Full synchronization and semi synchronization

The super node’s virtual time has to be synchronized with
real time to correctly model radio reception. We show that
this synchronization can be elegantly implemented within

our distributed synchronization framework as we described
in Section 2. In the simulation, every virtual node waits be-
fore receiving until all its neighbors pass its current timeto
ensure correct radio reception, and it sends clock updates to
avoid loop waiting. On a super node,shadowacts like a
normal radio node and adds itself to the super node’s radio
neighbor list. The super node then will wait forshadowev-
ery time it receives. We call this assemi synchronization
compared to thefull synchronizationfor pure simulation,
as shown in Figure 3, sinceshadow, which represents wall
clock time, will never wait for the simulation.

Shadowworks in two ways. When there is a byte re-
ceived fromCyborg, it sends the byte along with a clock
update to the super node simulation. The wall clock time
is obtained using the functiongettimeofday(), which has mi-
crosecond precision, and converted into virtual clock time(in
mote CPU cycles). When there is no incoming data,shadow
periodically (every 1000 microseconds, the finest sleep pre-
cision possible) updates its wall clock time. One problem
is that since the simulation host is a time sharing system,
two contiguous bytes in a packet may arrive atshadowa few
milliseconds apart, which will cause a corrupted receptionin
simulation if we depend on the actual arrival time to time-
stamp radio bytes. We solve this problem by parsing the
format of the radio byte stream. We mark the first byte of a
block of a continuous byte stream (normally a radio packet)
and use its actual arrival time to update the clock. Then for
every following byte, we update the clock with a theoretical
byte transmission time increment (3072 mote CPU cycles).
And we update the clock again using actual arrival time for
the last byte in the stream.

To transmit, we use an optimistic design to send out data
as fast as possible. Whenever the super node starts transmit-
ting, a marker is sent toCyborg to initiate the radio trans-
mission on the sensor proxy.Cyborgpasses a dummy mes-
sage to the MAC layer. The following bytes are then patched
into the dummy message when they arrive later. As long
as the simulation is running equal to or faster than the real
time speed (note that in transmitting mode, the super node
does not “read” the radio and thus will not be throttled by
the inter-node virtual clock synchronization protocol at this
stage), given that serial speed is 3 times of radio speed, the
dummy message can always be patched in time for transmis-
sion.

At first, it may seem that it is also necessary to synchro-

nize virtual time with wall clock time before transmitting
over the radio. However, before each radio transmission, an
RSSI (i.e. channel sensing) is performed to avoid collisions.
This is an implicit radio media read access and thus the time
is already synchronized. After the transmitting is started, the
pace is then controlled by the real hardware.

Both radio receiving and transmitting rely on the prereq-
uisite that the simulation speed must be faster than real time
speed. It may happen occasionally that there are fluctuations
in the CPU load on a simulation host that cause transient
slowdowns. For radio receiving, since all the received radio
bytes are buffered in the radio media data structure, the fluc-
tuation will be absorbed. For radio transmitting, since the
real sensor device as the proxy will not wait for simulation
once it starts, a packet may be corrupted. According to our
experience, this almost never happens in a dedicated simula-
tion environment but if the simulation shares processors with
other programs, it is a possibility.

4 Evaluation
We begin this section with an illustration of the simula-

tor’s performance and scalability. The purpose of the inclu-
sion of these results (of which a more complete accounting is
provided in [9]) is to demonstrate that the simulator’s perfor-
mance is high enough to implement a virtual sensor network
that can interact seamlessly with a “live” deployment. How-
ever, we wish to be unambiguous about the novelty of this
initial justification since the simulator (without super nodes
and the support need for them) is prior art. It is the augmen-
tation of a physical deployment that the extensions to the
simulator make possible which constitutes the novel contri-
butions of this paper. In the second subsection, we evaluate
several example augmented networks to substantiate these
contributions.

4.1 Accuracy and Scalability of Simulation

Benchmark Measurement Simulation Error
cpu 3.498E +06 3.499E +06 0.02%
flash read 2.884E +06 2.954E +06 2.44%
flashwrite 2.521E +03 2.434E +03 3.44%
radio 4.672E +05 4.862E +05 4.06%

Table 1. Average timing for timing benchmarks. First column shows
the benchmarks. Second column shows the measured CPU cycleson
real motes. Third column shows the simulated cycles. The last column
shows error percentage.

We use four benchmarks to test the cycle-accuracy that to-
gether exercise the most important subsystems on the mote
device. Thecpu benchmark runs CPU intensive compu-
tations,flash read performs small reads from the on-board
flash chip,flashwrite writes to the on-board flash.radio ex-
ercises the CC1000 radio chip and transfers a small amount
of data, under nearly perfect conditions (i.e. 100% reception
rate). We use an oscilloscope to measure the benchmark exe-
cution time on physical device and convert it into mote CPU
cycles.

The result is shown in table 1. All cycle counts are the
average of 20 measurements. The last column of the table
shows the error as the difference between the observed aver-
age and the simulated one. We see that thecpubenchmark

generates the lowest error and that radio operation (radio)
generates the largest error. In general, simulation is fairly
close to physical measurements.

Nodes Total Number of Hosts
per host 1 2 4 8 16

1 9.28 2.26 1.96 1.72 1.67
2 6.68 2.12 1.82 1.68 1.68
4 2.18 1.83 1.70 1.68 1.67
8 1.20 1.21 1.18 1.16 1.15
16 0.78 0.61 0.60 0.60 0.60
32 0.35 0.36 0.31 0.31 0.31
64 0.18 0.15 0.17 0.15 0.14
128 0.09 0.09 0.09 0.08 0.08

Table 2. Simulated clock speed for1-D topology. Each row has fixed
number of nodes per host and each column has fixed number of hosts.
All values are normalized to real time clock speed.

1 4 1 6 6 4 2 5 6 1 0 2 4T o t a l n u m b e r o f s i m u l a t e d n o d e s024
681 0

N ormali zed si mul at ed cl ock speed
12
48
1 6

N umb erofh ost sf orcorrespondi ngcl ock spedb e s t p e r f o r m a n c ec o r r e s p o n d i n g h o s t n u m b e rr e a l t i m e s p e e d

Figure 4. Gold curves for 1-D topology. X-axis is total number of
nodes simulated. The leftY-axis is normalized simulated clock speed
and the right Y-axis labels the number hosts. The decreasing curve is
the fastest speed curve generated by choosing the best node configura-
tion at each host count. The increasing curve gives the corresponding
host count for the decreasing curve at each point. The dashedhorizon-
tal line shows the real time clock speed (7372800cycles/second)

We evaluate scalability of simulation on a cluster consist-
ing of 16 dual-processor 3.2GHz Intel Xeon machines inter-
connected by switched gigabit Ethernet. For all the scala-
bility experiments, we use example applicationCntToRfm,
in TinyOS version 1.1.15, as the benchmark, as it has been
used extensively in previous scalability studies [1, 4] (offer-
ing greater potential for comparison).CntToRfmperiodically
broadcasts the value of an integer counter to keep the radio
busy.

We perform scalability experiments using various net-
work topologies. In this paper, we only show the result for
the simplest case: a linear topology where all nodes are laid
on a straight line, 50 meters apart (maximal radio range is 60
meters). Other results are elaborated in [9].

Table 2 presents the result. Each cell of the table shows
the ratio of the simulated average clock speed to the real
time clock speed, of 7372800 cycles per second. To compute
the average simulated clock speed, the simulator records the
number of clock cycles each mote executed during a 60 sec-
ond execution run. The sum of the cycles is divided by the

number of motes, and that number is divided by 60. Thus
each cell depicts the average slowdown or speedup factor rel-
ative to native execution speed.

From the table, the best performance is a speedup of9.28
times real time speed when simulating one node on one host
(the upper lefthand corner in the table). When the simulation
is distributed to multiple hosts, the simulation speed drops
due to the overhead of distributed synchronization. However,
for a specific number of nodes per host, simulation speed
does not decay significantly with increasing total number of
hosts. The overall result is that nearly160nodes can be sim-
ulated in real time speed using 16 hosts, and improvement
of almost a factor of 5 over comparable previous TOSSIM
results [1].

In Figure 4, we plot the best performance obtained from
Table 2 for each node count. Note that to compute the node
count, the nodes per host value is multiplied by the number
of hosts. The units of they-axis on the lefthand side of the
graph are the same as in the table. For each point, we also
plot the corresponding host number at which the best per-
formance is achieved (the host count is shown on they-axis
at the righthand side of the graph). We call the two curves
“gold curves” since they show the number of hosts necessary
to obtain the fastest simulation of a specific number of nodes.
Note that the second fall off in the best performance curve
occurs when the number of hosts reaches 16 (the maximum
number in the cluster) and the total node count is increased
beyond 64.

4.2 Evaluation of an Example Network
In this section, we evaluate the cycle precision for an aug-

mented network in which simulated and physical networks
are co-mingled. The experimental apparatus we have im-

Figure 5. Experimental apparatus

plemented for this evaluation is shown in Figure 5. For
the physical deployment part of the network, we use Mica2
motes with 433MHz CC1000 radio. In order to build a mul-
tihop network with less-than-perfect loss characteristics in
limited lab space, however, we use shorter antennae and re-
duce the transmit power to the minimal level: -20dbm. Al-
though this “desktop” version of sensor network deployment
is not realistic in terms of emulating wireless communica-
tion, it is practical enough for our purpose since we focus on
evaluating the accuracy of traffic bridging between the vir-

tual network and live, physical sensors. For super nodes, we
use MIB510 boards attached with motes connected to a PC
equipped with PCI extended serial ports, and MIB520 boards
connected to the PC’s USB ports. As an illustration of the
requirements imposed by byte-level accuracy, note that the
usual MIB510 with USB to serial adaptor can not be used
since the internal buffer of the USB to serial adaptor dis-
rupts the scheduling of individual byte transmissions within
the super nodes. For physical portability and to minimize
the need for machine-room access, we use a cluster consist-
ing of only two computers for the simulation, A 3.2GHz In-
tel Pentium D dual-core desktop PC is used as an “interface
machine”, which is connected to “mote proxy” devices, and
runs the simulation of the super nodes. A 2.8GHz 4-AMD
Opteron dual-core processor server is used to run the rest
of the simulation. The two computers are connected via the
campus LAN network (100Mbps) and are located in sepa-
rate rooms (offices in our department). The interface ma-
chine, however, is located in the same room as the physical
sensor network devices. Unless specified, we use a bench-
mark TinyOS program based on a multihop routing algo-
rithm, which is adapted from MintRoute, a standard multi-
hop routing algorithm in TinyOS. This benchmark program
can ping a node in the network and query the status of the
node, including its parent in routing tree, etc. We use the
same binary of the program, without modification, for both
real sensors and in simulation.
4.2.1 Super Node Overhead

We first evaluate the latency of network traffic forwarded
through a super node. As we describe in section 3, super
nodes forward traffic at the byte level. We build a 1-hop net-
work with two physical sensors and a corresponding 1-hop
augmented network with one physical sensor and one super
node. The topology is shown is figure 6. We ping node #1

Real node

Super node

Physical

Augmented

0 1

0 1

Figure 6. 1-hop network test. The top is the physical deployment and
the bottom is the augmented deployment. Squares represent real nodes
and stars represent super nodes.

via node #0 and measure the round trip time (RTT). We col-
lected 100 samples of RTT for both physical and augmented
deployments. The results are shown in figure 7. The top
graph shows the RTT histogram for the physical deployment
and the bottom is for augmented deployment. The distribu-
tions are similar in shape and the augmented case is right
slightly, indicating the additional overhead introduced by su-
per nodes (sample means and standard deviations are given
in the figure). On average, the super node has a 4.5% (about
3 milliseconds) overhead in RTT.
4.2.2 Multihop Round Trip Time

We measure RTT in a multihop network to further eval-
uate the accuracy of time synchronization in an augmented
setting. To minimize the influence of the radio model, we
use a simple network topology in which sensors oriented lin-
early. We first use real sensors to measure the RTT from

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 000 . 10 . 20 . 30 . 4

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0R T T t i m e (i n m i c r o s e c o n d s)01 02 03 04 05 0P ercent age A u g m e n t e d D e p l o y m e n t M e a n = 7 2 8 6 5 u sS t d e v = 8 0 9 60 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0R T T t i m e (i n m i c r o s e c o n d s)01 02 03 04 05 0P ercent age P h y s i c a l D e p l o y m e n t M e a n = 6 9 7 4 4 u sS t d e v = 6 9 3 4

Figure 7. Round trip time (RTT) histograms in a 1-hop network.

Real node

Super node

Physical

Augmented

0 1

0 1

2 3 4

2 3 4
Virtual node

Figure 8. A multi-hop network. The top is physical deployment and
the bottom is augmented deployment.

node #0 to node #1, #2, #3 and #4. We adjust the distances
to make sure that the routing tree is linear and the ping ac-
tually takes 1, 2, 3 and 4 hops. Then we replace node #1 to
#4 with simulations (#1 as a super node) and repeat the same
experiment. Note that we use measured reception rates in the
physical deployment to model the simulated radio.

The result is shown in figure 9. For one and two hops,
the RTT in the augmented deployment is slightly larger than
in the physical deployment. This delay is due to the latency
of traffic forwarding on a super node. For three and four
hops, the RTT of augmented deployment is slightly lower.
We believe this effect is due to the simplicity of radio model
and its inability to capture various physical phenomena that
influence radio transmission. For example, background RF
interference, which may cause a radio to back off even when
there is no other active radio, is not captured in the empiri-
cal loss distributions we use for the simulated radio model.
Indeed, radio model development is an active and important
area of research and part of the motivation for developing
the augmented framework is so that models can be devel-
oped more effectively. In this simple example, however, the
two RTT curves are close (although statistically different–
note the error bars in the figure). We believe this level of
accuracy is both new, and sufficient to support more detailed
development.
4.2.3 Simulated Clock Speed

To further illustrate the degree to which the simulation
and physical networks are synchronized, we show the sim-
ulated clock speeds of the node #1 to node #4 in the above
multihop RTT experiment for a 200-second execution. Each
data point is an average clock speed over a 10-second pe-
riod (in virtual time) in simulation. The results are shown in
Figure 10. According to the device specifications, the sus-

1 1 . 5 2 2 . 5 3 3 . 5 4N u m b e r o f h o p s8 0 0 0 01 0 0 0 0 01 2 0 0 0 01 4 0 0 0 01 6 0 0 0 01 8 0 0 0 02 0 0 0 0 02 2 0 0 0 02 4 0 0 0 0
RTTti me(i nmi crosecond s) P h y s i c a l D e p l o y m e n tA u g m e n t e d D e p l o y m e n t

Figure 9. Round trip time (RTT) for a multi-hop network. Each data
point is an average of 30 measurements. Error bars are displayed at
each data point.

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0E x p e r i m e n t t i m e (i n s e c o n d s)7 . 3 6 x 1 0 67 . 3 6 5 x 1 0 67 . 3 7 x 1 0 67 . 3 7 5 x 1 0 67 . 3 8 x 1 0 6
Cl ock speed of si mul ati on(cycl es/ second) N o d e 1N o d e 2N o d e 3N o d e 4R e a l T i m e

Figure 10. Clock speed of simulation for multihop network RTT
experiment. Each data point is an average clock speed of 10-second
simulation (in virtual time). The real time clock speed is shown as the
dashed line.

tained cycle rate for this benchmark should be 7372800 cy-
cles/second. The average measured clock speed of the com-
plete simulation is 7372262 cycles/second, with only 538-
cycle difference (−0.007%). In figure 10, there is a small
discrepancy at the end of the curve. This discrepancy may
look big in the graph, but is actually very tiny (about 2000
cycles, 0.027% in percentage). Although we are not sure
about the exact cause, we believe it is due to the sudden load
change of the host operating system since we were sharing
our simulation machines with other research activities in the
lab. We will investiage the exact cause of this discrepancy in
our future work.
4.2.4 Application Example: Audio Packet Through-

put
In this subsection, we evaluate the behavior of augmented

networks using a simple application (i.e. as opposed to the
micro-benchmark results presented above). The application
is a simplified implementation of the core algorithm of a real-
time audio transfer program. The basic algorithm uses a pre-
calculated route to send radio packets carrying audio data
as fast as possible from a specific source node to a specific

1

4

0

RealSuperVirtual

321

0 2 3

Physical

Augmented

90%

92%

Packet Through

1

0 321

0 2 3

Physical

Augmented

31%

31%

4

Config 1

Config 2
Packet Through

Figure 11. Throughput test. The top is a configuration with 4 nodes
in a line. The percentage of “through” packets is shown at theright for
both physical and augmented deployments.

sink. We implement this algorithm and measure the packet
throughput in physical and augmented counterparts to illus-
trate the perceived difference between a physical deployment
and an augmented deployment. Figure 11 shows the topol-
ogy of the network configurations used in the experiment.
In the first configuration, there are 4 nodes in a linear ar-
rangement. For the matching augmented deployment, we re-
place node #1 and node #2 with two super nodes. In the sec-
ond configuration, we add a simulated node #4 between the
above two nodes. The radio model for simulation in the aug-
mented deployment is again built from collected reception
rate measurements of a similar physical deployment. The
percentage of packets correctly transferred by the application
are shown at the right of each configuration for both physi-
cal and augmented deployments. For this experiment, the
packet throughput observed by the application in both cases
is quite similar between the fully physical deployment and
the augmented system.

5 Discussion of Application Scenarios
Hybrid simulation, proposed by a number of previous

works, has not yet been fully proved its usefulness in real
development. Likewise, our augmented system is still new
and its true utility is not yet clear. However, through our
experiences in development, we believe it enables novel ca-
pabilites and is more flexible than conventional hybrid sim-
ulations. In this section, we discuss several possible applica-
tions of augmented sensor network deployments. We frame
this discussion in terms our anecdotal experiences with aug-
mented sensor networks in different development and testing
circumstances as well as more general utilities for the overall
approach.
5.1 Critical Component Testing

It is often useful to stress-test a small critical part of a
sensor network using large and varying input traffic under
differing network conditions. For example, in applications
where the data sink is a both a performance and reliability
critical point, it may be advantageous to determine the load
and scale levels that define its useful operational range. Itis
possible to stress-test a single node in isolation, but to de-
termine the response of the system and the degree of system
activity that causes failure or performance degradation re-

54 6

1

RealSuperVirtual

3

0 2

10 8

9 7

Figure 12. Two 4×4 networks are connected via three routing nodes.
The overall routing tree is displayed.

1 . 1 7 7 5 x 1 0 7 1 . 1 7 8 x 1 0 7 1 . 1 7 8 5 x 1 0 7 1 . 1 7 9 x 1 0 7S i m u l a t i o n t i m e (i n C P U c y c l e s)51 01 52 02 5
C urrentdi sch arge(mA) R a d i o r e c e i v i n gC P U a c t i v eC P U S l e e p R a d i o s e n d i n g C P U S l e e p

Figure 13. Snapshot of current discharge for a short run of node#5.
Note that the transmitting power is lower than receiving power due to
our minimal radio power setting, which takes less power whensending
than receiving.

quires interaction with a complete network. However, scal-
ing and reconfiguring a physical deployment is potentially
tedious and labor intensive. Using an augmented system that
supports the transparent substitution of physical nodes with
simulated ones provides the opportunity to fine tune the in-
troduced load in terms of a specific application, and also to
observe the overall response of the ensemble sensor network
to stress placed upon a critical node.

We show in Figure 12 and Figure 13 an example of how
we used this approach to study the power consumption of
critical sensor network nodes. In the studied network, two
4×4 networks are connected via three nodes connected in
sequence for the purpose of routing between them (#4 to #6).
In the augmented version we use two super nodes (#4 and
#6) and a simulated node (#5) to replace the routing nodes
so that we can easily instrument them as they pass traffic be-
tween the two network fields. We are then able to plot the
current discharge of node #5 according to the measurements
gathered during its simulation. The results are shown in Fig-
ure 13.

Another useful possibility is to study how heterogeneous
devices in the network function, especially gateway level de-
vices. As mentioned in Section 2, the simulator supports
Stargate [36] devices, although not at real-time speeds. How-
ever, because they are more fully featured, debugging and in-
strumentation support are significantly more advanced than
for motes. Thus, to test an application that uses both motes
and Stargate devices, we use “live” instrumented Stargates
communicating with a simulated mote network. Again, be-

cause the simulated motes can be instrumented more effec-
tively than their physical counterparts, it is possible to de-
termine their response more easily and with a finer level of
detail using this methodology.
5.2 Cost Effective Scaling Experiments

5

4

3

11

10

9

14

13

12

8

7

6

2

1

0

17

16

15

5

4

3

11

10

9

14

13

12

8

7

6

2

1

0

17

16

15

Radio Model 1

Radio Model 2

RealSuperVirtual

Figure 14. Multihop routing trees for two different radio models in
an augmented network.

While sensor networks are intended, ultimately, to con-
sist of ubiquitous low-cost devices, the currently available
research platforms, particularly at scale, can be expensive.
Moreover, in the early development stages of a project, it
is not always cost effective to procure the maximal hard-
ware configuration that is large enough to span all design
points under consideration. As an example, consider an au-
dio streaming sensor network. In such a network, some sen-
sors are equipped with microphones as the sources of audio.
Other sensors may act as the relays in a multihop wireless
network. There are also some devices used as stream sinks.
Considerable cost savings are possible if the most effective
deployment topologies and network density can be investi-
gated using simulated motes. At the same time, the fidelity
of these simulations is enhanced if the application that will
drive the system can be used to determine the best possi-
ble configuration. In this audio example, we can connect
physical source and sink motes to different simulated rout-
ing motes to determine the effect of different configurations
at different scales. In each experiment, we run the actual au-
dio application to drive the test. In this way, we are able to
thoroughly test a large size network using a severely limited
hardware budget.

We illustrate this technique in Figure 14. In the figure a
3×3 physical network is connected to a 3×3 simulated one.
Three of the simulated nodes (9,10, and 11) are super nodes.
In the top half of the figure, we show a multi-hop route deter-
mined by a simple radio model in which each node knows its
geographic neighbors and the reception rates are all 100%.
In the lower half of the figure, we show the routing tree de-
termined by the same algorithm when empirical distributions

of loss and reception rates are used to model radio behavior.
We are able to test the audio application without modifica-
tion using all 18 nodes using both routing trees using 1/2 the
necessary hardware.
5.3 Fidelity-Progressive Development Model

By progressively increasing real nodes and decreasing
virtual nodes, the fidelity of the augmented network makes
smooth transition from more virtual, and thus more flexible
and debuggable, to more realistic and thus more trustable in
terms of observed response. As the previous anecdotes in-
dicate, we are using a development approach based on this
fidelity-progressive method. At the early stages of devel-
opment, the application is run completely in simulation so
that the focus can be on the software logic without non-
deterministic and non-repeatable perturbations caused by
noise. As components and functionality are tested, more
and more of the application is moved out of simulation and
into a physical deployment. At any stage where instrumen-
tation, profiling, or debugging is required, only the relevant
components needs be simulated until finally the entire ap-
plication is ready for full-scale operation. This development
model provides a migration path from the idealized, control-
lable, and repeatable environment offered by the simulator
to the real world execution platform embodied in a physical
deployment without making the entire jump all at once.
5.4 Augmented Testbed

As a summary, we envision a sensor network develop-
ment harness implemented as a re-configurable augmented
system. The harness we are considering is composed of sen-
sor hardware (motes, Stargates, etc.) and interface machines
than can be linked (via a LAN) to different clusters for sim-
ulation. All sensor devices will be connected via USB pro-
gramming boards (like Xbow MIB520) to a set of interface
machines. With appropriate software configuration support,
any part of the network can be configured either as physical
or virtual, while in the physical sensor hardware, it is only
necessary to re-program the boundary nodes with the Cy-
borg application so that they can become super nodes. Due
to the binary transparency supported by the simulator, once
the application is compiled, it can be used throughout the ex-
periment until the source of the application is changed. This
testbed can easily support the fidelity-progressive develop-
ment model. It can also be used for experimentation with a
much larger size network than the the available hardware can
support with the help of high performance simulation.

6 Limitations
The capability of our system does have its limitations un-

der certain circumstances. In this section, we discuss these
restrictive conditions.
6.1 Topology

We’ve seen in section 3 that in an augmented network,
each “boundary” node, i.e. virtual node that can commu-
nicate with physical nodes, needs to be assigned as a super
node. A physical sensor device, thus, has to be used to equip
the node. For a “dense” network, in which the majority of
virtual nodes are super nodes, we may need a large number
of real sensor devices to build an augmented network. In this
case, although simulated nodes are still useful for debugging

and profiling critical nodes, an augmented network is cer-
tainly not attracting anymore in terms of using small number
of sensor hardware to evaluate large scale networks.
6.2 Simulation Speed

Unlike pure simulation, the hybrid approach of our sys-
tem restricts the execution speed of the complete network
since the virtual nodes are always synchronized with real
sensors. Thus an augmented network is not able to run at its
maximal simulation speed allowed by simulation hosts. This
may be good in many cases, but insufficient for experiments
that require much faster than real speed performance.
6.3 Cost

Although our system enables the capability to use a small
number of sensor hardware to study a large scale sensor net-
work, the overall cost of experiment setup may be higher
than using pure sensor hardware due to the requirement of
distributed computing resources. This is especially true in
our current design, in which a dedicated cluster is needed for
optimal performance. As part of our future work, we are cur-
rently designing an automatic load balancing scheme. Given
the increasing popularity of parallel computing technologies,
e.g. the multi-core processors, researchers will be able to
utilize the shared, heterogeneous computing resources, e.g.
desktops and servers, without purchasing dedicated clusters.
6.4 Faster Radio

Our work in this paper focuses on a sensor network us-
ing low speed CC1000 radio. Faster radios, e.g. Zigbee, are
becoming more popular. It is necessary to extend our sys-
tem to support them. Our previous work [9] has shown that
it is possible to achieve faster than real time speed perfor-
mance for Zigbee systems (MicaZ). Now the problem is the
speed gap between a fast radio (250Kbps) and a slow serial
connection (57.6Kbps to 115.2Kbps) because our system re-
quires real time traffic forwarding via serial link. We believe
it is not a serious issue for many sensor network applications
since they usually have very long duty cycles and the radio
is never saturated. Also, new hardware design is increasing
the speed of serial link by utilizing USB technology (e.g. the
TelosB platform). Given its potential of capability, this speed
gap will be bridged in the near future.

7 Related Work
We discuss related work in this section in two categories:

network emulation and hybrid simulation. Network em-
ulation [37, 38, 39, 40] is conceptually closely related to
our work. Network emulation simulates the properties of
a network in order to assess the network performance in the
real application environment. Usually, a simulation device,
which can be a software component in the network protocol
stack, a general-purpose computer running simulation, or a
dedicated simulation device, is introduced into the network.
The network attributes, like latency, bandwidth, congestion,
packet loss, re-ordering and duplication, etc., are modeled
in the simulation. Network traffic from/to applications is
re-shaped through the simulation so that developers can ex-
perience and investigate the effect of interested network at-
tributes.

NIST Net [37] is a Linux-based network emulation tool.
NIST Net can be considered as a specialized router which

statistically emulates the behavior of an entire network ina
single hop. NIST Net re-shapes the traffic passing through it
by applying network effects, like packet delay, loss, duplica-
tion, reordering and bandwidth limitations, based on user set-
tings. NIST Net is implemented on Linux as a kernel module
and can be controlled by users through a set of APIs. The
emulation is rule-based. A table of rule entries, which con-
sist of specification of packets to be matched, a set of effects
to be applied and a set of statistics to be logged, is used to
match and re-shape network traffic passing through the em-
ulation.

Dummynet [39] is a simple, yet flexible and accurate net-
work simulator. Dummynet is built into an existing protocol
stack, allowing experiments to be run on a standalone sys-
tem. Dummynet intercepts communications between proto-
col layers and simulating the effects of finite queues, band-
width limitations and communication delays. Dummynet
is implemented on FreeBSD and targeted to TCP protocol
stack.

Network emulation can also be performed using existing
network simulator. Network emulation with NS [40] inter-
cepts live network data and feeds them into NS network sim-
ulator [41]. The traffic is then re-shaped through the sim-
ulated network. A real-time scheduler ties event execution
within the simulator to real time. The simulation speed will
affect the time conversion. If the simulation host does not
have enough computation power, the simulation can lag be-
hind real time and cause undesired packet loss.

Conceptually, like our work, network emulation also cre-
ates an illusion of a real network through simulations to
“augment” an existing network development environment.
However, there are some fundamental differences compared
to our work. Network emulation focuses on “re-shaping”
the traffic while our augmented reality system may be used
to “generates” traffic. Network emulation studies how the
traffic is changed in a network by attributes like latency, jit-
ter and bandwidth. The wireless sensor network, however,
is much more complicated due to its peer-to-peer nature.
The radio traffic in a sensor network hops from one node
to another, greatly influenced by the applications running on
them. In network emulation, the application layer (which
is responsible for generating the traffic that traverses most
networks) is not usually modeled. Also because of this, the
conversion between real time and virtual time is much more
complicated in our system. Our system also has broader ap-
plication as a development tool. We can not only use virtual
networks to connect real sensor networks and applications
like network emulation tools, but also debug and profile ap-
plications within the virtual network, which provides a con-
trollable development environment, using the physical net-
work as realistic input.

Hybrid simulation [7, 8, 2, 13, 14, 6] is a popular method-
ology in simulating sensor networks with many similar as-
pects to our work. Hybrid simulation attaches real sensor
devices to simulated sensor nodes to perform realistic radio
communications or get genuine sensor data.

EmStar [7] and EmTOS [8] are testbeds for developing
heterogeneous sensor network applications. The hybrid sim-
ulation is called “emulation mode” in the system. In the emu-

lation mode, real motes are attached to the simulation system
via a serial protocol, HostMote. The software service that
forwards the radio traffic (sometimes also including the mote
device itself) is calledMoteNIC. MoteNIC sends radio pack-
ets toTransceiverrunning on motes – an application similar
to GenericBase(a TinyOS packet proxy application). The
purpose of emulation mode is to replace the computed radio
channel model with realistic radio communications. EmTOS
also has a “hybrid mode” in which hybrid nodes (i.e., sim-
ulated nodes with attached motes) coexist with real nodes.
Note that this hybrid mode is different from our augmented
network in that hybrid mode does not contain any simulated
nodes communicating via a simulated radio model as in our
system and all network traffic is routed through a real ra-
dio channel. EmTOS does not preserve precise timing or
interrupt handling in simulation. It is unclear how time is
synchronized in EmTOS.

MULE [13] is a simulator designed especially for hy-
brid simulation, based on TOSSIM [1]. The motivation for
MULE is to use realistic sensor data in simulation. A mote is
attached to the virtual node in TOSSIM simulation, used as
both a radio proxy and a sensor data collector. The time syn-
chronization is discussed in detail in [13]. MULE reconciles
virtual time and real time by suspending simulation before a
real event and resuming simulation based on collected event
timing. This method makes concurrent message transmis-
sion difficult. Kansei [14] is also a sensor network testbed
that uses a similar hybrid simulation method to implement a
realistic radio channel.

SensorSim [2] is a simulator based on NS-2 [41] pro-
viding comprehensive hardware, software and power models
and hybrid simulation is one of its most important features.
Similar to other hybrid simulators, real motes are used for ra-
dio communication. SensorSim does not synchronize virtual
time and real time, however. A “pause simulation” method
like that developed in MULE, is considered for future work.

Many sensor network simulators, like TOSSIM [1] and
Avrora [4], have a built-in serial forwarder so that they can
communicate with real sensors via a proxy application, like
TOSBaseor GenericBaseTinyOS applications. TOSSIM
also has the capability to be injected real world radio traf-
fic for simulation.

SEMU [6] is the only hybrid simulator we have seen that
is built on virtual machine(QEMU [42], an open source bi-
nary emulator). SEMU also uses “pause simulation” method
to achieve time synchronization. Because it is based on a vir-
tual machine, SEMU can convert times with better precision
by profiling the execution and estimating its performance.

As we have emphasized, our work has a much broader
design motivation than that which has driven previous work
in hybrid simulation. Our main focus is to use accurate, scal-
able simulation to enable a better development environment
for physical network deployments. With this purpose, the
simulated virtual network can be used to generate convincing
traffic for physical networks as test input. Conversely, virtual
networks expand the size of network that we can study given
limited hardware budget. The key to the approach is the abil-
ity to bridge network traffic and synchronize virtual time and
physical time at a fine level of control. However, our sys-

tem can also be used to implement the same radio channel
realism as previous efforts. Given cycle-accurate simula-
tion, transparent binary execution, precise time synchroniza-
tion and fine-grained byte-level radio forwarding, our system
can be used to implement more accurate and versatile hybrid
simulation.

8 Conclusion
In this paper, we present a new sensor network devel-

opment paradigm,simulation-based augmented reality, in
which scalable and accurate simulation is used to “augment”
a physical sensor network deployment for various benefits.
To enable seamless fusion of simulation and a live sensor
network, thus making them transparent to each other, we
base the design of augmented reality on a scalable, cycle-
accurate, distributed simulator. We discuss the aspects ofthe
simulator that helps our cause. Built upon that, we design
and implement a super sensor node which talks to both sim-
ulation and live network with fine-grained radio traffic for-
warding and precise time synchronization. We show the tim-
ing accuracy of our augmented network with experiments.
We also demonstrate its behavior using application examples
discuss usage anecdotes based on our current work.

In the future, we are interested in building more realistic
radio model for augmented network usingself-reflected feed-
backmethod, and better randomness models including time
drifting and temporal variations of radio, as we described in
Section 2. We also plan to explore the optimistic simulation
approach [43] to enable better performance.

9 References
[1] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM:

Accurate and Scalable Simulation of Entire TinyOS Applications.
ACM Conference on Embedded Networked Sensor Systems, Novem-
ber 2003.

[2] Sung Park, Andreas Savvides, , and Mani B. Srivastava. SensorSim: a
simulation framework for sensor networks.ACM International work-
shop on Modeling, analysis and simulation of wireless and mobile
systems, pages 104–111, 2000.

[3] Sameer Sundresh, Wooyoung Kim, and Gul Agha. SENS: A Sensor,
Environment and Network Simulator.The IEEE 37th Annual Simula-
tion Symposium, 2004.

[4] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: Scalable
Sensor Network Simulation with Precise Timing.The Fourth Inter-
national Symposium on Information Processing in Sensor Networks,
April 2005.

[5] Jonathan Polley, Dionysys Blazakis, Jonathan McGee, Dan Rusk, and
John S. Baras. ATEMU: A Fine-grained Sensor Network Simula-
tor. IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks, 2004.

[6] Shih-Hsiang Lo, Jiun-Hung Ding, Sheng-Je Hung, Jin-WeiTang, and
Wei-Lun Tsai. SEMU : A Framework of Simulation Environment
for Wireless Sensor Networks with co-simulation model.In the Pro-
ceedings of International Conference on Grid and PervasiveComput-
ing (GPC), Lecture Notes in Computer Science (LNCS), May 2007.
France.

[7] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos,
Nithya Ramanathan, and Deborah Estrin. EmStar: a Software En-
vironment for Developing and Deploying Wireless Sensor Networks.
USENIX Technical Conference, 2004.

[8] Lewis Girod, Thanos Stathopoulos, Nithya Ramanathan, Jeremy El-
son, Deborah Estrin, Eric Osterweil, and Tom Schoellhammer. A
System for Simulation, Emulation, and Deployment of Heterogeneous

Sensor Networks.ACM Conference on Embedded Networked Sensor
Systems, November 2004.

[9] Ye Wen, Rich Wolski, and Greg Moore. DiSenS: Scalable Distributed
Sensor Network Simulation.In Proceedings of ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP
07), March 2007. San Jose, CA.

[10] Alexander Kroeller, Dennis Pfisterer, Carsten Buschmann, Sandor P.
Fekete, and Stefan Fischer. Shawn: A new approach to simulating
wireless sensor networks.eprint arXiv:cs/0502003, February 2005.

[11] ElMoustapha Ould-Ahmed-Vall, George F. Riley, BonnieS. Heck,
and Dheeraj Reddy. Simulation of Large-Scale Sensor Networks
Using GTSNetS. In Proceedings of the 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’05), 2005.

[12] J. Barbancho, F.J. Molina, C. Len, J. Ropero, and A. Barbancho.
OLIMPO, An Ad-Hoc Wireless Sensor Network Simulator for Op-
timal SCADA-Applications. Communication Systems and Networks
(CSN 2004), 450, September 2004.

[13] D. Watson and M. Nesterenko. Mule: Hybrid Simulator forTesting
and Debugging Wireless Sensor Networks. InWorkshop on Sensor
and Actor Network Protocols and Applications, August 2004.

[14] Ohio State University,Kansei: Sensor Testbed for At-Scale Exper-
iments. Poster, 2nd International TinyOS Technology Exchange,
Berkeley, February 2005.

[15] Rolf R. Hainich. The End of Hardware: A Novel Approach to Aug-
mented Reality. BookSurge Publishing, 2006.

[16] Ye Wen and Rich Wolski. S2DB: A Novel Simulation-Based Debug-
ger for Sensor Network Applications.In the Proceedings of 6th An-
nual ACM Conference on Embedded Software (EmSoft 06), October
2006. Seoul, South Korea.

[17] Mote hardware platform. http://www.tinyos.net/scoop/
special/hardware.

[18] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler,
and Kristofer Pister. System architecture directions for network sen-
sors.International Conference on Architectural Support for Program-
ming Languages and Operating Systems, October 2000.

[19] Kirk Schloegel, George Karypis, and Vipin Kumar. GraphPartitioning
for High Performance Scientific Simulations.Draft to be included in
CRPC Parallel Computing Handbook, Morgan Kaufmann, September
2000.

[20] Horst D. Simon. Partitioning of Unstructured Problemsfor Parallel
Processing.Computing Systems in Engineering, 2:135–148, 1991.

[21] Alex Pothen. Graph partitioning algorithms with applications to sci-
entific computing. Parallel Numerical Algorithms, pages 323–368,
1997. Kluwer.

[22] Bruce Hendrickson and Robert Leland. The Chaco User’s Guide:
Version 2.0. Technical Report SAND94–2692, Sandia National Lab,
1994.

[23] F. A. Tobagi and L. Kleinrock. Packet switching in radiochannels:
Part II-The hidden terminal problem in carrier sense multiple-access
and the busy-tone solution.IEEE Transactions on Communications,
COM-23:1417–1433, 1975.

[24] Alberto Cerpa, Jennifer L. Wong, Louane Kuang, MiodragPotkonjak,
and Deborah Estrin. Statistical Model of Lossy Links in Wireless
Sensor Networks.In the ACM/IEEE Fourth International Conference
on Information Processing in Sensor Networks (IPSN’05), April 2005.
Los Angeles, California.

[25] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A. Stankovic.
Impact of radio irregularity on wireless sensor networks.In Proceed-
ings of the 2nd international conference on Mobile systems,applica-
tions, and services (MobiSYS’04), 2004.

[26] Jerry Zhao and Ramesh Govindan. Understanding packet delivery
performance in dense wireless sensor networks.In Proceedings of the

1st international conference on Embedded networked sensorsystems
(SenSys’03), 2003.

[27] Olaf Landsiedel, Klaus Wehrle, and Stefan Gotz. Accurate Prediction
of Power Consumption in Sensor Networks.In Proceedings of The
Second IEEE Workshop on Embedded Networked Sensors (EmNetS-
II) , May 2005. Sydney, Australia.

[28] Victor Shnayder, Mark Hempstead, Bor-rong Chen, GeoffWerner-
Allen, and Matt Welsh. Simulating the Power Consumption of Large-
Scale Sensor Network Applications.In Proceedings of the Sec-
ond ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys’04), November 2004. Baltimore, MD.

[29] Victor Shnayder, Mark Hempstead, Bor-rong Chen, and Matt Welsh.
PowerTOSSIM: Efficient Power Simulation for TinyOS Applications.
In Proceedings of the Second ACM Conference on Embedded Net-
worked Sensor Systems (SenSys’04), November 2004. Baltimore, MD.

[30] K. C. Syracuse and W. Clark. A statistical approach to domain perfor-
mance modeling for oxyhalide primary lithium batteries.In Proceed-
ings of Annual Battery Conference on Applications and Advances,
January 1997.

[31] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi.
A discrete-time battery model for high-level power estimation. In Pro-
ceedings of Design, Automation and Test in Europe, 2000.

[32] D. Rakhmatov and S. Vrudhula. Time-to-failure estimation for batter-
ies in portable electronic systems.In Proceedings of the International
Symposium on Low Power Electronics and Design, August 2001.

[33] D. Linden and T. B. Reddy. Handbook of Batteries(3rd edition).
McGraw-Hill, 2002.

[34] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging
Operating Systems with Time-Traveling Virtual Machines.In the Pro-
ceedings of USENIX Annual Technical Conference 2005, April 2005.
Anaheim, CA.

[35] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews,
and Yuanyuan Zhou. Flashback: A Lightweight Extension for Roll-
back and Deterministic Replay for Software Debugging.In the Pro-
ceedings of USENIX Annual Technical Conference 2004, June 2004.
Boston, MA.

[36] Stargate: a platform X project.http://platformx.sourceforge.
net/.

[37] Mark Carson and Darrin Santay. NIST Net - A Linux-based Network
Emulation Tool.In the Proceedings of ACM SIGCOMM special issue
of Computer Communication Review, 2003.

[38] Stephen Hemminger. Network Emulation with NetEm.In the Pro-
ceedings of Linux Conference AU, April. 2005.

[39] Luigi Rizzo. Dummynet: a simple approach to the evaluation of net-
work protocols.In ACM Computer Communication Review, 27(1):31–
41, 1997.

[40] Network Emulation with the NS Simulator.http://www.isi.edu/
nsnam/ns/ns-emulation.html.

[41] NS-2 network simulator.http://www.isi.edu/nsnam/ns/.

[42] QEMU: A Generic and Open Source Processor Emulator.http://
fabrice.bellard.free.fr/qemu/.

[43] Richard M. Fujimoto. Time warp on a shared memory multiprocessor.
Transactions of the Society for Computer Simulation International,
6(3):211–239, 1989.

