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Abstract 

Generational garbage collectors are able to achieve very 
small pause times by concentrating on the youngest 
(most recently allocated) objects when collecting, since 
objects have been observed to die young in many sys- 
tems. Generational collectors must keep track of all 
pointers from older to younger generations, by “moni- 
toring” all stores into the heap. This write barrier has 
been implemented in a number of ways, varying essen- 
tially in the granularity of the information observed and 
stored. Here we examine a range of write barrier im- 
plementations and evaluate their relative performance 
within a generation scavenging garbage collector for 
Smalltalk. 

1 Introduction 

Generational collectors achieve short collection pause 

times partly because they separate heap-allocated ob- 

jects into two or more generations and do not process 

all generations during each collection. Empirical stud- 

ies have shown that in many programs most objects die 

young, so separating objects by age and focusing collec- 

tion effort on the younger generations is a popular strat- 

egy. However, any collection scheme that processes 
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only a portion of the heap must somehow know or dis- 

cover all pointers outside the collected area that refer 
to objects within the collected area. Since the areas not 

collected are generally assumed to be large, most gen- 

erational collectors employ some kind of pointer track- 

ing scheme, to avoid scanning the uncollected areas. 

Again, empirical studies show that in many programs 

the older-to-younger pointers of interest to generational 
collection are rare, so avoiding scanning presumably 

improves performance. 
To avoid scanning, the system must maintain some 

kind of table enabling the collector to find all the in- 
teresting pointers; we call this abstraction the interest- 
ingpointers table (PT). Interesting pointers are created 

when a pointer (as opposed to non-pointer data) is stored 

in a heap object (as opposed to some other place) and 

the modified object resides in an older generation than 

the object that is the target of the pointer. Thus, certain 

of the program’s stores must somehow create IPT en- 
tries. The action required has been called a store check 
or a write barrier by different authors. The general 

approach is to add an entry to the IPT whenever an in- 

teresting pointer is (or might be) created. The collector 

uses and rebuilds the IPT, discarding any entries that do 

not describe interesting pointers. Such entries can come 

about either because the system, as it runs, is imprecise 

about what is interesting, or because later changes over- 

write interesting pointers with uninteresting data. Note 

that if the system is imprecise, it must err on the side 

of putting too many entries in the IPT rather than too 

few, since the IF? must allow the collector to find all 

interesting pointers. 

In this paper we are concerned with direct compari- 

son of various methods of implementing the write bar- 
rier. We will describe: our collector, the specific write 

barrier methods we compare, the benchmarks we used, 
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the experiment setup and methodology, and the results. 

We also discuss related work and present the conclu- 

sions we draw from the results. We offer two princi- 

pal contributions here: the experimental results, which, 

like most benchmark-based studies, are not conclusive 

but nevertheless are interesting and useful; as well as 
the unique (to our knowledge) experimental setup that 

allows very direct and meaningful comparisons of the 

various schemes. 

2 Overview of the garbage collector 

We now describe the garbage collector used for the per- 

formance studies reported here. Its basis is the UMass 

Language-Independent Garbage Collector Toolkit, to 

which we add language specific code for our Smalltalk 

system. We first offer a condensed description of the 

toolkit and continue with appropriate details of the 

Smalltalk system. For a more detailed discussion of 

the toolkit see [4]. 

2.1 The toolkit concept 

The toolkit divides the responsibility for and support 

of garbage collection into two parts: a language- 

independent part, supplied by the toolkit, and a 
language-specific part, nominally supplied by the lan- 

guage implementor. The language-independent part 
consists mostly of the data structures and code for man- 

aging multiple generations and the allocation of heap 

objects. The language implementor must supply the fol- 

lowing capabilities: locating at scavenge time all root 
pointers (those pointers outside the scavenged genera- 

tions that refer to objects in the scavenged generations), 

and locating all pointers within a heap object given a 

pointer to the start of the object. The toolkit includes 

a library of routines that an implementor can use to 

support the IPT; it remains the implementor’s responsi- 

bility to locate roots lying in the stack(s), registers, and 

any other areas outside the heap. 

2.2 The structure of the heap 

The toolkit defines the structure of the heap and supplies 
the necessary allocation routines. The heap consists of 

a number of generations, ordered by age. We number 

themO,l,2 ,..., in order of increasing age. In any given 
collection some generation and all younger generations 

will be scavenged. The number of generations may 
vary over time. 

Each generation consists of a number of stews. Steps 

segregate objects by age within a generation, and during 

scavenging all surviving (reachable) objects in a given 

step are copied to some other step. This promotion step 

may belong to the same or a different generation. By 

adjusting the promotion steps before scavenging one 

can introduce new steps, combine existing steps, and so 

on, allowing the number of steps in a generation to vary 

over time. The primary function of steps is to eliminate 

the need for storing or maintaining any age informa- 

tion in individual objects. This reduces storage and 

time costs, but also gives the collector age information 

without imposing any requirements on object formats 

(which are entirely the responsibility of the language 

implementor). While the meaning of steps is some- 

what arbitrary, we impose a convention that objects in 

the lower numbered steps are younger than those in the 

higher numbered steps, numbering the steps 0, 1,2, . . . , 

such that every step in the system has a unique number. 
For example, generation 0 might have steps 0 and 1, 

generation 1 might have steps 2 through 4, and so on. 

A simple promotion policy is to promote survivors of 

step k to step k+l. In that case, the number of steps in a 

generation determines the number of scavenges (of that 
generation) necessary to promote objects to the next 

generation. 

Each step consists of a number of blocks. A block is 

2” bytes, aligned on a 2”-byte boundary for some value 

of 7) chosen when the system is built. A typical block 

size might be 64K bytes. The number of blocks in a 

step may vary over time. While the blocks of a step 

are usually not contiguous, a nursery may be set up to 

consist of a number of contiguous blocks, so that one 

might more readily use a page trap to detect nursery 

overfIow and trigger a scavenge. This avoids the need 
for an explicit limit check at every allocation. 

Blocks have four primary advantages. First, they 
allow sizes of steps and generations to vary easily since 

the storage of a step need not be contiguous. Second, 
they allow speedy determinationof the generation, step, 

and promotion step of an object: one merely shifts the 

address of the object right by n bits and indexes a block 

table containing the needed information. Third, blocks 

match naturally with page trapping or card marking 

schemes (to be discussed in detail below). Fourth, they 

reduce the storage needed under some circumstances, 
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compared with copying collectors that use semi-spaces. 

If b bytes are present in a generation before a scavenge 

and the survivors consume a bytes, then a semi-space 

scheme uses 26 bytes whereas our scheme uses b+a 
bytes (modulo rounding resulting from the block size). 

The degree of advantage depends on the survival rate 

u/b, but may be significant in some applications. 

Blocks do introduce a problem: they cannot han- 
dle objects larger than the block size. To handle such 

objects we provide a large object space (LOS), as sug- 

gested in [14]. Indeed, it is probably a good idea to 

put in LOS any object that consumes a significant frac- 

tion of a block; we used the heuristic threshold of l/8 

of a block. Further, as also discussed in [14], any ob- 

ject that has few pointers in it and that exceeds some 

threshold in size should be stored in LOS to avoid the 

overhead of copying. Without going into all the de- 

tails, LOS uses free list allocation based on splay trees 

[lo, 11, 51 and once allocated an LOS object is never 
moved. However, LOS objects still belong to a step, 

which is indicated by threading the objects onto a dou- 

bly linked list rooted in the step data structure. When 

an LOS object is promoted, we simply unchain it from 
one list and chain it into another. When scavenging is 

complete, any LOS objects remaining on a scavenged 

step’s LOS list are freed. 
While the generation, step, and block of a non-LOS 

object can be discovered via the simple shift and index 
technique, LOS may mix objects from different steps 

and generations in the same block. Therefore, we store 
a back reference from each LOS object’s header to its 

containing step, allowing relatively easy determination 

of the step given a pointer to the object’s base. De- 

termining the step given a pointer into the middle of 
the object requires locating the object header, which is 

supported but involves additional work. 

2.3 Phases of a scavenge 

A scavenge consists of two phases. First, the root set 

for the scavenge is determined based on the IPT scheme 

employed (as well as the stack and register decoding ap- 

proach). All objects directly reachable from the roots 

are copied into new space, and the roots updated. In 

the second phase all objects reachable from the new 

space objects are copied over using a non-recursive Ch- 

eney scan [2].’ As each object is copied, a forwarding 

pointer is left in the old copy, so that other references 

to the object can be updated as they are encountered. 

Since the toolkit makes no object format assumptions, 
the details of forwarding pointer format are up to the 

language implementor. The toolkit does support auto- 

matic determination of where to allocate the new copy 

of the object, given the object’s size (which must be 

determined by language-specific code). 

Before a scavenge begins, the toolkit, following a 
dynamically modifiable plan supplied by the language 

implementor, determines the generations to be scav- 

enged and creates new steps according to the number 

desired for each scavenged generation. It also sets up 

all the promotion step references. After a scavenge, all 
the old steps of the scavenged generations are deleted 

and their blocks become available for allocation. 

2.4 Smalltalk details 

Our Smalltalk system consists of a virtual machine of 

our own design. It includes a bytecode interpreter for 

the instruction set defined in [3], and we run a Smalltalk 

image cloned (converted into our format) from an ear- 
lier release of Smalltalk-80.’ We manage contexts 

(stack frames) as described in [7]. In particular, a 
number of frames are preallocated and assembled on 

a doubly linked list. Ordinary calls traverse the list in 

one direction and ordinary returns traverse it the other 

way, with cost similar to a stack. When a block context 

(similar to a closure) is created, or a frame otherwise 

becomes referenceable as an object, it is removed from 

the ordinary linked list so that it will not be reused until 

thecollector can establish that it is no longer referenced. 

We store frames in step 0 and they are never promoted. 

This means that we need never perform store checks on 

stores into frames (they are in the youngest generation, 
so such a store can never create an interesting pointer). 

Non-frame objects are created in the nursery in step 1. 
Generation 0 includes steps 0 and 1, so in principle we 

can use a slightly cheaper store check for initializing 

stores (which seem to be the most common stores in 

the system): ignore stores if the modified object is in 

‘The toolkit might be adapted to support mark-sweep or other 

approaches to collection, but currently it provides only copying 

collection. Also, it would not be hard to incorporate suggestions 

such as hierarchical clustering [16]. 

2Smalltalk-80 is a registered trademark of PARC Place Systems. 
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generation 0 (regardless of the generation of the target 

of the pointer).3 There is a total of five generations, with 

one step in each of generations 1,2,3, and 4. Each step 

(except step 0, which never promotes, and step 5 which 

is the oldest step) promotes to the next step. Generation 

0 is collected if we run out of frames or step 1 exceeds its 

allocation of one block. Similarly, generations 1,2, and 

3 are scavenged if they exceed their respective limits 

of 1, 1, and 10 blocks. Generation 4 is never collected. 

The block size is 64K bytes. All objects larger than 8K 

bytes are stored in LOS, as are all bytes objects of size at 

least 496 bytes. We do not claim that this arrangement 

is necessarily well-tuned, but we held it fixed across 

all benchmark runs so the comparisons remain direct. 

Note that the system can easily be configured to have a 

different heap arrangement. 

3 Write barrier implementations 

As previously sketched, the write barrier consists of ac- 

tions performed in conjunction with a store that might 
create an interesting pointer. The purpose of the write 

barrier is to support efficient location of all root point- 

ers in the heap (i.e., to avoid scanning the generations 
not being collected). We have implemented several 

versions of the three most common write barrier ap- 

proaches. They vary mostly in the granularity of the 

information they record. 

The first scheme associates a remembered set with 

each generation [ 131, recording the objects or locations 
in older generations that may contain pointers into that 

generation. Any pointer store that creates a reference 

from an older generation to a younger generation is 

recorded in the remembered set for the younger gener- 

ation. At scavenge time the remembered sets for the 
generations being scavenged include the heap root set 

for the scavenge. 

The other schemes divide the heap into logical re- 

gions of size 2” bytes, aligned on a 2”-byte boundary, 

for some fixed k. We call these regions cards, after 

[ 12,171. Each card has a corresponding entry in a card 

table indicating whether the card might contain point- 

ers into younger generations. Mapping an address to 
an entry in this table is simple: one shifts the address 

right by k and uses the result as an index into the table. 

3We detail later the exact store checks (if any) we usedwith each 

write barrier implementation. 

Whenever a pointer is stored into an object, the cor- 

responding card is dirtied. At scavenge time all dirty 

cards of generations nor being scavenged include the 

heap root set for the scavenge. 
One variant of this scheme uses the page protection 

mechanism of the operating system to detect stores into 

clean cards, A card in this scheme corresponds to a 

page of virtual memory. All clean pages are protected 

from writes. When a write occurs to a protected page, 

the trap handler dirties the corresponding entry in the 

card table and unprotects the page. Subsequent writes 

to the now dirty page incur no extra overhead. Note 

that all writes to a clean page cause a protection fault, 

not just those that store pointers. An operating system 

could more efficiently supply the information needed 
in the page protection scheme if it offered appropriate 

calls to manipulate the page dirty bits maintained by 

most memory management hardware [8]. 

With each of these schemes we are faced with the 

choice of remembering either the slot that is updated or 

the object containing that slot. For remembered sets, 

this is simply a matter of entering the object pointer 

or the slot address in the appropriate remembered set. 

For card marking, remembering the containing object 

means dirtying the card containing the header of the 
object. Remembering the slot means dirtying the actual 

card in which the slot lies, which may be different. Nat- 

urally, the page protection scheme is only able to dirty 

the page containing the slot, since that is the location 

updated. 
We now give a detailed description of our implemen- 

tation of these schemes. 

3.1 Remembered sets 

Our remembered sets are implemented as circular hash 

tables using linear hashing. A remembered set is allo- 

cated as an array of 2i+k entries. To enter an item in the 

set, we hash the item to obtain i bits and index the table. 

If the indexed location is empty then the item is stored 

in that slot and we are done. If the location already 

contains the item then we are done also. Otherwise, 

the immediately succeeding k slots are examined to try 

to place the item (this is not done circularly; hence the 
2i+k rather than simply 2”). If an empty location still 

cannot be found then a circular search of the table is 

made to find an empty slot. The hash tables are kept 

relatively sparse by growing a table whenever an item 
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cannot be placed in its natural hash slot or the Ic follow- 
ing slots, and 60% or more of the table’s slots are full. 

We fixed k=2 and the growth policy is to increment 

i (i.e., basically double the table size when a table is 

grown). 

3.1.1 The write barrier 

To avoid making the remembered sets too large we 

record only those stores that are interesting; we use 
the termfilrering to indicate the process of determin- 

ing whether an item is interesting. Jn Smalltalk we 

always do a pointer vs. non-pointer test on the item be- 

ing stored. If the item is a pointer, this is followed by a 

generation test, which we perform by determining the 

generations of both the modified source object and the 

target object whose pointer is being stored, and com- 

paring the two. Following Zorn [ 181, and based on our 
own run-time traces of the Smalltalk system which re- 

veal that most stores occur to initialize newly allocated 

objects, we can frequently avoid the need to determine 
the generation of the target object by checking if the 

modified object is in generation 0. As mentioned ear- 
lier, determining the generation of an object involves 

shifting its pointer and indexing into the block table. 

Thus, our store filter involves a shift, index, and load to 

obtain the source object’s generation, a conditional to 

filter initializing stores, followed by a shift, index, and 

load for the target object, and a comparison. If the store 
passes through this filter then it is interesting, so we 

invoke a subroutine to hash the modified object or slot 

into the appropriate remembered set. To avoid run-time 

code to determine precisely which remembered set to 

update, all interesting stores are actually hashed into a 

run-time scratch set. 

On the MIPS R2000 initializing stores are filtered us- 
ing 7 instructions. The remaining uninteresting stores 

are filtered using another 7 instructions. The entire 

inline sequence comes to a total of 17 instructions in- 

cluding the call to update the remembered set. 

3.1.2 Scavenging 

At scavenge time the remembered sets of the genera- 
tions being scavenged plus the scratch set determine the 

heap root set. To eliminate duplicates in the root set we 

hash the remembered sets of the scavenged generations 
into the scratch set to form the union. Each entry in the 

scratch set is then processed to locate pointers into the 

scavenged generations: if we are remembering objects 
then the heap root set consists of all pointer locations 

in those objects; otherwise if slots are being remem- 

bered then they directly constitute the root set. As 

scratch set entries and promoted objects are processed, 

all interesting pointers that we encounter are recorded 

in their appropriate remembered set, in order to rebuild 

the remembered sets of the scavenged generations and 

to keep those of the older unscavenged generations up 

to date. 

The apparent advantages of remembered sets are their 

conciseness and accuracy, achieved at the cost of filter- 

ing for interesting pointer stores before recording them 

in the appropriate remembered set, and of hashing to 

keep the sets small by eliminating duplicates. At scav- 

enge time, unless there has been repeated mutation of 

au object or location, the remembered set is likely to be 

a very accurate characterization of the heap root set. 

3.1.3 The sequential store buffer 

For an interpreted language such as our Smalltalk sys- 
tem the space overhead of 17 instructions at every store 

site is not a problem, since stores occur at a relatively 

small number of fixed locations in the interpreter. How- 

ever, for compiled languages this overhead will be in- 

curred at every one of <au arbitrary number of compiled 

store sites, which may be prohibitive. For this reason 
we have devised a scheme similar to that introduced 

by Appel [l], allowing batch filtering and recording 

of pointer stores, using a sequerttial store bu#er (SSB) 

to buffer the necessary information. The SSB com- 

prises some number of contiguous pages, bounded by 
a “guard” page that has been protected from writes. 

Recording a word of information in the SSB consists 
of storing to the next free location in the buffer and 

bumping the free pointer. If the free pointer is main- 

tained in a register then this can be implemented on the 

MIPS R2000 using just two instructions: one to store 

the word and the other to increment the pointer. 
At scavenge time the information recorded in the SSB 

is processed to update the scratch set, with filtering as 
described above. Overflow of the SSB at run time is 

trapped by the operating system when an attempt is 

made to store into the guard page. The trap handler 

processes the SSB and resets the free pointer to the 
beginning of the buffer. 

96 



We record two words of information in the SSB for 

each store to allow for efficient filtering of uninterest- 

ing pointers: when remembering slots we record the 

modified object as well as the updated slot;4 when re- 

membering objects we record both the modified source 

object and the target object to avoid scanning the entire 
modified object for interesting pointers when process- 

ing the SSB. 

3.2 Card marking 

Card marking requires that we allocate a contiguous 

card table containing an entry for every card in the heap. 

Our garbage collector allows the heap to grow as large 

as the operating system (and practical considerations) 

will allow, since blocks are incrementally added to the 

heap as they are needed. While we envision a scheme 

where the card table grows incrementally, in the bench- 

mark runs we imposed an upper bound on heap growth 

and allocated a fixed-size card table during memory 

manager initialization. 

3.2.1 The write barrier 

One of the most attractive features of card marking 

is the simplicity of the write barrier. For this reason 

we have chosen to implement the card table as a byte 

array rather than a bit map.’ By interpreting zero bytes 

as dirty entries and non-zero bytes as clean, a pointer 

store can be recorded using just a shift, index, and byte 

store of zero. On the MIPS R2000 this comes to just 

4 instructions: a load to get the base of the card table, 
a shift to determine the index, an add to determine the 

byte entry’s address, and a byte store of zero. 

3.2.2 Scavenging 

At scavenge time the dirty cards of the generations not 

being scavenged determine the root set. We must scan 

4Recording the slot alone would be sufficient. However, we 

can take advantage of the fact that our Smalltalk implementation 

allocates all object headers in small object space. Large objects are. 

represented by a header in smalI object space with a pointer to the 

body of the object in large object space. This makes deteunining 

the generation of a slot much simpler if we ate given a pointer to 

its containing object’s header rather than the address of the slot 

itself. By recording the modified object as well as the slot we avoid 

unnecessarily complicating SSB filtering. 

‘We first heard of this idea from Paul Wilson. 

each card to find all references into the generations be- 

ing scavenged. If we are remembering objects (i.e., if 

pointer stores dirty the containing object’s card) then 

every pointer slot of every object whose header lies in 

a dirty card must be examined. If we are remembering 

slots (i.e., if stores dirty the updated slot’s card) then 
the root set consists of all pointers that lie in dirty cards. 

Either way, locating pointers within cards is compli- 

cated by the mixing of bytes and pointers in Smalltalk 

objects, and the potential for objects to span multiple 

cards. 
To find the pointers in a card we must be able to 

find the object headers in the card, which encode the 

formats of the objects allowing us to locate their point- 

ers. To support locating object headers, we maintain a 

table of card offsets parallel to the dirty card table, in- 

dicating the location of the fast (highest address) object 

header within each card. This requires every alloca- 

tion of an object in any generation but the youngest to 

update the card offset table. These updates are uncon- 

ditional, since we allocate from low to high addresses, 
so the most recent allocation in a card is always the 

offset of the last object in the card. Since new objects 

are always allocated in the youngest generation this al- 

location overhead is incurred only upon promotion of 

objects at scavenge time. 6 A negative offset entry indi- 

cates that the card contains no object header-the object 

header must be in some previous card. A positive off- 

set indicates the Zongwo1.d of the card at which the last 

object’s header begins. Using longword offsets allows 

us to keep the offset table entries to just one byte for 

cards of 512 bytes or less. For larger cards we use a 

two-byte entry. 

Before scanning a dirty card for pointers, we first 

mark it clean. Then if we find any interesting pointer in 

the card (even if the generation of the target is not be- 

ing scavenged), we dirty the card for future scavenges. 

Note that a dirty card becomes clean if the scan certi- 

fies that the card contains no interesting pointers. We 

reduce scanning overhead by scanning all contiguous 

dirty cards as a group, running from the first to the last. 
Promoted objects are always allocated in newly allo- 

cated blocks whose cards are assumed to be clean, so as 
promoted objects are scanned we also update their card 

entries. 

‘%ere is one rare exception to this brought about by our imple- 

mentation of the Smalltalk primitive method become : . 
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An unresolved question is just how large cards should 

be. There is an obvious tradeoff in that large cards mean 

fe,wer cards and smaller tables, but larger cards also 

imply a huger root set at scavenge time. There is also 

the question of filtering. As for remembered sets we 

filter non-pointer stores to avoid unnecessarily marking 

cards. However, there is the possibility that generation 

filtering might also improve the accuracy of the root set 
by reducing the number of marked cards to be scanned 

at scavenge time. 

3.3 Page protection 

The final scheme is a variant of card marking where 

the write barrier is implemented by using the paging 

hardware’s capability to trap writes to protected pages. 

Rather than recording ever-y store at run time, we trap 

only writes to clean pages. This means that there is 
no overhead for writing to diary pages at run time, but 

stores to clean pages will incur the significant overhead 
of fielding a signal from the operating system, unpro- 

tecting the appropriate page, and resuming (- 250~s 

round trip as measured in a tight loop under Ultrix 4.1 

on the DECStation 3100). 

At scavenge time we process dirty pages (of gen- 

erations not being scavenged) essentially as for card 

marking, except that any dirty page certified as clean 
must be protected. We scan runs of contiguous dirty 

pages as a group. Similarly, to protect a run of contigu- 
ous ex-dirty pages we issue just one system call for the 

entire run, to minimize system call overhead. 

Unlike card marking, where we allocate promoted 

objects in newly allocated blocks whose cards are as- 

sumed to be clean, the page protection scheme assumes 

that the pages of all newly allocated blocks are dirty. 

This means that there is no need to record interesting 

pointers as promoted objects are scanned. It also means 

that no page is ever protected in the youngest genera- 
tion, where new objects are allocated, so allocating and 

storing into a new object never causes a trap. 

4 Benchmarks 

We chose a set of five Smalltalk programs to run as 

benchmarks under each of the write barrier implemen- 

tations. The first two benchmarks are real applications, 

the second two are synthetic benchmarks designed to 
reveal the behavior of the garbage collector, and the 

last is intended to reveal the behavior of the garbage 

collector in an “interactive” session. We now describe 

each benchmark and characterix its behavior: 

Richards: This is the Richards operating system sim- 
ulation benchmark. It is a computation-intensive 
program, and preallocates most of its data. Most 
subsequent allocations consist of frames. We 
chose this benchmark to reveal the cost of garbage 
collection in a program that does little allocation 
and creates little garbage. 

Lambda: This is a pure X-calculus interpreter of our 
own devising. It represents X-expressions as di- 
rected graphs, internally consisting of small fixed 
size Smalltalk objects. It models p- and q- reduc- 
tion. Internally, it implements normal order reduc- 
tion by copying the argument subexpression. This 
entails intensive allocation activity (for each oc- 
currence of the bound variable, it allocates objects 
for the argument copy) and garbage generation 
(following the substitution, the original argument 
is garbage). In addition, variable bindings are han- 
dled internally using Smalltalk dictionaries, giving 
rise to a large number of become : operations to 
grow the dictionaries. 

Swap-trees with mutation: This synthetic bench- 
mark first builds a complete tree of branching fac- 
tor 4 and height 6. Each node consists of an array 
of pointers to the node’s children and a small data 
array. The total size of the tree is 600K bytes. 
Once the tree is built the program loops swapping 
random subtrees of height 3. This benchmark re- 
veals the efficiency of the write barrier. 

Destroy--trees with destructive updates: This syn- 
thetic benchmark builds a complete tree of branch- 
ing factor 6 and height 5, similar to the tree of the 
Swap benchmark. The total size of the tree is 
900K bytes. However, instead of swapping sub- 
trees, Destroy replaces a subtree of height 3 (size 
about 25K bytes) with a newly allocated subtree 
of the same size. The total amount of data pro- 
cessed during a run is about 24 megabytes. This 
benchmark explores the cost of applications that 
generate garbage rapidly. 

Interactive--the “macro” benchmarks: For this 
benchmark we iterate 10 times through the full set 
of “macro” benchmarks. These benchmarks are 
part of the standard suite of benchmarks [6] used 
to compare the relative performance of different 
Smalltalk implementations. They measure system 
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support for the programming activities that consti- 
tute typical interaction with the Smalltalk system, 
such as keyboard activity, compilation of methods 
to bytecodes, and browsing. 

5 Experiments 

To ensure that each benchmark exhibited the same be- 

havior from run to run we modified the Smalltalk inter- 

preter to record and replay sessions. Thus, every run 

sees exactly the same Smalltalk events, such as alloca- 

tion, system time, keyboard/mouse events, interrupts, 
etc. We note that the toolkit and write barrier software 

design is such that each scavenge is presented with ex- 

actly the same heap layout, collection of objects, blocks, 

etc., even to the point that the offset of the objects in 

blocks will be the same. Indeed, the memory contents 

can differ only in the sizes and locations of the write 

barrier data structures (card table, remembered sets) 

and the placement and order of the blocks (the presence 

of the write barrier structures may cause blocks to be 
allocated in different places under different schemes). 

Naturally, there will still be some variation from run 

to run due to context switching by the operating sys- 

tem, but we minimized this by doing all timing tests in 

single user mode, disconnected from the network. We 

ran each benchmark several times under various imple- 

mentations of the write barrier on a DECStation 3100 

running Ultrix 4.1 .7 There was adequate real memory 

to prevent paging. 

We measured elapsed time using a custom timer 

board with a resolution of 100 ns. Extracting the value 

of the timer involves reading 4 contiguous words from 

a memory location to which the timer device has been 
mapped, resulting in little timing overhead. The fine- 

grained accuracy of this timer allowed us to measure 

the elapsed time of each phase of execution separately: 

running time between scavenges, processing of the root 
set, scanning of promoted objects, and other overheads 

of garbage collection. To obtain dynamic counts of al- 

locations, pointer stores, etc., we built an instrumented 

version of the interpreter and did a separate set of runs 

(i.e., the counter instrumented interpreter was not used 

for timing purposes). 

Our experiments included runs for the two versions of 

‘The operating system had some official patches installed that 

fix bugs in the mprotect system call. 

the remembered set scheme (one remembering objects, 

the other slots), object and slot versions of the card 
scheme, with card sizes varying from 16 to 4096 bytes 

by powers of 2, and the page protection scheme (the 
page size is 4096 bytes). We also measured the SSB 

variant of the remembered set scheme for both objects 
and slots with a lo-page SSB, and a variant of the 

most promising card scheme using the same generation 

filter as for remembered sets to minimize the number of 

dirtied cards. 

6 Results 

We now report the elapsed time performance of each 

benchmark in turn. To best eliminate any uncontrolled 

interference from the operating system, we take the 

minimum elapsed time for each phase (separately) over 

twenty runs. The phases include: 

running, the time spent in the interpreter as op- 
posed to the collector (note that running includes 
the cost of store checks and/or page traps); 

roar processing, the time spent scanning through 
remembered sets or card/ age tables and copying 
the immediate survivors; 8 

promotion, the time spent copying the remaining 
survivors; and 

other, time spent in any remaining activities, such 
as setting up internal tables, etc. 

In addition, for the SSB variant of the remembered 

set scheme we measured the time spent processing the 

SSB prior to each scavenge. Note that any SSB pro- 

cessing required to handle SSB overflow is charged 

to the running phase. We exclude all image loading 

and initialization time (i.e., all actions prior to entering 

the main interpreter loop). We present results for the 

slot-based approaches first, and discuss the object re- 
membering schemes later (results for the object-based 

schemes appear at the end of the paper). 

*In Smalltalk the stack is stored as heap objects so there ix 

no separate stack processing. In fact, all the process stacks are 

copied during each scavenge. Also, Smalltalk has only a few global 

variables, in the interpreter. 
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Figure 1: Elapsed time for Richards 

6.1 Richards 

The computation-intensive nature of the Richards 
benchmark is revealed in Figure 1. We see small gc 

overhead, indicating little need for scavenging apart 

from the recovery of block contexts (frames). Even so, 

expanding the scavenge part of the graph to examine 

gc overheads, we see the tradeoff in the card scheme 

between the size of the cards and the number of cards 

needing to be scavenged (Figure 2). For this benchmark 
the SSB is substantially more expensive, due in most 

part to the very high store rate and the low scavenge 
rate, so that the SSB overflows approximately 30 times 

between successive scavenges. 

The high cost of the filtered card scheme is curious, 

considering that the same filter applied for remembered 

sets shows little extra overhead. Further, this overhead 

appears only in the results for the slot-based scheme. 

The corresponding object-based scheme is comparable 

with the other card schemes. Comparison of the com- 

piled store check code reveals that the code generated by 
the compiler for the slot-based scheme is less efficient 

than that for the object-based scheme, perhaps because 
the store check code needs three quantities around (the 

object address, the slot address, and the new contents). 
Since the compiler can probably be convinced to gen- 

erate more efficient object code through rearrangement 

of the source code, we anticipate eliminating this over- 
head, making the filtered card scheme more competi- 

tive. Moreover, compiled languages can ensure that the 

best code is generated for the store checks, since it has 

complete control over code generation. 

A direct comparison of root processing times is given 

in Figure 3, showing that 256-byte cards appear to be 
optimal, and that at least for cards, remembering objects 

requires consistently less root processing. Moreover, 
filtering seems to be futile for the card schemes since it 

has little impact on the root processing time, and offers 

little (if any) improvement in running time. These root 

processing results hold across all the benchmarks, so we 

refrain from presenting separate root processing graphs 

for the remaining benchmarks. 

Overall, the page trapping scheme is marginally bet- 

ter than the other schemes because most stores are to 

pages that are already dirty: remembered sets and cards 

are competitive. Filtering is of little use for cards, since 

it unnecessarily complicates the store check with little 
(if any) improvement in total time. The SSB is penal- 

ized by the high store rate and low scavenge rate of this 

benchmark, incurring substantial overhead to service 
SSB overflow traps. 
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Figure 4: Elapsed time for Lambda 

6.2 Lambda 6.4 Dest ray 

Naturally since Lambda does much more allocation and 

creates much more garbage than Richards, we see that it 

exhibits higher collection overhead, ranging from 3.1% 

to 6.9% of the total time (Figure 4). This demonstrates 
how well even a minimally tuned generational collector 

can perform in a high garbage context. We still observe 

the characteristic tradeoff as card size varies, although 

the most effective scheme for this benchmark is remem- 

bered sets, both with and without the SSB. Tuned cards 

are competitive, and once again filtering offers little (if 

any) improvement. 

In Figure 6 we see that Destroy incurs much higher 

promotion costs than Swap, which is to be expected. It 

also has larger root processing costs (as a fraction of 

run time), because it does more allocation and creates 

large amounts of garbage. Nevertheless, it produces the 

same relative standing of the schemes. The collection 

overhead is high: from 16% to 37% of total time. Note 

that this benchmark is probably not very characteristic 

of real programs-while some programs do mutate a 

long-lived heap, they generally do not do so rapidly, 

nor do they create garbage from their old objects in a 

rapid continual fashion. 

6.3 Swap 

Figure 5 shows the times for the Swap benchmark. Its 
behavior is generally similar to that of Lambda, ex- 

cept that the root processing time is proportionately 

much higher, as we would expect from the continual 

mutations, which force the collector to re-examine the 
objects. Once again, remembered sets come out best, 

with the SSB providing marginally better performance. 

The ratio of garbage collection time to total time ranges 

from 2.7% for remembered sets, through 5.4% for the 

best card scheme to 20% for 16-byte cards. 

The noticeable variation in running time amongst the 

card schemes is puzzling. Since the code for all the 

card schemes is exactly the same, barring the shift val- 
ues and the card offset table entries, the variation can 

only be explained by cache and TLB effects. The Dec- 

Station 3 100 has direct-mapped pkysiculfy-addressed 
caches, so a bad assignment of virtual pages to physical 

pages may make certain lines of the cache more volatile 

than others, degrading performance if important data or 

instructions end up in those cache lines. Note also 

how filtering, which disturbs the store check code, and 

reduces the number of stores that must be recorded, im- 
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Figure 7: Elapsed time for Interactive 
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proves the running time for the 256-byte card scheme. 

Moreover, the object-based schemes, which again have 
slightly different store check code and dirty different 

entries in the card table, exhibit no such variation in 

running times. 

6.5 Interactive 

The Interactive benchmark yields similar results to the 

other benchmarks (Figure 7). Remembered sets are 

best, with gc overhead as good as 1.5% of total time, 

and cards ranging from 2.9% to 10% of total time. 

6.6 Objects versus slots 

There seems little to distinguish the approaches that re- 

member objects from those that remember slots. Root 
processing for the slot-based card schemes costs a little 

more than for the object-based card schemes, with the 

effect more pronounced for small card sizes. We sug- 

gest that remembering objects is cheaper because when 

remembering slots, we must process any object of the 

previous card that continues into a dirty card, but when 

remembering objects, we can skip over such objects. 
This extra cost is essentially per-card (since the average 

object size remains fixed as we vary the card size within 

any given benchmark), so as the card size increases and 

the number of cards decreases, the extra cost fades away. 
For remembered sets, remembering slots is marginally 

cheaper than remembering objects, since the slots en- 
code the interesting pointer information more exactly, 

whereas the remembered objects must be scanned to 

find their interesting pointers. 

7 Related Work 

Ungar introduced generation scavenging [ 131, building 

on earlier work on generational collection. Further de- 

tails as to the cost of store checks appear in [15], with 
the conclusion that special hardware in the SOAR chip 

might offer a time performance improvement of 3% 

over a tightly coded inline check. While our checks 

are not as tightly coded, the apparent time penalty is 

still small, although it may be because our interpreter is 

relatively slow compared with the SOAR design. 

Shaw considered the relationship of collection to vir- 

tual memory for LISP programs [9J. In particular, Shaw 
examined various write barrier methods, including hy- 

pothetical user access to page dirty bits maintained by 
the operating system [S]. 

The most directly related work of which we are aware 
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is [ 181. There, Zom studies not only the write barrier, 

but also the read barrier, which is used in incremental 
collection. Our results agree with Zom on the cost of 

the write barrier: even when implemented in software, 

its cost appears to be modest. However, Zom focused 

primarily on the cost of the write barrier alone, rather 

than the total cost, and our results show that granularity 

is sometimes significant in the total cost. We somewhat 

disagree with Zom on the cost of page traps for the write 

barrier, provided the operating system cost of delivering 

a trap to a user handler is reasonably low. Still, we 

agree in the conclusion that since software schemes 
offer generally better performance, port more easily, 

and do not rely on good operating system performance, 

software approaches might be more desirable. 

8 Conclusions 

There are several conclusions we draw from the bench- 

mark results. First, the card marking scheme exhibited 

quite clearly the expected tradeoff with respect to card 
size. In this environment (hardware/memory architec- 

ture) a card size of 256 or 512 bytes gives the best 
performance of the card schemes. Note that because 
the card offset table entries are in terms of longwords, 

these sizes allow the offsets to fit in one byte, so the 

total overhead is two bytes per card, or 1 to 2%. The 

variation in card marking collection overhead was sig- 

nificant only in the mutation intensive benchmarks and 

near the extremal card sizes. It does appear reasonable 

to settle on a particular card size and use that for all ap- 

plications in a given system, since the optimal size did 

not vary significantly across the benchmarks, and the 

curve is relatively flat near the optimum. Generation 
filtering is ineffective for cards since it has little impact 

on root processing costs, expands the size of the store 

check, and may incur extra run-time overhead. 

The page trapping scheme performed poorly in com- 

parison to card marking. Interestingly, this does not 

appear to be due to the overhead of fielding page traps, 

since that is included in running time, which was not 

significantly higher (and often lower) than in the card 

marking schemes. Rather, it is because pages are too 

large a grarmle so they miss the optimum card size. 
Remembered sets have a strong advantage despite the 

extra generational check and the hash table insertions, 

since they allow markedly less root processing than 

the other schemes. If the inline space overhead is a 

drawback then the SSB provides a reasonable solution, 

except when there is a high store rate and low scavenge 

rate so that trapping SSB overflows has a noticeable 

impact on running time, as occurred for the Richards 

benchmark. 

What was most surprising to us is how similar all 

the schemes are in performance. For example, we were 

surprised how close the page trapping scheme came to 

being tightly competitive, though that may be partly the 
result of the unusually good implementation of the oper- 

ating system functions (i.e., in other operating systems, 
the running time might be more noticeably degraded). 
Note that this suggests that the access to hardware dirty 

bits discussed in [8] may not improve matters much over 
a decent implementation of reflecting the page trap to 

user code. 

We were also surprised that the effects of the vari- 

ous schemes on the running time were not more pro- 

nounced, and that much of the difference between the 

schemes is in root processing. However, this could very 

well be because we are measuring an interpreter, so 

the differences tend to be obscured by the interpreter’s 
overhead. Also, some of the nm-time variation may 
be artifact, resulting from cache effects due to differ- 

ences in the memory placement of instructions (etc.). 

Because we are running an interpreter, many of the 

store checks are in the same place. If a version of the 

interpreter compiled with a particular write barrier im- 

plementation happens to have a store check in a “bad” 

place, then the effect is magnified (as compared with 

compiled programs). This leads to an obvious sugges- 

tion for further work: consider the same sort of study 

on a compiled language. We hope to undertake such 

studies in our Modula-3 system before long. 
We can summarize the conclusions as follows: a 

card size of 256 or 512 bytes appears optimal for card 

marking on this hardware; page trapping was surpris- 

ingly effective, but is not the best scheme because its 

granularity is too large; and remembered sets are best 

overall. 
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Figure 8: Elapsed time for Richards (remembering objects) 
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Figure 9: Elapsed time for Richards (remembering objects, expanded scale) 
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Figure 10: Elapsed time for Lambda (remembering objects) 
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Figure 11: Elapsed time for Swap (remembering objects) 
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Figure 12: Elapsed time for Destroy (remembering objects) 
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Figure 13: Elapsed time for Interactive (remembering objects) 
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