
A Comparative Performance Evaluation of Write Barrier Implementations*

Antony L. Hosking J. Eliot B. Moss Darko StefanoviC

Object Systems Laboratory
Department of Computer Science

University of Massachusetts

Amherst, MA 01003

Abstract

Generational garbage collectors are able to achieve very
small pause times by concentrating on the youngest
(most recently allocated) objects when collecting, since
objects have been observed to die young in many sys-
tems. Generational collectors must keep track of all
pointers from older to younger generations, by “moni-
toring” all stores into the heap. This write barrier has
been implemented in a number of ways, varying essen-
tially in the granularity of the information observed and
stored. Here we examine a range of write barrier im-
plementations and evaluate their relative performance
within a generation scavenging garbage collector for
Smalltalk.

1 Introduction

Generational collectors achieve short collection pause

times partly because they separate heap-allocated ob-

jects into two or more generations and do not process

all generations during each collection. Empirical stud-

ies have shown that in many programs most objects die

young, so separating objects by age and focusing collec-

tion effort on the younger generations is a popular strat-

egy. However, any collection scheme that processes

‘This work is supported by National Science Foundation Grant

0X-8658074 and by Digital Equipment Corporation and Apple

Computer. The authors can be reached electronically via Internet

addresses {hosking,moss,stefanov}@cs.umass.edu.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

Q 1992 ACM O-89791~539-9/92/0010/0092...$1.50

only a portion of the heap must somehow know or dis-

cover all pointers outside the collected area that refer
to objects within the collected area. Since the areas not

collected are generally assumed to be large, most gen-

erational collectors employ some kind of pointer track-

ing scheme, to avoid scanning the uncollected areas.

Again, empirical studies show that in many programs

the older-to-younger pointers of interest to generational
collection are rare, so avoiding scanning presumably

improves performance.
To avoid scanning, the system must maintain some

kind of table enabling the collector to find all the in-
teresting pointers; we call this abstraction the interest-
ingpointers table (PT). Interesting pointers are created

when a pointer (as opposed to non-pointer data) is stored

in a heap object (as opposed to some other place) and

the modified object resides in an older generation than

the object that is the target of the pointer. Thus, certain

of the program’s stores must somehow create IPT en-
tries. The action required has been called a store check
or a write barrier by different authors. The general

approach is to add an entry to the IPT whenever an in-

teresting pointer is (or might be) created. The collector

uses and rebuilds the IPT, discarding any entries that do

not describe interesting pointers. Such entries can come

about either because the system, as it runs, is imprecise

about what is interesting, or because later changes over-

write interesting pointers with uninteresting data. Note

that if the system is imprecise, it must err on the side

of putting too many entries in the IPT rather than too

few, since the IF? must allow the collector to find all

interesting pointers.

In this paper we are concerned with direct compari-

son of various methods of implementing the write bar-
rier. We will describe: our collector, the specific write

barrier methods we compare, the benchmarks we used,

OOPSL.4’92, pp. 92-IO!1

92

the experiment setup and methodology, and the results.

We also discuss related work and present the conclu-

sions we draw from the results. We offer two princi-

pal contributions here: the experimental results, which,

like most benchmark-based studies, are not conclusive

but nevertheless are interesting and useful; as well as
the unique (to our knowledge) experimental setup that

allows very direct and meaningful comparisons of the

various schemes.

2 Overview of the garbage collector

We now describe the garbage collector used for the per-

formance studies reported here. Its basis is the UMass

Language-Independent Garbage Collector Toolkit, to

which we add language specific code for our Smalltalk

system. We first offer a condensed description of the

toolkit and continue with appropriate details of the

Smalltalk system. For a more detailed discussion of

the toolkit see [4].

2.1 The toolkit concept

The toolkit divides the responsibility for and support

of garbage collection into two parts: a language-

independent part, supplied by the toolkit, and a
language-specific part, nominally supplied by the lan-

guage implementor. The language-independent part
consists mostly of the data structures and code for man-

aging multiple generations and the allocation of heap

objects. The language implementor must supply the fol-

lowing capabilities: locating at scavenge time all root
pointers (those pointers outside the scavenged genera-

tions that refer to objects in the scavenged generations),

and locating all pointers within a heap object given a

pointer to the start of the object. The toolkit includes

a library of routines that an implementor can use to

support the IPT; it remains the implementor’s responsi-

bility to locate roots lying in the stack(s), registers, and

any other areas outside the heap.

2.2 The structure of the heap

The toolkit defines the structure of the heap and supplies
the necessary allocation routines. The heap consists of

a number of generations, ordered by age. We number

themO,l,2 ,..., in order of increasing age. In any given
collection some generation and all younger generations

will be scavenged. The number of generations may
vary over time.

Each generation consists of a number of stews. Steps

segregate objects by age within a generation, and during

scavenging all surviving (reachable) objects in a given

step are copied to some other step. This promotion step

may belong to the same or a different generation. By

adjusting the promotion steps before scavenging one

can introduce new steps, combine existing steps, and so

on, allowing the number of steps in a generation to vary

over time. The primary function of steps is to eliminate

the need for storing or maintaining any age informa-

tion in individual objects. This reduces storage and

time costs, but also gives the collector age information

without imposing any requirements on object formats

(which are entirely the responsibility of the language

implementor). While the meaning of steps is some-

what arbitrary, we impose a convention that objects in

the lower numbered steps are younger than those in the

higher numbered steps, numbering the steps 0, 1,2, . . . ,

such that every step in the system has a unique number.
For example, generation 0 might have steps 0 and 1,

generation 1 might have steps 2 through 4, and so on.

A simple promotion policy is to promote survivors of

step k to step k+l. In that case, the number of steps in a

generation determines the number of scavenges (of that
generation) necessary to promote objects to the next

generation.

Each step consists of a number of blocks. A block is

2” bytes, aligned on a 2”-byte boundary for some value

of 7) chosen when the system is built. A typical block

size might be 64K bytes. The number of blocks in a

step may vary over time. While the blocks of a step

are usually not contiguous, a nursery may be set up to

consist of a number of contiguous blocks, so that one

might more readily use a page trap to detect nursery

overfIow and trigger a scavenge. This avoids the need
for an explicit limit check at every allocation.

Blocks have four primary advantages. First, they
allow sizes of steps and generations to vary easily since

the storage of a step need not be contiguous. Second,
they allow speedy determinationof the generation, step,

and promotion step of an object: one merely shifts the

address of the object right by n bits and indexes a block

table containing the needed information. Third, blocks

match naturally with page trapping or card marking

schemes (to be discussed in detail below). Fourth, they

reduce the storage needed under some circumstances,

93

compared with copying collectors that use semi-spaces.

If b bytes are present in a generation before a scavenge

and the survivors consume a bytes, then a semi-space

scheme uses 26 bytes whereas our scheme uses b+a
bytes (modulo rounding resulting from the block size).

The degree of advantage depends on the survival rate

u/b, but may be significant in some applications.

Blocks do introduce a problem: they cannot han-
dle objects larger than the block size. To handle such

objects we provide a large object space (LOS), as sug-

gested in [14]. Indeed, it is probably a good idea to

put in LOS any object that consumes a significant frac-

tion of a block; we used the heuristic threshold of l/8

of a block. Further, as also discussed in [14], any ob-

ject that has few pointers in it and that exceeds some

threshold in size should be stored in LOS to avoid the

overhead of copying. Without going into all the de-

tails, LOS uses free list allocation based on splay trees

[lo, 11, 51 and once allocated an LOS object is never
moved. However, LOS objects still belong to a step,

which is indicated by threading the objects onto a dou-

bly linked list rooted in the step data structure. When

an LOS object is promoted, we simply unchain it from
one list and chain it into another. When scavenging is

complete, any LOS objects remaining on a scavenged

step’s LOS list are freed.
While the generation, step, and block of a non-LOS

object can be discovered via the simple shift and index
technique, LOS may mix objects from different steps

and generations in the same block. Therefore, we store
a back reference from each LOS object’s header to its

containing step, allowing relatively easy determination

of the step given a pointer to the object’s base. De-

termining the step given a pointer into the middle of
the object requires locating the object header, which is

supported but involves additional work.

2.3 Phases of a scavenge

A scavenge consists of two phases. First, the root set

for the scavenge is determined based on the IPT scheme

employed (as well as the stack and register decoding ap-

proach). All objects directly reachable from the roots

are copied into new space, and the roots updated. In

the second phase all objects reachable from the new

space objects are copied over using a non-recursive Ch-

eney scan [2].’ As each object is copied, a forwarding

pointer is left in the old copy, so that other references

to the object can be updated as they are encountered.

Since the toolkit makes no object format assumptions,
the details of forwarding pointer format are up to the

language implementor. The toolkit does support auto-

matic determination of where to allocate the new copy

of the object, given the object’s size (which must be

determined by language-specific code).

Before a scavenge begins, the toolkit, following a
dynamically modifiable plan supplied by the language

implementor, determines the generations to be scav-

enged and creates new steps according to the number

desired for each scavenged generation. It also sets up

all the promotion step references. After a scavenge, all
the old steps of the scavenged generations are deleted

and their blocks become available for allocation.

2.4 Smalltalk details

Our Smalltalk system consists of a virtual machine of

our own design. It includes a bytecode interpreter for

the instruction set defined in [3], and we run a Smalltalk

image cloned (converted into our format) from an ear-
lier release of Smalltalk-80.’ We manage contexts

(stack frames) as described in [7]. In particular, a
number of frames are preallocated and assembled on

a doubly linked list. Ordinary calls traverse the list in

one direction and ordinary returns traverse it the other

way, with cost similar to a stack. When a block context

(similar to a closure) is created, or a frame otherwise

becomes referenceable as an object, it is removed from

the ordinary linked list so that it will not be reused until

thecollector can establish that it is no longer referenced.

We store frames in step 0 and they are never promoted.

This means that we need never perform store checks on

stores into frames (they are in the youngest generation,
so such a store can never create an interesting pointer).

Non-frame objects are created in the nursery in step 1.
Generation 0 includes steps 0 and 1, so in principle we

can use a slightly cheaper store check for initializing

stores (which seem to be the most common stores in

the system): ignore stores if the modified object is in

‘The toolkit might be adapted to support mark-sweep or other

approaches to collection, but currently it provides only copying

collection. Also, it would not be hard to incorporate suggestions

such as hierarchical clustering [16].

2Smalltalk-80 is a registered trademark of PARC Place Systems.

94

generation 0 (regardless of the generation of the target

of the pointer).3 There is a total of five generations, with

one step in each of generations 1,2,3, and 4. Each step

(except step 0, which never promotes, and step 5 which

is the oldest step) promotes to the next step. Generation

0 is collected if we run out of frames or step 1 exceeds its

allocation of one block. Similarly, generations 1,2, and

3 are scavenged if they exceed their respective limits

of 1, 1, and 10 blocks. Generation 4 is never collected.

The block size is 64K bytes. All objects larger than 8K

bytes are stored in LOS, as are all bytes objects of size at

least 496 bytes. We do not claim that this arrangement

is necessarily well-tuned, but we held it fixed across

all benchmark runs so the comparisons remain direct.

Note that the system can easily be configured to have a

different heap arrangement.

3 Write barrier implementations

As previously sketched, the write barrier consists of ac-

tions performed in conjunction with a store that might
create an interesting pointer. The purpose of the write

barrier is to support efficient location of all root point-

ers in the heap (i.e., to avoid scanning the generations
not being collected). We have implemented several

versions of the three most common write barrier ap-

proaches. They vary mostly in the granularity of the

information they record.

The first scheme associates a remembered set with

each generation [131, recording the objects or locations
in older generations that may contain pointers into that

generation. Any pointer store that creates a reference

from an older generation to a younger generation is

recorded in the remembered set for the younger gener-

ation. At scavenge time the remembered sets for the
generations being scavenged include the heap root set

for the scavenge.

The other schemes divide the heap into logical re-

gions of size 2” bytes, aligned on a 2”-byte boundary,

for some fixed k. We call these regions cards, after

[12,171. Each card has a corresponding entry in a card

table indicating whether the card might contain point-

ers into younger generations. Mapping an address to
an entry in this table is simple: one shifts the address

right by k and uses the result as an index into the table.

3We detail later the exact store checks (if any) we usedwith each

write barrier implementation.

Whenever a pointer is stored into an object, the cor-

responding card is dirtied. At scavenge time all dirty

cards of generations nor being scavenged include the

heap root set for the scavenge.
One variant of this scheme uses the page protection

mechanism of the operating system to detect stores into

clean cards, A card in this scheme corresponds to a

page of virtual memory. All clean pages are protected

from writes. When a write occurs to a protected page,

the trap handler dirties the corresponding entry in the

card table and unprotects the page. Subsequent writes

to the now dirty page incur no extra overhead. Note

that all writes to a clean page cause a protection fault,

not just those that store pointers. An operating system

could more efficiently supply the information needed
in the page protection scheme if it offered appropriate

calls to manipulate the page dirty bits maintained by

most memory management hardware [8].

With each of these schemes we are faced with the

choice of remembering either the slot that is updated or

the object containing that slot. For remembered sets,

this is simply a matter of entering the object pointer

or the slot address in the appropriate remembered set.

For card marking, remembering the containing object

means dirtying the card containing the header of the
object. Remembering the slot means dirtying the actual

card in which the slot lies, which may be different. Nat-

urally, the page protection scheme is only able to dirty

the page containing the slot, since that is the location

updated.
We now give a detailed description of our implemen-

tation of these schemes.

3.1 Remembered sets

Our remembered sets are implemented as circular hash

tables using linear hashing. A remembered set is allo-

cated as an array of 2i+k entries. To enter an item in the

set, we hash the item to obtain i bits and index the table.

If the indexed location is empty then the item is stored

in that slot and we are done. If the location already

contains the item then we are done also. Otherwise,

the immediately succeeding k slots are examined to try

to place the item (this is not done circularly; hence the
2i+k rather than simply 2”). If an empty location still

cannot be found then a circular search of the table is

made to find an empty slot. The hash tables are kept

relatively sparse by growing a table whenever an item

95

cannot be placed in its natural hash slot or the Ic follow-
ing slots, and 60% or more of the table’s slots are full.

We fixed k=2 and the growth policy is to increment

i (i.e., basically double the table size when a table is

grown).

3.1.1 The write barrier

To avoid making the remembered sets too large we

record only those stores that are interesting; we use
the termfilrering to indicate the process of determin-

ing whether an item is interesting. Jn Smalltalk we

always do a pointer vs. non-pointer test on the item be-

ing stored. If the item is a pointer, this is followed by a

generation test, which we perform by determining the

generations of both the modified source object and the

target object whose pointer is being stored, and com-

paring the two. Following Zorn [181, and based on our
own run-time traces of the Smalltalk system which re-

veal that most stores occur to initialize newly allocated

objects, we can frequently avoid the need to determine
the generation of the target object by checking if the

modified object is in generation 0. As mentioned ear-
lier, determining the generation of an object involves

shifting its pointer and indexing into the block table.

Thus, our store filter involves a shift, index, and load to

obtain the source object’s generation, a conditional to

filter initializing stores, followed by a shift, index, and

load for the target object, and a comparison. If the store
passes through this filter then it is interesting, so we

invoke a subroutine to hash the modified object or slot

into the appropriate remembered set. To avoid run-time

code to determine precisely which remembered set to

update, all interesting stores are actually hashed into a

run-time scratch set.

On the MIPS R2000 initializing stores are filtered us-
ing 7 instructions. The remaining uninteresting stores

are filtered using another 7 instructions. The entire

inline sequence comes to a total of 17 instructions in-

cluding the call to update the remembered set.

3.1.2 Scavenging

At scavenge time the remembered sets of the genera-
tions being scavenged plus the scratch set determine the

heap root set. To eliminate duplicates in the root set we

hash the remembered sets of the scavenged generations
into the scratch set to form the union. Each entry in the

scratch set is then processed to locate pointers into the

scavenged generations: if we are remembering objects
then the heap root set consists of all pointer locations

in those objects; otherwise if slots are being remem-

bered then they directly constitute the root set. As

scratch set entries and promoted objects are processed,

all interesting pointers that we encounter are recorded

in their appropriate remembered set, in order to rebuild

the remembered sets of the scavenged generations and

to keep those of the older unscavenged generations up

to date.

The apparent advantages of remembered sets are their

conciseness and accuracy, achieved at the cost of filter-

ing for interesting pointer stores before recording them

in the appropriate remembered set, and of hashing to

keep the sets small by eliminating duplicates. At scav-

enge time, unless there has been repeated mutation of

au object or location, the remembered set is likely to be

a very accurate characterization of the heap root set.

3.1.3 The sequential store buffer

For an interpreted language such as our Smalltalk sys-
tem the space overhead of 17 instructions at every store

site is not a problem, since stores occur at a relatively

small number of fixed locations in the interpreter. How-

ever, for compiled languages this overhead will be in-

curred at every one of <au arbitrary number of compiled

store sites, which may be prohibitive. For this reason
we have devised a scheme similar to that introduced

by Appel [l], allowing batch filtering and recording

of pointer stores, using a sequerttial store bu#er (SSB)

to buffer the necessary information. The SSB com-

prises some number of contiguous pages, bounded by
a “guard” page that has been protected from writes.

Recording a word of information in the SSB consists
of storing to the next free location in the buffer and

bumping the free pointer. If the free pointer is main-

tained in a register then this can be implemented on the

MIPS R2000 using just two instructions: one to store

the word and the other to increment the pointer.
At scavenge time the information recorded in the SSB

is processed to update the scratch set, with filtering as
described above. Overflow of the SSB at run time is

trapped by the operating system when an attempt is

made to store into the guard page. The trap handler

processes the SSB and resets the free pointer to the
beginning of the buffer.

96

We record two words of information in the SSB for

each store to allow for efficient filtering of uninterest-

ing pointers: when remembering slots we record the

modified object as well as the updated slot;4 when re-

membering objects we record both the modified source

object and the target object to avoid scanning the entire
modified object for interesting pointers when process-

ing the SSB.

3.2 Card marking

Card marking requires that we allocate a contiguous

card table containing an entry for every card in the heap.

Our garbage collector allows the heap to grow as large

as the operating system (and practical considerations)

will allow, since blocks are incrementally added to the

heap as they are needed. While we envision a scheme

where the card table grows incrementally, in the bench-

mark runs we imposed an upper bound on heap growth

and allocated a fixed-size card table during memory

manager initialization.

3.2.1 The write barrier

One of the most attractive features of card marking

is the simplicity of the write barrier. For this reason

we have chosen to implement the card table as a byte

array rather than a bit map.’ By interpreting zero bytes

as dirty entries and non-zero bytes as clean, a pointer

store can be recorded using just a shift, index, and byte

store of zero. On the MIPS R2000 this comes to just

4 instructions: a load to get the base of the card table,
a shift to determine the index, an add to determine the

byte entry’s address, and a byte store of zero.

3.2.2 Scavenging

At scavenge time the dirty cards of the generations not

being scavenged determine the root set. We must scan

4Recording the slot alone would be sufficient. However, we

can take advantage of the fact that our Smalltalk implementation

allocates all object headers in small object space. Large objects are.

represented by a header in smalI object space with a pointer to the

body of the object in large object space. This makes deteunining

the generation of a slot much simpler if we ate given a pointer to

its containing object’s header rather than the address of the slot

itself. By recording the modified object as well as the slot we avoid

unnecessarily complicating SSB filtering.

‘We first heard of this idea from Paul Wilson.

each card to find all references into the generations be-

ing scavenged. If we are remembering objects (i.e., if

pointer stores dirty the containing object’s card) then

every pointer slot of every object whose header lies in

a dirty card must be examined. If we are remembering

slots (i.e., if stores dirty the updated slot’s card) then
the root set consists of all pointers that lie in dirty cards.

Either way, locating pointers within cards is compli-

cated by the mixing of bytes and pointers in Smalltalk

objects, and the potential for objects to span multiple

cards.
To find the pointers in a card we must be able to

find the object headers in the card, which encode the

formats of the objects allowing us to locate their point-

ers. To support locating object headers, we maintain a

table of card offsets parallel to the dirty card table, in-

dicating the location of the fast (highest address) object

header within each card. This requires every alloca-

tion of an object in any generation but the youngest to

update the card offset table. These updates are uncon-

ditional, since we allocate from low to high addresses,
so the most recent allocation in a card is always the

offset of the last object in the card. Since new objects

are always allocated in the youngest generation this al-

location overhead is incurred only upon promotion of

objects at scavenge time. 6 A negative offset entry indi-

cates that the card contains no object header-the object

header must be in some previous card. A positive off-

set indicates the Zongwo1.d of the card at which the last

object’s header begins. Using longword offsets allows

us to keep the offset table entries to just one byte for

cards of 512 bytes or less. For larger cards we use a

two-byte entry.

Before scanning a dirty card for pointers, we first

mark it clean. Then if we find any interesting pointer in

the card (even if the generation of the target is not be-

ing scavenged), we dirty the card for future scavenges.

Note that a dirty card becomes clean if the scan certi-

fies that the card contains no interesting pointers. We

reduce scanning overhead by scanning all contiguous

dirty cards as a group, running from the first to the last.
Promoted objects are always allocated in newly allo-

cated blocks whose cards are assumed to be clean, so as
promoted objects are scanned we also update their card

entries.

‘%ere is one rare exception to this brought about by our imple-

mentation of the Smalltalk primitive method become : .

97

An unresolved question is just how large cards should

be. There is an obvious tradeoff in that large cards mean

fe,wer cards and smaller tables, but larger cards also

imply a huger root set at scavenge time. There is also

the question of filtering. As for remembered sets we

filter non-pointer stores to avoid unnecessarily marking

cards. However, there is the possibility that generation

filtering might also improve the accuracy of the root set
by reducing the number of marked cards to be scanned

at scavenge time.

3.3 Page protection

The final scheme is a variant of card marking where

the write barrier is implemented by using the paging

hardware’s capability to trap writes to protected pages.

Rather than recording ever-y store at run time, we trap

only writes to clean pages. This means that there is
no overhead for writing to diary pages at run time, but

stores to clean pages will incur the significant overhead
of fielding a signal from the operating system, unpro-

tecting the appropriate page, and resuming (- 250~s

round trip as measured in a tight loop under Ultrix 4.1

on the DECStation 3100).

At scavenge time we process dirty pages (of gen-

erations not being scavenged) essentially as for card

marking, except that any dirty page certified as clean
must be protected. We scan runs of contiguous dirty

pages as a group. Similarly, to protect a run of contigu-
ous ex-dirty pages we issue just one system call for the

entire run, to minimize system call overhead.

Unlike card marking, where we allocate promoted

objects in newly allocated blocks whose cards are as-

sumed to be clean, the page protection scheme assumes

that the pages of all newly allocated blocks are dirty.

This means that there is no need to record interesting

pointers as promoted objects are scanned. It also means

that no page is ever protected in the youngest genera-
tion, where new objects are allocated, so allocating and

storing into a new object never causes a trap.

4 Benchmarks

We chose a set of five Smalltalk programs to run as

benchmarks under each of the write barrier implemen-

tations. The first two benchmarks are real applications,

the second two are synthetic benchmarks designed to
reveal the behavior of the garbage collector, and the

last is intended to reveal the behavior of the garbage

collector in an “interactive” session. We now describe

each benchmark and characterix its behavior:

Richards: This is the Richards operating system sim-
ulation benchmark. It is a computation-intensive
program, and preallocates most of its data. Most
subsequent allocations consist of frames. We
chose this benchmark to reveal the cost of garbage
collection in a program that does little allocation
and creates little garbage.

Lambda: This is a pure X-calculus interpreter of our
own devising. It represents X-expressions as di-
rected graphs, internally consisting of small fixed
size Smalltalk objects. It models p- and q- reduc-
tion. Internally, it implements normal order reduc-
tion by copying the argument subexpression. This
entails intensive allocation activity (for each oc-
currence of the bound variable, it allocates objects
for the argument copy) and garbage generation
(following the substitution, the original argument
is garbage). In addition, variable bindings are han-
dled internally using Smalltalk dictionaries, giving
rise to a large number of become : operations to
grow the dictionaries.

Swap-trees with mutation: This synthetic bench-
mark first builds a complete tree of branching fac-
tor 4 and height 6. Each node consists of an array
of pointers to the node’s children and a small data
array. The total size of the tree is 600K bytes.
Once the tree is built the program loops swapping
random subtrees of height 3. This benchmark re-
veals the efficiency of the write barrier.

Destroy--trees with destructive updates: This syn-
thetic benchmark builds a complete tree of branch-
ing factor 6 and height 5, similar to the tree of the
Swap benchmark. The total size of the tree is
900K bytes. However, instead of swapping sub-
trees, Destroy replaces a subtree of height 3 (size
about 25K bytes) with a newly allocated subtree
of the same size. The total amount of data pro-
cessed during a run is about 24 megabytes. This
benchmark explores the cost of applications that
generate garbage rapidly.

Interactive--the “macro” benchmarks: For this
benchmark we iterate 10 times through the full set
of “macro” benchmarks. These benchmarks are
part of the standard suite of benchmarks [6] used
to compare the relative performance of different
Smalltalk implementations. They measure system

98

support for the programming activities that consti-
tute typical interaction with the Smalltalk system,
such as keyboard activity, compilation of methods
to bytecodes, and browsing.

5 Experiments

To ensure that each benchmark exhibited the same be-

havior from run to run we modified the Smalltalk inter-

preter to record and replay sessions. Thus, every run

sees exactly the same Smalltalk events, such as alloca-

tion, system time, keyboard/mouse events, interrupts,
etc. We note that the toolkit and write barrier software

design is such that each scavenge is presented with ex-

actly the same heap layout, collection of objects, blocks,

etc., even to the point that the offset of the objects in

blocks will be the same. Indeed, the memory contents

can differ only in the sizes and locations of the write

barrier data structures (card table, remembered sets)

and the placement and order of the blocks (the presence

of the write barrier structures may cause blocks to be
allocated in different places under different schemes).

Naturally, there will still be some variation from run

to run due to context switching by the operating sys-

tem, but we minimized this by doing all timing tests in

single user mode, disconnected from the network. We

ran each benchmark several times under various imple-

mentations of the write barrier on a DECStation 3100

running Ultrix 4.1 .7 There was adequate real memory

to prevent paging.

We measured elapsed time using a custom timer

board with a resolution of 100 ns. Extracting the value

of the timer involves reading 4 contiguous words from

a memory location to which the timer device has been
mapped, resulting in little timing overhead. The fine-

grained accuracy of this timer allowed us to measure

the elapsed time of each phase of execution separately:

running time between scavenges, processing of the root
set, scanning of promoted objects, and other overheads

of garbage collection. To obtain dynamic counts of al-

locations, pointer stores, etc., we built an instrumented

version of the interpreter and did a separate set of runs

(i.e., the counter instrumented interpreter was not used

for timing purposes).

Our experiments included runs for the two versions of

‘The operating system had some official patches installed that

fix bugs in the mprotect system call.

the remembered set scheme (one remembering objects,

the other slots), object and slot versions of the card
scheme, with card sizes varying from 16 to 4096 bytes

by powers of 2, and the page protection scheme (the
page size is 4096 bytes). We also measured the SSB

variant of the remembered set scheme for both objects
and slots with a lo-page SSB, and a variant of the

most promising card scheme using the same generation

filter as for remembered sets to minimize the number of

dirtied cards.

6 Results

We now report the elapsed time performance of each

benchmark in turn. To best eliminate any uncontrolled

interference from the operating system, we take the

minimum elapsed time for each phase (separately) over

twenty runs. The phases include:

running, the time spent in the interpreter as op-
posed to the collector (note that running includes
the cost of store checks and/or page traps);

roar processing, the time spent scanning through
remembered sets or card/ age tables and copying
the immediate survivors; 8

promotion, the time spent copying the remaining
survivors; and

other, time spent in any remaining activities, such
as setting up internal tables, etc.

In addition, for the SSB variant of the remembered

set scheme we measured the time spent processing the

SSB prior to each scavenge. Note that any SSB pro-

cessing required to handle SSB overflow is charged

to the running phase. We exclude all image loading

and initialization time (i.e., all actions prior to entering

the main interpreter loop). We present results for the

slot-based approaches first, and discuss the object re-
membering schemes later (results for the object-based

schemes appear at the end of the paper).

*In Smalltalk the stack is stored as heap objects so there ix

no separate stack processing. In fact, all the process stacks are

copied during each scavenge. Also, Smalltalk has only a few global

variables, in the interpreter.

99

Pages

Cards 4096

Cards 2048

cards 1024

cards 512

Cards 256 (filtered)

Cards 256

Cards 128

cards 64

Cards 32

Cards 16

Remembered Sets (SSB)

Remembered Sets

0 20 40 60 80 100 120 140 160 180

Time (seconds)

Figure 1: Elapsed time for Richards

6.1 Richards

The computation-intensive nature of the Richards
benchmark is revealed in Figure 1. We see small gc

overhead, indicating little need for scavenging apart

from the recovery of block contexts (frames). Even so,

expanding the scavenge part of the graph to examine

gc overheads, we see the tradeoff in the card scheme

between the size of the cards and the number of cards

needing to be scavenged (Figure 2). For this benchmark
the SSB is substantially more expensive, due in most

part to the very high store rate and the low scavenge
rate, so that the SSB overflows approximately 30 times

between successive scavenges.

The high cost of the filtered card scheme is curious,

considering that the same filter applied for remembered

sets shows little extra overhead. Further, this overhead

appears only in the results for the slot-based scheme.

The corresponding object-based scheme is comparable

with the other card schemes. Comparison of the com-

piled store check code reveals that the code generated by
the compiler for the slot-based scheme is less efficient

than that for the object-based scheme, perhaps because
the store check code needs three quantities around (the

object address, the slot address, and the new contents).
Since the compiler can probably be convinced to gen-

erate more efficient object code through rearrangement

of the source code, we anticipate eliminating this over-
head, making the filtered card scheme more competi-

tive. Moreover, compiled languages can ensure that the

best code is generated for the store checks, since it has

complete control over code generation.

A direct comparison of root processing times is given

in Figure 3, showing that 256-byte cards appear to be
optimal, and that at least for cards, remembering objects

requires consistently less root processing. Moreover,
filtering seems to be futile for the card schemes since it

has little impact on the root processing time, and offers

little (if any) improvement in running time. These root

processing results hold across all the benchmarks, so we

refrain from presenting separate root processing graphs

for the remaining benchmarks.

Overall, the page trapping scheme is marginally bet-

ter than the other schemes because most stores are to

pages that are already dirty: remembered sets and cards

are competitive. Filtering is of little use for cards, since

it unnecessarily complicates the store check with little
(if any) improvement in total time. The SSB is penal-

ized by the high store rate and low scavenge rate of this

benchmark, incurring substantial overhead to service
SSB overflow traps.

100

Pages

Cards 4096

Cards 2048

cards 1024

cards 512

Cards 256 (filtered)

Cards 256

Cards 128

cards 64

Cards 32

Cards 16

Remembered Sets (SSB)

Remembered Sets

157 158 159 160 161 162

Time (seconds)

Figure 2: Elapsed time for Richards (expanded scale)

163

Objects

Cards 256 (filtered)

Remembered Sets (SSB)

Remembered Sets

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (seconds)

Figure 3: Root processing time for Richards

101

,- ________ ---.__-

Running U SSB Roots m promoted n Other
-___ -___ -.- .____

Cards 256 (filtered)

Remembered Sets (SSB)

Remembered Sets

100 150 200 250 300

Time (seconds)

Figure 4: Elapsed time for Lambda

6.2 Lambda 6.4 Dest ray

Naturally since Lambda does much more allocation and

creates much more garbage than Richards, we see that it

exhibits higher collection overhead, ranging from 3.1%

to 6.9% of the total time (Figure 4). This demonstrates
how well even a minimally tuned generational collector

can perform in a high garbage context. We still observe

the characteristic tradeoff as card size varies, although

the most effective scheme for this benchmark is remem-

bered sets, both with and without the SSB. Tuned cards

are competitive, and once again filtering offers little (if

any) improvement.

In Figure 6 we see that Destroy incurs much higher

promotion costs than Swap, which is to be expected. It

also has larger root processing costs (as a fraction of

run time), because it does more allocation and creates

large amounts of garbage. Nevertheless, it produces the

same relative standing of the schemes. The collection

overhead is high: from 16% to 37% of total time. Note

that this benchmark is probably not very characteristic

of real programs-while some programs do mutate a

long-lived heap, they generally do not do so rapidly,

nor do they create garbage from their old objects in a

rapid continual fashion.

6.3 Swap

Figure 5 shows the times for the Swap benchmark. Its
behavior is generally similar to that of Lambda, ex-

cept that the root processing time is proportionately

much higher, as we would expect from the continual

mutations, which force the collector to re-examine the
objects. Once again, remembered sets come out best,

with the SSB providing marginally better performance.

The ratio of garbage collection time to total time ranges

from 2.7% for remembered sets, through 5.4% for the

best card scheme to 20% for 16-byte cards.

The noticeable variation in running time amongst the

card schemes is puzzling. Since the code for all the

card schemes is exactly the same, barring the shift val-
ues and the card offset table entries, the variation can

only be explained by cache and TLB effects. The Dec-

Station 3 100 has direct-mapped pkysiculfy-addressed
caches, so a bad assignment of virtual pages to physical

pages may make certain lines of the cache more volatile

than others, degrading performance if important data or

instructions end up in those cache lines. Note also

how filtering, which disturbs the store check code, and

reduces the number of stores that must be recorded, im-

102

__---..

m Promoted I Other

Pages

Cards 4096

Cards 2048

cards 1024

cards 512

Cards 256 (filtered)

Cards 256

Cards 128

Cards 64

Cards 32

Cards 16

Remembered Sets (SSB)

Remembered Sets

0 10 20 30 40

Time (seconds)

Figure 5: Elapsed time for Swap

_.~__

Roots q &omoted n Other
I

Cards 256 (filtered)

Cards 16

Remembered Sets (SSB)

Remembered Sets

0 20 40 60 80 100 120 140 160

Time (seconds)

Figure 6: Elapsed time for Destroy

103

Cards 256 (filtered)

Remembered Sets (SSB)

Remembered Sets

0 20 40 60 80

Time (seconds)

Figure 7: Elapsed time for Interactive

100 120 140

proves the running time for the 256-byte card scheme.

Moreover, the object-based schemes, which again have
slightly different store check code and dirty different

entries in the card table, exhibit no such variation in

running times.

6.5 Interactive

The Interactive benchmark yields similar results to the

other benchmarks (Figure 7). Remembered sets are

best, with gc overhead as good as 1.5% of total time,

and cards ranging from 2.9% to 10% of total time.

6.6 Objects versus slots

There seems little to distinguish the approaches that re-

member objects from those that remember slots. Root
processing for the slot-based card schemes costs a little

more than for the object-based card schemes, with the

effect more pronounced for small card sizes. We sug-

gest that remembering objects is cheaper because when

remembering slots, we must process any object of the

previous card that continues into a dirty card, but when

remembering objects, we can skip over such objects.
This extra cost is essentially per-card (since the average

object size remains fixed as we vary the card size within

any given benchmark), so as the card size increases and

the number of cards decreases, the extra cost fades away.
For remembered sets, remembering slots is marginally

cheaper than remembering objects, since the slots en-
code the interesting pointer information more exactly,

whereas the remembered objects must be scanned to

find their interesting pointers.

7 Related Work

Ungar introduced generation scavenging [131, building

on earlier work on generational collection. Further de-

tails as to the cost of store checks appear in [15], with
the conclusion that special hardware in the SOAR chip

might offer a time performance improvement of 3%

over a tightly coded inline check. While our checks

are not as tightly coded, the apparent time penalty is

still small, although it may be because our interpreter is

relatively slow compared with the SOAR design.

Shaw considered the relationship of collection to vir-

tual memory for LISP programs [9J. In particular, Shaw
examined various write barrier methods, including hy-

pothetical user access to page dirty bits maintained by
the operating system [S].

The most directly related work of which we are aware

104

is [181. There, Zom studies not only the write barrier,

but also the read barrier, which is used in incremental
collection. Our results agree with Zom on the cost of

the write barrier: even when implemented in software,

its cost appears to be modest. However, Zom focused

primarily on the cost of the write barrier alone, rather

than the total cost, and our results show that granularity

is sometimes significant in the total cost. We somewhat

disagree with Zom on the cost of page traps for the write

barrier, provided the operating system cost of delivering

a trap to a user handler is reasonably low. Still, we

agree in the conclusion that since software schemes
offer generally better performance, port more easily,

and do not rely on good operating system performance,

software approaches might be more desirable.

8 Conclusions

There are several conclusions we draw from the bench-

mark results. First, the card marking scheme exhibited

quite clearly the expected tradeoff with respect to card
size. In this environment (hardware/memory architec-

ture) a card size of 256 or 512 bytes gives the best
performance of the card schemes. Note that because
the card offset table entries are in terms of longwords,

these sizes allow the offsets to fit in one byte, so the

total overhead is two bytes per card, or 1 to 2%. The

variation in card marking collection overhead was sig-

nificant only in the mutation intensive benchmarks and

near the extremal card sizes. It does appear reasonable

to settle on a particular card size and use that for all ap-

plications in a given system, since the optimal size did

not vary significantly across the benchmarks, and the

curve is relatively flat near the optimum. Generation
filtering is ineffective for cards since it has little impact

on root processing costs, expands the size of the store

check, and may incur extra run-time overhead.

The page trapping scheme performed poorly in com-

parison to card marking. Interestingly, this does not

appear to be due to the overhead of fielding page traps,

since that is included in running time, which was not

significantly higher (and often lower) than in the card

marking schemes. Rather, it is because pages are too

large a grarmle so they miss the optimum card size.
Remembered sets have a strong advantage despite the

extra generational check and the hash table insertions,

since they allow markedly less root processing than

the other schemes. If the inline space overhead is a

drawback then the SSB provides a reasonable solution,

except when there is a high store rate and low scavenge

rate so that trapping SSB overflows has a noticeable

impact on running time, as occurred for the Richards

benchmark.

What was most surprising to us is how similar all

the schemes are in performance. For example, we were

surprised how close the page trapping scheme came to

being tightly competitive, though that may be partly the
result of the unusually good implementation of the oper-

ating system functions (i.e., in other operating systems,
the running time might be more noticeably degraded).
Note that this suggests that the access to hardware dirty

bits discussed in [8] may not improve matters much over
a decent implementation of reflecting the page trap to

user code.

We were also surprised that the effects of the vari-

ous schemes on the running time were not more pro-

nounced, and that much of the difference between the

schemes is in root processing. However, this could very

well be because we are measuring an interpreter, so

the differences tend to be obscured by the interpreter’s
overhead. Also, some of the nm-time variation may
be artifact, resulting from cache effects due to differ-

ences in the memory placement of instructions (etc.).

Because we are running an interpreter, many of the

store checks are in the same place. If a version of the

interpreter compiled with a particular write barrier im-

plementation happens to have a store check in a “bad”

place, then the effect is magnified (as compared with

compiled programs). This leads to an obvious sugges-

tion for further work: consider the same sort of study

on a compiled language. We hope to undertake such

studies in our Modula-3 system before long.
We can summarize the conclusions as follows: a

card size of 256 or 512 bytes appears optimal for card

marking on this hardware; page trapping was surpris-

ingly effective, but is not the best scheme because its

granularity is too large; and remembered sets are best

overall.

9 Acknowledgments

Amer Diwan, Rick Hudson, and Christopher Weight
devised and implemented the original garbage collec-

tor toolkit. Craig Chambers provided us with Smalltalk

105

source code for the Richards benchmark. We espe-

cially thank Digital Equipment Corporation’s Western
Research Laboratory, and Jeff Mogul in particular, for

giving us the high resolution timing board and the soft-

ware necessary to support it.

References

PI

PI

[31

141

151

WI

t71

PI

PI

UOI

t111

A. Appel. Simple generational garbage
collection and fast allocation. Sofnvare: Practice
and Experience, 19(2):171-183, Feb. 1989.

C. J. Cheney. A nonrecursive list compacting
algorithm. Commun. ACM, 13(11):677-678,
Nov. 1970.

A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation.
Addison-Wesley, 1983.

R. L. Hudson, J. E. B. Moss, A. Diwan, and C. F.
Weight. A language-independent garbage
collector toolkit. COINS Technical Report 91-47,
University of Massachusetts, Amherst, Sept.
199 1. Submitted for publication.

D. W. Jones. An empirical comparison of
priority-queue and event-set implementations.
Commun. ACM, 29(4):300-3 11, Apr. 1986.

K. McCall. The Smalltalk- benchmarks. In
G. Krasner, editor, Smalltalk-80: Bits of History,
Words ofAdvice, chapter 9, pages 153-173.
Addison-Wesley, 1983.

J. E. B. Moss. Managing stack frames in
Smalltalk. In Proceedings of the ACM SIGPLAN
‘86 Symposium on Interpreters and Interprer;;le
Techniques, pages 229-240, St. Paul Minnesota,
July 1987. ACM SIGPLAN Not. 22,7 (July
1987).

R. A. Shaw. Improving garbage collector
performance in virtual memory. Technical Report
CSL-TR-87-323, Stanford University, Mar, 1987.

R. A. Shaw. Empirical Analysis of a LISP
System. PhD thesis, Stanford University, Feb.
1988. Available as Technical Report
CSL-TR-88-35 1.

D. D. Sleator and R. E. Tarjan. Self-adjusting
binary search trees. In Proceedings of the ACM
SIGACT Symposium on Theory, pages 235-245,
Boston, Massachusetts, Apr. 1983.

D. D. Sleator and R. E. Tarjan. Self-adjusting
binary search trees. J. ACM, 32(3), July 1985.

WI

1131

1141

1151

U61

1171

[181

P. G. Sobalvarro. A lifetime-based garbage
collector for LISP systems on general-purpose
computers, 1988. B.S. Thesis, Dept. of EECS,
Massachusetts Institute of Technology,
Cambridge.

D. Ungar. Generation scavenging: A
non-disruptive high performance storage
reclamation algorithm. In Proceedings of the
ACM SIGSOFTISIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, pages 157-167, Pittsburgh,
Pennsylvania, Apr. 1984. ACM SZGPLAN Not.
19,5 (May 1984).

D. Ungar and F. Jackson. Tenuring policies for
generation-based storage reclamation. In
Proceedings of the Conference on
Object-Oriented Programming Systems,

Languages, and Applications, pages 1-17, San
Diego, California, Sept. 1988. ACM SIGPLAN
Not. 23, 11 (Nov. 1988).

D. M. Ungar. The Design and Evaluation of a

High Performance Smalltalk System. ACM
Distinguished Dissertations. The MIT Press,
Cambridge, MA, 1987. Ph.D. Dissertation,
University of California at Berkeley, Febru‘ary
1986.

P. R. Wilson, M. S. Lam, and T. G. Moher.
Effective “static-graph” reorganization to
improve locality in garbage-collected systems. In
Proceedings of the ACM SIGPLAN ‘91
Conference on Programming Language Design

and Implement&on, pages 177-191, Toronto,
Canada, June 1991. ACM SIGPLAN Not. 26,6
(June 1991).

P. R. Wilson and T. G. Moher. Design of the
Opportunistic Garbage Collector. In Proceedings
of the Conference on Object-Oriented
Programming Systems, Languages, and
Applications, pages 23-35, New Orleans,
Louisiana, Oct. 1989. ACM SIGPLAN Not. 24,
10 (Oct. 1989).

B. Zom. Barrier methods for garbage collection.
Technical Report CU-CS-494-90, University of
Colorado at Boulder, Nov. 1990.

106

Cards 4096

Cards 2048

cards 1024

cards 512

Cards 256 (filtered)

Cards 256

Cards 128

Cards 64

Cards 32

Cards 16

Remembered Sets (SSB)

Remembered Sets

0 20 40 60 80 100 120 140

Time (seconds)

Figure 8: Elapsed time for Richards (remembering objects)

160 180

Running 0 SSB Roots Eg promoted n Other
I

Cards 256 (filtered)

Remembered Sets (SSB)

Remembered Sets

157 158 159 160 161

Time (seconds)

162 163 164

Figure 9: Elapsed time for Richards (remembering objects, expanded scale)

107

E?!j Promoted m Other
-__

Cards 4096

Cards 2048

Cards 1024

Cards 512

Cards 256 (filtered)

Cards 256

Cards 128

Cards 64

Cards 32

Cards 16

Remembered Sets (SSB)

Remembered Sets

0 50 100 150 200 250 300

Time (seconds)

Figure 10: Elapsed time for Lambda (remembering objects)

I
.___-...- ____

Running 0 SSB Roots m promoted n Other

Cards 4096

Cards 2048

Cards 1024

Cards 512

Cards 256 (filtered)

Cads 256

Cads 128

Cards 64

Cards 32

Cards 16

Remembered Sets (SSB)

Remembered Sets

30 40

Time (seconds)

Figure 11: Elapsed time for Swap (remembering objects)

108

B! Roots B promoted n Other

Cards 256 (filtered)

Remembered Sets (SSB)

Remembered Sets
-I

0 20 40 60 80 100 120 140 160

Time (seconds) .

Figure 12: Elapsed time for Destroy (remembering objects)

Running Ll SSB Roots Kl Promoted H Other
I

Cards 4096

Cards 2048

cards 1024

Cards 512

Cards 256 (filtered)

Cards256

Cards128

cards 64

Cards32

Cards16

Remembered Sets (SSB)

Remembered Sets

0 20 40 60 80

Time (seconds)

100 120 140

Figure 13: Elapsed time for Interactive (remembering objects)

109

