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ABSTRACT
Multithreaded applications with multi-gigabyte heaps run-
ning on modern servers provide new challenges for garbage
collection (GC). The challenges for “server-oriented” GC in-
clude: ensuring short pause times on a multi-gigabyte heap,
while minimizing throughput penalty, good scaling on mul-
tiprocessor hardware, and keeping the number of expensive
multi-cycle fence instructions required by weak ordering to
a minimum. We designed and implemented a fully paral-
lel, incremental, mostly concurrent collector, which employs
several novel techniques to meet these challenges. First, it
combines incremental GC, to ensure short pause times, with
concurrent low-priority background GC threads, to take ad-
vantage of processor idle time. Second, it employs a low-
overhead work packet mechanism to enable full parallelism
among the incremental and concurrent collecting threads
and ensure load balancing. Third, it reduces memory fence
instructions by using batching techniques: one fence for each
block of small objects allocated, one fence for each group of
objects marked, and no fence at all in the write barrier.
When compared to the mature well-optimized parallel stop-
the-world mark-sweep collector already in the IBM JVM,
our collector prototype reduces the maximum pause time
from 284 ms to 101 ms, and the average pause time from
266 ms to 66 ms while losing only 10% throughput when
running the SPECjbb2000 benchmark on a 256 MB heap on
a 4-way 550 MHz Pentium multiprocessor.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)
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1. INTRODUCTION
Modern SMP servers with multi-gigabyte heaps provide

new challenges for garbage collection (GC). GC techniques
originally designed for single processor client machines lead
to unacceptable pauses when used on large servers.

There is a growing need for a GC that is especially tar-
geted to large server configurations: 64-bit shared-memory
multiprocessors implementing a weak-ordering memory ac-
cess model running multithreaded applications on a multi-
gigabyte heap. Such applications include web application
servers, which must provide relatively fast responses to client
requests and scale to support thousands of clients.

The requirements for this “server-oriented” GC include:
ensuring short pause times on a multi-gigabyte heap, good
scaling on multiprocessor hardware, and utilizing idle pro-
cessor time (if available), while minimizing the throughput
penalty.

In this paper we present the design and implementation
of a server-oriented GC for the IBM Java Virtual Machine
(JVM). This collector is fully parallel, incremental, and mostly
concurrent. By fully parallel, we mean that all collection
work is done simultaneously by multiple threads. By in-
cremental, we mean that a small amount of collection work
is done on behalf of mutators with each allocation [5]. By
mostly concurrent, we mean that the heap is collected using
the algorithm first published by Boehm et al [7]1 and later
extended by Printezis and Detlefs [31].

The new collector is based on the existing parallel mark-
sweep collector of the IBM JVM [12]. This collector em-
ploys sophisticated compaction avoidance techniques [12],
so compaction is rarely executed. However, to avoid the
long pauses when compaction does occur, we also designed
and implemented a parallel incremental compactor [6]. In
the future, we expect to combine our collector with a gener-
ational collector in a manner similar to Printezis and Detlefs
[31]. However, we devote this paper to the mostly concur-
rent aspect of the collector.

1Boehm et al called the algorithm “mostly parallel”. Un-
fortunately this name is inconsistent with our usage of the
word “parallel”, so following both local tradition [15, 16]
and other authors [31, 8], we call it “mostly concurrent”.

129



1.1 Our Contribution
The IBM JVM is a mature product, which uses an opti-

mizing JIT compiler to deliver high performance execution
of Java programs. Much previous effort has been spent on
improvement and fine tuning of the JIT [34, 35], the JVM [4]
and its existing GC module [12]. As a result, even the slight-
est overhead introduced by the new algorithms could de-
grade overall JVM performance.

We added a parallel mostly concurrent collector to a highly
tuned mature parallel stop-the-world mark-sweep collector
to achieve shorter and even response times, while sacrificing
little throughput. Measurements of our prototype on a 4-
way 550 MHz Pentium processor using a 256 MB heap and
the default collection parameters show that our maximum
pause time for SPECjbb2000 at 8 warehouses is 101 ms, the
average pause is 66 ms, and that we lose only 10% through-
put with respect to the stop-the-world collector. On average,
the application runs at 47% of its normal speed during the
concurrent collection phase. We also measured our proto-
type on larger multiprocessors with good results; however,
these machines were not available to us while preparing this
paper.

We use two novel techniques to achieve these results. First,
we combine incremental and concurrent collection to ensure
short pause times and take advantage of idle processing time.
Marking work is carefully paced as part of object allocation
by the mutator threads, while low-priority collector threads
in the background soak up idle processing cycles. Second, in
place of mark stacks, we employ a work packet mechanism
in order to enable the collector to be fully parallel (i.e., mul-
tiple mutator threads and collector threads can do collection
work at the same time, when the number of participants can
be large and dynamic) and to ensure load balancing.

In addition, we built the collector to run on a multiproces-
sor with a weak-ordering memory access system. A straight-
forward implementation would require memory fences on ev-
ery object allocation, as part of every write barrier and for
every object marked by the concurrent collector. As fences
are expensive multi-cycle instructions, we designed our col-
lector to use significantly fewer fences: a fence for each block
of small objects allocated, no fences at all in the write bar-
riers, and a fence for each block of objects marked.

We provide experimental results and performance analysis
of the mostly concurrent collector on a multiprocessor. In
the past, many authors have provided all performance mea-
surements [31, 8] (or at least pause time measurements [3])
for concurrent collectors on multiprocessors where there are
less mutator threads than processors, so the collector thread
gets a dedicated processor. Our results and analysis are for
programs where there are more mutator threads (we mea-
sured with as many as 2000) than processors. These are
the conditions that we expect for realistic server programs
running on a multiprocessor.

In particular, our results show that our collector has done
an excellent job at reducing the portion of the pause time
due to mark, so that a large proportion of the remaining
pause time is due to sweep, and that we should implement
lazy sweep [7] in order to obtain a significant additional re-
duction in pause time.

To the best of our knowledge ours is the first implementa-
tion of a parallel incremental mostly concurrent mark sweep
collector reported in the literature.

1.2 Related Work
The need for short pause times is not new, and many con-

current and incremental techniques have been introduced
over the years. We choose Boehm et al ’s mostly concur-
rent mark-sweep collector [7] as extended by Printezis and
Detlefs [31] as our base, because it is simpler than the other
algorithms, easy to parallelize, expected to have lower over-
head (e.g., its write barrier is much cheaper), and it can
be easily integrated in a system where stacks are scanned
conservatively.

The first concurrent collectors were those of Steele [33]
and Dijkstra [11] and were based on mark-sweep. Baker [5]
introduced the first incremental copying collector, which re-
quired a read barrier, but ensured a bound on the garbage
collection pauses. Replicating collectors [28, 8, 20] replace
the read barrier with a write barrier, but their write barrier
must record every object mutation during garbage collec-
tion, including those to object cells not holding references.
Train [19] achieves incrementality by dividing the heap into
independently collectible areas, but it must keep track of
inter-area references through a write barrier and it imposes
an ordering on the collection of the areas in order to ensure
collection of cycles. Fully concurrent on-the-fly mark sweep
collectors [14, 13, 16, 15] can provide low pause times, but
they are complex to implement, require relatively expensive
write barriers, and are not able to move objects. Concur-
rent [10] and on-the-fly [3, 25] reference counting collectors
are also complex to implement. They also require an ad-
ditional scheme to collect cycles and are not able to move
objects.

Generational collectors [37, 26, 27] are also employed to
reduce pause times. However, though they exhibit short
pauses during collections of the new area, they still require
an incremental or concurrent technique to collect the old
area.

Additional related work is discussed in the relevant sec-
tions.

1.3 Organization
We start with an overview of our parallel, incremental and

mostly concurrent collector. Next, we describe in detail our
contributions. In Section 3, we discuss our unification of in-
cremental and concurrent GC, and describe our mechanism
to ensure short pause times. In Section 4, we present our
new work packet mechanism used for load balancing. In Sec-
tion 5, we show how to reduce the number of fence instruc-
tions required on weak ordering hardware. In Section 6, we
present our experimental results. Finally, we conclude and
suggest future work in Section 7.

2. OVERVIEW OF THE COLLECTOR
Mostly concurrent collection divides tracing work into two

phases. During the first (concurrent) phase, objects are
marked (traced) concurrently with the mutators either on
behalf of mutators or by specialized low-priority background
threads. A card marking write barrier is used to keep track
of objects modified after the concurrent phase has started.
These objects have to be retraced later, either during the
concurrent or stop-the-world phases. During the second
(stop-the-world) phase, mutator threads are stopped, and
objects which were not reached during the concurrent phase
are traced.
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2.1 Concurrent Phase
A mostly concurrent collector releases all memory that

was unreachable at the beginning of the concurrent phase.
Objects that become unreachable after the initiation of the
concurrent phase and before the stop-the-world phase, may
or may not be released during the current GC cycle. Mem-
ory occupied by such objects, and not released in this col-
lection cycle, is called floating garbage, and it is important
to keep its amount to a minimum.

We initialize and start a new collection cycle when the
amount of free space drops below a certain threshold (see
Section 3). The collector employs a mark bit vector, one
bit per 8 bytes, in order to keep track of marked objects.
During initialization, the card table is cleared, the mark bits
are cleared, and the low-priority background GC threads are
woken up.

For allocation of small objects, the JVM employs a cache
allocation scheme. Each thread obtains its own allocation
cache from which it allocates small objects; when its alloca-
tion cache empties, a thread obtains a new allocation cache.
Incremental marking work occurs when servicing allocation
requests for allocation caches or large objects.

After initialization, the first allocation request (per thread)
scans the thread’s stack for roots, thus avoiding stopping
these threads for root scanning. Threads that never allo-
cate are stopped for stack scanning when no other tracing
work remains to be done. Each thread stack is scanned once
during the concurrent phase. As a policy, we put off scan-
ning thread stacks as much as possible to reduce the amount
of floating garbage.

Subsequent allocation requests do some tracing, as de-
scribed in Section 3. Depending on the availability of idle
processor time, low priority background threads also do trac-
ing work. Tracing mutators and the background threads use
a work packet mechanism to keep track of marked objects,
that require tracing, to distribute work and to ensure load
balancing. We describe the work packet mechanism in detail
in Section 4.

During the concurrent tracing phase, mutators continue
working and may modify already-marked objects. These
objects must be retraced because they may now point to
objects that were not marked before. The only objects that
need to be retraced are the marked objects on the cards
marked dirty by the write barrier.

The process of scanning dirty cards and collecting roots
for further tracing is called card cleaning. It could be argued
that all card cleaning should be put off to the stop-the-world
phase, since a card cleaned during the concurrent phase may
become dirty again. If that happens, work spent on the
cleaning of that card might be wasted. Our experience is
that dirty cards contain roots for many live objects not found
elsewhere, and if all card cleaning is put off to the stop-the-
world phase, the concurrent phase terminates prematurely
without tracing large numbers of live objects. Moreover,
about 10% of the heap may be dirty at the beginning of stop-
the-world phase. For a large heap, the scanning of such an
amount of memory is time consuming and must be avoided
during the stop-the-world phase to guarantee short pause
times.

Card cleaning work is distributed among mutators and
background threads similarly to tracing work. We decided

to clean each card at most once2, and defer card cleaning
as long as there is other tracing work available. The ra-
tionale for this heuristic is that we have to clean as many
cards as possible during the concurrent phase to guarantee
short pause time, but we want to avoid scanning the same
cards many times. We also want to clean a card as late as
possible, to reduce the risk of it being dirtied again. Using
this heuristic, the amount of dirty memory which remains
to be scanned during the stop-the-world phase is about 2%
for the benchmarks we measured.

When an allocation request cannot be satisfied, or when
the concurrent phase is finished (all thread stacks scanned,
each card cleaned once, and no marked objects left to trace),
the stop-the-world phase begins. Detecting the termination
of concurrent tracing is described in Section 4.

2.2 Stop-the-world Phase
The stop-the-world phase is fully parallel. It completes

the marking of live objects and sweeps. It starts by stop-
ping all mutator and background marking threads. No safe
points are required, neither for scanning the stacks, nor for
the correct execution of the write barrier. The collector
scans stacks conservatively, and the order of write barrier
operations allows stopping at any point3.

After all threads are stopped, we clean dirty cards as de-
scribed earlier in this section. We rescan all thread stacks,
and complete the marking of live objects. The parallel
marker is similar to that of Endo et al [17].

Next, the sweep phase reclaims all unused storage employ-
ing a straight forward parallelization of bitwise sweep [12].
Bitwise sweep frees memory in time essentially proportional
to the number of live objects by finding ranges of unmarked
memory in the mark bit vector.

2.3 Incremental Compaction
Considering that we require short pause times, full com-

paction of a multi-gigabyte heap is not an option, but it is
possible [24] to “evacuate” a part of the heap when we stop
mutators for the stop-the-world phase. In particular, we
choose an area to be evacuated before the start of the con-
current mark phase and keep track of all pointers into the
area during marking (both during the concurrent and stop-
the-world phases). After sweep we evacuate the objects from
the area and fix up the references to the evacuated objects.
Further discussion of incremental compaction can be found
in [6].

3. CONCURRENT AND INCREMENTAL
There are two approaches to concurrent tracing. One ap-

proach, often called incremental collection, was introduced
by Baker [5] in the context of copying collection. Baker’s
idea was to link garbage collection work (copying in his case,
marking in our case) to allocation, so that a small amount of
GC work is done on behalf of mutators with each allocation.

The advantage of the incremental approach is that the
tracing (marking) work is distributed between all the mu-

2Our recent research shows that adding, when possible, a
second card cleaning pass yields a further reduction in pause
time, without a noticeable impact on throughput.
3The write barrier is activated when a reference is written
into an object cell. It first makes the new reference accessible
as a root (e.g., from a register), then modifies the referencing
cell, and finally marks the card dirty.
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tator threads performing allocations, and that the amount
of tracing is simple to calculate, using what we call the al-
locator tracing rate, which is the amount of tracing work to
be done for each byte of memory allocated. The disadvan-
tage of this approach is that processor idle time, e.g., while
waiting for IO to complete, is not utilized.

The other common approach to concurrent tracing is to
assign specialized GC background threads to do the work [7,
31, 16, 3]. The amount of tracing done by the background
threads depends on external factors, e.g., competition with
other programs running on the system, and cannot be easily
controlled to achieve performance goals.

We combine the two approaches to obtain the advantages
of both. The background threads run at low priority and
make whatever progress is possible without burdening the
system, while incremental tracing ensures progress.

To achieve the goals of short GC pause times and low
GC overhead, the concurrent phase must be started at the
proper time and tracing must be done at the proper pace.
If concurrent tracing is started too early, it must either run
at a slower tracing rate, or terminate before the heap is
full. The former will result in accumulated floating garbage,
and the latter in more frequent GC cycles. Both behaviors
increase GC overhead. If concurrent tracing is started too
late or done too slowly, not enough tracing is done before
memory is exhausted. The remaining tracing must be done
during the stop-the-world phase and short pause times are
not achieved. Furthermore, if the tracing rate is too high,
the collector may steal too many processing cycles from the
mutators, thereby slowing their progress.

In the remainder of this section, we present the formulas
used to decide when to start a new GC cycle and to control
its progress. We also show how to account for the work of
the background threads.

3.1 Kickoff and Progress Formulas
We present two formulas: The “kickoff formula” calculates

when to start the concurrent collection, and is calculated
once per collection cycle. The “progress formula” calculates
how much tracing work to assign to a mutator. It is recalcu-
lated at the beginning of each increment of concurrent work,
i.e., on allocations of large objects and allocation caches for
small objects, thus introducing dynamic adaptation of the
tracing rate.

Let K0 be the desired value for the allocator’s tracing rate
(typically 5 to 10). Let L be a prediction of the amount of
memory to be traced in the concurrent phase. Let M be the
prediction of the amount of memory on dirty cards, that also
needs to be scanned in the concurrent phase. The “kickoff
formula”

L + M

K0

provides the threshold for the amount of remaining free
memory that triggers a new collection cycle.

To estimate L and M , we collect their actual values in
past cycles and compute new values using an exponential
smoothing average.

Let T be the total amount of memory traced since the
beginning of the concurrent phase (both by mutators and
by the concurrent threads). Let F be the current amount
of free memory. We assume that T and F are known. The

“progress formula” calculates the current tracing rate K:

K =
M + L − T

F

A negative value for K means that the values of M or L
were underestimated, and K is then assigned its maximum
allowed value Kmax, which is typically 2K0.

3.2 Accounting for Background Tracing
The kickoff formula intentionally does not take into ac-

count the work done by the background threads, which de-
pends on external factors such as scheduling policy, work-
load, etc. Background threads may not trace at all, and the
concurrent phase is still expected to finish tracing on time.
If background threads do some of the work, tracing should
finish on time, but the tracing rates of mutators should be
less than K0. When there is a plenty of idle time, all trac-
ing will be done by background threads without any mutator
tracing overhead.

We require a measure of the background threads’ tracing
speed. Let B be the ratio between the amount of tracing
work done by all background threads and the amount of al-
location done by all mutators, for a given window of time.
We occasionally calculate B, and reevaluate Best, the expo-
nential smoothing average of B. Best is used as a prediction
for the “near future” tracing rate of the background threads.

If K < Best then the background threads are successfully
taking care of the tracing, and there is no need to do any
tracing, otherwise:

K = K − Best

If K > K0, tracing is behind schedule, due to imperfect
load balancing or other implementation specific reasons. K
reflects the lag in tracing, but using it “as is” may not be
enough to correct the situation, since any future problem
would cause K to increase again, until it reaches Kmax. To
eliminate this risk, when K > K0, we increase K using a
corrective term C, so that the actual value used is

K + (K − K0)C

4. PARALLEL LOAD BALANCING
Parallel stop-the-world collectors require a load balanc-

ing mechanism, which is responsible for “fair” sharing of
tracing work between participating threads, thus preventing
starvation and reducing mark stack overflow. Unlike paral-
lel stop-the-world collectors, a parallel incremental collector
does not use a fixed number of tracing threads; incremental
tracing is done by mutators during allocation, so the num-
ber of simultaneously tracing threads may be as large as
the number of mutators. We believe that solutions for par-
allel stop-the-world tracing are not optimal when used for
parallel incremental collection.

We describe a new mechanism, which we call work packet
management. Its basic data structure is a work packet, which
contains a small mark stack. Work packet management dif-
fers from existing solutions on three key points: (1) it en-
sures load balancing by separating a collector thread’s input
from its output and forcing threads to compete for input,
(2) its synchronization overhead is low, and (3) it provides
an efficient way to determine the tracing state, e.g., overflow,
underflow or termination.
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In the remainder of this section, we describe these features
in more detail, followed by a comparison of work packet
management with previous load balancing solutions.

4.1 Separating Input from Output
When a thread starts tracing work, it obtains two work

packets from a global shared pool: pop operations are done
only on the input packet, and push operations are done only
on the output packet. There is no swapping of the packets’
roles (with one exception noted in Section 4.3). An empty
input packet is replaced by a non-empty packet from the
global pool. A full output packet is replaced by a (prefer-
ably) empty packet from the pool. When a thread completes
its increment of tracing work, both packets are returned to
the global pool.

Work packets deliver same functionality as traditional mark
stacks, but ensure that the volume of marked objects is dis-
tributed evenly between all threads that are currently partic-
ipating in the tracing. This is because they compete for the
input work packets in a “fair” manner, so that a thread does
not keep the new work that it generates (its output packet)
to itself; rather, it puts it in a pool where any thread can
obtain it.

In addition to “fair” sharing of tracing work, work packet
management allows prefetching of the next object to be
traced, because the next object to be traced is always known
in advance. This is unlike the traditional mark stacks, where
the next object to be traced is not necessarily on the top of
the mark stack, so it is not always known.

Finally, separation between input and output helps in re-
solving weak ordering problems, as described in Section 5.

4.2 Low Synchronization Cost
The global pool consists of several separate sub-pools that

are accessed directly by threads performing collection work.
Each sub-pool holds packets within its occupancy range.
Our implementation uses three sub-pools:

• The Empty Packet Pool contains empty packets.

• The Non-empty Pool contains packets that are less
than 50% full.

• The Almost Full Pool contains packets that are at least
50% full, including totally full packets.

The granularity, classification and number of these sub-
pools could vary. For example, an implementation of work
packets might put totally full work packets in a separate
sub-pool.

The sub-pools are implemented as linked lists. The get/put
operations on a sub-pool can be done simultaneously (there
is no need for mutually exclusive sequences of puts and gets).
Multithread safety is achieved by using compare-and-swap
on the head of the list4.

Packets are returned to the proper sub-pool, according
to their occupancy. When getting an output packet, the
packet is taken from the sub-pool of the lowest possible oc-
cupancy range, which contains packets. When getting an

4There is a subtle race condition when using compare-and-
swap for linked list manipulation (the ABA problem). We
add a unique ID to the head of list pointer to avoid this
(see [21] page A-48 for details).

input packet, it is taken from the sub-pool of the highest
possible occupancy range that still contains work packets5.

The only synchronization mechanism needed for our load
balancing method is of little cost. Having sub-pools fur-
ther reduces this cost, by reducing the possible contention
from competing compare-and-swap operations. The sub-
pools also ensure that the tracing threads can easily find
the packets with the most suitable capacities.

4.3 Identifying the Parallel Trace State
In this section, we describe our CPU-effective method for

detecting the state of the concurrent collection.
Each sub-pool has an associated packet counter, which

is updated (using compare-and-swap) after each put or get
operation. The packet counter is not necessarily accurate at
any point of time (for example, when sampled after a put,
but before the counter update), but can serve as an upper
limit and a rough estimate of the number of packets in the
sub-pool.

Tracing work is complete and termination detected when
the Empty Pool’s packet counter equals the total number of
packets. This means that either all packets are empty and
not owned by any thread, or that some threads are in the
middle of getting an empty packet. However, these threads
will not find any objects to trace in any case. For this to be
correct, a thread that wishes to replace a packet must first
try to get the needed new packet and only then, if success-
ful, return the old packet. This guarantees that an attempt
to replace work packets will not create a temporary state
that may be mistaken for tracing termination. When start-
ing to trace, a thread must first get an input work packet
and only if successful, an output work packet. This ensures
that attempts to acquire work packets when no tracing work
remains will not prevent termination detection.

A temporary shortage of tracing work occurs when a thread
fails to get (or replace) a non-empty input packet, and the
termination criteria does not hold. In this case, a thread
does other concurrent tracing tasks (e.g., card cleaning, see
Section 2.1). If these tasks are not available, the thread may
quit the tracing task, i.e., if it is an application thread, or
yield and try again, i.e., if it is a background thread.

If a thread fails to obtain a non-full output packet, when
trying to mark and push an object, it may try to swap its
input and output work packets. If both packets are full, a
temporary overflow state has been detected and is treated
by marking the object and activating a write barrier for it.
(In our implementation, the card holding the newly marked
object is marked dirty). As tracing algorithms have been
designed to reduce the risk of overflow, this is expected to
be rare, and should not add many additional dirty cards.

4.4 Comparison with Other Solutions
Several solutions to the problem of load balancing for par-

allel stop-the-world tracing have been published. These so-
lutions assign a private (usually very big) mark stack to each
thread, and add synchronized sharing mechanisms such as
stealing, where each tracing thread exposes some of its ex-
cessive objects in a separate attached queue, so they may be
stolen by other “starved” threads [17]. Another solution is to
expose the mark stacks themselves to the other threads [18].
The internal stack access operations (PushBottom and Pop-

5There are some subtle conditions in which this order is
reversed that are not covered in this paper.
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Bottom) require no synchronization. Stealing is done with
a synchronized PopTop operation, and excessive objects are
treated by adding them to overflow queues.

A solution for concurrent parallel tracing was published
by Cheng and Blelloch [8]. They used a private stack for
each thread and a single shared stack to exchange objects
between threads; they reported a load balancing overhead
of 14%.

These previously published solutions either create bottle-
necks accessing the shared pool of excessive objects [8], or
face difficulties in finding the right thread with objects to
“steal” [17, 18]. Work packet management provides fast ac-
cess to a packet of tracing work with minimal synchroniza-
tion overhead. Furthermore, the solution of sharing work
using attached (per mark stack) queues is not efficient with
incremental collection, where the number of participating
tracing threads may vary. Work packet management was
designed for such cases.

Finally, the previously published methods require a com-
plex mechanism for the threads to agree on tracing termi-
nation. This is mentioned as the principal synchronization
problem [17, 8]. Work packet management detects termina-
tion naturally, with little cost.

The main advantage of traditional load balancing tech-
niques is that they are activated only when needed, while
work packets management is always activated. However, the
extra cost should be negligible because work packet manage-
ment adds little overhead and the synchronization mecha-
nism is cheap.

An additional difference between the traditional use of
mark stacks and the work packet mechanism is that the
former performs a depth-first (DFS) traversal of the object
graph, while the latter is more breadth-first (BFS) in na-
ture. There are many implications of these differences, such
as cache locality, object access contention, etc. One may
speculate about the advantages or disadvantages of each of
these differences, yet they seem of secondary importance.
The major difference that must be mentioned is that BFS
graph traversal tends to put more entries (objects) on the
stacks, and therefore is more vulnerable to overflow. The
work packets mechanism is not fully BFS, since the level of
BFS is limited by the capacity of a work packet. Our re-
sults show that the amount of memory needed for the work
packets is insignificant, relative to the size of the heap (see
Section 6.3).

5. WEAK ORDERING ISSUES
Garbage collectors designed for large server configurations

must take into account processor architecture design based
on a weak ordering memory consistency model, e.g., IBM’s
PowerPC [9] and Intel’s IA-64 [22]. Weak ordering is a part
of the wider issue of Relaxed Consistency memory models,
which are explained in detail in [1].

In a weak ordering memory model, there is no guarantee
of the order in which writes, issued on one processor, become
visible to other processors. For example, suppose a thread
running on processor A stores x1 to location X, replacing
its previous value x0, and then stores y1 to location Y . If
another thread on processor B first loads Y and then loads
X, it may see the new value of Y (y1), but the old value of
X (x0).

To solve such problems, weak ordering architectures pro-
vide memory synchronization operations, also called fence

operations. A fence operation guarantees that the execution
of all preceding store and load operations complete before
any subsequent store or load operation.

We use the same example as above, but now processor A
issues a fence between the two stores, and processor B is-
sues a fence between the two loads. In this case, if B loads
y1 from Y , it is bound to load x1 from X. Notice that
both fences are needed, since a reordering of memory ac-
cess by either processor could cause the anomalous behavior
described earlier.

These fence operations are expensive multi-cycle instruc-
tions. Because a garbage collector is a performance-sensitive
component, it is important to avoid the use of fences as much
as possible.

There are three primary weak ordering problems for par-
allel and concurrent collectors: (1) when parallel or concur-
rent collector threads communicate work between them, e.g.,
mark stack entries, (2) when a mutator thread allocates and
initializes an object, and a collector thread traces it, and
(3) when a mutator thread updates an object slot and per-
forms a write barrier, e.g., dirties its card, and a collector
thread retraces the object and cleans the barrier indicator,
e.g., the card.

Cheng and Blelloch [8] address some of the problems,
but in the context of a replicating collector. Hudson and
Moss [20] discuss order-critical accesses due to Java volatile
variables and monitor locks. They also claim that their col-
lector does not introduce any new weak ordering issues; how-
ever, they do not provide solutions for the problems outlined
above. Domani et al [16] address the problems of reversing
the order of store and load operations in the DLG collec-
tor [14, 13], but do not address the more general weak or-
dering problems. Levanoni and Petrank [25] remove many
fences from their write barrier by relying on the fact that
most objects are small so that for most updates, the dirty
bit set by the write barrier and the modified slot reside in
the same coherency granule (usually a cache line). A fence
operation is not needed in this case. Furthermore, for ob-
jects that do require fences, the fence need only be done the
first time the object is updated during each collection cycle.

In the remainder of this section we elaborate on the weak
ordering problems mentioned above and present our solu-
tions to keep fence overhead low.

5.1 Load balancing
A load balancing mechanism, which is a part of any par-

allel collector, enables a thread on one processor to access a
data structure (e.g., shared mark stack), containing objects
to trace, which was updated by a thread on another proces-
sor. Synchronization to access the data structure is typically
handled through a cheap mechanism such as compare-and-
swap (see Section 4). However, there still remains the prob-
lem of the ordering of memory accesses, which modify the
contents of the data structure.

A simple but expensive solution would be to insert a fence
after every store of an object to a shared mark stack. Our
work packet solution provides an easy way to reduce the
number of fences by performing the fence for groups of ob-
jects. In particular, the collector performs a fence before
returning an output work packet to a pool. This prevents
the stores to the packet from being reordered with respect
to the store of the packet pointer inserting the packet in
the pool. Notice that the thread that gets a packet from

134



the pool does not need to perform a fence. This is due to
the data dependency between the load of the pointer to the
packet and access to its content, which the hardware cannot
reorder. A similar batching mechanism was proposed for the
write barrier of a replicating collector [2].

5.2 Tracing a Newly Allocated Object
A second weak ordering problem could allow a concur-

rent tracing thread to begin tracing an object, but see the
uninitialized memory that preceded the creation and ini-
tialization of the object. Incorrect behavior and a memory
access violation could result. We describe the scenario that
could produce the problem and the solution below.

Suppose that mutator A, executing on one processor, cre-
ates and stores an initial value in object O2, and then stores
a reference to O2 in object O1. Further, suppose that the
processor reverses the order of the stores. Now a tracing
thread B, running on another processor, loads O1, contain-
ing the reference to O2, and attempts to trace into O2 before
the initial value of O2 has been stored into memory. Thread
B has accessed uninitialized memory in O2.

A simple but inefficient solution would be to add a fence
right after the creation and initialization of every object.
Thus, a tracing thread would always see initialized objects.
Instead, we employ a batching mechanism as before to re-
duce the number of fences, so that we execute one fence for
each group of objects allocated and one fence for each group
of objects marked.

As mentioned in Section 2.1, our collector employs a cache
allocation scheme for small objects. This is the natural unit
for batching. We also need a bit vector, one bit for each unit
of memory, where the size of the unit is a power of 2 and
we restrict allocation caches to begin on a unit boundary.
Our collector already has such a vector, one bit per 8 bytes,
called the allocation bit vector for marking the first byte of
each allocated object. Thus, this solution does not require
any extra space for our collector. (Our collector uses allo-
cation bits during the conservative scan of a mutator stack
to determine whether to treat a stack slot as a reference.)
All bits for free space are initially zero. For convenience we
refer to the allocation bits in the description of our solution.

Here is the solution on the mutator side. The mutator:

1. Allocates and initializes objects from its allocation cache
until the cache is full.

2. Performs a fence.

3. Sets the allocation bits for the allocated objects.

The mutator’s fence ensures that the stores to allocate and
initialize the objects cannot precede the store of the alloca-
tion bits.

Here is the concurrent tracer side. A tracer thread:

1. Gets an input work packet to be traced.

2. Tests the allocation bits of all the objects in the work
packet and marks as “safe” (in some private data struc-
ture) those objects whose allocation bit is set, and
marks as “unsafe” those whose bit is not yet set.

3. Performs a fence.

4. Pops objects from the work packet, tracing those ob-
jects marked “safe”, and deferring the tracing of ob-
jects marked “unsafe” to a later time by storing them
in another work packet.

The tracer’s fence ensures that the tracing of an object can-
not precede the load of its allocation bit. Together with the
fence on the mutator side, this ensures that the tracer never
sees uninitialized objects.

The mechanisms for deferring object tracing may be im-
plemented in many ways. We chose to implement it by
adding another work packet sub-pool, the Deferred Pool. In
this sub-pool we store packets containing deferred objects.
Periodically, we return all packets in the Deferred Pool to the
other sub-pools, so these objects are given another chance
to be traced.

Future revisions to the Java memory model [36] could re-
quire a fence operation after every object allocation In that
case the solution described in this section would no longer
be needed.

5.3 Cleaning Dirty Cards
A third weak ordering problem could allow a tracing thread

to clean a card, but miss tracing an object that had been
updated by a mutator thread. This could lead to a reachable
object that is incorrectly collected. Below we describe the
scenario, which could produce the problem, and its solution.

A mutator updates a slot of a marked object O1 to refer-
ence an as yet unmarked object O2 and then sets the dirty
indicator for the card of O1. Suppose the processor reorders
these two stores. Meanwhile, a tracing thread notices that
the card is dirty, erases the dirty indicator, rescans the card
including O1 and misses the new reference to O2 since it
has not yet been written to memory. Suppose further, that
no further update to an object on the card occurs during
this collection cycle. The card will not be rescanned fur-
ther during the current GC cycle. Object O2 could remain
unmarked and be incorrectly collected.

A simple but inefficient solution would add a fence be-
tween the update to the object slot and the setting of its
card dirty indicator on the mutator side. On the collector
side, a tracing thread would execute a fence just before start-
ing to scan the card. This solves the problem as it ensures
that the tracing thread will see the updated object. How-
ever, this is too expensive as it requires a fence instruction
as part of every write barrier.

Our solution avoids a fence in each write barrier by adding
cost to the collector’s card cleaning mechanism. It is based
on making a copy of the card table and before using it,
forcing all mutators to execute a fence. The full algorithm
is:

1. Scan the card table, registering all found dirty cards
(in some other data structure) and clearing the dirty
indicators in the card table for the cards that were
registered.

2. Force all mutators to execute a fence, e.g., stop each
one individually.

3. Clean the cards that were registered.

The cleaning, which is done in Step 3, is guaranteed to clean
object reference slots that were fully written by a mutator
before Step 1. If the slot changes later, the mutator will
perform another write barrier, dirtying the card again.
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6. RESULTS
We compare the performance of our implementation of

the parallel, incremental, and mostly-concurrent collector
(hereafter CGC) with the existing mature and optimized
stop-the-world parallel mark-sweep collector (STW) on an
IBM prototype of JDK 1.3.1. We also measure and analyze
various aspects of CGC, including the effect of the tracing
rate on performance, and the effectiveness and cost of load
balancing. Except where otherwise noted, measurements
were done on an IBM Netfinity 7000, a server with four
550 MHz Pentium III XeonTM processors and 2 GB of RAM
running Windows NT 4.0.

All measurements were run with a fixed heap size. We
chose the heap size so the heap would reach 60% occupancy.
Bigger heap sizes would have produced fewer collection cy-
cles; thus, showing a lower overhead for CGC. However, we
chose this more challenging setup to exercise the collector.
There was no compaction in any of the runs.

Except where noted, we ran CGC with a tracing rate of 8.0
(see Section 3), used 1000 work packets (each packet holds
up to 493 entries), used 4 low priority background threads,
and performed a single pass of concurrent card cleaning.

We used three benchmarks in our measurements: SPEC-
jbb, pBOB, and javac. SPECjbb2000 [32] is a Java business
benchmark inspired by TPC-C. It emulates a 3-tier system,
concentrating on the middle tier. SPECjbb is throughput
oriented: it measures the amount of work (number of “trans-
actions”) done during a given time. On a 4-way multipro-
cessor, SPECjbb runs at 1 through 8 warehouses (threads).
To achieve a 60% heap residency at 8 warehouses we used a
256 MB heap.

pBOB is an internal IBM benchmark on which SPECjbb
is based; it is more tunable. We use pBOB in its “autoser-
ver” mode, because it reaches a high level of parallelism, can
effectively use a large heap, and can simulate processor idle
time by adding think times to its transactions.

javac is part of SPECjvm98 [32]. It is a single-threaded
Java compiler. We ran it with a 25 MB heap to achieve 70%
heap occupancy. We show the results of javac to provide
some insight into the performance of our collector for small
applications.

6.1 Comparison with STW Collector
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Figure 1: SPECjbb run with tracing rate 8.0

Figure 1 compares running SPECjbb, from 1 to 8 ware-
houses, using the concurrent collector and the existing STW
collector. It shows the average and the maximum pause
times of both collectors. We see that there is a significant
reduction in both maximum and average pause times. At 8
warehouses CGC cuts the average pause time from 266 ms to
66 ms (a 75% reduction), while losing 14% in throughput.
Considering just the mark component of the pause time,
CGC cuts the average mark time from 235 ms to 34 ms (an
86% reduction). To put these results in perspective, 11% of
the time is spent in GC when using the STW collector at 8
warehouses. Finally, the reduction in the overall SPECjbb
throughput score for the concurrent GC is 10%.

The same SPECjbb test was done on a weak ordering
memory access system. We used an Intel Itanium server,
with four 667 MHz IA-64 processors and 8 GB of RAM
running Windows XP 5.1. In order to achieve the same
60% heap residency on this 64 bit machine (where objects
are bigger), we used a 320 MB heap. Both the reduction
in pause times, and the reduction in the overall SPECjbb
throughput score, are similar to those presented in Figure 1
and discussed above.
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Figure 2: pBOB run with tracing rate 8.0

In order to test our collector on multi-gigabyte heap, we
ran pBOB, using a 2.5 GB heap and 3000 work packets,
from 30 through 80 warehouses at 25 terminals (threads) per
warehouse. We used a pSeries server, with four 600 MHz
PowerPC RS64 III processors (64 bit) and 5 GB of RAM
running AIX 5.1.

Figure 2 shows average pause times, maximum pause times,
and average mark time for pBOB. A measurement of through-
put for pBOB (in autoserver mode) is not significant due
to the large amount of CPU idle time. We present results
starting from 40 warehouses, because few GCs occur prior
to that point. At 80 warehouses our test uses 2000 threads,
and reaches 85% heap occupancy.

In this test the heap size is much larger, so the reduc-
tion in pause time (84%) is even bigger than for SPECjbb.
We found that sweep time becomes a dominant part of the
remaining pause time; at 80 warehouses the average sweep
time is 279 ms or 42% of the total pause time. Thus, im-
plementing lazy sweep [7], i.e., deferring the sweep to after
the stop-the-world phase (see Section 7), would reduce the
pause time close to that required for mark, and we would
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obtain a large additional reduction in pause times. Another
interesting result is that the average mark time grows much
slower than heap occupancy. Moving from 50 to 80 ware-
houses the heap occupancy increases by 58% (from 57% to
91%), while the mark times increases by 35% (from 232 ms
to 314 ms).

The javac runs were done on a 550 MHz Pentium unipro-
cessor running Windows NT 4.0 with a single background
collector thread. Using an SMP machine, with more back-
ground collector threads, seems like an unfair advantage for
CGC. CGC achieves a maximum pause time of 41 ms and
an average pause time of 34 ms, while the STW collector’s
pause times were 167 ms and 138 ms. The throughput re-
duction for CGC was 12%.

6.2 Varying the Tracing Rate
In this section we present results showing how the per-

formance of CGC changes as we vary the tracing rate. We
consider performance items such as throughput and pause
time, we check the effectiveness of the metering of tracing
work, and we measure the processor utilization available for
mutator work during the concurrent phase.

Table 1 compares the execution of the STW collector with
CGC, while varying the tracing rates for SPECjbb. All re-
sults in the table, except throughput, were measured at 8
warehouses. The throughput measurement is the overall
SPECjbb throughput score. In the table, TRx denotes a
tracing rate of x. At tracing rate 1, CGC attempts to
trace a KB of objects for each KB of allocation. Using the
formulas from Section 3, at tracing rate 1 CGC will start im-
mediately after the stop-the-world phase is terminated. At
the other extreme, tracing rate 10, CGC is activated only
when the heap is close to full.

Varying the tracing rate from 1 to 10, we measured the
changes in throughput (using the SPECjbb scores), floating
garbage (measured by comparing average heap occupancy
measured at the end of GC cycles for CGC versus STW),
the average number of cards cleaned in the stop-the-world
phase of CGC, and the average and maximum pause times.

Measurement STW TR 1 TR 4 TR 8 TR 10
Throughput 19904 15511 16984 17970 18177
Floating
Garbage 0.0% 18.0% 14.2% 5.3% 4.2%
Average Final
Card Cleaning —– 93627 40147 11772 8394
Average
Pause Time 267 177 115 67 61
Max
Pause Time 284 233 134 101 126

Table 1: The effects of different tracing rates

As expected, a higher tracing rate produces less floating
garbage. The number of cards cleaned in the final stop-the-
world phase decreases as the tracing rate increases, since
concurrent card cleaning starts later, and less new cards
stand the chance of becoming dirty while the card table
is being scanned. The card size is 512 bytes, so there are
524288 cards in the 256 MB heap. Therefore, at tracing level
8, only 2.2% of the cards need to be cleaned in the stop-
the-world phase. The pause times also tend to be shorter,

given that there are less cards to clean. The throughput
improvement at higher tracing rates is probably due to lower
overheads for card cleaning (less cards are dirtied during the
concurrent phase) and less floating garbage.

In order to check the effectiveness of the metering of con-
current collection work as the tracing rate varies, we define
three criteria:
Card Cleaning Ratio (CC Rate) : the ratio between

the number of cards cleaned in the concurrent phase to the
stop-the-world phase.
Premature GC Free Space (Free Space): the amount

of free space left in the heap, when the concurrent phase
manages to complete all its work.
Cards Left (Cards Left): when the concurrent phase

does not complete all its work, but is halted due to an alloca-
tion failure; this measures how many cards the collector has
left to clean. This is a good criteria for how much work is
left, since card cleaning occurs last in the concurrent phase.

We believe that the CC Rate should be less than 20%
(i.e., our single scan of the card table for concurrent card
cleaning should leave little card cleaning to the stop-the-
world phase), the Free Space should be less then 5% of the
heap size, and Cards Left should be 0.

Criterion TR 1 TR 4 TR 8 TR 10
CC Rate fails 76% 61% 23% 21%
Free Space fails 26.6% 3.2% 0.4% 0.4%
Cards Left 0% 0% 0% 0%

Table 2: Effectiveness of metering

Table 2 shows the percentage of collections that failed the
above criteria, when running SPECjbb with various trac-
ing rates. Free Space failures are a problem only for tracing
rate 1. The CC Rate failures are very high at the lower trac-
ing rates, where the concurrent cleaning of dirty cards starts
earlier and is spread out over more time. As a result, more
cards (in the part already scanned) become dirty before the
stop-the-world phase. CC Rate failures are also higher than
expected at the higher tracing rates.

Both Tables 1 and 2 indicate that lower tracing rates are
currently unattractive and will demand repetitive concur-
rent card cleaning as in earlier mostly concurrent collec-
tors [7, 31], and further research on reduction of floating
garbage (see Section 7).

Another important outcome, of any selection of a tracing
rate, is the effect it has on mutator performance. An inter-
esting measurement of minimum mutator utilization (MMU)
was proposed by Cheng and Blelloch [8], but is very difficult
to measure when the number of threads exceeds the num-
ber of processors. Instead, we choose to measure the aver-
age processor utilization available to mutators while CGC
is active (i.e., during the concurrent phase). We calculate
the utilization as the ratio of the application allocation rate
during the concurrent phase to the application allocation
rate during the pre-concurrent phase (the period between
the end of the last stop-the-world phase and the next con-
current phase). This is based on the assumption that over
long enough periods, the allocation rate changes similarly
to the mutator execution rate. This assumption holds for
SPECjbb.
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Measurement TR 1 TR 4 TR 8 TR 10
pre-concurrent —– 48.4 48.7 49.1
concurrent 37.9 30.6 23.1 21.1
utilization 78% 63% 47% 43%

Table 3: Mutator utilization

Table 3 presents the concurrent and pre-concurrent allo-
cation rates (in KB/ms), and the mutator utilization6. We
see that even at tracing rate 8, where we start the concurrent
phase quite late in the cycle, the mutators are able to use
close to 50% of the processing power while CGC is active.

6.3 Evaluation of Work Packets
In order to evaluate the work packet mechanism, we define

load balancing measures and check how the work packet
mechanism stands up to them as we increase the number
of mutator threads. We also measure the space needed for
work packets due to the mostly breadth-first traversal they
impose on tracing.

We define three parameters to evaluate load balancing:
tracing factor – the ratio of the amount of tracing actu-

ally done by a mutator thread during its tracing increment
to the amount it was assigned. The tracing factor shows the
amount of starvation (not enough work to do) encountered
during the concurrent phase.
fairness – the standard deviation of the tracing factors

over a collection cycle. It demonstrates how the load was
distributed between the mutators doing increments of trac-
ing.
cost – the number of synchronization operations (compare-

and-swap) done for all the get/put operations of work pack-
ets over a collection cycle. This number indicates the actual
cost of our load balancing. However, it cannot be compared
between different numbers of warehouses, since as the num-
ber of warehouses increase, the tracing volume, and there-
fore the work packet usage, increases. Thus, we normalize
the cost by the size of the live memory at the end of the
collection cycle.

Table 4 presents our load balancing results for pBOB,
running without CPU idle time (idle time would decrease
contention for work packets and improve load balancing).
We used a 1.2 GB heap and 1000 work packets. The mea-
surements were also done without background threads; due
to their low priority they might produce irrelevant data. We
measured results in finer granularity on the higher number
of warehouses, where the interesting data resides. At each
warehouses level, we show the average tracing factor (for
tracing increments), the average fairness (over all GC cy-
cles), and the average and maximal normalized costs.

We see that the average tracing factor remains stable as
the number of threads increases, showing no increase in
“starvation”. The fairness declines as the number of threads
increase at a reasonable rate until 900 threads, when it starts
plummeting. The reason is that our prototype has a total
of 1000 work packets; since every tracer holds at least two
packets (and while replacing, even more), there were simply
not enough packets for 1000 threads. The normalized cost

6There is no pre-concurrent allocation rate for tracing rate 1
(no pre-concurrent phase). As the pre-concurrent allocation
rate stays fairly constant, we used the allocation rate for
tracing rate 4.

Warehouses 25 30 34 36 38 40
Threads 625 750 850 900 950 1000
Average
tracing factor .961 .958 .953 .952 .949 .950
Fairness .038 .039 .045 .049 1.97 2.79
Average Cost 251 280 306 325 341 361
Max Cost 272 294 316 337 353 376

Table 4: The Quality of Load Balancing

increases with the number of threads, but at a moderate
level. The reason for its stable behavior, relative to the fair-
ness values, is that in our mechanism, a tracer which fails to
get work packets, simply quits the tracing task. Although
there is work to be done with respect to adapting the size
and number of packets to heap size and number of threads,
the interesting finding here is that poor load balancing does
not drastically increase the synchronization costs.

In Section 4.4, we discussed the amount of memory needed
to manage the work packet mechanism, and predicted that
it will need more space than needed for traditional mark
stacks. In order to measure this, we instrumented our JVM
to include a high-level watermark for the highest number of
work packet slots in use at one time. This serves as a lower
limit on the amount of memory needed, since this number
does not indicate how these slots are distributed over the
work packets in use. We added a second high-level water-
mark on the number of work packets used simultaneously.
This serves as an upper limit on the amount of memory
needed, since the work packet mechanism always takes an
empty packet (if available) for output, yet it could have also
worked well with less work packets (by taking non-empty
packets for output).

Using this instrumentation, we found that the memory
requirements for the work packet mechanism, are bounded
between 0.11% and 0.25% of the heap size. We believe that
0.15% of the heap size is a realistic estimation of the needed
space for work packets.

7. CONCLUSIONS
We present a parallel, incremental and mostly concurrent

garbage collector for modern shared-memory multiproces-
sor servers. Our collector design aims at supporting highly
multithreaded applications, such as web application servers,
which must provide relatively fast responses to client re-
quests and scale to support thousands of clients.

We implement a prototype of our collector on a highly ma-
ture and tuned parallel stop-the-world mark-sweep base. For
pBOB autoserver with 2000 threads, our prototype achieves
a large reduction in overall pause time, from 4192 ms to
657 ms, especially for the component due to marking, from
3849 ms to 314 ms, so that a large proportion of the remain-
ing pause time (42%) is due to sweep.

To achieve these results we apply two novel techniques.
First, we combine incremental and concurrent GC, so as to
both take advantage of processor idle time and ensure short
pause times. Second, we introduce a work packet mechanism
designed to provide good load balancing for the situation
where there are many more mutator threads than processors
and the mutators all compete for collector work.
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We also show how to reduce the number of expensive
memory fence instructions required when implementing par-
allel and concurrent collectors on weak ordering multiproces-
sor hardware.

Analysis of our results suggests several directions for fu-
ture work. First, the pause time results show that we should
implement lazy sweep [7]. We can use techniques similar to
those used for concurrent tracing to delay sweeping until
needed and spread sweeping work between mutator threads
and idle low priority background threads. Second, the ex-
periments with lower tracing rates, where the mutators get
to utilize more processor time while the concurrent collector
is active, show that there is a problem with floating gar-
bage. Floating garbage leads to both unnecessary tracing
effort and more frequent GC cycles. We plan to research
techniques to reduce floating garbage, so as to reduce the
overhead for concurrent collection and enable the collector
to be less intrusive in its concurrent phase. Finally, our re-
sults show that the work packet mechanism does a good job
of load balancing. Given its termination detection scheme,
which is much simpler than the schemes of earlier load bal-
ancing techniques, we plan to experiment with work packets
for parallel collectors.
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