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Abstract

This paper discusses the potential benefits of application-
specific power management through remote task execu-
tion. Power management is crucial for mobile devices that
have to rely on battery power for extended periods of time.
Image processing and understanding is a class of appli-
cations that is important in mobile environments. Image
processing can be used in autonomous robot navigation,
target acquisition/classification, keyboard-less input, and
aerial surveillance (Micro Air Vehicles), just to mention
a few. Experimental results on an image processing ap-
plication, namely a human face detection and recognition
system, indicate the power savings that can be achieved
for this important class of applications.

We discuss a compilation strategy that generates two
versions of the initial application, one to be executed on
the mobile device (client), and the other on a machine
connected to the mobile device via a wireless network
(server). The client and server codes have to be able
to deal with disconnection events. Our proposed com-
pilation strategy uses checkpointing techniques to allow
the client to monitor program progress on the server, and
to request checkpoint data in order to reduce the perfor-
mance penalty in case of a possible server and/or network
failure.

The reported results have been obtained by actual
power measurements on three client systems, (1) the
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StrongARM based low-power SKIFF system developed at
Compaq’s Cambridge Research Laboratory, (2) Compaq’s
commercially available StrongARM based iPAQ H3600,
and (3) a PentiumII based laptop. Initial experiments
show that energy consumption can be reduced signifi-
cantly, in some cases up to one order of magnitude, de-
pending on the selected characteristics of the mobile de-
vice, remote host, and wireless network. A prototype im-
plementation of the discussed compilation framework is
underway, and preliminary results are reported.

1 Introduction

Power dissipation has become one of the crucial design
challenges of current and future computer systems. In
a mobile environment, power savings are important to
prolong battery life. For a desk-top “wall-powered” sys-
tem, heat emission has become a severe design limitation
with respect to transistor densities and clock frequencies.
Power and energy management addresses both of these
issues. However, in the context of this paper, prolonging
battery life is the main objective1.

Mobile devices come in many flavors, including laptop
computers, webphones, pocket computers, Personal Digi-
tal Assistance (PDAs), and intelligent sensors. Many such
devices already have wireless communication capabili-
ties, and we expect most future systems to have such capa-
bilities. There are two main differences between mobile

1In this paper, we consider a reduction in power and energy as the
same optimization goal. This is a simplifying assumption, and not true
in general.
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and desk-top computing systems, namely the source of
the power supply and the amount of available resources.
Mobile systems operate entirely on battery power most or
all the time. The resources available on a mobile system
can be expected to be at least one order of magnitude less
than those of a “wall-powered” desk-top system with sim-
ilar technology. This fact is mostly due to space, weight,
and power limitations placed on mobile platforms. Such
resources include the amount and speed of the processor,
memory, secondary storage, and I/O. With the develop-
ment of new and even more power-hungry technology, we
expect this gap to widen even more.

Image processing and image understanding will be one
of the key applications for low-power mobile devices, in
addition to speech recognition. Low power single-chip
imagers, such as the Photobit PB-0100, are becoming
available that will allow mobile devices to capture high-
quality images. Image processing can be used in the
context of robot control and navigation, wide-scale video
surveillance, guidance systems for blind people to identify
and classify objects, keyboard-less human-computer in-
terfaces, and Micro Air Vehicles (MAVs) to support aerial
surveillance, target acquisition and target classification.
Face detection and recognition in video images is a key
technology for several of these applications.

The compilation approach for power and energy man-
agement discussed in this paper is complementary to op-
erating systems and hardware techniques. The latter tech-
niques rely on observed past program behavior and re-
source requirements to predict future program character-
istics. A compile-time whole program analysis is often
able to determine future behavior and requirements since
the entire program is available to the compiler and not just
a limited window of recent events. In addition, a com-
piler may perform high-level transformations and thereby
“reshape”, i.e., change program behavior and resource re-
quirements, allowing further program optimizations. In
cases where compile-time information is not available to
perform a particular optimization task, the compiler may
generate code that will make optimization decisions at
run time based on run-time values of compile-time deter-
mined variables and conditions.

In this paper, we give a first assessment of the poten-
tial benefits of compiler-directed remote task mapping as
an optimization to save energy on mobile devices. We
use the tasks of face detection and recognition, in the con-
text of a TourGuide system for visitors to Compaq’s CRL
lab, as an experimental vehicle for our investigation. The
main challenges in remote task mapping is the identifi-
cation of suitable remote tasks where the communication
overhead is more than compensated for by the expected

power savings. We discuss a compilation framework for
remote task execution, and give experimental results for
a hand-simulated compilation of our face detection and
recognition program. The framework addresses the prob-
lem of network disconnection. Power measurements are
reported for three platforms: a low-power single-board
system called Skiff [8], which was developed at CRL, a
recently introduced new handheld PC by Compaq (iPAQ
H3650), and a PentiumII based laptop computer. Initial
results with a prototype implementation of the compila-
tion framework indicate the feasibility of our approach.

2 Remote Task Mapping

The input to the envisioned compilation system is a pro-
gram written in C or Java that does not contain any user
annotations, for instance, to specify tasks for remote exe-
cution. Compiler-directed remote task mapping for power
and energy management identifies program tasks that (1)
can be safely executed on a remote server, and that (2)
will lead to power savings on the mobile client system.
The profitability of remote task execution will depend on
the amount of communication needed between the mobile
client and remote server, the time it takes to complete the
remote task, and the communication time itself. The latter
two points are of particular importance in mobile systems
that have a significant power consumption during the time
the system is waiting for the response of the server.

Our proposed power management strategy considers
disconnectivity. The system will be able to continue pro-
gram execution while being disconnected from the server,
possibly with a degradation of program performance such
as an increase in execution time. This is an important
feature for any mission critical program with real-time
response requirements. Simply putting the mobile sys-
tem into a hibernation state until the connection to the
server has been reestablished is not acceptable. The goal
of power management is to save as much energy as possi-
ble while running the program to completion within a set
of real-time constraints required by the given application.
For example, leaving a robot or a MAV without image
processing capabilities for extended periods of time may
lead to total system loss.

3 TourGuide : A Face Detection and
Recognition System

We have developed a prototype application based on face
detection and recognition, called TourGuide , which iden-
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Figure 1: Example Image and TourGuide ’s output.

tifies researchers and staff members at Compaq’s Cam-
bridge Research Laboratory (CRL). The TourGuide sys-
tem will consist of a mobile client and a network of em-
bedded servers. The client can be given to visitors to the
lab. It allows them to more easily identify and keep track
of the members of the laboratory that they encounter dur-
ing their visit. The system is designed to run on a portable
low-power device with wireless communication capabili-
ties that is equipped with a digital camera.

The face detection component of the TourGuide ar-
chitecture utilizes a neural network-based detector for
frontal, upright faces developed at Carnegie Mellon Univ.
by Rowley et. al. [17]. The detector uses two networks
which were trained to detect faces in windows of 20 � 20
and 30 � 30 pixels. These networks are scanned across an
image pyramid in a coarse-to-fine fashion. The resulting
system can detect any number of frontal, upright faces in
a single image, regardless of their size or position. Faces
which are tilted in the plane of the image or away from
the camera will not be detected. However, if the detector
is applied to a sequence of video frames taken from an in-
teraction with a person, it is quite likely that there will be
several correct detections.

The face recognition module in TourGuide is applied
whenever a face is successfully detected. It is based on
the ARENA [23, 22] system developed by Sim et. al.
from CMU and JustResearch. ARENA uses a nearest
neighbor classifier to identify faces by comparing their
distance using an L1 norm to labeled example faces (pro-
totypes) taken from a training set. Input faces are cor-
rectly identified when they fall within some predefined
distance threshold of the correct prototype face. On rela-
tively small populations the ARENA system has gener-

ated impressive results using fairly unconstrained input
imagery.

An example input image and the resulting output is
shown in Figure 1. A 320 � 320 central section of the
640 � 480 input image is passed through the face detector.
If successful, the detected face is first enlarged by 20%,
summarized, and then processed by the face recognizer.
In the shown example, the recognizer reports a successful
match and a confidence level for that match.

The overall code structure of the face detection and
recognition system is shown in the appendix. In the en-
visioned application environment, the system may pro-
cess several input images before successfully recogniz-
ing a person. The entire system has been implemented
in C and runs under the Linux operating system. The
source code is approx. 6000 lines, including comments.
Since the current family of StrongARM processors does
not have a floating-point unit, we have developed a fixed-
point package for efficient floating-point emulation.

The TourGuide system is an interesting application for
our benefit analysis of remote task execution for power
management purposes since it exhibits important aspects
of mobile applications, including

� necessary mobility: The system will be carried by the
laboratory visitor who is meeting with researchers
inside and outside the laboratory space.

� potential disconnection: Some part of the labora-
tory may not be covered by the wireless communi-
cation network. In addition, the communication is
interrupted while the visitor is leaving the laboratory
space.

� continuous operation: Even if the visitor is not
within the range of a base station, the system should
continue to work, although not at the same perfor-
mance level as within the range of the network.

Dealing with all or just a subset of these aspects is a
challenge, and we believe that compiler support will play
a crucial role for effective power management of such ap-
plications.

4 Compilation Strategy

The basic idea of our compilation strategy is to identify
program tasks that are safe to be executed remotely, and
that will lead to power savings on the mobile architec-
ture due to remote execution. During remote execution,
the mobile machine will enter a hibernation state in order
to save as much energy as possible. It is the compiler’s
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responsibility to insert code that will initiate power state
transitions on the mobile machine. While waiting for the
completion of a remote task, the mobile client and server
may get disconnected. If after a predetermined waiting
time the remote server has not finished executing the as-
signed task, the local client will reexecute the task locally.

The proposed compilation strategy is based on a
client/server model and consists of several steps. In the
first step, program tasks have to be identified that can
safely be executed remotely, i.e., on the server. In the
second step, the profitability of remote task execution is
examined for remote task candidates. In the final step,
two versions of application are generated, one that will be
executed on the mobile machine, and one on the remote
server accessible from the mobile machine via a wireless
connection.

Disconnection events are dealt with through a check-
pointing mechanism that provides on-demand data ex-
change at compile-time determined program points. This
checkpointing mechanism serves two purposes, namely
(1) informing the client about the progress of the remote
task on the server, and (2) allowing the client to receive
partial results in order to avoid entire task reexecution in
the event of a server or network failure. The version of
the application running on the remote server can be con-
sidered a specialized server for that application.

The compilation strategy assumes that the entire source
program is available during compilation. The compiler
will classify I/O operations as performed on replicated
data or client data.

Copies of replicated data are stored on the client and
the server machines at the time the client and server pro-
grams are compiled on the two platforms, i.e., are made
available to the client and server as part of the program
installation process. Neither replicated data nor program
code will need to be communicated during program ex-
ecution. Client data is acquired by the client, and may
lead to communication to the remote server. We will refer
to I/O operations such as image acquisition as client I/O.
Figure 2 shows the task graph of our TourGuide system,
together with its object life ranges. The task graph nodes
represent system initialization (SI:1), image acquisition
(I/O:2), face detection preprocessing (PFD:3), face de-
tection (FD:4), face recognition preprocessing (PFR:5),
face recognition (FR:6), and final answer (I/O:7). Table 1
summarizes the data objects and their life ranges relative
to the subtask nodes in the task graph.

A strategy for remote task execution may evaluate the
profitability of remote execution for each individual task
between a pair of client I/O operations. Our basic strategy
is not as general, and is based on the assumption that the
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Figure 2: Task graph with object life ranges for the Tour-
Guide system.

network and server is available most of the time. In such a
scenario, the client may want to initiate remote execution
as early as possible, and once initiated, may want to ex-
ecute as many tasks as possible remotely, i.e., execute all
subsequent tasks remotely until the next client I/O opera-
tion is reached. During remote execution, the client may
enter a hibernation state. The client may wake up peri-
odically to check the progress on the server, and may re-
quest checkpoint data from the server before entering the
next hibernation interval. Suitable policies for wake-up
and on-demand checkpointing are currently under inves-
tigation. For example, a client may request the execution
of a checkpoint if the wireless signal strength is below a
predefined threshold, indicating a potential disconnection
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objects life size comments
range

�
in bytes

replicated
neuralNets 2 - 7 300K neural networks
faceMask 2 - 7 412

���������
pnm image

facesDB 2 - 7 2.8M faces data base of
CRL staff members

non-replicated
image 3 60K �	� ��� ��
 � jpeg image
imageBW 4 - 5 310K �	� ��� ��
 � pnm image
imagePyramid 4 153K 10 levels, based on cropped�����
�������

“imageBW”
faceDetected 5 12 location & size of det. face
faceSD 6 269 ��� � ��� scaled-down image
finalAnswer 7 200 output of recognizer�
life on entry to node(s).

Table 1: Data objects and their life ranges for the main
routine of the TourGuide system program.

event in the near future. The wake-up and checkpointing
policies will be implemented through a runtime library
and code generated by the compiler as part of the client
and server programs. No communication is necessary be-
tween the client and the server once the remote execution
has been initiated, except for checkpointing purposes and
the final answer computed by the server. The resulting
execution model has strong similarities with the concept
of program continuations in the sense that once a remote
task execution is initiated, it will be able to execute the
task to completion without any further communication.
Due to space limitations, a discussion of our checkpoint-
ing mechanisms is beyond the scope of this paper.

A candidate thread starts with the initial client I/O op-
eration and ends with the final client I/O operation. Once
a remote execution has been initiated, the thread will ex-
ecute all remaining tasks remotely, returning the final an-
swer to the client just before the final I/O operation. The
first task executed remotely is called the remote entry
point. It is important to note that this remote task execu-
tion strategy serves as a base-line strategy, and may need
to be refined further.

The communication necessary before the initiation of
each remote execution corresponds to the set of non-
replicated data objects that are life at the remote entry
point. A candidate thread is safe if all data object in-
stances that need to be communicated to the remote server
are known. For example, an object instance that can-
not be uniquely identified at compile time must not be
life at a remote entry point. Such a life range will force
the compiler to eliminate this particular candidate thread.
Compile-time techniques such as points-to analysis (e.g.:

[3]), escape analysis (e.g.: [16], and type analysis will be
used to determine what objects and how objects need to
be transmitted between client and server.

For example, Figure 3 shows the candidate thread
PFD+FD+PFR+FR (entry point 3) of our TourGuide ap-
plication with its three compile-time determined on-
demand checkpoints. The compiler determines the data
objects that need to be communicated at a checkpoint in
order to resume program execution on the mobile client.
The decision whether or not to execute a checkpoint will
depend on the selected checkpointing policy and will be
evaluated at runtime. The only life object at entry point
3 is image. The object is communicated to the server as
part of initiating remote execution. The remote server will
send object finalAnswer to the mobile client once the
task FR has been successfully executed on the server.

5 Benefit Experiments

The TourGuide face detection and recognition system
serves as a test case for the discussed compilation strategy.
The four target configurations for this study are shown in
Table 5. All machines run the Linux operating system and
used wireless 802.11b PC cards as their wireless network
connection. The experiments focus on the execution time
reductions obtained through remote task execution for the
different configurations.

In general, most performance oriented transformations
will also improve the overall energy consumption of an
application [25, 26]. However, Kandemir et al. showed
that for loop tiling, the best tile sizes for performance and
energy consumption are different, i.e., energy consump-
tion and execution time improvements are different opti-
mization goals [11].

In this paper, we focus on execution time reduction as
the main tool to decrease energy consumption on a mobile
computer, taking advantage of the significant resource gap
between mobile computers and high-performance servers
and workstation. In the presence of resource hibernation
[24], remote execution is an enabling transformation, al-
lowing significant energy savings even in cases where the
overall program execution time is increased.

5.1 Skiff

Skiff has been designed as a low-power computing appli-
ance and is based on a 233MHz StrongARM processor
(SA-110). It has 32MB of SDRAM, 16KB I-cache, 16KB
D-cache, 8MB flash memory, one 10Mbps Ethernet port,
and two PCMCIA card slots, but no floating point unit.
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Figure 3: Client and server task graphs for remote thread
PFD+FD+PFR+FR. The remote thread has three possi-
ble checkpoints.

A full system specification is given elsewhere [8]. The
system has separate power planes (2V, 3.3V, and 5V) and
allows power measurements for individual system com-
ponents such as the processor, memory subsystem, and
controllers. The power measurements were taken using
a Tektronix oscilloscope at each of these power measure-
ment points. In addition, the power supply reported the
overall power consumption of the entire system, allowing
power measurements for system components such as the
power regulators.

Although Skiff has been designed to serve as a low-
power computing appliance and not a mobile device, its
system characteristics are similar to other handheld com-
puters such as Compaq’s Itsy [5] and Compaq’s iPAQ
H3600, which are also based on a StrongARM processor

mobile client remote server
SA110 (SKIFF) PentiumII

233 MHz 300 MHz
SA110 (SKIFF) Dual Proc. PentiumIII

233 MHz 450 MHz
SA1100 (iPAQ) Dual Proc. PentiumIII

206 MHz 450 MHz
PentiumII Dual Proc. PentiumIII
300 MHz 450 MHz

Table 2: The target systems for the case study.

(SA-1100). Figure 4 shows the average power dissipation
and distribution of Skiff for the four main tasks of Tour-
Guide in a stand-alone mode. The TourGuide system pro-
gram was compiled using gcc -O3 and then executed
and measured for several input images. For the Skiff ex-
periments, we used Compaq’s WL100 11 Mbps wireless
PC card. Overall, Skiff dissipates 3.77W with the wire-
less PC card, and 2.82W without such a card. Note that
even though the wired Ethernet connection is not “in use”,
the Ethernet controller consumes significant power. The
same holds for the wireless LAN card.

5.2 iPAQ Handheld and PentiumII Laptop

We were only able to take overall power measurements for
these two systems. Compaq’s iPAQ H3600 has a 206MHz
Intel StrongARM SA-1100 processor. Since the basic unit
does not have a PCMCIA slot, we used a PCMCIA expan-
sion pack for the wireless PC card. For the image process-
ing application, the iPAQ dissipates on average 2.20W
with a wireless Orinoco (Lucent WaveLan) 11 Mbps card,
and 1.25W without the card. Throughout the experiments,
the back light of the color display was disabled.

The 300MHz PentiumII based laptop dissipates 19W
on average without the display. Here, we used Compaq’s
WL100 11 Mbps PC card as the wireless network connec-
tion.

5.3 Initial Benefit Analysis

In the initial experiment, we measured the execution times
of the basic tasks in the task graph and the cost of com-
municating non-replicated life objects at each of the four
remote entry points. The communication was performed
by reading (receiving) and writing (sending) the life data
objects to and from files residing on the remote host. In
other words, communication was done through the net-
work file system (NFS). The reported results are based on
four input pictures. Three measurements were performed
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Figure 4: Average power measurements for TourGuide on
Skiff.

for each picture, and the reported numbers are the medi-
ans over all runs and images. Timings are wall clock times
in seconds.

Mainly due to the fact that the StrongARM (Skiff and
iPAQ) does not have a floating point unit, floating point in-
tensive computations such as in PFD and FD are executed
on the order of ��� � faster on the dual processor Pentiu-
mIII system than on Skiff. For this case study, all four
possible candidate threads, namely PFD+FD+PFR+FR
(entry point 3) , FD+PFR+FR (entry point 4), PFR+FR
(entry point 5), and FR (entry point 6) are safe. Table 3
shows the expected overall execution times for the dif-
ferent candidate threads and target systems. The figures
were computed as the sum of execution times for tasks and
communications performed on the client and host. Com-
municating a data object involves writing the object into
a file on the sender side, and reading it out of the file on
the receiver side. The reported figures exclude system ini-
tialization times (SI), and the time needed to acquire the
input jpeg image.

Execution time reductions correspond to the expected
energy savings if the mobile client does not support hi-
bernation states for its components. The wireless PC
cards lead to additional power dissipation of approxi-
mately 950mW as shown in Figure 4. A Skiff board
without the wireless LAN card dissipates 2.82W. Figure 5
shows the expected energy consumption for Skiff given
the additional power costs of the wireless connection. The
stand-alone version does not initiate any remote execution
and does not use the wireless PC card, i.e., the PC card is

candidate thread execution time (in seconds)

Skiff local only 8.691
iPAQ local only 9.510
PII local only 0.708

Skiff & iPAQ & PII &
PII PIII PIII PIII

PFD+FD+PFR+FR 0.877 0.624 0.620 0.469
FD+PFR+FR 4.586 4.347 4.345 0.655
PFR+FR 7.716 7.543 8.089 0.655
FR 8.702 8.632 9.425 0.626

Table 3: Execution times of four candidate threads.

not inserted into one of Skiff’s PCMCIA slots and there-
fore does not consume any power.

For the iPAQ, the power dissipation difference is even
more significant, namely 2.20W with, and 1.25W without
the card, i.e., over 40% of the overall power budget are
due to the wireless connection.

For the PentiumII laptop, the additional power con-
sumption of the wireless card is not significant (5% in-
crease). For all target systems, we did not observe a
significant difference in power consumption due to pro-
gram initiated communication over the wireless Ethernet
connection, i.e., the costs for sending and receiving were
comparable.

The results show speedups of up to 13.9x with result-
ing energy savings of up to 10x on Skiff, and speedups of
up to 15.3x with resulting enery savings of up to 8.6x on
the iPAQ. However, the energy consumption can be sig-
nificantly larger for some candidate threads as compared
to the version of the code that is executed only on the mo-
bile client due to the additional energy consumed by the
plugged-in wireless LAN card. On the laptop, energy sav-
ings on the order of 30% are possible. In contrast to Skiff
and iPAQ, all candidate threads lead to energy savings.
The reported figures do not consider power savings due to
transitions into low-power hibernation states on the mo-
bile client.

6 Prototype Compiler

The implementation of a prototype system is currently un-
derway and is based on the SUIF2 compilation infrastruc-
ture. The current prototype compiler is limited, and the
final paper will contain updated results with respect to this
compilation system.

The compiler takes C programs as input. Candidates
for remote execution are procedure calls in the main rou-
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tine. All calls are assumed to be safe, i.e., procedure calls
do not have side effects other than modifying data objects
passed as reference parameters. This condition is cur-
rently not verified by the compiler. The compiler gener-
ates separate client and server programs, where client and
server communicate with each other through Unix sock-
ets. A parameterized, static performance model is used to
determine the profitability of remote execution of a can-
didate procedure call. The compiler generates a call to
a policy routine for each candidate procedure call. The
policy routines evaluate the parameterized performance
model for the sizes of the actual parameters at each par-
ticular candidate call site. The policy routines also check
whether a communication link is available or not. In the
latter case, the candidate procedure call will be executed
locally. The basic decision strategy is as follows:

if local computation cost(candidate call) �
(remote computation cost(candidate call) +
communication cost(parameter list with sizes)

then
remote call(candidate call)

else
local call(candidate call)

The used cost functions have been derived by a micro-
benchmarking approach [2, 20], and reflect only expected

execution times as an approximation to energy consump-
tion. Executing a remote call requires the marshaling and
unmarshaling of the actual parameters and final function
value at the client and server sides. The compiler inserts
the appropriate code based on the types of the formal pa-
rameters. Once a remote call is initiated, the client blocks
until the remote call terminates. The preliminary proto-
type does not support on-demand checkpointing, and the
client program will block in case of a disconnection event.

Preliminary experiments were performed for two sim-
ple programs, a selection sort and accumulation code, and
a program that performs private RSA encryption [4]. The
first code takes as input an integer array of size � and re-
turns its sum, while the encryption code takes as input
a message of size � , and returns the encrypted message.
The experiments used a 233MHz Skiff board as its client
machine, and a 440MHz SUN UltraSparc-10 workstation
as the server. Figure 6 shows the execution times of the
local and remote versions of the two example programs.
A simple performance model is able to detect the cross-
over points, allowing the correct selection between local
and remote procedure execution. For large probem sizes,
the remote version is up to 2.3x and 2.7x faster for the
sort/accumulation and encryption programs, respectively,
resulting in corresponding enery savings of up to 41% and
50%.

7 Related Work

Code generation for reducing energy consumption of an
application has been discussed by researchers at Prince-
ton and Fujitsu [25]. Their work showed that most clas-
sical optimizing for execution speed alone will also im-
prove the overall power efficiency of an application. For
instance, improving the locality of a computation will
avoid cache misses which may require off-chip data to
be fetched, an operation that consumes several orders of
magnitude more energy than an access to an on-chip cache
or register. In the context of wireless communications,
most work has concentrated on low-power communica-
tion protocols [12] or using the wireless network as a sec-
ondary storage device [13]. The latter work mainly deals
with problems arising from limited network bandwidth.

The Odyssey from CMU was designed by Satya-
narayanan et al. to support a variety of mobile information
access applications [14]. The applications run on the mo-
bile client and access data objects on the remote server.
The client tries to adapt to changes in the network band-
width or other resources such as remaining battery life [7]
by requesting data at different levels of fidelity or qual-
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Figure 6: Measured execution times of local and remote
versions of two sample programs.

ity. For example, fewer image frames may be requested
in response to a reduction in communication bandwidth.
The discussed approach relies on the semantic properties
of the data processing done by the client. Data loss or
skipping data, for instance by dropping a frame in the con-
text of an image processing application, is not acceptable
for all classes of applications. This application dependent
aspect is important and effective, but orthogonal to the
compiler approach discussed in this paper. In addition,
their work does not deal with disconnection, i.e., total loss
of network connectivity. However, Satyanarayanan et al.
have developed operating system techniques that can deal
with disconnectivity in the context of CODA, a distributed
file system [21]. The CODA project addressed the impor-
tant problem of establishing a consistent state of the file
system across the client and server after network recon-
nection. More recently, Flinn et al. have developed Spec-
tra, an environment that supporst remote execution as part
of the Aura architecture, which includes the CODA and

Odyseey systems [6]. Spectra uses monitoring techology
to balance different optimization goals of an application
that contains Spectra operations and system calls.

Executing task on a remote server for the purpose of
power savings is not a new idea. Researchers at UCLA
and the University College London have investigated the
profitability of remote task execution for operating sys-
tem level tasks [19, 15]. In contrast, our compilation
framework identifies within a single program candidate
computations that are profitable to be executed remotely.
Rudenko et al. have developed a remote processing
framework that supports remote task mapping [19] at the
OS level. Files are the objects that are communicated be-
tween a client and server. For a set of compilation tasks,
the framework achieved power reductions on the order of
3 to 6 times as compared to the compilation done on the
client machine. On a task set that includes text processing
and Gaussian Elimination tasks in addition to compila-
tion tasks, they report power consumption savings of up
to 50% [18]. Battery lifetime extensions of up to 21%
were reported by Othman and Hailes [15]. These results
were obtained by simulation, and different assumptions
about the available network bandwidth and CPU process-
ing power of the client vs. the server machines. To the
best of our knowledge, no compiler work has been done
to support remote task execution for the purposes of en-
ergy savings.

Our proposed compile-time techniques identify remote
subtask within a single program and determine when their
execution may be profitable in terms of overall energy
savings. For many applications, compilers are able to ana-
lyze entire programs and predict their future behavior and
resource requirements. Operating systems and hardware
approaches rely on the past observed program behavior to
predict future program characteristics. Preliminary results
of compiler support for dynamic voltage and frequency
scaling for power and energy management purposes has
been very encouraging [9, 10]. In addition, our work ad-
dresses the important issue of network disconnection and
failure recovery. Finally, our power measurements are
more precise than previously reported figures since we are
able to measure instantaneous power directly at the hard-
ware level, in particular for the Skiff system.

8 Conclusions and Future Work

This paper presents a compilation framework that iden-
tifies program regions that may be candidates for remote
execution. To the best of our knowledge, we are the first to
discuss image processing application in the context of mo-
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bile environments, and report actual power measurements
for such an application on existing low-power platforms,
instead of reporting power predictions based on simula-
tion.

Remote task execution can be an effective compiler op-
timization for image processing applications. Preliminary
experiments on StrongARM based systems show poten-
tial energy savings of one order of magnitude, mainly due
to the reduction in overall execution times. On a Pentiu-
mII based laptop computer, up to 30% of the energy was
saved. However, the experiments also show that remote
tasks have to be selected carefully since a poor choice can
lead to a significant increase in overall energy consump-
tion. An initial prototype system has been implemented
based on the SUIF2 compiler infrastructure [1]. Experi-
mental results show the effectiveness of our compilation
framework for two sample programs. The compiler was
able to correctly choose between local and remote execu-
tion of procedure calls, resulting in up to 41% overall en-
ergy savings for the first, and 50% overall energy savings
for the second sample code.

The initial compiler prototype is currently extended to
perform interprocedural safety and more advanced prof-
itability analyses for remote execution. In addition, com-
piler techniques are investigated that will initiate transi-
tions between hibernation states of system components,
allowing additional energy savings.
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A Basic Structure of TourGuide

System Initialization (SI)
create in-memory representation of neural networks (for face detection)
read-in face mask
create in-memory representation of faces data base (for face recognition)

while active do

Image Acquisition (IA)
obtain �����������	� pixel jpeg image

Preprocessing for Face Detection (PFD)
decompress jpeg image into black&white pnm image
crop image to 
������

���� pixels (center section)
normalize image for contrast
build image pyramid with scale factor 1.1, where last five

levels are pruned, resulting in 10 remaining levels

Face Detection (FD)
for i = highest pyramid level downto lowest pyramid level do

compute set of 
����

	� pixels target regions that may contain a face (pre-filter)
foreach target region do

detect ��������� pixels face in target region
if detection successful then exit both surrounding loops

endforeach
endfor

Preprocessing for Face Recognition (PFR)
Increase size of region with detected face by 20%
Normalize detected face for contrast
Scale-down detected face to ��������� pixels

Face Recognition (FR)
determine best matching score with ��������� pixels faces in data base
if best match is above predefined quality threshold then

report successful recognition and return persons identity
else

report unsuccessful recognition
endif

enddo
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