
Software Power Estimation and Optimization for High Performance, 32-bit
Embedded Processors*

Jeffry T. Russell Margarida F. Jacome
Department of Electrical and Computer Engineering, University of Texas at Austin

jeffry@equator.ece.utexas.edu jacome@ece.utexas.edu

* Sponsored by NSF, under CAREER Grant No. MIP-9624321.

 Abstract
A software energy estimation model is presented for a

family of high performance, integrated, 32-bit embedded
RISC processors. This model is significantly less complex
than previous models, and yet is demonstrated to
accurately predict energy consumption to within 8% with
99% confidence based on physical measurements.
Factors such as operating frequency, source/destination
registers, and operand values are explored. In view of this
model, previously proposed optimizations are evaluated
for potential energy savings. We conclude that, for the
class of processors under discussion, a good optimizing
compiler that minimizes execution time will simultane-
ously minimize energy consumption.

1. Introduction
Power consumption is becoming increasingly

important in the design of embedded applications. It
places requirements on heat dissipation, which directly
affect unit cost. Furthermore, in portable systems, the
minimization of energy consumption, the time integral of
power, is critical to extending battery lifetime.

In this paper we develop a software energy estimation
model for two processors of a family of high perform-
ance, 32-bit, RISC embedded processors and then study
the effectiveness of previously proposed power saving
optimization techniques. Examples of embedded
applications based on a single processor of this type
include laser printers, network interfaces, X-terminals,
digital storage oscilloscopes, Global Positioning
Receivers, industrial controllers, and medical
instrumentation.

A typical family is the i960 Embedded Processor
architecture, consisting of about twenty implementations
that vary widely in cost (10s to 100s of dollars) and
performance (up to 100s of MIPs). The processors are
differentiated by speed, packaging, and level of
integration, which may include such system support
features as caches, pipelined bus interfaces, interrupt
controllers, DRAM memory controllers, or virtual
memory managers. We considered two implementations
of the architecture, the 80960JF and 80960HD [16][18].
The HD enhances performance for 3-4 times the cost with

a clock doubled core and parallel execution of math and
memory operations [22].

A mature processor family such as this includes a
number of software libraries for operating systems, device
drivers, communication protocols, and high-level routines
to support math, graphics, and user applications.
Development tools such as optimizing compilers,
assemblers, debuggers, emulators, and simulators enable
timely development of complex applications using any
processor in the family.

In order to study the effectiveness of previously
proposed software energy optimization techniques for this
important class of embedded processors, we started by
working on the derivation of an energy estimation model
based on the characterization of average power for
individual instructions. Accordingly, our initial
experiments examined the variation of power
consumption across the assembly instructions of the two
target processors. Statistical analysis techniques were
used to infer the significance of factors such as operating
frequency, source and destination registers, and operand
values.

The interesting conclusion, supported by our extensive
physical measurements, was that for both the JF and HD,
the variations of power consumption across the assembly
instructions proved to be of no statistical significance. In
short, there is actually no need to consider the individual
assembly instructions to accurately predict power and
energy consumption. Specifically, it will be shown that
power consumption can be predicted to within 8%
accuracy with 99% confidence, simply by using the
processor average power consumption per cycle
multiplied by the software execution time (in cycles). The
important implication of this result, for this class of
processors, is that minimizing execution time means also
minimizing energy consumption. The optimizing
compiler that supports this processor family, while
minimizing software execution time, is also
simultaneously generating minimum energy code.

The remainder of this paper is as follows. In Section 2
we discuss related work. In Section 3 we outline the
experimental method, the proposed energy model, and the
statistical test to support the model. Some conclusions are
given regarding applicability of these results in Section 4.

2. Background
A good survey of low power design and estimation

techniques for hardware is given in [1] and [2]. Many
power analysis techniques use software as a stimulus for a
hardware simulation [10] [11] [12] [13] [14] [15]. Tiwari,
et al. [4] used physical measurements for software power
analysis. Several software optimizations for power and/or
energy were proposed in [5][6][7][8][9] .

The idea of developing an instruction level power
model for individual processors was first proposed in [4].
Power is modeled as a base cost for each instruction plus
a circuit state overhead that depends on neighboring
instructions. A method is proposed to empirically
determine these costs in which small program segments
with repeated instructions were run in an infinite loop so
that all accesses occurred from the cache. An ammeter
was used to measure the average current over a 100ms
time window, which is proportional to the power
consumed. We have used this experimental method as the
starting point for our investigation.

3. Energy Model
The energy, E, consumed by a processor running a

program is

∫
+

=
Tt

t

o

o

dttPE)(,

where T is the software execution time and P(t) is the

instantaneous power. Average power, aveP , is defined as

∫
+

=
Tt

tave

o

o

dttP
T

P)(
1

and thus we can write

avePTE ⋅=
Accordingly, to measure energy consumption, a
measurement for average power and total execution time
is needed.

 However, there is a more convenient form in which to
pose the software energy estimation problem. Total time,
T, is related to N, the total number of execution cycles,
and τ, the clock period, by T=Nτ. The average power,

aveP , is thus the summation of the average power during

each clock period,)(, iP aveτ , where i=1…N, as given by

∑
=

=
N

i
aveave iP

N
P

1
,)(

1
τ

The value)(, iP aveτ is the average power consumed

during one cycle of the instruction and motivates our
study of the variation in power consumption across the
instruction set. (Note that some instructions take multiple

cycles to execute.) We observe that each)(, iP aveτ is

dependent on the present and past states of the processor,

and thus measuring an instruction in isolation is a biased
estimate of the power consumed by an instruction in a
typical application.

Execution time depends significantly on runtime
conditions such as cache misses, data dependent pipeline
stalls, operand dependent instruction execution times, and
external DRAM refresh cycles. There are several
accurate ways to measure execution time: cycle accurate
simulation, instrumentation of the actual system, or
software based timers inside the processor. For the i960
processor family, Intel actually offers a remote, web-
based evaluation facili ty where one can run code on a
variety of embedded processors and obtain execution time
estimates. For our experiments, we directly measured
execution time with an oscilloscope.

In the following sections, we describe the experiments
used in our investigation, propose a model for power
estimation, and present results that demonstrate the
accuracy of the model. We conclude with a discussion on
the effectiveness of potential software optimizations.

3.1 Experimental Method
We initially expected to develop a model similar to

Tiwari, et al [4] that assigned a power cost to each
instruction. As in [4], we measured power consumption
of several instances of individual instructions executing in
an infinite loop. However, our experimental measurement
technique had a number of important differences with
respect to [4]. We also felt it was important to perform a
careful statistical analysis of the measured results.

To measure the characteristics of each instruction, the
following assembly pseudo code was used.

Digi ta l Storage
Osci l loscope

D R A M
Serial /Paral lel

Interface

External
Power
Supply

CPU

Debugger , Compi le r
i960 Evaluat ion Plat form

T
ri

gg
er

C
ha

nn
el

 1

C
ha

nn
el

 2

Figure 1. Experimental platform.

main(random seed)
{ init. system: cache, system regs
loop: randomize input values

load (start address)
100 x (assembly instruction)
load (end address)
branch loop

}

The processor was configured so that the program
executed from cache, yet external memory cycles could
be probed. The start address and end address were
used to set up a time window so as to ensure that power
was measured only during the instruction under
examination. Prior to each loop iteration, the operand
values were randomized.

Figure 1 shows our measurement configuration, using
the i960 Cyclone Evaluation Platform. It provides a
common system with interchangeable processor modules.
The tested processors are binary compatible, and every
effort was made to control environment conditions during
measurements. Hence, the results for the two processors
are directly comparable.

To measure power, a precision resistor was placed in
series with the power connection to the processor. This
introduced stray inductance in the power delivery circuit,
which in turn induces a noise voltage during switching
surge currents. To counteract this effect, decoupling
capacitors were added to the wires. We experimented
with different capacitor values to reduce the high
frequency component of the noise.

A digitizing oscilloscope, a LeCroy LC534, with a
sample rate of 500 Mbps was used to measure the
instantaneous power. The oscilloscope provides for math
operations on input values and gathers statistics on its
measurements. We measured instantaneous power at the
bandwidth of the oscilloscope, and calculated average
power for each iteration of the loop of instructions. We
accurately measured the power across only the body of
the loop, which consists of 100 instances of the
instruction.

Referring to Figure 1, Channel 1 is used to probe the
power supply voltage, V1. To measure the instantaneous
power, an absolute measurement of the voltage at the
processor, V2, was multiplied by the differential voltage
across the resistor (V1-V2), and scaled according to the
resistance, R, as given by

)(
))()((

)()()(2
21 tV

R

tVtV
tVtItP

−== (*)

The average power, aveP , was measured for several

iterations of the program loop. Based on these

independent trials we estimate its mean, aveP , and
corresponding sample deviation, s.

The oscilloscope measures voltages to within ±3mV,
which we use to model measurement uncertainty of one

standard deviation for a single measurement. An analysis
of error propagation [16] for power measurements based
on (*) gives measurement uncertainties of ±42mW
(≈2.5%) and ±70mW (≈2.5%) for the JF and HD
processors, respectively. We have assumed that V1, V2 are
independent and approximately equal, making the above
estimates conservative.

Power fluctuates significantly during the clock cycle,
but has a stable average value. This is demonstrated on
the JF processor for which the instantaneous power has

typical deviations of 600 mW from aveP and of s=20 mW

from aveP . An example screen plot of the oscilloscope in
Figure 2 shows the power on the top (Channel C) and
the address strobe line on the bottom (Channel 1). Notice
the high frequency power deviations; the vertical scale on
Channel C is 3 w/div. The horizontal division is 50 ns,
and the clock period is 30 ns.

3.2 Measured Power and Energy
We applied the above measurement procedures to all

"normal" instructions that would be output by a compiler.
This excludes special instructions for manipulating the
cache, modifying processor controls, and debug/trace
instructions. Both processors offer a variety of
instructions to support high-level languages, such as
compare and decrement (cmpdeci), conditional add
(addc) or branch if greater (bg), which were included in
the measurements.

 Figure 2. Screen plot of oscilloscope.

Prior to measuring power and execution time for the
instruction set, we examined some variations in the
assembly instructions that might influence power
consumption, specifically:

• We considered the effect of different source and
destination registers on the dispersion of measured
power for the move (mov) instruction. There are
16 local and 16 global registers, which is a total of
992 permutations of source and destination. We
tested a random sample of size 32. The coefficient
of variation (CV) for the JF and HD processor was
3.0% and 1.6%, respectively. These were judged
to be insignificant.

• We examined the effect of operand values using
the multiply (mul) instruction. We ran 22 trials
using worst case operand values based on the
number of 0s and 1s. The CV for the JF and HD
processor was 5.4% and 2.2%, respectively. The
CV for the JF processor was judged to be
significant, which led us to include the
randomizing element in the test program (for both
processors).

• We examined the effect of condition codes and
conditionally executed instructions. We tested all
variations of the conditional add instruction with a
random mix of true and false conditions. Each
trial was repeated with five different operand
values, as the randomization for each loop

iteration was not implemented for this experiment.
The CV for the JF and HD processor was 1.1%
and 0.7%, respectively. These were judged to be
insignificant.

After determining which features of an assembly
instruction were significant, we measured power and
execution time for each of the 105 normal instructions.
All these experiments were conducted at an operating
frequency of 33 MHz. These experiments were
conducted with randomized operand values. A small
subset of the measurements is shown in Table 1. The
average power and exact execution time is reported. Note
that both an internal (cache hit) and external (cache miss)
load instruction (ld) are listed. A store instruction (st)
can only write through the cache. As would be expected,
several instructions executed faster on the higher
performance HD.

The mean of aveP across all instructions is 1.68 watts
for the JF processor and 2.85 watts for the HD processor.
However, it is inappropriate to use this descriptive
statistic to infer an average value for power consumption.
This is primarily due to the fact that the tested instructions
do not represent a random sample of all occurences of
instructions. A more appropriate representation of a
constant parameter for power is the median average. For
the JF processor, the median average is 1.69 watts with a
0.07 watt semi-interquartile and for the HD processor it is
2.83 watts with a 0.06 watt semi-interquartile. The semi-
interquartile range is a measure of dispersion that reports
the approximate range that contains 50% of the values.
Using the median average, we propose a hypothesis
concerning the use of a constant value for power
estimation, which we can test with statistical inference.

3.3 Proposed Model
We propose a simple model in which power is

modeled with a constant parameter. We use the method of
statistical inference to support the constant parameter
model. The experiment hypothesis is that the power
consumption can be modeled with a constant parameter to
accurately estimate power with less than 8% error. We

define the error estimate as est∂ = aveP - estP , where estP is

the power estimator, our constant parameter.

JF Processor HD Processor

Instr. aveP s Cyc. aveP s Cyc.
add 1.77 0.03 1 2.87 0.03 0.5

sub 1.74 0.02 1 2.85 0.03 0.5

mul 1.72 0.03 5 2.80 0.02 2.5

div 1.62 0.02 35 2.43 0.02 17.5

mod 1.62 0.02 35 2.49 0.02 17.5

rotate 1.79 0.03 1 2.85 0.03 0.5

and 1.75 0.03 1 2.86 0.04 0.5

xor 1.76 0.02 1 2.87 0.03 0.5

setbit 1.75 0.03 1 2.87 0.03 0.5

bswap 1.62 0.02 10 2.81 0.04 0.5

mov 1.67 0.02 1 2.83 0.03 0.5

Extern. ld 1.71 0.01 9 3.18 0.02 6.0

Intern. ld 1.75 0.02 2 3.40 0.03 0.5

Extern. st 1.97 0.05 5 3.23 0.02 5.0

cmp 1.63 0.02 3 2.76 0.03 0.5

cmpdec 1.62 0.02 3 2.78 0.03 0.5

b 1.40 0.01 2 2.57 0.02 1.0

call/ret 1.56 0.01 14 2.95 0.02 5.0

Table 1. Subset of power measurements.

t-test parameters

Proc. Ave.
Error

Std
Dev.

Est.
P

Error
Limit

t value α. Crit.
pt

JF -0.12 0.03 1.69 8.0% -14.44 0.01 5.84

HD -0.15 0.06 2.83 8.0% -10.20 0.01 5.84

Table 2.

We define the statistical hypothesis as

%8:

%8:

1

0

<∂
≥∂

est

est

H

H

A t-statistic is used since the sample size is small and the
variance is unknown. We chose a sample size of
programs, shown in Table 2, based on resource limits.
The specified level of significance is α=0.01 for a two-
tailed test. The results of the experiments are shown in
Table 3.

Based on this statistical test, the null hypothesis is
rejected. We therefore conclude, with 99% certainty, that
our constant parameter model predicts power
consumption with less than 8% error.

3.4 Power Optimizations
Lee et al. [7] demonstrated the relevance of a number

of fine grain optimizations for a custom DSP processor,
based on the Tiwari model [4]. This and other studies
[5][8] report power saving optimization techniques based
on instruction reordering, instruction packing or recoding,
operand reordering, register allocation, and memory
assignment. These techniques also correspond to
performance improvements in most cases.

A good optimizing compiler, which is available for the
family of embedded processors under consideration,
addresses these performance issues so as to minimize
execution time. Thus energy consumption is also
minimized.

3.5 Power versus Frequency
The behavior of power consumption versus frequency

for a few representative instructions of the processors is
shown in Figure 3. The expected linear relationship
between power and frequency [3] is apparent.

We conducted experiments on a random sample of 10
different instructions at four different frequencies. A least
squares regression analysis was conducted to fit a line to
the power-frequency relationship for each instruction. We
estimate the power-frequency (P-F) ratio as the mean of

the slope of the fitted lines. The JF processor P-F ratio is
0.915 with a standard deviation of 0.306. The HD
processor P-F ratio is 0.935 with a standard deviation of
0.343. The CV for the JF and HD, respectively, is 37%
and 33%.

The large dispersion of the P-F parameter, which is
due to the mix of sampled instructions, precludes its
usefulness as an accurate estimator for small changes in
frequency. However, for a given program, the P-F ratio
will have a small deviation because the instruction mix is
constant. The power-frequency relationship indicates that
the designer can achieve power/energy savings by
increasing processor utilization in order to be able to
reduce the clock frequency.

4. Conclusion
We have presented a model for estimating power and

energy using a constant parameter for power
consumption. This model is accurate to within 8% with
99% confidence. The model features exceedingly simple
calculations for estimating energy: only the execution
time estimate is needed, multiplied by the constant
parameter for average power. The accuracy of the model
was demonstrated for two implementations of the i960
Embedded Processor family. The JF and HD processors
represent quite distinct points in the wide range of
cost/performance offered by this important family. Based
on the common architecture and development tools, we
expect this power model to be widely applicable to this
and similar families.

We further observe that power consumption is linearly
dependent on frequency.

For the general class of embedded systems previously
discussed, we conclude that the designer should work
towards minimizing software execution time and, as a
consequence, power/energy consumption will be
minimized.

For external memory and I/O access instructions, it
was found that both power consumption and execution

JF Processor HD Processor

Measured Derived Measured Derived

Program Description Time (µS) aveP Energy
(j)

Rel.
Error Time (µS) aveP Energy

(j)
Rel.
Error

psdes
Psuedo DES encryption of
20 32-bit integers. 53.3±8.34 1.848±.011 98 -8.5% 23.8±.19 3.03±.02 72 -6.5%

heap
Heap sort of 20 random,
32-bit integers. 62.6±.57 1.791±.010 112 -5.6% 26.4±.23 3.04±.02 80 -6.7%

fft
FFT of 32 floating point,
positive values < 1000. 1403±10 1.779±.007 2495 -5.0% 492.5±2.1 2.90±.10 1429 -2.4%

moment
Moment statistics of 32
floating point values. 879±.1 1.805±.055 1587 -6.4% 273.9±.02 2.96±.01 810 -4.2%

Table 3. Sample programs used in the hypothesis testing.

time increased significantly. These observations clearly
indicate that system level architectural issues, including
the partitioning and hierarchical organization of memory,
coprocessor interfaces, and bandwidth balancing on
busses, are of major importance in terms of overall system
performance and power consumption. The current focus
of our research is thus on the development of mechanisms
to support design space exploration at the architectural
level for embedded systems.

 References
[1] Jan M. Rabaey, Massoud Pedram, editors, Low Power

Design Methodologies, 1996, Kluwer Academic
Publishing, Boston

[2] D. Srinivas, M. Sharad, Tutorial: A survey of
optimization techniques targeting low power, 32nd Design
Auto. Conf. Proc, June 1995

[3] N. Weste, K. Eshraghian, Principles of CMOS VLSI
Design: A Systems Perspective, 2nd Ed., Addison-Wesley,
1993

[4] V. Tiwari, S. Malik, A. Wolfe, Power analysis of
embedded software: a first step towards software power
minimization, IEEE Trans. on VLSI Systems, Dec. 1994

[5] V. Tiwari, S. Maik, A. Wolfe, Compilation techniques
for low energy: an overview, Proc. Symp. Low Power
Electronics, 1994

[6] V. Tiwari, S. Malik, A. Wolfe, M. Lee, Instruction level
power analysis and optimization of software, Journal of
VLSI Signal Processing, pp. 1-18, 1996, Kluwer
Academic Publishing, Boston.

[7] M. Lee, V. Tiwari, S. Malik, M. Fujita, Power analysis
and minimization techniques for embedded DSP
software, IEEE Trans on VLSI Systems, Mar. 1997

[8] H. Mehta, R. Owens, M. Irwin, R. Chen, D. Ghosh,
Techniques for low energy software, Proc. Int. Symp.
Low Power Electronics and Design, Monterey, Aug.
1997

[9] C. Su, C. Tsui, A. Despain, Low power architecture
design and compilation techniques for high-performance
processors, Proc. Symp. Low Power Electronics, Mar.
1994

[10] T. Sato, M. Nagamatsu, H. Tago, Power and performance
simulators: ESP and its applications for 100MIPS/W
RISC design, Proc. Symp. Low Power Electronics, San
Diego, Oct. 1994

[11] R. Ong, R. Yan, Power-conscious software design- A
framework for modeling software on hardware, Proc.
Symp. Low Power Electronics, San Diego, San Jose, Oct.
1995

[12] T. Sato, Y. Ootaguro, M. Nagamatsu, H. Tago,
Evaluation of architecture-level power estimation for
CMOS RISC processors", Proc. Symp. Low Power
Electronics, San Diego, San Jose, Oct. 1995

[13] P. Landman, J. Rabaey, Block-box capacitance models
for architectural power analysis, Proc. Int. Workshop
Low Power Design, Napa, April 1994

[14] H. Mehta, R. Owns, M. Irwin, Instruction level power
profili ng, Int. Conf. on Acoustics, Speech, and Signal
Processing, 1996

[15] J. Montereiro, S. Devadas, Techniques for the power
estimation of sequential logic circuits under user-
specified input sequences and programs, Proc. Int.
Workshop on Low Power Design, April 1995

[16] P. Bevington, K. Robinson, Data Reduction and Error
Analysis for the Physical Sciences, 2nd Ed.,
WCB/McGraw-Hill , 1992

[17] Intel Corporation, i960 Hx Microprocessor User’s
Manual, Order Number 272484-001, Nov. 1995

[18] Intel Corporation, i960 Jx Microprocessor User’s
Manual, Order Number 272483-001, Sep. 1994

[19] Intel Corporation, i960 Processor Compiler User’s
Guide, Order Number 651230-002, Jan. 1997

[20] W. Press, S. Teulolshy, W. Vetterling, B. Flannery,
Numerical Recipes in C, 2nd Ed., Cambridge University
Press, 1992

[21] Roger E. Kirk, Statistics: an Introduction, 3rd Ed., Holt,
Rinehart, and Winston, Inc, 1990.

[22] Intel Corporation, i960 Processor Home Page,
http://www.intel.com/design/i960

JF Processor

0

0.5

1

1.5

2

2.5

16 20 25 33

Frequency, MHz

P
o

w
er st

addo

bswap

HD Processor

0

0.5

1

1.5

2

2.5

3

3.5

16 20 25 33

Frequency

P
o

w
er

st

addo

bswap

Figure 3. Power versus frequency.

