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Abstract

A backdoor set of a CNF formula is a set of variables such that fixing the truth values
of the variables from this set moves the formula into a polynomial-time decidable class. In
this work we obtain several algorithmic results for solving d-SAT, by exploiting backdoors to
d-CNF formulas whose incidence graphs have small treewidth.

For a CNF formula φ and integer t, a strong backdoor set to treewidth t is a set of
variables such that each possible partial assignment τ to this set reduces φ to a formula
whose incidence graph is of treewidth at most t. A weak backdoor set to treewidth t is a set
of variables such that there is a partial assignment to this set that reduces φ to a satisfiable
formula of treewidth at most t. Our main contribution is an algorithm that, given a d-CNF
formula φ and an integer k, in time 2O(k)|φ|,
• either finds a satisfying assignment of φ, or
• reports correctly that φ is not satisfiable, or
• concludes correctly that φ has no weak or strong backdoor set to treewidth t of size at

most k.
As a consequence of the above, we show that d-SAT parameterized by the size of a

smallest weak/strong backdoor set to formulas of treewidth t, is fixed-parameter tractable.
Prior to our work, such results were know only for the very special case of t = 1 (Gaspers and
Szeider, ICALP 2012). Our result not only extends the previous work, it also improves the
running time substantially. The running time of our algorithm is linear in the input size for
every fixed k. Moreover, the exponential dependence on the parameter k is asymptotically
optimal under Exponential Time Hypothesis (ETH).

One of our main technical contributions is a linear time “protrusion replacer” improving
over a O(n log2 n)-time procedure of Fomin et al. (FOCS 2012). The new deterministic
linear time protrusion replacer has several applications in kernelization and parameterised
algorithms.



1 Introduction

There is a mysterious disparity in the way the Boolean Satisfiability problem (also often referred
to as Propositional Satisfiability and abbreviated as SAT) is perceived by different communities
in Computer Science and Artificial Intelligence. From a theoretician’s perspective, since SAT is
NP-complete, the existence of an efficient algorithm for this problem is highly unexpected. Even
worse, all currently known algorithms for SAT with n variables, in the worst case, do not perform
significantly better than a trivial brute-force algorithm trying all possible 2n assignments to
the variables [5]. On the other hand, in practice, modern SAT solvers can solve instances with
hundreds thousands of variables within seconds. According to Malik and Zhang [21], similar to
mathematical programming tools or linear equation solvers, SAT solvers have matured to the
point to be used in a wide range of application domains. Thus encoding a problem as an instance
of SAT and then applying a SAT solver is a success story for many applications. Understanding
the reasons for such a huge discrepancy between theory and practice is not only an intellectual
challenge, it also can bring us closer to even faster SAT solvers.

The notion of backdoors to SAT was introduced by Williams et al. in [26] in an effort towards
a rigorous understanding of the surprising performance of SAT solvers in practice. Roughly
speaking, backdoors are small set of variables capturing the overall combinatorics of the SAT
instance. The definition of backdoors is based on the notion of a polynomial time algorithm, a
sub-solver, solving tractable instances of SAT. A sub-solver is an algorithm A which, given a
formula φ, in polynomial time either rejects the input or correctly solves φ. Furthermore, given
any partial assignment τ to the variables of φ, if A solves φ, then A also solves the reduced
instance φ[τ ]. For example, A can be an algorithm solving φ if it is an instance of 2-SAT and
rejecting all other instances.

A nonempty subset B of the variables is a weak backdoor to φ for a sub-solver A if there
exists an assignment τ to the variables in B such that A returns a satisfying assignment of the
reduced instance φ[τ ]. We say that B is a strong backdoor to φ for a sub-solver A if for each
assignment τ to the variables in b, A solves φ[τ ], i.e. either returns a satisfying assignment or
concludes unsatisfiability of φ[τ ]. It appears that many instances in practice happen to have
small “weak” or “strong” backdoors for different sub-solvers [20, 26]. There has been an extensive
theoretical study of backdoors to different sub-solvers in the realm of parameterized complexity
[23, 25, 16]. We refer to the surveys of Gaspers and Szeider [15] for more background.

One of the well-studied classes of SAT solvable in polynomial time is the class of “decompos-
able” formulas. In particular, the tree- (and its close relative branch-) width measures have been
applied to satisfiability in the following way. If the treewidth of the incidence graph (the bipartite
graph on the variables and clauses where a variable is adjacent to all the clauses containing it)
does not exceed some constant, then SAT for such formulas can be decided in polynomial time
[6, 11, 24].

Since the property of having an incidence graph with small treewidth makes SAT polynomial
time solvable, it is very natural to ask about backdoors to a sub-solver on formulas of bounded
treewidth. The study of such backdoors from the parameterized complexity perspective was
initiated by Gaspers and Szeider in [14, 16]. In [14], Gaspers and Szeider study the problem of
detecting a weak backdoor of size at most k to acyclic SAT, i.e, a weak backdoor to a sub-solver
on formulas with incidence graphs of treewidth at most 1. They show that this problem is
W[2]-hard in general but FPT on d-CNF formulas for fixed d, when parameterized by k. In [16]
Gaspers and Szeider gave an FPT-approximation algorithm for strong backdoor set to treewidth
at most t which either detects in time f(k)n3, for some function f , a strong backdoor of size at
most 2k or reports that there is no strong backdoor of such size.

Let Wη be a class of formulas of treewidth at most η. Let us note that for a formula φ, the
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minimum sizes of weak and strong Wη-backdoor sets can be very different. For a satisfiable
formula the minimum size of a weak backdoor does not exceed the size of a strong one. However,
this is not true for unsatisfiable formulas. For example, any unsatisfiable formula does not
have a weak backdoor but it could have a small strong backdoor. In this work we give an FPT
algorithm for d-SAT parameterized by the minimum of both sizes. Formally, our main result is
the following.

Theorem 1. There is an algorithm that takes as input a d-CNF formula φ and an integer k,
runs in time 2O(k)|φ| and

• either finds a satisfying assignment of φ, or
• reports correctly that φ is not satisfiable, or
• concludes correctly that φ has no weak or strong Wη-backdoor set of size at most k.

The main features of our result as well as the techniques are the following.

* It extends the tractability results for d-SAT in [14] to a significantly larger class of d-
CNF formulas. Furthemore, although our algorithm for d-SAT does not rely on actually
computing the entire backdoor sets, our methods show that a weak backdoor set to
treewidth at most t can in fact be detected in FPT time.

* The running time of our algorithm is 2O(k)|φ|, that is, it has a single exponential dependence
on the parameter and linear dependence on the input length |φ|. It is also easy to show
that unless the Exponential Time Hypothesis (ETH) fails, there is no 2o(k)|φ|O(1) solving
d-SAT for every d ≥ 3 [17]. Thus, our algorithm is asymptotically optimal.

* On the way to obtaining our algorithm we develop a new deterministic linear time
protrusion replacer algorithm (we refer to Preliminaries for the definition of a protrusion
replacer). Prior to our work the best deterministic protrusion replacer was of running
time O(n log2 n) [7]. This improvement implies a speedup for many parameterized and
kernelization algorithms based on protrusion replacements. In particular, due to this
replacement, all kernelization algorithms obtained in [2, 8, 9, 12, 19] and parameterized
algorithms from [7, 19] can be implemented to run in deterministic linear time.

At first glance, the problem of detecting a weak Wη-backdoor set resembles the algorithmic
graph problem of deleting at most k vertices such that the new graph is of treewidth at most t.
However, as it was observed by Gaspers and Szeider in [14], already the problem of computing
a weak backdoor set to acyclic d-SAT is very different from the seemingly related Feedback
Vertex Set problem because while the size of the backdoor, k, can be very small, the treewidth
of the incidence graph can be unbounded by any function of k. As a result, the techniques
developed by a subset of the authors in [7] merely provide a starting point and need to be built
upon in a problem specific way to detect backdoor sets. To further confirm this intuition, we
show that under standard complexity theoretic assumptions, the problem of detecting a weak
Wη-backdoor does not admit a polynomial kernel. This separates the kernelization complexity of
the two “related” problems because the vertex removal problem does in fact admit a polynomial
kernel [7].

We briefly describe the ideas involved in our randomized algorithm, which are somewhat
easier to explain. We say that a subset S of a graph G is a Wη-modulator if the treewidth of
G− S is at most η. Our starting point is the observation that if X is a subset of variables that
form a strong (or weak) Wη-backdoor, then the set of their neighbours in the incidence graph,
N(X), is a Wη-modulator. Note that |N(X)| could be arbitrarily large compared to |X|. In
particular, it is futile to attempt to look for a small Wη-modulator among the clauses. We begin
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with a linear-time preprocessing procedure which ensures that for every Wη-backdoor set X,
the set N(X) is incident with a large fraction of the edges in G. Therefore, if we pick an edge
uniformly at random, the clause endpoint of the edge belongs to N(X) with constant probability.
Further, since the clauses are of constant size d, we have that a randomly chosen variable from
the clause belongs to X with a constant probability f(d, η).

When we are working with SAT using weak backdoors, the algorithm simply branches on the
chosen variable x in the usual way — in one branch, we simplify the formula by setting x to 1,
and in the other branch, we set x to 0. At this point, we recurse. However, when working with
SAT using strong backdoors, it is not clear that this approach can be used as it is. Our algorithm
solving SAT using weak backdoors uses the fact that a formula admits a weak backdoor if and
only if it is satisfiable. On the other hand, in the case of strong backdoors, we are faced with
three possible scenarios — that the formula does not admit a small strong backdoor, or that it
does, and it is either satisfiable or not. Combining the varied recursive outputs appropriately
is less obvious in this situation. The typical approach for solving SAT using strong backdoors
involves first finding a strong backdoor using a search tree similar to the above. The set output
by the recursive procedure is the union of all the recursively obtained solutions and thus its
size can be proportional to the size of the search tree, often 2k. Finally, SAT is solved in the
standard way, which involves trying all possible truth assignments of the strong backdoor, and
therefore, the overall expense incurred for solving SAT is 22k |φ|O(1). Under ETH, even if we are
given a strong backdoor of size `, we do not expect algorithms solving SAT in time 2o(`)|φ|O(1).
Fortunately, it turns out that detecting backdoors is not a prerequisite to solving SAT. Indeed,
in our algorithms, we sidestep the problem of detecting strong backdoors, and directly achieve a
running time of 2O(k)|φ|, where k is the size of a smallest Wη-strong backdoor to φ.

One of the main ingredients of our algorithm is the linear time preprocessing step which
ensures that a large fraction of the edges are incident with the neighbors of every backdoor set.
Towards this we give a new deterministic linear time “protrusion replacer” which has several
applications in kernelization and parameterized algorithms. A protrusion is a subgraph that
has constant treewidth and a constant-sized neighbourhood. Protrusions were employed in
[2, 9] for obtaining meta-kernelization theorems for problems on sparse graphs like planar and
H-minor-free graph. Our new protrusion replacer algorithm begins by enumerating all connected
sets of size p with neighbourhood of size q. By a classical lemma of Bollobás [18], it can be
shown that the number of such sets is at most

(p+q
p

)
. However, for the purposes of developing

the protrusion replacer, we use the enumeration algorithm proposed by Fomin and Villanger [10]
in the context of designing exact algorithms for treewidth. Given these n ·

(p+q
p

)
sets, we carefully

partition them into groups such that each of them form protrusions that are mutually internally
disjoint (that is, while they may share their boundaries, their interiors do not overlap). We are
also able to prove that these protrusions together account for a large fraction of the vertices
appearing in any “collection of protrusions”.

Having found these protrusions, we need an algorithm that can reduce protrusions, that
is, remove these protrusions and replace them with smaller ones maintaining equivalence. We
note that the known results about protrusion replacement cannot be used directly here. The
existing machinery for replacing protrusions relies crucially on the notion of finite integer index.
However, in our context, defining an appropriately equivalent notion applicable in the usual
way seems rather difficult. Thus, we resort to the “finite state” style of making protrusion
replacement. Also this is a more practical and arguably more direct line of attack. We consider
a tree decomposition of the protrusion and analyze it to identify bags that are “equivalent”, and
then suggest a suitable reduction rule. The methods described here are similar in spirit to the
ideas used in [13] for kernelization.
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2 Preliminaries

2.1 CNF Formulas and Assignments

We consider propositional formulas in conjunctive normal form (CNF). We assume, without
loss of generality, that the clauses do not contain a pair of complementary literals. For a CNF
formula φ, we use var(φ) and cla(φ) to refer to the sets of variables and clauses in φ, respectively.
We say that a variable x is positive (negative) in a clause C if x ∈ C (x ∈ C), and we write
var(C) for the set of variables that are positive or negative in C, while we use lit(C) to denote
the set of literals in C.

The length of a formula φ is given by |var(φ)|+
∑
C∈cla(φ)(1 + |var(C)|) and is denoted by

|φ|. A truth assignment τ is a mapping from a set of variables, denoted by var(τ), to {0, 1}. A
truth assignment τ satisfies a clause C if it sets at least one positive variable of C to 1 or at
least one negative variable of C to 0. A truth assignment τ of var(φ) satisfies the formula φ
if it satisfies all clauses of φ. Given a CNF formula φ and a truth assignment τ , φ[τ ] denotes
the truth assignment reduct of φ under τ , which is the CNF formula obtained from φ by first
removing all clauses that are satisfied by τ and second removing from the remaining clauses all
literals x, x with x ∈ var(τ). For a formula φ and a subset of clauses C ⊆ cla(φ), we use φ \ C to
denote the formula φ with the clauses in C removed.

The incidence graph of a CNF formula φ, inc(φ), is the bipartite graph whose vertices are
the variables and clauses of φ, and where vertices corresponding to a variable x and a clause
C are adjacent if and only if x ∈ var(C). Further, an edge between a vertex corresponding to
x ∈ var(φ) and C ∈ cla(φ) has the label + if x ∈ lit(C) and is labeled − if x ∈ lit(C).

We refer to the class of two-edge colored bipartite graphs as SAT incidence graphs, or
incidence graphs for short. Typically, we use (G = (X,C), E, `) to denote an incidence graph,
where ` : E → {+,−}. The formula ψ(G) is defined over the variable set {xv | v ∈ X}, with a
clause Cu for every u ∈ C. Further, the clause Cu consists of the literals:

{xv | (xv, u) ∈ E and `(xv, u) = +} ∪ {xv | (xv, u) ∈ E and `(xv, u) = −}.

For an incidence graph G, we abuse notation and use var(G) to refer to the vertices of G
that correspond to variables in ψ(G), and cla(G) to refer to the vertices of G that correspond to
clauses in ψ(G). Also, for a vertex subset X ⊆ V (G), we continue to use the notations var(X)
and cla(X) to refer to the sets var(G) ∩X and cla(G) ∩X, respectively.

We say that G is an incidence graph of order d if G is an incidence graph where the maximum
degree among the vertices in cla(G) is bounded by d. Note that these graphs correspond to
d-CNF formulas (where a d-CNF formula involves clauses of length at most d).

Let B denote a fixed class of formulas under consideration. A weak B-backdoor set of a CNF
formula φ is a set B of variables such that there is a truth assignment τ of the variables in B
such that the formula φ[τ ] is satisfiable and φ[τ ] ∈ B. Such an assignment is called a witness
assignment for the weak backdoor. A strong B-backdoor set of F is a set B of variables such
that for each truth assignment τ of the variables in B, the formula φ[τ ] is in B.

We let Kη denote the class of formulas φ for which inc(F ) excludes the (η × η) grid as a
minor (c.f. Subsection 2.5 for the relevant definitions), and let wbg(φ, η) (respectively, sbg(φ, η))
denote the smallest possible size of a weak (respectively, strong) Kη backdoor. Also, we let Wη

denote the class of formulas φ for which inc(F ) has treewidth at most η (c.f. Subsection 2.3
for the relevant definition), and let wbtw(φ, η) (respectively, sbtw(φ, η)) denote the smallest
possible size of a weak (respectively, strong) Wη backdoor. Note that wbg(φ, η) ≤ wbtw(φ, η),
and sbg(φ, η) ≤ sbtw(φ, η), since every backdoor to Wt is also a backdoor to Kt (although the
converse is not necessarily true).

4



The satisfiability problem (SAT) of a CNF formula φ is to decide whether F has a satisfying
truth assignment.

2.2 Parameterized algorithms and kernels.

A parameterized problem Π is a subset of Γ∗ × N for some finite alphabet Γ. An instance
of a parameterized problem consists of (x, k), where k is called the parameter. We assume
that k is given in unary and hence k ≤ |x|. A central notion in parameterized complexity is
fixed parameter tractability (FPT) which means, for a given instance (x, k), solvability in time
f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the input size. The
notion of kernelization is formally defined as follows.

Definition 1. [Kernelization] Let Π ⊆ Γ∗×N be a parameterized problem and g be a computable
function. We say that Π admits a kernel of size g if there exists an algorithm K, called
kernelization algorithm, or, in short, a kernelization, that given (x, k) ∈ Γ∗×N, outputs, in time
polynomial in |x|+ k, a pair (x′, k′) ∈ Γ∗ × N such that

(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π, and

(b) max{|x′|, k′} ≤ g(k).

When g(k) = kO(1) or g(k) = O(k) then we say that Π admits a polynomial or linear kernel
respectively. If additionally k′ ≤ k we say that the kernel is strict.

A generalization of the notion of kernelization as described above is the following.

Definition 2. [Polynomial Compression] A polynomial compression of a parameterized
language Q ⊆ Σ∗ × N into an unparameterized language R ⊆ Σ∗ is an algorithm that takes as
input an instance (x, k) ∈ Σ∗ × N, works in time polynomial in |x|+ k, and returns a string y
such that:

1. |y| ≤ p(k) for some polynomial p(·), and

2. y ∈ R if and only if (x, k) ∈ Q.

In case |Σ| = 2, the polynomial p(·) will be called the bitsize of the compression.

To show the non-existence of polynomial compression algorithms, we first need the following
definitions.

Definition 3. [Polynomial Equivalence Relation] An equivalence relation R on the set Σ∗
is called a polynomial equivalence relation if the following conditions are satisfied:

1. There exists an algorithm that, given strings x, y ∈ Σ∗, resolves whether x ≡R y in time
polynomial in |x|+ |y|.

2. Relation R restricted to the set Σ≤n has at most p(n) equivalence classes, for some
polynomial p(·).

Definition 4. [Cross Composition] Let L ⊆ Σ∗ be an unparameterized language and Q ⊆
Σ∗ × N be a parameterized language. We say that L cross-composes into Q if there exists a
polynomial equivalence relation R and an algorithm A, called the cross-composition, satisfying
the following conditions. The algorithm A takes on input a sequence of strings x1, x2, . . . , xt ∈ Σ∗
that are equivalent with respect to R, runs in time polynomial in

∑t
i=1 |xi|, and outputs one

instance (y, k) ∈ Σ∗ × N such that:
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It turns out that if a problem admits a cross-composition algorithm for some polynomial
equivalence relation, then it does not admit a polynomial compression unless NP ⊆ coNP/ poly.

Theorem. Assume that an NP-hard language L cross-composes to a parameterized language Q.
Then Q does not admit a polynomial compression, unless NP ⊆ coNP/ poly.

2.3 Treewidth.

Let G be a graph. A tree decomposition of G is a pair (T,X = {Xt}t∈V (T )) where T is a tree
and X is a collection of subsets of V (G) such that:

• ∀e = uv ∈ E(G), ∃t ∈ V (T ) : {u, v} ⊆ Xt and

• ∀v ∈ V (G), T [{t | v ∈ Xt}] is a non-empty connected subtree of T .

We call the vertices of T nodes and the sets in X bags of the tree decomposition (T,X ). The
width of (T,X ) is equal to max{|Xt| − 1 | t ∈ V (T )} and the treewidth of G is the minimum
width over all tree decompositions of G.

A nice tree decomposition is a pair (T,X ) where (T,X ) is a tree decomposition such that T
is a rooted tree and the following conditions are satisfied:

• Every node of the tree T has at most two children;

• if a node t has two children t1 and t2, then Xt = Xt1 = Xt2 ; and

• if a node t has one child t1, then either |Xt| = |Xt1 |+ 1 and Xt1 ⊂ Xt (in this case we call
t1 insert node) or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (in this case we call t1 insert node).

It is possible to transform a given tree decomposition (T,X ) into a nice tree decomposition
(T ′,X ′) in time O(|V |+ |E|) [3]. A treewidth-t modulator for a graph G is a subset X such that
the treewidth of G \X is at most t.

2.4 t-Boundaried graphs and Gluing.

A t-boundaried graph is a graph G and a set B ⊂ V (G) of size at most t with each vertex v ∈ B
having a label `G(v) ∈ {1, . . . , t}. Each vertex in B has a unique label. We refer to B as the
boundary of G. For a t-boundaried G the function δ(G) returns the boundary of G. When it is
clear from the context, will often use the notation (G,B) to refer to a t-boundaried graph G
with boundary B.

Let G = (X ∪ C,E, `) be a t-boundaried incidence graph with boundary B = {b1, . . . , bt} ⊆
(X ∪ C), where bi is the vertex in the boundary whose label is i. We use ϑ(G) to denote the
characteristic of (G,B), which is the t-length word over {0, 1} given by:

ϑ(G)[i] =
{

0 if bi ∈ X,
1 if, bi ∈ C.

We say that two t-boundaried incidence graphs G1 and G2 have the same boundary type
if ϑ(G1) = ϑ(G2). Incidence graphs with the same boundary type can be “glued” together
to result in a new incidence graph, which we denote by G1 ⊕G2. The gluing operation takes
the disjoint union of G1 and G2 and identifies the vertices of δ(G1) and δ(G2) with the same
label. If there are vertices u1, v1 ∈ δ(G1) and u2, v2 ∈ δ(G2) such that `G1(u1) = `G2(u2) and
`G1(v1) = `G2(v2) then G has vertices u formed by unifying u1 and u2 and v formed by unifying
v1 and v2. The new vertices u and v are adjacent if u1v1 ∈ E(G1) or u2v2 ∈ E(G2). Note that
the graph G is also an incidence graph.
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The boundaried gluing operation ⊕δ is similar to the normal gluing operation, but results in
a t-boundaried graph rather than a graph. Specifically G1 ⊕δ G2 results in a t-boundaried graph
where the graph is G = G1 ⊕G2 and a vertex is in the boundary of G if it was in the boundary
of G1 or G2. Vertices in the boundary of G keep their label from G1 or G2. Both for gluing and
boundaried gluing we will refer to G1 ⊕G2 or G1 ⊕δ G2 as the sum of G1 and G2, and G1 and
G2 are the terms of the sum.

Now, let (G1, B1) and (G2, B2) be two t-boundaried incidence graphs of order d. Let bhi
denote the vertex in Bh with label i, for h ∈ {1, 2}. We say that G1 and G2 are friendly if
they have the same boundary type, and further, for every i ∈ [t] such that b1

i ∈ cla(B1) and
b2
i ∈ cla(B2), we have that dG1(b1

i ) + dG2(b2
i ) ≤ d. Notice that when two friendly t-boundaried

incidence graphs of order d are glued together, the resulting graph is also an incidence graph of
order d.

2.5 Minors

Given an edge e = xy of a graph G, the graph G/e is obtained from G by contracting the
edge e, that is, the endpoints x and y are replaced by a new vertex vxy which is adjacent to
the old neighbors of x and y (except from x and y). A graph H obtained by a sequence of
edge-contractions is said to be a contraction of G. We denote it by H ≤c G. A graph H is a
minor of a graph G if H is the contraction of some subgraph of G and we denote it by H ≤m G.
We say that a graph G is H-minor-free when it does not contain H as a minor. We also say
that a graph class G is H-minor-free (or, excludes H as a minor) when all its members are
H-minor-free. It is well-known [22] that if H ≤m G then tw(H) ≤ tw(G). We will also use the
fact that every graph of treewidth at least η100 contains the (η × η) grid as a minor [4]. We also
use �η to denote the (η × η) grid.

Definition 5. Let G1 and G2 be two graphs, and let t be a fixed positive integer. For i ∈ {1, 2},
let fGi be a function that associates with every vertex of V (Gi) some subset of [t]. The image of
a vertex v ∈ Gi under fGi is called the label of that vertex. We say that that G1 is label-wise
isomorphic to G2, and denote it by G1 ∼=t G2, if there is an map h : V (G1)→ V (G2) such that
(a) h is one to one and onto; (b) (u, v) ∈ E(G1) if and only if (h(u), h(v)) ∈ E(G2) and (c)
fG1(v) = fG2(h(v)). We call h a label-preserving isomorphism.

Notice that the first two conditions of Definition 5 simply indicate that G1 and G2 are
isomorphic. Now, let G be a t-boundaried graph, that is, G has t distinguished vertices, uniquely
labeled from 1 to t. Given a t-boundaried graph G, we definition a canonical labeling function
µG : V (G)→ 2[t]. The function µG maps every distinguished vertex v with label ` ∈ [t] to the
set {`}, that is µG(v) = {`}, and for all vertices v ∈ (V (G) \ ∂(G)) we have that µG(v) = ∅.

Next we definition a notion of labeled edge contraction. Let H be a graph together with a
function fH : V (H)→ 2[t] and (u, v) ∈ E(H). Furthermore, let H ′ be the graph obtained from
H by identifying the vertices u and v into wuv, removing all the parallel edges and removing all
the loops. Then by labeled edge contraction of an edge (u, v) of a graph H, we mean obtaining
a graph H ′ with the label function fH′ : V (H ′) → 2[t]. For x ∈ V (H ′) ∩ V (H) we have that
fH′(x) = fH(x) and for wuv we definition fH′(wuv) = fH(u)∪ fH(v). Now we introduce a notion
of labeled minors of a t-boundaried graph.

Definition 6. Let H be a graph together with a function f : V (H)→ 2[t] and G be a t-boundaried
graph with canonical labeling function µG. A graph H is called a labeled minor of G, if we
can obtain a labeled isomorphic copy of H from G by performing edge deletion and labeled edge
contraction.
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Remark 1. We note that the notion of a label-preserving isomorphism for graphs depends only
on the labeling function, and is oblivious to the boundary. In particular, if G and H are two
labeled t-boundaried graphs that are label-wise isomorphic, a label preserving isomorphism is not
required to necessarily map the boundary vertices of G to boundary vertices of H.

Finally, we definition the notion of h-folios and equivalence on t-boundaried graphs.

Definition 7. A h-folio of a t-boundaried graph G is the set Mh(G) of all t-labeled minors of
G on at most h vertices.

2.6 Protrusions and Protrusion Replacement

For a graph G and S ⊆ V (G), we define ∂G(S) as the set of vertices in S that have a neighbor in
V (G)\S. For a set S ⊆ V (G) the neighbourhood of S is NG(S) = ∂G(V (G)\S). When it is clear
from the context, we omit the subscripts. A r-protrusion in a graph G is a set X ⊆ V such that
|∂(X)| ≤ r and tw(G[X]) ≤ r. Further, a (r, s)-protrusion is a set X ⊆ V such that |∂(X)| ≤ r
and tw(G[X]) ≤ s. If G is a graph containing a r-protrusion X and X ′ is a r-boundaried graph,
the act of replacing X by X ′ means replacing G by G∂(X)

V (G)\X ⊕X
′.

Let G be the incidence graph of a formula F . A variable r-protrusion in G is a r-protrusion
such that all the vertices in ∂(X) correspond to variables of F .

A protrusion replacer for a parameterized graph problem Π is a family of algorithms, with
one algorithm for every constant r. The r’th algorithm has the following specifications. There
exists a constant r′ (which depends on r) such that given an instance (G, k) and an r-protrusion
X in G of size at least r′, the algorithm runs in time O(|X|) and outputs an instance (G′, k′)
such that (G′, k′) ∈ Π if and only if (G, k) ∈ Π, k′ ≤ k and G′ is obtained from G by replacing
X by a r-boundaried graph X ′ with less than r′ vertices. Observe that since X has at least r′
vertices and X ′ has less than r′ vertices this implies that |V (G′)| < |V (G)|.

3 Algorithms for d-SAT using Kη-Backdoors

This section begins with the algorithms for solving SAT, which are described assuming the
existence of algorithms that we call reducers. Subsequently, we unravel the construction of the
reducers. The following is a more detailed overview.

The Algorithms In the first subsection, we present our algorithms for d-SAT assuming the
existence of certain preprocessing subroutines, referred to as reducers. We begin by
presenting a linear time randomized algorithm for d-SAT parameterized by the size of a
weak Kη-backdoor set. We then give a deterministic version of this algorithm while still
managing to achieve the optimal asymptotic dependence on the parameter and the formula
size. Following this, we present our algorithm for d-SAT parameterized by the size of a
strong Kη-backdoor set. We conclude this subsection with a proof of the fixed parameter
tractability of computing weak Wη-backdoor sets.

The Reducers In the second subsection, we give a description of the reducers assuming the
ability to both find and replace protrusions in linear time. The algorithm that we use
to detect protrusions has to find sufficiently many protrusions in linear time and will be
developed in a more general form in the next section.

The Replacers In the final subsection, we give algorithms that replace protrusions while
preserving satisfiability as well as the existence of small backdoor sets. As known theorems
based on the notion of Finite Integer Index are not applicable to this problem, we have to
develop problem specific protrusion replacers.
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The (Improved) Fast Protrusion Replacers In Section 4, we present our linear time algo-
rithm to detect protrusions that cover a sufficiently part of a given graph. This algorithm is
developed in a very general setting and can be directly invoked to improve several existing
kernelization as well as FPT results.

3.1 The Algorithms

The basis of the randomized (and subsequently, the deterministic) algorithms is the fact that
the reducers ensure that the vertices corresponding to backdoors are always incident with a
large fraction of the edges in the incident graph. This property is formalized by the following
definition.

Definition 8. Let G be a graph and let S ⊆ V (G). Also, let 0 < ρ < 1. We call S a ρ-cover
for G if

∑
v∈S d(v) ≥ ρ

∑
v∈V (G) d(v). Let φ be a d-CNF formula and S ⊆ var(φ). We call S a

ρ-cover for φ if Ninc(φ)[S] is a ρ-cover for the graph inc(φ).

Next, we formalize the properties of the algorithms that we refer to as reducers.

Definition 9. Let η ≥ 1 and 0 < ρ < 1 be constants and Q a class of d-CNF formulas. A
(wb,Q, ρ)-reducer is a pair of algorithms (A,A′) such that A takes as input a d-CNF formula φ
and returns a d-CNF formula φ′ and A′ takes as input a truth assignment τ ′ to φ′ and returns a
truth assignment τ to φ such that

• |φ′| ≤ |φ|.

• φ has a weak Q-backdoor set of size at most k if and only if φ′ has a weak Q-backdoor set
of size at most k for every 0 ≤ k ≤ |var(φ)|.

• every set of variables which forms a weak Q-backdoor set for the formula φ′ is a ρ-cover of
φ′.

• if τ ′ is a satisfying assignment for φ′ then τ is a satisfying assignment for φ.

A (sb,Q, ρ)-reducer is defined analogously with respect to strong Q-backdoor sets along with the
additional property that the formula φ′ computed by A is explicitly required to be equivalent to φ.

3.1.1 d-SAT parameterized by weak Kη-backdoor sets

We now turn to the descriptions of the algorithms. We first present an accessible description of
a randomized algorithm for d-SAT when parameterized by the size of weak Kη-backdoor sets.
Subsequently, we show that there is also a single-exponential deterministic algorithm.

Lemma 1. Let (A1,A′1) be a (wb,Kη, ρ)-reducer. Then, Algorithm Randomized-FPT-SAT-
Weak (Figure 1) on input φ and an integer k, runs in time O(k(|φ| + TA1(|φ|) + TA′1(|φ|))).
Furthermore,

• If φ has a weak Kη-backdoor set of size at most k then with probability at least ( ρ2d)k, the
algorithm computes a satisfying assignment of φ.

• Correctly concludes that φ has no weak Kη-backdoor set of size at most k otherwise.

9



Randomized-FPT-SAT-weak(φ,k)

φ0 := φ, i := 0

While (inc(φi) has treewidth more than η100) proceed as follows:

1. If k ≤ 0 return that φi does not have a k-sized weak Kη-backdoor set .

2. Execute algorithm A1 on φi and obtain an equivalent formula φ′i.

3. Pick an edge e ∈ E(inc(φ′i)) uniformly at random. Let xi be the variable endpoint of
e.

4. Select αi ∈ {0, 1} uniformly at random.

5. Set φi+1 := φ′i[xi = αi], k := k − 1, i := i+ 1.

Solve satisfiability of φi using a bounded-treewidth sub-solver. If unsatisfiable, simply
return the answer. If satisfiable, compute a satisfying assignment of φi and recover a
satisfying assignment for φ using A′1.

Figure 1: Algorithm Randomized-FPT-SAT-Weak

Proof. Since each iteration of this algorithm is dominated by the time required to run the
(wb,Kη, ρ)-reducer on input φ and there are at most k possible iterations, the bound on the
running time of the algorithm follows. It is clear that if φ has no weak Kη-backdoor set of size
at most k, then the algorithm correctly concludes that there is not such backdoor set. Therefore,
we only need to consider the case when a smallest weak Kη-backdoor set for φ, say S, has size at
most k. Observe that in this case, φ is satisfiable, and a satisfying assignment may be obtained
by using a bounded-treewidth sub-solver (note that inc(φ) does not have Kη as a minor and
hence its treewidth is bounded by at most η100). We now prove the following claim regarding a
run of the algorithm on the input (φ, k).

Claim 1. For each 0 ≤ i < k, with probability at least ( ρ2d)i+1 the following events occur.

1. φi+1 ≡ φ,

2. φi+1 has a weak Kη-backdoor set of size at most k − (i+ 1).

Proof. The proof is by induction on i. Consider the base case when i = 0. Let S0 be a smallest
weak Kη-backdoor set for φ′0. Since S0 is a ρ-cover for φ′0, we have that S0 is a ρ

d -cover for
inc(φ′0). Therefore, the probability of choosing an edge incident on S0 is at least ρ

d which is
also a lower bound on the probability that x0 ∈ S0. Furthermore, algorithm A1 by definition
guarantees that φ′0 is equivalent to φ0 and that |S0| ≤ k. Therefore, let τ∗0 : var(φ)→ {0, 1} be a
satisfying assignment of φ′0 such that φ′0[τ∗0 |S0 ] is in Kη. Observe that φ′0[τ∗0 |x0 ] is also satisfiable
and furthermore, S0 \ {x0} is a weak Kη-backdoor set for φ′0[τ∗0 |x0 ]. Finally, the probability that
φ1 = φ′0[τ∗0 |x0 ] is the probability that α0 = τ∗|x0 , which is at least 1

2 . Therefore, we conclude
that with probability at least ρ

2d , φ1 ≡ φ0 and φ1 has a weak Kη-backdoor set of size at most
k − 1.

We now move on to the induction step for i ≥ 1. Algorithm A1 by definition guarantees that
φ′i is equivalent to φi. Furthermore, by the induction hypothesis, with probability at least ( ρ2d

i+1,
we have that φi ≡ φ, implying that φi is satisfiable. Therefore, φ′i is satisfiable. Also, we have
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Algorithm 1: SolveWB((φ, k))
Input: (φ, k), where φ is a d-CNF formula, and k is a positive integer.
Output: Fail if φ has no weak Kη-backdoor set of size at most k, a satisfying assignment

τ∗ otherwise.
1 if k = 0 and φ /∈ Kη: then
2 return Fail
3 if k = 0 and φ ∈ Kη: then
4 Solve SAT for φ in polynomial time.
5 if φ has a satisfying assignment τ∗: then
6 return τ∗

7 if φ is not satisfiable: then
8 return Fail
9 if k > 0 then

10 φ′ := A(φ)
11 Compute the buckets B1, . . . , Bdlogne for φ′
12 for each big bucket Bi do
13 for each subset S ⊆ Bi such that |S| ≥ ` · |Bi| do
14 for each assignment τ : S → {0, 1} do
15 R:=SolveWB(φ′[τ ], k − |S|)
16 if R is not Fail then return τ∗ ∪ τ
17 end
18 end
19 end
20 return Fail

that φi has a weak Kη-backdoor set of size at most k − i. Therefore, algorithm A1 guarantees
that φ′ has a weak Kη-backdoor set, say Si of size at most k − i. Let τ∗i : var(φi) → {0, 1}
be a satisfying assignment of φ′i such that φ′i[τ∗i |Si ] ∈ Kη. Since Si is a ρ

d -cover of inc(φ′i), the
probability that xi ∈ Si is at least 1

ρd . Also φ′i[τ∗i |xi ] is satisfiable and Si \ {xi} is a weak
Kη-backdoor set for φ′i[τ∗i |xi ]. Since αi = τ∗i |xi with probability at least 1

2 , we conclude that
φi+1 = φ′i[τ∗i |xi ] and therefore both events occur with probability at least ( ρ2d)i+1. This completes
the proof of the claim.

Given the above claim, it follows that with probability at least ( ρ2d)k, for some ` ≤ k, the
formula φ` ∈ Kη and φ` ≡ φ. Since φ is satisfiable, so is φ` and this is correctly detected by
a bounded-treewidth sub-solver. Finally, we can compute the satisfying assignment for φ by
starting with a satisfying assignment for φ` and applying the algorithm A′1 iteratively to the
formulas φ`, φ`−1, . . . , φ1. This completes the proof of the lemma.

We now give a deterministic version of the above algorithm. Our branching strategy is based
on the intuition that a subset of vertices that covers a constant fraction of all the edges in G
must contain sufficiently many vertices of high degree. Equivalently, a set of variables that form
a ρ-cover must contain some variables that occur with a substantial frequency among the clauses
of φ. We use a partition of the variables according to frequency that formalizes this intuition,
which is based on the definitions in [7]. Indeed, our branching algorithm is exactly along the
same lines; however, we present the details here for the sake of completeness.

Lemma 2. Let (A,A′) be a (wb,Kη, ρ)-reducer. Then, there is a deterministic algorithm that
takes as input φ and an integer k, runs in time 2O(k)(|φ|+ TA(|φ|) + TA′(|φ|)) and
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• either finds a satisfying assignment of φ, or

• concludes correctly that φ has no weak Kη-backdoor set of size at most k.

Proof. We first execute the algorithm A on input φ (see Algorithm 1) to obtain a formula φ′ such
that φ has a weak Kη-backdoor set of size at most k if and only if φ′ has a weak Kη-backdoor set
of size at most k and furthermore, any S ⊆ var(φ′) which is a weak Kη-backdoor set is a ρ-cover
of φ′ for some constant ρ < 1. Let G = inc(φ′). The branching strategy is based on a partition
the variables of φ′ into sets, called buckets, which are defined as follows. For each i ≥ 1, we let:

Bi =
{
v ∈ V (G)| n2i < d(v) ≤ n

2i−1

}
.

Fix constants µ and ` such that (4`+3µ)
2 < ρ

d and let X be a fixed smallest weak Kη-backdoor
set. We call a bucket Bi big if |Bi| > iµ and we call it good if |Bi ∩NG[X]| ≥ `|Bi|. We compute
the buckets, and for each big bucket Bi, for every subset S of Bi of size at least `|Bi|, for every
partial truth assignment τ to the variables in S, we recurse on the instance (φ′[τ ], k − |S|). We
return that φ is satisfiable if for some bucket Bi and some subset S and some assignment τ , the
recursion (φ′[τ ], k− |S|) returned it is satisfiable and we return that φ has no weak Kη-backdoor
set of size at most k otherwise. We now turn to the proof of correctness and analysis of running
time.

Claim 2. There is a bucket which is both big and good.

Proof. Since X is a ρ
d -cover in inc(φ′), we have that

∑
v∈X d(v) ≥ ρ

d · 2m, where m = |E(G)|. If
there were no buckets which are good as well as big, then we have the following. For the sake of
contradiction, assume that φ does not have a bucket that is both big and good. Then, we have
the following.

∑
v∈X

d(v) =
logn∑
i=1

∑
v∈Bi∩X

d(v)

=
∑

{i|Biis not good}

∑
v∈Bi∩X

d(v) +
∑

{i|Biis not big}

∑
v∈Bi∩X

d(v)

≤ ` · 4m+
∑

{i|Biis not big}
iµ ·

(
n

2i
)

≤ ` · 4m+ 3µn = 2dm4`+ 3µ
2 <

2mρ
d

,

which contradicts that X is a ρ
d -cover.

The correctness of the algorithm follows from the above claim and the exhaustiveness of the
branching. We now analyze the running time. Suppose for the sake of analysis that all buckets
are big, and let ai be the size of bucket i. Then we have that

T (k) ≤
logn∑
i=1

(
ai
k

)
T (k − `ai) ≤

logn∑
i=1

2aiT (k − `ai)

Assuming T (k) = xk, substitute recursively to get:

T (k) ≤
logn∑
i=1

2aix(k−`ai) ≤ xk
logn∑
i=1

( 2
x`

)ai
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Algorithm 2: SolveSB((φ, k))
Input: (φ, k), where φ is a d-CNF formula, and k is a positive integer.
Output: Fail if φ has no strong Kη-backdoors of size at most k, otherwise; Yes if φ has

a satisfying assignment, and No if φ is not satisfiable.
Remark: See Figure 2 for the definition of 	 and �.

1 if k = 0 and φ /∈ Kη: then
2 return Fail
3 if k = 0 and φ ∈ Kη: then
4 Solve SAT for φ in polynomial time.
5 if φ is satisfiable: then
6 return Yes
7 if φ is not satisfiable: then
8 return No
9 if k > 0 then

10 Let (A,A′) be the (sb,Kη, ρ) reducer as given by Lemma 8.
11 Let φ∗ denote the output of A(φ).
12 Compute the buckets B1, . . . , Bdlogne for φ∗.
13 for each big bucket Bi do
14 Let S := {S | S ⊆ Bi and |S| ≥ ` · |Bi|}.
15 for S ∈ S do
16 Let S := {z1, . . . , zb}
17 Let z[S] := 	τ∈2S solveSB((φ∗[τ ], k − b)).
18 end
19 return �S(z[S])
20 end

If 2
x` < 1 then each term of the sum is maximized when the exponent is as small as possible.

We will choose x (based on `) such that 2
x` < 1 holds. Since ai ≥ µi for any big bucket we have

that

T (k) ≤ xk
logn∑
i=1

( 2
xd

)µi
The sum above is a geometric series and converges to a value that is at most 1 for x = c, for a
suitably small choice of c depending only on ` and µ, which depended only on η. This bounds
the running time by ck. Further, if not all buckets are big the sum above should only be done
over the big buckets, yielding the same result.

3.1.2 d-SAT parameterized by strong Kη-backdoor sets

We now introduce Algorithm 2, which is a deterministic algorithm that either determines the
satisfiability of the input formula, or declares that the input formula has no strong Kη-backdoor
of size at most k. The overall branching strategy is rather similar to Algorithm 1, however, the
manner in which the outputs of the recursive subroutines are merged is more intricate in this
case, and there are subtle differences that will be apparent in the proof of correctness.

Lemma 3. Let (A,A′) be a (sb,Kη, ρ)-reducer.Then, there is a deterministic algorithm that
takes as input φ and an integer k, runs in time 2O(k)(|φ|+ TA(|φ|) + TA′(|φ|)) and

• either finds a satisfying assignment of φ, or
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	 Yes No Fail
Yes Yes Yes Yes
No Yes No Fail
Fail Yes Fail Fail

� Yes No Fail
Yes Yes Yes Yes
No Yes No No
Fail Yes No Fail

Figure 2: The functions � and 	.

• reports correctly that φ is not satisfiable, or

• concludes correctly that φ has no Kη strong backdoor set of size at most k.

Proof. As with the proof of Lemma 2, we begin by running the algorithm A on φ to ensure that
φ is an equivalent instance where every strong backdoor set of size at most k is a ρ-cover for
some constant ρ. We then classify the variables into different buckets according to their degree,
and we will have, as before, that there is a bucket that is both large and also contributes a
constant fraction of its vertices to the ρ-cover.

We remark that the analysis of the running time of the algorithm is identical to the analysis
in Lemma 2. Therefore, we now focus on the proof of correctness for Algorithm 2. Note that the
algorithm has three possible outputs; namely Yes, No, and Fail. We claim that if the algorithm
reports Fail, then φ has no Kη strong backdoor set of size at most k. On the other hand, if
the algorithm returns Yes (respectively, No), then φ has a satisfying assignment (respectively,
is not satisfiable). We proceed by induction on k. In the base case, when k = 0, if φ ∈ Kη,
then a small-treewidth sub-solver for SAT will correctly determine the satisfiability of φ, so the
correctness of these outputs follow. On the other hand, if φ /∈ Kη, then there is (by definition)
no strong Kη-backdoor of size k, and accordingly, the output is Fail.

Our induction hypothesis is that the output of the algorithm on (φ, `) is correct for all values
of ` ≤ k. Now, consider the behavior of the algorithm on (φ, k + 1). By the correctness of the
replacer algorithm, the formula φ∗ has a strong Kη-backdoor of size at most (k + 1) if and only
if φ has a strong Kη-backdoor of size at most k. The algorithm then proceeds to examine all
subsets of size at most (k + 1) of the big buckets. We have the following cases.

– SolveSB((φ, k)) = Yes. Observe that solveSB((φ, k + 1)) returns Yes if, and only if,
there is a subset S ∈ S for which z[S] was Yes. This in turn is true if, and only if, there
is an assignment τ ∈ 2S to the variables in S for which SolveSB((φ∗[τ ], k − b)) returns
Yes. Inductively, this implies that φ∗[τ ] is in fact a satisfiable formula. Let τ ′ then be a
satisfying assignment for φ∗[τ ]. Note that τ∗(x), given by:

τ∗(x) =
{

τ(x) if x ∈ S,
τ ′(x) if, x /∈ S,

is a satisfying assignment for φ∗. By the equivalence of φ and φ∗ with respect to satisfiability
(as guaranteed by the reducer) we know that φ is also satisfiable, concluding the proof.

– SolveSB((φ, k)) = No. In this case, solveSB((φ, k+ 1)) returns Yes if, and only if, there
is a subset S ∈ S for which z[S] was No. This in turn is true if, and only if, there for
every assignment τ ∈ 2S , SolveSB((φ∗[τ ], k − b)) returns No. Since we have, inductively,
that φ∗[τ ] is not satisfiable for any assignment to the variables in S, we know that φ∗
is also not satisfiable. Indeed, suppose to the contrary that φ∗ does admit a satisfying
assignment τ∗. Then the formula φ∗[τ∗�S ] would be satisfiable as well, which contradicts
the induction hypothesis. The correctness again follows from the equivalence of φ and φ∗

with respect to satisfiability.
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– SolveSB((φ, k)) = Fail. Here, we have that solveSB((φ, k + 1)) returns Fail if, and
only if, for all subsets S ∈ S, z[S] is Fail. In other words, for every subset S ∈ S, there
is an assignment τS to the variables of S for which SolveSB((φ∗[τS ], k + 1− |S|)) is Fail.
By the induction hypothesis, we have that the formulas (φ∗[τS ] do not admit a strong
backdoors of size at most k − |S| for every S ∈ S.
Suppose, for the sake of contradiction, φ∗ does admit a strong Kη-backdoor of size at most
k + 1. Since φ∗ is the output of a (wb,Kη, ρ)-reducer, we know every Kη-backdoor in φ∗ is
a ρ-cover, and therefore intersects a large fraction of one of the sets in S. In particular, let
S∗ be a strong backdoor of size at most (k + 1) such that its intersection with Bi is at
least `|Bi|. Then S′ := S∗ ∩Bi ∈ S, and for any τ ∈ 2S′ , we have that φ∗[τ ] does admit a
strong backdoor of size at most k+ 1− |S′|, indeed, S′ ∩ var(φ∗[τ ]) would be such a strong
backdoor. However, by the discussion above, there exists an assignment τ ′ to S′ for which
SolveSB((φ∗[τ ′, k + 1− |S′|)) returns Fail, contradicting the induction hypothesis. The
correctness for (φ, k + 1) follows from the equivalence of φ and φ∗ with respect to having
strong backdoors of size at most (k + 1), as guaranteed by the reducer.

Observe that the case analysis above is exhaustive, and establishes the correctness of Algorithm 2.

We conclude at this point by observing that combining Lemmas 2 and 3 along with Lemma
8 (proved in the next subsection) gives us two algorithms – one for d-SAT parameterized by the
size of a smallest weak Kt-backdoor and one for d-SAT parameterized by the size of a smallest
strong Kt-backdoor. For any input (φ, k), we can in fact run both algorithms on the same input,
giving us Theorem 1.

3.1.3 Fixed Parameterized Tractability of computing weak Wη-backdoor sets

We also obtain the following fixed parameter tractability result (assuming appropriate reducers)
for the problem of deciding if a given formula has a weak Wη backdoor set of size at most k.

Theorem 2. There is an algorithm that, given a d-CNF formula φ and an integer k, runs in
time 2O(k)|φ| either returns a set of at most k variables which form a Wη weak backdoor set or
correctly concludes that such a set does not exist.

Proof. To prove the theorem, we repurpose the algorithm of Lemma 1, where instead of just
fixing a random assignment to a randomly chosen variable, we now also add this variable to the
Wη weak backdoor set. Therefore, it suffices to give a linear time (wb,Wη, ρ)-reducer, which is
described formally in the next subsection. This gives a randomized 2O(k)|φ| algorithm to detect
weak Wη-backdoor sets of size at most k. This algorithm can be derandomized identical to the
way the algorithm of Lemma 1 is derandomized in Lemma 2. The correctness and running time
bounds of this algorithm follow along the same lines as those for the algorithm of Lemma 2.

In the next subsection, we describe the reducers whose existence was assumed in the above
lemmas and show that they run in linear time.

3.2 Reducers for d-SAT

We begin by introducing a satisfiability preserving version of protrusion replacers for d-SAT.
More formally, for J ∈ {wb, sb}, a class of formulas Q and a constant r, we have the following
definition of a (J ,Q, r)-protrusion replacer.
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Definition 10. A (wb,Q, r)-protrusion replacer is an algorithm that, given a d-CNF formula
φ and a r-protrusion X in inc(φ), runs in time O(|X|) and outputs a formula φ such that
|φ′| ≤ |φ|, φ′ ≡ φ, and φ has a weak Q-backdoor set of size at most k if and only if φ′ has a weak
Q-backdoor set of size at most k for every 0 ≤ k ≤ |var(φ)|. A (sb,Q, r)-protrusion replacer is
defined analogously for strong backdoor sets.

The following lemma, proved in the following subsection gives protrusion replacers that
preserve both satisfiability as well as backdoor sets.

Lemma 4. For every η, there is a constant r and algorithms R1,R2,R3, where R1 is a
(wb,Kη, r)-protrusion replacer, R2 is a (sb,Kη, r)-protrusion replacer and R3 is a (wb,Wη, r)-
protrusion replacer respectively.

The statement of the following lemma is analogous to the general protrusion replacer theorem
for graph problems proved in the next section. However, since we are dealing with CNF formulas
and need to preserve satisfiability as well as backdoor sets, this replacer theorem cannot be
directly applied to this problem and hence we require a “SAT” version of this theorem for our
purposes here.

Lemma 5. For a fixed r, let R be a (x,Q, r)-protrusion replacer (x ∈ {wb, sb}) that replaces
r-protrusions of size at least r′. Let s and β be constants such that s ≥ r′ · 2r and r ≥ 3(β + 1).
Given a formula φ as input, there is an algorithm that runs in time O(|φ|) and produces an
equivalent formula φ′ with |φ′| ≤ |φ|. If additionally inc(φ) has a (α, β)-protrusion decomposition
such that α ≤ |φ|

244s , then we have that |φ′| ≤ (1− δ)|φ| for some constant δ.

For the rest of this subsection, we assume the above lemmas with their proofs deferred to
later parts of the paper. We now recall results from [2] relating ρ-covers and protrusions.

Lemma 6. [7] Let G be a graph and S ⊆ V (G) such that tw(G − S) ≤ η. For any constant
s > 1, let ρ = 1

488s(η+1)+2 . If S is not a ρ-cover, then |N [S]| ≤ n
(244s) .

We also need the notion of a protrusion decomposition defined in [2] where it was shown that
if a graph G has a set X such that tw(G−X) ≤ b, for some fixed b, then it admits a protrusion
decomposition for an appropriate value of the parameters.

Definition 11. [Protrusion Decomposition][2] A graph G has an (α, β, η)-protrusion de-
composition if V (G) has a partition P = {R0, R1, . . . , Rt} where

• max{t, |R0|} ≤ α,

• each NG[Ri], i ∈ {1, . . . , t} is a (β, η)-protrusion of G, and

• for all i > 1, N [Ri] ⊆ R0.

We call the sets R+
i = NG[Ri], i ∈ {1, . . . , t} protrusions of P. By an (α, β)-protrusion

decomposition, we mean a (α, β, β)-protrusion decomposition.

Lemma 7. [2] Let G be a graph and S ⊆ V (G) such that tw(G − S) ≤ η. Then, G has a
(4|N [S]|(η + 1), 2(η + 1), η)-protrusion decomposition

We now prove the main lemma of this subsection – a description of the reducers.

Lemma 8. For every η, there is a positive ρ < 1 and algorithms A1,A′1,A2,A′2 such that
(A1,A′1) is a (wb,Kη, ρ)-reducer and (A2,A′2) is a (sb,Kη, ρ)-reducer.
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Proof. Let ∇1 : N → N and ∇2 : N → N be such that (r, η)-protrusions of size at least ∇1(r)
(∇2(r)) can be reduced while preserving equivalence and weak Kη-backdoor sets (respectively
strong Kη-backdoor sets). Let φ be a d-CNF formula, G = inc(φ) and n = |V (G)|. Let S ⊆ var(φ)
be any weak (strong) Kη-backdoor set for φ.

– Fix a such that a > 4(η+1)8(2η+3)∇c(3(2η+3)) where c = 1 for the case of weak backdoors
and c = 2 for the case of strong backdoors.

– Set ρ = 1
488a(η+1)+2 .

– By Lemma 6, we have that if S is not already a ρ-cover, then |N2
G[S]| ≤ n

(244a) .

– By Lemma 7, we have that G has a (4|N2
G[S]|(η+ 1), 2(η+ 1), η)-protrusion decomposition.

Setting α = 4|N2
G[S](η+1), s = a

4(η+1) , β = 2(η+1) and using the fact that |N2
G[S]| ≤ n

(244a)
gives us the existence of a (α, β)-protrusion decomposition of G such that α ≤ n

244s .

– Since α ≤ n
244s , an application of the algorithm of Lemma 5 for r = 3(β + 1) along with

the appropriate protrusion replacer (Lemma 4) on φ results in a formula φ′. Then, we
know that φ ≡ φ′, φ has a weak (strong) Kη-backdoor set of size at most k if and only
if φ′ has a weak (strong) Kη-backdoor set of size at most k for every 0 ≤ k ≤ |var(φ′)|.
Furthermore, |φ′| ≤ |φ|(1− δ) for a constant 0 < δ < 1.

Combining the above, the algorithms A1 and A2 are easily described as follows. Combine
the algorithm of Lemma 5 with the appropriate protrusion replacer to obtain a formula φ′ and if
|inc(φ′)| < |inc(φ)|(1− δ) then repeat this process with φ′ as input. Otherwise stop and output
φ′.

The correctness of the algorithms A1 and A2 follows from the correctness of Lemma 6,
Lemma 7 and Lemma 5, while the linear running time follows from the fact that the time
required by the algorithm is bounded by a geometric series. It only remains to describe the
algorithms A′1 and A′2. The descriptions as well as correctness of these algorithms are part of the
proofs of Lemma 12 and Lemma 14 which are deferred to the next subsection. This completes
the proof of this lemma.

Finally, recall that we also needed to assume a (wb,Wη, ρ)-reducer in the proof Theorem
2. Observe that in order to describe a (wb,Wη, ρ)-reducer the descriptions in Lemma 8 can be
replicated almost identically with the only changes appearing in the selection of the function ∇
which provides a lower bound on the size of replaceable protrusions and then in the selection of
the appropriate protrusion replacer given by Lemma 4.

3.3 Protrusion Replacement

In this section we describe procedures that, given the incidence graph (G = (X,C), E, `) of
a d-CNF formula φ and protrusion of large enough size in G, obtains an equivalent instance
that is strictly smaller than the original. The equivalence is both with respect to maintaining
the satisfiability of ψ(G), and preserving the presence of a strong or weak Kη-backdoor (or a
strong/weak Wη-backdoor). We remark here that these methods described here similar in spirit
to the ideas used in [13].

3.3.1 Weak Kη Backdoors

We begin by introducing some definitions. A h-state of a t-boundaried incidence graph G with
boundary Z is a tuple (P,Q, τ, w,H), where:
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• P is a subset of var(Z),

• Q is a subset of cla(Z),

• τ is a truth assignment of var(Z), that is, τ : var(Z)→ {0, 1},

• w ∈ [t] is a positive integer, and

• H is a collection of labeled graphs on at most h vertices, where the labels are from [t].

For a t-boundaried incidence graph G with boundary Z, let S((G,Z), h) denote the set of
all possible h-states of (G,Z). The realizability function of G with respect to h, denoted by
Λh, maps pairs ((G,Z), ω), to {0, 1}, where ω ∈ S(G, h). This function is defined as follows.
Let ω = (P,Q, τ, w,H) ∈ S(G, h). We have that Λh(ω) = 1 if, and only if, there is a subset
S∗ ⊆ var(G) of size at most w, and a truth assignment τ∗ on var(G), such that the following
holds:

• S∗ ∩ Z = P

• τ∗ is a satisfying assignment for ψ(G) \Q,

• τ∗�Z = τ , that is, for every v ∈ Z, τ∗(v) = τ(v),

• H =Mh(H), where H is the incidence graph of ψ(G)[τ∗�S∗ ].

Consider two t-boundaried incidence graphs (G1, Z1) and (G2, Z2) that have the same
boundary type. For i ∈ [t] and h ∈ {1, 2}, we use bhi to denote the vertex of Zh with label i. Let
 : Z1 → Z2 be defined as (b1

i ) = b2
i . For any Z ⊆ Z1, we let (Z) :=

⋃
v∈Z (v). Further, for

every h-state ω = (P,Q, τ, w,H) ∈ S(G1, h), we define ω′ := ((P ), (Q), τ ′, w,H) ∈ S(G2, h),
where τ ′ : Z2 → {0, 1} and τ ′(b2

i ) := τ(b1
i ).

We say that two t-boundaried incidence graphs (G1, Z1) and (G2, Z2) equivalent with respect
to h-states if they have the same boundary type, and for every ω = (P,Q, τP , w,H) ∈ S(G1, h),
we have that Λh(ω) = Λh(ω∗).

Let G be an incidence graph of order d. Let Y ⊆ V (G) be a (ζ, t)-protrusion in G with
boundary Z, and let (T,B = {Bv}v∈V (T )) be a tree decomposition of G[Y ]. For a node v ∈ V (T ),
let Dv := {u | u is a descendant of v in T}. We note that we consider v to be a descendant of
itself. We let Ht := G[

⋃
u∈Dv

Bu], and H∗t := Ht \Bt.
For a bag Bv and a vertex b ∈ Bv, we let d↑v[b] denote the degree of b in G \Hv and we let

d↓v[b] denote the degree of b in Hv. For two nodes u, v ∈ T , we say that Hu and Hv have the same
clause degree sequence if the t-boundaried graphs (Hu, Bu) and (Hv, Bv) have the same boundary
type, and for every vertex b ∈ cla(Bu), we have that d↓v[b] = d↓u[(b)], and d↑v[b] = d↑u[(b)].

We are now finally ready to describe the central notion that in the prelude to protrusion
replacement — namely, redundancy. For a fixed h, we say that two bags Bu and Bv in the tree
decomposition of Y are h-redundant if the corresponding t-boundaried graphs (Hu, Bu) and
(Hv, Bv) have the same boundary type, the same clause degree sequence, are also equivalent
with respect to h-states, and the graphs induced on the boundaries Bu and Bv are isomorphic.

We now give a brief informal overview of the procedure that we will follow from here. Let
h := t2. Suppose we find h-redundant bags Hu and Hv such that u is an ancestor of v. Then,
consider the graph obtained by removing H∗u and gluing on (Hv, Bv) to (G \H∗u, Bu). It turns
out that the resulting graph, has a weak-Kt backdoor of size at most k if, and only if, G has a
weak-Kt backdoor of size at most k. Further, if u and v were introduce bags, then the number of
vertices in the graph obtained as a result of the replacement that we described is strictly smaller
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than |V (G)|. After establishing the correctness of this reduction, we only need to show that
there is a constant r′ such that any protrusion on at least r′ vertices indeed admits redundant
introduce bags Bu and Bv in its tree decomposition, where u is an ancestor of v, which will
complete our argument for being able to replace large protrusions.

Towards formulating a reduction rule and proving its correctness, we begin with the following
lemma.

Lemma 9. Let η ∈ Z+ be a constant, and let (G1, Z1) and (G2, Z2) be two t-boundaried incidence
graphs that are equivalent with respect to h-states, where h = η2. Further, suppose G1 and G2
do not admit the �η grid as a labeled minor. Then, for any t-boundaried graph (G3, Z3) that has
the same boundary type as G1 and G2, and any positive integer k, we have that ψ(G1 ⊕G3) has
a weak Kη-backdoor of size at most k if, and only if, ψ(G1 ⊕G3) has a weak Kη-backdoor of size
at most k.

Proof. In the forward direction, suppose ψ(G1 ⊕ G3) has a weak Kη-backdoor, S∗, of size at
most k, and let τ : var(G1 ⊕G3)→ {0, 1} be the witness assignment for S∗. Let S1, S and S3
denote the intersection of S∗ with G1 \ Z1, Z1, and G3 \ Z3, respectively. Let T denote the
collection of labeled minors of size at most η2 that can be obtained from inc(ψ(G1)[τ�(S∪S1)]).
Let Q be the set of clauses of inc(ψ(G1)[τ�(S∪S1)]) that are not satisfied by τ�V (G1).

We first note that |S|+ |S1| ≤ t. Recall that G1 does not contain any �η grid as a labeled
minor. Therefore, S∗ ∩ (G3 \ Z3) ∪ Z3 is a weak Kη-backdoor if S∗ is a weak Kη-backdoor (with
the same witness assignments). Thus, (S,Q, τ�Z1 , |S|+ |S1|,T) ∈ S(G1, Z1). Further, observe
that:

Λh((G1, Z1), (S,Q, τ�Z1 , |S|+ |S1|,T)) = 1

Let  be the function that maps boundary vertices of Z1 of label i to boundary vertices of Z2
of label i, and this function is extended to subsets of boundary vertices in the usual way. Also,
for h ∈ {1, 2}, if bhi ∈ Zh is the vertex of Zh with label i, then define:

(τ�Z1)′(b2
i ) := (τ�Z1)(b1

i ).

Since G1 and G2 are equivalent with respect to h-states, we have that:

Λh((G2, Z2), ((S), (Q), (τ�Z1)′, |S + S1|,T)) = 1,

By the definition of Λh, this implies that there is a subset S∗2 of var(G2) of size at most
|S + S1|, and a truth assignment τ2 on var(G2), such that the following holds:

• S∗ ∩ Z2 = (S)

• τ2 is a satisfying assignment for ψ(G2) \ (Q),

• τ2�Z2 = (τ�Z1)′,

• T =Mh(H), where H is the incidence graph of ψ(G2)[τ�(S)].

Now we propose T ∗ := S3∪S∗2 as weak Kη-backdoor for G2⊕G3, with the witness assignment
τ∗2 given by:

τ∗2 (v) =
{
τ2(v) if v ∈ var(G2),
τ(v) if, v ∈ var(G3).

Note that the τ∗2 is well-defined because the assignments τ and τ2 agree on the boundary.
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Clearly, |T ∗| = |S3| + |S∗2 | ≤ |S3| + |S1| + |S| = |S|, so T ∗ has the desired size. Next, we
claim that τ∗2 as defined above satisfies all the clauses of ψ(G2 ⊕G3). Indeed, consider a clause
C ∈ cla(ψ(G2 ⊕G3)).

• If C is a clause in ψ(G2 ⊕ G3 \ G2), then var(C) ⊆ var(G3), and evidently τ∗2 (v) = τ(v)
for all v ∈ C. If this clause is not satisfied by τ∗2 , then it is also not satisfied by τ in
ψ(G1 ⊕G3), which is a contradiction.

• If C is a clause in ψ(G2) \ (Q), then it is satisfied by τ2(v) by definition.

• Finally, let C be a clause in (Q). Consider the clause C in ψ(G1 ⊕G2), and let v ∈ lit(C)
be such that τ(v) = 1. Note that the v must belong to var(G3) \ var(G1) — indeed, we
know that every variable in C ∩ var(G1) evaluates to false under the assignment τ (by the
definition of Q). Since the assignment τ∗2 as defined above agrees with the assignment of τ
to v, the clause C is satisfied under τ∗2 as well.

Finally, we need to show that H := inc(ψ(G2 ⊕ G3)[τ∗2 �T ∗ ]) does not contain the �η as a
minor. For the sake of contradiction, assume that H does contain a subgraph H∗ that is a minor
model of �t. Let the components of H∗ witnessing the vertices of �η be {Ci,j | 1 ≤ i, j ≤ η}.
Consider the labeled graph H∗2 := H∗ ∩ G2, where the identified vertices are simply given
by H∗ ∩ Z2. Further, let H† be the labeled graph obtained from H∗2 by performing labeled
contractions of the edges in Ci,j ∩H∗2 for all 1 ≤ i, j ≤ η. Note that H† ∈ T. However, now
consider that H† is also a labeled minor of (inc(ψ(G1)[τ�S1∪S ]), Z), by the definition of Λh.
Therefore, the graph (G3, Z3)⊕H† is a minor of inc(ψ(G1 ⊕G3)[τ�S1∪S ]).

However, now contracting the edges in Ci,j ∩G3, we have that �t is a minor of inc(ψ(G1 ⊕
G3)[τ�S∗ ]). Note that the edges we are contracting here are available in the graph inc(ψ(G1 ⊕
G3)[τ�S∗ ]), since the solution T ∗ and S∗ are designed to agree completely on G3, including the
boundary (they agree on the boundary because of the by the definition of T ∗ and the fact that
G1 and G2 have identical h-states). Note that this contradicts the assumption that S∗ was a
weak Kη-backdoor for (G1 ⊕G3). The argument in the reverse is symmetric.

We now have the following theorem, which will lead us to formalizing the procedure of
protrusion replacement.

Lemma 10. Let G be an incidence graph of order d, and let Y be a (t, η)-protrusion. Let
(T,B = {Bv}v∈V (T )) be a nice tree decomposition of G[Y ]. If T admits two (η2)-redundant
introduce bags Bu and Bv, where u is an ancestor of v in T then:

• The graph H := (G \H∗u, Bu)⊕ (Hv, Bv) is also an incidence graph of order d,

• |V (H)| < |V (G)|, and

• The instance (ψ(H), k) has a weak Kη-backdoor if, and only if, the instance (ψ(G), k) has
a weak Kη-backdoor.

Proof. Consider the t-boundaried graphs (Hu, Bv) and (Hv, Bv). Note that the graphs (Hu, Bu)
and (G \H∗u, Bu) are friendly by definition. Since the Bu and Bv are (η2)-redundant, they have
the same clause degree sequence. Therefore, it is immediate that (Hv, Bv) and (G \H∗u, Bu) are
also friendly, and the first claim follows.

Since Bu and Bv are both introduce bags in T , and u is an ancestor of v, we have that
Hu \Hv is non-empty. Recall that H denotes (G \H∗u, Bu)⊕ (Hv, Bv), the graph obtained as a
result of the proposed replacement. Note that:

20



|V (H)| = |V (Hv)|+ |V (G \Hu)| = |V (Hv)|+ |V (G)| − |V (Hu)| < |V (G)|.

For the last statement, let S be a Kη -backdoor of ψ(G), of size at most k. Consider
the t-boundaried graphs (Hu, Bu), (Hv, Bv). Because these graphs are η2-redundant, they are
equivalent with respect to η2-states. Now, apply Lemma 9 with (G3, Z3) := (G \H∗u, Bu), and
(G1, Z1) := (Hu, Bu) and (G2, Z2) := (Hu, Bu) to obtain the statement of the theorem.

Next, we show that a sufficiently large protrusion always has redundant bags as required by
Theorem 10.

Lemma 11. Let G be an incidence graph of order d, let Y be a (t, η)-protrusion. There is a
constant c depending only on d, η and t such that if |Y | > c, then a nice tree decomposition of
G[Y ] admits two η2-redundant bags Bu and Bv, such that u is an ancestor of v.

Proof. Let h := η2. The proof relies on the fact that the set of h-states of the t-boundaried
graph (G[Y ], Z) (where Z := ∂(Y )) is bounded by a function of t and η alone, and therefore,
the number of possible realizability functions is also bounded by t and η. In this argument, we
make no attempt to optimize the constants, and often the bounds are not the best possible.

Recall that a h-state is a tuple (P,Q, τ, ω,H), where P and Q are subsets of var(Z) and
cla(Z), respectively, τ is a truth assignment of Z, ω ∈ [t], and H is a collection of labeled graphs
on at most h vertices. Let us denote the number of possible h-states of a t-boundaried graph
(G,Z) by λ1(h, t). Note that:

λ1(h, t) ≤ 2|var(Z)| · 2|cla(Z)| · 2|Z| · t · ι(h, t) ≤ 22t · t · ι(h, t),

where ι(h, t) is the number of all possible labeled graphs on at most h vertices with labels
from the set [t]. Note that |Z| = t.

Recall that incidence graphs are two-edge colored graphs where every edge gets exactly one
color. Let λ2(n) denote the number of all possible two-edge colored graphs on n vertices where
the vertices have labels from [n]. Since the set of two-edge colored graphs is isomorphic to the
set of words of length

(n
2
)

over the alphabet {0, 1, 2} (indicating the absence of an edge, the
presence of an edge with color 1 and the presence of an edge with color 2, respectively), we have
that λ2(t) ≤ t!3(t

2).
Let λ3(t) denote the number of possible clause degree sequences of a set of t vertices of G.

Since G is an incidence graph of order d, the total degree of any clause vertex is at most d.
Therefore, λ3(t) ≤ d2t, since a clause degree sequence is characterized by an ordered collection
of t pairs of numbers, where each number is at most d.

Let λ4(t) denote the number of possible boundary types of a t-boundaried incidence graph.
Clearly, λ4(t) ≤ 2t. Now, let:

c∗ := 2λ1(h,t) · λ2(h, t) · λ3(t) · (λ4(t) + 1),

and let c := 2c∗ . Now consider a (t, η)-protrusion Y on at least c vertices, and let T be a
nice tree decomposition of G[Y ]. Note that T has at least c introduce nodes. Further, since T is
a binary tree, and a binary tree on 2n − 1 vertices has at least one root-to-leaf path of length
at least n, we have that T admits a root-to-leaf path, say P , of length at least c∗. Now, since
the number of realizability functions of G[Y ] with respect to h is at most 2λ1(h,t), we know by
an averaging argument that there are at least λ2(h, t) · λ3(t) · (λ4(t) + 1) bags on P that are
equivalent with respect to h-states. Further, at least λ3(t) · (λ4(t) + 1) of these bags induce
graphs that have a labeled isomorphism between them. By averaging again, we have that at
least (λ4(t) + 1) of these bags have the same clause degree sequence, and finally, we see that at
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least two of these bags must also share their boundary type. These bags are h-redundant, as
desired. This concludes the proof of the lemma.

We now describe the overall replacement algorithm. Given an (t, η)-protrusion Y of size
at least c and at most 2c, where c is as given by Lemma 11, we begin by computing a nice
tree decomposition T of G[Y ]. Walking bottom-up through this tree decomposition, for every
node v ∈ T , we compute the realizability function for the graph (Hv, Bv), by brute force. By
Lemma 11, we will inevitably find two bags Bu and Bv that are η2-redundant. We then return
the graph (G \H∗u, Hu)⊕ (Hv, Bv) as the reduced, equivalent instance. The correctness of this
reduction follows from Lemma 10.

We note that along with the realizability function, we can also compute a realizability witness
table which stores, for every ω ∈ S((G,Z), h) such that Λh(ω) = 1, the subset S∗ ⊆ var(G) and
a truth assignment τ∗ on var(G) that are witnesses to Λh(ω) = 1. Note that for a constant-sized
protrusion, the size of the realizability witness table is also a constant. We may store, for every
protrusion that is replaced, its realizability witness table with only a constant space overhead per
replacement. When backtracking through the replacements, the table will enable us to recover
assignments made to variables that were deleted as a result of the replacement. Further, if we are
given a satisfying assignment τ of the instance obtained after the replacement, say H, then the
we can obtain a satisfying assignment for the original instance G as follows. We look up the entry
in the realizability witness table corresponding to the tuple (var(Z), ∅, τ�Z , |var(Z)|,H), where H
is the collection of all labelled minors of size at most h that can be obtained from inc(ψ(G)[τ�Z ]).
It can be checked that if τ was a satisfying assignment for ψ(H), then the table entry with this
index will contain a satisfying assignment for ψ(G). We summarize these observations in our
next lemma, where we use c(d, η, t) to denote the constant c given by Lemma 11.

Lemma 12. Let G incidence graph of order d, let Y be a (t, η)-protrusion. If Y has at least
c(d, η, t) vertices, it is possible to compute a strictly smaller instance H such that G has a weak
Kη-backdoor of size at most k if, and only if, H has a weak Kη-backdoor of size at most k.
Further, given a weak Kη-backdoor for ψ(H), it is possible to compute a weak Kη-backdoor for
ψ(G) in constant time. In the case when ψ(G) is satisfiable, given a satisfying assignment for
H, it is possible to compute a satisfying assignment for G in constant time.

We observe that Lemma 12 holds even if we would like to have equivalence with respect to
having a Wη-backdoor. By the results of Robertson and Seymour, it is well-known that the class
of graphs in Wη is characterized by a finite set of forbidden minors. In other words, there is
a finite set of graphs Oη such that a graph belongs to Wt if, and only if, it does not contain
any graph from Oη as a minor. Therefore, instead of using �t as the forbidden subgraph in
the arguments before, we use the set of graphs in Oη. The graphs in Oη can be computed in
constant time for all values of η by the results of [1]. Therefore, we also have the following:

Lemma 13. Let G incidence graph of order d, let Y be a (t, η)-protrusion. If Y has at least
c(d, η, t) vertices, it is possible to compute a strictly smaller instance H such that G has a weak
Wη-backdoor of size at most k if, and only if, H has a weak Wη-backdoor of size at most k.
Further, given a weak Wη-backdoor for ψ(H), it is possible to compute a weak Wη-backdoor for
ψ(G) in constant time. In the case when ψ(G) is satisfiable, given a satisfying assignment for
H, it is possible to compute a satisfying assignment for G in constant time.

Our preference for �η instead ofOη is due to the fact that it is easier to implement replacement
without having to compute Oη, and we achieve very similar results — the only difference is that
when we solve SAT for bounded treewidth formulas, the treewidth is guaranteed to be at most
η100 instead of being at most η.
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3.3.2 Strong Kη-Backdoors

For replacing protrusions while maintaining the equivalence with respect to the existence of
strong Kη-Backdoors, we define a slightly different notion of h-states. For ease of discussion,
we continue to use the terms h-state and realizability functions with respect to h. We note that
these terms take on different meanings depending on the problem. In particular, for the purpose
of this discussion, a h-state of a t-boundaried incidence graph G with boundary Z is a tuple
(P,w,H), where:

• P is a subset of var(Z),

• w ∈ [t] is a positive integer, and

• {Hτ | , τ : S∗ → {0, 1}}, where each Hτ is a collection of labeled graphs on at most h
vertices, where the labels are from [t],

• {bτ | τ ∈ 2P }, where each bτ ∈ {0, 1}.

For a t-boundaried incidence graph G with boundary Z, let S((G,Z), h) denote the set of
all possible h-states of (G,Z). The realizability function of G with respect to h, denoted by Λh,
maps pairs ((G,Z), ω), to {0, 1}, where ω ∈ S(G, h). This function is defined as follows. Let
ω = (P,w, {Hτ | , τ : S∗ → {0, 1}}). We have that Λh(ω) = 1 if, and only if, there is a subset
S∗ ⊆ var(G) of size at most w such that the following holds:

• S∗ ∩ Z = P ,

• for every assignment τ : S∗ → {0, 1}, the collection of labeled graphs that can be obtained
as labeled minors of inc(ψ(G)[τ ]) is given by Hτ .

• for every assignment τ : S∗ → {0, 1}, the formula ψ(G)[τ ] is satisfiable if, and only if,
bτ = 1.

Given the notion h-states and realizability functions as above, we have a natural notion
of equivalence with respect to h-states, as before, where two instances are equivalent if they
have the same realizability functions. We now note that analogs of Lemmas 9,10, and 11, can
be shown in the context of strong Kη-backdoors. The proofs are along very similar lines. Let
c′(d, η, t) denote an appropriate function as obtained by an analog of 11.

Additionally, we may define a realizability witness table which stores, for every ω ∈
S((G,Z), h) such that Λh(ω) = 1, a witness strong Kη-backdoor S∗ ⊆ var(G) and for ev-
ery truth assignment τ to S∗ ∩ Z for which bτ = 1, a truth assignment τ † on var(G) such that
τ † satisfies ψ(G). These constitute witnesses to Λh(ω) = 1. We will then have the following:

Lemma 14. Let G incidence graph of order d, let Y be a (t, η)-protrusion. If Y has at least
c′(d, η, t) vertices, it is possible to compute a strictly smaller instance H such that G has a strong
Kη-backdoor of size at most k if, and only if, H has a strong Kη-backdoor of size at most k.
Further, given a strong Kη-backdoor for ψ(H) it is possible to compute a strong Kη-backdoor for
ψ(G) in constant time. In the case when ψ(G) is satisfiable, given a satisfying assignment for
H, it is possible to compute a satisfying assignment for G in constant time.

We remark that the natural analogue of the lemma above for strongWη-backdoors also holds,
and the proof uses the obstruction set Oη as described before in the context of weak backdoors.
We conclude this subsection by pointing out that Lemma 4 used in the description of reducers
in the previous subsection follows by putting together Lemma 12, Lemma 13 and Lemma 14.
Furthemore, the algorithms A′1 and A′2 needed to recover satisfying assignments in the proof of
Lemma 8 follow from Lemma 12 and Lemma 13.
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4 Fast Protrusion Replacement

In this section, we present our linear time algorithm to detect protrusions that cover a sufficiently
part of a given graph. Using this algorithm, we prove our Linear Time Protrusion Replacement
Theorem. Although the main motivation behind designing this algorithm is to achieve reducers
that run in linear time for d-SAT, this theorem is developed in a much more general setting so as
to facilitate “black-box” applications and can also be invoked directly to improve several existing
kernelization as well as FPT results. We begin by recalling the notions of protrusion covers.

Definition 12. A (a, b, r, η)-protrusion cover in a graph G is a collection Z = Z1, . . . , Zq of
sets such that

• for every i, N [Zi] is a (r, η)-protrusion in G

• for every i, a ≤ |Zi| ≤ b

• for every i 6= j, Zi ∩ Zj = ∅ and N [Zi] ∩ Zj = ∅.

The size of Z is denoted by |Z|.

Note that the protrusions in a (a, b, r, η)-protrusion cover are not necessarily connected.
However, the following lemma shows that we may make this assumption at a cost of decreasing
the lower bound on the sizes of the protrusions.

Lemma 15. Let G be a graph with a (s, 6s, r, η)-protrusion cover Z. Then, G has a ( s2r , 6s, r, η)-
protrusion cover Z ′ of size at least |Z| such that for every Z ∈ Z ′, the connected components of
G[Z] have the same neighbourhood.

Proof. Let Z1, . . . ,Zp be the partition of the sets in Z according to their neighborhood. Fur-
thermore, for each Zi, let Pi denote a subset of Zi such that for every Z ∈ Zi, there is a set
P ∈ Pi such that |P | ≥ s

2r and the connected components of G[P ] have the same neighborhood.
Since each Z ∈ Zi has size at least s and neighbourhood at most r, such a P exists for every
Z and therefore Pi exists for every Zi. Observe that the set P = {Pi|i ∈ [p]} is indeed a
( s2r , 6s, r, η)-protrusion cover satisfying the conditions in the statement of the lemma.

Clearly, it is very desirable to be able to compute protrusion covers of large size, which then
allows us to reduce the size of instances by a significant amount. Our next algorithm achieves
this – in linear time, it computes a protrusion cover which “approximates” any protrusion cover
in the graph with certain parameters. We use the following algorithm for enumerating small
connected components with a small neighborhood.

Proposition 1. [10] Let G be a graph and let v ∈ V (G), p, q ∈ [|V (G)|]. The number of sets S
containing v such that G[S] is connected, |S| ≤ p, and |N(S)| ≤ q is at most

(p+q
p

)
and given v,

they can be enumerated in constant time for fixed p and q.

Lemma 16. For every r and s where s > 2r, there is an algorithm that runs in time O(m+n) and
computes a ( s2r , 7s, r, η)-protrusion cover. Furthermore, if G has a ( s2r , 6s, r, η)-protrusion cover
Z such that for every Z ∈ Z ′, the connected components of G[Z] have the same neighbourhood
then the computed ( s2r , 7s, r, η)-protrusion cover Z ′ has size at least δ|Z|, where δ is a constant
depending only on r and s.
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Proof. For every vertex v ∈ V (G), we use Proposition 1 to enumerate the family Sv = {S ⊆
V (G)|v ∈ S, |S| ≤ 6s, |N(S)| ≤ r,G[S] is connected }. Since enumerating the family Sv for each
vertex takes constant time, the sets Sv for all vertices can be computed in time O(n). For every
v ∈ V (G), we discard the sets S ∈ Sv such that tw(G[S]) > t. Since we can use the algorithm of
Bodlaender[3] to compute the treewidth of each S ∈ Sv in constant time, the discarding process
taken over the sets Sv for all v ∈ V (G) can be done linear time. Let S∗ =

⋃
v∈V (G) Sv. We now

group the sets in S∗ according to their neighbourhood. More precisely, we compute a partition
of S∗ where sets with the same neighbourhood are in the same class of the partition. This can
be done as follows (see for example [7]). Fix an ordering of the vertex set of G and sort the
neighbor lists of each set in S∗. Following this, in r stable bucket sorts, we can sort the sets in
S∗ based on their ‘first’ neighbor first, then the ‘second’ and so on. This procedure takes time
O(nr) since |S∗| = O(n) and each set in S∗ has a boundary of size at most r. Let X1, . . . ,Xq be
the partition of S∗ obtained as described above. Observe that for any i ∈ [q], for any S1, S2 ∈ Xi,
S1 ∩S2 = ∅. This follows from the fact that G[S1] and G[S2] are both connected. More precisely,
if S1 ∩ S2 6= ∅ then S1 must have a neighbor in S2, contradicting the fact that they lie in the
same class of the partition.

We now club together certain sets in each class of the partition together as follows. For
each Xi do the following. As long as

∑
S∈Xi

|S| ≥ s
2r , select a minimal collection X ′i ⊆ Xi such

that
∑
S∈X ′i

|S| ≥ s
2r and add it to the set Y and remove the sets in this collection from Xi. We

repeat this step as long as possible. Observe that each time we add a minimal collection X ′i ⊆ Xi
to Y , it must be the case that s

2r ≤
∑
S∈X ′i

|S| ≤ 6s+ s
2r ≤ 7a. Let Y1, . . . ,Yq be the collections

added to Y in this way where we know that for every i ∈ [q], the sum of the sizes of the sets in
Yi is at least s

2r and at most 7s.
Before describing the subsequent steps of the algorithm, we prove a bound on the size of

the set Y assuming the existence of a ( s
2r , 6s, r, η)-protrusion cover Z. Let Z1, . . . ,Zp be the

partition of the sets in Z according to their neighbourhood. Observe that for each i ∈ [p], Zi
is a subset of Xj for some unique j, denoted by σ(i). We will show that for Zi, the number of
collections contributed by Xσ(i) to the set Y is a constant fraction of the number of sets in Zi.

More precisely, let Vi be the set of vertices in the union of the sets in Zi. Since every set in Zi
has size at least s

2r , the size of each set Zi is at most |Vi|2r

s . Furthermore, since every collection
contributed by Xσ(i) to Y covers at most 7s vertices, the number of collections contributed by
Xσ(i) to Y is at least b |Vi|

7s c. If |Vi| ≤ 8s, then since Xσ(i) contributes at least one collection to Y ,
we conclude that the number of collections contributed by Xσ(i) to Y is at least a 1

8·2r = 1
2r+3

fraction of the size of Zi. On the other hand, if |Vi| > 8s, then since Xσ(i) contributes at least
|Vi|
7s − 1 collections to Y, we infer that the number of collections contributed by Xσ(i) to Y is

at least a 1
2r+3 fraction of the size of Zi. Having concluded that for any ( s2r , 6s, r, η)-protrusion

cover Z, we have that |Y| ≥ ω · |Z| where ω = 1
2r+3 , we now move to the final step of obtaining

the required protrusion cover Z ′.
Let H be a graph with vertex set corresponding to the sets in Y and edge set defined as

follows. There is an edge between vertices u and v in H if the corresponding sets Yu and Yv
are such that for some Yu ∈ Yu and Yv ∈ Yv, Yu ∩ Yv 6= ∅ or Yu has an edge to Yv. We observe
that the maximum degree ∆(H) of the graph H is bounded by a constant depending only on s
and r. Indeed, for each Yu, the number of sets in S∗ that intersect a set Y ∈ Yu is bounded by
|Y | ·

(6s+r
r

)
. Furthermore, the number of sets in S∗ that intersect N(Y ) is bounded by r ·

(6s+r
r

)
.

Finally, the number of vertices contained in the union of the sets in Yu for any u ∈ V (H) is
bounded by 7s and each Yu is a union of sets in S∗. Therefore, the degree of any vertex in H
is bounded by λ = (7s+ r) ·

(6s+r
r

)
. Therefore, we can compute in time O(V (H) + E(H)) an

independent set in H of size at least |V (H)|
λ+1 . We set Z ′ to be the collection of sets corresponding
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to the vertices in this independent set. It is clear that Z ′ indeed is a ( s
2r , 7s, r, η)-protrusion

cover of G. Therefore, it only remains to prove the required lower bound on the size of Z ′. Set
δ = ω

(λ+1) . Observe that the size of Z ′ is at least a 1
λ+1 fraction of |V (H)|, which in turn is at

least ω|Z|. This completes the proof of the lemma.

In particular, the above lemma implies that if G has a protrusion-cover Z such that a
constant fraction of vertices of G appear in distinct reducible sets in Z, then we can reduce G
by a constant fraction of its vertices in linear time by computing a large enough approximate
protrusion cover and then invoking the appropriate protrusion replacer, leading to a linear time
algorithm for protrusion replacement. We now state and prove our theorem formally. Before we
state the theorem, we recall the following lemma from [7] relating protrusion decompositions
and protrusion covers with certain size guarantees.

Lemma 17. [7] Let G be a graph with a (α, β, η)-protrusion decomposition. Then, for all s > β,
G has a (s, 6s, 3(β + 1), η)-protrusion cover of size at least n

122s − α.

Theorem 3. (Linear Time Protrusion Replacement Theorem) Let Π be a problem that has a
protrusion replacer which replaces r protrusions of size at least r′ for some fixed r. Let s and
β be constants such that s ≥ r′ · 2r and r ≥ 3(β + 1). Given an instance (G, k) as input, there
is an algorithm that runs in time O(m+ n) and produces an equivalent instance (G′, k′) with
|V (G′)| ≤ |V (G)| and k′ ≤ k. If additionally G has a (α, β)-protrusion decomposition such that
α ≤ n

244s , then we have that |V (G′)| ≤ (1− δ)|V (G)| for some constant δ.

Proof. We first run the algorithm of Lemma 16 with the parameters r and s to compute a
( s

2r , 7s, r, r)-protrusion cover Z. Since s
2r > r′, each set in Z is a reducible protrusion and

therefore we invoke the protrusion replacer to reduce all protrusions in Z to get an equivalent
instance (G′, k′), where |V (G′)| ≤ |V (G)| − |Z|. We now claim that if G has a (α, β)-protrusion
decomposition such that α ≤ n

244s , then we have that |Z| ≥ δV (G) for some constant δ, implying
that |V (G′)| ≤ (1− δ)|V (G)|.

By Lemma 17 we know that if G has a (α, β)-protrusion decomposition then for all s > β,
G has a (s, 6s, 3(β + 1), r)-protrusion cover of size at least n

122s − α ≤
n

244s . Furthermore, by
Lemma 15, we know that G has a ( s2r , 6s, r, r)-protrusion cover Z ′ of size at least n

244s such that
for every Z ∈ Z ′, the connected components of G[Z] have the same neighbourhood. However, in
this case Lemma 16 guarantees that the computed protrusion cover Z has size at least δ′|Z ′| for
some constant δ′. Therefore, setting δ = δ′

244s completes the proof of the theorem.

The proof of Lemma 5 (required for the description of reducers) is identical to the proof of
the above theorem, except that when replacing protrusions in the incidence graph of a formula,
we need to use the satisfiability preserving protrusion replacers described in the previous section.

5 Kernel lower bounds

In this section, we show that the problem of finding a weak Wη-backdoor of size at most k, when
parameterized by k, does not admit a compression algorithm unless NP ⊆ coNP/poly, even
when we restrict ourselves to 4-CNF formulas. We refer the reader to the preliminaries for the
terminology that is used in the proof.

Lemma 18. Unless NP ⊆ coNP/Poly, there is no polynomial compression for the problem of
determining if a 4-CNF formula admits a weakWη-backdoor of size at most k, when parameterized
by k.
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Proof. The proof is by cross-composition from 3-CNF-SAT. We define our polynomial equivalence
relations as follows: two CNF formulas are equivalent if they have the same number of variables
and the same number of clauses. Given 3-CNF formulas φ1, φ2, . . . , φt over the variable set
{x1, . . . , xn}, we construct the following formula. Let ψi denote the formula obtained by inserting
a new variable αi into all the clauses of φi, that is, if Ci1, . . . , Cim are the clauses of φi, then we
have:

ψi :=
m∧
j=1

(Cij ∪ {αi})

Let ψ∗i denote the 3-CNF equivalent of ψi. Further, for new variables α1, . . . , αt, let W be
the clause (ᾱ1 ∨ ᾱ2 ∨ . . . ,∨ᾱt) and let ψ0 be the 3-CNF equivalent of W , that is,

ψ0 := (ᾱ1 ∨ ᾱ2 ∨ y1) ∧ (ȳ1 ∨ ᾱ3 ∨ y2) ∧ · · · ∧ (ᾱt ∨ ȳt−2)
For each xi, 1 ≤ i ≤ n, insert the following clauses:

λi := (xi ∨ z1
i ) ∧ (x̄i ∨ z1

i ) ∧ (xi ∨ z2
i ) ∧ (x̄i ∨ z2

i ) ∧ · · · ∧ (xi ∨ zn+1
i ) ∧ (x̄i ∨ zn+1

i )

The composed formula is given by

ψ :=
{
∧rj=0ψ

∗
j

}∧{
∧nj=1λj

}
We now claim that ψ has a weak backdoor set of size at most n if, and only if, there is an

1 ≤ i ≤ t such that φi is satisfiable.

Forward Direction. Let i be such that φi is satisfiable. Let τ be a satisfying assignment for
φi. We claim that {x1, . . . , xn} is an acyclic weak backdoor set with witness assignment τ .

Consider ψ[τ ]. Set αi = 0 and αj = 1 for every j 6= i. This satisfies W and all unit clauses
involving an αj for j 6= i. Finally, setting zi = 1 for every i gives the satisfying assignment
for φ. It is easy to see that ψ[τ ] is indeed a forest. In particular, the auxiliary y-variables
degenerate into paths where the clause vertices are adjacent to vertices corresponding to αi’s.
The α-vertices, in turn, are potentially adjacent to several leaf vertices (coming from the formula
the clauses of the φi that were not satisfied by the assignment τ on the xi’s). It can be verified
that these components together constitute an acyclic graph.

Reverse Direction. Observe that any acyclic weak backdoor set must contain all the xi’s,
because of the λi’s. Consider any witness assignment τ for ψ. Note that any satisfying assignment
for ψ cannot set all the αi’s to true. In particular, therefore, τ sets at least one of the αi’s to
false. Let αj be such that τ(αj) = 0. Now consider φ′ := ψ[τ�α1,...,αt

], and note that all the
clauses from φj are present in φ′. Therefore, the assignment of τ restricted to the xi’s must be a
satisfying assignment for φj , which concludes the argument.
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