
Parameterized Complexity of Bandwidth on Trees

Markus Dregi∗ Daniel Lokshantov∗

April 30, 2014

Abstract

The bandwidth of a n-vertex graph G is the smallest integer b such that there exists
a bijective function f : V (G) → {1, ..., n}, called a layout of G, such that for every edge
uv ∈ E(G), |f(u)− f(v)| ≤ b. In the Bandwidth problem we are given as input a graph G
and integer b, and asked whether the bandwidth of G is at most b. We present two results
concerning the parameterized complexity of the Bandwidth problem on trees.

First we show that an algorithm for Bandwidth with running time f(b)no(b) would
violate the Exponential Time Hypothesis, even if the input graphs are restricted to be trees of
pathwidth at most two. Our lower bound shows that the classical 2O(b)nb+1 time algorithm
by Saxe [SIAM Journal on Algebraic and Discrete Methods, 1980] is essentially optimal.

Our second result is a polynomial time algorithm that given a tree T and integer b,
either correctly concludes that the bandwidth of T is more than b or finds a layout of T of
bandwidth at most bO(b). This is the first parameterized approximation algorithm for the
bandwidth of trees.

1 Introduction

A layout for a graph G is a bijective function α : V (G)→ {1, . . . , |V (G)|}, and the bandwidth
of the layout α is the maximum over all edges uv ∈ E(G) of |α(u)− α(v)| ≤ b. The bandwidth
of G is the smallest integer b such that G has a layout of bandwidth b. In the Bandwidth
problem we are given as input a graph G and an integer b and the goal is to determine whether
the bandwidth of G is at most b. In the optimization variant we are given G and the task is to
find a layout with smallest possible bandwidth.

The problem arises in sparse matrix computations, where given an n× n matrix A and an
integer k, the goal is to decide whether there is a permutation matrix P such that PAP T is a
matrix whose all non-zero entries lie within the k diagonals on either side of the main diagonal.
Standard matrix operations such as inversion and multiplication as well as Gaussian elimination
can be sped up considerably if the input matrix A can be transformed into a matrix PAP T of
small bandwidth [15].

Bandwidth is one of the most well-studied NP-complete [14, 26] problems. The problem
remains NP-complete even on very restricted subclasses of trees, such as caterpillars of hair
length at most 3 [24]. Furthermore, it is NP-hard to approximate the bandwidth within any
constant factor, even on trees [9]. The best approximation algorithm for Bandwidth on general
graphs is by Dungan and Vempala [10], this algorithm has approximation ratio (log n)3. For
trees Gupta [18] gave a slightly better approximation algorithm with ratio (log n)9/4, while for
caterpillars a O( logn

log logn)-approximation [12] can be achieved.
One could argue that the Bandwidth problem is most interesting when the bandwidth of

the graph is very small compared to the size of the graph. Indeed, when the bandwidth of G is

∗Department of Informatics, University of Bergen, Norway

1



constant the matrix operations discussed above can be implemented in linear time. For each
b ≥ 1 it is possible to recognize the graphs with bandwidth at most b in time 2O(b)nb+1 using the
classical algorithm of Saxe [27]. At this point it is very natural to ask how much Saxe’s algorithm
can be improved. Our first main result is that assuming the Exponential Time Hypothesis of
Impagliazzo, Paturi and Zane [21], no sigificant improvement is possible, even on very restricted
subclasses of trees. In particular we show the following theorem.

Theorem 1. Assuming the Exponential Time Hypothesis there is no f(b)no(b) time algorithm
for Bandwidth of trees of pathwidth at most 2.

The proof of Theorem 1 also implies that Bandwidth is W [1]-hard on trees of pathwidth at
most 2 (see [8, 13, 25] for an introduction to parameterized complexity).

As a counterweight to the bad news of Theorem 1 we give the first approximation algorithm
for Bandwidth of trees whose approximation ratio depends only on the bandwidth b, and not on
the size of the graph. Specifically we give a polynomial time algorithm that given as input a tree
T and integer b either correctly concludes that the bandwidth of T is greater than b or outputs
a layout of width at most bO(b). A key subroutine of our algorithm for trees is an approximation
algorithm for the bandwidth of caterpillars with ratio O(b3). Our algorithm for trees outperforms
the (log n)9/4-approximation algorithm of Gupta [18] whenever b = o( log logn

log log logn). Our algorithm
is the first parameterized approximation algorithm for the Bandiwth problem on trees, that
is an algorithm with approximation ratio g(b) and running time f(b)nO(1). A parameterized
approximation algorithm for the closely related Topological Bandwidth problem has been
known for awhile [23], while the existence of a parameterized approximation algorithm for
Bandwidth, even on trees was unknown prior to this work.

An interestng aspect of our approximation algorithm is the way we lower bound the bandwidth
of the input tree T . It is well known that the bandwidth of a graph G is lower bounded by
its pathwidth, and by its local density1. One might wonder how far these lower bounds could
be from the true bandwidth of G. It was conjectured that the answer to this question is
“not too far”, in particular that any graph with pathwidth c1 and local density c2 would have
bandwidth at most c3 where c3 is a constant depending only on c1 and c2. Chung and Seymour [6]
gave a counterexample to this conjecture by constructing a special kind of trees, called cantor
combs, with pathwidth 2, local density at most 10, and bandwidth approximately logn

log logn . Our
approximation algorithm essentially shows that the only structures driving up the bandwidth of
a tree are pathwidth, local density and cantor comb-like subgraphs.

Related Work. There is a vast literature on the Bandwidth problem. For example the
problem has been extensively studied from the perspective of approximation algoritms [9, 10, 11,
12, 18], parameterized complexity [2, 16, 27], polynomial time algorithms on restricted classes
of graphs [1, 20, 22, 29], and graph theory [4, 6]. We focus here on the study of algorithms for
Bandwidth for small values of b.

Following the 2O(b)nb+1 time algorithm of Saxe [27], published in 1980, there was no progress
on algorithms for the recognition of graphs of constant bandwidth. With the advent of param-
eterized complexity in the late 80’s and early 90’s [8] it became an intriguing open problem
whether one could improve the algorithm of Saxe to remove the dependency on b in the exponent
of n, and obtain a f(b)nO(1) time algorithm.

In a seminal paper from 1994, Bodlaender, Fellows, and Hallet [2] proved that a number
of layout problems do not admit fixed parameter tractable algorithms unless FPT = W[t] for
every t ≥ 1, a collapse considered by many to be almost as unlikely as P = NP. In the same
paper Bodlaender, Fellows, and Hallet [2] claim that their techniques can be used to show
that a f(b)nO(1) time algorithm for Bandwidth would also imply FPT = W[t] for every t ≥ 1.

1A definition of these notions can be found in the preliminaries

2



Downey and Fellows ([8], page 468) further claim that the techniques of [2] imply that even fixed
parameter algorithm for Bandwidth on trees would yield the same collapse. Unfortunately a
full version of [2] substantiating these claims is yet to appear.

2 Preliminaries

All graphs in this paper are undirected and unweighted. For a graph G, we will use the notation
V (G) and E(G) for the vertex set and edge set respectively. Or just V and E whenever the
graph is clear from the context. The degree of a vertex v is denoted by deg(v) and the maximum
degree in a graph by deg(G). By diam(G) we will mean the diameter of a graph G. A clique of
size n, denoted Kn is a graph where every pair of vertices are connected by an edge. We will use
the notation Pl to describe a path of length l and P̂l for a specific instance of Pl. When we need
to index paths this will be done by superscript, i.e. P i. For two graphs G and H, we say that
H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Furthermore, we say that H is an
induced subgraph of G if V (H) ⊆ V (G) and E(H) = E(G) ∩ V (H)2. An induced subgraph of
G whose vertices are X is denoted by G[X]. When removing a set of vertices X from a graph G,
we will use the notation G−X for the graph G[V (G) \X]. And furthermore, if we are removing
a single vertex v we will write this as G− v, and this is short for G− {v}.

If a function f is defined on a set X and Y ⊆ X we will use the notation f(Y ) for ∪y∈Y f(y).
When it is clear from the context that we are referring to a vertex set of a graph, we will refer
to just the graph. Furthermore, when a function f is defined on the vertex set of a graph, we
will sometimes use the sloppy notation f(G) instead of f(V (G)).

For intervals of natural numbers we will use the notation [n] for the interval [1, . . . , n]. A
k-coloring of a graph G is a function from V (G) to [k] such that two adjacent vertices are given
different values. The chromatic number of G, denoted χ(G) is the minimum k such that there is
a k-coloring of G.

Graph Classes

A tree is a connected graph without any cycles. A caterpillar is a tree T with a path B as a
subgraph, such that all vertices of degree 3 or more lie on B. We then say that B is a backbone
of T and every connected component of T −B is a stray or a hair. We say that a caterpillar is
of stray length s if there exists a backbone such that all strays are of size at most s. An interval
graph is a graph such that there exists a function from V (G) into intervals of N such that the
images of two vertices have a non-empty intersection if and only if the two vertices are adjacent.

Decompositions

A tree decomposition T of a graph G is a pair (T,X) with T = (I,M) being a tree and
X = {Xi | i ∈ I} a collection of subsets of V such that:

1.
⋃
i∈I Xi = V ,

2. for every edge uv there is a bag Xi such that both u and v are contained in Xi and

3. for every vertex v ∈ V the set {i ∈ I | v ∈ Xi} induces a tree in T .

The treewidth of a tree decomposition T , denoted tw(G, T ) = maxi∈I |Xi| − 1 and the treewidth
of a graph G is defined as tw(G) = min{tw(G, T ) | T is a tree decomposition of G}. A path
decomposition P of a graph is a tree decomposition such that T is a path. And the pathwidth of
a graph G, denoted pw(G) is the minimum width over all path decompositions.

3



Orderings and Bandwidth

A linear ordering or layout α of a set S is a bijection between S and [|S|]. Given a graphG = (V,E)
and a linear ordering α over V , the bandwidth of α denoted bw(G,α) = maxuv∈E |α(u)− α(v)|.
And furthermore, the bandwidth ofG denoted bw(G) = min{bw(G,α) | α is a linear ordering over V }.
We say that α is a k-bandwidth ordering of a graph G if bw(G,α) ≤ k. And we say that a
bandwidth ordering α of G is optimal if bw(G,α) = bw(G).

Let u and v be a pair of vertices of a graph G and α an ordering of V (G). We then say that
u is left of v in α if α(u) < α(v) and that u is right of v if α(v) < α(u). A sparse ordering β of
a graph G is an injective function from V (G) to Z. And the bandwidth of a sparse ordering
β of G, denoted bw(G, β) = maxuv∈E |β(u) − β(v)|. We say that a linear ordering α of G is
a compression of a sparse ordering β of G if for every pair of vertices u, v in G it holds that
β(u) < β(v) if and only if α(u) < α(v).

Definition 1. For a graph G we define the local density of G as

D(G) = max
G′⊆G

|V (G′)| − 1

diam(G′)
.

The following proposition will be used repeatedly in our arguments.

Proposition 1 (Folklore). For every graph G it holds that D(G) ≤ bw(G) and pw(G) ≤ bw(G).

For a graph T , an integer b and a b-bandwidth ordering α we provide the following definitions.
Given a set of vertices Y ⊆ V (T ) we define the inclusion interval of Y , denoted I(Y ) as
[minα(Y ),maxα(Y )] and for two vertices u and v we define I(u, v) as I({u, v}) or equivalently
[min{α(u), α(v)},max{α(u), α(v)}]. Given a subgraph H of T we define I(H) as I(V (H)).
Whenever necessary, we will use subscript to avoid confusion about which ordering is considered.

Problems

We will differentiate the parametrized version of a problem (parameterized by the natural
parameter) from the classical one by putting a p in front of the name, i.e. p-Bandwidth is the
parameterized version of Bandwidth. We will face two other problems in this paper. The first
one is Clique, where given a graph G and an integer k, one is asked whether there is a clique of
size k in G. The second one is Even Clique, which is an instance of Clique where you are
promised that k is an even number. Both of the problems will be discussed in their parametrized
form.

3 Lower Bounds

In this section we will give a reduction from p-Even Clique to p-Bandwidth with a linear
blowup of the parameter. For the rest of this section we will refer to the parameter of the
instance of p-Even Clique as k and the parameter of the resulting p-Bandwidth instance
as b = 4k + 16. Before we continue, we introduce some definitions we will use throughout the
section. For a subpath P̂l = {v1, . . . , vl} of a graph T we say that P̂l is stretched with respect
to a b-bandwidth ordering α if |α(vi+1) − α(vi)| = b for every i ∈ [1, l). Observe that as α is
injective, stretched implies either α(v1) < α(v2) < · · · < α(vl) or α(vl) < · · · < α(v2) < α(v1).
Furthermore, we say that a path P passes through some subgraph H in α if I(H) ⊆ I(P ).

4



3.1 A Gentle Introduction to the Reduction

We will now give an informal description of the reduction. We hope it will provide the reader
with some intuition of why p-Bandwidth is as hard as it is. As already mentioned, the reduction
will be from instances (G, k) of p-Even Clique to instances (T, b) of p-Bandwidth. To obtain
the results of Theorem 1 we must first of all ensure that (G, k) is a yes-instance if and only if
(T, b) is a yes-instance. And furthermore, we require T to be a tree of size polynomial in |V (G)|
and k, and that the path-width of T is at most 2. Last, b must be of size O(k).

We start, by providing some boundaries for b-bandwidth orderings of T . Meaning that we
force specific parts of T to be the leftmost and rightmost elements of every such ordering. This
is done by introducing two stars with 2b leafs and adding a path from one of the leafs of the first
star to one of the leafs of the second. The two stars will be referred to as walls and the path
between them as the main path. Observe that for both of the walls, the leafs must occupy the
2b values closest to the value of the center in any b-bandwidth ordering. It follows that the main
path must be within the inclusion interval of the two walls, since otherwise the main path would
be stretched all to long at some edge passing through a wall.

. . .

Figure 1: An illustration of the walls for b = 4.

We are now controlling the first and last vertices in any b-bandwidth ordering of the graph
and hence it is time to start encoding our instance of p-Even Clique. To keep control, the rest
of T will be attached to the main path. Before we continue, we select one of the walls and base
an ordering of the reduction graph on this selection. This wall will from now on be referred to
as the first wall and the other wall will be referred to as the last wall. We now attach k paths,
from now on referred to as threads, to the vertex of the main path that is also a leaf of the first
wall. Each thread will encode a selection of a vertex in G, and then we will check whether this
set of vertices in fact forms a clique or not.

. . .

...
...

...

k paths

Figure 2: We will use k paths to encode the selection of vertices to be in the clique.

To control how information propagates through a bandwidth ordering, we introduce gates.

5



A k-gate is a vertex on the main path with 2(b− k − 1) leafs attached to it, that is in addition
to the two neighbours it has on the main path. The goal is to force every thread to pass through
every k-gate. Then every thread will position two vertices within the positions of distance at
most b away from the center of the gate. And hence there will be 2(b− k − 1) + 2k + 2 = 2b
vertices that have to be positioned close to the center, leaving no available room.

A hole is basically two vertices on the main path with some extra space in between. This
extra space is obtained by attaching not so many leafs to the two vertices. A knot is a large star
centered at one of the threads. The idea is that a knot requires so much space that it cannot
be positioned close to a gate. And hence, if a subpath of the main path consists of only gates
and holes, a knot that is to be positioned within the inclusion interval of this subpath must be
positioned within the hole.

Before we start the process of embedding gadgets on the main path and the threads, we need
a guarantee ensuring that any resulting bandwidth ordering will behave nicely. Consider the
following situation, we have a graph T and a b-bandwidth ordering α of T . T contains k + 1
disjoint paths, one of the paths P being of length l such that all the other paths are passing
through P in α. In addition there is a set of (l − 1)(b− k − 1) vertices X disjoint from all the
paths, such that the image of X is contained in the inclusions interval of P . Lemma 2 then tells
us that that P must be stretched with respect to α, meaning that the vertices of P appear in the
same order in T as in α up to reversion and that the distance between two consecutive vertices
is b. Furthermore, each of the paths passing through will position exactly one vertex in between
any two consecutive vertices of P . As the reader probably can image, we will apply this result
with the main path as P and the threads as the paths passing through. This will ensure that
how and in which order the vertices appear in α is highly similar to how they are ordered in T .

X

Figure 3: An illustration of Lemma 2. The black path is P and the grey are the ones passing
through P .

We will now start to embed gadgets. First we introduce three long sequences of gates on the
main path. These sequences naturally partitions our graph into nine sectors. We will refer to
them as the first wall, the first wasteland, the first gateland, the selector, the middle gateland the
validator, the last gateland, the last wasteland and the last wall. See Figure 4 for an illustration.
By making the threads very long, one can force them to pass through every gate. This together
with the lemma described above implies that the sectors will appear in the same order in any
b-bandwidth ordering as they do in the graph up to reversion.

We aim at forcing a large set over vertices to be embedded in between the fist and the last
wasteland. It follows that this part of the main path will be stretched and every thread will
position exactly one vertex in between every two consecutive vertices of the main path. Recall
that the threads are to encode which vertices we take as our clique. This will be done by how
much of the thread is positioned within the inclusion interval of the first wasteland before it

6



...
...

...
...

...

. . . . . . . . . . . . . . . . . . . . ....
...

k threads

2b− 1 2b− 1

First wall
First wasteland

First gateland

Selector

Middle gateland

Validator

Last gateland

Last wasteland
Last wall

Figure 4: The sectors of our reduction graph.

starts its journey towards the last wasteland. And the job of the wastelands are exactly this, to
handle the slack produced by different choices of vertices to form the clique.

We now describe how we enforce the selection of vertices in a manner that allows us to extract
this information in a useful way in the validator. First, we order the vertices of G by labeling
them with numbers from 1 to n. Basically, we want there to be a linear function describing the
number of vertices positioned in the first wasteland given the label of the vertex this thread
choose. This is obtained by embedding n holes within the selector, with a certain number of
gates in between every pair of consecutive holes. Then we embed a knot on each thread. The
idea is that each thread must position its knot within a hole and every hole can contain at most
one knot. Which hole the knot is positioned within gives the vertex the thread selects for the
clique.

We should now ensure that the selected vertices forms a clique in G. This is done by the
validator. The validator is partitioned into 2n− 1 zones. The first n− 1 and last n− 1 zones are
referred to as neutral zones and nothing is embedded on this part of the main path. The middle
zone is referred to as the validation zone. Like the selector, also the validator zone consists of n
holes separated by a series of gates. Now the idea is to embed the adjacency matrix of G on
the threads row by row in such a way that if vertex i is selected by the thread, then the part
representing row number i of the matrix is positioned within the validator zone. The matrix will
be represented as follows; Partition the subpath of the thread representing row i into n parts.
At part number i we embed a knot. And then, for every non-neighbour j we will attach a leaf to
part j. What will happen is that when the vertices are selected the corresponding holes in the
validator will be filled up by knots. And then, if two vertices are not adjacent there will also be
a leaf that should be positioned within the same hole as a knot, and this there will not be room
for. Furthermore, if a vertex is not selected there will not be a knot in the corresponding hole so
that it can contain as many leafs as necessary. The last crucial observation is that in the neutral
zone, there is room for both leafs and knot to co-exist close in the bandwidth ordering.

The observant reader might recall that we promised some large set of vertices that should be
embedded within the first and the last wasteland. This will be handled by attaching paths of
appropriate size right after both the first and the second gateland. By making every hole and
gate within the selector and validator into (k + 1)-holes and (k + 1)-gates these paths can travel
around in the two sectors filling up the remaining space. We are now done with the informal
introduction and for the details we refer to the rest of this section.

7



3.2 Tools

In this section we give some definitions and results for bandwidth which are crucial for our
reduction.

Lemma 1. Let (T, b) be an instance of p-Bandwidth and P̂2, P
1, . . . , P k be k + 1 disjoint

subpaths of T . Given a b-bandwidth ordering α such that P 1, . . . , P k pass through P̂2 and there
is a set of vertices X disjoint from P̂2, P

1, . . . , P k such that |X| ≥ b− k − 1 and α(X) ⊆ I(P̂2),
then |α(P i) ∩ I(P̂2)| = 1 for every i.

Proof. Let P̂2 = (u, v) and assume without loss of generality that α(u) < α(v). From |I(P̂2)| ≤
b+ 1 and

|I(P̂2)| = |I(P̂2) ∩ α(V (T ))|

≥ |I(P̂2) ∩ α(
⋃
P i ∪X ∪ P̂2)|

= |I(P̂2) ∩ α(
⋃
P i)|+ |I(P̂2) ∩ α(X)|+ |I(P̂2) ∩ α(P̂2)|

≥ |I(P̂2) ∩ α(
⋃
P i)|+ b− k + 1

it follows that |I(P̂2) ∩ α(
⋃
P i)| ≤ k.

Assume for a contradiction that there is a j1 such that |α(P j1) ∩ I(P̂2)| 6= 1. Then, since
|I(P̂2) ∩ α(

⋃
P i)| ≤ k it follows that there is a j2 such that |α(P j2) ∩ I(P̂2)| = 0. For a path P i

let (vil , v
i
r) maximize α(vil) among the edges in P i with α(vil) < α(u) and α(v) < α(vir). Let P j

be the path minimizing α(vjl ) among all paths P i such that |α(P i) ∩ I(P̂2)| = 0. It follows that

for every path P i either |α(P i) ∩ I(P̂2)| ≥ 1 or |α(P i) ∩ I(vjl , u)| ≥ 1. Hence for each i it holds

that |I(vjl , v
j
r) ∩ α(P i)| ≥ 1. Furthermore, observe that |I(vjl , v

j
r) ∩ α(P j)| ≥ 2. It follows that

|I(vjl , v
j
r)| ≥ |I(vjl , v

j
r) ∩ α(X)|+ |I(vjl , v

j
r) ∩ α(P̂2)|+ |I(vjl , v

j
r) ∩ α(

⋃
P i)|

≥ (b− k − 1) + 2 + (k + 1)

≥ b+ 2

Observe that X, P̂2 and
⋃
P i are disjoint and hence the first line above is valid. Since (vjl , v

j
r) is

an edge in T and |I(vjl , v
j
r)| ≥ b+ 2 we have a contradiction to α being a b-bandwidth ordering

and hence our proof is complete.

Corollary 1. Let (T, b) be an instance of p-Bandwidth and P̂2, P
1, . . . , P k be k + 1 disjoint

subpaths of T . Given a b-bandwidth ordering α such that P 1, . . . , P k pass through P̂2 and there
is a set of vertices X disjoint from P̂2, P

1, . . . , P k such that |X| ≥ b− k − 1 and α(X) ⊆ I(P̂2),
then |X| = b− k − 1.

Proof. Assume for a contradiction that |X| ≥ b−k. Apply Lemma 1 to obtain |α(P i)∩I(P̂2)| = 1
for every i. It follows that

|I(P̂2)| ≥ |I(P̂2) ∩ α(X ∪ P̂2 ∪
⋃
P i)|

≥ |I(P̂2) ∩ α(X)|+ |I(P̂2) ∩ α(P̂2)|+ |I(P̂2) ∩ α(
⋃
P i)|

≥ (b− k) + 2 + k

≥ b+ 2.

which is a contradiction to α being a b-bandwidth ordering.

8



Lemma 2. Let (T, b) be an instance of p-Bandwidth and P̂l, P
1, . . . , P k be k + 1 disjoint

subpaths of T . Given a b-bandwidth ordering α such that P 1, . . . , P k pass through P̂l and there is a
set of vertices X disjoint from P̂l, P

1, . . . , P k such that |X| ≥ (l−1)(b−k−1) and α(X) ⊆ I(P̂l),
then P̂l is stretched with respect to α and |P i ∩ I(P̂2)| = 1 for every i and every P̂2 ⊆ P̂l.

Proof. We start by proving α(v1) < α(v2) < · · · < α(vl) or α(vl) < · · · < α(v2) < α(v1). Assume
otherwise for a contradiction. Then there exists three vertices vj−1, vj and vj+1 such that either
max{α(vj−1), α(vj+1)} < α(vj) or α(vj) < min{α(vj−1), α(vj+1)}. Since all properties of the
lemma is preserved with respect to reversing α we can assume without loss of generality that

min{α(vj−1), α(vj+1)} < α(vj). We define a function f : 2P̂l \ {P̂l} → P̂l as f(B) = vj such that

j = min
{
i | vi ∈ P̂l \B and {vi−1, vi+1} ∩B 6= ∅

}
. In other words, f gives you the smallest

indexed vertex in the open neighbourhood of B. Notice that since P̂l is connected f is a well-

defined function. We will now define a1, . . . , at and B1, . . . , Bt. First let a1 = α−1(min
{
α(P̂l)

}
)

and B1 = {a1}. Then we let ai = f(Bi−1) and Bi = I(a1, ai)∩ P̂l as long as Bi−1 6= P̂l. Observe
that Bi−1 ⊂ Bi.

First we will prove that t < l. Assume otherwise for a contradiction, clearly then t = l. It
follows by the construction and our assumption that {a1, . . . , ai} = Bi for every i. And by a
simple induction we get that T [{a1, . . . , ai}] is connected, since this clearly holds for i = 1 and
for i > 1 observe that ai has a neighbour in Bi−1 by construction. Let c be so that ac = vj .
Since vj is separating vj−1 and vj+1 in P̂l and vj /∈ Bc−1 it follows that {vj−1, vj+1} 6⊆ Bc−1.
Furthermore, since max{α(vj−1), α(vj+1)} < α(vj) it holds that {vj−1, vj , vj+1} ⊆ Bc. But this
contradicts {a1, . . . , ai} = Bi and hence we know that t < l. It follows, due to the pidgin hole
principle, that there is a d such that |I(ad−1, ad) ∩ α(X)| > b − k − 1. By construction there
is a neighbour a′ of ad among a1, . . . , ad−1. Observe that |I(a′, ad) ∩ α(X)| > b − k − 1 and
apply Corollary 1 with P̂2 = (a′, ad) to obtain a contradiction. Hence we can conclude that
α(v1) < α(v2) < · · · < α(vl) or α(vl) < · · · < α(v2) < α(v1).

We will now prove |P i ∩ I(P̂2)| = 1 for every i and every P̂2 ⊆ P̂l. Observe that if there is a
P̂2 such that |I(P̂2) ∩ α(X)| 6= b− k − 1, then there is a P̂ ′2 such that I(P̂ ′2) ∩ α(X)| > b− k − 1.
But this contradicts Corollary 1 and hence we get that |I(P̂2) ∩ α(X)| = b − k − 1 for every
P̂2 ⊆ P̂l and then it follows directly from Lemma 1 that |P i ∩ I(P̂2)| = 1 for every P̂2 ⊆ P̂l.
Hence

|I(P̂2)| ≥ |I(P̂2) ∩ α(X ∪ P̂2 ∪
⋃
P i)|

≥ |I(P̂2) ∩ α(X)|+ |I(P̂2) ∩ α(P̂2)|+ |I(P̂2) ∩ α(
⋃
P i)|

≥ b− k − 1 + 2 + k

≥ b+ 1

and it follows that P̂l is stretched with respect to α.

Corollary 2. Let (T, b) be an instance of p-Bandwidth and P̂l, P
1, . . . , P k be k + 1 disjoint

subpaths of T . Given a k-bandwidth ordering α such that P 1, . . . , P k passes through P̂l and
there is a set of vertices X disjoint from P̂l, P

1, . . . , P k such that |X| ≥ (l − 1)(b− k − 1) and
α(X) ⊆ I(P̂l), then |X| = (l − 1)(b− k − 1).

Proof. Assume for a contradiction that |X| > (l − 1)(b− k − 1). Then there is a P̂2 ⊆ P̂l such
that |X ∩ I(P̂2)| ≥ b− k which is a contradiction by Corollary 1.

3.3 Gadgets

We will now introduce the gadgets used for the reduction. They will all be defined on paths of
various lengths. And later on when we say that a gadget is embedded on some path, this means

9



that the path referred to together with some of its neighbours is an instantiation of the gadget.

Definition 2. Let (T, b) be an instance of p-Bandwidth and H be a subgraph of T with a vertex
labeled in and another vertex labeled out. We say that H is functioning in T if T contains two
walls Win and Wout such that

• Win,Wout and H are disjoint,

• there is a path Pin from in to Win avoiding (H − in) and Wout and

• there is a path Pout from out to Wout avoiding (H − out), Win and Pin.

If H is functioning in T let Win(H,T ),Wout(H,T ), Pin(H,T ) and Pout(H,T ) denote a witness
of this.

Walls

A wall is a star with 2b leaves. The high degree vertex of a wall W will be referred to as
the center of the wall. We will turn the endpoints of the main path into walls to control the
endpoints of all valid b-bandwidth orderings. The next lemma gives us this behaviour.

Lemma 3. Let (T, b) be an instance of p-Bandwidth such that T contains two disjoint walls
W1 and W2 with centers c1 and c2 as subgraphs. Let H be a connected component of T−(W1∪W2)
connected by edges to both walls in T . Then, for any b-bandwidth ordering α of T and any vertex
v ∈ H it follows that α(v) ∈ I(c1, c2).

Proof. Assume without loss of generality that α(c1) < α(c2). For a contradiction, assume
that α(v) < α(c1). Let ul be the leaf in W1 minimizing α and ur the leaf maximizing α.
Furthermore, let P 1 be a path from v to c2 in T [V (H)∪W2] and P̂3 the path (ul, c1, ur). Observe
that P 1 passes through P̂3, since α(W1) = [α(c1) − b, α(c1) + b]. Let X = V (W1) − P̂3 and
note that |X| = 2b − 2. Apply Corollary 2 on P̂3, P

1 and X to obtain a contradiction, since
(3− 1)(b− 1− 1) = 2b− 4 < 2b− 2 = |X|. For α(v) > α(c2) we apply a symmetric argument
and hence our proof is complete.

Gates

For an integer k ≥ 0 a k-gate, denoted Πk, is a star with 2(b− k) leaves. The function of the
k-gate will be to reduce the number of paths passing this point to at most k. The high degree
vertex of the star will be referred to as the center of the gate. In addition one leaf will be labeled
in and another labeled out.

centerin out

. . .

Figure 5: A k-gate with the special vertices marked with tags below.

Lemma 4. Let (T, b) be an instance of p-Bandwidth such that T contains a gate Πk and paths
P 1, . . . , P k as disjoint subgraphs with Πk being functioning in T − (

⋃
P i). Given a b-bandwidth

ordering α such that max{α(Win(Πk, T −
⋃
pi))} < min{α(Wout(Πk, T −

⋃
pi))} and every path

P i passes through the gate it follows that:

10



(I) α(N [center]) ⊆ B ⊆ α(
⋃
P i ∪N [center]),

(II) α(in) < α(center) < α(out) and

(III) |α(P i) ∩Bl| = |α(P i) ∩Br| = 1 for every i ∈ [1, k]

for c = α(center), B = [c− b, c+ b], Bl = {i ∈ B | i < c} and Br = {i ∈ B | c < i}.

Proof. We start by proving (III). For every path P i we know that there are u, v ∈ P i such that
α(u) < minα(Πk) and maxα(Πk) < α(v). Assume that u /∈ Bl and follow the path from u to
v until you reach the first vertex u′ such that α(u′) ≥ c− b. Let u′′ be the vertex we reached
right before u′. From the definition of α it follows that α(u′)− α(u′′) ≤ b and hence u′ ∈ Bl and
|P i∩Bl| = 1. Reverse α and apply the argument on the path from v to u to obtain |P i∩Br| = 1.

We continue by proving (I). It follows directly from the fact that bw(T, α) ≤ b that
N [center] ⊆ B. Since |B∩

(⋃
P i ∪N [center]

)
| = |B∩

⋃
P i|+|B∩N [center] | = 2k+2(b−k)+1 =

2b + 1 and |B| = 2b + 1 it follows that B ⊆
⋃
P i ∪ N [center]. It remains to prove (II). Ob-

serve that maxα(Win) < min{α(in), α(center)} by Lemma 3. Assume for a contradiction that
α(in) > α(center). Since Pin(Πk, T − (

⋃
P i)) is a path from in to Win(Πk, T − (

⋃
P i)) and the

bandwidth of α is b it follows that |B ∩Win(Πk, T − (
⋃
P i)| ≥ 2, but this contradicts (I) and

hence α(in) < α(center). A symmetric argument gives us α(center) < α(out) and our proof is
complete.

Knots and Holes

Assuming b ≥ 2k + 14 and b to be dividable by 4 we give the following two definitions. A k-knot
is a path P = (first, center, last) with 3

2b− k − 1 leaves attached to center. A k-hole consists of
a path P = (in, in center, out center, out) with 3

4b− k − 1 leaves attached to both in center and
out center.

in in center out center out

3
4b− k − 1 3

4b− k − 1

Figure 6: A hole. The ellipse shaped vertices represent some number of leafs.

Lemma 5. Let (T, b) be an instance of p-Bandwidth such that T contains a k-hole H and
paths P 1, . . . , P k with a k-knot K embedded on one of the paths as disjoint subgraphs with H
being functioning in T − (

⋃
P i). Given a b-bandwidth ordering α such that P 1, . . . , P k passes

though H, max{α(Win(Πk, T −
⋃
pi))} < min{α(Wout(Πk, T −

⋃
pi))} and I(K∪H) ⊂ I(in, out)

it holds that

(I) α(in) < α(in center) < α(out center) < α(out),

(II) |I(P̂2) ∩ α(P i)| = 1 for every i and every P̂2 ⊂ (in, in center, out center, out) and

(III) α(in center) < α(center) < α(out center).

11



Proof. First we prove the correctness of (I) and (II). Let P̂4 = (in, in center, out center, out)
and let Xc, Xi and Xo be the set of leaves attached to center, in center and out center re-
spectively. Apply Lemma 2 with X = Xi ∪ Xc ∪ Xo to obtain (II) and either α(in) <
α(in center) < α(out center) < α(out) or α(out) < α(out center) < α(in center) < α(in)
since |X| = 2

(
3
4b− k − 1

)
+ 3

2b − k − 1 = (4 − 1)(b − k − 1). Assume for a contradic-
tion that α(out) < α(out center) < α(in center) < α(in). Then there is a vertex v ∈
Pin(H,T − (

⋃
P i)) ∩ α−1(I(H)) \ {in}. Apply Corollary 2 with X = Xi ∪ Xc ∪ Xo ∪ {v}

to get a contradiction and hence (I) holds.
It remains to prove (III). Assume for a contradiction that α(center) /∈ I(in center, out center).

Furthermore, assume without loss of generality that α(center) ∈ I(in, in center). It follows from
Lemma 2 that P̂4 is stretched and hence Xl ∪Xm ⊆ I(P̂3) for P̂3 = (in, in center, out center).
Apply Corollary 2 with X = Xi∪Xc to obtain a contradiction since |X| = 3

4b−k−1+ 3
2b−k−1 =

9
4b− 2k − 2 > (3− 1)(b− k − 1) and hence our proof is complete.

3.4 The Reduction

We will now give a reduction from an instance (G, k) of p-Even Clique to an instance (T, b)
of p-Bandwidth. The correctness and implications will be given in the two following sections.
The resulting instance T can be divided into eleven parts. Nine of them lie on the main path and
will in the future be referred to as the sectors of the main path. The nine sectors are the first
wall, the first wasteland, the first gateland, the selector, the middle gateland, the validator, the
last gateland, the last wasteland and the last wall. The two other components will be referred
to as threads and fillers. Each of the components have a specific purpose with respect to how
a b-bandwidth ordering can be. The walls will force everything else to be positioned within
them. The threads are k paths attached to the first wasteland and each of them represents a
vertex in the supposed clique in G. To encode how G looks like we attach leaves to the threads,
which will be referred to as the dangelments of the threads. How much of a thread that is in
the inclusion interval of the first wasteland decides which vertex in G this thread represents.
To propagate this information the threads are made so long that they will have to enter the
inclusion interval of the last wasteland. The selectors job is to make sure that the decisions made
by the threads are unique and valid. The validator will verify that the selected vertices in fact
is a clique. And the fillers and the gatelands will control how information propagates between
the other components. When describing the components on the main path we will assume the
vertices of the path to be named u1, . . . , with u1 being the leftmost vertex in Figure 2.

...
...

...
...

...

. . . . . . . . . . . . . . . . . . . . ....
...

k threads

2b− 1 2b− 1

First wall
First wasteland

First gateland

Selector

Middle gateland

Validator

Last gateland

Last wasteland
Last wall

First filler Second filler

Figure 7: A subgraph of T with the components marked.

When discussing vertices and subgraphs of T we will apply an ordering based on the distance
from the center of the first wall, the leftmost wall in Figure 7. We will say that a vertex u comes

12



before a vertex v if u is closer to the center of the first wall than v. For subgraphs, we will
compare the minimized distance over all vertices in each subgraph. To complete our construction
we need an ordering of the vertices of G, we therefore let V (G) =

{
v1, . . . , v|V (G)|

}
.

The First Wall, Wasteland and Gateland

To ensure enough space for the gadgets in the validator we introduce the pull-factor p, which
will correspond to the distance from the in vertex of a hole in the selector to the in vertex of the
next hole. The pull-factor is 4n+ 3 in our reduction, but will for convenience mostly be referred
to as p.

The first sector we will embed is the first wall. This is done by turning u1 into the center
of a wall by attaching leafs to it. Second comes the first wasteland. This is done by attaching
nothing to the vertices u2 until um1 for m1 = pnk + 2. Note that u2 is the vertex for which the
threads are connected. After this we embed bm1 consecutive k-gates from um1 to u(2b+1)m1

to
create the first gateland. This is done in such a way that the in vertex of the i’th gate is the out
vertex of the i− 1’th gate.

The Selector

The selector will control the choices done by the threads. The idea is to let the selector have
|V (G)| sparse intervals, namely holes, and let each of the threads have a big knot, which can
only be placed within such an interval. The vertex selected by a thread is then decided by which
hole its knot is placed within.

The embedding of the selector starts where the first gateland ended, at vertex u(2b+1)m1
.

Note that this is the vertex where the first filler is attached in Figure 2. We now embed
|V (G)| (k + 1) holes with (p− 3)/2 consecutive (k + 1)-gates in between every consecutive pair
of holes on the path (u(2b+1)m1

, . . . , u(2b+1)m1+p(n−1)+3). After this we embed b(p(n − 1) + 3)
consecutive (k + 1)-gates. In total, the selector is embedded on the vertices (u(2b+1)m1

, . . . , um2)
for m2 = (2b+ 1)m1 + (2b+ 1)(p(n− 1) + 3).

γ γ γ η η Γ Γ η η γΓ Γ

κ

k

k

... . . . . . . . . . . . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

First wasteland First gateland Selector

Figure 8: Illustration of the selector where γ = 2(b− k − 1), Γ = 2(b− k − 2), η = 3
4b− k − 1

and κ = 3
2b− k − 1.

13



The Middle Gateland

The middle gateland consist of bm2 consecutive k-gates, embedded on the main path from vertex
um2 to vertex u(2b+1)m2

.

The Validator

We will now give the validator. Its job is to verify that the selected vertices of the threads in
fact is a clique. The validator starts with n− 1 neutral zones, followed by a validation zone and
another n− 1 neutral zones. After this there will be b(2n− 1)(4n+ 3) consecutive (k + 1)-gates.
A neutral zone is a P4n+4. The zones will be joined by sharing endpoints in the same style as the
gadgets in the selector. The validation zone consists of a P̂4n+4 where there is n (k + 1)-holes
sharing endpoints embedded on the last 3n+ 1 vertices. The validator is hence embedded on
the vertices (u(2b+1)m2

, . . . , um3) for m3 = (2b+ 1)m2 + (2b+ 1)(2n− 1)(4n+ 3).

The Last Gateland, Wasteland and Wall

The last gateland consists of bm3 consecutive k-gates embedded on the vertices (um3 , . . . , u(2b+1)m3
).

After this we embed the last wasteland, which means that we leave the vertices (u(2b+1)m3
, ub2(2b+1)m3

)
untouched. Finally we turn the vertex ub2(2b+1)m3+1 into the center of the last wall by attaching
leafs to it.

The Threads and Their Danglements

We will now describe the threads and their danglements. As they are all isomorphic, it is sufficient
to describe one of them. Let us name the vertices on the thread by t2, . . . with t2 = u2. The
leafs neighbouring to the thread will be referred to as its danglements. First we turn t(2b+1)m1+1

into the center of a (k + 1)-knot by attaching leafs to it. Starting at vertex t(2b+1)m2+(n−1)(4n+3)

we consider n consecutive, disjoint P4n+3. For P̂4n+3 number i we do the following. We divide
the P̂4n+3 into disjoint subpaths, first a P̂n+3 followed by n P3. Consider the j’th P3. If i = j we
turn the middle vertex of the P3 into the center of a (k + 1)-knot. Otherwise we attach a single
leaf to the middle vertex if (vi, vj) /∈ E(G). This leaf will be referred to as a non-neighbouring
leaf. After this we extend the thread with additional b(2b + 1)m3 vertices. We would like to
make the reader aware of the fact that a thread is a path and the vertices connected to it, is its
dangelments.

The Fillers

A fillers job is to fill up all available room within a component of T to force this part of the main
path to be stretched. To accomplish this we let the filler connected to u(2b+1)m1

be of length

(n− k)(3
2b− k − 2) + (2b+ 1)(p(n− 1) + 3). And the filler attached to u(2b+1)m2

to be of length

(b− 1)(4n+ 3)(2n− 1) + 2b(4n+ 3)(2n− 1)− (k(2n− 1)(4n+ 3) + k(n(3
2b− k − 2) + n2 − n−

2m) + 2n(3
4b− k − 2)).

3.5 Correctness

With the next lemmas we will prove the correctness of the reduction. After this we will continue
by giving the implications of this reduction, which are the main results of this section. Recall
that b = 4k + 16 and p = 4n+ 3.

Lemma 6. Given a yes-instance (G, k) of p-Even Clique the reduction instance (T, b) is a
yes-instance of p-Bandwidth.

14



Proof. We will now give a sparse ordering α of bandwidth b = 4k + 16, meaning that the image
of α might not be an interval. To obtain a proper bandwidth ordering one can just compress α.
During the description of α a position is a number in N that will be in the image of α and a
vertex v is said to be positioned if the value α(v) has been given. Furthermore, we will say that
v is positioned at c if α(v) = c. By reserving a position for a subgraph H of T we guarantee
that if a vertex will be positioned at that specific position, it will be a vertex of H. And by a
position being available we will mean that no vertex has been positioned at that specific position
so far. Let Ck = {c1, . . . , ck} be a k-clique in G.

For a vertex ui on the main path let α(ui) = bi+1. We continue by positioning the remainders
of the two walls. And let cf be the center of the first wall and Lf be the neighbouring leaves of
cf . Let α(Lf ) = [α(cf )− b, α(cf ) + b− 1] \ {α(cf )} in some arbitrary way. Similarly for the last
wall, let α(Ll) = [α(cl)− b− 1, α(cl) + b] \ {α(cl)}. Observe that for every two vertices u and v
of T such that both α(u) and α(v) has been described, it holds that α(u) 6= α(v). Furthermore,
if uv is an edge in T it is true that |α(u)− α(v)| ≤ b.

Order the threads of T and name them τ1, . . . , τk. Let u and v be two neighbours on the
main path such that neither u nor v is the center of a wall and so that α(u) < α(v). Observe
that there is b− 1 available positions within I(u, v). Reserve the k positions in the middle of
I(u, v), one for each of the k threads. If there are two positions equally close to the middle, take
the leftmost one. The leftmost is reserved for the first thread, the second to leftmost for the
second thread and so forth.

For every i let ji be such that ci = vji . Consider hole number ji on the main path starting
at the first wall, with h1, h2, h3 and h4 being the vertices on the main path for which the hole
is embedded on such that α(h1) < α(h2) < α(h3) < α(h4). Thus h1, h2, h3 and h4 are the
in, in center, out center and out vertices of the hole respectively. Let c be the center of the first
knot on τi and r the reserved position for τi in α within I(h2, h3). We then set α(c) = r and
complete the following procedure in the left (and right) direction on the thread τi. Let P be the
path from c to N(u2) ∩ τi (or to the end of the thread). If every vertex of P is positioned we
stop. Otherwise, let u be the vertex closest to c on P not yet positioned. Furthermore, let P̂2

be the rightmost (leftmost) P2 on the main path to the left (right) of the hole such that the
position reserved for τi is available in I(P̂2). If P̂2 is not part of any wasteland we set α(u) to
this reserved position and continue. Otherwise we consider two cases. If we are right of r we
position u at the leftmost position within I(P̂2) that is either not reserved yet, or reserved for
τi. If we are left of r we again consider two cases. Either there are exactly as many positions
to the left of r reserved for τi as there are vertices before c not yet positioned. In that case we
position u at the reserved position for τi within I(P̂2). Otherwise, we position u at the rightmost
position in I(P̂2) that is either not reserved yet, or reserved for τi. Observe that if uv is an edge
of τi there are positions reserved for τi, x and y, such that y > x and y − x = b and α(u) and
α(v) are contained in [x, y]. It follows that |α(u)− α(v)| ≤ b.

Note that the number of vertices on a thread that will be positioned to the left of r is
(2b+ 1)m1 and that, by construction, 2bm1 of these will be within the inclusion interval of the
first gateland. Hence it can be observed that there are at most km1 vertices from the threads
within the inclusion interval of the first wasteland. Recall that the distance from u2 to the first
vertex of the first gateland is m1 − 2. Hence there are (b− 1)(m1 − 2) > km1 available positions
within the inclusion interval of the first wasteland, before we position the threads. By the same
kind of argument there are (b− 1)(b2 − 1)(2b+ 1)m3 available positions in the inclusion interval
of the last wasteland before positioning the thread. Recall that the length of a thread is bounded

15



above by

(2b+ 1)m2 + (n− 1)(4n+ 3) + (4n+ 3)n+ b(2b+ 1)m3

<(2b+ 3)m2 + b(2b+ 1)m3

<2b(2b+ 3)m3.

It follows that for every pair of vertices u and v such that both α(u) and α(v) has been described
if holds that α(u) 6= α(v).

Recall that every k-gate of T is embedded on the main path. And hence for every k-gate in
T there are k paths passing through it with respect to α. Hence there are 2(b− k − 1) positions
available between the left and the right leaf and the rest of the leaves can be positioned in any
way within this interval. Clearly, for every pair of vertices u and v of T , such that both α(u) and
α(v) are described it holds that α(u) 6= α(v). And furthermore, if uv is an edge of a k-gate it
holds that |α(u)−α(v)| ≤ b. For every P̂2 on the main path such that P̂2 is not in a subgraph of
a wasteland and there are available positions in I(P̂2) we reserve the position to the right of the
k positions reserved for the threads, for the fillers. Observe that any P̂2 such that this position is
not available either is a subgraph of a wasteland or a k-gate (which has no available positions).

We will now position the leaves of the knots. Let K be a knot in T . The center c of k is a
vertex of a thread and hence α(c) has already been described. Let P̂2 be the P2 of the main
path such that α(c) ∈ I(P̂2). Position the leaves attached to c as close to the middle of I(P̂2) as
possible by only using available positions, that are not reserved. If there are two such positions
equally close to the middle, we take the leftmost one. Let P̂4 be the P4 of the main path such
that P̂2 contains the internal vertices of P̂4. It can be observed, by where the knots are embedded
on the thread and where the threads are positioned in α, that P̂4 is either a subgraph of a hole or
a neutral zone. Furthermore, if c′ is the center of some other knot and P̂ ′2 is the P2 of the main
main such that α(c′) is contained in its inclusion interval, then it can be observed that P̂ ′2 and
P̂4 are disjoint. Hence, we see that there are 2(b− k − 2) positions available and non-reserved
within the inclusion interval of P̂4. Recall that a knot consists of 3

2b − k − 2 leaves and that
b = 4k + 16, and hence 2(b− k − 2) ≥ 3

2b− k − 2. It follows that for every two vertices u and v
of T such that both α(u) and α(v) have been described, α(u) 6= α(v). Furthermore, it uv is an
edge of T it holds that |α(u)− α(v)| ≤ b.

Let P̂4 = (uh, uh+1, uh+2, uh+3) be some subpath of the main path such that a hole is
embedded on it. Position the leaves attached to uh+1 to the leftmost non-reserved, available
positions and the leaves attached to uh+2 to the rightmost non-reserved, available positions,
within I(P̂4). Furthermore, for the leaves representing non-neighbours, position it at the position
available and not reserved closest to its neighbour. If there are two such positions, any of the two
will do. It can be observed, by where the knots are embedded on the threads and where the knots
and positioned that no two knots are positioned within the inclusion interval of a hole. And
furthermore, that at most k non-adjacency leaves are positioned within the inclusion interval of
a hole. At last, since Ck is a clique it holds that no knot and non-neighbour leaf is positioned
with the inclusion interval of a hole. Recall that k is even and hence 3

2b− k − 2 = 5k + 22 is
even. It follows that the leaves of a knot is evenly distributed among the two sides of the center.
Recall that the number of leaves in a hole is 3

2b− 2k − 4. There are 3k vertices from the threads

positioned within the inclusion interval of P̂4 and there are 3b− 3k − 6 leaves attached to one
hole and one knot. Since there are more than k leaves attached to a knot, it can be observed
that for any two vertices u and v such that at least u or v is positioned within the inclusion
interval of P̂4 it holds that α(u) 6= α(v). And furthermore, if uv is an edge in T it holds that
|α(u)− α(v)| ≤ b.

Consider danglements positioned within the inclusion interval of a P̂4 that is a subgraph of a
neutral zone. One can observe that there is at most k non-neighbouring leaves and at most one

16



clique positioned within the inclusion interval of P̂4. And hence the same argument as above
can be applied to show that for every two vertices u and v of T such that both α(u) and α(v)
has been described, it holds that α(u) 6= α(v). Furthermore, if uv is an edge of T it is true that
|α(u)− α(v)| ≤ b.

It remains to describe the positioning of each of the fillers. Let u be the vertex on the filler
closest to the main path not yet positioned and r lowest value bigger than the α-value of the
intersection vertex between the filler and the main path that is not taken. Set α(u) = r and
continue. Recall that the length of the path where the selector is embedded is (n− 1)p+ 3 +
2b(p(n− 1) + 3), and hence there were (b− 1)((n− 1)p+ 3 + 2b(p(n− 1) + 3)) available positions
within the inclusion interval of the selector after only the main path had been positioned. Observe
that the threads now occupies k((n−1)p+ 3 + 2b(p(n−1) + 3)) of these positions, the k+ 1-gates
((p− 3)(n− 1)/2 + b(p(n− 1) + 3))2(b− k− 2) of the positions, the knots k(3

2b− k− 2) positions,
the holes 2n(3

4b− k − 2) positions and the filler (n− k)(3
2b− k − 2) + (2b+ 1)(p(n− 1) + 3). By

substituting p by 4n+ 3 and b by 4k + 16 one can verify that the vertices positioned equals the
amount of positions available within the inclusion interval of the selector. The expression for the
once available positions within the inclusion interval of the selector S and the number of vertices
now positioned within it, disregarding the main path, namely X, is given below.

S = k((n− 1)p+ 3 + 2b(p(n− 1) + 3))

+ ((p− 3)(n− 1)/2 + b(p(n− 1) + 3))2(b− k − 2)

+ k(
3

2
b− k − 2) + 2n(

3

4
b− k − 2)

+ (n− k)(
3

2
b− k − 2) + (2b+ 1)(p(n− 1) + 3)

= (b− 1)((n− 1)p+ 3 + 2b(p(n− 1) + 3)) = X.

It follows that for every two vertices u and v such that both α(u) and α(v) have been described,
it holds that α(u) 6= α(v). Recall that for every P̂2 that is a subgraph of the main path and the
selector there was a position reserved for the fillers. And hence for every edge uv of the first
filler, there are positions reserved for the filler, x and y such that y − x = b and α(u) and α(v)
is contained within [x, y]. It follows directly that |α(u) − α(v)| ≤ b. For the second filler, we
observe that there were (b− 1)(4n+ 2)(2n− 1) available positions within the inclusion interval of
the validator when only the main path had been positioned. And furthermore, now the n holes
occupies 2n(3

4b− k − 2) of these positions, the threads k(2n− 1)(4n+ 2) of the positions, the
knots kn(3

2b− k− 2) and the non-neighbouring leaves k(n2−n− 2m). By a similar argument as
for the first filler, one can prove that for every u and v of T it holds that α(u) 6= α(v) and if uv
is an edge of T then |α(u)− α(v)| ≤ b. This completes the description of α and the argument is
complete.

Given a reduced instance (T, b) and a b-bandwidth ordering α we say that a k-gate in T is
blocked with respect to α if every thread in T pass through the gate.

Lemma 7. Let (T, b) be the result of the reduction for some instance of p-Even Clique and α
a b-bandwidth ordering of T . Then every k-gate in T is blocked with respect to α.

Proof. By Lemma 3 we know that the first wall is either the leftmost or the rightmost elements
of α. Observe that every k-gate in T is blocked with respect to α if and only if every k-gate
in T is blocked with respect to α reversed. Hence it is sufficient to prove that every k-gate is
blocked when the first wall is the leftmost elements of α.

Assume for a contradiction that there is a k-gate Π and a thread τ such that τ is not passing
through Π. Let P be the path from u2 to the out vertex of Π and let X = V (τ)−u2. By Lemma 3
we know that α(u2) = minα(τ) and that α(u2) < minα(Π). It follows by the definition of passing

17



through that maxα(τ) ≤ maxα(Π) and hence α(X) ⊆ I(P ). Recall that |E(P )| ≤ (2b+1)m3−2
and |X| > b(2b+1)m3. It follows directly that |I(P )| ≤ b((2b+1)m3−2)+1 < b(2b+1)m3 < |X|
which is a contradiction.

Recall that the main path of the reduction instance consist of 9 sectors, namely the first
wall, the first wasteland, the first gateland, the selector, the middle gateland, the validator, the
last gateland, the last wasteland and the last wall. See Figure 7 for an illustration. The lemma
below shows that the sectors will appear in the same order in α as they do in the instance, up to
reversion.

Lemma 8. Let (T, b) be the result of the reduction for some instance of p-Even Clique and α
a b-bandwidth ordering of T such that the first wall is mapped to the leftmost elements of α. If u
and v are vertices from two different sectors such that u comes before v in T , then it holds that
α(u) ≤ α(v).

Proof. If at least one of the vertices are in one of the walls, the lemma follows directly from
Lemma 3. We will now consider two cases. First, we consider the case when there is a k-gate Π
with center c embedded on the inner vertices of the path from u to v. We make c adjacent to
α−1([α(c)− b, α(c) + b) and observe that c is now the center of a wall and α is still a b-bandwidth
ordering of the graph. Apply Lemma 3 on the first wall and the new wall to obtain α(u) ≤ α(c)
and on the new wall and the last wall to obtain α(c) ≤ α(v). It follows immediately that
α(u) ≤ α(v).

It remains to consider the case when there is no k-gate embedded on the inner vertices of
the path from u to v. It follows, by construction, that either u or v is a vertex of a k-gate.
First, let us consider the case when u is a vertex of a k-gate. Recall that the vertices the gate is
embedded on is named in, c = center and out and let P be the path from out to v. It follows
by Lemmata 4 and 7 that α(P ) and [α(c)− b, α(c) + b] intersects in only one element, namely
α(out), and that α(in) < α(c) < α(out). Since α is a b-bandwidth ordering it follows that
α(out) = minα(P ) and hence α(u) ≤ α(out) ≤ α(v). The case when v is a vertex of a k-gate
follows by a symmetrical argument.

Let PF , PM and PL be the paths from the center of the first gate to the center of the last
gate in the first gateland, the middle gateland and the last gateland respectively.

Lemma 9. Let (T, b) be the result of the reduction for some instance of p-Even Clique and α
a b-bandwidth ordering of T , then

• PF , PM and PL are stretched with respect to α and

• for the centers of two k-gates c1 and c2 such that c1 comes before c2 in T it holds that
α(c1) < α(c2).

Proof. This follows directly from Lemmata 4, 7 and 8.

Let ΠF and ΠL be the first and last k-gate in T , and cF and cL their centers respectively.
Furthermore, let PR be the path from cF to cL.

Lemma 10. Let (T, b) be the result of the reduction for some instance of p-Even Clique and
α a b-bandwidth ordering of T . If u 6= u2 is a vertex of a thread, such that the degree of u is at
least 3, then α(u) ∈ I(PR).

Proof. By Lemma 3 we know that the first wall is either the leftmost or the rightmost elements
of α. Observe that u is mapped within the inclusion interval of PR by α if and only if u is
mapped within the inclusion interval of PR by α reversed. Hence it is sufficient to prove that
α(u) ∈ I(PR) when the first wall is the leftmost elements of α.

18



Assume for a contradiction that there is a vertex u 6= u2 of some thread, such that u has
degree at least 3 and α(u) /∈ I(PR). It follows from Lemmata 9 and 8 that either α(u) < α(cF )
or α(cL) < α(u). First, we consider the case when α(u) < α(cF ). Let P ′ be the path from u2

to u except u2 and let P ′′ be the path from u to the last vertex of the thread. Furthermore,
let P be the path from u2 to cF . Assume for a contradiction that there is a k-gate Π such
that P ′′ is not passing through Π. Let P ′ be the path from u2 to the out vertex of Π. Observe
that α(P ′′) ⊆ I(P ′). Recall that |V (P ′′)| > b(2b+ 1)m3 and that |E(P ′)| ≤ b((2b+ 1)m3 − 2).
It follows that |E(P ′)| ≤ b((2b + 1)m3 − 2) < b(2b + 1)m3 < |V (P ′′)| and hence we get our
contradiction. Hence P ′′ is passing through every k-gate. By Lemmata 4 and 7 we get that
α(P ′) ⊆ I(P ). Recall that |V (P ′)| ≥ (2b+1)m1−1 and that |E(P )| = m1. It follows immediately
that |I(P )| ≤ bm1 + 1 < (2b+ 1)m1 − 1 ≤ |V (P ′)| and hence we obtain a contradiction.

It remains to consider the case when α(cL) < α(u). Let P be the path from u2 to u
and P ′ the path from u2 to cL except u2. By assumption α(u2) < minα(P ′) and hence
α(P ′) ⊆ I(P ). Recall that |E(P )| < m3 and that |V (P ′)| = (2b + 1)m3 − 3. It follows that
|I(P )| < bm3 + 1 < (2b+ 1)m3 − 3 = |V (P ′)|, which is a contradiction.

Lemma 11. Let (T, b) be the result of the reduction for some instance of p-Even Clique and
α a b-bandwidth ordering of T . Then

• |α(τi) ∩ I(P̂2)| = 1 for every thread τi and every subpath P̂2 of PR and

• PR is stretched with respect to α.

Proof. By Lemma 3 we know that the first wall is either the leftmost or the rightmost elements
of α. Observe that PR is stretched with respect to α if and only if PR is stretched with respect
to α reversed. It follows that it is sufficient to prove that the lemma holds when the first wall is
the leftmost elements of α.

Let Z = α−1(I(PR)) and observe that there are at most 2b vertices in N(Z). Furthermore,
observe that every leaf of a gate or a hole is either within I(PR) or a neighbour of Z. It follows
from Lemma 7 that Lemma 4 applies to all k-gates of T . Furthermore, by Lemma 8 it follows
that the neighbours of the fillers are positioned after the first gateland and before the last
gateland. And hence by Lemma 4 and the fact that α is a b-bandwidth ordering, it follows that
both fillers are positioned within I(PR). By Lemma 10 it holds that for every vertex v that
is a danglement, its neighbour is positioned within I(PR). And hence v is either in I(PR) or
a neighbour of Z. Below you find a table giving an overview of how many vertices not on the
main path, each type of gadget contributes with to N [Z].

Type of vertices Amount

Knots k(n+ 1)(3
2b− k − 2)

Holes 4n(3
4b− k − 2)

First filler (n− k)(3
2b− k − 2) + (2b+ 1)(p(n− 1) + 3)

Second filler (b− 1)(4n+ 3)(2n− 1) + 2b(4n+ 3)(2n− 1)− (k(2n− 1)(4n+ 3) +
k(n(3

2b− k − 2) + n2 − n− 2m) + 2n(3
4b− k − 2))

k-gates 2(b− k − 1)b(m1 +m2 +m3)

(k + 1)-gates 2(b− k − 2)((n− 1)(p− 3) + b(p(n− 1) + 3) + b(2n− 1)(4n+ 3))

non-neighbouring leafs k(n2 − n− 2m)

It follows from Lemma 3 that there are two vertices of the main path within N(Z). Let X be
all leaves in gates, holes and knots and non-neighbouring leaves and all the vertices in the fillers
that are positioned within I(PR). We know that |X| is at least the sum of the numbers in the
table above, minus 2b−2. And hence it can be verified that |X| ≥ (b−k−1)((2b+1)m3−m1−2).
By construction it follows that |E(PR)| = (2b + 1)m3 −m1 − 2. And by Lemmata 7 and 8 it

19



follows that all threads are passing through PR and hence we can apply Lemma 2 to complete
the proof.

Name the holes of the selector such that the first hole is called H1 and the last hole is Hn. Let
(T, b) be a resulting instance of the reduction and α a b-bandwidth ordering of T . Furthermore,
let Hi be a hole of T embedded on the path (v1, v2, v3, v4) such that v1 comes before v4 in T .
We say that a thread τ is selecting i, if the center c of the first knot of the thread is positioned
so that α(c) ∈ I(v2, v3).

Lemma 12. Let (T, b) be the result of the reduction for the instance (G, k) of p-Even Clique
and α a b-bandwidth ordering of T . Then every thread in T selects a unique integer in [n].

Proof. By Lemma 3 we know that the first wall is either the leftmost or the rightmost elements
of α. Observe that every thread in T selects an unique integer with respect to α if and only
if every thread in T selects an unique integer with respect to α reversed. It follows that it is
sufficient to prove that the lemma holds when the first wall is the leftmost elements of α.

Let us consider a thread τ with vertices (u2 = t2, t3, . . . ), where c is the center of the first
knot K of τ . Furthermore, let cF be the center of the first gate in the first gateland, cM the
center of the last gate in the middle gateland and cL the center of the last gate in the last
gateland. We will now prove that α(c) ∈ I(cF , cM ). We know that α(c) ∈ I(PR) by Lemma 10
and hence in I(cF , cL) by Lemma 11. Assume for a contradiction that α(c) /∈ I(cF , cM ), it follows
that α(c) ∈ I(cM , cL). Let P be the path from u2 to c and P ′ the path from u3 to cM . Observe
that α(P ′) ⊆ I(P ). Recall that |E(P )| = (2b+ 1)m1 − 1 and that V (P ′) = (2b+ 1)m2 − 3. A
contradiction follows immediately, since I(P ) ≤ b((2b+ 1)m1 − 1) + 1 < (2b+ 1)m2 − 3 ≤ V (P ′).
And hence we can assume α(c) ∈ I(cF , cM ).

We will now prove that there is a hole Hi such that α(c) ∈ I(Hi). Assume for a contradiction
that α(c) /∈ I(Hi) for every i. Let P̂2 = (p1, p2) be the P2 of the main path such that α(c) ∈ I(P̂2).
It follows by construction, that either p1 or p2 is the center of a gate. Observe that the leaves
attached to c, p1 and p2 must be positioned within a P̂4. And due to Lemma 11 there are
4 + 3k vertices from the main path and the threads within I(P̂4). Recall that there are
3
2b− k − 2 leaves attached to c and at least 2(b− k − 2) leaves attached to P̂2. This adds up to
4 + 3k + 3

2b− k − 2 + 2b− 2k − 4 = 7
2b− 2 > 3b+ 1 and hence we get a contradiction.

Let Hi be embedded on the path (v1, v2, v3, v4) such that v1 comes before v4 in T . Observe
that due to Lemma 11 there is a position within the inclusion interval of the last (k + 1)-gate of
the selector that only the first filler can take. Due to our tight budget when it comes to positions
within I(PR) (see the proof of Lemma 11) it follows that the first filler must take this position.
And hence for every hole in the selector, the (k + 1)-gate immediately before and after will be
passed by the first filler. It follows that Lemma 4 is applicable on the (k+ 1)-gates in the selector
and hence α(K) ⊆ I(v1, v4). Furthermore, due to Lemma 11 we know that I(Hi) ⊆ I(v1, v4).
And hence we can apply Lemma 5 to obtain that α(c) ∈ I(v2, v3).

It remains to prove that the threads selects unique integers. Assume otherwise for a
contradiction and let τ and τ ′ be two threads selecting the same integer i. Hence there are
two knots K and K ′ such that α(K) ∪ α(K ′) ⊆ I(Hi). Observe that I(Hi) = 3b + 1 ≥
2(3

2b− k − 2) + 2(3
4b− k − 2) = 6b− 4k − 8 > 5b (since there are 3

2b− k − 2 leaves attached to a
knot and 2(3

4b− k − 2) leaves attached to a hole) and hence we get our contradiction and the
proof is complete.

Lemma 13. Let (T, b) be the result of the reduction for the instance (G, k) of p-Even Clique
and α a b-bandwidth ordering of T . Then the set {vi | there is a thread selecting i} is a clique
in G.

20



Proof. By Lemma 3 we know that the first wall is either the leftmost or the rightmost elements
of α. Observe that the set of integers selected by the threads with respect to α is the same
as the one selected with respect to α reversed. It follows that it is sufficient to prove that the
lemma holds when the first wall is the leftmost elements of α.

Let A be the set of selected integers and C = {vi | i ∈ A}. From Lemma 12 we know that
the size of both A and C is k. Assume for a contradiction that there are two vertices va and vb
in C such that va and vb are not neighbours in G. Let τa be the thread selecting a and τb the
thread selecting b. One can observe that by construction and Lemma 11 there is a hole H in the
validation zone and a knot Ka with center ca embedded on τa such that α(ca) ∈ I(H).

Let (v1, v2, v3, v4) be the path that H is embedded on, such that v1 comes before v4 in T .
From Lemma 11 one can observe that there is a position within the inclusion interval of the last
(k + 1)-gate in the validator that only the second filler can take. Due to our tight budget when
it comes to positions within I(PR) (see the proof of Lemma 11) it follows that the second filler
must take this position. It follows that Lemma 4 is applicable on the (k + 1)-gates immediately
before and after H. Hence it follows by Lemma 5 that α(K) ∪ α(H) ⊆ I(v1, v4).

From the construction of T and Lemma 11 one can observe that the vertex of τb positioned
within I(v2, v3) has a non-neighbouring leaf attached. It follows that there are 3(k + 1) + 4
vertices from the threads, the filler and the main path positioned within I(v1, v4). Furthermore,
the knot contributes with 3

2b− k − 2 leaves to I(v1, v4) and the hole with 2(3
3b− k − 2). And

in addition the non-neighbouring leaf must be positioned within I(v1, v4). It follows that
3b+ 1 = |I(v1, v4)| ≤ 3(k + 1) + 4 + 3

2b− k − 2 + 2(3
4b− k − 2) + 1 = 3b+ 7− 2− 4 + 1 = 3b+ 2

which is a contradiction and the proof is complete.

Lemma 14. Given an instance (G, k) of p-Clique the reduction instance (T, b) of p-Bandwidth
has a b-bandwidth ordering if and only if there is a clique of size k in G.

Proof. This follows immediately by Lemmata 6, 12 and 13.

3.6 Consequences

We will now present the immediate consequences of our reduction. But first we need to prove
that the problem we have been reducing from, namely p-Even Clique is up to the task.

Lemma 15. p-Even Clique is W[1]-hard.

Proof. We give a simple reduction from p-Clique, which was proven to be W[1]-hard by
Downey & Fellows [7]. Given an instance (G, k) of p-Clique, if k is even the instance is already
a valid instance of p-Even Clique and the correctness is trivial. Otherwise, let G′ be G with a
universal vertex added and k′ = k + 1. Clearly, k′ is even. So this is a valid instance. If there is
a clique of size k in G, then the same clique together with the universal vertex forms a clique of
size k′ in G′. And the other way around, if there is a clique of size k′ in G′. Then there is a
subset of this clique of size k not containing the added universal vertex. This is a clique in G of
size k and hence our reduction is sound.

Since the reduction is parameter preserving it follows immediately that p-Even Clique is
W[1]-hard.

Lemma 16. Assuming the Exponential Time Hypothesis p-Even Clique does not admit an
O(f(b)no(b)) time algorithm.

Proof. Observe that for the reduction in the proof of Lemma 15 is so that k′ = O(k). p-Clique
is known to not admit an O(f(b)no(b)) time algorithm by Chen et. al. [3]. The result follows
immediately.

21



Theorem 2. p-Bandwidth is W[1]-hard, even when the input graph is restricted to trees of
pathwidth at most 2.

Proof. The result follows directly from Lemmata 14 and 15 and the observations that the graph
constructed by the reduction is a tree of pathwidth at most 2 and that b = f(k).

Theorem 3. Assuming the Exponential Time Hypothesis p-Bandwidth does not admit an
O(f(b)no(b)) time algorithm, even when the input graph is restricted to trees of pathwidth at most
2.

Proof. The result follows directly from Lemmata 14 and 16 and the observations that the graph
constructed by the reduction is a tree of pathwidth at most 2 and that b = O(k).

4 Approximation Algorithms

In this section we will provide FPT-approximation algorithms for p-Bandwidth on trees and
caterpillars. Given a caterpillar T and a positive integer b, CatAlg either returns a 48b3-
bandwidth ordering of T or correctly concludes that bw(T ) > b. To obtain this we define an
obstruction for bandwidth on caterpillars inspired by Chung & Seymour [5] and search for these
objects. Based on the appearance of these objects in T we construct an interval graph such
that either the interval graph has low chromatic number or the bandwidth of T is large. If the
interval graph has low chromatic number we use a coloring of this graph to give a low bandwidth
layout of T .

Given a tree T and positive integers b and p such that pw(T ) ≤ p, TreeAlg either returns a
(768b3)p-bandwidth ordering of T or correctly concludes that bw(T ) > b. The high level outline
of the algorithm is as follows. The algorithm first decomposes the tree into several connected
components of smaller pathwidth and recurses on these. Then it builds a host graph for T that
is a caterpillar, applies CatAlg on the host graph. Finally it combines the result of CatAlg
with the results from the recursive calls, to give a (768b3)p-bandwidth ordering of T . Since the
pathwidth of a graph is known to be bounded above by its bandwidth, it follows that TreeAlg
is an FPT-approximation.

4.1 An FPT-Approximation for the Bandwidth of Trees

The aim of this section is to give a FPT-approximation for p-Bandwidth on trees, namely an
(768b3)b-approximation. This algorithm crucially uses a 48b3-approximation of p-Bandwidth
on caterpillars as a subroutine. We provide such an algorithm, namely the algorithm CatAlg, in
Section 4.2. In the remainder of this section we give a (768b3)b-approximation for trees under the
assumption that CatAlg is a 48b3-approximation of p-Bandwidth on caterpillars with running
time O(bn3).

Recursive Path Decompositions and Other Simplifications

In this section we will present some decomposition results crucial for our algorithm. First we
define recursive path decompositions, which will allow us to partition our graph into several
components of slightly lower complexity. The recursive decomposition is used to call the
algorithm recursively on easier instances, and then combine the layouts of these instances to a
low bandwidth layout of the input tree.

Definition 3. Let T be a tree and P, T 1, . . . , T t induced subgraphs of T such that V (T ) =
V (P )∪

⋃
V (T i). Then we say that P, T 1, . . . , T t is a p-recursive path decomposition of T if P is

a path in T and for every i it holds that T i is a connected component of T − P , deg(V (T i)) = 1
and pw(T i) < p.

22



Lemma 17. Given a tree T of pathwidth at most p, a p-recursive path decomposition P, T 1, . . . , T t

of T can be found in O(n) time.

Proof. It was proven by Scheffler [28] that given a tree T and an integer p one can find a path
decomposition P of T of width p or correctly conclude that pw(T ) > p in time O(n). Let X and
Y be the leaf bags of P . By standard techniques we can assume X and Y to be non-empty. Let
u, v be two, not necessarily distinct, vertices such that u ∈ X and v ∈ Y . Let P be the path in
T from u to v. One can easily prove that for every bag Z of P it is true that Z ∩P is non-empty.
Hence, if we remove all the vertices of P from T and P we obtain a path decomposition of
T − P of width p− 1. It follows that for every connected component T i of T − P it holds that
pw(T i) ≤ p− 1. Assume for a contradiction that there is a connected component T i such that
deg(V (T i)) 6= 1. If deg(V (T i)) < 1 it follows that T was disconnected to begin with, and hence
not a tree. And if deg(V (T i)) > 1 it follows that T i together with P forms a cycle, and again T
is not a tree. To complete the proof, observe that the connected components of T − P can be
found in O(n) time by breadth first search.

Definition 4. Let T be a tree and P, T 1, . . . , T t a p-recursive path decomposition of T . We
construct the simplified instance TS of T with respect to P, T 1, . . . , T t as follows. First we add
P to TS. Then, for every T i we first add a path P i such that |V (P i)| = |V (T i)| and then we
add an edge from one endpoint of P i to N(T i).

Observe that the simplified instance TS is a caterpillar with backbone P .

Lemma 18. Let T be a tree, P, T 1, . . . , T T be a p-recursive path decomposition of T and TS the
corresponding simplified instance, then bw(TS) ≤ 2bw(T )

Proof. Let α be an optimal bandwidth ordering of T . We will now give an ordering β of TS such
that bw(TS , β) ≤ 2bw(T, α). For every v ∈ P , let β(v) = 2α(v).

For every T i we will consider two cases. Let W = α(T i) and observe that for every x ∈W
such that y is the smallest element in W larger than x it follows by the connectivity of T i that
y − x ≤ bw(T ). First, consider the case when at least half of W is less than α(N(T i)). For
every w ∈ W such that w < α(N(T i)), add 2w and 2w + 1 to the initially empty set Z. Let
P i = {p1, . . . , pm} such that dist(P, pj) < dist(P, pj+1) for every j. For j from 1 to m, let β(pj)
be the largest value in Z and discard β(pj) from Z. Observe that for every j it holds that
|β(pj)− β(pj+1)|/2 ≤ bw(T ). And furthermore, |β(p1)− β(N(P i))| ≤ bw(T ). If at least half of
W is larger than α(N(T i)) apply a symmetric construction.

To conclude the argument we need to prove that β never maps two distinct vertices of TS
on the same position. It is easy to verify that this never happens for two vertices on P or two
vertices in the same tree T i. Consider now a vertex u ∈ V (T i) and a vertex v ∈ V (T j) for i 6= j.
It follows that bβ(u)/2c ∈ α(T i) and bβ(v)/2c ∈ α(T j). Since α(T i) ∩ α(T j) = ∅ it follows that
β(u) 6= β(v). The argument for one vertex in T i and one in P is identical. We obtain that
bw(TS) ≤ bw(TS , β) ≤ 2bw(T, α) = 2bw(T ).

Let T be a graph, v a vertex of T and α a b-bandwidth ordering of T . Let β′ be a sparse
ordering such that for every u ∈ T

β′(u) =

{
2[α(v)− α(u)] if α(u) ≤ α(v) and

2[α(u)− α(v)]− 1 otherwise.

and let β be the bandwidth ordering obtained by compressing β′. We then say that β is α right
folded around v. Observe that bw(T, β) ≤ 2bw(T, α).

23



Algorithm and Correctness

We are now ready to describe algorithm TreeAlg and prove its correctness. Pseudocode for
TreeAlg is given in Algorithm 1.

Input: A tree T and positive integers integers p and b such that pw(T ) ≤ p.
Output: A (768b3)p-bandwidth ordering of T or conclusion that bw(T ) > b.

if p = 1 then
return CatAlg(T, b)

end
Find a p-recursive path decomposition P, T 1, . . . , T t of T .
Let α1 = TreeAlg(T 1, p− 1, b), . . . , αt = TreeAlg(T t, p− 1, b).
if there is an αi = ⊥ then

return ⊥
end
Let Ts be the simplified instance of T with respect to P, T 1, . . . , T t.
Let αs = CatAlg(Ts, 2b).
if αs = ⊥ then

return ⊥
end
For every i, let βi be αi right folded around N(P ) ∩ T i.
For every v ∈ P , let α(v) = αs(v).
For every Pi of Ts and every v ∈ Pi of distance d from P in Ts, let α(β−1

i (d)) = αs(v).
return α

Algorithm 1: TreeAlg

Lemma 19. Given a tree T and two integers p an b such that pw(T ) ≤ p, TreeAlg terminates
in O(pbn3) time.

Proof. We start by analyzing the time complexity of the computations done in a specific
execution of TreeAlg given T ′, p′, b as input, disregarding the recursive calls. The calls to
CatAlg require O(b|V (T ′)|3) time. Finding a p-recursive path decomposition can be done in
O(|V (T ′)|) time by Lemma 17. Constructing T ′S can trivially be done in O(|V (T ′)|) time.
And furthermore, constructing all the β’s require

∑t
i=1O(|T i|) = O(|V (T ′)|) time. Last, we

observe that constructing α requires O(|V (T ′)|) time. It follows that the time complexity of the
computations done in a specific call to TreeAlg is O(b|V (T ′)|3).

Let n = |V (T )| and T1, . . . , Tl the trees given as input at a specific recursion level. Observe
that T1, . . . , Tl are pairwise disjoint and hence it follows that the time complexity of a recursion
level is

∑l
i=1O(b|V (T1)|3) = O(bn3). Furthermore, as p is decreased by one at each recursion

level it follows that TreeAlg runs in time O(pbn3).

Lemma 20. Given a tree T and positive integers b and p such that pw(T ) ≤ p, TreeAlg either
returns a O((768b3)p)-bandwidth ordering of T or correctly concludes that bw(T ) > b in time
O(pbn3).

Proof. The running time follows directly from Lemma 19 and hence it remains to prove the
correctness of the algorithm. This we will do by induction on p. For p = 1 the correctness
follows directly from the correctness of CatAlg and hence it remains to prove the induction step.
First we consider the case when the algorithm concluded that bw(T ) > b. Either there is an αi
such that αi = ⊥ or αs = ⊥. If αi = ⊥ it follows by the induction hypothesis and the fact that
bandwidth is preserved on subgraphs that the algorithm concluded correctly. Now we consider

24



the case when αs = ⊥. It follows from the correctness of CatAlg that bw(Ts) > 2b and hence by
Lemma 18 it follows that bw(T ) > b.

It remains to consider the case when the algorithm returns a bandwidth ordering α. Then, by
the induction hypothesis αi is a (768b3)p−1-bandwidth ordering of T i for every i. Furthermore,
αs is a 384b3-bandwidth ordering for Ts, since 48(2b)3 = 384b3. Let u and v be two neighbouring
vertices of T . If u and v are vertices in P it follows from bw(Ts, αs) ≤ 384b3 that |α(u)−α(v)| ≤
384b3. Next, we consider the case when either u or v is a vertex in P . Assume without loss of
generality that u ∈ P and let T j be such that v ∈ T j . By the definition of βj it follows that
βj(v) = 1. It follows that |α(u)−α(v)| = |αs(u)−αs(w)| where dist(u,w) = 1, and hence u and
w are neighbours in Ts and it follows directly that |α(u)− α(v)| ≤ 384b3. We will now consider
the case when u and v are vertices of T j for some j. Let u′ be the vertex in P j of distance β(u)
from P and v′ the vertex in P j of distance β(v) from P . It follows that

|α(u)− α(v)| = |α(β−1
j (βj(u)))− α(β−1

j (βj(v)))|
= |αs(u′)− αs(v′)|
≤ dist(u′, v′)384b3

= |βj(u)− βj(v)|384b3

≤ |αj(u)− αj(v)|768b3

≤ (768b3)p

completing the proof.

Note that one in the case of p = 1 also could solve the instance exactly by Assmann [1]. It
would decrease the approximation ratio to (768b3)p−1.

Theorem 4. There exists an algorithm that given a tree T and a positive integer b either returns
a (768b3)b-bandwidth ordering of T or correctly concludes that bw(T ) > b in time O(b2n3).

Proof. This follows directly from pw(T ) ≤ bw(T ) and Lemma 20.

The proof of Theorem 4 assumed the existence of a 48b3-approximation algorithm for
caterpillars. In the next section we give such an algorithm.

4.2 An FPT-Approximation for the Bandwidth of Caterpillars

The bandwidth of caterpillars is, somewhat surprisingly, a well-studied problem. Assmann et al. [1]
proved that the bandwidth of caterpillars of stray length 1 and 2 is polynomial time computable.
Monien [24] completed the story of polynomial time computability by proving that Bandwidth
on caterpillars of stray length 3 is NP-hard. Furtermore, Haralambides [19] gave an O(log n)
approximation algorithm, which later was improved to O(log n/ log log n) by Feige & Talwar [12].
We now give the first FPT-approximation of p-Bandwidth on caterpillars, namely a 48b3-
approximation.

Skewed Cantor Combs

Chung & Seymour [5] defined Cantor combs. These are very special caterpillars defined in such
a way that they have small local density, but high bandwidth. The definition of Cantor combs is
very strict - it precisely defines the length of all the paths in the caterpillars. For our purposes
we need a more general definition which captures all caterpillars that are “similar enough” to
Cantor combs. We call such caterpillars skewed Cantor combs, and we will prove that they also

25



have high bandwidth. Our algorithm will scan for skewed Cantor combs as an obstruction for
bandwidth and if none of big enough size are found it will construct a 48b3-bandwidth ordering
based on the appearance of smaller versions of these objects.

For positive integers k ≤ b we now define a skewed b-Cantor comb of depth k, denoted Sb,k
inductively as follows. Sb,1 is a path of length 1. For the induction step to be well-defined we
mark two vertices of every skewed b-Cantor comb as end vertices. For an Sb,1 the two vertices
are the end vertices. For k > 1 we start with two skewed b-Cantor combs of depth k − 1, lets
call them S and S′ and furthermore let x, y and x′, y′ be their end vertices respectively. Connect
y to x′ by a path P of length at least 2. Furthermore, let Q be a stray connected to an internal
vertex v of P . Mark x and y′ as the end vertices of the construction and let B be the path from
x to y′. Let d be the maximum distance from v to any vertex in B. If Q has at least 2(b− 1)d
vertices we say that the graph described is a skewed b-Cantor comb of depth k.

. . . . . .

...

...

...

S P S′

Q

Figure 9: A skewed b-Cantor comb of depth 3 for some b.

Lemma 21. Let Ŝb,k be a skewed b-Cantor comb of depth k and α an optimal bandwidth ordering

of Ŝb,k. Furthermore, let x and y be the end vertices of Ŝb,k and B the path from x to y. Then

there exists an edge uv of Ŝb,k such that I(u, v)∩I(B) is non-empty and |α(u)−α(v)| = bw(Ŝb,k).

Proof. The graph Ŝb,k is a caterpillar with backbone B. Let CB be the connected component of

Ŝb,k[α−1(I(B))] that contains B. Observe that Ŝb,k \ CB is a collection of paths, with each path
being a subpath of a stray and having exactly one neighbor in CB.

Let L contain every vertex u ∈ N(CB) such that α(u) < min[I(B)] and R contain every vertex
u ∈ N(CB) such that α(u) > max[I(B)]. By definition we have that L ∪ (N(L) ∩CB) induces a
matching of size L, such that each matching edge has one endpoint u with α(u) < min[I(B)]
and the other endpoint v with α(v) ∈ α(CB). It follows that for one of the matching edges
|α(u)− α(v)| ≥ |L|. Thus there exists an edge uv of Ŝb,k such that I(u, v) ∩ I(B) is non-empty

and |α(u)− α(v)| ≥ |L|. An identical argument yields that there exists an edge uv of Ŝb,k such
that I(u, v) ∩ I(B) is non-empty and |α(u)− α(v)| ≥ |R|. Thus there exists an edge u′y′ such
that I(u′, v′) ∩ I(B) is non-empty and |α(u′)− α(v′)| = max(|L|, |R|).

We now prove that without loss of generality, we can assume that every edge uv such that
neither u nor v are in CB satisfies |α(u)− α(v)| ≤ max(|L|, |R|). Let CL be the set of vertices
connected to L in G − CB and CR the set of vertices connected to R in G − CB. Observe
that CB, CL and CR form a partition of V (Ŝb,k). For every v ∈ CB ∪ L ∪ R let β(v) = α(v).
Let v be a vertex of CL \ L and u the unique vertex of L such that u and v are connected in
G−CB. We then let β(v) = β(u)− |L| · dist(u, v). Handle the vertices of CR \R symmetrically

26



and let β′ be the compressed β. One can observe that β′ is a linear ordering of Ŝb,k and that

bw(Ŝb,k, β
′) ≤ bw(Ŝb,k, α) = bw(Ŝb,k). Clearly, for every edge uv such that neither u nor v are

in CB satisfies |α(u)− α(v)| ≤ max(|L|, |R|).
Let uv be an edge of Ŝb,k such that |α(u)−α(v)| = bw(Ŝb,k). If one endpoint of uv is mapped

to I(B) we are done, as uv satisfies the conditions of the lemma. On the other hand, if both
endpoints of uv are outside of I(B) then bw(Ŝb,k) = |α(u)− α(v)| = max(|L|, |R|). In this case
the edge u′v′ satisfies the conditions of the lemma, completing the proof.

Lemma 22. For b ≥ k ≥ 1, the bandwidth of any Sb,k is at least k.

Proof. The proof of this lemma is inspired by the one for Cantor combs given by Chung and
Seymour ([6], Lemma 2.1).

Assume for a contradiction that there is a Ŝb,k such that bw(Ŝb,k) < k. Furthermore, assume
without loss of generality that k is the smallest such value with respect to b. Observe that
k > 1. Let α be an ordering of Ŝb,k of bandwidth at most k − 1. Let S, S′, P and Q be as in the
definition of skewed Cantor combs. By assumption the bandwidth of both S and S′ are k − 1.
Let x and y be the end vertices of S and x′ and y′ the end vertices of S′. Furthermore, let B be
the path from x to y and B′ the path from x′ to y′. Let Z be the path between the end vertices
of Ŝb,k.

Let β be the compressed version of α when restricted to S. Since α is of bandwidth k − 1,
it follows that β is of bandwidth at most k − 1 and hence by our assumption β is an optimal
bandwidth ordering of S. By Lemma 21 we know that there exists an edge uv in S such that
Iβ(u, v) ∩ Iβ(B) is non-empty and |β(u) − β(v)| = k − 1. It follows that Iα(u, v) ∩ Iα(B) is
non-empty and |α(u) − α(v)| = k − 1. In the same manner we obtain an edge u′v′ from S′.
Assume without loss of generality that α(u) < α(v) and that α(u′) < α(v′).

Observe that α−1(Iα(u, v)) ⊆ S and that α−1(Iα(u′, v′)) ⊆ S′. It follows directly that the
inclusion intervals has an empty intersection with P . Let q be the vertex in N(Q). We can
assume without loss of generality that α(v) < α(q). There are two cases to consider, either
α(q) < α(u′) or α(v′) < α(q).

First we consider the case when α(q) < α(u′). Observe that |I(Z)| ≤ (k − 1)|E(Z)|+ 1 ≤
|V (Q)| + 1 and |V (Z)| ≥ 5 since k > 1. It follows from α(Z) ⊆ I(Z) that there is a vertex
q′ ∈ Q such that α(q′) /∈ I(Z). Assume without loss of generality that α(q′) < min I(Z). It
follows that α(q′) < α(u) < α(v) < α(q). Since there is a path from q′ to q disjoint from S and
|α(u)− α(v)| = k − 1 it follows that I(u, v) must contain a vertex of Q, which is a contradiction.

It remains to consider the case when α(v′) < α(q). Observe that by assumption I(u, v) and
I(u′, v′) are disjoint. And hence, again we consider two cases. First, let α(v) < α(u′). We are
then in the situation that α(v) < α(u′) < α(v′) < α(q) and since there is a path from v to
q avoiding S′ it follows that this path has a non-empty intersection with I(u′, v′), which is a
contradiction. The case α(v′) < α(u) follows by a symmetric argument and hence the proof is
complete.

Directions

Given a caterpillar T and a backbone B = {b1, . . . , bk} we define pos(P ) for every stray P in T
with respect to B, as the integer i such that P is attached to the vertex bi. Furthermore, we let
|P | denote |V (P )|.

Definition 5. Let T be a caterpillar, B = {b1, . . . , bk} a backbone of T and b a positive integer.
Furthermore, let depth be a function from the strays of T with respect to B to N. For every
stray Q we let

• XQ =
{
P | pos(P ) + |P |

2b < pos(Q) and pos(Q)− |Q|2b ≤ pos(P )− |P |2b

}
and

27



• YQ =
{
P | pos(Q) < pos(P )− |P |2b and pos(P ) + |P |

2b ≤ pos(Q) + |Q|
2b

}
.

Let xQ = max(depth(XQ)) and yQ = max(depth(YQ)). We say that Q is pushed east if xQ > yQ,
pushed west if xQ < yQ and lifted if xQ = yQ.

We say that a skewed b-Cantor comb of depth k is centered around the stray Q, where Q
is as in the definition of Sb,k. For a caterpillar T we say that a backbone B is maximized if for
every other backbone B′ it holds that |B′| ≤ |B|.

We will now describe an algorithm FindSCC that given a caterpillar T , a maximized backbone
B of T and a positive integer b searches for skewed Cantor combs in T . Let depth be a function
from the strays of T with respect to B into N. As an invariant, depth promises there to be a
skewed (b+ 1)-Cantor comb centered around Q of depth depth(Q). The exception is if depth(Q)
is 0, then the stray is so short that we ignore it and we hence make no promises with respect to
skewed (b + 1)-Cantor combs. Initially, for every stray Q let depth(Q) be 2 if |Q| ≥ 4b and 0
otherwise. Observe that the invariant is true due to B being a maximized backbone.

Now we search for a stray Q that is lifted such that both xQ and yQ are at least depth(Q). It
such a Q is found, increase depth(Q) by one. Observe that there is in fact a skewed (b+1)-Cantor
comb centered around Q of this depth (depth(Q) after the incrementing). Run this procedure
until such a stray Q can not be found or until depth(Q) reaches b+ 1 for some stray. Observe
that we can for every stray evaluate xQ and yQ in O(n2). And since this is done at most O(bn)
times, the running time of FindSCC is bounded by O(bn3).

The reader should note that FindSCC does not detect all skewed b-Cantor combs. In fact, it
searches only for a stricter version and might overlook the deep skewed (b+ 1)-Cantor combs in
a caterpillar. But, as it turns out, these stricter versions are sufficient for our purposes. From
now on, we will assume that the function applied when evaluation whether a stray is pushed
west or east, is the depth function calculated by running FindSCC.

Definition 6. For a caterpillar T , a maximized backbone B = {b1, . . . , bl} of T and a positive
integer b we define the directional stray graph as the following interval graph: for every stray P
add the interval

• [pos(P )48b3 − 12b2|P |, pos(P )48b3] if P is pushed west and

• [pos(P )48b3, pos(P )48b3 + 12b2|P |] otherwise.

We say that an interval originating from a stray pushed west is west oriented and visa versa.

Lemma 23. Let T be a caterpillar, b a positive integer, GI some directional stray graph of T
and x and y two natural numbers such that x < y. Then either there are at most 2b intervals of
length at least y − x in GI starting within [x, y], or bw(T ) > b.

Proof. Assume otherwise for a contradiction and let bw(T ) ≤ b and K be a set of 2b+ 1 intervals
of length at least y − x starting within [x, y]. Let x′ be the smallest number such that x ≤ x′

and x′ is divisible by 48b3 and y′ the largest number such that y′ ≤ y and y′ is divisible by
48b3. Observe that all intervals in K has their starting point within [x′, y′] by construction.
Consider the minimum connected, induced subgraph H of T containing the vertices of the strays
corresponding to the intervals in K. We will consider H with respect to the backbone such that
the strays of H are exactly the ones corresponding to intervals in K. Let z = y′− x′ and observe
that every stray in H contains at least q = z/12b2 vertices and that the backbone of H is of
length r = z/48b3. It follows that

28



D(G) ≥ |V (H)| − 1

diam(H)

≥ (2b+ 1)q + r − 1

2q + r

>
2bq + r

2q + r

≥ b 2q + r/b

2q/b+ r/b

≥ b

which contradicts D(G) ≤ b and hence we know that there are at most 2b such intervals. Note
that we used the fact that q > 1. This follows from the fact that x′ < y′ due to the local density
bound and hence q ≥ 48b3/12b2 ≥ 4.

Lemma 24. Let T be a caterpillar, b a positive integer and GI some directional stray graph of
T . Then either χ(GI) < 12b2 or bw(T ) > b.

Proof. Assume for a contradiction that χ(GI) ≥ 12b2 and that bw(T ) ≤ b. Then there is a
number w such that at least 12b2 of the intervals of GI contains w. This follows from the
well-known result that χ(GI) equals the size of the maximum clique of GI , since GI is an interval
graph. Let I be the set of all east oriented intervals containing w and assume without loss of
generality that I is of size at least 6b2. Discard the elements of I with the highest starting value
and let [x′, y′] be a discarded element. Observe that at most 2b elements were discarded due to
the local density bound. Hence we now have at least 6b2 − 2b elements left. We will start by
giving a lower bound on the length of the intervals in I. Consider an element [x, y] of shortest
length in I. By definition x < x′ ≤ y and by construction x′ − x ≥ 48b3, hence y − x ≥ 48b3 and
it follows that all elements of I are of length at least 48b3.

Let [x2, y2] be a shortest interval in I and recall that the stray P 2 corresponding to the interval
is attached to the backbone vertex bc2 for c2 = x2/48b3. Furthermore, |P 2| = (y2 − x2)/12b2 ≥
48b3/12b2 = 4b. Since the backbone used when constructing GI is maximized it follows that
the distance from bc2 to any endpoint of the backbone is at least 4 and hence there is an Sb+1,2

centered around bc2 .
Discard all intervals with their starting point within [x2 − 2(y2 − x2), y2] in I. We know that

at most 6b elements are discarded by Lemma 23. Now let [x3, y3] be a shortest interval in I and
recall that the stray P 3 corresponding to the interval is attached to the backbone vertex bc3 for
c3 = x3/(12b2). Observe that |y3 − x3| > |x3 − x2| and that |y2 − x2| < 1

2 |x3 − x2| and hence

|y3 − x3| > |x3 − x2| >
1

2
|x3 − x2|+ |y2 − x2|

=⇒
|y3 − x3|
2b(12b2)

>
|x3 − x2|

48b3
+
|y2 − x2|
2b(12b2)

=⇒
|V (P 3)|

2b
> |c3 − c2|+

|V (P 2)|
2b

.

Let S be the Sb+1,2 centered around bc2 and recall that by definition the distance from bc2 to

any backbone vertex of S is bounded from above by |V (P 2)|
2b . It follows that the distance from bc3

29



to any backbone vertex of S is bounded by |V (P 3)|
2b . Since [x3, y3] is east oriented there is another

Sb+1,i centered around a stray P̄ 2 such that pos(P̄ 2)+ |P̄
2|

2b < c3 and pos(P̄ 2)− |P̄
2|

2b ≥ c3− |P
3|

2b for
some i ≥ 2. By definition, the Sb+1,i contains an Sb+1,2 as a subgraph in such a way that there is
an Sb+1,3 centered around c3. Discard all intervals with starting points within [x3−2(y3−x3), x3]
and repeat the argument to obtain a Sb+1,4. We keep repeating the argument until we obtain a
Sb+1,b+1

Notice that we can do this as we are discarding at most 6b vertices each time, repeating the
procedure b− 1 times and I contains at least 6b2 − 2b > 6b(b− 1) intervals. This completes the
proof, as we know from Lemma 22 that bw(Sb+1,b+1) ≥ b+ 1.

Algorithm and Correctness

Input: A caterpillar T and a positive integer b.
Output: A 48b3-bandwidth ordering of T or conclusion that bw(T ) > b.

Let B = {b1, . . . , bk} be a maximized backbone of T .
Construct the directional stray graph GI of T with respect to B.
Find a minimum coloring of GI .
if χ(GI) ≥ 12b2 then

return ⊥.
end
Let α(bi) = 48b3(n+ i).
Let P be the collection of strays in T with respect to B.
For every stray P in P let C(P ) be the color of the interval representing the stray.
for every P ∈ P do

Let p1, . . . , pk be the vertices of P such that dist(B, pi) < dist(B, pi+1) for every i.
Let {u} = N(P ).
if P is pushed west then

Let α(pi) = α(u) + C(P )− i12b2 for every i.
end
else

Let α(pi) = α(u) + C(P ) + (i− 1)12b2 for every i.
end

end
return Compressed version of α.

Algorithm 2: CatAlg

Theorem 5. There exists an algorithm that given a caterpillar T and a positive integer b either
returns a 48b3-bandwidth ordering of T or correctly concludes that bw(T ) > b in time O(bn3).

Proof. Recall that FindSCC runs in O(bn3) time. Furthermore, a coloring of GI can be found in
O(n) time by Golumbic [17]. Observe that every other step of the algorithm trivially runs in O(n)
time. And hence the algorithm runs in O(bn3) time. If CatAlg returns ⊥, then χ(GI) ≥ 12b2.
It follows from Lemma 24 that bw(T ) > b and hence the conclusion is correct. We will now
prove that α is a sparse ordering of V (T ) of bandwidth at most 48b3. It is clear that for any
edge uv ∈ E(T ) it holds that |α(u)− α(v)| ≤ 48b3. It remains to prove that α is an injective
function. Assume for a contradiction that there are two vertices u, v such that α(u) = α(v).
Observe that α(u) ≡ 0 mod (48b3) if and only if u is a backbone vertex of T . This comes from
the fact that χ(GI) < 12b2. And since it is clear from the algorithm that no two vertices of
the backbone are given the same position we can assume that neither u nor v is a backbone

30



vertex. It follows that α(u) ≡ c(P ) mod (12b2) where P is the stray containing u. Observe that
the algorithm gives unique positions to all vertices from the same stray and hence u and v must
belong to two different strays given the same color. Let Pu be the stray containing u and Pv the
strain containing v. Furthermore, let [xu, yu] and [xv, yv] be the corresponding intervals in GI .
Observe that I(Pu) ⊆ [xu, yu] and I(Pv) ⊆ [xv, yv] and hence [xu, yu] ∩ [xy, yv] 6= ∅, which is a
contradiction, completing the proof.

5 Concluding Remarks

We have shown that the classical 2O(b)nb+1 time algorithm of Saxe [27] for the Bandwidth
problem is essentially optimal, even on trees of pathwidth at most 2. On trees of pathwidth 1,
namely caterpillars with hair length 1, the problem is known to be polynomial time solvable.
On the positive side, we gave the first approximation algorithm for Bandwidth on trees with
approximation ratio being a function of b and independent of n. Our approximation algorithm
is based on pathwidth, local density and a new obstruction to bounded bandwidth called skewed
Cantor combs. We conclude with a few open problems.

• Does Bandwidth admit a parameterized approximation algorithm on general graphs?

• Does Bandwidth admit an approximation algorithm on trees with approximation ratio
polynomial in b? What if one allows the algorithm to have running time f(b)nO(1)?

• Does there exist a function f such that any graph G with pathwidth at most c1, local density
at most c2, and containing no Sc3,c3 as a subgraph has bandwidth at most f(c1, c2, c3)?

31



References

[1] S. Assmann, G. Peck, M. Syslo, and J. Zak, The bandwidth of caterpillars with hairs
of length 1 and 2, SIAM Journal on Algebraic Discrete Methods, 2 (1981), pp. 387–393.

[2] H. L. Bodlaender, M. R. Fellows, and M. T. Hallett, Beyond np-completeness for
problems of bounded width: hardness for the w hierarchy, in STOC, 1994, pp. 449–458.

[3] J. Chen, X. Huang, I. A. Kanj, and G. Xia, Strong computational lower bounds via
parameterized complexity, Journal of Computer and System Sciences, 72 (2006), pp. 1346–
1367.

[4] P. Z. Chinn, J. Chvtalov, A. K. Dewdney, and N. E. Gibbs, The bandwidth problem
for graphs and matricesa survey, Journal of Graph Theory, 6 (1982), pp. 223–254.

[5] F. R. Chung and P. D. Seymour, Graphs with small bandwidth and cutwidth, Discrete
Mathematics, 75 (1989), pp. 113–119.

[6] F. R. K. Chung and P. D. Seymour, Graphs with small bandwidth and cutwidth, Discrete
Mathematics, 75 (1989), pp. 113–119.

[7] R. G. Downey and M. R. Fellows, Fixed-parameter tractability and completeness ii:
On completeness for w[1], Theoretical Computer Science, 141 (1995), pp. 109–131.

[8] R. G. Downey and M. R. Fellows, Parameterized complexity, vol. 3, Springer, 1999.

[9] C. Dubey, U. Feige, and W. Unger, Hardness results for approximating the bandwidth,
Journal of Computer and System Sciences, 77 (2011), pp. 62–90.

[10] J. Dunagan and S. Vempala, On euclidean embeddings and bandwidth minimization, in
RANDOM-APPROX, 2001, pp. 229–240.

[11] U. Feige, Approximating the bandwidth via volume respecting embeddings, J. Comput. Syst.
Sci., 60 (2000), pp. 510–539.

[12] U. Feige and K. Talwar, Approximating the bandwidth of caterpillars, Algorithmica, 55
(2009), pp. 190–204.

[13] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag New York,
Inc., 2006.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[15] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite, Prentice
Hall Professional Technical Reference, 1981.

[16] P. A. Golovach, P. Heggernes, D. Kratsch, D. Lokshtanov, D. Meister, and
S. Saurabh, Bandwidth on at-free graphs, Theor. Comput. Sci., 412 (2011), pp. 7001–7008.

[17] M. C. Golumbic, Algorithmic graph theory and perfect graphs, vol. 57, Elsevier, 2004.

[18] A. Gupta, Improved bandwidth approximation for trees, in SODA, 2000, pp. 788–793.

[19] J. Haralambides, F. Makedon, and B. Monien, Bandwidth minimization: an approxi-
mation algorithm for caterpillars, Mathematical Systems Theory, 24 (1991), pp. 169–177.

32



[20] P. Heggernes, D. Kratsch, and D. Meister, Bandwidth of bipartite permutation
graphs in polynomial time, J. Discrete Algorithms, 7 (2009), pp. 533–544.

[21] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential
complexity?, J. Comput. Syst. Sci., 63 (2001), pp. 512–530.

[22] D. J. Kleitman and R. V. Vohra, Computing the bandwidth of interval graphs, SIAM
Journal on Discrete Mathematics, 3 (1990), pp. 373–375.

[23] D. Marx, Parameterized complexity and approximation algorithms, Comput. J., 51 (2008),
pp. 60–78.

[24] B. Monien, The bandwidth minimization problem for caterpillars with hair length 3 is
np-complete, SIAM Journal on Algebraic Discrete Methods, 7 (1986), pp. 505–512.

[25] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.

[26] C. H. Papadimitriou, The np-completeness of the bandwidth minimization problem,
Computing, 16 (1976), pp. 263–270.

[27] J. B. Saxe, Dynamic-programming algorithms for recognizing small-bandwidth graphs in
polynomial time, SIAM Journal on Algebraic Discrete Methods, 1 (1980), pp. 363–369.

[28] P. Scheffler, A linear algorithm for the pathwidth of trees, in Topics in combinatorics
and graph theory, Springer, 1990, pp. 613–620.

[29] J.-H. Yan, The bandwidth problem in cographs, Tamsui Oxford Journal of Mathematical
Sciences, (1997), pp. 31–36.

33


