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Abstract

In the Subgraph Isomorphism problem we are given two graphs F
and G on k and n vertices respectively as an input, and the question is
whether there exists a subgraph of G isomorphic to F . We show that if the
treewidth of F is at most t, then there is a randomized algorithm for the
Subgraph Isomorphism problem running in time O∗(2kn2t). Our proof is
based on a novel construction of an arithmetic circuit of size at most nO(t)

for a new multivariate polynomial, Homomorphism Polynomial, of degree at
most k, which in turn is used to solve the Subgraph Isomorphism problem.
For the counting version of the Subgraph Isomorphism problem, where
the objective is to count the number of distinct subgraphs of G that are
isomorphic to F , we give a deterministic algorithm running in time and
space O∗(

(
n
k/2

)
n2p) or

(
n
k/2

)
nO(t log k). We also give an algorithm running

in time O∗(2k
(
n
k/2

)
n5p) and taking O∗(np) space. Here p and t denote the

pathwidth and the treewidth of F , respectively. Our work improves on the
previous results on Subgraph Isomorphism, it also extends and unifies
most of the known results on sub-path and sub-tree isomorhisms.
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1. Introduction

In this paper we consider the classical problem of finding and count-
ing a fixed pattern graph F on k vertices in an n-vertex host graph G,
when we restrict the treewidth of the pattern graph F by t. More precisely
the problems we consider are the Subgraph Isomorphism problem and
the #Subgraph Isomorphism problem. In the Subgraph Isomorphism
problem we are given two graphs F and G on k and n vertices respectively as
an input, and the question is whether there exists a subgraph in G which is
isomorphic to F . In the #Subgraph Isomorphism problem the objective
is to count the number of distinct subgraphs of G that are isomorphic to F .
Recently #Subgraph Isomorphism, in particular when F has bounded
treewidth, has found applications in the study of biomolecular networks.
We refer to Alon et al. [1] and references there in for further details.

In a seminal paper Alon et al. [3] introduced the method of Color-
Coding for the Subgraph Isomorphism problem, when the treewidth
of the pattern graph is bounded by t and obtained randomized as well as
deterministic algorithms running in time 2O(k)nO(t). This algorithm was
derandomized using k-perfect hash families. In particular, Alon et al. [3]
gave a randomized O∗(5.4k)2 time algorithm and a deterministic O∗(ck)
time algorithm, where c a large constant, for the k-Path problem, a special
case of Subgraph Isomorphism where F is a path of length k. There has
been a lot of efforts in parameterized algorithms to reduce the base of the
exponent of both deterministic as well as the randomized algorithms for the
k-Path problem. In the first of such attempts, Chen et al. [10] and Kneis
at al. [17] independently discovered the method of Divide and Color and
gave a randomized algorithm for k-Path running in time O∗(4k). Chen
et al. [10] also gave a deterministic algorithm running in time O∗(4k+o(k))
using an application of universal sets. While the best known deterministic
algorithm for k-Path problem still runs in time O∗(4k+o(k)), the base of
the exponent of the randomized algorithm for the k-Path problem has seen
a drastic improvement. Koutis [18] used an algebraic approach based on
group algebras for k-Path and gave a randomized algorithm running in
time O∗(23k/2) = O∗(2.83k). Williams [21] augmented this approach with
more random choices and several other ideas and gave an algorithm for k-
Path running in time O∗(2k). Currently the fastest randomized algorithm
for the problem is due to Björklund et al. [6], which runs in time O∗(1.66k).

2We use O∗() notation that hides factors polynomial in n and the parameter k.
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While there has been a lot of work on the k-Path problem, there has
been almost no progress on other cases of the Subgraph Isomorphism
problem until last year. Cohen et al. gave a randomized algorithm that for
an input digraph D decides in time O∗(5.704k) if D contains a given out-tree
with k vertices [11]. They also showed how to derandomize the algorithm
in time O∗(6.14k). Amini et al. [4] introduced an inclusion-exclusion based
approach in the classical Color-Coding and using it gave a randomized
5.4knO(t) time algorithm and a deterministic 5.4k+o(k)nO(t) time algorithm
for the Subgraph Isomorphism problem, when F has treewidth at most
t. Koutis and Williams [19] generalized their algebraic approach for k-Path
to k-Tree, a special case of Subgraph Isomorphism problem where F
is a tree on k-vertices, and obtained a randomized algorithm running in
time O∗(2k) for k-Tree. In this work we generalize the results of Koutis
and Williams by extending the algebraic approach to much more general
classes of graphs, namely, graphs of bounded treewidth. More precisely,
we give a randomized algorithm for the Subgraph Isomorphism problem
running in time O∗(2k(nt)t), when the treewidth of F is at most t. The
road map suggested by Koutis and Williams [19] and Williams [21] is to
reduce the problem to checking a multilinear term in a specific polynomial
of degree at most k. However, the construction of such polynomial is non-
trivial and requires new ideas. Our first contribution is the introduction
of a new polynomial of degree at most k, namely Homomorphism Polyno-
mial, using a relation between graph homomorphisms and injective graph
homomorphisms for testing whether a graph contains a subgraph which is
isomorphic to a fixed graph F . We show that if the treewidth of the pattern
graph F is at most t, then it is possible to construct an arithmetic circuit of
size O∗((nt)t) for Homomorphism Polynomial which combined with a result
of Williams [21] yields our first theorem.

In the second part of the paper we consider the problem of counting the
number of pattern subgraphs, that is, the #Subgraph Isomorphism prob-
lem. A natural question here is whether we can solve the #Subgraph Iso-
morphism problem in O∗(ck) time, when the k-vertex graph F is of bounded
treewidth or whether we can even solve the #k-Path problem in O∗(ck)
time? Flum and Grohe [13] showed that the #k-Path problem is #W[1]-
hard and hence it is very unlikely that the #k-Path problem can be solved
in time f(k)nO(1) where f is any arbitrary function of k. In another nega-
tive result, Alon and Gutner [2] have shown that one can not hope to solve
#k-Path better than O(nk/2) using the method of Color-Coding. They
show this by proving that any family F of “balanced hash functions” from
{1, . . . , n} to {1, . . . , k}, must have size Ω(nk/2). On the positive side, very
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recently Vassilevska and Williams [20] studied various counting problems
and among various other results gave an algorithm for the #k-Path prob-
lem running in timeO∗(2k(k/2)!

(
n
k/2

)
) and space polynomial in n. Björklund

et al. [5] introduced the method of “meet-in-the-middle” and gave an algo-
rithm for the #k-Path problem running in time and space O∗(

(
n
k/2

)
). They

also gave an algorithm for #k-Path problem running in time O∗(3k/2
(
n
k/2

)
)

and polynomial space, improving on the polynomial space algorithm given
in [20]. We extend these results to the #Subgraph Isomorphism prob-
lem, when the pattern graph F is of bounded treewidth or pathwidth. And
here also graph homomorphisms come into play! By making use of graph
homomorphisms we succeed to extend the applicability of the meet-in-the-
middle method to much more general structures than paths. Combined
with other tools—inclusion-exclusion, the Disjoint Sum problem, separa-
tion property of graph of bounded treewidth or pathwidth and the trimmed
variant of Yate’s algorithm presented in [7]—we obtain the following re-
sults. Let F be a k-vertex graph and G be an n-vertex graph of pathwidth
p and treewidth t. Then #Subgraph Isomorphism is solvable in time
O∗(

(
n
k/2

)
n2p) and

(
n
k/2

)
nO(t log k) and space O∗(

(
n
k/2

)
). We also give an algo-

rithm for #Subgraph Isomorphism that runs in time O∗(2k
(
n
k/2

)
n3pt2t)

(respectively 2k
(
n
k/2

)
nO(t log k)) and takes O∗(np) space (respectively O∗(nt)

space). Thus our work not only improves on known results on Subgraph
Isomorphism of Alon et al. [3] and Amini et al. [4] but it also extends and
generalize most of the known results on k-Path and k-Tree of Björklund
et al. [5], Koutis and Williams [19] and Williams [21].

The main theme of both algorithms, for finding and for counting a fixed
pattern graph F , is to use graph homomorphisms as the main tool. Count-
ing homomorphisms between graphs has found applications in variety of
areas, including extremal graph theory, properties of graph products, par-
tition functions in statistical physics and property testing of large graphs.
We refer to the excellent survey of Borgs et al. [8] for more references on
counting homomorphisms. One of the main advantages of using graph homo-
morphisms is that in spite of their expressive power, graph homomorphisms
between many structures can be counted efficiently. Secondly, it allows us to
generalize various algorithm for counting subgraphs with an ease. We com-
bine counting homomorphisms with the recent advancements on computing
different transformations efficiently on subset lattice.
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2. Preliminaries

LetG be a simple undirected graph without self loops and multiple edges.
We denote the vertex set of G by V (G) and the set of edges by E(G). For
a subset W ⊆ V (G), by G[W ] we mean the subgraph of G induced by W .

Treewidth, Pathwidth and Nice Tree-Decomposition.. A tree decomposition
of a (undirected) graph G is a pair (U, T ) where T is a tree whose vertices
we will call nodes and U = ({Ui | i ∈ V (T )}) is a collection of subsets of
V (G) such that

1.
⋃
i∈V (T ) Ui = V (G),

2. for each edge vw ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Ui,
and

3. for each v ∈ V (G) the set of nodes {i | v ∈ Ui} forms a subtree of T .

The Ui’s are called bags. The width of a tree decomposition ({Ui | i ∈
V (T )}, T ) equals maxi∈V (T ){|Ui| − 1}. The treewidth of a graph G is the
minimum width over all tree decompositions of G. We use notation tw(G) to
denote the treewidth of a graph G. When in the definition of the treewidth,
we restrict ourselves to paths, we get the notion of pathwidth of a graph and
denote it by pw(G). We also need a notion of nice tree decomposition for
our algorithm. A nice tree decomposition of a graph G is a tuple (U, T, r),
where T is a tree rooted at r and (U, T ) is a tree decomposition of G with
the following properties. The tree T is a binary tree and every node τ of
the tree is one of the following types.

1. τ has two children, say τ1 and τ2, and Uτ = Uτ1 = Uτ2 ; then it is called
join node.

2. τ has one child τ1, |Uτ | = |Uτ1 | + 1 and Uτ1 ⊆ Uτ ; then it is called
introduce node.

3. τ has one child τ1, |Uτ1 | = |Uτ | + 1 and Uτ ⊆ Uτ1 ; then it is called
forget node.

4. τ is a leaf node of T ; then it is called base node.

Given a tree-decomposition of width t, one can obtain a nice tree-decomposition
of width t in linear time.

Graph Homomorphisms.. Given two graphs F and G, a graph homomor-
phism from F to G is a map f from V (F ) to V (G), that is f : V (F )→ V (G),
such that if uv ∈ E(F ), then f(u)f(v) ∈ E(G). Furthermore, when the map
f is injective, f is called an injective homomorphism. Given two graphs F
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and G, the problem of Subgraph Isomorphism asks whether there ex-
ists an injective homomorphism from F to G. By hom(F,G), inj(F,G) and
sub(F,G) we denote the number of homomorphisms from F to G, the num-
ber of injective homomorphisms from F to G and the number of distinct
copies of F in G, respectively. We denote by aut(F, F ) the number of au-
tomorphisms from F to itself, that is bijective homomorphisms. The set
Hom(F,G) denotes the set of homomorphisms from F to G.

Functions on the Subset Lattice.. For two functions f1 : D1 → R1 and
f2 : D2 → R2 such that for every x ∈ D1 ∩D2, f1(x) = f2(x) we define the
gluing operation f1⊕ f2 to be a function from D1 ∪D2 to R1 ∪R2 such that
f1 ⊕ f2(x) = f1(x) if x ∈ D1 and f1 ⊕ f2(x) = f2(x) otherwise.

For a universe U of size n, we consider functions from 2U (the family of all
subsets of U) to Z. For such a function f : 2U → Z, the zeta transform of f is
a function fζ : 2U → Z such that fζ(S) =

∑
X⊆S f(X). Given f , computing

fζ using this equation in a näıve manner takes time O∗(3n). However, one
can do better, and compute the zeta transform in time O∗(2n) using a
classical algorithm of Yates [22]. In this paper we will use a “trimmed”
variant of Yates’s algorithm [7] that works well when the non-zero entries of
f all are located at the bottom of the subset lattice. In particular, it was
shown in [7] that if f(X) only can be non-zero when |X| ≤ k then fζ can be
computed from f in time O∗(

∑k
i=1

(
n
i

)
). In our algorithm we will also use an

efficient algorithm for the Disjoint Sum problem, defined as follows. Input
is two families A and B of subsets of U and two weight functions α : A → Z
and β : B → Z. The objective is to calculate

A� B =
∑
A∈A

∑
B∈B

{
α(A)β(B) if A ∩B = ∅

0 if A ∩B 6= ∅

Following an algorithm of Kennes [14], Björkund et al. [5] gave an algorithm
to compute A � B in time O(n(| ↓ A| + | ↓ B|)), where ↓ A = {X : ∃A ∈
A, X ⊆ A} is the down-closure of A.

Arithmetic Circuits.. An arithmetic circuit (or a straight line program) C
over a specified ring K is a directed acyclic graph with nodes labeled from
{+,×} ∪ {x1, . . . , xn} ∪ K, where X = {x1, . . . , xn} are the input variables
of C. Nodes with zero out-degree are called output nodes and those with
labels from X ∪K are called input nodes. The Size of an arithmetic circuit
is the number of gates in it. The Depth of C is the length of the longest path
between an output node and an input node. The nodes in C are sometimes
referred to as gates. It is not hard to see that with every output gate g of
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the circuit C we can associate a polynomial f ∈ K[x1, . . . , xn]. For more
details on arithmetic circuits see [9].

A polynomial f ∈ K[x1, . . . , xn] is said to have a multilinear term if there
is a term of the form cS

∏
i∈S xi with cS 6= 0 and ∅ 6= S ⊆ {1, . . . , n} in the

standard monomial expansion of f .

3. Algorithm for Finding a Subgraph

In this section we give our first result and show that the Subgraph
Isomorphism problem can be solved in time O∗(2k(nt)t) when the pattern
graph F has treewidth at most t. The main idea of our algorithm follows
that of Koutis and Williams [19] and Williams [21] for the k-Tree problem
and the k-Path problem, respectively. However, we need additional ideas
for our generalizations.

First, given two graphs F and G, we will associate a polynomial PG(X)
where X = {xv | v ∈ V (G)} such that: (a) the degree of PG(X) is k;
(b) there is a one to one correspondence between the monomials of PG
and homomorphisms between F and G; and (c) PG contains a multilinear
monomial of degree k if and only if G contains a subgraph isomorphic to
F . The polynomial we associate with F and G to solve the Subgraph
Isomorphism problem is given by the following.

Homomorphism Polynomial = PG(x1, . . . , xn) =
∑

Φ∈Hom(F,G)

∏
u∈V (F )

xΦ(u).

We first show that PG is “efficiently” computable by an arithmetic circuit.

Lemma 1. Let F and G be graphs with |V (F )| = k and |V (G)| = n. Then
the polynomial PG(x1, . . . , xn) is computable by an arithmetic circuit of size
O∗((nt)t) where t is the tree-width of F .

Proof. Let F,G, k, n and t be as given in the lemma. Let D = (U, T, r)
be a nice tree decomposition of F rooted at r. We define a polynomial
fG(T, τ, Uτ , S, ψ) ∈ Z[X], where

• τ is a node in T ;

• Uτ ⊆ V (F ) is the vertex subset associated with τ ;

• S be a multi-set (an element can repeat itself) of size at most t + 1
with elements from the set V (G);
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• ψ : F [Uτ ]→ G[S] is a multiplicity respecting homomorphism between
the subgraphs induced by Uτ and S respectively; and

• X = {xv|v ∈ V (G)} is the set of variables.

Let Vτ denote the union of vertices contained in the bags corresponding to
the nodes of subtree of T rooted at τ . At an intuitive level fG(T, τ, Uτ , S, ψ)
represents the polynomial which contains sum of monomials of the form∏
u∈Vτ\Uτ xφ(u), where φ is a homomorphism between F [Vτ ] and G consistent

with ψ, that is, φ is an extension of ψ to F [Vτ ]. Formally, the polynomial
fG can be defined inductively by going over the tree T bottom up as follows.

Case 1 (base case): The node τ is a leaf node in T . Since Vτ = Uτ , there
is only one homomorphism between F [Vτ ] and G that is an extension
of ψ, hence fG(T, τ, Uτ , S, ψ) = 1.

Case 2: The node τ is a join node. Let τ1 and τ2 be the two children of τ and
T1 and T2 denote the sub-trees rooted at τ1 and τ2 respectively. Note
that Uτ = Uτ1 = Uτ2 and (Vτ1 ∩ Vτ2) \ Uτ = ∅. Hence, any extension
of ψ to a homomorphism between F [Vτ1 ] and G is independent of an
extension of ψ to a homomorphism between F [Vτ2 ] and G. Thus we
have,

fG(T, τ, Uτ , S, ψ) = fG(T1, τ1, Uτ1 , S, ψ)fG(T2, τ2, Uτ2 , S, ψ). (1)

Case 3: The node τ is an introduce node in T , let τ1 be the only child of
τ , and {u} = Uτ \Uτ1 . Also, let T1 denote the sub-tree of T rooted at
τ1. In this case any extension of ψ to a homomorphism between F [Vτ ]
and G is in fact an extension of ψ|Uτ1 and thus we get

fG(T, τ, Uτ , S, ψ) = fG(T1, τ1, Uτ1 , S \ {ψ(u)}, ψ|Uτ1 ). (2)

Case 4: The node τ is a forget node in T , and τ1 is the only child of τ in T .
Now, Uτ1 contains an extra vertex along with Uτ . Thus any extension
of ψ to a homomorphism between F [Vτ ] and G is a direct sum of an
extension of ψ to include u and that of Vτ1 , where {u} = Uτ1 \ Uτ .
Define, Y ,

{
v | v ∈ V (G), ∀w ∈ Uτ , wu ∈ E(F ) =⇒ ψ(w)v ∈

E(G)
}
. For v ∈ Y , let ψv : Uτ1 → S ∪{v} be such that ψv|Uτ = ψ and

ψv(u) = v. Then,

fG(T, τ, Uτ , S, ψ) =

{∑
v∈Y

(
fG(T1, τ1, Uτ1 , S ∪ {v}, ψv)xv

)
if Y 6= ∅

0 otherwise.
(3)
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Let Hom(Ur, G) denote the set of all homomorphisms between the sub-
graph of F induced by Ur and G. In order to consider all homomorphisms
between F and G, we run through all homomorphisms ψ between F [Ur] and
G, and then compute fG(T, r, Ur, Image(ψ), ψ) multiplied by the monomial
corresponding to ψ. Now we define,

HG(T, r, Ur) =
∑

ψ∈Hom(Ur,G)

fG(T, r, Ur, Sψ, ψ)
( ∏
u∈Ur,v=ψ(u)

xv

)
(4)

where, we consider the set Sψ = Image(ψ) as a multi set. Now we need to
show that HG is efficiently computable and PG = HG. We first show that
HG is computable by an arithmetic circuit of size O∗((nt)t).

Claim 1. HG(T, r, Ur) is a polynomial of degree k and is computable by an
arithmetic circuit of size O∗((nt)t). Here r is the root of the tree T .

Proof. In the above definition of fG, the only place where the degree of the
polynomial increases is at forget nodes of T . The number of forget nodes in
T is exactly k − |Ur|. Thus the degree of any fG is k − |Ur| and hence the
degree of HG is k.

From the definitions in Equations (1-4) above,HG(T, r, Ur) can be viewed
as an arithmetic circuit C with X = {xv|v ∈ V (G)} as variables and gates
from the set {+,×}. Any node of C is labeled either by variables from U or a
function of the form fG(T, τ, Uτ , S, ψ). The size of the circuit is bounded by
the number of possible labelings of the form fG(T, τ, Uτ , S, ψ), where T and
Uτ are fixed. But this is bounded by |V (T )| ·nt+1 · (t+ 1)t+1 = (nt)t+O(1) =
O∗((nt)t).

Next we show that HG defined above is precisely PG and satisfies all the
desired properties.

Claim 2. Let φ : V (F ) → V (G). Then φ ∈ Hom(F,G) if and only if the
monomial

∏
u∈V (F ) xφ(u) has a non-zero coefficient in HG(T, r, Ur). In other

words, we have that

HG(T, r, Ur) = PG(x1, . . . , xn) =
∑

φ∈Hom(F,G)

∏
u∈V (F )

xφ(u).

Proof. We first give the forward direction of the proof. Let φ ∈Hom(F,G)
and ψ = φ|Ur . We show an expansion of HG(T, r, Ur) which contains the
monomial

∏
u∈V (F ) xφ(u). We first choose the term fG(T, r, Ur, Sψ, ψ) ×∏

u∈Ur xψ(u). We expand fG(T, r, Ur, Sψ, ψ) further according to the tree
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structure of T . We describe this in a generic way. Consider the expansion
of fG(T ′, τ, Uτ , S, χ). If τ is a join node we recursively expand both the sub
polynomials according to Equation (1). When τ is an introduce node we use
Equation (2). In the case when τ is a forget node, we first note that Y 6= ∅
(this is the same Y as defined in Case 4) and also that φ(u) ∈ Y , where
u ∈ Uτ \ Uτ1 . The last assertion follows from the definition of Y . Here,
we choose the term which contains xφ(u), note that there exists exactly one
such term and proceed recursively.

Let M denote the monomial obtained by the above mentioned expansion.
For any node v ∈ V (G), we have degM (xv) = |φ−1(v)|, where degM (xv)
denotes the degree of the variable xv in the monomial M . To see this, in the
tree decomposition D, a node u ∈ V (F ) enters the tree through a unique
forget node and this is exactly where the variable xφ(u) is multiplied. Thus
we have M =

∏
u∈V (F ) xφ(u). Note that this expansion is uniquely defined

for a given φ.
For the reverse direction, consider an expansion ρ of HG(T, r, Ur) into

monomials and let M =
∏
xdvv be a monomial of ρ, where

∑
dv = k. We

build a φ ∈ Hom(F,G) using ρ and the structure of T . Let fG(T, r, Ur, Sψ, ψ)
be the first term chosen using Equation (4). For every u ∈ Ur let φ(u) =
ψ(u). Inductively suppose that we are at a node τ and let T ′ be the
corresponding subtree of T . In the case of Equations (1) and (2) there
is no need to do anything. In the case of Equation (3), where τ is a
forget node, with u ∈ Uτ1 \ Uτ . If the expansion ρ chooses the term
fG(T1, τ1, Uτ1 , S ∪ {v}, ψv)× xv, then we set φ(u) = v.

It remains to show that the map φ : V (F ) → V (G) as built above
is indeed a homomorphism. We prove this by showing that for any edge
uu′ ∈ E(F ) we have that φ(u)φ(u′) ∈ E(G). If uu′ is an edge such that
both u, u′ ∈ Ur then we are done, as by definition φ|Ur ∈ Hom(Ur, G) and
thus φ preserves all the edges between the vertices from Ur. So we assume
that at least one of the end points of the edge uu′ is not in Ur. By the
property of tree decomposition there is a τ ′ ∈ T such that {u, u′} ∈ Uτ ′ .
Now since at least one of the endpoints of uu′ is not in Ur, there is a node
on the path between r and τ ′ such that either u or u′ is forgotten. Let τ ′′

be the first node on the path starting from τ ′ to r in the tree T such that it
does not contain both u and u′. Without loss of generality let u /∈ Uτ ′′ and
thus τ ′′ is a forget node which forgets u. At any forget node, since the target
node v is from the set Y , we have that φ preserves the edge relationships
among the vertices in Uτ ′′ and u. Now from Equation (3), the property of
Y and the fact that u′ ∈ Uτ ′′ we have that φ(u)φ(u′) ∈ E(G).
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Now by setting PG(X) = HG(T, r, Ur) the lemma follows which con-
cludes the proof.

We also need the following proposition proved by Williams [21], which
tests if a polynomial of degree k has a multilinear monomial with non-zero
coefficient in time O(2ks(n)) where s(n) is the size of the arithmetic circuit.

Proposition 1 ([21]). Let P (x1, . . . , xn) be a polynomial of degree at most k,
represented by an arithmetic circuit of size s(n) with + gates (of unbounded
fan-in), × gates (of fan-in two), and no scalar multiplications. There is a
randomized algorithm that on every P runs in O(2ks(n)nO(1)) time, outputs
“yes” with high probability if there is a multilinear term in the sum-product
expansion of P , and always outputs “no” if there is no multilinear term.

Lemma 1 and Proposition 1 together yield our first theorem.

Theorem 1. Let F and G be two graphs on k and n vertices respectively
and tw(F ) ≤ t. Then, there is a randomized algorithm for the Subgraph
Isomorphism problem that runs in time O∗(2k(nt)t).

4. Algorithms for Counting Subgraphs

In this section, we give algorithms for the #Subgraph Isomorphism
problem, when F has either bounded treewidth or pathwidth.

Counting Subgraphs with Meet in The Middle.. When |V (F )| = k, the path-
width of F is p and |V (G)| = n, then the running time of our algorithm
for #Subgraph Isomorphism is O(

(
n
k/2

)
n2p+O(1)). Roughly speaking, our

algorithm decomposes V (F ) into three parts, the left part L, the right part
R, and the separator S. Then the algorithm guesses the position of S in
G, and for each such position counts the number of ways to map L and R
into G, such that the mappings can be glued together at S. Thus our result
is a generalization of the meet in the middle algorithm for #k-Path in an
n-vertex graph by Björklund et al. [5]. However, our algorithm differs from
that of Björklund et al. [5] conceptually in two important points. First,
we count the number of injective homomorphisms from F to G instead of
counting the number of subgraphs of G that are isomorphic to F . To get
the number of subgraphs of G that are isomorphic to F we simply divide the
number of injective homomorphisms from F to G by the number of automor-
phisms of F . The second difference is that we give an algorithm that given a
k-vertex graph F of pathwidth p and an n-vertex graph G computes in time

11



O∗(
(
n
k

)
np) the number of injective homomorphisms from F to G[S] for every

k-vertex subset S of G. In the #k-Path algorithm of Björklund et al. [5], a
simple dynamic programming algorithm to count k-paths in G[S] for every
k-vertex subset S, running in time O∗(

(
n
k

)
) is presented, however this algo-

rithm does not seem to generalize to more complicated pattern graphs F .
Interestingly, our algorithm to compute the number of injective homomor-
phisms from F to G[S] for every S is instead based on inclusion-exclusion
and the trimmed variant of Yates’s algorithm presented in [7]. In order to
implement the meet-in-the-middle approach, we will use the following fact
about graphs of bounded pathwidth.

Proposition 2 (Folklore). Let F be a k-vertex graph of pathwidth p. Then
there exists a partitioning of V (F ) into V (F ) = L]S]R, such that |S| ≤ p,
|L|, |R| ≤ k/2 and no edge of F has one endpoint in L and the other in R.

Proof. The vertices of a graph F of pathwidth p can be ordered as v1 . . . vk
such that for any i ≤ k there is a subset Si ⊆ {v1 . . . vi} with |Si| ≤ p, such
that there are no edges of F with one endpoint in {v1 . . . vi} \ Si and the
other in {vi+1, . . . vk}. Such an ordering is obtained, for example, in [15].
Choose L′ = {v1 . . . vdk/2e}, S = Sdk/2e, L = L′\S and R = {vdk/2e+1 . . . vk}.
Then L, S and R have the claimed properties.

Let V (F ) = L]S ]R be a partitioning of V (F ) as given by Proposition
2, and let L+ = L∪S and R+ = R∪S. For a map g : S → V (G) and a set S′

such that S ⊆ S′ and a set Q we define homg(F [S′], G[Q]) to be the number
of injective homomorphisms from F [S′] to G[Q] coinciding with g on S.
Similarly we let injg(F [S′], Q) to be the number of homomorphisms from F
to G[Q] coinciding with g on S. If we guess how an injective homomorphism
maps F [S] to G we get inj(F,G) =

∑
g injg(F,G), where the sum is taken

over all injective maps g from S to V (G). For a given map g, we define the set
of families Lg = {Q ⊆ V (G) : |Q| = |L|} and Rg = {Q ⊆ V (G) : |Q| = |R|}.
The weight of a set Q ∈ Lg is defined as αLg (Q) = injg(F [L+], G[Q ∪ g(S)])
and the weight of a set Q ∈ Rg is set to αRg (Q) = injg(F [R+], G[Q ∪ g(S)]).

For any Q1 ∈ Lg and Q2 ∈ Rg such that Q1 ∩ Q2 = ∅, if we take an
injective homomorphism h1 from F [L+] to G[Q1 ∪ g(S)] coinciding with
g on S and another injective homomorphism h2 from F [R+] to G[Q2 ∪
g(S)] coinciding with g on S and glue them together, we obtain an injective
homomorphism h1 ⊕ h2 from F to G. Furthermore two homomorphisms
from F to G can only be equal if they coincide on all vertices of F . Thus, if
Q′1 ∈ Lg, Q′2 ∈ Rg and h′1 and h′2 are injective homomorphisms from F [L+]
to G[Q′1 ∪ g(S)] and from F [R+] to G[Q′2 ∪ g(S)] respectively we have that

12



h1⊕h2 = h′1⊕h′2 if and only if h′1 = h1 and h′2 = h2. Also, for any injective
homomorphism h from F to G that coincides with g on S we can decompose
it into an injective homomorphism h1 from F [L+] to G[S ∪Q1] and another
injective homomorphism h2 from F [R+] to G[S ∪ Q2] such that Q1 ∈ Lg,
Q2 ∈ Rg and Q1 ∩Q2 = ∅. Then injg(F,G) = Lg �Rg and hence

inj(F,G) =
∑
g

Lg �Rg (5)

Proposition 3 ([5, 14]). Given two families A and B together with weight
functions α : A → N and β : B → N we can compute the disjoint sum A�B
in time O(n(| ↓ A| + | ↓ B|)) where n is the number of distinct elements
covered by the members of A and B. Here ↓ A = {X : ∃A ∈ A, X ⊆ A}.

We would like to use Proposition 3 together with Equation (5) in order
to compute inj(F,G). Thus, given the mapping g : S → V (G) we need
to compute Lg, Rg, αLg and αRg . Listing Lg and Rg can be done easily in(
n
k/2

)
+
(
n
k/2

)
time, so it remains to compute efficiently αLg and αRg .

Lemma 2. Let G be an n-vertex graph, F be a `-vertex graph of treewidth
t, S ⊆ V (F ) and g be a function from S to V (G). There is an algorithm to
compute injg(F,G[Q ∪ g(S)]) for all ` − |S| sized subsets Q of V (G) \ g(S)

in time O∗((
∑`−|S|

j=1

(
n
j

)
) · np).

Proof. We claim that the following inclusion-exclusion formula holds for
injg(F,G[Q ∪ g(S)]).

injg(F,G[Q ∪ g(S)]) =
∑
X⊆Q

(−1)|Q|−|X|homg(F,G[X ∪ g(S)]) (6)

To prove the correctness of Equation (6), we first show that if there
is an injective homomorphism f from F to G[Q ∪ g(S)] coinciding with g
on S then its contribution to the sum is exactly one. Notice that since
|S| + |Q| = |V (F )|, all injective homomorphisms that coincide with g on
S only contribute when X = Q and thus are counted exactly once in the
right hand side. Since we are counting homomorphisms, in the right hand
side sum we also count maps which are not injective. Next we show that
if a homomorphism h from F to G[S ∪ Q], which coincides with g on S,
is not an injective homomorphism then its total contribution to the sum
is zero, which will conclude the correctness proof of the equation. Observe
that since h is not an injective homomorphism it misses some vertices of Q.
Thus h(V (F ))∩Q = W for some subset W ⊂ Q. We now observe that h is
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counted only when we are counting homomorphisms from F to G[X ∪ g(S)]
such that W ⊆ X. The total contribution of h in the sum, taking into
account the signs, is

|Q|−|W |∑
i=0

(
|Q| − |W |

i

)
(−1)|Q|−|W |−i = (1− 1)|Q|−|W | = 0.

Thus, we have shown that if h is not an injective homomorphism then its
contribution to the sum is zero, and hence Equation (6) holds.

Observe that since |Q| = `−|S|, we can rewrite (−1)|Q|−|X| as (−1)`−|S|−|X|.
Define γ(X) = (−1)`−|S|−|X|homg(F,G[X ∪ g(S)]), then we can rewrite
Equation (6) as follows:

injg(F,G[Q ∪ g(S)]) = γζ(Q).

We start by pre-computing a table containing γ(Q′) for every Q′ with |Q′| ≤
`−|S|. To do this we need to compute homg(F,G[Q′∪ g(S)]) for all subsets
Q′ of V (G) \ g(S) of size at most ` − |S|. There are at most

∑`−|S|
j=1

(
n
j

)
such subsets, and for each subset Q′ we can compute homg(F,G[Q′∪g(S)]),
and hence also α(Q′) using the dynamic programming algorithm of Diaz
et al. [12] in time O∗(np). Now, to compute γζ(Q) for all Q ⊆ V (G) \
g(S) of size `− |S| we apply the algorithm for the trimmed zeta transform
(Algorithm Z) from [7]. This algorithm runs in time O∗(

∑`−|S|
j=1

(
n
j

)
). Thus

the total running time of the algorithm is then O∗((
∑`−|S|

j=1

(
n
j

)
) · np). This

concludes the proof.

We are now in position to prove the main theorem of this section.

Theorem 2. Let G be an n-vertex graph and F be a k-vertex graph of
pathwidth p. Then we can solve the #Subgraph Isomorphism problem in
time O∗(

(
n
k/2

)
n2p) and space O∗(

(
n
k/2

)
).

Proof. We apply Proposition 3 together with Equation (5) in order to com-
pute inj(F,G). In particular, for every mapping g : S → V (G) we list Lg and
Rg and compute αLg and αRg using the algorithm from Lemma 2. Finally, to
compute Lg �Rg we apply Proposition 3.

The sum in Equation (5) runs over
(
n
p

)
p! ≤ np different choices for g.

For each g, listing Lg and computing αLg , and listing Rg and computing αRg ,
takes O∗(

(
n

k/2−|S|
)
np) and O∗(

(
n
k/2

)
np) time respectively. Finally, computing
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Lg�Rg takes time O∗(
(
n
k/2

)
). Thus the total running time for the algorithm

to compute inj(F,G) is O∗(
(
n
k/2

)
n2p).

To compute the number of occurrences of F as a subgraph in G, we use
the basic fact that the number of occurrences of F inG is inj(F,G)/aut(F ) [4].
Since aut(F ) = inj(F, F ) we can compute aut(F ) using the algorithm for
computing inj(F,G) in time O∗(

(
k
k/2

)
n2p) = O∗(2kn2p). This concludes the

proof of the theorem.

Polynomial Space Algorithm.. In this section we give a polynomial space
variant of our algorithm presented in the previous section. Our proof is
similar in spirit to the one described by Björklund et al.[5] for the #k-Path
problem.

Theorem 3. [?] Let G be an n-vertex graph and F be a k-vertex graph of
pathwidth p. Then we can solve the #Subgraph Isomorphism problem in
time O∗(

(
n
k/2

)
2kn3pt2t) and O∗(np) space.

Proof. For our proof we need the following proposition which gives a rela-
tionship between inj(F,G) and hom(F,G).

Proposition 4 ([4]). Let F and G be two graphs with |V (G)| = |V (F )|.
Then

inj(F,G) =
∑

W⊆V (G)

(−1)|W | hom(F,G[V (G) \W ])

=
∑

W⊆V (G)

(−1)|V |−|W | hom(F,G[W ]).

By Equation (5) we know that inj(F,G) =
∑

g Lg �Rg. We first show
how to compute Lg �Rg for a fixed map g : S → V (G). For brevity, we
use the Iverson Bracket notation: [P ] = 1 if P is true, and [P ] = 0 if P is
false.

Lg �Rg =
∑
M∈Lg

∑
N∈Rg

[M ∩N = ∅]αLg (M)βRg (N)

=
∑
M∈Lg

∑
N∈Rg

∑
{X⊆V (G),|X|≤k/2}

(−1)|X|[X ⊆M ∩N ]αLg (M)βRg (N)

=
∑

{X⊆V (G),|X|≤k/2}

(−1)|X|
∑
M∈Lg

∑
N∈Rg

[X ⊆M ]][X ⊆ N ]αLg (M)βRg (N)
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=
∑

{X⊆V (G),|X|≤k/2}

(−1)|X|
( ∑
M∈Lg ,M⊇X

αLg (M)
)( ∑

N∈Rg ,N⊇X
βRg (N)

)

=
k/2∑
i=1

∑
{X⊆V (G),|X|=i}

(−1)i
( ∑
M∈Lg ,M⊇X

αLg (M)
)( ∑

N∈Rg ,N⊇X
βRg (N)

)
(7)

For everyM ∈ Lg, by Equation (6), we know that the following inclusion-
exclusion formula holds for αLg (M).

αLg (M) = injg(F [L+], G[M ∪ g(S)])

=
∑

M ′⊆M
(−1)|M |−|M

′|homg(F [L+], G[M ′ ∪ g(S)])

We can compute homg(F [L+], G[M ′∪ g(S)]) in O∗((nt)2p) time and O∗(np)
space using the dynamic programming algorithm of Diaz et al. [12]. Hence,
using this we can compute αLg (M) in time O∗(2|M |(nt)2p). Similarly we
can compute αRg (N) in time O∗(2|N |(nt)2p) for every N ∈ Rg. Now using
Equation (7) we can bound the running time to compute Lg�Rg as follows:

k/2∑
i=1

((
n

i

)(
n− i
|L| − i

)
O∗(2|L|(nt)2p) +

(
n

i

)(
n− i
|R| − i

)
O∗(2|R|(nt)2p)

)

≤
k/2∑
i=1

(
2k/2

(
n

|L|

)
O∗(2|L|(nt)2p) + 2k/2

(
n

|R|

)
O∗(2|R|(nt)2p)

)

≤
k/2∑
i=1

((
n

k/2

)
O∗(2k(nt)2p) +

(
n

k/2

)
O∗(2k(nt)2p)

)
= k

(
n

k/2

)
O∗(2k(nt)2p).

This implies that the time taken to compute inj(F,G) =
∑

g Lg � Rg is
upper bounded by O∗(2k

(
n
k/2

)
n3pt2t), as the total number of choices for

g is upper bounded by
(
n
p

)
p! ≤ np. Finally, to compute the number of

occurrences of F in G, we use the basic fact that the number of occurrences
of F in G is inj(F,G)/aut(F ) [4] as in the proof of Theorem 2. We can
compute aut(F ) = inj(F, F ), using the polynomial space algorithm given by
Proposition 4 for computing inj(F,G) and using the dynamic programming
algorithm of Diaz et al. [12], in time

∑k
i=1

(
k
i

)
O∗((kp)2p) = O∗(2kk4p) and

space O∗(np). This concludes the proof of the theorem.
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Theorems 2 and 3 can easily be generalized to handle the case when
F has treewidth at most t by observing that if tw(F ) ≤ t then pw(F ) ≤
(t+ 1) log(k− 1) [16] and that the dynamic programming algorithm of Diaz
et al. [12] works for graphs of bounded treewidth.

5. Conclusion

In this paper we considered the Subgraph Isomorphism problem and
the #Subgraph Isomorphism problem and gave the best known algo-
rithms, in terms of time and space requirements, for these problems when
the pattern graph F is restricted to graphs of bounded treewidth or path-
width. Counting graph homomorphisms served as a main tool for all our al-
gorithms. We combined counting graph homomorphisms with various other
recently developed tools in parameterized and exact algorithms like meet-in-
middle, trimmed variant of Yates’s algorithm, the Disjoint Sum problem
and algebraic circuits and formulas to obtain our algorithms. We conclude
with an intriguing open problem about a special case of the Subgraph Iso-
morphism problem. Can we solve the Subgraph Isomorphism problem
in time O∗(cn), c a fixed constant, when the maximum degree of F is 3?
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