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Abstract

Over the past decade, a flurry of results has focused on the design of parameterized
approximation algorithms for W[1]-hard problems. However, there are fundamental problems
within the class FPT for which the best known algorithms run in time 2poly(k)nO(1) or cknO(1),
and have seen no progress over the decade; some of them have even been proved not to
admit algorithms that run in time 2O(k)nO(1) under the Exponential Time Hypothesis (ETH)
or (c − ε)knO(1) under the Strong ETH (SETH). In this paper, we expand the study of
FPT-approximation and initiate a systematic study of FPT-approximation for problems that
are FPT. That is, we design FPT-approximation algorithms for problems that are FPT, with
running times that are significantly faster than the corresponding best known FPT-algorithm,
and while achieving approximation ratios that are significantly better than what is possible
in polynomial time.
• We present a general scheme to design 2O(k)nO(1)-time 2-approximation algorithms for

cut problems. In particular, we exemplify it for Directed Feedback Vertex Set,
Directed Subset Feedback Vertex Set, Directed Odd Cycle Transversal
and Undirected Multicut.

• Further, we extend our scheme to obtain FPT-time O(1)-approximation algorithms
for weighted cut problems, where the objective is to obtain a solution of size at most
k and of minimum weight. Here, we present two approaches. The first approach
achieves 2O(k)nO(1)-time constant-factor approximation, which we exemplify for all
problems mentioned in the first bullet. The other leads to an FPT-approximation
Scheme (FPT-AS) for Weighted Directed Feedback Vertex.

• Additionally, we present a combinatorial lemma that yields a partition of the vertex set
of a graph to roughly equal sized sets that the removal of each reduces its treewidth
substantially, which may be of independent interest. We exemplify it by designing
cwnO(1)-time (1 + ε)-approximation algorithms for graph problems where w is the
treewidth of the input graph, faster than known SETH lower bounds. We exemplify
it for Vertex Cover, Component Order Connectivity, Bounded-Degree
Vertex Deletion and F-Packing for any family F of bounded sized graphs.

• Lastly, we present a general reduction of problems parameterized by treewidth to their
versions parameterized by solution size. Combined with our first scheme, we exemplify
it to obtain cwnO(1)-time (2 + ε)-approximation algorithms for all problems mentioned
in the first bullet.
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1 Introduction

Two algorithmic paradigms that have seen immense success in dealing with NP-hard problems are
Approximation Algorithms and Parameterized Complexity. In Approximation Algorithms, we
design algorithms that run in polynomial time and output a solution with a provable guarantee
on its quality. There is also a well-developed theory of hardness of approximation, which allows
us to trace the boundaries of tractability for approximation algorithms.

On the other hand, the goal of parameterized complexity is to find ways of solving NP-hard
problems more efficiently than brute force: here the aim is to restrict the combinatorial explosion
to a parameter that is hopefully much smaller than the input size. Formally, a parameterization
of a problem is the assignment of an integer k to each input instance, and we say that a
parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm that solves the
problem in time f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary computable
function depending on the parameter k only. Just as NP-hardness is used as evidence that a
problem probably is not polynomial time solvable or polynomial time approximable, there exists
a hierarchy of complexity classes above FPT, and showing that a parameterized problem is hard
for one of these classes gives evidence that the problem is unlikely to be FPT. In fact, assuming
well-known assumptions such as Exponential Time Hypothesis (ETH) or Strong Exponential
Time Hypothesis (SETH), we can obtain qualitative lower bounds for FPT algorithms, that is,
lower bounds on f(k) in the running time of any FPT algorithm for some specific problem. For
more background on Approximation Algorithms and Parameterized Complexity, the reader is
referred to the monographs and books [CFK+15, DF99, FG06, Nie06, Vaz01, WS11, FLSZ19].

There is a plethora of problems for which, simultaneously, the non-existence of polynomial-
time algorithms with certain approximation ratios, as well as intractability within Parameterized
Complexity, are known. These intractabilities together motivate the desire for algorithms that
runs in FPT-time, for the parameter in which the problem is intractable, and at the same
time beat the lower bounds on hardness of approximation that are proven for polynomial-time
algorithms. This leads to the world of FPT-approximation, which has been an extremely active
area of research in the last five years. For a minimization problem parameterized by the solution
size k, a factor-α FPT-approximation algorithm is an algorithm that runs in time f(k) · nO(1),
and either returns that there is no solution of size at most k or returns a solution of size at
most αk. One can similarly define the notion of parameterized approximation for maximization
problems. When the parameter is structural (e.g., the treewidth of the input graph), a factor-α
approximation FPT-algorithm is just a factor-α approximation algorithm that runs in FPT-time
rather than polynomial time.

Some of the notable problems that have been shown to admit FPT-approximation algorithms
include Vertex Minimum Bisection [FM06], k-Path Deletion [Lee19], Max k-Vertex
Cover in d-uniform hypergraphs [SF17, Man19], k-Way Cut [GLL18a, GLL18b, KL20, LSS20]
and Steiner Tree parameterized by the number of non-terminals [DFK+18]. These are just
representative examples (and far away from exhaustive) [CHK13, DHK05, DFK+18, BLM18,
FM06, GKW19, GLL18a, GLL18b, KL20, Kor16, Lam14, Lee19, Man19, Mar04, Mar08, LSS20,
PvLW17, SF17, Wie17]. On the other hand, several basic problems are shown to be even
hard in terms of FPT-approximation. The main ones include Set Cover, Dominating
Set, Independent Set, Clique, Biclique and Steiner Orientation [CCK+17, KLM19a,
Wlo20, CL19, Lin18, Lin19, BBE+19]. For a comprehensive overview of the state of the art on
Parameterized Approximation, we refer to the recent survey by Feldmann et al. [FKLM20], and
the surveys by Kortsarz [Kor16] and by Marx [Mar08].

1.1 Our Context and Questions

For all the parameterized problems mentioned above for which FPT-approximation algorithms
were developed, the parameter used to measure the running time of the algorithm is one
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with respect to which the problem is known to be W-hard. In other words, most known FPT-
approximation algorithms are for problems that are intractable within Parameterized Complexity.
A natural question is:

What about FPT-approximation of problems that are FPT?

Indeed, these problems hold a lot of promise and remain hitherto unexplored in the light of
FPT-approximation, with exceptions that are few and far between [BF11, BF13, FKRS18, KS19,
MR09]. Our guiding example in this regard is Treewidth. From as early as 1990, it is well
known that given a graph G and an integer k, we can test whether the graph has treewidth at
most k in time 2O(k3)n [Bod96]. While this algorithm has stood the test of time and remains
the best-known algorithm for the problem, several faster parameterized algorithms have been
designed that either return that the treewidth of G is more than k or return a tree decomposition
of width O(k) [RS95, Lag96, Ree92, Ami10]. In fact, in 2013, the first constant-factor FPT-
approximation with running time 2O(k)n was obtained [BDD+16]. The main idea of the paper
is to replicate this success of Treewidth to other combinatorial problems. In particular, we
wish to achieve the following.

In this paper, we expand the study of FPT-approximation and initiate a systematic study
of FPT-approximation for problems that are FPT! That is, design FPT-approximation
algorithms for problems that are FPT, with a running time that is significantly faster
than the corresponding FPT-algorithm (for an exact decision version of the problem),
and that achieves approximation ratios that are better than one can provably achieve in
polynomial time.

A natural choice of problems for FPT-approximation is W-hard problems. However, given the
fact that in this paper, we plan to design FPT-approximation for FPT problems, two important
questions that we need to address are: (a) which problems within FPT; and (b) what kind of
running time and factor of approximation are we looking for.

1.1.1 Which Problems Within FPT?

A central problem in parameterized algorithms is to obtain algorithms with running time
f(k)nO(1), such that f is a computable function of the parameter k that grows as slowly as
possible. In the last three decades, several problems have been shown to admit such algorithms or
shown that no such algorithms can exist under a plausible assumption. In fact, several problems
have been shown to admit algorithms with running time of the form cknO(1); however, still,
there is a plethora of problems for which the best known algorithms run in time 2poly(k)nO(1),
and have seen no progress over more than a decade. Also, there are problems for which we can
show lower bounds on f(k) under ETH or SETH (or other plausible conjectures). In our opinion,
these problems are the most natural candidates for designing FPT-approximation algorithms

For illustration, consider Directed Feedback Vertex Set (DFVS) parameterized by
the solution size.1 It is well known that it admits an algorithm with running time 2O(k log k)nO(1),
and this has not been improved since 2007, when Chen et al. [CLL+08] resolved this longstanding
open question in the area of Parameterized Complexity, except for the dependence on the input
size [LRS18]. Similarly, a decade back Marx and Razgon [MR14] and Bousquet et al. [BDT18],
independently, settled the parameterized complexity of Multicut on undirected graphs param-
eterized by the solution size, by designing an algorithm with running time 2O(k3)nO(1) (this is
the running time of the algorithm given in [MR14]). However, there has been no improvement
over f(k) = 2O(k3) for this algorithm, in the last ten years. These are examples of problems
for which there has been no progress in a long time. The other examples would be those

1The definitions of all problems considered in this paper can be found in Appendix 7.
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for which we have known lower bounds on f(k)—for example, DFVS and Vertex Cover
parameterized by the treewidth w of the input graph (in case of a directed graph, the treewidth of
its underlying undirected graph). Indeed, Bonamy et al. [BKN+18] showed that assuming ETH,
DFVS does not admit an algorithm with running time 2o(w logw)nO(1). Moreover, Lokshtanov et
al. [LMS18a] showed that assuming SETH, there is no algorithm for Vertex Cover running in
time (2− δ)wnO(1), for any fixed constant δ > 0. The field of Parameterized Algorithms is full
of such examples [CM16, JLS14, KPPW15, LMS18a, LMS18b].

We believe that studying the aforementioned central problems in Parameterized Complexity
in the realm of FPT-approximation will lead to the development of new methodologies in the
design of Parameterized Algorithms.

1.1.2 What Kind of Approximation Ratios and Running Times?

As stated above, we must aim to design an FPT-approximation algorithm that achieves an
approximation factor that is not possible (under a plausible complexity theoretic assumption)
in polynomial time, and the function f(k) in the running time should be asymptotically
better than the best known bound to solve the exact decision version of the problem. For
example, DFVS parameterized by the solution size admits an algorithm with running time
2O(k log k)nO(1) [CLL+08], and the best known polynomial time approximation algorithm has
factor O(logn log logn) [ENSS98]. Furthermore, under Unique Games Conjecture (UGC),
the problem does not admit any constant-factor approximation algorithm [GL16]. Similarly,
Multicut on undirected graphs [MR14], parameterized by the solution size admits an algorithm
with running time 2O(k3)nO(1), and an approximation algorithm with factor O(logn) [LR99].
Assuming UGC, Chawla et al. [CKK+05] showed that the problem does not admit any constant-
factor approximation algorithm. A stronger version of UGC leads to a hardness result of
Ω(
√

log logn) [CKK+05]. Thus, for DFVS and Multicut on undirected graphs, a desirable
outcome will be a constant-factor FPT-approximation algorithm running in time 2O(k)nO(1).

For Vertex Cover parameterized by treewidth (w), an FPT-algorithm with running
time O(2wn) is known; on the other hand, assuming SETH, there is no algorithm running in
time (2 − δ)wnO(1), for any fixed constant δ > 0 [LMS18a]. In the realm of polynomial time
approximation algorithm, the problem admits a simple factor-2 approximation, and assuming
UGC, this approximation factor cannot be improved to 2− η, for any fixed η > 0 [KR08]. For
this problem, a desirable FPT-approximation algorithm will be an FPT-AS (FPT-approximation
scheme). That is, for every ε > 0, design an (1 + ε)-FPT-AS running in time (2− g(ε))wnO(1),
for some function g.

1.2 Our Results and Methods

We classify our algorithmic results into following three classes based on the methods involved in
solving each of them.

• Basic cut problems such as DFVS, Subset DFVS, Directed Odd Cycle Transversal,
and Multicut.
• Problems parameterized by treewidth, w, of the input graph, such as all aforemen-

tioned problems, as well as Vertex Cover, Triangle Packing (or, more generally,
F-Packing), and more.
• Weighted versions of cut problems such as Weighted DFVS and Weighted Multicut.

1.2.1 Two-extremal Separator Technique and Cut Problems

Our main technical results for cut problems are single-exponential-time factor-2 FPT-approximation
algorithms for basic cut-problems such as DFVS, Subset DFVS, Directed Odd Cycle
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Problem Name FPT f(k) Polytime APR FPT-Apx f(k) FPT-APR Last Dev.
or Lower Bound

DFVS kO(k) O(logn log logn) 2O(k) 2 2007

Subset DFVS 2O(k3) O(logn log logn) 2O(k) 2 2012

Directed Odd Cycle Transversal W[1]-hard NPR 2O(k) 2

Multicut 2O(k3) O(logn) 2O(k) 2 2010

DFVS/tw(w) wO(w) O(logn log logn) 2O(w
ε

) (2 + ε) ETH

Subset DFVS/tw(w) wO(w) O(logn log logn) 2O(w
ε

) (2 + ε) ETH

Directed Odd Cycle Transveral/tw(w) wO(w) NPR 2O(w
ε

) (2 + ε) ETH

Multicut/tw(w) para-NP-hard O(logn) 2O(w
ε

) (2 + ε)

Vertex Cover/tw(w) 2w 2 2(1−ε)w (1 + ε) SETH

Component Order Connectivity/tw(w) `w O(log `) `(1− ε
2`−1 )w (1 + ε) SETH

Bounded-Degree Vertex Deletion/tw(w) (d+ 2)w O(log d) (d+ 2)(1− ε
d3+4d2+5d+1

)w (1 + ε) SETH

Triangle Packing/tw(w) 2w 3
2 2(1− ε3 )w (1 + ε) SETH

Weighted DFVS NPR O(logn log logn) 2O(k) (4, 8(1 + ε)) OPEN

Weighted Subset DFVS NPR O(logn log logn) 2O(k) (4, 8(1 + ε)) OPEN

Weighted DFVS NPR O(logn log logn) kk/ε2k
3 log k (1, 1 + ε) OPEN

Weighted Multicut NPR O(logn) 2O(k) (4, 8(1 + ε)) NPR

Weighted DOCT W[1]-hard NPR 2O(k) (4, 8(1 + ε)) NPR

Table 1: A summary of our results. Here, NPR stands for no previous result. Note that the
FPT-approximation results given in this table are proved in this paper.

Transversal (DOCT) and Multicut. In particular, in Section 3, we prove the following
results.

Theorem 1.1. Directed Feedback Vertex Set, Subset Directed Feedback Vertex
Set, Directed Odd Cycle Transversal (DOCT), and Multicut have 2O(k)nO(1)-time
factor-2 approximation algorithms.

Lokshtanov et al. [LRSZ20] gave the first factor-2 FPT-approximation for DOCT. However,
the running time of their algorithm is 2O(k2)nO(1), which we improve to a single-exponential
FPT running time.

To obtain our results, we give a general technique for FPT-approximating cut problems that
could be applicable to further problems. Here, we illustrate this technique by describing its
application to the DFVS problem. Although in Section 3, we directly design our algorithm for
Subset DFVS and derive the algorithm for DFVS as a corollary, we believe that the application
of this technique to DFVS provides a more insightful description. Recall that in the optimization
version of DFVS, one is given a digraph D and the goal is to find a vertex set S of smallest size
such that D− S is acyclic. A factor-2 FPT-approximation for DFVS is an algorithm that, given
the pair (D, k), runs in time f(k)nO(1) for some computable f and if D has a solution of size at
most k, then it outputs a solution of size at most 2k.

Our starting point is the well-known iterative compression method [CFK+15] which guaran-
tees that in order to obtain our result for DFVS, it is sufficient for us to give an algorithm that,
given the pair (D, k) and a vertex set W of size at most 2k, runs in time 2O(k+|W |)nO(1) and if
D has a solution of size at most k disjoint from W , then it outputs a solution of size at most 2k.
In the base case, when |W | = 1, this can be solved trivially in polynomial time. Hence, suppose
that |W | > 1 and let S? be a smallest solution (with size at most k) in D that is disjoint from
W . Then, it is straightforward to see that there is an ordering w1, . . . , wr of the vertices in W
such that in the graph D − S?, there is no directed path from wi to wj for every j < i. Let
W2 = {w1, . . . , wbr/2c} and W1 = {wbr/2c+1, . . . , wr}. Then, S? is a W1-W2 separator of size at
most k in D. In particular, there is a minimal subset S?1 ⊆ S? that is a W1-W2 separator in
D. Now, let Xpre and Xpost be W1-W2 separators in D such that Xpre is “closer” than S?1 is
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to W1 and Xpost is “closer” than S?1 is to W2. Formally, the set of vertices reachable from W1
after deleting Xpre is a subset of that reachable from W1 after deleting S?1 . Similarly, the set of
vertices reachable from W1 after deleting Xpost is a superset of that reachable from W1 after
deleting S?1 . Then, we show that deleting Xpre ∪Xpost from D makes S?1 irrelevant, i.e., S? \ S?1
is a solution for D− (Xpre ∪Xpost). In other words, we can reduce the size of an optimal solution
by |S?1 | by paying a cost of at most |Xpre ∪Xpost|. This raises the question – “Can we come up
with small enough Xpre, Xpost, say of size at most |S?1 | each?”. We observe that indeed, this is
possible by considering these separators to be important W1-W2 separators (see Section 3 for
the formal definition), out of which one is pushed as close as possible to W1 and the other is
pushed as close as possible to W2. It is well-known that the number of such extremal separators
of size at most k pushed closest to each side is at most 4k, and hence we have 16k choices for
Xpre and Xpost, which can therefore be guessed in FPT-time. Once these are guessed, we delete
both separators from the input, in the process decreasing the size of the optimal solution by
at least 1/2 · |Xpre ∪Xpost|, and then recurse independently on two subinstances – one induced
by the vertices in the strong components containing W1 and the other induced by the vertices
in the strong components containing W2. This division of the problem can be done since no
cycle can intersect both these instances once a W1-W2 separator has been removed. Now, we
recursively solve the same problem on two inputs, each of which has at most half the number of
vertices of W from the original input. Analysing the resulting recurrence gives us the required
running time bound.

We apply the same high level “two-extremal” separator approach to the other cut problems
we consider. In fact, this approach works for any problem where the goal is to hit a family
of strongly connected subgraphs. However, a major difference between DFVS and the other
problems is the following. We know that the strongly connected components of D − S? (in the
above example) are singletons, implying that we can continue the divide-and-conquer approach
till we hit the base case. However, for the other problems, two issues crop up: (i) It may very
well be the case that there is a unique strongly connected component containing the set W (a
given solution for the respective problem) after removing the hypothetical solution S?. (ii) The
vertices of W could be broken up across the strong components of S? in a very imbalanced way.
We overcome Issue (i) by designing a subroutine to efficiently 2-approximate the solution in cases
where there is a unique strongly connected component containing W in D−S?. This subroutine
is problem-specific and can take different forms for different problems. For instance, in the case
of Subset DFVS, we solve this special case using branching on important separators, in the
case of Multicut (which we phrase as a directed cut problem by moving to bidirected graphs),
this case is solved by a reduction to the Digraph Pair Cut problem [KW20] and in the case
of DOCT, the special case can be 2-approximated in polynomial time by solving max-flow in an
auxiliary graph. In order to overcome Issue (ii), we devise a 3-way divide and conquer where, in
each of the (at most) three subinstances that are generated in each step, either the number of
vertices of W drops by a constant fraction or we can directly use the subroutine designed for the
afore-mentioned special case, avoiding the need for further recursion on this instance. A careful
analysis of the recurrence relation give us the required time bound for these problems.

1.2.2 Results for Parameterization by Treewidth

For parameterization by the treewidth w of the input graph, we present three general theorems,
and derive a host of results for specific problems as corollaries. The first two theorems, derived
from a new combinatorial lemma that may be of independent interest (described below), “break”
SETH-based bounds at an (arguably) negligible cost of an ε factor in approximation. The third
theorem allows us to combine the results given in Section 3 to obtain constant-factor single-
exponential (in w) time approximation algorithms for the problems studied in that section—such
as Directed Feedback Vertex Set—which do not admit single-exponential (in w) time exact
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algorithms under the ETH.2 Notice that here we consider these problems when the parameter is
w rather than k, yet the algorithms for the parameterization by k will come in handy. Briefly,
the idea of the proof is to identify “not too many” bags (so that their removal is not costly), such
that the subinstances derived by their removal have optimum that is “not too large” compared
to the treewidth w (so that they can be efficiently solved) yet “not too small” (as to compensate
for the cost of the bags removed). So, as consequences of a more general (our third) theorem,
we have the following.

Theorem 1.2. For every fixed constant ε > 0, each of the following problems admits a (4 + ε)-
approximation algorithm that runs in time 2O(w) · nO(1): Directed (Subset) Feedback
Vertex Set, Directed Odd Cycle Transversal, Undirected Multicut.

Roughly speaking, our first theorem states that any vertex deletion problem that admits an
α-approximate ck-vertex kernel and which can be solved in time O(bwnp), admits an α(1 + ε)-
approximation algorithm that runs in time O(b(1−

ε
c−1 )w+o(w)np + nO(1)). Moreover, the second

theorem essentially states that for any fixed graph family F (where the maximum size of
a graph in F is d) such that the corresponding F-Packing problem can be solved in time
O(bwnp), the F-Packing problem also admits a (1 + ε)-approximation algorithm that runs
in time O(b(1−

ε
d

)w+o(w)np + nO(1)). It is known that each of the following problems admits an
O(bwn)-time algorithm: Vertex Cover where b = 2; Component Order Connectivity
where b = `; Bounded-Degree Vertex Deletion where b = (d+ 2); Triangle Packing
where b = 2. Moreover, all of these constants b are known to be tight under the SETH for their
respective problems! As consequences of our two theorems, we derive the following.

Theorem 1.3. For every fixed constant ε > 0, each of the following problems admits a (1 + ε)-
approximation algorithm that runs in time bw+o(w)n + nO(1): Vertex Cover where b =
21−ε Component Order Connectivity where b = `1−

ε
2`−1 ; Bounded-Degree Vertex

Deletion where b = (d+ 2)1− ε
d3+4d2+5d+1 ; F-Packing for every graph family F that consists

of graphs on at most d vertices where b = b
1− ε

d
F , where bF is the best known constant such that

F-Packing is solvable in time O(bwFn). For example, for Triangle Packing bF = 2.

So, for example, we can approximate Vertex Cover within factor 11
3 in time 1.588wn+nO(1).

The proof of both theorems is based on a combinatorial lemma that yields a partition of the
vertex set of a graph to roughly equal sized sets that the removal of each reduces its treewidth
substantially, which may be of independent interest. When being applied, for vertex deletion
problems, we note that there exists a part that has “large” intersection with an (unknown)
optimal solution, and furthermore that part is small (as all parts are, being disjoint and of equal
size, and considered after applying a linear-vertex kernel), and hence we can just take it into our
solution at modest cost. For packing problems, we note that there exists a part that has “small”
intersection with an (unknown) optimal solution, and hence we can just be discard it at modest
cost. Very briefly, the proof of the combinatorial lemma itself is based on a greedy computation
of a proper coloring of the graph when each bag of its tree decomposition is turned into a clique.
By using more colors than “necessary”, we are able to argue that no color is used “too many”
times. Then, having computed this coloring, a packing argument concerning its color classes
yields the combinatorial lemma.

1.2.3 FPT-approximations for Weighted Problems

In the above discussions, the focus was primarily on unweighted problems. However, it is often
the case that a problem instance is presented with certain costs or weight function, and the
objective is to find a solution of minimum (or maximum) weight. Such types of optimization

2See Section 4 for references for the results mentioned here.
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problems are a central object of study in approximation algorithms. However, Parameterized
Complexity has so far primarily focused on unweighted problems, although FPT algorithms are
known for several weighted problems such as Weighted Steiner Tree. The parameterized
complexity of many other problems such as Weighted DFVS and Weighted Multicut
remain longstanding open problems [CFK+15], even though their unweighted variants are known
to be FPT for a long time.

In this paper, we present methods and techniques to develop approximation algorithms for
weighted graph problems, that we exemplify via Weighted (Subset) DFVS, Weighted
DOCT, and Weighted Multicut. We remark that our methods may also be applicable to
other weighted problems for which the unweighted version admits an FPT (approximation)
algorithm. Moreover, they yield approximation algorithms that essentially have the same running
time as the algorithm for the unweighted problem, and only a slightly worse approximation ratio.
In other words, our algorithms have running times are significantly faster than the best (known)
FPT algorithms (for the unweighted problem), while achieving approximation ratios that are
significantly better than what is possible in polynomial time.

To describe our results in more detail, let us focus on the example of Weighted DFVS.
Here we are given a directed graph G, a weight function w : V (G) → Q, and the objective is
to find a subset S ⊆ V (G) such that w(S) =

∑
v∈S w(v) is minimized and G− S is a directed

acyclic graph (DAG). Let us begin by discussing the parameterization of weighted problems.

Parameterization for Weighted Problems. A natural way to parameterize Weighted
DFVS is select a non-negative value k, and ask for a solution S such that w(S) ≤ k. This
however is unlikely to work since we can reduce DFVS to Weighted DFVS by assigning every
vertex a weight of 1

k , and ask for a solution of weight at most 1. Clearly, unless P6=NP, we do
not expect an FPT algorithm for this problem. Thus, parameterizing Weighted DFVS by the
value of the weight is not meaningful. A more suitable choice is the cardinality of the solution, i.e.
the number of vertices in it. That is, given a directed graph D, a weight function w : V (G)→ Q
and a non-negative integer k, we seek a set S ⊆ V (G), such that D − S is a DAG, |S| ≤ k and
w(S) is minimized. We remark that it is a longstanding open problem whether Weighted
DFVS is FPT parameterized by the solution cardinality k. Furthermore, this problem does not
admit a constant-factor approximation algorithm in polynomial time, even in the unweighted
setting [GL16]. We present algorithms that are substantial improvements on both fronts.

Let Optk denote the weight w(SOPTk ), where SOPTk is a minimum weight solution of cardinality
at most k. Note that Optk could be much larger than OPT = mink∈N Optk, and conversely any
solution of weight OPT could have much larger cardinality than k. In a parameterized algorithm,
we are only interested in solutions whose cardinality is bounded by k, while in an approximation
algorithm our objective is to approximate OPT irrespective of the solution cardinality. Taking
our cue from both these approaches, we define a notion of bi-criteria FPT-approximation. To
state it formally, we require a few additional definitions. A problem Π on graphs is associated
with a predicate φΠ(G,S) (also called a graph property), that for a graph G and a vertex (or
edge) subset S of G returns true if S is feasible solution and false otherwise. We interpret φ as a
characterization of the space of all feasible solutions for an input graph G. Then let Hk be the
collection of those subsets X ⊆ V (G) (or X ⊆ E(G)), such that |X| ≤ k, and φΠ(G,S) is true.
Further, let w : V (G)→ R+ be a weight function on the vertices (similarly for edges). Then, we
define Optk = minX∈Hk w(X), and OPT = mink∈[n] Optk.

Definition 1.1. Let Π be a weighted parameterized graph minimization problem. For α, β > 0,
we say that Π admits an (α, β)-FPT-approximation algorithm, if given an instance (G,w, k) of
Π, there exists an algorithm running in time f(k) · nO(1) such that, if Hk is non-empty, then it
returns a set S of size at most αk (i.e. S ∈ Hαk), such that φΠ(G,S) is true and w(S) ≤ β ·Optk,
otherwise the output is arbitrary.

Our FPT-approximation algorithms are guaranteed to output a solution that is (α, β)-
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approximate should the given instance admit a solution of cardinality k; otherwise the output is
arbitrary.

We prove the following results.

Theorem 1.4. For every ε > 0, Weighted DFVS, Weighted Multicut and Weighted
DOCT admit a (4, 8(1 + ε))-FPT-approximation algorithm running in time 1

ε · 2
O(k)nO(1).

We remark that the above algorithms provide constant-factor approximations in single-
exponential FPT time; and are comparable to our results for the unweighted case.

These algorithms build upon a novel scheme to reduce the weighted problem to an unweighted
instance and then invoking the FPT (approximation) algorithm for the unweighted problem on
it. Let us discuss our methods via the example of DFVS. Consider an instance (D,w, k), and
suppose that it admits a solution of cardinality k. A trivial reduction to the unweighted version
of the problem is as follows: create w(v) copies for each vertex v ∈ V (D) (assuming for now
that the weights are integral). This reduction however is not very helpful since the value of OPT
(and Optk) might not be a function of k, and hence the unweighted instance is not amenable
to an FPT (approximation) algorithm. We present a more nuanced reduction that avoids this
issue, at a small cost to cost to the approximation factor and it is essentially independent of the
weights themselves.

The first step of our reduction is to consider weighted instances where the weights are integral
and upper-bounded by an integer M . Given such an instance (D,w, k), suppose that we know
the value of Optk, and let γ = dOptk

k e. Note that, we do not actually need to know the value of
Optk and γ, since we know γ ∈ [M ] and will iterate over all choices for it. Next, we consider a
new weight function wγ that is obtained by rounding up the weight w(v) of each vertex v to the
nearest integral multiple of γ. We prove that the instance (D,wγ , k) admits a solution of cost at
most 2Optk. Then, from D and wγ we construct an unweighted instance where for every vertex
v we have wγ(v)

γ copies (note that this is an integer); we call the subset of copies of v as the
vertex bundle for v, denoted by Zv. Our key observation is that any minimal feedback vertex set
for H must respect the vertex bundles, that is either it include all of Zv or it is disjoint Zv. From
this we infer that if D admits a solution of cardinality k, then H admits a solution of cardinality
2k. This means the unweighted instance (H, 2k) may be approximated using an FPT algorithm
that we discussed earlier. Further, we show that given a solution S′ of cardinality 4k to this
instance, we can map it back to a solution S of (D,w) such that w(S) ≤ 8Optk and |S| = |S′|.
Thus, for bounded weight instances we obtain a (4, 8) FPT-approximation in single exponential
FPT time.

The second step is to reduce from the general weighted instances to bounded weight instances.
Here we make use of a knapsack like rounding procedure, that given an ε > 0, at a cost of a
factor (1 + ε) to the approximation cost, produces weighted instances of DFVS where the weights
are integral and upper-bounded by dkε e. Then, combined with the previous step, we obtain
a (4, 8(1 + ε)) FPT-approximation in single exponential time. Our methods easily extend to
Weighted Multicut and Weighted DOCT, and we believe they can be applied to several
other problem.

Finally, we present another FPT-approximation for Weighted DFVS that is able to achieve
a (1, 1 + ε) FPT-approximation, but at the cost of a higher running time. This algorithm builds
upon an algorithm for MultiBudgeted DFVS. In this problem, the vertex set V (D) of the
input digraph is partitioned into a number of classes V1 ] V2 . . . V`, and the objective is to find a
solution S such that for each i ∈ [`] |S∩Vi| ≤ ki, where the numbers k1, k2, . . . , k` are also a part
of the input. An FPT algorithm for this problem was presented by Kratsch et.al. [KLM+19b]
that runs in time 2O(k3 log k)nO(1) where k =

∑`
i=1 ki. We combine this algorithm with the

knapsack like rounding procedure to obtain the following theorem.

Theorem 1.5. For every ε > 0, Minimum Weight DFVS admits a (1, 1+ε)-FPT-approximation
algorithm running in time kk/ε · 2O(k3 log k)nO(1)
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We remark that one of our main motivations to study the MultiBudgeted DFVS problem was
as an intermediate step towards an FPT algorithm for Weighted DFVS. The above theorem is
an FPT-approximation Scheme (FPT-AS) for Weighted DFVS. Further, the above technique
can be applied to any problem for which a “multi-budgeted” algorithm can be designed. These
results are presented in Section 5.

To assist the reader with navigating the paper, we have included a Table of Contents in the
Appendix.

2 Preliminaries

For an integer `, let [`] denote the set {1, 2, . . . , `}. Let w : A→ R be a “weight” function. For
any subset A′ ⊆ A, we define the weight of A′ as w(A′) =

∑
a∈A′ w(a).

2.1 Graph Notation

Given a (di)graph G, we let V (G) and E(G) (A(G)) denote its vertex set and its edge (arc)
set, respectively. When it is clear from context, n = |V (G)| and m = |E(G)|. Given a subset
S ⊆ V (G), G[S] denotes the subgraph of G induced by S, that is, the subgraph on vertex set S
and edge set {{u, v} ∈ E(G) : u, v ∈ S}. Given subsets S ⊆ E(G) and T ⊆ E(G), G− (S ∪ T )
is the graph on vertex set V (G) \ S and edge set E(G) \ (T ∪ {{u, v} ∈ E(G) : {u, v} ∩ S 6= ∅}).
A subset S ⊆ V (G) is a connected set if G[S] is a connected graph. The contraction of an edge
{u, v} ∈ E(G) yields the graph on vertex set V (G − {u, v}) ∪ {r} for some new vertex r and
edge set E(G− {u, v}) ∪ {{r, w} : {u,w} ∈ E(G) or {v, w} ∈ E(G) (or both)}. A family F of
graphs is hereditary if for every graph G ∈ F and subset S ⊆ V (G), G− S ∈ F . Given a rooted
tree T and a vertex v ∈ V (T ), we let Tv denote the subtree of T rooted at v. We say that a
graph H is a minor of a graph G if there exists a sequence of vertex deletions, edges deletions
and edge contractions in G that yields a graph isomorphic to H.

A bidirected graph is a digraph D where, for every arc (u, v) ∈ A(D), the arc (v, u) is also
present in D. The operation of identifying a vertex set X in a digraph D is defined as follows.
We create a new vertex x′ and define a function f as follows: for every v ∈ V (D) \X, f(v) = v
and for every v ∈ X, f(v) = x′. Now, for every arc (x, y) ∈ A(D), we add the arc (f(x), f(y))
(if it is not already present in D). Finally, we delete X. The resulting digraph is said to be
obtained from D by identifying the vertices in X. Notice that in general, the identification
operation could lead to self-loops and parallel edges. For a pair of vertices a, b ∈ V (D), an a-b
walk denotes a directed walk in D that starts at a and ends in b.

Treewidth is a structural parameter indicating how much a graph resembles a tree. Formally,

Definition 2.1. A tree decomposition of a graph G is a pair T = (T, β) of a tree T and
β : V (T )→ 2V (G), such that

1. for any edge {x, y} ∈ E(G) there exists a node v ∈ V (T ) such that x, y ∈ β(v), and
2. for any vertex x ∈ V (G), the subgraph of T induced by {v ∈ V (T ) : x ∈ β(v)} is a

non-empty tree.

The width of T is maxv∈V (T ){|β(v)|} − 1. The treewidth w of G is the minimum width over all
tree decompositions of G.

We define the treewidth of a directed graph G as the treewidth of the underlying undirected
graph of G.

Definition 2.2. A tree decomposition (T, β) of a graph G is nice if for the root r of T , β(r) = ∅,
and each node v ∈ V (T ) is of one of the following types.
• Leaf: v is a leaf in T and β(v) = ∅.
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• Forget: v has one child, u, and there is a vertex x ∈ β(u) such that β(v) = β(u) \ {x}.
• Introduce: v has one child, u, and there is a vertex x ∈ β(v) such that β(v) \ {x} = β(u).
• Join: v has two children, u and w, and β(v) = β(u) = β(w).

For v ∈ V (T ), β(v) is called the bag of v, and γ(v) is the union of the bags of v and
its descendants in T . Further, we denote Tv = (Tv, βv) where βv is the restriction of β to
V (Tv). According to standard practice in Parameterized Complexity with respect to problems
parameterized by treewidth, w, we assume that every input instance is given to us along with a
tree decomposition of width w.

2.2 Optimization and Parameterized Complexity

Definition 2.3. An NP-optimisation problem is defined as a tuple (I, sol, cost, goal) where:
(i) I is the set of instances. (ii) For an instance x ∈ I, sol(x) is the set of feasible solutions
for x, the length of each y ∈ sol(x) is polynomially bounded in |x|, and it can be decided in
time polynomial in |x| whether y ∈ sol(x) holds for given x and y. (iii) Given an instance
x and a feasible solution y, cost(x, y) is a polynomial-time computable positive integer. (iv)
goal ∈ {max,min}.

The objective of an optimization problem is to find an optimal solution z for a given instance
x, that is a solution z with cost(x, z) = opt(x) := goal{cost(x, y) | y ∈ sol(x)}.

If y is a solution for the instance x then the performance ratio of y is defined as R(x, y) =
cost(x, y)/opt(x) (if goal = min) and opt(x)/cost(x, y) (if goal = max). For a real number c > 1
(or a function c : N→ N), we say that an algorithm is a c-approximation algorithm if it always
produces a solution with performance ratio at most c (respectively, c(x)).

Let Π be an NP-hard problem. In the framework of Parameterized Complexity, each instance
of Π is associated with a parameter k. Here, the goal is to confine the combinatorial explosion
in the running time of an algorithm for Π to depend only on k. Formally, we say that Π is
fixed-parameter tractable (FPT) if any instance (I, k) of Π is solvable in time f(k) · |I|O(1), where
f is an arbitrary function of k. Parameterized Complexity also provides methods to show that
a problem is unlikely to be FPT. The main technique is the one of parameterized reductions
analogous to those employed in classical complexity. Here, the concept of W[1]-hardness replaces
the one of NP-hardness. Parameterization by solution size (or value) means that we seek a
solution of size (or value) at most (for minimization) or at least (for maximization) k where k,
the parameter, is given as part of the input. We remind that with respect to graph problems
parameterized by the treewidth of the input graph, w, we assume that every input instance is
given to us along with a tree decomposition of width w. We remark that for other structural
parameterizations, when the parameter is computable in polynomial time (e.g., the size of a
maximum matching in the graph), the input instance does not have additional arguments, and
the parameter is thus implicit.

When the parameter k is structural (e.g., treewidth), a factor-c(k) FPT-approximation
algorithm for X is an algorithm that, given input (x, k) (where k can be implicit), runs in time
f(k) · |x|O(1) and computes a y ∈ sol(x) such that cost(x, y) ≤ opt(x) · c(k). The definition for
maximization problems is symmetric. When the parameterization is by solution size or value,
we define FPT-approximation as follows.

Definition 2.4 (Standard FPT-approximation for minimization). Let X = (I, sol, cost, goal) be
a minimization problem. A standard factor-c(k) FPT-approximation algorithm for X (where the
parameterization is by solution size or value) is an algorithm that, given input (x, k) satisfying
opt(x) ≤ k, runs in time f(k) · |x|O(1) and computes a y ∈ sol(x) such that cost(x, y) ≤ k · c(k).
For inputs not satisfying opt(x) ≤ k, the output can be arbitrary.

The definition for maximization problems is symmetric.
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Remark 1. In this paper, we will refer to standard FPT-approximation algorithms as simply
FPT-approximation algorithms when the parameterization by solution size is clear. Moreover,
for all unweighted graph minimization problems we consider, feasible solutions will be vertex or
edge subsets and the cost of a solution will be the size of the set.

To obtain (essentially) tight conditional lower bounds for the running times of algorithms,
we rely on the well-known Exponential-Time Hypothesis (ETH) and Strong Exponential-Time
Hypothesis (SETH). To formalize the statements of ETH and SETH, first recall that given
a formula ϕ in conjuctive normal form (CNF) with n variables and m clauses, the task of
CNF-SAT is to decide whether there is a truth assignment to the variables that satisfies ϕ. In
the p-CNF-SAT problem, each clause is restricted to have at most p literals. First, ETH asserts
that 3-CNF-SAT cannot be solved in time O(2o(n)). Second, SETH asserts that for every fixed
ε < 1, there exists a (large) integer p = p(ε) such that p-CNF-SAT cannot be solved in time
O((2− ε)n). We remark that ETH implies FPT6=W[1], and that SETH implies ETH.

A companion notion to that of FPT is the one of a kernel. Formally, a decision parameterized
problem Π is said to admit a compression if there exists a (not necessarily parameterized)
problem Π′ and a polynomial-time algorithm that given an instance (I, k) of Π, outputs an
equivalent instance I ′ of Π′ (that is, (I, k) is a yes-instance of Π if and only if I ′ is a yes-instance
of Π′) such that |I ′| ≤ p(k) where p is some computable function that depends only on k. In case
Π′ = Π, we further say that Π admits a kernel. More broadly, to accommodate optimization and
approximation, we rely on the more general notion of lossy kernelization. We define the notion
of lossy kernelization in a more restricted way than [LPRS17] that will suffice for our purposes.

Definition 2.5 (Lossy kernelization (restricted version)). Let Π be a parameterized minimization
problem, parameterized by the solution size. Let α ≥ 1. An α-approximate kernelization algorithm
for Π consists of two polynomial-time procedures: reduce and lift. Given an instance I of
Π with parameter k, reduce outputs another instance I ′ of Π with parameter k′ such that
|I ′| ≤ f(k′, α), k′ ≤ k, and where k′

opt(I′) ≤
k

opt(I) .3 Given I, I ′ and a solution S′ to I ′, lift
outputs a solution S to I such that, if opt(I) ≤ k, then |S|

opt(I) ≤ α
|S′|

opt(I′) (otherwise, S can be of
any size).

In case of a graph problem and when the output graph has f(k) vertices, we say that the
kernel (in the above definition) is an α-approximate f(k)-vertex kernel. When f(k) is linear in
k, we use the term α-approximate linear-vertex kernel.

3 Single-exponential Constant-factor approximations

In this section, we present the first single-exponential-time factor-2 FPT-approximations for
some well-studied cut problems – (Subset) Directed Feedback Vertex Set, Undirected
Multicut and Directed Odd Cycle Transversal (see Appendix for formal definitions).

3.1 Setting Up the Machinery

In Definitions 3.1–3.5, Observation 3.1, Proposition 3.1, fix a digraph D and disjoint X,Y ⊆
V (D).

Definition 3.1. We denote by relD(X,Y ) the set of all vertices that lie in a strongly connected
component of D − Y intersected by X. We denote by connD(X,Y ) the set of all vertices that lie
on an x1-x2 walk in D − Y for some x1, x2 ∈ X. When Y = ∅, we simply write, relD(X) and
connD(X,Y ) and drop the subscript if D is clear from the context.

3Often, the requirement |I ′| ≤ f(k′, α) is replaced by the more relaxed requirement |I ′| ≤ f(k, α). However, as
all the (known) kernels we will use (as black boxes) have this property, we directly define it like this. Further, the
requirement is implicit for the definition to be sensible (without using a π function as in [LPRS17]).
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Notice that in the above definition, it is possible that x1 = x2 and hence connD(X,Y ) ⊇
relD(X,Y ).

Definition 3.2 (Separators). A vertex set S disjoint from X ∪ Y is called an X-Y separator if
there is no X-Y path in D− S. We say that S is a minimal X-Y separator if no strict subset of
S is also an X-Y separator. We denote by RD(X,S) the set of vertices reachable from vertices of
X via directed paths in D − S and by NRD(X,S) the set of vertices not reachable from vertices
of X in D − S. The subscript is ignored if the digraph D is clear from the context.

Definition 3.3 (Covering and dominating relations between separators). Let S1 and S2 be X-Y
separators. We say that S2 covers S1 (denoted by S1 v S2) if R(X,S1) ⊆ R(X,S2) and we say
that S2 dominates S1 (denoted by S1 � S2) if S2 covers S1 and |S2| ≤ |S1|.

When S2 covers S1, we also say that S1 is covered by S2.

Observation 3.1. Let S1 and S2 be minimal X-Y separators such that S1 v S2. Then, S2\S1 ⊆
NR(X,S1). That is, S2 \ S1 is unreachable from X in D − S1. Similarly, Y ⊆ NR(S1 \ S2, S2).
That is, Y is unreachable from S1 \ S2 in D − S2.

Definition 3.4 (Important separators). Let S be a minimal X-Y separator. We say that S
is an important X-Y separator closest to Y if there is no X-Y separator S′ that dominates
S. Similarly, we say that S is an important X-Y separator closest to X if there is no X-Y
separator S′ that is dominated by S. Following standard terminology, we simply use the term
important X-Y separator, then we are referring to one closest to Y .

Proposition 3.1. [CFK+15] The number of important X-Y separators of size at most k closest
to Z (for each Z ∈ {X,Y }) is bounded by 4k. Moreover, these can be enumerated in time
4k(m+ n).

Definition 3.5. Let D be a directed graph. A directed closed walk in D (a directed walk that
starts and ends at the same vertex) with an odd number of edges is called a directed odd closed
walk. For a set T ⊆ V (D)∪A(D), a directed closed walk in D is said to be a T -closed walk if it
contains an element from T . A T -closed walk is called a T -cycle if it is a simple cycle. A set
S ⊆ V (D) is called a T -sfvs if it intersects every T -cycle in D.

Let F = {F1, F2, . . . , , Fq} be a fixed set of subgraphs of a digraph D such that F-free
subgraphs of D are closed under taking subgraphs. An F-transversal in D is a set of vertices
that intersects every Fi ∈ F . The family F could be exponentially large, in which case it
is implicitly defined. In our work, we are interested in problems that can be formulated as
computing a smallest F -transversal where the graphs in F are all strongly connected. We refer
to this problem as SCC F-Transversal.

The minimization version of SCC F-Transversal is the tuple (I, sol, cost,min), where, I
is the set of digraphs, for every x ∈ I, sol(x) denotes the set of F-transversals in x. Moreover,
for every feasible solution y, cost(x, y) denotes the size of the vertex set y. Recall that for every
c ∈ R, a (standard) factor-c FPT-approximation algorithm for SCC F-Transversal is an
algorithm that, on input (D, k), runs in time f(k) · nO(1) (for some computable f) and if there
is an F-transversal in D of size at most k, then it outputs an F-transversal in D of size ≤ ck.

Observation 3.2. Subset DFVS, Directed OCT, Bidirected Multicut are special cases
of F-transversal.

Proof. To cast an instance (D,T ) of Subset DFVS as one of SCC F-Transversal, take F to
be the set of T -cycles. In the case of DOCT, we take F to be the set of all directed odd cycles in
the input graph. Consider an instance (D, T ) of BiMC where D is a bidirected graph and take
F to be the subgraphs induced by the vertex sets of the si-ti paths in D where (si, ti) ∈ T .
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The following lemma is at the heart of the algorithms in this section.

Lemma 3.1. Let S̃ be an F-transversal in D. Let W = W1 ]W2 be an F-transversal in D
such that for some ∅ 6= S ⊆ S̃, S is a minimal W1-W2 separator. Let Xpre and Xpost be W1-W2
separators in D such that Xpre v S v Xpost. Then, S̃ \ S is an F-transversal in the graph
D′ = D − (Xpre ∪Xpost).

Proof. Suppose that this is not the case. Then, there is a graph F ∈ F that is contained
in D′′ = D′ − (S̃ \ S). Since S̃ and W are both F-transversals in D, it follows that F is a
strongly connected subgraph of D′′ that intersects both S and W . This, in turn, implies that
there is a closed walk in D′′ that intersects some s ∈ S \ (Xpre ∪ Xpost) and some w ∈ W .
Since, Xpre v S v Xpost, we have that S \Xpre is unreachable from W1 in D −Xpre and W2 is
unreachable from S \Xpost in D−Xpost (see Observation 3.1). This gives a contradiction to our
assumption that there is a closed walk in D′′ that contains s and w, completing the proof of the
lemma.

As an immediate consequence of Lemma 3.1, we have the following.

Lemma 3.2. Let D,W1,W2, S̃, S be as defined in Lemma 3.1. Then, there exists an important
W1-W2 separator closest to W1 of size at most |S|, call it Xpre, and an important W1-W2
separator closest to W2 of size at most |S|, call it Xpost, such that S̃ \ S is an F-transversal in
D′ = D − (Xpre ∪Xpost).

Therefore, if we knew W1, W2 and |S|, then we can guess Xpre and Xpost and make some |S|
vertices of S̃ “irrelevant” (and reducing the size of the optimal solution by |S|) by paying a cost
of at most 2|S|. This property forms the crux of our approximation algorithms for the special
cases of SCC F-Transversal considered in this section. However, embedding this idea into
our algorithms is not straightforward and requires some care.

3.2 Subset DFVS

Using the reduction in [CCHM15], we work with the following equivalent formulation of Subset
DFVS where the terminals are arcs instead of vertices, as is usually the case. We continue to refer
to this problem as Subset DFVS instead of the term Edge Subset DFVS used in [CCHM15].
As proved in Observation 3.2, Subset DFVS is a special case of SCC F-Transversal as one
can simply take F to be the set of T -cycles. Moreover, notice that the existence of T -cycles is
equivalent to the existence of T -closed walks. In order to design our FPT-approximation for
Subset DFVS, we first consider a special case.

A factor-c FPT-approximation algorithm for Strict Subset DFVS is an algorithm
that, on input (D,T,W, k) where (D,T ) is an input to the minimization version
of Subset DFVS and W is a T -sfvs in D, runs in time f(k) · nO(1) (for some
computable f) and if there is a T -sfvs S in D of size at most k such that W is
contained in a unique strongly connected component of D − S, then it outputs
a T -sfvs in D of size at most ck. Otherwise, the output of the algorithm can be
arbitrary.

Lemma 3.3. There is a factor-1 FPT-approximation algorithm for Strict Subset DFVS
with running time 2O(k)nO(1). We call this algorithm Alg-Strict-SFVS.

Proof. Let I = (D,T,W, k) be the given input. We may assume that D is a strongly connected
graph. Otherwise, we work individually over each strongly connected component. We first check
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whether there is an arc (u, v) ∈ T such that u, v ∈W . If yes, then we terminate the algorithm
with an arbitrary output. This is correct since there is no T -sfvs S in D such that W is contained
in a unique strongly connected component of D − S. Henceforth, we assume that D[W ] is an
independent set.

Our next step is to construct a new tuple I ′ = (D′, T ′, w, k) where D′ is obtained from
D by identifying the vertices in W (with parallel arcs removed), w is the new vertex created
in place of W by this operation and T ′ is obtained by updating T accordingly. That is, T ′
contains the arcs {(x, y) ∈ T | x, y /∈ W} plus the arcs {(w, y) | ∃x ∈ W, ∃(x, y) ∈ T} and
{(x,w) | ∃y ∈W, ∃(x, y) ∈ T}. Since we are in the case where D[W ] is an independent set, there
are no self-loops incident on w. Notice that D′ is strongly connected since D is assumed to be
strongly connected. We now have the following claim.

Claim 3.1. The following statements hold.

1. w is a T -sfvs in D′.
2. Every T -sfvs S in D that is disjoint from W such that W is contained in a unique strongly

connected component of D − S, is a T ′-sfvs in D′ that is disjoint from w.
3. Conversely, every T ′-sfvs in D′ disjoint from w is a T -sfvs in D.

Proof. The first statement follows from the fact that a T ′-cycle in D′ that is disjoint from w
would have to be a T -cycle in D that is disjoint from W , which cannot exist.

For the second statement, suppose for a contradiction that S is not a T ′-sfvs in D′. Let H
be a T ′-closed walk in D′ − S. We may assume without loss of generality that H is a simple
cycle. Notice that we are guaranteed (in the premise) that there is a w1-w2 path in D − S
for every w1, w2 ∈W . Moreover, in the first statement of the lemma, we have argued that H
must intersect w. Let p and q denote the in-neighbor and out-neighbor of w respectively, in H.
Then, p ∈ N−D (w1) and q ∈ N+

D (w2) for some w1, w2 ∈ W . We choose w1 and w2 such that if
(p, w) ∈ T ′ (or (w, r) ∈ T ′), then (p, w1) ∈ T (respectively, (w2, r) ∈ T ). By the construction of
D′ and T ′, such w1 and w2 exist. Let P denote a w1-w2 path in D − S. Then, replacing the
path p, w, r in H with the walk obtained by concatenating the arc (p, w1), the w1-w2 path P ,
and the arc (w2, r) gives us a T -closed walk in D − S, a contradiction to our assumption that S
is a T -sfvs in D.

For the final statement, suppose for a contradiction that for some T ′-sfvs S in D′ disjoint
from w, there is a T -cycle H in D − S. Then, by identifying the vertices of W on H, we obtain
a T ′-closed walk in D′ − S, a contradiction.

This completes the proof of the claim.

Due to the above claim, in the rest of the proof of the lemma, it is sufficient to describe an
algorithm that, given I ′ = (D′, T ′, w, k), runs in time 2O(k)nO(1) and either outputs a T ′-sfvs of
size at most k disjoint from w (we refer to such sets as a solution for I ′ in the rest of the proof)
or correctly concludes that one does not exist.

Claim 3.2. Let S be a solution for I ′. For every (u, v) ∈ T ′, either {u, v} ∩ S 6= ∅ or there is
a solution for I ′ that contains an important x-w separator closest to w or an important w-x
separator closest to w for some x ∈ {u, v}.

Proof. Let S be a T ′-sfvs in D′ of size at most k disjoint from w and let C be the strongly
connected component of D′ − S that contains w. We first observe that for every e = (u, v) ∈ T ′,
it cannot be the case that {u, v} ⊆ C. Otherwise, we would contradict S being a T ′-sfvs in D′.
This implies that either at least one of u or v is contained in S, or S intersects all w-x or x-w
paths for some x ∈ {u, v}. It remains for us to argue that if S intersects all w-x or x-w paths
for some x ∈ {u, v}, then there is a solution S′ that contains an important w-x separator closest
to w or an important x-w separator closest to w for some x ∈ {u, v}. We only argue the case
where S intersects all w-x paths for some x ∈ {u, v}. The other case is analogous.
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Let Ŝ ⊆ S be a minimal w-x separator in D′. Since D′ is strongly connected, it must be the
case that Ŝ is non-empty. Now, consider an important w-x separator S̃ of size at most |Ŝ| that
is covered by Ŝ. We claim that (S \ Ŝ) ∪ S̃ is also a solution for I ′. If this were not the case,
then there would be a closed walk intersecting w and a vertex s ∈ Ŝ \ S̃ that is disjoint from
S̃, a contradiction to Observation 3.1, which guarantees the absence of w-s paths in the graph
D′ − S̃. This completes the proof of the claim.

Given the above claim, we make use of a standard important-separator branching routine
(see [CFK+15] for an exposition) to obtain an algorithm that does the following: It picks an arc
(u, v) ∈ T ′, in the first two branches, it branches by deleting one of u, v and adding it to the
solution. In the remaining four branches, it enumerates all important u-w separators closest to
w, important v-w separators closest to w, important w-u separators closest to w and important
w-v separators closest to w, each of size at most k and adds one of them to the solution. Finally,
if there is a leaf at which the vertices added to the solution form a T -sfvs (which can be checked
in polynomial-time) of size at most k, then we return such a solution. Otherwise, we terminate
with an arbitrary output.

The correctness of the algorithm follows from Claim 3.1 and Claim 3.2. Indeed, from
Claim 3.1, we have that for every T -sfvs S in D of size at most k such that W is contained in a
unique strongly connected component of D− S, then S is a solution for I ′. Moreover, Claim 3.2
guarantees that for every (u, v) ∈ T ′, either one of u or v must be in S or our important separator
branching procedure is correct.

Standard important separator analysis with a branching measure of 2k − λ(y, z) (where we
are enumerating important y-z separators and λ(y, z) denotes the size of smallest y-z separator)
shows that we have a branching algorithm with branching vector (2, 2, 1, 1, 1, 1), bounding the
number of leaves in our search tree by γk (where γ = 10 + 4

√
6) and overall running time by

γknO(1) since we only require polynomial time at each node. This completes the proof of the
lemma.

Lemma 3.4. Let D be a digraph, T ⊆ A(D), and let W and S be disjoint T -sfvs in D. Let
∅ 6= W ′ ⊆W be such that in D − S, there is a strongly connected component whose intersection
with W is precisely W ′. Consider the graph D′ obtained from D by adding a bidirected clique on
W ′ (i.e., we add an arc (w,w′) for every w,w′ ∈W ′ such that (w,w′) /∈ A(D)). Then, W and
S are both T -sfvs in D′.

Proof. It is straightforward to see that W remains a T -sfvs in D′ since all arcs in A(D′) \A(D)
are incident on W . Suppose for a contradiction that S is not a T -sfvs in D′ and consider a
T -cycle H. Moreover, for every (p, q) ∈ A(H) \ A(D), it must be the case that p, q ∈ W ′,
implying that there is a p-q path in D − S. Hence, we can replace every such arc with the
corresponding path in D − S to obtain a T -closed walk in D − S, a contradiction to S being a
T -sfvs in D. This completes the proof of the lemma.

We are now ready to present the algorithm for Subset DFVS, which uses Algorithm
Alg-Strict-SFVS as a subroutine.

Theorem 3.1. There is a factor-2 FPT-approximation algorithm for Subset DFVS with
running time 2O(k)nO(1).

Proof. By using the iterative compression technique, we reduce our goal to designing an algorithm
that, on input (D,T,W, k), where (D,T ) is an instance of Subset DFVS, k ≥ 0 and W is a
T -sfvs in D, runs in time 2O(k+|W |)nO(1) and if there is a T -sfvs S in D of size at most k that is
disjoint from W , then it outputs a T -sfvs in D of size at most 2k. Otherwise, the output of the
algorithm can be arbitrary. Indeed, suppose that such an algorithm (which we call Algorithm
Alg-Disjoint-SFVS) exists. Then, one can immediately obtain an algorithm Alg-Compression-SFVS

15



X

<latexit sha1_base64="rtIfhX4ESEc74yfmxq0miY75/PM=">AAAB6nicdVBNTwIxEJ3FL8Qv1KOXRjDxRLogAW9ELx4xCpLAhnRLFxq63U3bNSGEn+DFg8Z49Rd5899YYE3U6EsmeXlvJjPz/FhwbTD+cDIrq2vrG9nN3Nb2zu5efv+graNEUdaikYhUxyeaCS5Zy3AjWCdWjIS+YHf++HLu390zpXkkb80kZl5IhpIHnBJjpZtip9jPF3CpVsNV7CJcwgtY4p5VqpU6clOlACma/fx7bxDRJGTSUEG07ro4Nt6UKMOpYLNcL9EsJnRMhqxrqSQh0950ceoMnVhlgIJI2ZIGLdTvE1MSaj0JfdsZEjPSv725+JfXTUxQ96Zcxolhki4XBYlAJkLzv9GAK0aNmFhCqOL2VkRHRBFqbDo5G8LXp+h/0i7bWErn1+VC4yKNIwtHcAyn4EINGnAFTWgBhSE8wBM8O8J5dF6c12VrxklnDuEHnLdPsCKNbg==</latexit>

Y

<latexit sha1_base64="BwD6lXulg2zf9TxRFjQA72YLiG0=">AAAB6nicdVBNT8JAEJ3iF+IX6tHLRjDxRFoQizeiF48YBTHQkO2yhQ3bbbO7NSGEn+DFg8Z49Rd589+4QE3U6EsmeXlvJjPz/JgzpW37w8osLa+srmXXcxubW9s7+d29looSSWiTRDySbR8rypmgTc00p+1YUhz6nN76o4uZf3tPpWKRuNHjmHohHggWMIK1ka6Ld8VevmCX7KpzWqsgQ+YwxK24brmKnFQpQIpGL//e7UckCanQhGOlOo4da2+CpWaE02mumygaYzLCA9oxVOCQKm8yP3WKjozSR0EkTQmN5ur3iQkOlRqHvukMsR6q395M/MvrJDqoeRMm4kRTQRaLgoQjHaHZ36jPJCWajw3BRDJzKyJDLDHRJp2cCeHrU/Q/aZVLzknp7KpcqJ+ncWThAA7hGBxwoQ6X0IAmEBjAAzzBs8WtR+vFel20Zqx0Zh9+wHr7BL/ujXk=</latexit>

Z

<latexit sha1_base64="4XI0Gc0mE7iAW7ICcq0MrTPFc84=">AAAB6nicdVBNS8NAEJ34WetX1aOXxVbwVJJYqb0VvXisaD+wDWWz3bRLN5uwuxFK6U/w4kERr/4ib/4bN2kFFX0w8Hhvhpl5fsyZ0rb9YS0tr6yurec28ptb2zu7hb39looSSWiTRDySHR8rypmgTc00p51YUhz6nLb98WXqt++pVCwSt3oSUy/EQ8ECRrA20k3prtQvFO2ybdunroMyclarZaRiu1XkpIpBERZo9AvvvUFEkpAKTThWquvYsfamWGpGOJ3le4miMSZjPKRdQwUOqfKm2akzdGyUAQoiaUpolKnfJ6Y4VGoS+qYzxHqkfnup+JfXTXRw7k2ZiBNNBZkvChKOdITSv9GASUo0nxiCiWTmVkRGWGKiTTp5E8LXp+h/0nLLTqVcu3aL9YtFHDk4hCM4AQeqUIcraEATCAzhAZ7g2eLWo/Vivc5bl6zFzAH8gPX2Ca/mjW4=</latexit>

L1

<latexit sha1_base64="TXgJR22KVez1FEcVbvfE+ErUGhE=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LLaCp7KJldpb0YsHDxVMW2hD2Ww37dLNJuxuhBL6G7x4UMSrP8ib/8ZNWkFFHww83pthZp4fc6Y0Qh9WYWV1bX2juFna2t7Z3SvvH3RUlEhCXRLxSPZ8rChngrqaaU57saQ49Dnt+tOrzO/eU6lYJO70LKZeiMeCBYxgbSS3ejO0q8NyBdUQQmeODXNy3mzmpI6cBrQzxaAClmgPy++DUUSSkApNOFaqb6NYeymWmhFO56VBomiMyRSPad9QgUOqvDQ/dg5PjDKCQSRNCQ1z9ftEikOlZqFvOkOsJ+q3l4l/ef1EBxdeykScaCrIYlGQcKgjmH0OR0xSovnMEEwkM7dCMsESE23yKZkQvj6F/5OOU7PrteatU2ldLuMogiNwDE6BDRqgBa5BG7iAAAYewBN4toT1aL1Yr4vWgrWcOQQ/YL19AsCQjgQ=</latexit>

L2

<latexit sha1_base64="8iUCv2XqqvLnzFGFerQW6jVBzWs=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LLaCp7KJldpb0YsHDxVMW2hD2Ww37dLNJuxuhBL6G7x4UMSrP8ib/8ZNWkFFHww83pthZp4fc6Y0Qh9WYWV1bX2juFna2t7Z3SvvH3RUlEhCXRLxSPZ8rChngrqaaU57saQ49Dnt+tOrzO/eU6lYJO70LKZeiMeCBYxgbSS3ejN0qsNyBdUQQmeODXNy3mzmpI6cBrQzxaAClmgPy++DUUSSkApNOFaqb6NYeymWmhFO56VBomiMyRSPad9QgUOqvDQ/dg5PjDKCQSRNCQ1z9ftEikOlZqFvOkOsJ+q3l4l/ef1EBxdeykScaCrIYlGQcKgjmH0OR0xSovnMEEwkM7dCMsESE23yKZkQvj6F/5OOU7PrteatU2ldLuMogiNwDE6BDRqgBa5BG7iAAAYewBN4toT1aL1Yr4vWgrWcOQQ/YL19AsIVjgU=</latexit>

L3

<latexit sha1_base64="TD4ngs/CLS1+m2hHHWobpxiFRZw=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LLaCp7CJSttb0YsHDxVMW2hD2Ww37dLNJuxuhBL6G7x4UMSrP8ib/8ZtG0FFHww83pthZl6QcKY0Qh9WYWV1bX2juFna2t7Z3SvvH7RVnEpCPRLzWHYDrChngnqaaU67iaQ4CjjtBJOrud+5p1KxWNzpaUL9CI8ECxnB2khe9WZwVh2UK8h2XNRwHYhstIAhdVRzLxzo5EoF5GgNyu/9YUzSiApNOFaq56BE+xmWmhFOZ6V+qmiCyQSPaM9QgSOq/Gxx7AyeGGUIw1iaEhou1O8TGY6UmkaB6YywHqvf3lz8y+ulOqz7GRNJqqkgy0VhyqGO4fxzOGSSEs2nhmAimbkVkjGWmGiTT8mE8PUp/J+0Xds5txu3bqV5mcdRBEfgGJwCB9RAE1yDFvAAAQw8gCfwbAnr0XqxXpetBSufOQQ/YL19Ar4PjgI=</latexit>

L4

<latexit sha1_base64="Pzsx2DPmuECH0SaU2mKluLXCHqM=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LLaCp7AJlba3ohcPHiqYttCGstlu2qWbTdjdCCX0N3jxoIhXf5A3/43bNoKKPhh4vDfDzLwg4UxphD6swtr6xuZWcbu0s7u3f1A+POqoOJWEeiTmsewFWFHOBPU005z2EklxFHDaDaZXC797T6VisbjTs4T6ER4LFjKCtZG86s2wVh2WK8h2XNR0HYhstIQhDVR3Lxzo5EoF5GgPy++DUUzSiApNOFaq76BE+xmWmhFO56VBqmiCyRSPad9QgSOq/Gx57ByeGWUEw1iaEhou1e8TGY6UmkWB6Yywnqjf3kL8y+unOmz4GRNJqqkgq0VhyqGO4eJzOGKSEs1nhmAimbkVkgmWmGiTT8mE8PUp/J90XNup2c1bt9K6zOMoghNwCs6BA+qgBa5BG3iAAAYewBN4toT1aL1Yr6vWgpXPHIMfsN4+Ab+UjgM=</latexit>

Figure 1: An illustration of the sets X ] Y ] Z = W and the separators L1, . . . , L4. The dotted
arrows represent paths.

that, on input (D,T,W, k), runs in time 2O(k+|W |)nO(1) and if there is a T -sfvs S in D of size at
most k that is not necessarily disjoint from W , then it outputs a T -sfvs in D of size at most 2k.

Now, suppose that V (D) = {v1, . . . , vn} and for every i ∈ [n], Vi =
⋃i
j=1 vj . Fur-

thermore, for every X ⊆ V (D), let T [X] = {(x, y) ∈ T | x, y ∈ X}. Then, we con-
struct instances I1, . . . , In where Ii = (D[Vi], T [Vi],Wi, k), W1 = {v1}, for every i > 1,
Wi ← {vi} ∪ Alg-Compression-SFVS(Ii−1). Moreover, for the first occurrence of an i for which
Wi is not a T -sfvs of size at most 2k in D[Vi], we terminate and return an arbitrary vertex
set. It is straightforward to see that assuming the correctness and claimed running time of
Alg-Disjoint-SFVS, we have the required factor-2 FPT-approximation for Subset DFVS.

We now proceed to describe Algorithm Alg-Disjoint-SFVS. In the base case of this algorithm,
k ≤ 1 or |W | = 1. In either case, can solve the instance by brute force. If k ≤ 1, then it is
sufficient for us to check whether there is a T -cycle in D and if yes, whether there is a T -sfvs in
D of size at most 1. If k > 1, |W | = 1, then we can simply return W . Hence, we assume that
k, |W | > 1. Moreover, we assume that D is strongly connected. Otherwise, we can simply work
with the subinstance induced by each strongly connected component.

Let P denote the set of all 3-partitions of W into sets (X,Y, Z). For every τ = (X,Y, Z) ∈ P ,
we define the following sets and tuples. Let 1 ≤ i, j ≤ k.

• Li[Z → XY ] denotes the set of all important Z-X ∪ Y separators of size at most i closest
to X ∪ Y .
• Li[XY ← Z] denotes the set of all important Z-X ∪ Y separators of size at most i closest

to Z.

Recall that both these sets have size at most 4i (Proposition 3.1). When i = 0, we assume
that these sets only contain ∅. Moreover, if Z or X ∪ Y is empty, then Li[Z → XY ] and
Li[XY ← Z] are empty for every i.

In the following, let 1 ≤ i, j ≤ k, L1 ∈ Lj [Z → XY ], L2 ∈ Lj [XY ← Z].

• Li[Y → X,L1, L2] denotes the set of all important Y -X separators of size at most i closest
to X in D − (L1 ∪ L2).
• Li[X ← Y,L1, L2] denotes the set of all important Y -X separators of size at most i closest

to Y in D − (L1 ∪ L2).

When i = 0, we assume that these sets only contain ∅. Moreover, if X or Y is empty, then
Li[Y → X,L1, L2] and Li[X ← Y, L1, L2] are empty for every i.

To help readability, in the rest of proof, we will forgo the notation T [Q] when referring to
the arcs of T with both endpoints in Q, because the vertex set Q will always be clear from the
context. Abusing notation in this way, we will continue to refer to the set of terminals as T even
when referring to subinstances that do not contain some arcs in T . Now, for every Q ⊆ V (D),
we define the following:
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• I[Q,Z, i] denotes the tuple (D[rel(Z,Q)], T, Z, i). That is, the subinstance induced by those
vertices that are in the strongly connected components intersected by Z after deleting Q.
Similarly, we define the following tuples.
• I[Q,XY, i] denotes (D[rel(X ∪ Y,Q)], T,X ∪ Y, i).
• I[Q,X, i] denotes (D[rel(X,Q)], T,X, i).
• Ĩ[Q,Y, i] denotes (D′, T, Y, i), where D′ is the graph obtained from D[rel(Y,Q)] by adding

a bidirected clique on Y . That is, we construct the subinstance induced by those vertices
that are in the strongly connected components intersected by Y after deleting Q and then
add an arc (w,w′) for every w,w′ ∈ Y such that (w,w′) /∈ A(D).

We are now equipped with the notation required to describe the rest of the algorithm. To ease
readability, we interleave the steps of the algorithm and intuitive descriptions and observations
related to these.
Main loop: For every (X,Y, Z) ∈ P such that |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3 or |Y | > |W |/3,
and for every i1, i2 such that 1 ≤ i1 ≤ k and k1 = i1 + i2 ≤ k, we do the following:
Step 1: We guess L1 ∈ Li1 [Z → XY ], L2 ∈ Li1 [XY ← Z], L3 ∈ Li2 [Y → X,L1, L2],
L4 ∈ Li2 [X ← Y, L1, L2] (see Figure 1). Set Q =

⋃
q∈[4] Lq.

That is, we guess a pair of important Z-(X ∪ Y ) separators of size at most i1 in D, one that
is closest to Z and another that is closest to X ∪ Y . Following this, we delete L1 ∪L2 and guess
a pair of important Y -X separators of size at most i2 in D − (L1 ∪ L2), one that is closest to
Y and another that is closest to X. This guessing step is implemented as follows. Using the
important separator enumeration algorithm [CFK+15], we obtain a branching algorithm that
takes polynomial time in each step and produces at most 4i1 · 4i1 · 4i2 · 4i2 = 24(i1+i2) = 24k1

leaves, where each leaf corresponds to a guess of L1, L2, L3, L4.
Notice that deleting L1 and L2 breaks up the original instance into two disjoint pieces

comprising the vertices in relD(Z) and relD(X ∪ Y ). Additionally, deleting L3 and L4, breaks
up the original instance into three disjoint pieces comprising the vertices in relD(Z), relD(X)
and relD(Y ). We will use this crucially in our algorithm as follows.
Step 2: If |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3, then for every i3, i4 such that i3 + i4 ≤ k − k1, we
recursively compute:

(i) SZ ← Alg-Disjoint-SFVS(I[Q,Z, i3]).
(ii) SXY ← Alg-Disjoint-SFVS(I[Q,XY, i4]).

If ∆ = Q ∪ SZ ∪ SXY is a T -sfvs in D of size at most 2k, then we return ∆.

Note that if Z or X ∪Y is empty, then above two instances are empty. We allow Alg-Disjoint-
SFVS to take empty instances with the promise that the output is always the empty set. We
argue that the instances I[Q,Z, i3] and I[Q,XY, i4] are valid input instances to Alg-Disjoint-SFVS
as follows. Notice that from the definition of L1 and L2 as Z-(X ∪ Y ) separators in D, it follows
that X ∪ Y is disjoint from rel(Z,L1 ∪ L2) and Z is disjoint from rel(X ∪ Y,L1 ∪ L2). Moreover,
X ∪ Y ∪ Z is a T -sfvs in D. Hence, we conclude that Z and X ∪ Y are T -sfvs in D[rel(Z,Q)]
and D[rel(X ∪ Y,Q)] respectively, validating I[Q,Z, i3] and I[Q,XY, i4] as input instances to
Alg-Disjoint-SFVS.
Step 3: If Step 2 does not apply and |Y | > |W |/3, then for every i3, i4, i5 such that i3 + i4 + i5 =
k − k1, we compute:

(i) SZ ← Alg-Disjoint-SFVS(I[Q,Z, i3]).
(ii) SX ← Alg-Disjoint-SFVS(I[Q,X, i4]).

(iii) SY ← Alg-Strict-SFVS(Ĩ[Q,Y, i5]).
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If ∆ = Q ∪ SZ ∪ SX ∪ SY is a T -sfvs in D of size at most 2k, then we return ∆.

The argument for the validity of I[Q,Z, i3] and I[Q,X, i4] as inputs to the recursive calls
to Alg-Disjoint-SFVS follows along the same line as the arguments used following the previous
step. That is, since Q is a Z-(X ∪ Y ) separator and a Y -X separator, it follows that Z is a
T -sfvs in D[rel(Z,Q)] and X is a T -sfvs in D[rel(X,Q)]. Moreover, we have that Y is a T -sfvs
in D[rel(Y,Q)]. Now, since every arc in A(D′) \A(D) is incident on Y , it follows that Y is also
a T -sfvs in D′. This implies that Ĩ[Q,Y, i5] is a valid input to Alg-Disjoint-SFVS.

If the algorithm completes iterating through the main loop without returning, then we return
an arbitrary vertex set. This completes the description of the algorithm.

Correctness. The correctness is proved by induction on |W |. In the base case, |W | = 1, in
which case, the algorithm works by brute-force and hence is correct. Now, we assume that
|W | > 1. Suppose that there is a T -sfvs S in D of size at most k, such that S ∩W = ∅. Our
aim is to show that the algorithm outputs a T -sfvs of size at most 2k.

Let (M1, . . . ,Mr) denote the partition of W such that (i) each Mi is contained in a strongly
connected component of D − S , and (ii) for every `1 > `2, there is no path in D − S from
relD(M`1 , S) to relD(M`2 , S). That is, S is an M`1-M`2 separator for every `1 > `2. We now
consider the following two cases.

Case 1: |M`| ≤ |W |/3 for every ` ∈ [r]. Let `′ ∈ [r] denote the least value such that |W |/3 <
Σ`′
i=1|Mi|. Then, |W |/3 < Σ`′

i=1|Mi| ≤ 2|W |/3. Define X = ∅, Y =
⋃`′
i=1Mi and Z =⋃r

i=`′+1Mi. Then, we have that |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3. Therefore, when
considering the partition (X,Y, Z), Step 2 would have been executed.
Let S1 be a minimal subset of S that intersects all Z-X ∪ Y paths in D. Let i1 = |S1|.
Since D is strongly connected, it follows that i1 > 0. Lemma 3.2 guarantees that there
exist L1 ∈ Li1 [Z → XY ] and L2 ∈ Li1 [XY ← Z] such that S′ = S \ S1 is a T -sfvs in
D− (L1 ∪L2). Let i2 = 0. This implies that L3 = L4 = ∅. Let Q =

⋃
q∈[4] Lq. Now, define:

• S′Z = S′ ∩ rel(Z,Q), i3 = |S′Z |.
• S′XY = S′ ∩ rel(X ∪ Y,Q), i4 = |S′XY |.

Notice that S′XY intersects all T -cycles in D−Q that intersect X ∪Y and S′Z intersects all
T -cycles in D−Q that intersect Z. Conversely, one can obtain a T -sfvs in D−Q by taking
the union of any set that intersects all T -cycles in D−Q that intersect X ∪ Y and any set
that intersects all T -cycles in D −Q that intersect Z. This is becaue W = X ∪ Y ∪ Z is a
T -sfvs in D.
Therefore, by the induction hypothesis, SZ is a T -sfvs of size at most 2i3 in D[rel(Z,Q)]
and SXY is a T -sfvs of size at most 2i4 in D[rel(X ∪ Y,Q)]. As argued, the set Q ∪ SZ ∪
SXY = L1 ∪ L2 ∪ SZ ∪ SXY is a therefore a T -sfvs in D. Moreover, it has size at most
2(i1 + i3 + i4) ≤ 2|S| ≤ 2k as required.

Case 2: There exists `? ∈ [r] such that |M`? | > |W |/3. Define Y = M`? . If `? = 1, then define
X = ∅. If `? = r, then define Z = ∅. Otherwise, define X =

⋃`?−1
i=1 Mi and Z =

⋃r
i=`?+1Mi.

Then, we have that |X|, |Z| ≤ 2|W |/3. Notice that we would have executed Step 3 in this
case.
Let S1 be a minimal subset of S that intersects all Z-X ∪ Y paths in D. Let i1 = |S1|.
Then, Lemma 3.2 guarantees that there exist L1 ∈ Li1 [Z → XY ] and L2 ∈ Li1 [XY ← Z]
such that S′ = S \ S1 is a T -sfvs in D − (L1 ∪ L2). Now, let S2 be a minimal subset
of S′ that intersects all Y -X paths in D − (L1 ∪ L2). Let i2 = |S2|. Then, Lemma 3.2
guarantees that there exist L3 ∈ Li2 [Y → X,L1, L2] and L4 ∈ Li2 [X ← Y, L1, L2] such
that S′′ = S′ \ S2 is a T -sfvs in D −

⋃
q∈[4] Lq. Let Q =

⋃
q∈[4] Lq. Define:
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• S′′Z = S′′ ∩ rel(Z,Q), i3 = |S′′Z |.
• S′′X = S′′ ∩ rel(X,Q), i4 = |S′′X |.
• S′′Y = S′′ ∩ rel(Y,Q), i5 = |S′′Y |.

Then, we have that S′′Z is a T -sfvs of size at most i3 in D[rel(Z,Q)], S′′X is a T -sfvs of size
at most i4 in D[rel(X,Q)]. Lemma 3.4 implies that S′′Y and Y are both T -sfvs in D′ where
D′ is the graph obtained from D[rel(Y,Q)] by adding a bidirected clique on Y . Due to this
bidirected clique, it trivially holds that in D′ − S′′Y , there is a unique strongly connected
component intersected by Y . We also have that S′′Y has size at most i5. Conversely, we
have that the union of any three sets hitting all T -cycles in D −Q passing through X, Y
and Z respectively, is a T -sfvs in D −Q.
Therefore, by the induction hypothesis and correctness of Alg-Strict-SFVS (in the case of
S′′Y ), SZ is a T -sfvs of size at most 2i3 in D[rel(Z,Q)], SX is a T -sfvs of size at most 2i4 in
D[rel(X,Q)], SY is a T -sfvs of size at most i5 in D′ where D′ is the graph obtained from
D[rel(Y,Q)] by adding a bidirected clique on Y . This also implies that SY is a T -sfvs of
size at most i5 in D[rel(Y,Q)]. Then, the set Q∪SX ∪SY ∪SZ =

⋃
q∈[4] Lq ∪SX ∪SY ∪SZ

is a T -sfvs in D of size at most 2(i1 + i2 + i3 + i4 + i5) ≤ 2|S| ≤ 2k as required.

This completes the proof of correctness.
Running time. We now analyze the running time taken by Alg-Disjoint-SFVS. The time spent in
any single step of the algorithm is dominated by 2O(k)nO(1) (the running time of Alg-Strict-SFVS).
Hence, in order to bound the running time, it suffices to bound the number of leaves generated
in the branching. Let T (k, r) denote the number of leaves generated by the instance (D,T,W, k),
where r = |W |. From the description of the algorithm, we have the following recurrence:

T (k, r) ≤ 3r ·
k∑

k1=1
25k1 · 2

∑
k2+k3≤k−k1

T (k2, b2r/3c) + T (k3, b2r/3c).

T (1, r) = 1, T (k, 1) = 1.

The following is an intuitive description of this recurrence. There are 3r 3-way partitions
(X,Y, Z) of |W |. For each possible size k1 (which is equal to i1 + i2) of the minimal part of
a hypothetical optimal solution that intersects all Z-X ∪ Y paths (and if necessary, also all
Y -X paths), there are at most 16k1 · k2

1 ≤ 25k1 choices of vertex sets of size at most 2k1 that
comprise important separators and whose deletion reduces the size of the optimal solution by k1.
Having guessed and removed this set of size at most 2k1, we recursively call Alg-Disjoint-SFVS for
increasing values of i3, followed by calls to Alg-Disjoint-SFVS for increasing values of i4, which is
followed by the invocation of Lemma 3.3 (Alg-Strict-SFVS) with budget i5 = k−(k1−i3−i4). This
gives a total of at most 3 recursive calls to Alg-Disjoint-SFVS: (i) on subinstance corresponding
to X (budget i4), (ii) on subinstance corresponding to Z (budget i3), (iii) on subinstance
corresponding to X ∪ Y (budget i5)). Moreover, |X|, |Z|, |X ∪ Y | ≤ 2|W |/3.

Claim 3.3. T (k, r) ≤ 29k+5r.

Proof. The base cases are satisfied and we assume r, k > 1.

T (k, r) ≤ 3r · 210/3r ·
k∑

k1=1
25k1 · 2

∑
i3+i4≤k−k1

(29i3 + 29i4)

≤ 25r ·
k∑

k1=1
25k1 · 29(k−k1)+3

≤ 25r · 29k ·
k∑

k1=1
2−4k1+3 ≤ 25r · 29k.
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This completes the proof of the claim.

Thus, we have concluded that Algorithm Alg-Disjoint-SFVS on input (D,T,W, k), where
(D,T ) is an instance of Subset DFVS and W is a T -sfvs in D, runs in time 2O(k+|W |)nO(1) and
if there is a T -sfvs S in D of size at most k disjoint from W , then it outputs a T -sfvs in D of
size at most 2k. This completes the proof of Theorem 3.1.

As a corollary of Theorem 3.1, we obtain our factor-2 FPT-approximation for DFVS with
running time 2O(k)nO(1).

3.3 Bidirected Multicut

For a digraph D and a set T = {(si, ti) | si, ti ∈ V (D)}, we say that a path is a T -path if it is an
si-ti path for some (si, ti) ∈ T . We say that a set S ⊆ V (D) is a T -multicut if there is no T -path
in D−S and T [S] denotes the set {(si, ti) ∈ T | si, ti ∈ S}. The classic Undirected Multicut
problem [MR14, BDT18] is easily seen to be equivalent to the Bidirected Multicut (BiMC)
problem.

Moreover, recall that BiMC is a special case of SCC F-Transversal as one can simply
take F to be the subgraphs induced by the vertex sets of the si-ti paths in D where (si, ti) ∈ T .
The results of Marx and Razgon [MR14] and Bousquet et al. [BDT18] on the fixed-parameter
tractability of Undirected Multicut imply factor-1 FPT-approximation algorithms for BiMC.
The result of Marx and Razgon in particular, implies a factor-1 FPT-approximation with running
time 2O(k2)nO(1).

Our goal is to improve the running time to 2O(k)nO(1) at the cost of a factor-2 approximation.
As we did for Subset DFVS, we first consider the following special case.

A factor-c FPT-approximation algorithm for Strict BiMC is an algorithm that,
on input (D, T ,W, k), runs in time f(k,W ) · nO(1) (for some computable f) and if
there is a T -multicut S in D of size at most k such that W is contained in a unique
strongly connected component of D − S, then it outputs a T -multicut in D of size
at most ck. Otherwise, the output of the algorithm can be arbitrary.

Towards designing such an algorithm, we recall the following definitions from [KW20]. Let
D be a digraph, s ∈ V (D) and {x, y} ⊆ V (D) be a pair of vertices. We say that the pair {x, y}
is reachable from s if there exist paths from s to x and from s to y in D. These paths need not
be disjoint. In the Digraph Pair Cut problem, we are given a directed graph D, a source
vertex s ∈ V (D), a set P of pairs of vertices, and a non-negative integer k. The task is to decide
whether there exists a set X ⊆ V (D) \ {s} such that |X| ≤ k and no pair in P is reachable from
s in D −X.

Proposition 3.2. [KW20] There is an algorithm that, given D, a source vertex s ∈ V (D), a
set P of pairs of vertices, and a non negative integer k, runs in time 2knO(1) and either correctly
outputs a set X ⊆ V (D) \ {s} such that |X| ≤ k and no pair in P is reachable from s in D −X
or correctly concludes that such a set does not exist.

We are now ready to give our algorithm for Strict BiMC.

Lemma 3.5. There is a factor-1 FPT-approximation algorithm for Strict BiMC with running
time 2knO(1). We call this algorithm, Alg-Strict-BiMC.

Proof. Let (D, T ,W, k) be the input. We now construct a graph D′ as follows. We add a new
vertex s and make every vertex in W an out-neighbor of s. We set P = ∅ and then, for every
(si, ti) ∈ T , we add the pair (si, ti) to P. We now have the following claim.
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Claim 3.4. If S is a T -multicut in D such that W is contained in a unique strongly connected
component of D − S, then no pair in P is reachable from s in D′ − S. Moreover, if S′ ⊆ V (D)
is such that no pair in P is reachable from s in D′ − S′, then S′ is a T -multicut in D.

Proof. Consider the first statement and suppose for a contradiction that some pair (si, ti) ∈ P
is reachable from s in D′ − S. Since s is a source, this implies that there exist w1, w2 ∈W such
that si is reachable from w1 in D − S and ti is reachable from w2 in D − S. However, we know
that D is bidirected and there is a strongly connected component of D − S that contains W .
Hence, we conclude that there is an si-ti path in D − S, a contradiction.

Consider the second statement and the set S′ in the premise. Suppose for a contradiction
that S′ is not a T -multicut in D and there is an si-ti path P in D−S′, where (si, ti) ∈ T . Since
W is a T -multicut, it follows that P contains a vertex w ∈W . Since D is bidirected, it follows
that there is a w-si and w-ti path in D′ − S′, implying an s-si and an s-ti path in D′ − S′. This
is a contradiction to our choice of S′. This completes the proof of the claim.

The algorithm follows for Strict BiMC from the above claim, which reduces our problem
to Digraph Pair Cut and Proposition 3.2, which gives a 2knO(1)-time algorithm for Digraph
Pair Cut. This completes the proof of Lemma 3.5.

Theorem 3.2. There is a factor-2 FPT-approximation algorithm for BiMC with running time
2O(k)nO(1).

Proof. By using the iterative compression technique (see proof of Theorem 3.1), we reduce our
goal to designing an algorithm (called Alg-Disjoint-BiMC) that, on input (D, T ,W, k), where
(D, T ) is an instance of BiMC and W is a T -multicut in D, runs in time 2O(k+|W |)nO(1) and if
there is a T -multicut S in D of size at most k disjoint from W , then it outputs a T -mulicut in
D of size at most 2k. Otherwise, the output of the algorithm can be arbitrary.

We now proceed to describe Algorithm Alg-Disjoint-BiMC. The structure of the algorithm
closely resembles that of Algorithm Alg-Disjoint-SFVS. Moreover, Algorithm Alg-Disjoint-BiMC is
simpler since we work with bidirected graphs and these essentially behave like undirected graphs
in our setting. Another consequence of working with bidirected graphs is that we only need to
consider bipartitions of W instead of 3-partitions. We now proceed to the description of the
algoroithm.

In the base case of this algorithm, k = 1 or |W | = 1. In either case, it is sufficient for us to
check whether there is a T -multicut in D of size at most 1, which can be done in polynomial
time. Hence, we assume that k, |W | > 1. Moreover, since D is bidirected, every vertex-induced
subgraph of D is strongly connected.

Let P denote the set of all bipartitions of W into sets (Y,Z). For every τ = (Y,Z) ∈ P, we
define the following sets and tuples. Let 1 ≤ i, j ≤ k.

• Li[Z → Y ] denotes the set of all important Z-Y separators of size at most i closest to Y .
• Li[Y ← Z] denotes the set of all important Z-Y separators of size at most i closest to Z.

In the following, let 1 ≤ i ≤ k and Q ⊆ V (D).

• For every N ∈ {Z, Y }, I[Q,N, i] denotes the tuple (D[rel(N,Q)], T , Z, i). That is, the
subinstance induced by those vertices that are in the strongly connected components
intersected by N after deleting Q.
• Ĩ[Q,Y, i] denotes (D′, T , Y, i), where D′ is the graph obtained from D[rel(Y,Q)] by adding

a bidirected clique on Y (i.e., we add an arc (w,w′) for every w,w′ ∈ Y such that
(w,w′) /∈ A(D)).
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We now describe the rest of the algorithm.

Main loop: For every (Y,Z) ∈ P such that |W |/3 ≤ |Y |, |Z| ≤ 2|W |/3 or |Y | > |W |/3, and for
every i1 such that 1 ≤ i1 ≤ k, we do the following:
Step 1: We guess L1 ∈ Li1 [Z → Y ] and L2 ∈ Li1 [Y ← Z] and set Q = L1 ∪ L2.
Step 2: If |W |/3 ≤ |Y |, |Z| ≤ 2|W |/3, then for every i2, i3 such that i2 + i3 ≤ k − i1, we
recursively compute:

(i) SZ ← Alg-Disjoint-BiMC(I[Q,Z, i2]).
(ii) SY ← Alg-Disjoint-BiMC(I[Q,Y, i3]).

Step 3: If Step 2 does not apply and |Y | > |W |/3, then for every i2, i3 such that i2 + i3 = k− i1,
we compute:

(i) SZ ← Alg-Disjoint-BiMC(I[Q,Z, i2]).
(ii) SY ← Alg-Strict-BiMC(Ĩ[Q,Y, i3]).

Step 4: If ∆ = Q ∪ SZ ∪ SY is a T -multicut in D of size at most 2k, then we return ∆.
If the algorithm completes iterating through the main loop without returning, then we return

an arbitrary vertex set. This completes the description of the algorithm.

Correctness. The correctness is proved by induction on |W |. In the base case, |W | = 1, in
which case, the algorithm works by brute-force and hence is correct. Now, we assume that
|W | > 1. Suppose that there is a T -multicut S in D of size at most k, such that S ∩W = ∅.
Our aim is to show that the algorithm outputs a T -multicut of size at most 2k.

Let (M1, . . . ,Mr) denote the partition of W such that (i) each Mi is contained in a strongly
connected component of D − S , and (ii) for every `1 > `2, there is no path in D − S from
relD(M`1 , S) to relD(M`2 , S). That is, S is an M`1-M`2 separator for every `1 > `2. Since we are
dealing with bidirected graphs, we may assume without loss of generality that |M1| ≥ |M`| for
every ` ∈ [r]. We now consider the following cases.

Case 1: |M1| ≤ |W |/3. This implies that |M`| ≤ |W |/3 for every ` ∈ [r]. Let `′ ∈ [r] denote
the least value such that |W |/3 < Σ`′

i=1|Mi|. Then, |W |/3 < Σ`′
i=1|Mi| ≤ 2|W |/3. Define

Y =
⋃`′
i=1Mi and Z =

⋃r
i=`′+1Mi. Then, we have that |W |/3 ≤ |Y |, |Z| ≤ 2|W |/3.

Let S1 be a minimal subset of S that intersects all Z-Y paths in D. Let i1 = |S1|.
Since D is strongly connected, it follows that i1 > 0. Lemma 3.2 guarantees that there
exist L1 ∈ Li1 [Z → Y ] and L2 ∈ Li1 [Y ← Z] such that S′ = S \ S1 is a T -multicut in
D − (L1 ∪ L2). Set Q = L1 ∪ L2 and define:

• S′Z = S′ ∩ rel(Z,Q), i2 = |S′Z |.
• S′Y = S′ ∩ rel(Y,Q), i3 = |S′Y |.

Then, we have that S′Z is a T -multicut of size at most i2 in D[rel(Z,Q)] and S′Y is a
T -multicut of size at most i3 in D[rel(Y,Q)]. Therefore, by the induction hypothesis, SZ
is a T -multicut of size at most 2i2 in D[rel(Z,Q)] and SY is a T -multicut of size at most
2i3 in D[rel(Y,Q)].
Conversely, one can obtain a T -multicut in D − Q by taking the union of any set that
intersects all T -paths in D −Q that intersect Y and any set that intersects all T -paths in
D −Q that intersect Z. Hence, the set Q ∪ SZ ∪ SY is a T -multicut in D and it has size
at most 2(i1 + i2 + i3) ≤ 2|S| ≤ 2k as required.
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Case 2: |M1| > |W |/3. Define Y = M1. If r = 1, then define Z = ∅. Otherwise, define
Z =

⋃r
i=2Mi. Then, we have that |Z| ≤ 2|W |/3.

Let S1 be a minimal subset of S that intersects all Z-Y paths in D. Let i1 = |S1|. Then,
Lemma 3.2 guarantees that there exist L1 ∈ Li1 [Z → Y ] and L2 ∈ Li1 [Y ← Z] such that
S′ = S \ S1 is a T -multicut in D − (L1 ∪ L2). Let Q = L1 ∪ L2.

• Let S′Z = S′ ∩ rel(Z,Q), i2 = |S′Z |.
• S′Y = S′ ∩ rel(Y,Q), i3 = |S′Y |.

We have that S′Z is a T -multicut in D[rel(Z,Q)]. Moreover, S′Y and Y are T -multicuts in
D[rel(Y,Q)]. This further implies that S′Y and Y are both also T -multicuts in D′ where
D′ is the graph obtained from D[rel(Y,Q)] by adding a bidirected clique on Y . Due to this
bidirected clique, it trivially holds that in D′ − S′Y , there is a unique strongly connected
component intersected by Y . Therefore, by the induction hypothesis and correctness of
Alg-Strict-BiMC (in the case of S′Y ), SZ is a T -multicut of size at most 2i2 in D[rel(Z,Q)],
SY is a T -multicut of size at most i3 in D[rel(Y,Q)].
Conversely, we have that the union of any pair of sets hitting all T -paths in D−Q passing
through Y and Z respectively is a T -multicut in D −Q. Hence, the set Q ∪ SY ∪ SZ is a
T -multicut in D of size at most 2|S| ≤ 2k as required.

This completes the proof of correctness.
Running time. We now analyze the running time taken by Alg-Disjoint-BiMC. The time
spent in any single step of the algorithm is dominated by 2O(k)nO(1) (the running time of
Alg-Strict-BiMC). Hence, in order to bound the running time, it suffices to bound the number
of leaves generated in the branching. Let T (k, r) denote the number of leaves generated by
the instance (D,T,W, k), where r = |W |. From the description of the algorithm, we have the
following recurrence:

T (k, r) ≤ 2r ·
k∑

i1=1
24i1 ·

∑
i2+i3≤k−i1

T (i2, b2r/3c) + T (i3, b2r/3c).

T (1, r) = 1, T (k, 1) = 1.

Using arguments similar to that in the proof of Theorem 3.1, we conclude that T (k, r) is
bounded by 2O(k+r).

Thus, we have concluded that Algorithm Alg-Disjoint-BiMC on input (D, T ,W, k), runs in
time 2O(k+|W |)nO(1) and if there is a T -multicut S in D of size at most k disjoint from W , then
it outputs a T -multicut in D of size at most 2k. This completes the proof of Theorem 3.2.

3.4 Directed OCT

For a digraph D, we denote say that S is a directed odd cycle transversal (or doct) in D if D− S
does not contain directed odd cycles.

Definition 3.6 (Directed Bipartite Double Cover). Let D be a digraph. We denote by D̃ the
Directed Bipartite Double Cover of D which is defined as follows. The vertex set of D̃ is
{va | v ∈ V (D)} ∪ {vb | v ∈ V (D)}. For every arc (u, v) ∈ A(D), D̃ has arcs (ua, vb) and
(ub, va). For a set S ⊆ V (D), we define S̃ = {va | v ∈ S} ∪ {vb | v ∈ S}. For each v ∈ V (D),
we call va and vb the copies of v in D̃.

Proposition 3.3. [LRSZ20] A strongly connected digraph does not contain directed odd cycles
if and only if the underlying undirected graph is bipartite.
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Recall that DOCT is a special case of SCC F-Transversal as one can simply take F to
be the set of all directed odd cycles. We also define the following.

A factor-c FPT-approximation algorithm for Strict DOCT is an algorithm that,
on input (D,W, k) where W is a doct in D, runs in time f(k,W ) · nO(1) (for some
computable f) and if there is a doct S in D of size at most k such that the undirected
graph underlying D[conn(W,S)] is bipartite, then then it outputs a doct in D of
size at most ck. Otherwise, the output of the algorithm can be arbitrary.

The above definition is motivated by Proposition 3.3 and is a relaxation of the case where
there is a doct S in D such that W is contained in a unique strongly connected component of
D − S. Indeed, if W is contained in a unique strongly connected component of D − S, then the
undirected graph underlying this strongly connected component, which is the same as the graph
D[conn(W,S)], is bipartite.

Lokshtanov et al. [LRSZ20] gave a factor-1 FPT-approximation algorithm for Strict DOCT
with running time 2O(k2+|W | log |W |)nO(1). They used this algorithm as a subroutine in their
factor-2 FPT-approximation for DOCT running in time 2O(k2)nO(1). Here, we give a single-
exponential-time factor-2 approximation for Strict DOCT that can be used to obtain a
single-exponential-time factor-2 approximation for DOCT.

Lemma 3.6. There is a factor-2 FPT-approximation algorithm for Strict DOCT with running
time 2|W |nO(1). We call this algorithm Alg-Strict-DOCT.

Proof. Let I = (D,W, k) be the input. We begin with the following claim.

Claim 3.5. If there is a doct S in D such that the undirected graph underlying D[conn(W,S)]
is bipartite, then there exists an α ⊆W such that the following statements hold.

1. S̃ (see Definition 3.6) intersects all (αa ∪ βb)− (αb ∪ βa) paths in D̃.
2. Conversely, for every S′ ⊆ V (D) such that S̃′ intersects all (αa ∪ βb)− (αb ∪ βa) paths in

D̃ is a doct in D.

Proof. Fix S to be a doct in D such that the undirected graph underlying D[conn(W,S)] is
bipartite. Let (α, β) denote a partition of W induced by this bipartition. Let C = conn(W,S).
We now claim that for this choice of α, the statements in the claim hold. Notice that for every
X,Y ∈ {α, β}, x ∈ X and y ∈ Y , there is no odd directed x-y walk in D[C] (and hence also in
D − S) if X = Y and there is no even directed x-y walk in D[C] (and hence also in D − S) if
X 6= Y .

We now proceed to the proof of the statements. For the first statement, suppose that S̃ is not
an (αa ∪βb)− (αb ∪βa) separator in D̃ and let P be a directed x-y path in D̃, where x ∈ αa ∪βb
and y ∈ αb ∪ βa. Let x′ and y′ be the vertices in W that correspond to x and y respectively
and suppose that x′ ∈ X, y′ ∈ Y where X,Y ∈ {α, β}. Then, P implies the existence of an odd
directed x-y walk in D[C] (and hence also in D − S) if X = Y and an even directed x-y path in
D[C] (and hence also in D − S) if X 6= Y , which is a contradiction.

Consider the second statement and an S′ as described in the premise. Suppose for a
contradiction that S′ is not a doct in Dα and let Q be a directed odd cycle in Dα− S′. Since W
is a doct in D, it follows that Q contains a vertex w ∈W . Then, the construction of D̃ implies
the existence of a wa-wb path in D̃ − S̃′, a contradiction.

This completes the proof of Claim 3.5.

Given the above claim, our algorithm is described as follows. Recall that I = (D,W, k) is
the input. Now, for every α ⊆W , we check whether there is a (αa ∪ βb)− (αb ∪ βa) separator in
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D̃ of size at most 2k and compute one if it exists (call this Ŝα). For every α ⊆W and Ŝα, we
define Sα ⊆ V (D) as the set {v | {va ∪ vb} ∩ Ŝα 6= ∅}. That is, Sα comprises those vertices of
V (D) that “contribute a copy” to Ŝα. Notice that for every α ⊆W , either Sα does not exist or
has size at most 2k. When then check whether there exists an α ⊆ W such that Sα is a doct
in D. If there is such an α, then we return Sα. Otherwise, we return an arbitrary output and
terminate.

The running time bound follows from the fact that for every α ⊆W , the time required to
compute Sα (if it exists) and verify whether it is a doct in D is polynomial. For the correctness,
recall that we only need our output to be correct only if there is a doct S in D such that the
undirected graph underlying D[conn(W,S)] is bipartite. In this case, the second statement of
Claim 3.5 guarantees that it is sufficient to compute any S′ ⊆ V (D) such that S̃′ intersects all
(αa∪βb)− (αb∪βa) paths in D̃ is a doct in D for some α ⊆W . The first statement of Claim 3.5
guarantees that there is indeed at least one such set. This completes the proof of Lemma 3.6.

Theorem 3.3. There is a factor-2 FPT-approximation algorithm for DOCT with running time
2O(k)nO(1).

Proof. The algorithm for DOCT closely resembles that for Subset DFVS (Theorem 3.1) with
the primary difference being the use of Algorithm Alg-Strict-DOCT as a subroutine instead of
Algorithm Alg-Strict-SFVS (on an appropriate subinstance). We therefore use the same notation
where possible, omit the running time analysis and only sketch the differences in the algorithm
description and proof of correctness.

By using the iterative compression technique, we reduce our goal to designing an algorithm
that, on input (D,W, k), where W is a doct in D, runs in time 2O(k+|W |)nO(1) and if there is a
doct S in D of size at most k disjoint from W , then it outputs a doct in D of size at most 2k.
Otherwise, the output of the algorithm can be arbitrary.

We now proceed to describe this algorithm (Algorithm Alg-Disjoint-DOCT). In the base case
of this algorithm, k = 1 or |W | = 1. In either case, the algorithm solves the instance by brute
force. Hence, we assume that k, |W | > 1. Moreover, we assume that D is strongly connected.
Otherwise, we can simply solve the subinstance induced by each strongly connected component.

Let P denote the set of all 3-partitions of W into sets (X,Y, Z). In the following, let 1 ≤ i ≤ k,
Q ⊆ V (D) and (X,Y, Z) ∈ P.

• I[Q,Z, i] denotes the tuple (D[rel(Z,Q)], Z, i).
• I[Q,XY, i] denotes the tuple (D[rel(X ∪ Y,Q)], X ∪ Y, i).
• I[Q,X, i] denotes the tuple (D[rel(X,Q)], X, i).
• I[Q,Y, i] denotes the tuple (D[rel(Y,Q)], Y, i).

We now proceed to the description of the rest of the algorithm.

Main loop: For every (X,Y, Z) ∈ P such that |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3 or |Y | > |W |/3,
and for every i1, i2 such that 1 ≤ i1 ≤ k and k1 = i1 + i2 ≤ k, we do the following:
Step 1: We guess L1 ∈ Li1 [Z → XY ], L2 ∈ Li1 [XY ← Z], L3 ∈ Li2 [Y → X,L1, L2],
L4 ∈ Li2 [X ← Y, L1, L2]. Set Q =

⋃
q∈[4] Lq.

Step 2: If |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3, then for every i3, i4 such that i3 + i4 ≤ k − k1, we
recursively compute:

(i) SZ ← Alg-Disjoint-DOCT(I[Q,Z, i3]).
(ii) SXY ← Alg-Disjoint-DOCT(I[Q,XY, i4]).

If ∆ = Q ∪ SZ ∪ SXY is a doct in D of size at most 2k, then we return ∆.
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In order to see that the instances I[Q,Z, i3] and I[Q,XY, i4] are valid input instances to
Alg-Disjoint-DOCT, it is sufficient to argue that Z is a doct in D[rel(Z,Q)] and X ∪ Y is a doct
in D[rel(X ∪ Y,Q)]. But this follows from the fact that X ∪ Y ∪Z is a doct and no directed odd
cycle intersects both X ∪ Y and Z in D −Q.
Step 3: If Step 2 does not apply and |Y | > |W |/3, then for every i3, i4, i5 such that i3 + i4 + i5 =
k − k1, we recursively compute:

(i) SZ ← Alg-Disjoint-DOCT(I[Q,Z, i3]).
(ii) SX ← Alg-Disjoint-DOCT(I[Q,X, i4]).

(iii) SY ← Alg-Strict-DOCT(I[Q,Y, i5]).
If ∆ = Q ∪ SZ ∪ SX ∪ SY is a doct in D of size at most 2k, then we return ∆.

If the algorithm completes iterating through the main loop without returning, then we return
an arbitrary vertex set. This completes the description of the algorithm.

Correctness. The correctness is proved by induction on |W |. In the base case, |W | = 1, in
which case, the algorithm works by brute-force and hence is correct. Now, we assume that
|W | > 1. Suppose that there is a doct S in D of size at most k, such that S ∩W = ∅. Our aim
is to show that the algorithm outputs a doct of size at most 2k.

Let (M1, . . . ,Mr) denote the partition of W such that (i) each Mi is contained in a strongly
connected component of D − S, and (ii) for every `1 > `2, there is no path in D − S from
rel(M`1 , S) to rel(M`2 , S).

Case 1: |M`| ≤ |W |/3 for every ` ∈ [r]. Let `′ ∈ [r] denote the least value such that |W |/3 <
Σ`′
i=1|Mi|. Then, |W |/3 < Σ`′

i=1|Mi| ≤ 2|W |/3. Define X = ∅, Y =
⋃`′
i=1Mi and Z =⋃r

i=`′+1Mi. Then, we have that |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3.
Let S1 be a minimal subset of S that intersects all Z-X ∪ Y paths in D. Let i1 = |S1|.
Since D is strongly connected, it follows that i1 > 0. Lemma 3.2 guarantees that there
exist L1 ∈ Li1 [Z → XY ] and L2 ∈ Li1 [XY ← Z] such that S′ = S \ S1 is a doct in
D − (L1 ∪ L2). Let i2 = 0, L3 = L4 = ∅, Q =

⋃
q∈[4] Lq, and define:

• S′Z = S′ ∩ rel(Z,Q), i3 = |S′Z |.
• S′XY = S′ ∩ rel(X ∪ Y,Q), i4 = |S′XY |.

Notice that S′XY intersects all directed odd cycles in D −Q that intersect X ∪ Y and S′Z
intersects all directed odd cycles in D −Q that intersect Z. Conversely, one can obtain
a doct in D −Q by taking the union of any set that intersects all directed odd cycles in
D −Q that intersect X ∪ Y and any set that intersects all directed odd cycles in D −Q
that intersect Z. This is because W = X ∪ Y ∪ Z is a doct in D.
Then, we have that S′Z is a doct of size at most i3 in D[rel(Z,Q)] and S′XY is a doct of
size at most i4 in D[rel(X ∪ Y,Q)]. Therefore, by the induction hypothesis, SZ is a doct of
size at most 2i3 in D[rel(Z,Q)] and SXY is a doct of size at most 2i4 in D[rel(X ∪ Y,Q)].
The set Q ∪ SZ ∪ SXY = L1 ∪ L2 ∪ SZ ∪ SXY is a therefore a doct in D and it has size at
most 2(i1 + i3 + i4) ≤ 2|S| ≤ 2k as required.

Case 2: There exists `? ∈ [r] such that |M`? | > |W |/3. Define Y = M`? . If `? = 1, then define
X = ∅. If `? = r, then define Z = ∅. Otherwise, define X =

⋃`?−1
i=1 Mi and Z =

⋃r
i=`?+1Mi.

Then, we have that |X|, |Z| ≤ 2|W |/3.
Let S1 be a minimal subset of S that intersects all Z-X ∪ Y paths in D. Let i1 = |S1|.
Then, Lemma 3.2 guarantees that there exist L1 ∈ Li1 [Z → XY ] and L2 ∈ Li1 [XY ← Z]
such that S′ = S \ S1 is a doct in D − (L1 ∪ L2). Now, let S2 be a minimal subset of S′
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that intersects all Y -X paths in D. Let i2 = |S2|. Then, Lemma 3.2 guarantees that there
exist L3 ∈ Li2 [Y → X,L1, L2] and L4 ∈ Li2 [X ← Y,L1, L2] such that S′′ = S′ \ S2 is a
doct in D −

⋃
q∈[4] Lq. Let Q =

⋃
q∈[4] Lq and define:

• S′′Z = S′′ ∩ rel(Z,Q), i3 = |S′′Z |.
• S′′X = S′′ ∩ rel(X,Q), i4 = |S′′X |.
• S′′Y = S′′ ∩ rel(Y,Q), i5 = |S′′Y |.

We have that S′Z is a doct of size at most i3 in D[rel(Z,Q)], S′′X is a doct of size at most
i4 in D[rel(X,Q)]. Lemma 3.4 implies that S′′Y is a doct of size at most i5 in D[rel(Y,Q)].
Moreover, we observe that S′′Y is a doct in D′ = D[rel(Y,Q)] with the additional property
that the undirected graph underlying D′[conn(Y, S′′Y )] is bipartite. Indeed, we know
from Proposition 3.3 that the undirected graph underlying D[rel(Y, S)] is bipartite and
conn(Y, S′′Y ∪Q) ⊆ rel(Y, S). Conversely, we have that the union of any three sets hitting
directed odd cycle in D −Q that intersect X, Y and Z respectively is a doct in D −Q.
Therefore, by the induction hypothesis and correctness of Alg-Strict-DOCT (in the case of
S′′Y ), SZ is a doct of size at most 2i3 in D[rel(Z,Q)], SX is a doct of size at most 2i4 in
D[rel(X,Q)], SY is a doct of size at most i5 in D[rel(Y,Q)]. Then, the set Q∪SX ∪SY ∪SZ
is a doct in D of size at most 2|S| ≤ 2k as required.

This completes the proof of correctness and the proof of Theorem 3.3.

4 FPT-approximation Algorithms Parameterized by Treewidth

In this section, we present two general reduction schemes—that can be used as black boxes—for
(unweighted) graph problems Π parameterized by the treewidth of the input graph, denoted by
w. We remark that for problems parameterized by treewidth, we assume that the input consists
also of a tree decomposition of width w of the input graph, which is the standard assumption in
the area (for more details, see, e.g., [CFK+15]). Moreover, we will assume that the input tree
decomposition is a nice tree decomposition where the tree consists of at most O(w · n) nodes.
This can be done without loss of generality due to the following proposition

Proposition 4.1 (Lemma 7.2 in [CFK+15]; Lemma 14.23 in [FLSZ19]). Let G be a graph,
and let T = (T, β) be a tree decomposition of G of width w. Then, a nice tree decomposition
T ′ = (T ′, β′) of G of width at most w and where |V (T ′)| ≤ 16(w + 2)n can be computed in time
O(w2 · (n+ |V (T )|)).

Our main reduction scheme is given in Section 4.3. Towards that, in Section 4.1, we first
present notions regarding the problems to which this scheme applies. Essentially, we can use the
scheme in a black box manner to solve the entire class of F-Packing problems where the family
F consists of graphs that are of bounded size, as well as any deletion problem that admits a
linear-vertex kernel when parameterized by the solution size k (rather than by w, the treewidth
of the input graph) where the output graph is a minor of the input graph. Specifically, if the
problem can be solved in time O(dw · nq), then given any fixed ε > 0, our scheme yields an
O(cw · nq + nO(1))-time (1 + ε)-approximation algorithm where c is significantly smaller than
d (for maximization, (1− ε)). For some of the problems that fit our scheme, such as Vertex
Cover and Triangle Packing, the best known d is also optimal under SETH, thus we break
this lower bound at a modest cost in accuracy. Our scheme is based on a new combinatorial
lemma, which we present in Section 4.2, and which we believe to be of independent interest.
Roughly speaking, we prove that, given a graph G and a tree decomposition T of G of width w,
we can very efficiently—that is, in polynomial time—partition the vertex set of G into p subsets
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of roughly the same size (for any p that we choose) so that the deletion of any of them reduces
the width of T by roughly w/p.

Lastly, we give our second scheme in Section 4.4, where we show how to combine the
results given in Section 3 to obtain constant-factor single-exponential (in w) time approximation
algorithms for the problems studied in that section—such as Directed Feedback Vertex
Set—which do not admit single-exponential (in w) time exact algorithms under the ETH. Notice
that here we consider these problems when the parameter is w rather than k, yet the algorithms
for the parameterization by k will come in handy.

4.1 Tree Decomposition Maintenance and Composability

In Section 4.2, the deletion problems in which we will be interested will need to admit a
linear-vertex kernel with an additional property, defined as follows.

Definition 4.1. Let Π be a graph problem parameterized by the solution size k. We say that a
kernelization algorithm of Π admits a tree decomposition maintenance procedure if, given any
instance (I, k) of Π coupled with a tree decomposition T of the graph G ∈ I, a tree decomposition
T ′ of the graph G′ ∈ I ′ whose width is at most that of T can be computed in polynomial time,
where (I ′, k′) is the output of the kernelization algorithm on (I, k).

In particular, all problems where the output graph is a minor of the input graph (which is
the case with many known kernels) admit a tree decomposition maintenance procedure, as we
state below.

Lemma 4.1. Let Π be a graph problem parameterized by the solution size k. Then, any
kernelization algorithm of Π where the output graph is a minor4 of the input graph admits a
linear time tree decomposition maintenance procedure.

Towards the proof of this lemma, we will make use of the following straightforward and
well-known observation (see, e.g., [CFK+15]).

Observation 4.1 (Folklore). Let G be a graph, and let s = (s1, s2, . . . , st) for some t ∈ N0 be
a sequence of operations (consisting of vertex deletions, edge deletions and edge contractions)
performed on G to obtain a graph G′ that is a minor of G. Then, there exist subsets D ⊆ V (G)
and W ⊆ E(G), and a collection S of connected subsets of G− (D ∪W ), such that G′ equals
the graph obtained from G− (D ∪W ) by contracting, for all S ∈ S, the edges of any spanning
tree of (G− (D ∪W ))[S]. Moreover, S, D and W can be computed in linear time.

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. We now describe the tree decomposition maintenance procedure. To this
end, let G be the input graph having a tree decomposition T = (T, β) of width at most w, and let
s = (s1, s2, . . . , st) for some t ∈ N0 be the sequence of operations (consisting of vertex deletions,
edge deletions and edge contractions) performed by the kernelization algorithm on G so as to
obtain its output graph G′ as a minor of G. Having the sequence s, we can compute in linear time
the collection S and subsets D,W described in Observation 4.1. For every connected set S ∈ S,
let vS denote the vertex in G′ that is yielded by the contraction of the edges of some spanning
tree of (G− (D∪W ))[S]. Then, we define a tree decomposition T ′ = (T ′, β′) of G′ as follows. We
let T ′ = T , and for every x ∈ V (T ′), we let β′(x) = (β(x)\ (D∪ (

⋃
S∈S S)))∪{vS : S∩β(x) 6= ∅}.

It is straightforward to verify that T ′ is a tree decomposition of G′ of width at most that of T ,
and it is clear that it can be computed in linear time. This completes the proof.

4More precisely, we implicitly also require to be able to trace the vertex deletion, edge deletion and edge
contraction operations in the input graph that yield the output graph.
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Many known kernels for graph problems satisfy the requirement that the output graph is a
(traceable) minor of the input graph. In particular, we highlight several such problems relevant
to our main scheme in the following proposition.

Proposition 4.2. Each of the following problems, when parameterized by the solution size k,
admits a 1-approximate linear-vertex kernel of size at most ck where the output graph is a minor of
the input graph: Vertex Cover for c = 2 [CKJ01, NT74]; Component Order Connectivity
for c = 2` [KL16]; Bounded-Degree Vertex Deletion for c = d3 + 4d2 + 5d+ 3 [Xia17].

Thus, we have the following corollary of Lemma 4.1 and Proposition 4.2.

Corollary 1. Each of the following problems, when parameterized by the solution size k, admits
a 1-approximate linear-vertex kernel of size at most ck with a tree decomposition maintenance
procedure: Vertex Cover for c = 2; Component Order Connectivity for c = 2`k;
Bounded-Degree Vertex Deletion for c = d3 + 4d2 + 5d+ 3.

We remark that when the problems are parameterized by w (treewidth), k is not part
of the input. So, when we will later describe our scheme, we may consider every possible
k ∈ {0, 1, . . . , n}, and, in fact, will only need to “care about” producing a (1 + ε)-approximate
solution in the iteration where k is the optimal solution size. We will do this in a slightly more
clever way, so as not to incur an extra factor of n in the running time.

For a deletion problem to fit our scheme, we will also need it to satisfy a composability
property, defined as follows (where we differentiate between minimization and maximization
problems). We remark that we define composability so that it captures the problems solved in
this paper, but, given other problems of interest, it might be possible to extend or modify it to
capture these problems so that our scheme will still work.

Definition 4.2. A minimization graph problem Π is composable if any instance I of Π, where
G ∈ I denotes the graph in I, and any subset D ⊆ V (G), satisfy the following two properties: (i)
Every solution S? for I is a subset of V (G), and S? \D is a solution for the subinstance of I
induced by G−D; (ii) Given any solution S to the subinstance of I induced by G−D, D ∪ S is
a solution for I.

Definition 4.3. A maximization graph problem Π is d-composable if any instance I of Π, where
G ∈ I denotes the graph in I, and any subset D ⊆ V (G), satisfy the following two properties: (i)
Every solution S? for I is a collection of pairwise disjoint subsets of V (G), each of size at most
d, and {S ∈ S? : S ∩D = ∅} is a solution for the subinstance of I induced by G−D; (ii) Any
solution S for the subinstance of I induced by G−D is also a solution for I.

Now, we observe that for any hereditary family of graphs F , the corresponding F-Vertex
Deletion problem is composable, as stated below.

Observation 4.2. Let F be a hereditary graph family. Then, the F-Vertex Deletion problem
is composable.

This directly yields that all the problems considered in Corollary 1 are composable, as well
as additional problems that will be relevant to Section 4.4. Moreover, it is trivial that for any
family F of graphs, each on at most d vertices, the F-Packing problem is d-composable. Thus,
we have the following corollary.

Corollary 2. Each of the following problems is composable: Vertex Cover; Component
Order Connectivity; Bounded-Degree Vertex Deletion; Directed (Subset) Feed-
back Vertex Set; Directed Odd Cycle Transversal; Directed Multiway Cut.
Moreover, for every family F of graphs, each on at most d vertices, the F-Packing problem is
d-composable.
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4.2 Computation of Pairwise Disjoint “Treewidth Hitting Sets”

In this section, we prove a new combinatorial lemma, which might be of independent interest.
Roughly speaking, we prove that, given a graph G and a tree decomposition T of G of width w,
we can partition the vertex set of G into p subsets of roughly the same size (for any p that we
choose) so that the deletion of any of them reduces the width of T by roughly w/p.

We formalize the notion of a hitting set that will play a central role in this section as follows.
Here, the implicit assumption that TD is a tree decomposition of G−D is trivial to verify.

Definition 4.4. Let G be a graph with a tree decomposition T = (T, β) of width w, h ∈ N. A
subset D ⊆ V (G) is a (T , h)-hitting set if the width of the tree decomposition TD = (TD, βD)
of G − D, defined as follows, is at most w − h: TD = T and for every node x ∈ V (TD),
βD(x) = β(x) \D.

Towards the computation of a collection of pairwise disjoint hitting sets with the properties
that we require, we make use of an algorithm that, given a graph G and a tree decomposition
T of G, properly colors the graph derived from G by transforming each bag of T into a clique.
More directly, we define the colorings we are interested in as follows.

Definition 4.5. Let G be a graph with a tree decomposition T = (T, β) of width w. For every
` ∈ N, a coloring col : V (G)→ {1, 2, . . . , w + `} is (`, T )-proper if for every node x ∈ V (T ) and
distinct vertices u, v ∈ β(x), col(u) 6= col(v).

We now present a greedy algorithm to produce (`, T )-proper colorings with the required
properties, called ColorALG. Given a graph G and a tree decomposition T = (T, β), and an
integer ` > w, the algorithm works as follows.

1. Denote V (T ) = {x1, x2, . . . , xt} where t = |V (T )| and the nodes are ordered in preorder.

2. Allocate a table M with an entry M [i] for every i ∈ {1, 2, . . . , t}.

3. Initialize M [1] = f where f : β(x1)→ {1, 2, . . . , w + `} is an arbitrary injective function.

4. For every i ∈ {1, 2, . . . , t}:

(a) If the parent y of xi is a join node: M [i] = M [i− 1].
(b) If the parent y of xi is an introduce node: M [i] = M [i− 1].
(c) If the parent y of xi is a forget node: Let f ′ = M [i−1] and {v} = β(xi)\β(y). Let c ∈
{1, 2, . . . , w+`}\{f ′(u) : u ∈ β(y)} be a color such that |{v ∈ domain(f ′) : f ′(v) = c}|
is minimized (break ties arbitrarily). Define f : {v} ∪ domain(f ′)→ {1, 2, . . . , w + `}
as follows: f(v) = c and for every other vertex u ∈ domain(f ′), f(u) = f ′(u).

5. Output M [t].

We first state the following immediate observation.

Observation 4.3. The time complexity of ColorALG is O(|V (T )| · (w + `)).

Lemma 4.2. Given a graph G with a nice tree decomposition T = (T, β) and an integer ` ∈ N,
the output col of ColorALG is a (w + `, T )-proper coloring.

Proof. For every i ∈ {1, 2, . . . , t} where t = |V (T )|, denote Gi = G[
⋃i
j=1 β(xj)]. Moreover, let fi

denote the function stored at M [xi]. We will say that fi is a partial (`, T )-proper coloring if its
domain is V (Gi), and for every node xj ∈ V (T ) where j ≤ i and distinct vertices u, v ∈ β(xj),
fi(u) 6= fi(v). We prove the following claim by induction on i.

Claim 4.1. For every i ∈ {1, 2, . . . , t}, fi is a partial (w + `, T )-proper coloring.
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Proof of Claim 4.1. In the basis, where i = 1, f1 is injective, which trivially implies the claim.
Now, suppose that the claim is correct for i − 1 ≥ 1, and let us prove it for i. Let y denote
the parent of xi in T . In case y is a join or introduce node, the correctness directly follows
from the inductive hypothesis. Thus, we next suppose that y is a forget node. This means that
v /∈ V (Gi−1), and hence does not belong to the domain of fi−1. Moreover, it is assigned (by fi)
a color c that is not assigned to any other vertex in β(xi) by fi−1. Therefore, combined with the
inductive hypothesis, we derive that the claim is correct for i.

The lemma follows from this claim by setting i = t, as then Gi = G.

Now, we prove that when ` is chosen appropriately, no color is used by ColorALG “too many”
times.

Lemma 4.3. Given a graph G with a nice tree decomposition T = (T, β) and ` ∈ N, the output
col of ColorALG satisfies the following property: for every c ∈ {1, 2, . . . , w + `}, |{v ∈ V (G) :
col(v) = c}| ≤ dn/`e.

Proof. For every i ∈ {1, 2, . . . , t} where t = |V (T )|, denote Gi = G[
⋃i
j=1 β(xj)] and ni = |V (Gi)|.

Moreover, let fi denote the function stored at M [xi]. We prove the following claim by induction
on i.

Claim 4.2. For every i ∈ {1, 2, . . . , t}, |{v ∈ V (G) : fi(v) = c}| ≤ dni/`e.

Proof of Claim 4.2. In the basis, where i = 1 and dni/`e = 1, and as f1 is injective, each color is
indeed used at most once. Now, suppose that the claim is correct for i− 1 ≥ 1, and let us prove
it for i. Let y denote the parent of xi in T . In case y is a join or introduce node, the correctness
directly follows from the inductive hypothesis. Thus, we next suppose that y is a forget node.
Let c be the color chosen to be assigned to v ∈ β(xi) \ β(y). For any other color, the correctness
directly follows from the inductive hypothesis. So, it remains to prove that |{u ∈ V (G) : fi(u) =
c}| ≤ dni/`e. Note that |{u ∈ V (G) : fi−1(u) = c}| + 1 = |{u ∈ V (G) : fi(u) = c}| and
ni = ni−1 + 1, thus it suffices to prove that |{u ∈ V (G) : fi−1(u) = c}| ≤ d(ni−1 + 1)/`e − 1.
Targeting a contradiction, suppose that this claim is false. By the choice of c (see description of
ColorALG) and because |{1, 2, . . . , w + `} \ {fi−1(u) : u ∈ β(y)}| ≥ w + `− (w − 1) = `+ 1, this
means that there exist at least `+ 1 colors in {1, 2, . . . , w + `} that are each assigned by fi−1 at
least d(ni−1 + 1)/`e times. However, this yields that fi−1 assigns (`+ 1) · d(ni−1 + 1)/`e > ni−1
colors (including repetitions), which is impossible as the size of its domain is ni−1 (see, e.g., the
proof of Lemma 4.2).

The lemma follows from this claim by setting i = t, as then Gi = G and ni = n.

Now, we give a simple packing lemma, which will be used on top of ColALG.

Lemma 4.4. Let U = {u1, u2, . . . , un} be a collection of n items, where item ui has weight
w(ui), and let g ∈ N. Let M = maxni=1w(ui). Then, there exists a partition P = (P1, P2, . . . , Pg)
of U such that for every i ∈ {1, 2, . . . , g}, |Pi| ≥ bng c and w(Pi) ≤ w(U)

g +M . Moreover, such a
P can be computed in time O(n(logn+ log g)).

Proof. Consider the following greedy algorithm. Reorder the items in U so that w(u1) ≥
w(u2) ≥ · · · ≥ w(un). Initialize P1 = P2 = · · · = Pg = ∅. Now, for i = 1, 2, . . . , dn/ge,
perform the following operations. Order the sets P1, P2, . . . , Pg as Pq1 , Pq2 , . . . , Pqg so that
w(Pq1) ≤ Pq2 ≤ · · · ≤ w(Pqg). Then, for every t = 1, 2, . . . , x where x = g if i · g ≤ n and
x = (n mod g) otherwise (which may correspond only to the iteration where i = dn/ge): insert
u(i−1)·g+t into Pqt . This completes the description of the algorithm.

Clearly, the algorithm can be executed in time O(n(logn + log g)). Moreover, it is clear
that P = (P1, P2, . . . , Pg) is a partition of U , and as in each iteration corresponding to i, one
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item exactly is inserted to each set in P, we immediately have that for every i ∈ {1, 2, . . . , g},
|Pi| ≥ bng c. For every s ∈ {1, 2, . . . , n}, denote Us = {u1, u2, . . . , us}. To complete the proof, we
prove the following claim using induction on i.

Claim 4.3. For every s ∈ {1, 2, . . . , n}, after the sth item is inserted, the maximum difference
between the weight of any two sets in P is M .

Proof of Claim 4.3. In the basis, where s = 1, only one item has been inserted, and therefore the
claim trivially holds. Now, suppose that the claim is correct for s−1 ≥ 1, and let us prove it for s.
Let i = dn/ge and t = (s mod g) + 1. So, us is inserted into Pqt . From the inductive hypothesis
and as only the weight of Pqt is changed, for every j, j′ ∈ {q1, q2, . . . , qg}\{qt}, |w(Pqj )−w(Pqj′ )| ≤
M . So it remains prove that for every qj ∈ {1, 2, . . . , g} \ {qt}, |w(Pqt) − w(Pqj )| ≤ M . We
consider two cases. First, suppose that j > t. Then, by the ordering in the ith iteration,
we have that w(Pqt \ {us}) ≤ w(Pqj ). Hence, w(Pqt) − w(us) ≤ w(Pqj ), which means that
w(Pqt) ≤ w(Pqj ) +M . Moreover, from the inductive hypothesis, w(Pqj ) ≤ w(Pqt \ {us}) +M ,
and therefore w(Pqj ) ≤ w(Pqt) +M . Second, suppose that j < t. Let ur be the last item inserted
into Pqj . So, by the ordering of U , w(ur) ≥ w(us). Then, by the ordering in the ith iteration,
we have that w(Pqj \ {ur}) ≤ w(Pqt \ {us}). Hence, w(Pqj ) − w(ur) ≤ w(Pqt) − w(us), which
means that w(Pqj ) ≤ w(Pqt) + w(ur) ≤ w(Pqt) +M . Moreover, from the inductive hypothesis,
w(Pqt \ {us}) ≤ w(Pqj \ {ur}) +M , and hence w(Pqt) ≤ w(Pqj ) +w(us)−w(ur) +M . Therefore,
because w(ur) ≥ w(us), we have that w(Pqt) ≤ w(Pqj ) + M . This completes the proof of the
claim.

At the end of the algorithm, the average weight of a set in P is w(U)
g , and hence there exists

a set in P whose weight is at most w(U)
g . Thus, by Claim 4.3 with i = n, the maximum weight of

a set in P is at most w(U)
g +M . This completes the proof of Lemma 4.4.

We are now ready to prove our combinatorial result by using Observation 4.3, Lemma 4.2,
Lemma 4.3 and Lemma 4.4.

Theorem 4.1. Let G be a graph with a nice tree decomposition T = (T, β) of width w. For every
0 < α < 1 and ` ∈ N, there exists a partition V = (V1, V2, . . . , Vd 1

α
e) of V (G) such that, for every

i ∈ {1, 2, . . . , d 1
αe}: (i) |Vi| ≤ dαne+ dn/`e; (ii) Vi is a (T , bα(w+ `)c− `)-hitting set. Moreover,

such a partition can be computed in time O(|V (T )| · (w + `) + (w + `) · (log(w + `) + log( 1
α))).

Proof. The algorithm works as follows. First, call ColorALG on (G, T , `) to obtain col, which,
by Lemma 4.2, is an (`, T )-proper coloring. Then, let U = {u1, u2, . . . , uw+`} be a collection of
w + ` items, and for each i ∈ {1, 2, . . . , w + `}, define the weight of ui, denoted by w′(ui), to be
|{v ∈ V (G) : col(v) = i}|. Let g = d 1

αe. Call the algorithm in Lemma 4.4 to obtain a partition
P = (P1, P2, . . . , Pg) of U . Lastly, for every i ∈ {1, 2, . . . , d 1

αe}, define Vi = {v ∈ V (G) : ucol(v) ∈
Pi}. So, V = (V1, V2, . . . , Vd 1

α
e) is a partition of V (G).

By Observation 4.3 and Lemma 4.4, the time complexity is indeed O(|V (T )| · (w + `) + (w +
`) · (log(w + `) + log( 1

α))). Now, we prove that the two properties in the theorem statement
hold. To this end, consider some i ∈ {1, 2, . . . , d 1

αe}. We first prove that Property (i) holds. For
this purpose, first note that by Lemma 4.3, for every j ∈ {1, 2, . . . , w+ `}, |{v ∈ V (G) : col(v) =
j}| ≤ dn/`e. Therefore, the maximum weight M of an item in U is at most dn/`e. By Lemma
4.4, this means that the weight of every set in P is at most w(U)/g +M ≤ dαne+ dn/`e. Since
|Vi| equals the weight of Pi, the proof that Property (i) holds is complete.

We now prove that Property (ii) holds. To this end, consider some node x ∈ V (T ). By
Lemma 4.4, for every i ∈ {1, 2, . . . , d 1

αe}, |Pi| ≥ bα(w + `)c. Denote Pi = {uj1 , uj2 , . . . , uj|Pi|}.
Because col is an (`, T )-proper coloring, we know that it assigns to each vertex in β(x) a
different color, and therefore, to color β(x), it must use all except for at most w + ` − |β(x)|
colors from {1, 2, . . . , w + `}. In particular, it must use at least |Pi| − (w + ` − |β(x)|) ≥
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bα(w+ `)c − (w− |β(x)|+ `) colors from {j1, j2, . . . , j|Pi|}. Observe that, by the definition of Vi,
Vi contains at least bα(w + `)c − (w − |β(x)|+ `) vertices of β(x). So, we have that

|β(x) \ Vi| ≤ |β(x)| − (bα(w + `)c − (w − |β(x)|+ `))
≤ w − (bα(w + `)c − `).

This completes the proof.

4.3 Deterministic Algorithms Improving Upon SETH-based Lower Bounds

Our scheme will be built upon Theorem 4.1. For its presentation for deletion problems, where we
make use of a linear-vertex kernel, we need to compute a parameter k that closely approximates
the size of an optimal solution. For this purpose, we will use the following lemma.

Lemma 4.5. Let Π be a graph minimization problem that, for every 0 < ε′ < 1, admits an
O(Tε′)-time algorithm that, given an instance I of Π and k ∈ N,5 if opt(I) ≤ k, then it returns
a solution for I of size at most (1 + ε)k.6 Then, for every 0 < ε < 1 and 0 < δ < ε, Π admits a
(1 + ε)-approximation algorithm that runs in time O(1

δ log |I| · Tε′) where ε′ = ε− δ.

Proof. The algorithm works as follows. For i = 1, 2, . . . , x, where x is the smallest integer
such that (1 + δ

2)x ≥ |I|, call the algorithm in the supposition of the lemma on I with ε′ and
k = (1 + δ

2)i, and let Si be its output. Lastly, among all sets Si, 1 ≤ i ≤ x, that are solutions,
return one of minimum size.

First, notice that x = O(1
δ log |I|), and hence the time complexity of the algorithm we

described is O(1
δ log |I| · Tε′). Now, notice that we consider an iteration where opt(I) ≤ k ≤

(1 + δ
2opt(I). In that iteration, because opt(I) ≤ k and δ

2ε <
δ
2 , we are guaranteed to compute a

solution whose size is at most

(1+ε′)k ≤ (1+ε′)(1+δ

2)opt(I) = (1+ε−δ)(1+δ

2)opt(I) = (1+ε+δ

2ε−
δ

2−
δ2

2 )opt(I) ≤ (1+ε)opt(I).

Because the algorithm returns the solution of minimum size among all those it computes, it will
returns a solution of size at most (1 + ε)opt(I).

We further adapt Lemma 4.5 as follows.

Lemma 4.6. Let c > 0. Let Π be a parameterized graph minimization problem, parameterized
by the treewidth of the input graph, that admits (i) an α-approximate ck-vertex kernel having
a tree decomposition maintenance procedure that runs in polynomial time, and (ii) for every
0 < ε′ < 1, an O(Tε′(I))-time parameterized algorithm that, given an instance I of Π and k ∈ N,
if opt(I) ≤ k and the graph G ∈ I has at most ck vertices, then it returns a solution for I of size
at most (1 + ε′)k. Then, for every 0 < ε < 1 and 0 < δ < ε, Π admits an α(1 + ε)-approximation
algorithm that runs in time O(1

δ log |I| · Tε′(I) + nO(1)) where ε′ = ε− δ.

Proof. Due to Lemma 4.5, it suffices to prove that for every 0 < ε′ < 1, Π admits anO(Tε′+nO(1))-
time algorithm that, given an instance I of Π and k ∈ N, if opt(I) ≤ k, then it returns a solution
for I of size at most (1 + ε′)k. We now describe such an algorithm. To this end, consider some
instance I of Π.

1. Call the reduction procedure of the kernelization algorithm given in supposition (i) along
with the treewidth maintenance procedure to obtain an instance I ′ of Π and k′ ≤ k, where
the graph G′ ∈ I ′ has at most ck′ vertices.7

5We assume that maximum size of a solution for I is |I|.
6If k < opt(I), the algorithm can return anything.
7Notice that having the treewidth mainenance procedure is required here, else we obtain an instance of the

unparameterized version of Π rather than of Π, which the algorithm given in supposition (ii) does not solve.
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2. Call the parameterized algorithm given in supposition (ii) to solve I ′, and let S′ denote
the solution.

3. Call the lifting procedure of the kernelization algorithm given in supposition (i) with S′ to
obtain a solution S for I.

Clearly, the algorithm we have just described runs in time O(Tε′(I ′) +nO(1)) = O(Tε′(I) +nO(1))
(where Tε′(I ′) ≤ Tε′(I) since the reduction and tree decomposition maintenance procedures
do not increase the measures of the input instance). Now, notice that |S′| ≤ (1 + ε′)k′ =
(1 + ε′) k′

opt(I′) · opt(I ′). Thus, because the lifting procedure incurs an extra factor of α, we have
that |S| ≤ α(1 + ε′) k′

opt(I′) · opt(I). Recall that we consider only reduction procedures that do
not increase the ratio between the parameter and the optimum. Thus, k′

opt(I′) ≤
k

opt(I) , which
yields that |S| ≤ α(1 + ε′)k.

We are now ready to present the two main theorems of this subsection.

Theorem 4.2. Let Π be a composable parameterized graph minimization problem, parameterized
by the treewidth of the input graph, that admits (i) an α-approximate ck-vertex kernel having a
tree decomposition maintenance procedure that runs in polynomial time, and (ii) a parameterized
algorithm that runs in time O(bwnp). Then, for every fixed constant ε > 0, Π admits an
α(1 + ε)-approximation algorithm that runs in time O(b(1−

ε
c−1 )w+o(w)np + nO(1)).

Proof. First, notice that when w ≤ logn, then O(bwnp) = nO(1), and the proof is com-
plete by simply using the algorithm given by supposition (ii). Thus, we assume that w >
logn. In this case, due to the 2o(w) factor in the time complexity, it suffices to attain
O(b(1−

ε
c−1 )w+o(w)np logO(1) n+ nO(1)). Therefore, due to Lemma 4.6, it suffices to prove for

every 0 < ε < 1, Π admits an O(b(1−
ε
c−1 )w+o(w)np + nO(1))-time parameterized algorithm that,

given an instance I of Π and k ∈ N, if opt(I) ≤ k and the graph G ∈ I has at most ck vertices,
then it returns a solution for I of size at most (1 + ε − 1

logn)k. We now describe such an
algorithm, based on Theorem 4.1. Let G be the input graph (where |V (G)| ≤ ck), having a tree
decomposition T = (T, β) of width w. By Proposition 4.1, we may assume that T is a nice tree
decomposition, and |V (T )| ≤ 16(w + 2)n. Then, the algorithm works as follows.

1. Denote α = ε
c−1 −

q
log logn (where q is a fixed constant that will be determined later), and

` = dlog logne = o(w) (because w > logn). Then, use the algorithm in Theorem 4.1 to
compute a partition V = (V1, V2, . . . , Vd 1

α
e) of V (G) such that, for every i ∈ {1, 2, . . . , d 1

αe}:
(i) |Vi| ≤ dαne+ dn/`e; (ii) Vi is a (T , bα(w + `)c − `)-hitting set.

2. For every i ∈ {1, 2, . . . , d 1
αe}:

(a) Denote Gi = G− Vi, and let Ti = TVi (see Definition 4.4).
(b) Call the parameterized algorithm given by supposition (ii) on the subinstance induced

by Gi and Ti. Let Si denote the solution.

3. Let î ∈ {1, 2, . . . , d 1
αe} be such that |Ŝ

i
∪ V̂

i
| is minimum. Return Ŝ

i
∪ V̂

i
.

First, notice that since Π is composable, Ŝ
i
∪ V̂

i
is indeed a solution. We now consider the

time complexity of the algorithm. By Theorem 4.1, Step 1 is executed in time O(|V (T )| · (w +
`) + (w+ `) · log(w+ `)). For every i ∈ {1, 2, . . . , d 1

αe}, because Vi is a (T , bα(w+ `)c− `)-hitting
set, the width of Ti is at most w− (bα(w+ `)c− `) ≤ (1− ε

c−1)w+o(w), and hence each iteration
of Step 2 is executed in time O(b(1−

ε
c−1 )w+o(w)np). Lastly, Step 3 is executed in linear time,

hence overall the time complexity is within the required bound.
It remains to prove that |Ŝ

i
∪ V̂

i
| ≤ (1 + ε − 1

logn)k. To this end, consider some optimal
hypothetical solution S?. Then, |S?| ≤ k. By the pigeon-hole principle, there exists i ∈
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{1, 2, . . . , d 1
αe}, denoted by i?, such that |S? ∩ Vi| ≥ bα|S?|c. Because |Ŝ

i
∪ V̂

i
| ≤ |Si? ∪ Vi? |,

|Vi? | ≤ dαne+ dn/`e and n ≤ ck, it suffices to prove that |Si? | ≤ (1 + ε− 1
logn)k−dαcke−dck/`e.

Because Π is composable, S? \Vi? is a solution for the subinstance induced by Gi? and Ti? , and as
Si? is an optimal solution for this subinstance, we have that |Si? | ≤ |S? \Vi? | ≤ |S?|−|S?∩Vi? | ≤
k−bαkc ≤ (1−α)k+1. Hence, it suffices to prove that (1−α)k+1 ≤ (1+ε− 1

logn)k−dαcke−dck/`e.
Now, note that

(1 + ε− 1
logn)k − dαcke − dck/`e ≥ (1 + ε− 1

logn)k − αck − ck/`− 2
≥ (1 + ε− 1

logn)k − εck
c−1 + qck

log logn −
ck

dlog logne − 2

= (1− ε
c−1 + q

log logn)k + q(c−1)k
log logn −

ck
dlog logne −

k
logn − 2

≥ (1− ε
c−1 + q

log logn)k + 1
= (1− α)k + 1.

Here, the third inequality follows by choosing a large enough (but a fixed constant) q and since
ck ≥ n. This completes the proof.

We remark that the proof of our second theorem is similar (though not identical) to the
proof of the first theorem, mainly as both are based on Theorem 4.1.

Theorem 4.3. Let Π be a d-composable parameterized graph maximization problem, parameter-
ized by the treewidth of the input graph, that admits a parameterized algorithm that runs in time
O(bwnp). Then, for every fixed constant ε > 0, Π admits a (1 + ε)-approximation algorithm that
runs in time O(b(1−

ε
d

)w+o(w)np + nO(1)).

Proof. First, notice that when w ≤ logn, then O(bwnp) = nO(1), and the proof is complete by
simply using the algorithm given by supposition (ii). Thus, we assume that w > logn. We
now describe the algorithm, based on Theorem 4.1. Let G be the input graph, having a tree
decomposition T = (T, β) of width w. By Proposition 4.1, we may assume that T is a nice tree
decomposition, and |V (T )| ≤ 16(w + 2)n. Then, the algorithm works as follows.

1. Denote α = ε
d (where q is a fixed constant that will be determined later), and ` =

dlog logne = o(w) (because w > logn). Then, use the algorithm in Theorem 4.1 to
compute a partition V = (V1, V2, . . . , Vd 1

α
e) of V (G) such that, for every i ∈ {1, 2, . . . , d 1

αe}:
(i) |Vi| ≤ dαne+ dn/`e; (ii) Vi is a (T , bα(w + `)c − `)-hitting set.

2. For every i ∈ {1, 2, . . . , d 1
αe}:

(a) Denote Gi = G− Vi, and let Ti = TVi (see Definition 4.4).
(b) Call the parameterized algorithm given by supposition (ii) on the subinstance induced

by Gi and Ti. Let Si denote the solution.

3. Let î ∈ {1, 2, . . . , d 1
αe} be such that |Ŝ

i
| is maximum. Return Ŝ

i
.

First, notice that since Π is composable, Ŝ
i

is indeed a solution. We now consider the time
complexity of the algorithm. By Theorem 4.1, Step 1 is executed in time O(|V (T )| · (w + `) +
(w+ `) · log(w+ `)). For every i ∈ {1, 2, . . . , d 1

αe}, because Vi is a (T , bα(w+ `)c − `)-hitting set,
the width of Ti is at most w − (bα(w + `)c − `) ≤ (1− ε

d)w + o(w), and hence each iteration of
Step 2 is executed in time O(b(1−

ε
d

)w+o(w)np). Lastly, Step 3 is executed in linear time, hence
overall the time complexity is within the required bound.

It remains to prove that |Ŝ
i
| ≥ (1− ε)opt(I). To this end, consider some optimal hypothetical

solution S?. Then, |S?| = opt(I). By the pigeon-hole principle and because Π is d-composable,
there exists i ∈ {1, 2, . . . , d 1

αe}, denoted by i?, such that |(
⋃
S?) ∩ Vi| ≤ bαd|S?|c. Because
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|Ŝ
i
| ≥ |Si? |, it suffices to prove that |Si? | ≥ (1 − ε)opt(I). Because Π is composable, {S ∈

S? : S ∩ Vi? = ∅} is a solution for the subinstance induced by Gi and Ti, and as Si? is
an optimal solution for this subinstance, we have that |Si? | ≥ |{S ∈ S? : S ∩ Vi? = ∅}| ≥
|S?| − |(

⋃
S?) ∩ Vi? | ≥ opt(I) − bαdopt(I)c ≥ (1 − αd)opt(I). Hence, it suffices to prove that

(1− ε)opt(I) ≤ (1− αd)opt(I). Now, note that

(1− αd)opt(I) = (1− ε

d
d)opt(I) = (1− ε)opt(I).

This completes the proof.

Lastly, before presenting concrete applications, let us state known results regarding the
parameterized complexity of the problems in Corollary 2 with respect to treewidth.

Proposition 4.3. Each of the following problems admits a O(bwn)-time algorithm: Vertex
Cover where b = 2 [CFK+15]; Component Order Connectivity where b = ` [DDvtH16];
Bounded-Degree Vertex Deletion where b = (d + 2);8 Triangle Packing where b =
2 [vRBR09, vRBvL+18].

Based on Corollaries 1 and 2, and Proposition 4.3, we have the following as a corollary of
Theorems 4.2 and 4.3.

Corollary 3. For every fixed constant ε > 0, each of the following problems admits a (1 + ε)-
approximation algorithm that runs in time bw+o(w)n + nO(1): Vertex Cover where b =
21−ε Component Order Connectivity where b = `1−

ε
2`−1 ; Bounded-Degree Vertex

Deletion where b = (d+ 2)1− ε
d3+4d2+5d+1 ; F-Packing for every graph family F that consists

of graphs on at most d vertices where b = b
1− ε

d
F , where bF is the best known constant such that

F-Packing is solvable in time O(bwFn). For example, for Triangle Packing bF = 2.

Here, it is worthwhile to note that for all of the problems in Corollary 3, the stated b (in that
corollary) is also optimal under the SETH. Indeed, this is the case for Vertex Cover [LMS18a],
and because Vertex Cover is the special case of Component Order Connectivity where
` = 1 and of Bounded-Degree Vertex Deletion where d = 0, the same holds for these two
problems as well. Moreover, this is also the case for Triangle Packing [LMS18a].

We remark that the authors of [FLL+19] have recently proved that Cluster Vertex
Deletion admits a (1 + ε)-approximate linear-vertex kernel,9 and hence, our scheme also yields
for this problem an O(b̂w+o(w)n + nO(1))-time (1 + ε)-approximate parameterized algorithm
where b̂ is strictly smaller than the best known b for which the problem can be solved in time
O(bwn). As this result is yet unpublished, we have not included it in Corollary 3, but yet wanted
to comment that the requirement in Theorem 4.2 to have an approximate kernel rather than an
exact kernel does make it more powerful.

4.4 Deterministic Algorithms Improving Upon ETH-based Lower Bounds

We first prove the main theorem of this subsection. We remark that some of the arguments in
this proof resemble those of [HKP20] (who used them to design approximate Turing kernels).

Theorem 4.4. Let Π be a composable parameterized minimization graph problem that is closed
under disjoint union and that, when parameterized by the solution size k, admits a c-approximation
parameterized algorithm that runs in time O(bknp). Then, for every fixed constant ε > 0, Π
admits a (2c+ ε)-approximation algorithm that runs in time O(b

2cw
ε w · np+2).

8Here, the algorithm is a straightforward extension of the algorithm for Vertex Cover, where for each vertex
in the bag we store whether it is deleted, and if not, what is its degree (between 0 and d).

9It is an open problem whether this problem admits a (1-approximate) linear-vertex kernel [FLL+19].
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Towards the proof of this theorem, we will prove the following lemma

Lemma 4.7. Let Π be a composable parameterized graph minimization problem that, when
parameterized by the solution size k, admits a c-approximation parameterized algorithm that runs
in time O(bknp). Then, for every fixed constant ε > 0, there exists an O(|V (T )|b

2cw
ε np)-time

algorithm that given an I instance of Π where G ∈ I is the graph, having a tree decomposition
T = (T, β) where T is rooted so that each node has at most two children, outputs either (i)
a solution of size at most c · opt(I), or (ii) a node x ∈ V (T ) such that the optimum of the
subinstance of I induced G[γ(x)] and Tx is at least w

ε along with a solution for this subinstance
of size at most 2cw

ε + w that contains β(x).

Proof. The algorithm works as follows. For every y ∈ V (T ), call the c-approximation parame-
terized algorithm in the supposition of the lemma on the subinstance of I induced by G[γ(y)]
and Ty with k = w

ε , and let Sy denote its output; if Sy is not a solution for this subinstance,
replace it by a dummy such that when its size is queried, it equals ∞. If |Sr| ≤ cw

ε where r is
the root of T , then output Sr. Else, let x be some node in T such that |Sx| > cw

ε , but for every
child y of x in T , |Sy| ≤ cw

ε (observe that such a node x exists since |Sr| ≤ cw
ε , and for every

leaf ` of T , |S`| ≤ w). Then, output x and β(x)∪
⋃
y Sy where y ranges over the children of x in

T (of which there are at most two). This completes the description of the algorithm. Clearly, its
time complexity is O(|V (T )|b

2cw
ε np).

First, consider the case where the algorithm returns Sr. So, if opt(I) ≥ w
ε , then Sr, being of

size at most cw
ε and verified to be a solution, is a c-approximate solution for I, and hence the

algorithm complies with case (i) in the lemma. Else, opt(I) < w
ε = k′, then the correctness of

the parameterized algorithm in the supposition implies that Sr must be a c-approximate solution
for I, and hence the algorithm again complies with case (i).

Now, consider the case where the algorithm returns x and β(x)∪
⋃
y Sy, which we will denote

by S′. Then, because |Sy| ≤ cw
ε for each of the (at most two) children y of x in T , we have that

|S′| ≤ 2cw
ε + w. Moreover, because Π is composable and as each Sy where y is a child of x was

verified to be a solution for the subinstance of I induced G[γ(y)] and Ty (else its size should
have been ∞), S′ is a solution for the subinstance of I induced G[γ(x)] and Tx, and clearly it
contains β(x). Lastly, because |Sx| > cw

ε , the correctness of the parameterized algorithm in the
supposition implies that the optimum of the subinstance of I induced by G[γ(x)] and Tx is larger
than k = w

ε .

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. We first describe the algorithm. To this end, let G and T denote the
input graph and tree decomposition of G of width w, respectively. By Proposition 4.1, we may
assume that T is a nice tree decomposition, and |V (T )| ≤ 16(w + 2)n. So, the algorithm works
as follows.

1. Initialize i = 0, S0 = ∅, G0 = G and (T 0 = (T 0, β0)) = (T = (T, β)).

2. As long as V (T i) 6= ∅:

(a) Call the algorithm in Lemma 4.7 on the subinstance Ii of I induced by Gi and T i
to obtain either (i) a solution Ŝi of size at most c · opt(Ii), or (ii) a node xi ∈ V (T i)
such that the optimum of the subinstance of Îi induced Gi[γi(xi)] and T ixi is at least
w
ε along with a solution Ŝi to this subinstance of size at most 2cw

ε + w that contains
β(xi).

(b) In case (i), perform Si+1 ⇐ Si ∪ Ŝi, Gi+1 ⇐ (∅, ∅) (i.e., the empty graph) and let
T i+1 be its unique tree decomposition where the tree is empty. Increase i by 1.

37



(c) In case (ii), perform Si+1 ⇐ Si ∪ Ŝi, Gi+1 ⇐ Gi − γi(xi), and T i+1 ⇐ (T i+1, βi+1)
where T i+1 = T i − V (T ixi) and for every y ∈ V (T i+1), βi+1(y) = βi(y) \ γi(xi). (It
should be clear that the new T i+1 is a tree decomposition of the new Gi+1). Increase
i by 1.

3. Output Si.

Observe that Si =
⋃i
j=1(βj(xj) ∪ (Ŝj \ βj(xj))), and it satisfies the following property: the

set of connected components of G −
⋃i
j=1 β

j(xj) has a partition (C1, C2, . . . , Ci) (where each
Cj is a collection, possibly empty, of connected components of G−

⋃i
j=1 β

j(xj)) such that for
every j ∈ {1, 2, . . . , i}, Ŝj \ βj(xj) is a solution for the subinstance induced by Cj (because Π is
composable). Hence, since Π is closed under disjoint union, Si is a solution for I. Moreover,
for every j ∈ {1, 2, . . . , i} (possibly excluding j = i, in which case we obtain a c-approximate
solution for the corresponding subinstance), Ŝj is of size at most 2cw

ε +w, while the optimum of
the subinstance induced by G[βj(xj) ∪

⋃
C∈Cj V (C)] (and hence, since Π is composable, also of

the restriction of any optimal solution for I to this subinstace) is at least w
ε . Thus, since these

subinstances are pairwise disjoint, the approximation ratio is at most (2cw
ε + w)/(wε ) = (2c+ ε)

as stated in the lemma.
By Lemma 4.7, the time complexity of each iteration is O(|V (T ′)|b

2cw
ε np) for a subtree T ′ of

T (and where n is actually smaller than the original n). So, as there can be at most n iterations,
the total time complexity is O(n|V (T )|b

2cw
ε np) = O(b

2cw
ε wnp+2). This completes the proof.

As a corollary of Corollary 2, Theorem 4.4 and our results in Section 3, we derive the
following.

Corollary 4. For every fixed constant ε > 0, each of the following problems admits a (4 + ε)-
approximation algorithm that runs in time 2O(w) · nO(1): Directed (Subset) Feedback
Vertex Set, Directed Odd Cycle Transversal, Undirected Multicut.

Here, it is worthwhile to note that for two of the problems in Corollary 4, the stated b is
also known to be optimal under the ETH. Indeed, this is the case for Directed Feedback
Vertex Set [BKN+18], which implies that this is the case also for Directed Odd Cycle
Transveral because the former can be easily reduced to the latter while keeping the treewidth
the same (unless the treewidth was 1, in which case it can increase to 2): for every arc (u, v) in
the graph, add a new vertex wu,v and the arcs (u,wuv) and (wuv, v).

5 Approximating Weighted Instances

In this section, we present FPT-approximation algorithms for some well studied problems, such
as (Subset) Directed Feedback Vertex Set, Bidirected Multicut and Directed
Odd Cycle Transversal. More formally, assuming that the given instance admits a solution
SOPTk , that is a minimum weight solution of cardinality at most k, our algorithm computes
an (α, β)-approximate solution S to this instance, that is |S| ≤ αk and w(S) ≤ βw(SOPTk ),
for some constants α and β. We present some general techniques that will likely be useful for
FPT-approximation for other weighted problems.

5.1 Approximating Bounded-Weight Instances

In this section we consider weighted instances (D,w) of the class of SCC F-Transversal
problems, where w : V (D)→ [M ] for some integer M . Let k be some integer and let SOPTk be a
minimum weight solution such that |SOPTk | ≤ k. Our goal is to obtain an (α, β)-approximate so-
lution in time M ·cknO(1), for some constants α, β and c. Note that this is an FPT-approximation
algorithm parameterized by k.
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Our approach is to reduce weighted instances to unweighted instances by introducing a number
of copies of a vertex v, proportional to its weight, and then applying the FPT-approximation
algorithms for the unweighted problems. Note that if we simply introduce w(v) copies for each
vertex v ∈ V (D), then it leads to an unweighted instance with roughly M · |V (D)| vertices, and
a solution on k vertices in the weighted instance would map to one with roughly Mk vertices in
the unweighted instance. Hence, the running time of the approximation algorithms would be an
exponential function of Mk, and the approximation factor would involve M as well. Here, we
describe a more nuanced approach, which reduces the dependence on M in the running time to
just linear, and completely eliminates it from the approximation factor. We begin by analyzing
the effect of introducing copies of a vertex on a digraph.

5.1.1 Vertex Bundles and Separators

Let (D,w) be a weighted digraph with positive integer weights on the vertices. Let γ be an
integer, and let wγ be a weight function defined as by rounding up w(v) to the nearest multiple
of γ. That is

wγ(v) = qγ, where q = dw(v)/γe

Observation 5.1. Let X ⊆ V (D) be a subset of vertices. Then wγ(X) ≤ w(X) + |X|γ.

Let H be a digraph constructed from D and wγ as follows: for every vertex v ∈ V (D)
introduce wγ(v)/γ = dw(v)/γe vertices to H, denoted by Zu; and for every arc (u, v) ∈ A(D),
introduce the arcs {(x, y) | x ∈ Zu, y ∈ Zv} to H. We call Zv ⊆ V (H) the vertex bundle of
v ∈ V (D), and observe that these bundles partition V (H).

The following lemma shows that minimal separators in H have an “all-or-nothing” property
with respect to each bundle.

Lemma 5.1. Let X,Y be disjoint vertex subsets in H. Let S ⊆ V (H) be a minimal X,Y -
separator in H. Then for every v ∈ V (D) either Zv ⊆ S or Zv ∩ S = ∅.

Proof. Suppose not; i.e. for some v ∈ V (D), we have u, u′ ∈ Zv such that u ∈ S and u′ /∈ S.
Note that, by definition S ∩ (X ∪ Y ) = ∅. First suppose that Zv ∩X 6= ∅, and since X ∩ S = ∅,
we can assume that u′ ∈ X ∩ Zv. Since S is a minimal separator, there is a path P from X
to Y such that V (P ) ∩ S = {u}. Then consider the path P ′ obtained, by taking the subpath
P from u to Y , and substituting u′ for u. Observe that P ′ is a path from X to Y that is not
intercepted by S. But this is a contradiction. A similar argument applies in the case where
Zv ∩ Y 6= ∅. Finally, consider the case when Zv ∩ (X ∪ Y ) = ∅. Since S is a minimal separator,
there is a path P from X to Y in H such that V (P ) ∩ S = {u}. Then observe that the path P ′
from X to Y obtained from P by replacing u with u′ is not intercepted by S, and hence S is
not a separator. This is also a contradiction.

Corollary 5. Let X,Y be disjoint vertex subsets in H. Let S ⊆ V (H) be a minimal X,Y -
separator in H. Then,

• For every vertex v ∈ V (D), if (X ∪ Y ) ∩ Zv 6= ∅ then Zv ∩ S = ∅.

• If S is an x-y separator in H for vertices x, y ∈ V (H), then it is also a Zu-Zv separator
where x ∈ Zu, y ∈ Zv.

5.1.2 Subset DFVS

We present an FPT-approximation for Subset Directed Feedback Vertex Set (Subset
DFVS), parameterized by M + k, where the weights are integers upper-bounded by an integer
M and the solution size is upper-bounded by k. Our input is a digraph D with weights
w : V (D)→ [M ] where M is an integer, a subset of terminal arcs T ⊆ A(D) and an integer k.

39



Here, we study a somewhat more general version of the problem where we are additionally given
a subset of blacklisted vertices B ⊆ D(V ), and out goal is to compute a solution disjoint from it.
Introducing blacklisted vertices will be helpful later in this section when we consider general
weight functions. Let us fix an integer parameter γ whose value will be decided later. From w
and γ we define the weight function wγ , as described earlier. Then we construct the (unweighted)
digraph H from D, γ and wγ . We define TH = {(u′, v′) ∈ A(H) | u′ ∈ Zu, v′ ∈ Zv, (u, v) ∈ T}
as the subset of terminal arcs in H.

Observation 5.2. If C is a TH-cycle in H, then CD = D[{v ∈ V (D) | Zv ∩ V (C) 6= ∅}] is
strongly connected and contains a T -cycle. Conversely, if C ′ is a T -cycle in D then C ′H =
H[{ an arbitrary vertex u ∈ Zv | v ∈ V (C ′)}] is a TH-cycle in H.

Lemma 5.2. If S ⊂ V (H) is an inclusion-wise minimal solution for (H,TH), then for every
vertex v ∈ V (D), either Zv ⊆ S or Zv ∩ S = ∅

Proof. Suppose not; and for some vertex v ∈ V (D) there exist u, u′ ∈ Zv such that u ∈ S and
u′ /∈ S. Then, as S is a minimal TH -sfvs in H, there exists a TH -cycle C such that V (C)∩S = {u}.
Now observe that the cycle C ′ obtained from C by substituting u′ for u is not intercepted by S,
and it is also a TH -cycle by the construction of H. But this is a contradiction.

Observation 5.3. Let S be a solution for (D,T ) such that |S| ≤ k. Then (H,TH) has a solution
S′ of size at most dw(S)/γe+ k.

The following lemma, which is the main lemma of this section presents a (4, 8)-FPT-
approximation for Subset DFVS in 2O(k)nO(1) time.

Lemma 5.3. Let M > 0 be an integer. Let (D,w,B, T, k) be an instance of Subset DFVS
where D is a digraph on n vertices, w : V (D)→ [M ] is a weight function, T ⊆ A(D) is a subset
of terminal arcs, B ⊆ V (D) is a subset of blacklisted vertices and k is an integer. Suppose that
this instance admits a solution of cardinality k. Then there is an algorithm that runs in time
2O(k)nO(1) ·M and outputs S ⊆ V (D) \ B such that S ∩ C 6= ∅ for every T -cycle C, |S| ≤ 4k
and w(S) ≤ 8w(SOPTk ) where SOPTk ⊆ V (D) \ B is a solution of minimum weight for (D,T )
such that |SOPTk | ≤ k.

Proof. Let w′ be the weight function on V (D) that is defined as follows:

w′(v) =
{

10Mk if v ∈ B
w(v) otherwise

Let Optk = w′(SOPTk ), and observe that Optk ≤ Mk. Let γ = dOptk/ke. Note that while we
don’t know the value of Optk (and hence γ), we know that γ ∈ [M ]. We will iterate over each
choice for γ, and do the following.

Consider the weight function w′γ : V (D) → [M ] constructed from w′ and γ (as described
above). Let H be the digraph constructed from D, w′γ and γ. Along with the terminal arc
subset TH constructed from T , we obtain an instance (H,TH) of the problem. If (D,T ) admits
a solution of cardinality k and weight Optk, then by Observation 5.3, there is a minimal solution
SH ⊆

⋃
v∈SOPT

k
Zv of cardinality at most dOptk/γe + k ≤ 2k for (H,TH). Further, consider a

solution S′ of cardinality at most 4k to the instance (H,TH). For each blacklisted vertex v ∈ B
the vertex bundle Zv ⊆ V (H) contains at least dw′(v)/γe ≥ dw′(v)/Me > 4k vertices. Hence by
Lemma 5.2, for every blacklisted vertex v ∈ B, we have Zv ∩ S′ = ∅.

Our next step is to apply Theorem 3.1 to the instance (H,TH , 2k), and obtain a solution S′
of cardinality at most 4k.10 We can assume S′ is a minimal solution, and hence by Lemma 5.2

10More precisely, S′ is a solution for the instance (H,TH) of cardinality 4k assuming that (D,T ) admits a
solution of cardinality k.
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for every v ∈ V (D), either Zv ⊆ S′ or Zv ∩ S′ = ∅. let S = {v ∈ V (D) | Zv ⊆ S′}. It is
immediate from the construction of (H,TH) that S ⊆ V (D) \ B is a solution for (D,T ) and
|S| ≤ 4k. Further, w(S) = w′(S) ≤ w′γ(S) = γ|S′| ≤ γ4k ≤ 4Optk + 4k ≤ 8Optk. Here, we use
the fact that γ ≤ 1 + Optk/k, and Optk ≥ k as w(v) ≥ 1 ∀v ∈ V (D).

We iterate over each choice of γ ∈ [M ], and obtain a solution Sγ of (D,T ) corresponding
to it. We then output the one of the least weight. The correctness of this algorithm, and the
bounds on its cardinality and weight are immediate from Theorem 3.1 and the above discussion.
It only remains to bound the running time of this algorithm. We iterate over |M | choices for
γ, and for each choice we spend polynomial time on constructing the instance (H,TH , 2k) and
then 2O(k)nO(1) (using Theorem 3.1) to compute an approximate solution. Hence the overall
running time is 2O(k)nO(1) ·M .

5.1.3 Bidirected Multicut

We present an FPT-approximation Bidirected Multicut, parameterized by M + k, where
the weights are integers upper-bounded by an integer M and the solution size is upper-bounded
by k. Our input is a digraph D with weights w : V (D)→ [M ] where M is an integer, a subset
collection of terminal pairs T ⊆ V (D)× V (D), a subset of blacklisted vertices B ⊆ D(V ) and
an integer k. Let us fix an integer parameter γ whose value will be decided later. From w and
γ we define the weight function wγ , as described earlier. Then we construct the (unweighted)
digraph H from D, γ and wγ . We define TH = {(u′, v′) ∈ A(H) | u′ ∈ Zu, v′ ∈ Zv, (u, v) ∈ T}
as the subset of terminal arcs in H. The following observations and lemmas are proved in the
same way as before.

Observation 5.4. If P is a TH-path in H, then PD = D[{v ∈ V (D) | Zv ∩ V (C) 6=
∅}] is a walk in D that contains T -path. Conversely, if P ′ is a T -path in D then P ′H =
H[{ an arbitrary vertex v ∈ Zv | v ∈ V (C ′)}] is a TH-path in H.

Lemma 5.4. If S ⊂ V (H) is an inclusion-wise minimal solution for (H,TH), then for every
vertex v ∈ V (D), either Zv ⊆ S or Zv ∩ S = ∅

Observation 5.5. Let S be a solution for (D,T ) such that |S| ≤ k. Then H,TH has a solution
S′ of size at most dw(S)/γe+ k.

From Theorem 3.2, we obtain the following, by setting γ =
⌈
w(SOPTk )/k

⌉
, where SOPTk ⊆

V (D) \B is a minimum weight solution for (D,T ) such that |SOPTk | ≤ k.

Lemma 5.5. Let M > 0 be an integer. Let (D,w,B, T, k) be an instance of Bidirected
Multicut where D is a digraph, w : V (D) → [M ] is a weight function, T ⊆ V (D) × V (D)
is a subset of terminal pairs, B ⊆ V (D) is a subset of blacklisted vertices and k is an integer.
Suppose that this instance admits a solution of cardinality k. Then there is an algorithm that
runs in time 2O(k)nO(1) ·M and outputs S ⊆ V (D) \B such that S ∩ P 6= ∅ for every T -path P ,
|S| ≤ 4k and w(S) ≤ 8w(SOPTk ) where SOPTk ⊆ V (D) \B is a solution of minimum weight for
(D,T ) such that |SOPTk | ≤ k.

5.1.4 Directed OCT

We present an FPT-approximation for Directed OCT, parameterized by M + k, where the
weights are integers upper-bounded by M and the solution size is upper-bounded by k. Our
input is a digraph D with weights w : V (D)→ [M ] where M is an integer, a subset of blacklisted
vertices B ⊆ D(V ) and an integer k. Let us fix an integer parameter γ whose value will be
decided later. From w and γ we define the weight function wγ , as described earlier. Then we
construct the (unweighted) digraph H from D, γ and wγ .
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Observation 5.6. If C is an odd-cycle in H, then D[{v ∈ V (D) | Zv ∩ V (C) 6= ∅}] contains an
odd-cycle. Conversely, if C ′ is an odd-cycle in D then C ′H = H[{ an arbitrary vertex v ∈ Zv |
v ∈ V (C ′)}] is a odd-cycle in H.

Proof. Given the odd-cycle C in H, suppose that there are two vertex u, u′ ∈ V (C) such
that u, u′ ∈ Zv for some v ∈ V (D). Observe that as |C| is odd, one of the two sub-paths of
C, either from u to u′ or from u′ to u is of odd length. From this odd-length sub-path, by
substituting u for u′, we can obtain an odd cycle C ′ in H. We repeat this process until we
obtain a odd-cycle C∗ in H such that |V (C∗)∩Zv| ≤ 1 for every v ∈ V (D). Now it is clear that
C∗D = D[{v ∈ V (D) | Zv ∩ V (C) 6= ∅}] is an odd-cycle in D. The reverse direction is trivial.

The following observations and lemmas can be proved in the same way as before.

Lemma 5.6. If S ⊂ V (H) is an inclusion-wise minimal solution for (H,TH), then for every
vertex v ∈ V (D), either Zv ⊆ S or Zv ∩ S = ∅

Observation 5.7. Let S be a solution for (D,T ) such that |S| ≤ k. Then H,TH has a solution
S′ of size at most dw(S)/γe+ k.

From Theorem 3.3, we obtain the following, by setting γ =
⌈
w(SOPTk )/k

⌉
, where SOPTk ⊆

V (D) \B is a minimum weight solution for D such that |SOPTk | ≤ k.

Lemma 5.7. Let M > 0 be an integer. Let (D,w,B, k) be an instance of Directed OCT
where D is a digraph, w : V (D)→ [M ] is a weight function, B ⊆ V (D) is a subset of blacklisted
vertices and k is an integer. Suppose that this instance admits a solution of cardinality k.
Then there is an algorithm that runs in time 2O(k)nO(1) ·M and outputs S ⊆ V (D) \ B such
that S ∩ C 6= ∅ for every directed odd cycle C in D, |S| ≤ 4k and w(S) ≤ 8w(SOPTk ) where
SOPTk ⊆ V (D) \B is a solution of minimum weight in D such that |SOPTk | ≤ k.

5.2 Approximating General Weighted Instances

Let us now discuss approximating instances with a general weight function. The following lemma
describes a general procedure that reduces a weighted instance (D,w) of a SCC F-Transversal
problem to an instance of bounded weight at a small cost to the approximation factor. Here
we assume that the weights are real numbers, and an arithmetic operation can be done in O(1)
time. The following lemma allows us to reduce from general weighted instances to instances of
bounded weight.

Lemma 5.8. Let F be a family of digraphs, and let (D,w, k) be an instance of a SCC F-
Transversal problem where w : V (D)→ R+ is a weight function on the vertices.

Let MH be an integer and let α, β > 1 be constants. Let Algoα,β be an algorithm that given
an instance (H,wH) of the problem along with a set B ⊆ V (H) of blacklisted vertices, where
wH(v) ∈ [MH ] for all v ∈ V (H), runs in time f(MH , k)g(n) and outputs a solution X ⊆ V (H)\B
such that |X| ≤ α|XOPT

k | and wH(X) ≤ β ·wH(XOPT
k ), where XOPT

k ⊆ V (H)\B is a minimum
weight solution for (H,wH) and |XOPT

k | ≤ k.
Suppose that the instance (D,w, k) admits a solution of cardinality k. Then, for every

constant ε > 0, in time f(k/ε, k)g(n) · n we can compute a solution S for (D,w) such that
|S| ≤ α|SOPTk | and w(S) ≤ β(1 + ε)w(SOPTk ), where SOPTk is a minimum weight solution such
that |SOPTk | ≤ k.

Proof. Let SOPTk be a solution for (D,w) minimizing w(SOPTk ) such that |SOPTk | ≤ k. Let
M = maxv∈SOPT

k
w(v). Note that, while M is unknown to us, it is the weight of one of the

vertices in V (D) and hence there are at most n possible values for it. We will iterate over each
choice of M .
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Let us fix a choice M and suppose that it is correct, i.e. M = maxv∈SOPT
k

w(v). Then we
compute an approximate solution corresponding to M as follows. First, let us define a new
weight function w′ on V (D) as follows.

w′(v) =
{
dw(v) · k/Mεe if dw(v) · k/Mεe ≤ dk/εe
dk/εe+ 1 otherwise

Let us consider the instance (D,w′) with B = {v ∈ V (H) | w′(v) = dk/εe + 1} as the set
blacklisted vertices. Let XOPT

k ⊆ V (D)\B be a minimum weight solution such that |XOPT
k | ≤ k.

Note that, as SOPTk ∩ B = ∅ by the definition of M , SOPTk is also a solution for (D,w′) of
cardinality k, and hence w′(SOPTk ) ≥ w′(XOPT

k ). Let us apply the algorithm Algoα,β to (D,w′)
with B as the subset of blacklisted vertices. It returns a solution S such that |S| ≤ αk, S∩B ≤ ∅
and w′(S) ≤ βw′(XOPT

k ). Then S is also a solution for (D,w) and we can bound its weight as
follows.

w(S) ≤Mε/k · w′(S)
≤Mε/k · βw′(XOPT

k )
≤Mε/k · βw′(SOPTk )
= Mε/k · β

∑
v∈SOPT

k

dw(v) · k/Mεe

≤ βMε+ β
∑

v∈SOPT
k

w(v)

≤ β(1 + ε)w(SOPTk )

Next, observe that, in (D,w′), w′(v) ∈ [dk/εe+ 1] for every vertex v. Hence, assuming that
our choice of M was correct, the algorithm Algoα,β runs in time f(k/ε, k)g(n) and returns a
solution S such that w(S) ≤ β(1 + ε)w(SOPTk ) and |S| ≤ αk.

To compute the approximate solution for (D,w), we proceed as follows. For each vertex
v ∈ V (D) we consider the case where v is the maximum weight vertex in some minimum weight
solution of cardinality k for (D,w). Let Mv = w(v), and corresponding to it we have the weight
function wv and the subset of blacklisted vertices Zv, as defined above. Then by applying the
algorithm Algoα,β to (D,wv) and Zv, we obtain a solution Sv ⊆ V (D) \Zv in time f(k/ε, k)g(n).
Therefore in time f(k/ε, k)g(n) ·n we obtain a collection {Sv | v ∈ V (D)} of solutions for (D,w).
Let S ∈ {Sv | v ∈ V (D)} be one that minimizes w(S). It is clear that S is a solution for (D,w)
and w(S) ≤ β(1 + ε)w(SOPTk ), and we output S as the required approximate solution. This
completes the proof of this lemma.

Using the above lemma, for every ε > 0 we obtain an (4, 8(1 + ε)) FPT-approximation
algorithms for Subset-DFVS that runs in 1

ε · 2
O(k)nO(1) time.

Theorem 5.1. Let (D,T,w, k) be an instance of Subset Directed Feedback Vertex Set
where D is a digraph, w : V (D)→ R+ is a weight function, T ⊆ A(D) is the subset of terminal
arcs, and k is an integer. Suppose that this instance admits a solution of cardinality k. Then for
every constant ε > 0, in time 1

ε · 2
O(k)nO(1), we can obtain a solution S to this instance such

that w(S) ≤ 8(1 + ε)w(SOPTk ), and |S| ≤ 4k where SOPTk is a minimum weight solution such
that |SOPTk | ≤ k.

Proof. We apply Lemma 5.8 to (D,w, k), along with the algorithm of Lemma 5.3. Note that
the algorithm of Lemma 5.3 is invoked on at most n instances, where the maximum weight of
vertex is upper-bounded by M = dk/εe+ 1. Hence, this algorithm runs in time 1

ε · 2
O(k)nO(1) on

such instances. And assuming that D admits a solution of cardinality k, one of these instances
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leads to an 8-approximate solution of cardinality at most 4k. Therefore, Lemma 5.8 outputs
a 8(1 + ε)-approximation solution for (D,w, k). The correctness follows from Lemma 5.3 and
Lemma 5.8, and the overall running time is 1

ε · 2
O(k)nO(1).

A similar approach, using Lemma 5.5 and Lemma 5.7, respectively, leads to the following
theorems.

Theorem 5.2. Let (D,T,w, k) be an instance of Bidirected Multicut where D is a digraph,
w : V (D) → R+ is a weight function, T ⊆ V × V is the collection of terminal pairs and k
is an integer. Suppose that this instance admits a solution of cardinality k. Then for every
constant ε > 0, in time 1

ε · 2
O(k)nO(1), we can obtain a solution S to this instance such that

w(S) ≤ 8(1 + ε)w(SOPTk ) and |S| ≤ 4k, where SOPTk is a minimum weight solution such that
|SOPTk | ≤ k.

Theorem 5.3. Let (D,w, k) be an instance of Directed Odd Cycle Transversal where
D is a digraph, w : V (D) → R+ is a weight function, and k is an integer. Suppose that this
instance admits a solution of cardinality k. Then for every constant ε > 0, in time 1

ε · 2
O(k)nO(1),

we can obtain a solution S to this instance such that w(S) ≤ 8(1 + ε)w(SOPTk ) and |S| ≤ 4k,
where SOPTk is a minimum weight solution such that |SOPTk | ≤ k.

5.3 An Improved FPT-approximation for DFVS

For certain problems we can obtain a (1, (1 + ε)) FPT-approximation at the cost of higher
running time. In this section we design such an algorithm for DFVS. We require the following
algorithm for a variant called MultiBudgeted DFVS [KLM+19b].

Proposition 5.1 ([KLM+19b]). 11 Let D be a digraph, and let V (D) = V0 ] V1 ] V2 . . . ] V` be
a partition of V (D) into `+ 1 classes. Let k1, k2, . . . , k` be positive integers, and let k =

∑`
i=1 ki.

Then, in time 2k3 log k(|V (D)|+ |A(D)|) we can obtain a feedback vertex set S of D such that
S ∩ V0 = ∅ and |S ∩ Vi| ≤ ki for every i ∈ [`], if one exists.

From Proposition 5.1 we obtain the following lemma.

Lemma 5.9. Let M > 0 be an integer. Let (D,w,B, k) be an instance of Directed Feedback
Vertex Set where D is a digraph, w : V (D) → [M ] is a weight function, B is a subset of
blacklisted vertices and k is an integer. Suppose that this instance admits a solution of cardinality
k. Then in time

(M+k
k

)
· 2k3 log knO(1), we can obtain a solution S ⊆ V (D) \B to this instance

of minimum weight and cardinality at most k.

Proof. For i ∈ [M ], let Vi = {v ∈ V (D) \B | w(v) = i}. Consider a minimum weight solution
S′ ⊆ V (D) \ B to this instance such that |S′| ≤ k. For i ∈ [M ] let k′i = |S′ ∩ Vi|, and
consider the tuple (k′1, k′2, . . . , k′M ). Observe that, at most k of these numbers are positive, and
w(S′) =

∑M
i=1 kii. There are at most

(k+M
k

)
possibilities for this tuple. We iterate over each

choice, and apply Proposition 5.1 as follows.
Given k1, k2, . . . , k`, observe that at most k of these numbers are non-zero, and let (i1, i2, . . . , i`)

be the indices such that kij ≥ 1 for every j ∈ [`]. Here ` ≤ k. Let V0 = B ∪ (
⋃
p∈[M ], kp=0 Vp).

Observe that V0 ] Vi1 ] Vi2 . . . ] Vi` is a partition of V (D) and
∑`
j=1 kij = k. We apply Proposi-

tion 5.1 to the instance (D, (V0 ] Vi1 . . . ] Vi`), (ki1 , . . . , ki`)) and in time 2k2 log knO(1) obtain a
solution S such that S ∩ V0 = ∅ and |S ∩ Vij ≤ kij , assuming that one such solution exists.

11The result is actually stated for the Directed Feedback Arc Set problem, but there is an easy transformation
from DFVS to DFAS that is approximation preserving: split each vertex v into two vertices vin and vout. Further,
we introduce a class of vertices, V0, that must be excluded from the solution. This can be enforced by introducing
a directed cycle on 3 new vertices, adding them to V0, setting k0 = 1 and then applying the algorithm.
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We iterate over all choices for the tuple (k1, k2, . . . , kM ), and for each we obtain a solution
S of cardinality at most k and weight at most

∑M
i=1 kii, if one such solution exists. Amongst

them, we output the one of minimum weight. The correctness of this algorithm is clear from
the above discussion, and observe that the running time of this algorithm is upper-bounded by(M+k

k

)
· 2k3 log knO(1).

From Lemma 5.9 and Lemma 5.8 we obtain the following theorem.
Theorem 5.4. Let (D,w, k) be an instance of Directed Feedback Vertex Set where D is
a digraph, w : V (D)→ R+ is a weight function, and k is an integer. Suppose that this instance
admits a solution of cardinality k. Then for every constant ε > 0, in time kk/ε · 2k3 log knO(1), we
can obtain a solution S to this instance such that w(S) ≤ (1 + ε)w(SOPTk ), and |S| ≤ k where
SOPTk is a minimum weight solution such that |SOPTk | ≤ k.
Proof. We only need to observe that Lemma 5.8 invokes Lemma 5.9 on at most n instances
where the maximum weight is upper-bounded by dk/εe+ 1. Then one of these instances gives us
a solution S of cardinality at most k, and weight (1 + ε)w(SOPTk ) where SOPTk is the minimum
weight solution of cardinality at most k to this instance.

6 Conclusion

The area of FPT-approximation has been booming in the last decade, enjoying a flurry of
results. Notably, almost all of these results are for W[1]-hard problems. However, there are
fundamental problems within the class FPT itself which the field of FPT-approximation has so
far largely overlooked. In this paper, we took a systematic approach towards this study and
designed FPT-approximation algorithms for problems that are in FPT. That is, we designed FPT-
approximation algorithms for problems that are FPT, with running times that are significantly
faster than the corresponding best known FPT-algorithm, and while achieving approximation
ratios that are significantly better than what is possible in polynomial time. We addressed several
fundamental problems such as Directed Feedback Vertex Set, Weighted Directed
Feedback Vertex Set, Directed Odd Cycle Transversal, Undirected Multicut,
Weighted Undirected Multicut, parameterized by the solution size. We also considered
graph problems parameterized by the treewidth of the input graph and considered problems
such as Vertex Cover, Component Order Connectivity, and F-Packing for any family
F of bounded sized graphs. Finally, we presented general reductions of problems parameterized
by treewidth to their versions parameterized by solution size, as well as for weighted problems
to their unweighted counterparts. We conclude the paper with several open problems. For this,
let us fix a constant ε > 0.

1. Do Directed Feedback Vertex Set, and Undirected Multicut, parameterized by
the solution size, admit a (1 + ε) approximation algorithm running in time g(ε)knO(1)?

2. Does Planar Vertex Deletion, parameterized by the solution size, admit a constant-
factor approximation algorithm running in time 2O(k)nO(1)?

3. Does Chordal Vertex Deletion, parameterized by the solution size, admit a constant-
factor approximation algorithm running in time 2O(k)nO(1)?

4. Does Directed Feedback Vertex Set, parameterized by the treewidth of the input
graph (w), admit a (1 + ε) approximation algorithm running in time g(ε)wnO(1)?

5. Does Planar Vertex Deletion, parameterized by the treewidth of the input graph
(w), admit a (1 + ε) approximation algorithm running in time g(ε)wnO(1)? Here, even a
constant-factor approximation algorithm running in time 2O(w)nO(1) would be interesting.

6. Does Feedback Vertex Set, parameterized by the treewidth of the input graph (w),
admit a (1+ε) approximation algorithm running in time cwnO(1) where c is a fixed constant
smaller than 3?
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7 Problem Definitions

We now define all the problems mentioned in the paper.

Directed Feedback Vertex Set
Input: A directed graph G.
Question: Find a minimum size subset S ⊆ V (G) such that G− S is a directed acyclic
graph.

Weighted Directed Feedback Vertex Set
Input: A directed graph G, a weight function w : V (G)→ Q+ and an integer k.
Question: Find a minimum weight subset S ⊆ V (G) of size at most k (if it exists) such
that G− S is a directed acyclic graph.

Directed Feedback Arc Set
Input: A directed graph G.
Question: Find a minimum size subset S ⊆ A(G) (of arcs) such that G− S is a directed
acyclic graph.

Directed Subset Feedback Vertex Set
Input: A directed graph G, and a subset T ⊆ V (G).
Question: Find a minimum size subset S ⊆ V (G) such that G− S does not have any
directed cycle that contains at least one vertex from T .

Weighted Directed Subset Feedback Vertex Set
Input: A directed graph G, a subset T ⊆ V (G), a weight function w : V (G)→ Q+ and
an integer k.
Question: Find a minimum weight subset S ⊆ V (G) such that G− S does not have any
directed cycle that contains at least one vertex from T .

Directed Odd Cycle Transversal
Input: A directed graph G.
Question: Find a minimum size subset S ⊆ V (G) such that G− S does not contain any
directed odd cycle.

Weighted Directed Odd Cycle Transversal
Input: A directed graph G, a weight function w : V (G)→ Q+ and an integer k.
Question: Find a minimum weight subset S ⊆ V (G) of size at most k (if it exists) such
that G− S does not contain any directed odd cycle.

Multicut
Input: A graph G, and a set of pairs (si, ti)`i=1.
Question: Find a minimum size subset S ⊆ V (G) such that for every i ∈ [`], vertices si
and ti lie in different connected components of G− S.
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Weighted Multicut
Input: A graph G, a weight function w : V (G)→ Q+ and an integer k.
Question: Find a minimum weight subset S ⊆ V (G) of size at most k (if it exists) such
that for every i ∈ [`], vertices si and ti lie in different connected components of G− S.

Edge Multicut
Input: A graph G, and a set of pairs (si, ti)`i=1.
Question: Find a minimum weight subset S ⊆ E(G) such that for every i ∈ [`], vertices
si and ti lie in different connected components of G− S.

Vertex Cover
Input: A graph G.
Question: Find a minimum size subset S ⊆ V (G) such that G− S is edgeless.

Component Order Connectivity
Input: A graph G and an integer `.
Question: Find a minimum size subset S ⊆ V (G) such that every connected component
of G− S is of size at most `.

Bounded-Degree Vertex Deletion
Input: A graph G and an integer d.
Question: Find a minimum size subset S ⊆ V (G) such that every vertex in G− S has
degree at most d.

Triangle Packing
Input: A graph G.
Question: Find a maximum size collection of pairwise vertex-disjoint triangles in G.

Let F be a family of graphs.

F-Packing
Input: A graph G.
Question: Find a maximum size collection of pairwise vertex-disjoint subgraphs of G,
each isomorphic to an element of F .

F-Vertex Deletion
Input: A graph G.
Question: Find a a minimum size subset S ⊆ V (G) such that there do not exist a
subgraph of G− S and an element of F that are isomorphic.
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