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Abstract

We present a fast local search algorithm that finds an
improved solution (if there is any) in the k-exchange
neighborhood of the given solution to an instance of
WEIGHTED FEEDBACK ARC SET IN TOURNAMENTS.
More precisely, given an arc weighted tournament T on
n vertices and a feedback arc set F (a set of arcs whose
deletion from T turns it into a directed acyclic graph),
our algorithm decides in time O(2o(k)n log n) if there
is a feedback arc set of smaller weight and that differs
from F in at most k arcs. To our knowledge this is the
first algorithm searching the k-exchange neighborhood
of an NP-complete problem that runs in (parameterized)
subexponential time. Using this local search algorithm
for WEIGHTED FEEDBACK ARC SET IN TOURNA-
MENTS, we obtain subexponential time algorithms for
a local search variant of KEMENY RANKING – a prob-
lem in social choice theory and of ONE-SIDED CROSS
MINIMIZATION – a problem in graph drawing.

I – Introduction
Local search algorithms, also known as neighborhood
search algorithms, constitute a large class of improvement
algorithms. To perform local search, a problem specific
neighborhood distance function is defined on the solution
space and a better solution is searched for in the neigh-
borhood of the current solution. In particular, many local
search algorithms are based on searching in the k-exchange
neighborhood. This is the set of solutions that can be ob-
tained from the current solution by exchanging at most k
elements. A classical example is the TRAVELING SALES-
PERSON problem, where the neighborhood of a tour T can
be defined as the set of all tours that differ from T in at most
k edges, this is called the k-exchange neighborhood (Lin and
Kernighan 1973; Papadimitriou and Steiglitz 1977).

As a rule of thumb, the chances of finding a better solu-
tion grow with k. However, for inputs of size n, a naı̈ve
brute-force search of the k-exchange neighborhood requires
nO(k) time, which is not practical even for very small val-
ues of k. It has been generally assumed until very recently,
(perhaps because of the typical algorithmic structure of local
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search algorithms: “Look at all solutions in the neighbor-
hood of the current solution ...”) that finding an improved
solution in a k-exchange neighborhood, necessarily requires
brute-force search of the neighborhood; therefore, verify-
ing k-optimality requires Ω(nk) time (see, e.g. (Aarts and
Lenstra 1997) p. 339 or (Kleinberg and Tardos 2005) p. 680).

Surprisingly, in some cases the k-exchange neighbor-
hood can be searched significantly faster. In particular, on
sparse structures like planar graphs or graphs not contain-
ing some fixed graph as a minor, finding a k-local improve-
ment for many natural problems including VERTEX COVER,
ODD CYCLE TRANSVERSAL, DOMINATING SET, and r-
CENTRE can be done in time f(k) · nc, where c is a fixed
constant independent of k (Fellows et al. 2009). Similar
results were also obtained for sparse instances of SATISFI-
ABILITY (Szeider 2009). Algorithms that have time com-
plexity of the form f(k) · nc are said to be fixed parameter
tractable algorithms. For an introduction to the field Param-
eterized Complexity, and more recent developments, see the
books (Downey and Fellows 1999; Flum and Grohe 2006;
Niedermeier 2006). However, all the known local search
algorithms strongly exploit the sparsity of the structure, in
particular, the fact that in these structures a ball of radius
k induces a subgraph (or substructure) of treewidth f(k),
for some function k. So the techniques from (Fellows et al.
2009; Szeider 2009) do not seem to work for dense struc-
tures.

In this work, we use completely different techniques to
show that fast search of the k-exchange neighborhood is
also possible for dense structures. A tournament is a di-
rected graph where every pair of vertices is connected by
exactly one arc, and a feedback arc set is a set of arcs
whose removal makes the graph acyclic. Feedback arc sets
in tournaments are well studied, from the combinatorial
(Erdös and J.W.Moon 1965; Fernandez de la Vega 1983;
Jung 1970; K.B.Reid 1969; K.D.Reid and E.T.Parker 1970;
Seshu and Reed 1961; Spencer 1971; 1980; Younger 1963),
statistical (Slater 1961), and algorithmic (Ailon, Charikar,
and Newman 2005; Alon 2006; Bessy et al. 2009; Cop-
persmith, Fleischer, and Rudra 2006; Kenyon-Mathieu and
Schudy 2007; van Zuylen 2005; van Zuylen et al. 2007)
points of view. The problem has several applications - in
psychology it occurs in relation to ranking by paired com-
parisons: here we wish to rank items by an objective, but we



don’t have access to the objective function, but only to pair-
wise comparisons of the objects in question. An example for
this setting is measuring people’s preferences for food. The
weighted generalization of the problem, WEIGHTED FEED-
BACK ARC SET IN TOURNAMENTS is applied in rank ag-
gregation: Here we are given several rankings of a set of
objects, and we wish to produce a single ranking that, on
average, is as consistent as possible with the given ones, ac-
cording to some chosen measure of consistency. This prob-
lem has been studied in the context of voting (Borda 1781;
Condorcet 1785), machine learning (Cohen, Schapire, and
Singer 1997), and search engine ranking (Dwork et al.
2001a; 2001b). A natural consistency measure for rank ag-
gregation is the number of pairs that occur in different order
in the two rankings. This leads to Kemeney-Young rank ag-
gregation (Kemeny 1959; Kemeny and Snell 1962), a spe-
cial case of WEIGHTED FEEDBACK ARC SET IN TOURNA-
MENTS. The problem of finding a feedback arc set of min-
imum size in an unweighted tournament is NP-hard (Alon
2006). However, even the weighted version of the problem
admits a polynomial time approximation scheme (Kenyon-
Mathieu and Schudy 2007) and it was shown to be fixed pa-
rameter tractable (Raman and Saurabh 2006). In this paper
we consider a local search variant of the following problem:
k-WEIGHTED FEEDBACK ARC SET IN TOURNA-
MENTS (k-FAST)
Instance: A tournament T = (V,A), a weight function
w : A → N, where N is a set of positive integers and
an integer k.
Question: Is there an arc set S ⊆ A such that∑

e∈S w(e) ≤ k and T \ S is acyclic?
To define the local search variant of the problem we need

some definitions. We use S to denote the set of feasible so-
lutions to a problem P . For edge/arc subset (or vertex sub-
set) problems, S is a collection of subsets of edges/arcs and
a natural neighborhood function is obtained by exchanging k
elements of the current solution. The neighborhood function
in which we are interested is called k-exchange neighbor-
hoods (k-ExN). We elaborate this further. Let w : A → N
be a weight function. Then the cost function w : S → N
is defined as

∑
v∈s w(v) for all s ∈ S . We say that s′

is neighbor of s with respect to k-ExN if |s \ s′| ≤ k and
|s′ \ s| ≤ k. Let N en

k (s) denote the set of neighbors of s
with respect to k-ExN.
k-LOCAL SEARCH WEIGHTED FEEDBACK ARC SET
IN TOURNAMENTS (k-LSFAST)
Instance: A tournament T = (V,A), a feedback arc
set F ⊆ A of T , a weight function w : A → N and an
integer k.
Question: Does there exist a solution F` ∈ N en

k (F )
such that w(F`) < w(F )?

For a pair of sets A and B, let Sout(A,B) = A \ B and
Sin(A,B) = B \A. When A and B are clear from the con-
text, we will only use Sin and Sout. Then given a feedback
arc set F we are looking for F` ∈ N en

k (F ) such that
• |Sin(F, F`)| ≤ k and |Sout(F, F`)| ≤ k;
• w(F`) < w(F ) where F` = F \ Sout ∪ Sin; and

• T \ F` is acyclic.

Alon et al. (Alon, Lokshtanov, and Saurabh 2009) intro-
duced the method of chromatic coding, a variant of classical
color-coding (Alon, Yuster, and Zwick 1995) and obtained
the first parameterized subexponential time algorithm for k-
FAST running in time 2O(

√
k log k)nO(1). In fact this was

the first non-trivial parameterized subexponential time algo-
rithm for a problem on dense graphs. Recently Feige (Feige
2009) has obtained a faster algorithm for k-FAST running
in time 2O(

√
k)nO(1). In this paper we use the method of

chromatic coding and show that k-LSFAST is fixed param-
eter tractable when parameterized by k, the number of arcs
we are allowed to exchange from the current solution. In
particular we obtain following results:

• there is a randomized algorithm for k-LSFAST running
in time 2O(

√
k log k)n; and

• there is a deterministic algorithm for k-LSFAST that runs
in time 2O(

√
k log k)n log n.

To our knowledge this is the first algorithm searching the
k-exchange neighborhood of an NP-complete problem that
runs in (parameterized) subexponential time. Using the
local search algorithm for k-LSFAST, we obtain subex-
ponential time algorithms for a local search variant of
KEMENY RANKING – a problem in social choice theory
(Conitzer, Davenport, and Kalagnanam 2006; Davenport
and Kalagnanam 2004; Ephrati and Rosenschein 1993) and
for ONE-SIDED CROSS MINIMIZATION – a problem in
graph drawing (Eades and Wormald 1994; Dujmović et al.
2008; Dujmović, Fernau, and Kaufmann 2008).

Our algorithm is based on the ideas of the k-FAST algo-
rithm of Alon et al (Alon, Lokshtanov, and Saurabh 2009),
but differs significantly from it in a crucial step. The algo-
rithm presented in (Alon, Lokshtanov, and Saurabh 2009)
starts by preprocessing the instance and obtains an equiv-
alent instance with at most O(k2) vertices in polynomial
time. That is, given a tournament T and a positive inte-
ger k, in polynomial time the preprocessing algorithm ei-
ther concludes that T does not have a feedback arc set
of weight at most k or finds a new tournament T ′ and
k′ ≤ k such that the original tournament T has a feed-
back arc set of weight at most k, if and only if T ′ has a
feedback arc set of weight at most k′. This preprocess-
ing allows them to assume that the instance where they ac-
tually apply the subexponential time algorithm is of size
O(k2) only, which is integral to their time analysis. For
k-LSFAST, and in fact for most local search problems, one
can show using standard techniques (Bodlaender et al. 2008;
Fortnow and Santhanam 2008) that a such a pre-processing
step would imply that coNP is a subset of NP/poly. Since
we can not use polynomial time pre-processing, we resort
to a more sophisticated dynamic programming strategy in-
stead.

II – Preliminaries
For an arc weighted tournament we define the weight func-
tionw∗ : V ×V → R such thatw∗(u, v) = w(uv) if uv ∈ A
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1. Let t = 4
√
k. Color the vertices of T ′ uniformly at

random with colors from {1, . . . , t}.
2. Let Ac be the set of arcs whose endpoints have differ-

ent colors. Find a minimum weighted feedback arc set
F` ∈ N en

k (F ) such that Sin and Sout are contained in
Ac.

Figure 1: Outline of the algorithm for k-LSFAST.

and 0 otherwise. Given a directed graph D = (V,A) and a
set F of arcs in A, define D{F} to be the directed graph ob-
tained from D by reversing all arcs of F . In our arguments
we will need the following characterization of minimal feed-
back arc sets in directed graphs.

Proposition 1 [(Gallai 1968)] LetD = (V,A) be a directed
graph and F be a subset ofA. Then F is a minimal feedback
arc set ofD if and only if F is a minimal set of arcs such that
D{F} is a directed acyclic graph.

Given a minimal feedback arc set F of a tournament T ,
the ordering σ corresponding to F is the unique topological
ordering of T{F}. Conversely, given an ordering σ of the
vertices of T , the feedback arc set F corresponding to σ is
the set of arcs whose endpoint appears before their startpoint
in σ. The cost of an arc set F is

∑
e∈F w(e) and the cost

of a vertex ordering σ is the cost of the feedback arc set
corresponding to σ.

For a pair of integer row vectors p̂ = [p1, . . . , pt], q̂ =
[q1, . . . , qt] we say that p̂ ≤ q̂ if pi ≤ qi for all i. The
transpose of a row vector p̂ is denoted by p̂†. The t-sized
vector ê is [1, 1, . . . , 1], 0̂ is [0, 0, . . . , 0] and êi is the t-sized
vector with all entries 0 except for the i’th which is 1. For
any positive integer m let [m] = {1, 2, . . . ,m}. For a given
subset V ′ ⊆ V of a digraphD = (V,A) byD[V ′] we denote
the induced subgraph on V ′. For simplicity whenever we say
log n or

√
n we mean dlog ne and d

√
ne.

III - Main Algorithm
In this section we give our algorithm, argue about its cor-
rectness and analyze its time complexity. We start with the
description of our algorithm.

Algorithm Description
Our algorithm consists of two steps. In the first step we ran-
domly color the vertices of our graph with t = 4

√
k colors,

and define the arc set Ac to be the set of arcs whose end-
points have different colors. In the next step of the algorithm
we find a minimum weighted feedback arc set F` ∈ N en

k (F )
such that Sin and Sout are contained in Ac. A summary of
the algorithm is given in Figure 1.

To analyze the first step the algorithm we use the follow-
ing lemma of Alon et al. (Alon, Lokshtanov, and Saurabh
2009).

Lemma 1 [(Alon, Lokshtanov, and Saurabh 2009)] If a
graph on q edges is colored randomly with

√
8q colors

then the probability that G is properly colored is at least
(2e)−

√
q/8.

Lemma 1 implies that if we randomly color the vertices
of T with t =

√
8 · 2k = 4

√
k colors then the probability

that the subgraph T ′ = (V, Sin ∪ Sout) is properly colored,
or equivalently that Sin and Sout are subsets ofAc is at least
(2e)−

√
2k/8 = 2−c

√
k for some fixed constant c. Next we

show how to implement the second step of our algorithm
using dynamic programming over the colored instance.

Solving a Colored Instance

The second part of our algorithm takes a t-colored tourna-
ment T = (V1 ∪ V2 ∪ . . . ∪ Vt, A) and a feedback arc set
F of T as input, and produces a weighted feedback arc
set F` ∈ N en

k (F ) such that Sin and Sout are contained
in Ac and w(F`) is minimized. Now, Sin ∪ Sout ⊆ Ac

imply that F ∩ (A \ Ac) = F` ∩ (A \ Ac) and hence
T{F`}[Vi] = T{F}[Vi] must be an acyclic tournament for
every i. Let σold = v1v2 . . . vn be the ordering of V cor-
responding to the given feedback arc set F of T and let
σnew = u1u2 . . . un be the ordering of V corresponding
to a feedback arc set F` of T . Let ni = |Vi| for every
i and let n̂ be the vector [n1, n2 . . . , nt]. For every color
class Vi of T , let vi

1v
i
2 . . . v

i
ni

be the order in which the ver-
tices of Vi appear according to σold. Observe that since
T{F`}[Vi] = T{F}[Vi] and every acyclic tournament has
a unique topological ordering we have that the vertices of
every color class Vi of T appear in the same order in σold

and σnew, that is, vi
1v

i
2 . . . v

i
ni

. We exploit this fact to give a
dynamic programming algorithm for the problem.

Lemma 2 Given a t-colored tournament T and a feedback
arc set F , we can find a minimum weight feedback arc set
F` ∈ N en

k (F ) such that S1, S2 ⊆ Ac in O(n2t(2k+ 1)t+1)
time and O((2k + 1)t+1n) space.

Proof: For an integer x ≥ 1 define Si
x = {vi

1 . . . , v
i
x} and

S0 = Si
0 = ∅. Given an integer vector p̂ of length t in which

the i’th entry is between 0 and ni, let S(p̂) = S1
p1
∪S2

p2
. . .∪

St
pt

, T (p̂) be T [S(p̂)] and A(p̂) be the arc set of T (p̂). For a
feedback arc set F of T we set F (p̂) = F ∩ A(p̂). Observe
that for any ordering σ = v1v2 . . . vn of V corresponding to
a feedback arc set F` of T such that F`\Ac = F \Ac and for
any integer x there exists a p̂ such that {v1 . . . , vx} = S(p̂).

Fixing the tournament T and a feedback arc set F of T
we define LSFAS(p̂, k1, k2), to be the weight of a minimum
weight feedback arc set F` of T (p̂) such that (a) |F (p̂) \
F`| ≤ k1, (b) |F`\F (p̂)| ≤ k2 and (c)F`\Ac = F (p̂)\Ac. If
k1 < 0 or k2 < 0 then LSFAS(p̂, k1, k2) is set to∞. We call
a feedback arc set F` satisfying these conditions a (k1, k2)-
constrained feedback arc set of T (p̂). We proceed to prove
that the following recurrence holds for LSFAS(p̂, k1, k2).
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LSFAS(p̂, k1, k2) =

min
i


LSFAS

“
p̂− êi, k

′
1, k
′
2

”
(1)

+
X

u∈S(p̂)

w∗(vi
pi

, u)

ff
Here the minimum is taken over i, such that pi > 0, k′1 =
k1−|{uvi

pi
∈ F (p̂)}| and k′2 = k2−|{vi

pi
u ∈ A(p̂)\F (p̂)}|.

First we prove that the left hand side is at most the right hand
side. Let i be the integer that minimizes the right hand side.
Taking the ordering of S(p̂−êi) corresponding to an optimal
(k′1, k

′
2)-constrained feedback arc set of T (p̂ − êi) and ap-

pending it with vi
p̂i

gives an ordering σ of T (p̂) correspond-
ing to a (k1, k2)-constrained feedback arc set of T (p̂) with
cost at most LSFAS(p̂− êi, k

′
1, k
′
2) +

∑
u∈S(p̂) w

∗(vi
pi
, u).

To prove that the right hand side is at most the left
hand side, let σ be an ordering of T (p̂) corresponding to
a (k1, k2)-constrained feedback arc set F` of T (p̂) and let
v ∈ Vi be the last vertex of this ordering. Then v = vi

pi

and σ restricted to V (T (p̂− êi)) is an ordering of T (p̂− êi)
corresponding to the feedback arc set F` ∩A(p̂− êi). Now,
|F (p̂)\F`| ≤ k1 and v is incident to |{uvi

pi
∈ F (p̂)}| edges

of F (p̂)\F`. Similarly |F` \F (p̂)| ≤ k2 and v is incident to
|{vi

pi
u ∈ A(p̂) \ F (p̂)}| edges of F` \ F (p̂). Thus F` \ {v}

is a (k′1, k
′
2)-constrained feedback arc set of T (p̂− êi). The

total weight of the edges with startpoint in v and endpoint in
V (T (p̂ − êi)) is exactly

∑
u∈V (T (p̂)) w

∗(vi
p̂i
, u). Thus the

cost of σ is at least the value of the right hand side of the
inequality, completing the proof.

Recurrence 1 naturally leads to a memoization based al-
gorithm for the problem. We compute LSFAS(p̂, k, k) by
applying Recurrence 1, returning ∞ whenever k1 < 0 or
k2 < 0 and storing the output of every recursive call except
the ones with k1 < 0 or k2 < 0 in a table. If at a later stage
of the algorithm a recursive call is made with the same pa-
rameters we return the corresponding table entry instead of
recomputing the function. To bound the running time it is
sufficient to bound the size of the memoization table and the
running time required to compute each entry from the other
ones.

The number of possible values for p̂ is less than nt and
hence there are at most ntk2 table entries. For each entry it
takes O(nt) time to compute it giving a O(t · nt+1k2) time
bound for the algorithm. In order to obtain a better running
time bound, we show that only a small subset of the possible
values of p̂ will ever be visited by a recursive call of the
algorithm.

For a vector p̂ define δ+(p̂) = {uv ∈ A | u ∈ S(p̂), v /∈
S(p̂)} and δ−(p̂) = {uv ∈ A | u /∈ S(p̂), v ∈ S(p̂)}.
The crucial observation is that if T (p̂, k1, k2) is visited by a
recursive call, then |F ∩ δ+(p̂)|+ k1 ≤ k and |δ−(p̂) \F |+
k2 ≤ k. To see that the inequality hold, let F` be a (k1, k2)-
constrained feedback arc set of T (p̂) that corresponds to an
ordering that takes all the vertices of S(p̂) before the vertices
not in S(p̂). Then δ+(p̂) ∩ F ⊆ F \ F` and δ−(p̂) \ F ⊆
F` \ F . Thus, to bound the size of the memoization table it

is sufficient to upper bound the number of legal vectors, that
is p̂ that satisfy |δ+(p̂) ∩ F |+ |δ−(p̂) \ F | ≤ 2k.

Let σold = v1 . . . vn be the ordering of V corresponding
to F , p̂ be a legal vector and S = S(p̂). Now, let x be the
largest integer such that vx ∈ S. We prove that for every
y < x − 2k, vy must be in S as well. Suppose not, then
vxvy ∈ (δ+(p̂)∩F )∪(δ−(p̂)\F ). Consider a vertex vz with
y < z < x. If vz ∈ S then vzvy ∈ (δ+(p̂)∩F )∪(δ−(p̂)\F )
and if vz /∈ S then vxvz ∈ (δ+(p̂) ∩ F ) ∪ (δ−(p̂) \ F ).
Since there are at least 2k choices for z this implies that
|(δ+(p̂) ∩ F ) ∪ (δ−(p̂) \ F )| > 2k, contradicting that p̂ is
legal.

To uniquely determine p̂ it is enough to uniquely de-
termine S. If x is given then vx ∈ S, for all y > x,
vy /∈ S and the argument in the above paragraph implies
{v1, . . . , vx−2k−1} ⊂ S. Thus, to specify S it is sufficient
to specify x and S ∩ C where C = {vx−2k, . . . vx−1}. Let
Cj = C ∩ Vj = {vj

aj
, vj

aj+1, . . . v
j
bj
}. Then S ∩ C =

(S ∩ C1) ∪ (S ∩ C2) . . . ∪ (S ∩ Ct) and for each j there
are at most 2k+1 possible choices of S∩Cj since S∩Cj is
either ∅ or {vj

aj
, vj

aj+1, . . . v
j
b′

j
} for some b′j ≤ bj . Thus

there are n(2k + 1)t−1 choices for S and hence at most
n(2k + 1)t−1k2 ≤ n(2k + 1)t+1 entries in the memoiza-
tion table. Since each recursice step takes O(nt) time the
total running time bound becomes n(2k + 1)t+1 · nt =
O((2k + 1)t+1n2t). �

In fact, the algorithm provided in Lemma 2 can be
made to run slightly faster by pre-computing the value of∑

u∈S(p̂) w
∗(vi

p̂i
, u)), k′1 and k′2 for every p̂ and i using dy-

namic programming, and storing it in a table. This would
let us reduce the time to compute a table entry using Recur-
rence 1 from O(nt) to O(t) yielding an algorithm that runs
in time O(n · t · (2k + 1)t+2) time. This gives us following
theorem.

Theorem 1 k-LSFAST can be solved in expected time
2O(
√

k log k)n and 2O(
√

k log k)n space.

Proof: Our algorithm proceeds by repeating the steps de-
scribed in Figure 1. We use Lemma 2 to find a minimum
weight arc set F` ∈ N en

k (F ) such that Sin, Sout ⊆ Ac

and check if c(F`) < c(F ). If c(F`) < c(F ) then we re-
turn true else we repeat the steps described in Figure 1. The
correctness of the algorithm follows from Lemma 2. Com-
bining Lemmata 1 and 2 yield an expected running time of
O((2e)

√
k/4) · O(4

√
k · (2k + 1)1+4

√
kn) ≤ 2O(

√
k log k)n

for finding a F` ∈ N en
k (F ) such that c(F`) < c(F ) if one

exists. The space required by the algorithm is n · (2k +
1)4
√

k+1 ≤ 2O(
√

k log k)n. �

The algorithm described in Figure 1 can be derandom-
ized using universal coloring families introduced in (Alon,
Lokshtanov, and Saurabh 2009). For integers m, k and r,
a family F of functions from [m] to [r] is called a univer-
sal (m, k, r)-coloring family if for any graph G on the set
of vertices [m] with at most k edges, there exists an f ∈ F
which is a proper vertex coloring ofG. An explicit construc-
tion of a (n, 2k,O(

√
k))-coloring family can replace the
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randomized coloring step in the algorithm for k-LSFAST.
Towards this we utilize the following result.

Proposition 2 [(Alon, Lokshtanov, and Saurabh 2009)]
For any n > 10k2 there exists an explicit univer-
sal (n, k,O(

√
k))-coloring family F of size |F| ≤

2O(
√

k log k) log n.

Finally, combining the algorithm from Theorem 1 with
the universal coloring families given by Proposition 2
yields a deterministic subexponential time algorithm for k-
LSFAST.

Theorem 2 k-LSFAST can be solved in time
2O(
√

k log k)n log n.

Other Applications
Our subexponential algorithm for k-LSFAST is useful in
obtaining subexponential time algorithm for a local search
variant of various other problems arising in different do-
mains. The first one is related to KEMENY RANKING that
arises in social choice theory. Preference lists are typical
examples of elements in social science surveys and voting
systems. In several such cases we wish to combine var-
ious lists into one which reflects the opinion of the sur-
veyed group as much as possible. The Kemeny aggrega-
tion problem was introduced by Kemeny (Kemeny 1959;
Kemeny and Snell 1962) to abstract out problem of combin-
ing preference lists into one. Given a set of m permutations
(called votes) over a set of n alternatives (called candidates),
the k-KEMENY-OPTIMAL AGGREGATION (k-KOA) prob-
lem asks for a permutation of candidates, called an opti-
mal aggregation, such that the sum of τ -distance from the
votes is at most k. The τ -distance between two permuta-
tion π1 and π2 is the number of pairs of candidates that are
ordered differently in the two permutations and is denoted
by τ(π1, π2). Let L(π) denote the set of pairs of candidates
(a, b) such that there exist a vote πj such that (a, b) is or-
dered differently in π and πj .

The k-local search variant of this problem, denoted by
k-LSKOA, is that given an input consisting of m votes
(say V ), that is m permutations {π1, . . . , πm}, over n can-
didates (say C) and a permutation π, to check whether
there is another permutation π∗ such that

∑m
i=1 τ(π∗, πi) <∑m

i=1 τ(π, πi), |L(π)\L(π∗)| ≤ k and |L(π∗)\L(π)| ≤ k.
It is well known that k-LSKOA (Dwork et al. 2001a;
2001b) can be modelled as solving a weighted feedback arc
set problem in multi-tournaments (tournaments where be-
tween every pair of vertex {u, v} there is either (u, v) ∈ A
or (v, u) ∈ A or both (u, v), (v, u) ∈ A). For completion
we provide details of this modelling in the appendix. The
modelling essentially does the following: Given an instance
(C, V, `) of k-KOA, constructs a multi-tournament T such
that (C, V, k) is an YES instance of k-KOA if and only if
T has a feedback arc set of weight at most k. Lemma 2 can
also be proved for multi-tournaments and hence Theorems 1
and 2 can be generalized for multi-tournaments. This to-
gether with the equivalence between k-KOA and k-FAST
(in multi-tournaments) allow us to conclude the following
theorem.

Theorem 3 k-LSFKOA can be solved in time
2O(
√

k log k)n log n.
Our other application stems from graph-drawing and the

problem itself is called k-ONE SIDED CROSS MINIMIZA-
TION (k-OSCM). The problem consists of a bipartite graph
G = (V1, V2, E), a permutation π of V1, and a positive inte-
ger k and the objective is to check whether there is a permu-
tation πm of V2 such that, when the vertices of V1 are placed
on a line (also called a layer) in the order induced by π and
the vertices of V2 are placed on a second layer (parallel to the
first one) in the order induced by πm, then drawing straight-
line segment for each edge in E will introduce no more than
k (pairwise) edge crossings. It has been brought to our at-
tention by a colleague working in graph drawing that even
this problem can be modelled as weighted feedback arc set
in multi-tournaments, almost similar to the modelling done
for k-KOA. This modelling allows us to prove that the local
search variant obtained by viewing the problem as weighted
feedback arc set in multi-tournaments can be solved in pa-
rameterized subexponential time.

IV – Conclusion
In this paper we obtained a parameterized subexponen-
tial time algorithm for a local search variant of the k-
WEIGHTED FEEDBACK ARC SET IN TOURNAMENTS
problem. This algorithm was also useful in designing subex-
ponential time algorithm for a local search variant of k-
KOA and k-ONE SIDED CROSS MINIMIZATION. It is natu-
ral to ask whether the local search variant of weighted feed-
back arc set is fixed parameter tractable for all digraphs. Un-
fortunately, it can easily be shown that it is not the case un-
less some unlikely collapse happens in parameterized com-
plexity theory. A natural open question is whether we
can solve k-LSFAST in time 2O(

√
k)nO(1) like k-FAST.

Other questions which remain open are whether we can use
chromatic-coding or color-coding to solve local search vari-
ant of other problems. The problems which might be feasi-
ble using this approach are the local search variants of com-
plete version of BETWEENNESS and MINIMUM QUARTET
INCONSISTENCY.
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Appendix
Let (C, V, k) be an instance of k-KOA. We construct a di-
graph T such that (C, V, k) is a YES instance of k-KOA if
and only if T has a feedback arc set of weight at most k. We
construct T in two stages, as follows.

Stage 1 We construct a digraph H whose vertex set is the
set C of candidates. For each vote πi ∈ V and for each pair
of vertices (u, v) of H , we add a new arc from u to v in H
if and only if u appears before v in πi (equivalently, when u
is preferred over v by πi). The resulting digraph H has, for
every two vertices {u, v}, a total of i ≥ 0 arcs from u to v
and j ≥ 0 arcs from v to u, with i+ j = |V |.
Claim 1 Let (C, V, k) be an instance of k-KOA, and let H
be a digraph obtained from (C, V, k) as described above.
(C, V, k) is an YES instance if and only if H has a feedback
arc set consisting of at most k arcs.

Proof: Let (C, V, k) be an YES instance of k-KOA.
Then there exists a permutation π of the set C such that∑

v∈V τ(π, v) ≤ k. It is easy to see that we can reverse
exactly

∑
v∈V τ(π, v) ≤ k arcs of H to obtain a DAG (di-

rected acyclic graph), namely, the DAG on the vertex set C
defined by π: there is an arc from u to v if and only if u
appears before v in π. It follows that H has a feedback arc
set consisting of at most k arcs.

Now suppose H has a feedback arc set consisting of at
most k arcs. Consider the DAG obtained from H by revers-
ing the arcs in this feedback arc set. This DAG defines a
permutation π of C, where u appears before v in π if and
only if there is an arc (in fact, there are |V | arcs) from u to v
in the DAG. It is easy to see that

∑
v∈V τ(π, v) ≤ k, and so

(C, V, k) is an YES instance of k-KOA. �

Stage 2 To obtain the target digraph T fromH , we process
every two vertices {u, v} of H as follows: Let there be a
total of i arcs from u to v and j arcs from v to u in H . We
replace all these arcs by (i) a single arc of weight i from u
to v if i > 0, and (ii) a single arc of weight j from v to u if
j > 0.
Lemma 3 Let T be the digraph obtained from an instance
(C, V, k) of k-KOA as described above. Then T has a feed-
back arc set of weight at most k if and only if (C, V, k) is an
YES instance of k-KOA.

Proof: Follows easily from Claim 1 and the construction of
T from H . �

Note that T is in general not a tournament, it may contain
more arcs and hence it could be a multi-tournament.
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