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Chapter 1

Introduction

The Dominating Set [2, 16] problem is probably one of the most studied problems in
graph algorithms. It has been proved N'P-complete [6], and so have countless variations
of the problem. The Dominating Set problem can be stated as follows: Color the
vertices of a graph GG black or white so that every white vertex has a black neighbor,
using as few black vertices as possible. If we now call the black vertices for dominators
we see that every dominator dominates its neighbors.

In this thesis, we will look upon a rather recent mutation of the problem statement,
called Broadcast Domination. This variant was introduced by Erwin [5] in 2002. In
Broadcast Domination, we are free to choose the strength of a dominator. A dominator
with power p dominates all vertices at distance less than or equal to p from it. Assuming
that making a dominator of power p has cost p, we can state the Broadcast Domination
problem by asking to dominate a graph while minimizing the cost (the sum of powers
of the dominators) of doing so.

We observe that if we demand that each dominator has power 1 we return to
Dominating Set. Hence in Broadcast Domination we seem to have a much larger search
space in which to seek an optimal solution. This naturally leads to the assumption that
Broadcast Domination also is N'P-complete. Following this assumption, Blair et al. [3]
gave polynomial time algorithms for finding an optimal Broadcast Domination in series-
parallel graphs, interval graphs and trees. Also, Horton et al. [13] did a computational
study of the problem. In this thesis we will show that, quite surprisingly Broadcast
Domination is in fact polynomial time solvable on all input graphs, by presenting
an O(n%) algorithm. To do this, we will not apply any of the standard techniques for
proving polynomial time solvability, like reduction to 2-SAT or Dynamic Programming.
Instead we will reduce the problem of finding an optimal broadcast domination to a
set of shortest path problems in auxiliary graphs. At the end of the thesis we will also
discuss a couple of variations of the problem.

1.1 Notation and terminology

A graph G = (V,E) is aset V = V(G) of vertices and a set E(G) = E C V2 of edges.
In this thesis, we will say that G has |V| = n vertices and |E| = m edges. If (v,v) ¢ E,
G is referred to as a simple graph. If (u,v) € E = (v,u) € E the graph is undirected,



otherwise it is directed. If some weight function w : E — R is supplied, we say that G is
weighted and that w((u,v)) is the weight of the edge (u,v). Similarly, a weight function
w’ : V — R may be defined on the vertices. All graphs in this thesis are simple and
undirected unless stated otherwise. For a simple undirected graph G, its complement,

is defined as G = (V, {(u,v) : u # v, (u,v) ¢ E}).

A sequence P of vertices, {p1, p2...pn} where (p;,p; + 1) € E is called a walk. n —1
is the length of the walk. If i # j — p; # p;j P is a path. A cycle is a path of length
at least three, with the exception that py = p,. The distance, §(u,v) between two
vertices v and v is the length of the shortest path starting in u and ending in v. If we
refer to the distance in another graph than G we will use subscript. For instance the
distance between u and v in the graph H is denoted dp(u,v). For a vertex u we will
call e(u) = max,ecy (d(u,v)) the eccentricity of u. The maximum eccentricity over all
vertices of G is the diameter of G, diam(G), the minimum eccentricity over all vertices
is the graph’s radius, rad(G).

A graph H = (Vy,Eq) is a subgraph of G = (V,E) if Vg C V and Ey C E.
Given a subset of the vertices, W C V., the subgraph induced by W is the graph
G[W] = (W, {(u,v) : (u,v) € EA (u,v) € W?})

For a vertex v and natural number r, the ball with center in v, and radius r is the
set of vertices B(v,r) = {u : §(u,v) < r}. The closed neighborhood of a vertex v, N[v],
is simply the ball B(v,1). The neighbors of v is the set N(v) = Nv] \ v. For a set of
vertices S, define N[S] = (J,cg N[u] and N(S) = N[S]\ S. The degree of a vertex v is
d(v) = |N(v)|. The mazimum degree of a graph G is A(G) = max,cy d(v).

A clique K in a graph G is a subset of the vertices of G so that for each distinct
wand v in K, (u,v) € E(G). An independent set I is a clique in G. A set D of
vertices is a dominating set in G if N[D] = V(G). A function f : V — ZT is a
broadcast. A broadcast is a broadcast domination if for every vertex u there is a vertex
v with 0(u,v) < f(v). Given a broadcast f, the cost incurred by a vertex set S C V is
Cr(S) > eg f(v). The Optimal Broadcast Domination problem asks to find a broadcast
domination f of G that minimizes C¢(V). We will call such a broadcast domination
an optimal broadcast domination. If a simple directed graph D = (V| E) has no cycles,
we say that D is acyclic. A topological ordering of the directed graph D is an ordering
of the vertices (vi,v2 , ... , vp) so that for every edge (v;,v;) in E we have that ¢ < j.
One can show that a simple directed graph D has a topological ordering if and only if
it is acyclic [14].

A graph class G is a (possibly infinite) set of graphs. A graph G € G is said to
it belong to the graph class, or to be a member of the graph class. Two commonly
used graph classes are the planar graphs - all graphs that can be embedded in a plane
without crossing edges and trees - connected graphs with no cycles.

As a rule of citation, all results that are not new in this thesis will be cited. The
only exceptions from this rule are the results we consider to be a part of the folklore.

1.2 Outline

In chapter 2 we give a brief introduction to complexity theory. We cover asymptotic
notation, the classes P and NP, and introduce NP-completeness. In chapter 3 we



consider the Dominating Set problem, along with a few similar problems. We define
Optimal Broadcast Domination and discuss the relation between Optimal Broadcast
Domination and Dominating Set. Chapter 4 covers structural results on broadcast dom-
inations. The notions of efficiency and domination graphs are introduced and used to
provide the tools needed to devise a polynomial time algorithm for Optimal Broadcast
Domination. The algorithm itself, together with a correctness proof and a complexity
analysis is presented in chapter 5. In chapter 6 we cover a couple generalizations of
Optimal Broadcast Domination, while chapter 7 summarizes and concludes the results
of the thesis.



Chapter 2

Some complexity theory

In this chapter, we will review the classes P and NP and give an explanation of what
NP-complete problems are. For the purpose of this thesis one only needs to understand
the basic ideas of these concepts, so the explanations are slightly simplified. For a more
complete and rigorous coverage of the topics, please refer to [17] or [14].

2.1 Big-Oh notation and the class P

When analyzing the efficiency of an algorithm we usually want to study how it behaves
on large input instances. Also, experience has shown that the average running time of
an algorithm is usually close to the worst case running time. Hence the classical perfor-
mance analysis relies on giving a function f expressing the number of steps performed
by the algorithm on the worst possible input of size n. However, this function f tends
to be complicated, and to have many lower order terms that are negligible on large
enough inputs. To avoid finding and writing all these terms we apply O-notation (read
“Big-Oh”) that suppresses all lower order terms and constant factors. This means that
10n* + 3n + nlog(n) = O(n*) and 100 x 2" + 200 x 3" = O(3").

A natural question to ask, is for which problems we have efficient algorithms. By
efficient, we mean that we are able to apply the algorithm on large input instances,
and get an answer in reasonable time. Now, this is not a precise definition, so it is
fairly hard to work with. Therefore we say that an algorithm is efficient if it runs in
polynomial time. That is, if there exists a constant ¢ independent of the input so that
the algorithm runs in O(n®) time. Now, obviously this definition is to wide - by this
definition an algorithm running in O(n'%) is efficient, something that clearly is not the
case. In fact, if executed today on the earth’s fastest computer, the algorithm would
not terminate within the life span of the universe even on an input of size 2! However,
incomplete as this definition may seem, it has proven practical. This is because most
problems that we find polynomial time algorithms for are fast, that is the exponent
¢ mentioned above is 10 or less. We call the set of all problems that are solvable in
polynomial time P.



2.2 Reductions

Unfortunately, many important problems have proven very hard to find efficient algo-
rithms for. These problems are often easy to formulate, but somehow, in their simplicity
they seem not to be solvable by anything but a brute force search. Finding a clique
or an independent set of a given size in a graph are classical examples of such prob-
lems. We will refer to these problems as Clique and Independent Set respectively. Also,
assigning values to boolean variables in order to satisfy a given boolean formula is an-
other. In 1971/72 Cook and Levin provided an explanation for why these problems
are so difficult. They showed that all these problems are interconnected, and that by
solving one of them, we in fact solve them all.

In order to do this, they use the concept of reductions from one problem to another.
A reduction is simply an algorithm to transform an instance of one problem to an
instance of another, so that the solution of the second can be used to solve the first.
For decision problems - problems where the output should be either yes or no, we
formalize this notion. For a decision problem P and an instance I of the problem, let
the answer to I with respect to P be denoted Ap(I). This answer is either True or
False. Now, a reduction from a problem P to another problem P’ is a function f that
takes instances of P to instances of P’ so that Ap/(f(I)) = Ap(I). We say that f is a
polynomial time reduction if there is a polynomial time algorithm computing f.

A simple example of a polynomial time reduction is one from Clique to Independent
Set. We simply let f(G,k) = (G, k). By the definition of an independent set we see
that G has a clique of size k if and only if G has an independent set of size k. So, what
does the existence of this reduction tell us? Well, suppose you had a polynomial time
algorithm that solves Independent Set. Then, in order to solve any instance I of Clique,
we could simply apply the reduction above, and run the polynomial time algorithm on
f(I). Now, since f is a reduction, the answer given by the Independent Set algorithm in
fact also is the answer to our instance of Clique. Hence, any polynomial time algorithm
for Independent Set can be transformed into a polynomial time algorithm for Clique.
Obviously this example can be generalized. That is, if there is a polynomial time
reduction from some problem A to a problem B then a polynomial time algorithm for
B automatically yields a polynomial time algorithm for A. Seen from this point of view
we can say that B is at least as hard as A, or A <7 B.

2.3 The class NP and N P-completeness

A property shared by the problems mentioned above is that they are all polynomial
time verifiable, that is, if we are given a problem instance and a solution, there is a
polynomial time algorithm that can check whether the proposed solution indeed is a
solution of the given instance. For instance, given a graph G and a clique K, it is easy
to check whether K actually is a clique in G. Similarly to P, we define NP to be the
class of all polynomial time verifiable problems.

What Cook and Levin realized is that some of the problems in NP are special
in the way that they can be used to encode all other problems in the class. We say
that a problem A is NP-complete, or belongs to the class NPC if A € NP and for
all B € NP, B <y A. The famous result of Cook and Levin states that 3-SAT is



NP-complete. The formal definition of 3-SAT is out of the scope of this thesis. If
interested, the reader may refer to [17] for this definition, and for the proof of the
following theorem.

Theorem 2.3.1 3-SAT € N'PC.

So, what are the consequences of this result? Well, suppose we find a polynomial
time algorithm for 3-SAT. Then, by definition of N'P-completeness we automatically
have polynomial time algorithms for all problems in N'P. However, from an intuitive
standpoint it seems farfetched that all polynomial time verifiable problems also are
polynomial time solvable. After all, it is easier to check a solution for correctness than
actually finding it. Still, as of today, one has neither been able to find a polynomial
time algorithm for 3-SAT, nor prove that none exists. In fact, this problem is known
as the famous open P =" NP problem.

3-SAT is not the only problem to have this property. For instance, it is a simple
exercise to show that 3-SAT <p Clique [17] which proves that Clique is in N'PC. As
we have already showed that Clique <7 Independent Set, so is Independent Set. Since
Cook and Levin published their result, hundreds of other problems have been proved
NP-complete. Garey and Johnson [6] provides a list of over 300 of them.

To conclude this chapter we will give a proof that Dominating Set is NP-complete
by presenting a reduction from Independent Set. Of course, the problem has been
shown NP-complete a long time ago, yet we chose to present the proof as this problem
has a key role in the thesis and we wish to give an example of a nontrivial reduction.
As we mentioned in the introduction the problem of Dominating Set asks as to find a
minimum cardinality dominating set in a given graph. This minimum cardinality will
be denoted v(G).

For a given instance G = (V, E) of Independent Set we build a graph G’ = (V', E’)
= ((VUE),EU{(u,(u,v)) :u € V,(u,v) € E}). To complete the reduction we need a
result concerning the dominating sets of G.

Lemma 2.3.2 For every dominating set D of G' with D\'V # 0 there is a dominating
set D' of G' with |D'| < |D| and D'\V C D\ V.

Proof. Suppose that D\ V # (. Then there is a (u,v) € D\ V. Now, consider
D' = (D U{u}) \ {(u,v)}. Obviously |D'| < |D| as (u,v) is removed. Also D' is a
dominating set as N|[(u,v)] C N[u]. Finally D'\V ¢ D\V as (u,v) ¢ Vandu e V. n

Corollary 2.3.3 For every dominating set D of G' with D \'V # () there is a domi-
nating set D' of G with |D'| < D and D' \'V = {).

Using this, we can derive a result connecting the independent sets of G' to dominat-
ing sets of G'.

Theorem 2.3.4 G has an independent set of size at least k < G’ has a dominating
set of size at most |V | — k.



Figure 2.1: On the left hand side, the black nodes indicate the independent set. On the
right hand side, small nodes are the nodes added to G to construct G'. The grey nodes
indicate a minimum dominating set of G’

Proof. Suppose V has an independent set I of size at least k. Then D = V' \ I has size
at most |V|—k. Also, for all (u,v) € E either u € D orv € D. Hence, D is a dominating
set of G’. In the other direction, suppose G’ has a dominating set D of size at most
|[V| — k. By Corollary 2.3.3 there is another dominating set D’ C V with size at most
|V|—k. Consider I = V'\ D’. First, I has size at least |V|—(|[V|—k) = k. Additionally
for all (u,v) € E either u ¢ I or v ¢ I. This yields that [ is an independent set of G
completing the proof =

Corollary 2.3.5 (Folklore) Independent Set <p Dominating Set, and Dominating
Set is N'P-complete

In fact, Dominating Set is such a difficult problem that it remains NP-complete
even when input is restricted to specific graph classes. In this thesis, we will use the
fact that Dominating Set is in NPC even if input is restricted to the planar graphs.

Theorem 2.3.6 [6] Planar Dominating Set is N'P-complete



Chapter 3

Dominating Set and some of its
variants

The Dominating Set problem was introduced in the late 1950’s [2, 16]. The problem
arises naturally from many different situations. For instance, consider the problem of
deciding where to build fire stations in a city. One would want every house in the city
to be within a certain range from a fire station. At the same time each fire station costs
time and money to operate, thus we wish to minimize the number of fire stations to be
built. We model this as a graph problem. Let the locations in the city be the vertices
of a graph G = (V| E). Now put an edge between two locations if the fire-truck can get
between them in time. It is easy to see that a minimum cardinality dominating set .S
in G corresponds to an optimal placement of the fire stations.

3.1 Power Domination

Dominating Set also arises from the need to monitor electric networks. Consider a
network having components and links between these components. A measurement unit
can be attached to any one of these components and measure the state of the component
it is attached to and all its neighbors. If we wish to monitor all components of the
network while minimizing the number of measurement units used, again we arrive at
the Dominating Set problem. In practice, however, a measurement unit can sometimes
monitor components outside of the units neighborhood. This can only happen if certain
conditions are satisfied, but the difference from Dominating Set is significant enough for
an alternate model to be used. This model leads to the problem of Power Domination,
one of the many spin-off problems from Dominating Set. More detailed coverage of
Power Domination can be found in [8, 7].

3.2 Broadcast Domination

Another way to view Dominating Set achieved through is the problem of placing radio
transmitters. Given a graph G representing cities, we wish to place as few radio trans-
mitters as possible on the map so that every city can hear a transmitter. A city can
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hear a transmitter placed in the city itself or in any of its neighbors. This model, how-
ever, does not capture the fact that some radio transmitters are stronger than others.
Broadcast Domination, a model taking this into account, was introduced in 2002 by
Erwin [5]. In this scenario we are given an input graph G = (V, E) and are to produce
an integer valued function f : V — ZT describing the placement and strength of the
different transmitters. The transmitters are placed at the vertices with a nonzero trans-
mission power. That is, we use f to select the dominators, Vi = {v e V : f(v) > 1},
and the other vertices, called receivers. We say that each dominator v € V¢ has power
f(v). Now, as with Dominating Set we want all vertices of G to be dominated by some
dominator. Formally we say that f is a broadcast domination if for every vertex u there
is a dominator v € V; satisfying 6(u,v) < f(v). In this case we say that the vertex u
hears vertex v. If |Vy| = 1 we say that f is radial.

When dealing with Dominating Set we wish to minimize the number of dominators.
Similarly, in Optimal Broadcast Domination we wish to minimize the cost of dominating
all the vertices. We define the cost incurred by a set S C V of vertices to be Cf(S) =
> ves f(v). Thus, the Optimal Broadcast Domination problem asks to find a broadcast
domination f minimizing C¢(V).

3.3 r-Domination and the (k, r)-Center Problem

If we demand that all dominators are to have a certain power r, we arrive at r-
Domination [11, 18]. This is clearly a N'P-complete problem, as setting r to one returns
us to the original Dominating Set problem. Another problem similar to r-Domination
is the (k, r)-Center problem in which we seek to find an r-Domination of G using k ver-
tices. One of these parameters is given, the objective is to minimize the other [1, 6]. If
the given parameter is r this is exactly r-domination, hence this variant of Dominating
Set is N'P-complete as well.
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Chapter 4

Structural results on Broadcast
Domination

Intuitively Optimal Broadcast Domination looks harder than Dominating Set, because
an algorithm solving the problem not only has to determine which vertices are to be
dominators, but also what power each dominator is to have. However, a second glance
reveals a flaw in this logic. For instance, from a basic result in probabilistic graph theory
we know that ” “almost all” graphs have radius 2. This means that as n tends to infinity
the probability that a randomly drawn graph on n vertices has radius 2 tends to 1. As
a consequence, one will ” “almost always” be able to find a radial broadcast domination
of cost 2 in large graphs. Thus, one can expect that the set of optimal solutions in
Optimal Broadcast Domination is a lot less diverse than that of Dominating Set. In
fact, the polynomial time algorithm we present will exploit that we can always find an
optimal broadcast domination having specific structural properties.

4.1 Lower and upper bounds

Before we start working on an algorithm to find an optimal broadcast domination, we
would like to have some simple bounds on the cost of an optimal broadcast domination
in a given graph. For a given graph, we will denote this cost by 74(G). First of all, we
notice that if there is a vertex v with f(v) > diam(G) then f is a broadcast domination.
Thus, it is never necessary to consider broadcast dominations with powers greater than
diam(G). Following this observation, in the literature broadcast dominations are often
defined as functions from V' to {0 ,..., diam(G)} instead of from V to the nonnegative
integers. We observe that v,(G) < rad(G) because we can dominate the entire graph
by finding a vertex v with eccentricity rad(G) and make a radial broadcast domination
f with f(v) = rad(G).
Proving a lower bound is slightly harder.

Lemma 4.1.1 Let P = {uy, us....uy} be a shortest path from wuy to ug. Then, for any
vertex u and positive integer p, |B(u,p) N P| <2p+ 1.

Proof. Suppose for contradiction that |B(u,p) N P| > 2p+ 1. Then there must be two
vertices v and w on P with dp(v,w) > 2p. But P is a shortest path, so dp(v,w) =
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d(v, w). This gives us 6(v,w) > 2p = §(v,u) + d(u, w) > §(v,w), a contradiction. m

Using this lemma we can prove a simple lower bound on (&)
Lemma 4.1.2 %(G) < %G

Proof. Let f be an optimal broadcast domination, Let x be a vertex with eccentricity
diam(G) and let y be a vertex with §(z,y) = diam(G). Let P be a shortest path from
x to y. Now, Zvevf |B(v, f(v) N P| > |P| = diam(Q) as f is a broadcast domination.
As P is a shortest path we have that Zvevf |B(v, f(v) N P| < Zvevf 2f(v)+1) =
[V 4+ 27(G) < 37(G). Together these inequalities give diam(G) < 37,(G). =

4.2 Balls, Efficiency and Optimal Substructure

Given a graph G, for a vertex v and positive integer r we defined the ball centered at v
with radius r, to be B(v,r) = {u : §(u,v) < r}. Notice, that for a broadcast domination
[, each ball B(v, f(v)) for v € V; corresponds to a transmitter and all vertices that can
hear it. As a slight abuse of notation, when we talk about a ball, we might also mean
the subgraph of G induced by the ball. Finally, note that a function f is a broadcast
domination if and only if Uver B(v, f(v)) =V.

Now we are ready to state the first structural result about optimal broadcast dom-
inations. It says that there is an optimal broadcast domination in which every vertex
hears exactly one transmitter. We call such a broadcast domination efficient. The
Lemma is due to Dunbar et al. [4].

The proof idea is as follows - if there is a vertex hearing two transmitters, the two
transmitters are fairly close to each other. Then we can remove the two transmitters
and replace them by one strong transmitter in the middle.

Lemma 4.2.1 [/] For any inefficient broadcast domination f of G there is an efficient
broadcast domination f" with Cp(V) < C¢(V) and |Vy <V (f)].

Proof. Suppose that we have an inefficient broadcast domination f. Then there
is a vertex u hearing both v and w in V. Then we know that d(v,w) < 0(v,u) +
delta(u,w) < f(v) + f(w). Hence, on the shortest path from v to w there is a vertex
x satisfying 6(v,z) < f(w) and §(w,z) < f(v). Now, we let f'(y) = f(y) for y €
V\v,w,z, f(v) = f(w) =0 and f'(z) = f(v) + f(w). Obviously [Vy| < [V¢| and
Cy(V) = C¢(V). We only need to prove that f’ is indeed a broadcast domination.
But we know that for any y € B(v, f(v)) we have that é(y,z) < §(y,v) + 0(v,z) <
f(v) + f(w) < f'(x) so y € B(z, f'(z)). Similarly any y in B(w, f(w)) is contained
in B(z, f'(x)), implying B(v, f(v)) U B(w, f(w)) C B(z, f/(x)). Finally, we know that
Unev, Bl £/(w) = Uyey, Blu. F)\ (Bo. £(0)) U Blw, f(w))) U Bla, f'(x) = V

proving that f’ is a broadcast domination. =

Corollary 4.2.2 [/}] For every graph there is an optimal efficient broadcast domination
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Figure 4.1: Converting an optimal inefficient broadcast domination into an efficient
one. Black nodes are dominators. Numbers in the nodes indicate transmission power.
The dashed lines indicate which receivers hear a transmitter. Grey nodes are receivers
that hear more than one transmitter.

Proof. Apply Lemma 4.2.1 and induction =

To conclude the section, we note that we can apply a cut and paste argument to
show that Optimal Broadcast Domination has optimal substructure.

Lemma 4.2.3 Let f be an optimal broadcast domination of G and S C Vi, Now let
V' = Upes B(v, f(v)). Then f' : V! — N defined to be f'(v) = f(v) is an optimal
broadcast domination of G[V'].

Proof. Suppose for contradiction that f is an optimal broadcast domination of G but
that f is not optimal in G[V’]. Then there is a broadcast domination ¢’ of G[V'] with
Cy (V") < Cp(V'). Now, let g(v) = ¢'(v) for v in V' and g(v) = f(v) for v € V' \ 0.
Obviously, g is a broadcast domination of G. Also Cy(V) = Cy(V') + Cy(V \ V') <
Cr(V) + Cg(VAV') = C(V') + Cr(V\ V') = Cf(V), a contradiction as f is optimal.

4.3 Domination Graphs

A domination graph is a structure that visualizes how a given efficient broadcast domi-
nation dominates a graph. The purpose of a domination graph is to show the strength
of the different transmitters, and how the transmitters relate to each other. Formally,
given a graph G = (V| F) and an efficient broadcast domination f, the domination
graph is a graph Gy = (V, Ey). The vertex set of G is just the set of dominators. For
two vertices v and v in Vy there is an edge (u,v) in Ey if there is an edge in G between
a vertex in B(u, f(u)) and a vertex in B(v, f(v)). Observe that one can obtain the

14



domination graph from the original one by contracting all receivers into the dominator
they hear.

(1)

1 NS o
O =

E @
@ ;
2

Figure 4.2: On the left hand side, a graph G with an efficient broadcast domination
f is shown. For vertices v with f(v) > 1, the broadcast powers f(v) are shown in
parentheses, and the dashed curves indicate the balls B(v, f(v)). For all other vertices
w, f(w) =0. On the right hand side, the corresponding domination graph Gy is given,
and the weight of each vertex is shown in parentheses.

Observe that if u and v are neighbors in G, then there is a vertex x in B(v, f(v))
and y in B(u, f(u) so that (u,v) € E. Hence d(u,v) < f(u)+ f(v)+1. As f is efficient
d(u,v) > f(u) + f(v). We conclude that §(u,v) = f(u) + f(v) +1

4.4 The structure of an optimal broadcast domination

When we showed that there is an optimal broadcast domination that is efficient, we
did it by showing that if two dominators were close enough we could remove them
and replace them with one strong. If we inquire whether a similar technique can be
applied in other situations we see that if you have a domination graph with a vertex of
degree 3 or more, the vertex and its neighbors can be replaced by a single dominator.
By repeatedly applying this technique we get an efficient broadcast domination whose
domination graph has no vertices of degree larger than 2, that is G is a path or a
cycle.

Lemma 4.4.1 Let f be an efficient broadcast domination on G = (V, E). If the dom-
ination graph Gy has a vertex of degree > 2, then there is an efficient broadcast domi-
nation f" on G such that |Vy| < |Vy| and cp(V) = cp(V).

Proof. Let v be a vertex with degree larger than 2 in Gy, and let z,y, and z be
three of the neighbors of v in Gy. By the way the domination graph G is defined,
v,x,y, and z are also vertices in G, and they all have broadcast powers > 1 in f.
Since f is efficient, 6(v,x) = f(v) + f(x) + 1. Similarly, 6(v,y) = f(v) + f(y) + 1 and
d(v,2) = f(v) + f(2) + 1. Assume without loss of generality that f(x) < f(y) < f(2).
If f(x)+ f(y) > f(z) then we construct a new broadcast f' on G with f'(u) = f(u)
for all vertices u € V'\{v,z,y, z}. Furthermore, we let f'(v) = f(v)+ f(z)+ f(y)+ f(2),
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and f'(z) = f'(y) = f'(2) = 0. The new broadcast f’ is dominating since every
vertex that was previously dominated by one of v,x,y, or z is now dominated by
v. To see this, let u be any vertex that was dominated by z,y, or z in f. Thus
da(v,u) < f(v) +2f(z) + 1 by our assumptions. Since f'(v) > f(v) + 2f(z), vertex u
is now dominated by v in f’. The cost of f’ is the same as that of f, and the number
of dominators in f’ is smaller.

Let now f(z) + f(y) < f(2). As we mentioned above, there is a path P in G
between v and z of length f(v)+ f(z)+1. Let w be a vertex on P such that dp(w, z) =
f(v) + f(x) + f(y). Since f is efficient, f(w) = 0. We construct a new broadcast f’
on G such that f'(u) = f(u) for all vertices u € V' \ {v,w,z,y, z}. Furthermore, we let
Fw) = f(0) + F&) + f(y) + f(), and f'(v) = f'(z) = ['(y) = f'(2) = 0. By the way
dc(z,w) is defined, any vertex that was dominated by z or v in f is now dominated
by w, since dg(v,w) < f(z). Let u be a vertex that was dominated by y in f. The
distance between u and w in G is < 2f(y) + 2f(v) + f(2) +2 — f(v) — f(x) — f(y) =
() + f(0) + F(2)+2— f(2) < f(y) + F) + F() + fle) = f/(w). Thus u is now
dominated by w. The same is true for any vertex that was dominated by x in f since
we assumed that f(z) < f(y). Thus f’ is a broadcast domination. Clearly, the costs of
f' and f are the same, and f’ has fewer broadcast dominators.

If f is efficient, we have a new broadcast domination as desired, and the lemma
follows. If f’ is not efficient, then by Lemma 4.2.1 there exists an efficient broadcast
domination with the same cost as that of f’ and with fewer broadcast dominators than
those of f’. The proof of Lemma 4.2.1 is constructive, so we can apply it to modify f’
as desired, and the proof is complete. m

Using this lemma we can formalize the discussion at the beginning of this section.

Theorem 4.4.2 For any graph G, there is an efficient optimal broadcast domination
[ on G such that the domination graph Gy is either a path or a cycle.

Proof. Let f be any efficient optimal broadcast domination on G = (V, E). If G has
a vertex of degree larger than 2 then by Lemma 4.4.1, there is an efficient broadcast
domination f" on G with |V| < [V¢| and ¢/ (V) = ¢f(V). We proceed by downwards
induction until the base case |Vy| = 1. In this case the domination graph only has
one vertex thus having no vertices of degree larger than 2. As a domination graph of
a connected graph is connected it must be either a path or a cycle and the theorem
follows. =

Having shown the main structural result of this chapter, we proceed to proving a
couple of corollaries that will prove useful to deduce correctness of the algorithm. Also,
for technical reasons we will define the path broadcast domination number, v, (G) to be
the minimum cost over all broadcast dominations of G with paths as their domination
graph. Notice that the upper and lower bounds we showed for 74(G) also hold for
Yp(G). Thus we end up with the following chain of inequalities; %(G) < w(G) <
Yp(G) < rad(G).

Corollary 4.4.3 For any graph G = (V, E), there is an efficient optimal broadcast
domination f on G such that removing the vertices of B(v, f(v)) from G results in at
most two connected components, for every v € Vy.
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Figure 4.3: An optimal efficient broadcast domination with a vertex of degree 3 in the
domination graph. The domination graph is shown on the right.

Figure 4.4: The dominator with degree 3 in the domination graph and its neighbors have
been replaced by a strong dominator. Now the broadcast domination is not efficient
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Figure 4.6: The new broadcast domination is efficient and has a path as its domination
graph
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Proof. Since there is always an efficient optimal broadcast domination f on G such
that the balls B(v, f(v)) with v € V} are ordered in a path or a cycle by Theorem
4.4.2, it suffices to observe that B(v, f(v)) induces a connected subgraph in G for each
veVym

Corollary 4.4.4 For any graph G = (V, E), there is an efficient optimal broadcast
domination f on G such that a vertex x € V; satisfies the following: G' = G(V \
B(z, f(x))) either is empty, or is connected and has the property v,(G") = Y (G').

Proof. By Theorem 4.4.2, let f be an efficient optimal broadcast domination of G such
that Gy is a path or a cycle. Let x be any vertex of Gy if G is a cycle, any of the two
endpoints of G if G is a path with at least two vertices, or G itself if G is a single
vertex. Let f/(v) = f(v) for all v € V' \ {z}. Since f is efficient on G, f’ is an efficient
dominating broadcast on G’, and G”f, is the result of removing x from G¢. Thus G’f,
is a path or empty. If G’f, is nonempty then f’ is an optimal broadcast domination on
G’ by Lemma 4.2.3 and the corollary follows. =

The reader should observe that while Corollaries 4.4.3 and 4.4.4 are on the form “For
any graph G there is an efficient optimal broadcast domination satisfying property II”
they are in fact just observing the properties of optimal efficient broadcast dominations
whose domination graph is either a path or a cycle.
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Chapter 5

The algorithm for finding an
optimal broadcast domination

As we know that there is an optimal efficient broadcast domination with a domination
graph that is either a path or a cycle, it is natural to split the task in two - first to find
the broadcast domination with minimum cost over all efficient broadcast dominations
with Gy a path, then find the broadcast domination with minimum cost over all efficient
broadcast dominations with Gt a cycle and return the one of the two with the smallest
cost. However, another division of the task into two pieces has proven to give a simpler
and faster algorithm for the problem.

We divide the task into two cases as follows; either we know that v,(G) = 4, (G) or
we do not. In the first case we know there is an optimal efficient broadcast domination
with Gy a path. In the second there is an optimal broadcast domination with Gy a either
a path or a cycle. The first case seems simpler, because a path can be ordered from
left to right. Such orderings are often useful when designing algorithms as they usually
allow simple recurrence relations that can be used to develop Dynamic Programming
or Divide and Conquer solutions. Even though our algorithm will not use any of these
techniques it exploits the left to right ordering in a similar fashion. Our approach will
be as follows; We find an algorithm to solve the path case, and devise a way to reduce
the second case to the first.

5.1 Optimal Broadcast Domination of G when ~,(G) =
Yop(G)

We are going to present an algorithm that can find a broadcast domination of minimum
cost out of all efficient broadcast dominations that have a path as their domination
graph. In order to find this broadcast domination we build an auxiliary graph G, for
every vertex u € V. G, is a directed graph with the property that specific directed
paths in G, correspond to the efficient broadcast dominations of G' with Gy a path
and u contained in the ball corresponding to one of the endpoints of this path. Out of
these broadcast dominations, we find the one with minimum cost by finding a minimum
weight path in G,. Finally, we repeat this for all 4 and pick the best f ever computed.

Given a vertex u € V, we define a directed graph G, with weights assigned to its
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vertices as follows: For each v € V and each p € {1, ...,rad(G)}, there is a vertex (v, p)
in G, if and only if one of the following is true:

e G(V \ B(v,p)) is connected or empty, and u € B(v,p)
e G(V \ B(v,p)) has at most two connected components, and u ¢ B(v, p).

Thus G, has a total of at most n - rad(G) vertices. Following Corollaries 4.4.3 and
4.4.4, each vertex (v,p) represents the situation that f(v) = p in the broadcast domi-
nation f that we are aiming to compute. We define the weight of each vertex (v,p) to
be p.

The role of u is to define the “left” endpoint of the path that we will compute. All
edges will be directed from “left” to “right”. We partition the vertex set of G, into four

o A, ={(v,p) | G(V\ B(v,p)) is connected and v € B(v,p)}

e B, ={(v,p) | G(V \ B(v,p)) has two connected components}
e Cy ={(v,p) | G(V \ B(v,p)) is connected and u ¢ B(v,p)}

e Dy ={(v,p) | B(v,p) =V}

For each vertex (v,p), let Ly(v,p) be the connected component of G(V \ B(v,p))
that contains u (i.e., the component to the ” “left” of B(v,p)), and left R, (v,p) be the
connected component of G(V'\ B(v,p)) that does not contain u (i.e., the component to
the “right” of B(v,p)). Thus Ly (v,p) = 0 for every (v,p) € A, U Dy, and Ry(v,p) =0
for every (v,p) € Cy,, U D,,.

The edges of G, are directed and defined as follows: A directed edge (v,p) — (w,q)
is an edge of G, if and only if all of the following three conditions are satisfied:

e B(v,p) N B(w,q) =0 in G
® Ry(v,p) # 0 and Ly(w,q) # 0
e (Ng(B(w,q)) N Ly(w,q)) € B(v,p) and (Ng(B(v,p)) N Ry(v,p)) € B(w,q) in G.

To restate the last requirement in plain text: B(v,p) must contain all neighbors of
B(w,q) in L, (w, q), and B(w, q) must contain all neighbors of B(v,p) in Ry (v,p).

By the way we have defined the edges of G,, all vertices belonging to A, have
indegree 0 and all vertices belonging to C,, have outdegree 0. Hence, any path in G,
can contain at most one vertex from A, (which must be the starting point of the path)
and at most one vertex from C, (which must be the ending point of the path). The
vertices of D, are isolated, and every vertex of D,, defines a radial broadcast domination
on its own.

Looking at Figure 5.1 and 5.2 the reader should become familiar with the workings
of the graph G,, and confident that a directed path from a vertex in A, to a vertex in
C, indeed corresponds to a broadcast domination. Also, we encourage the reader to
pick an efficient broadcast domination with Gy a path at random, pick u as one of the
transmitters corresponding to the endpoints of Gy and verify that f indeed corresponds
to a path from A, to Cy in G,. While this is probably enough to get an intuition of
why the approach works, it takes some work to actually prove it. First, let us justify
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Figure 5.1: A graph G is shown. The vertex uw has been highlighted. So have
the wvertices x,y,z,p and q. (u,3) is a vertex of G,, in A,. (2,3), (y,1), (z,3)
and (p,1) are all vertices in By,. (q,1) is a vertex in C,. We have that
{(u,3),(x,3),(y,1),(2,3),(p,1),(q,1)} is a path in G, from A, to C,. Also, the func-
tion f with f(u) =3, f(z) =3, f(y) =1, f(2) =3, f(p) =1, f(¢g) =1 and f(v) =0
for all other vertices is an efficient broadcast domination with the path {u,z,y,z,p,q}
as domination graph. There are many other edges and vertices in G, but we chose only
show a few in order to avoid congestion on the figure.

Figure 5.2: Again, the graph G is shown. The vertices u,x,p and q have been highlighted.
(u,1) is not a vertex of G, as B(u,2) contains u and splits G in two. (x,1) is not a
vertex in G, because B(x,1) splits G into three connected components. (p,2) and (g,1)
are vertices of G,. However there is no edge between them as they overlap.
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the intuition that edges in G, go from left to right.

Lemma 5.1.1 Let G be an arbitrary graph, and let u be a vertex of G. Every edge in
Gu goes from left to right, i.e., if (v,p) — (w, q) is an edge in G, then B(w,q) C Ry(v,p)
and B(v,p) € Lu(w, q).

Proof. By the last two requirements in the definition of edges in G,, the set B(w, q) N
R, (v,p) is nonempty. Let x be a vertex in this set, and assume for contradiction that y
is a vertex that belongs to B(w, q), but not to Ry, (v,p). As B(w, q) induces a connected
subgraph in G, there is a path between x and y in G containing only vertices belonging
to B(w,q). On this path let a be the last vertex belonging to R,(v,p), and b be the
next vertex on the path after a. As there are no edges from R, (v,p) to Ly (v,p) we
know that b must be in B(v, p), contradicting that B(v,p) N B(w, q) = 0, thus proving
that B(w,q) € Ry (v,p). The next claim B(v,p) C Ly (w, q) is proved using an identical
argument. =

We are now ready to show that any directed path in G, from A, U D, to C, U D,
corresponds to a broadcast domination. The following observation follows directly from
the definition of edges in G,

Observation 5.1.2 Given a graph G, and a vertex u in G, let P = (v1,p1), (ve2,p2),

., (vg,pr) be a path in G, with (v1,p1) € Ay U Dy, and (vg,px) € Cy U Dy,. If P has
length at least 2, then Ng(B(vi,p1)) € B(v2,p2), No(B(vk,pr)) € B(vk—1,pk-1), and
Ne(B(vispi)) € B(vi—1,pi—1) U B(vit1, pit1), for 1 <i <k.

For each path P = (v1,p1), (v2,p2), ..., (v, px) in G, with (vi,p1) € A, U D, and
(vk,pr) € Cy U Dy, let fp be the following broadcast on G: For every (v;,p;) € P,
fp(vi) = pi, and fp(v) = 0 for every other vertex v.

Lemma 5.1.3 Let G be an arbitrary graph and let u be a vertex of G. For every path
P in G, from A, U D, to C, U D,, fp is a broadcast domination on G.

Proof. P is an isolated vertex if and only if it contains a vertex from D,,. In this case
the lemma follows trivially, as D, = {(v,p) | B(v,p) = V}.

Let P = (v1,p1), (v2,p2),..., (vk,pk), and let S = U§:1 B(vj,p;j). We show that
S = V. Assume for contradiction that x € V but z ¢ S. Since G is connected,
there is a path from x to vi. Let z be the first vertex on this path that is in S, and
let y be the vertex on the path before z. Let j be such that z € B(v;,pj). Then
y € Ng(B(vj,pj)). By Observation 5.1.2, y € B(va,p2) if j =1, y € B(vg—1,pr—1) if
j=k,and y € B(vj—1,pj—1) U B(vj+1,pj+1) otherwise, in any case contradicting that
z is the first vertex in S on the path from = to v;. =

Now we want to prove that for every efficient broadcast domination f on G, where
G is a path, there is a vertex u in G, such that f corresponds to a directed path in
G, that starts in A, U D, and ends in C, U D,. More specifically, if f is radial, f
corresponds to a single vertex in D, which we call a “path from D, to D,”. If G is
a path on more than one vertex the broadcast domination corresponds to a directed
path from A, to C,.
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Lemma 5.1.4 Let f be an efficient broadcast domination on G, such that Gy =
UL, U2, ..., ug is a path. If k =1 then (u1, f(u1)) € Dy, . If k > 2 then (u1, f(u1)) € Ay,
(ug, f(ug)) € Cuy, and (u;, f(u;)) € By,, for 1 <i<k.

Proof. Assume that £k = 1. As f is a broadcast domination, B(uy, f(u1)) = V, so
(u1, f(u1)) € Dy,. Assume now that £ > 1. Then B(uj, f(u1)) contains u;. G(V '\
B(uy, f(u1))) is connected, as B(u;, f(u;)) is connected for every ¢, and there is an edge
between every consecutive pair of balls. This gives us (u1, f(u1)) € Ay,. By the same
argument G(V '\ B(ug, f(ug))) is connected. Also, B(uy, f(ux)) does not contain uq,
since B(u1, f(u1)) does, and f is efficient. We conclude that (ug, f(ug)) € Cy,. For
1 <i <k, B(u;, f(u;)) does not contain uy, by the efficiency of f. G(V \ B(u, f(u;)))
has two connected components, namely UZ ! B(uy, f(uj)) and U] —iy1 Blug, f(uy)).
Each of those components is connected because of the same argument as above, and
there are no edges between them, as that would have yielded an edge between some
and u; in Gy, with s <7 < ¢, which would contradict that G is a path. That means
that 1 <4 < k implies (u;, f(u;)) € By, and the proof is complete. =

From the proof of Lemma 5.1.4 we can see that L; = UZ ! 1 B(uj, f(u;)) and R; =

Uf:H_l B(uj, f(uj)) are the connected components of G(V'\ B(u;, f(u;))), for 1 <i < k.
Now, obviously L; contains u; and R; does not, so we conclude that L; = Ly, (u;, f(u;))

and R; = Ry, (u;, f(u;)), for 1 <i < k.

Lemma 5.1.5 Let f be an efficient broadcast domination on G, such that Gy =
UL, U2, ..., U 1S @ path. In G, there is an edge between (u;, f(u;)) and (wit1, f(uit1))
for1 <i<k.

Proof. B(u;, f(u;)) N B(uit1, f(uit1)) = 0 by the efficiency of f. Ry, (ui, f(u;)) = Ry,
and R; # (), since i < k. Ly, (i1, f(uit1)) = Liy1, and Liyq # 0, since i +1 > 1.
For s > ¢ + 1, Ng(B(ui, f(u;))) N B(us, f(us)) = 0 because there are no edges in Gy
between u; and us. Thus Ng(B(u;, f(ui))) N R; is a subset of B(uy1, f(ui+1)). The
proof that Ng(B(uit+1, f(ui+1))) N Lit1 is a subset of B(u;, f(u;)) is identical. =

Corollary 5.1.6 Let f be an efficient broadcast domination on G, such that Gy =
UL, U, ..., Uk 1S a path. Then (ui, f(u1)), (ug, f(u2)),...(uk, f(ug)) is a directed path in
Gu, , starting in Ay, U Dy, and ending in C,, U D,,

Proof. We have (ulv f(ul)) S Au1UDu1a (ukv f(uk)) € Cu1UDu1a and (uiv f(uz)) € Bula
for 1 < i < k by Lemma 5.1.4. By Lemma 5.1.5 there is an edge between each
consecutive pair of vertices. m

Now the idea is to find a directed path P, in G, from a vertex of A, U D, to a
vertex of Cy, U D,, such that the sum of the weights of the vertices of P, (including the
endpoints) is minimized. Let us call this sum W(P,). Then we will compute G, for
each vertex uw in (G, and repeat this process, and at the end choose a path with the
minimum total weight. Our algorithm for the path case is as follows:
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Algorithm Minimum Path Broadcast Domination - MPBD
Input: A graph G = (V, E).
Output: An efficient broadcast domination function f on G with ¢f(V) < y,(G).
begin
for each vertex v in G do
f(v) =0;
Let P be a dummy path with W (P) = rad(G) + 1;
for each vertex v in G do
Compute G, with vertex sets A, By, Cy, and D;
Find a minimum weight path P, starting in a vertex of A, U D, and
ending in a vertex of C, U D,;
if W(P,) < W(P) then

P = Py;
end-for
for each vertex (v,p) on P do
fv) =p;

end

Theorem 5.1.7 Given a graph G = (V, E), Algorithm MPBD computes an efficient
broadcast domination f on G such that c;(V') < yyp(G).

Proof. Let f’ be a broadcast domination on G with cost y,(G) and Gy a path.
Corollary 5.1.6 assures us that Gy corresponds to a path P’ with W(P’) = ~,(G)
in G, for some vertex u of G. We compute a minimum weight path P in G, over all
uw e V. Thus W(P) < W(P') < %p(G). By Lemma 5.1.3 P corresponds to a broadcast
domination f with ¢f(V) = W(P) < 7,(G). =

Corollary 5.1.8 Let G be a graph such that v,(G) = Y, (G). Then Algorithm MPBD
computes an efficient optimal broadcast domination on G.

In a straight forward implementation of Algorithm MPBD, building G, is the most
time-consuming part. As G, has potentially O(n?) vertices, it might have O(n*) edges.
When we build G, we have to check each of these potential edges for the properties
of edges in G,. To check for the property “B(v,p) N B(w,q) = () in G” we can use
two breadth first searches, using O(n +m) = O(n?) time, and it is easy to see that
the other properties can be checked within the same time bound. Finding a minimum
weight path can be done in O(n*logn?) time using a simple modification of Dijkstra’s
algorithm [14]. As we have to do this for every vertex u of G, we can conclude that
the running time of a straight forward implementation of Algorithm MPBD is O(n").
In the next section, we improve this running time to O(n?).

5.2 Improving the running time of Algorithm MPBD

In order to improve the running time, we are going to show that the number of edges
of G, is actually at most n3, and that G, is acyclic. We will use this to give an O(n?)
algorithm to compute a minimum weight path from A, U D,, to C,, U D,,. In addition,
we show that the choice of u does not affect G,, extensively, so a substantial amount of
pre-computation can be done outside the outer loop over vertices wu.
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Lemma 5.2.1 Let G be a graph on n vertices, and let u be any vertex of G. The graph
Gy has O(n3) edges.

Proof. We will need a series of claims for the proof of this lemma.
Claim 5.2.2 The statements dg(u,v) < p+q and B(u,p) N B(v, q) # 0 are equivalent.

Proof. Assume z € B(u,p) and z € B(v,q). Then dg(u,v) < ég(u,z) + dg(v,x) <
p + q. In the other direction, assume 0G(u,v) < p+ ¢ and let x be the vertex on a
shortest path from u to v in G having dg(u,z) = p. As z lies on a shortest path from u
to v, dg(z,v) = da(u,v) — dg(u,z) < p+q—p=gq. Thus z € B(u,p) and = € B(v,q).

Claim 5.2.3 Let x be a vertex in Ng(B(u,p)). Then x € B(v,q) implies ég(u,v) <
p+qg+1.

Proof. Observe that Ng(B(u,p)) N B(u,p) = B(u,p+ 1). Now x € B(u,p + 1) so
B(u,p+1) N B(v, q) contains = and is nonempty. By Claim 5.2.2 dg(u,v) <p+1+gq.

Claim 5.2.4 If (v,p) — (w,q) is an edge in G, then dg(v,w) =p+q+ 1.

Proof. By the requirements for an edge in G,,, B(v,p)NB(w, q) = 0 and Ng(B(v,p))N
L(v,p) is nonempty and contained in B(w, ¢q). The first requirement implies oG (v, w) >
p+ ¢ by Claim 5.2.2. The second implies G (v, w) < p+ g+ 1 by Claim 5.2.3. =

This shows that the number of edges in G, is at most n3, because given v, w, and
p, we know that ¢ must be dg(v,w) — p — 1 if there is to be a possibility for an edge
between (v,p) and (w, q) in G,. Thus the proof of Lemma 5.2.1 is complete. =

Now, we show that G, is acyclic. Again, one should refer to the Figures 5.1 and
5.2. From those figures the fact that G, is acyclic should be apparent.

Lemma 5.2.5 Let G be a graph, and let u be any vertex of G. The graph G, is acyclic.

Proof. Observe first that a cycle in G, can only contain vertices from B,. This is
because the vertices of D,, are isolated, the vertices of A, have indegree 0 and the
vertices of C, have outdegree 0.

Observe next that, for an edge (v,p) — (w,q) in G, with both (v,p) and (w,q) in
By, we have 6g(u,w) > dg(u,v) —p+ 1+ q. The argument for this is as follows: w is
neither in B(v,p) nor in B(w, q). Every path from u to w must pass through B(v, p),
so it must also pass through some edge  — y with x in B(v,p) and y in B(w, q). Now
da(u,w) = dg(u,x) + 1+ o¢(y, w), but dg(u,z) > dg(u,v) — dg(x,v) by the triangle
inequality, while dg(z,v) = p and dg(y, w) = g by the second requirement for edges in
Gu-

Now, assume for the sake of contradiction that we have a cycle (c1,p1), (c2,p2),
..., (¢kypr), (c1,p1) in G,. Then, by the above argument, dg(u,c1) > dg(u,cr) — pr +
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L+p1 > 0g(u,cp—1) —pr—1+1+pr —pr +1+p1 > 0(u,cp-1) —pr—1 +1+p1 > ...
> dg(u,c1) —p1 + 14 p1 = dg(u,c1) + 1, which is an obvious contradiction. =

We can exploit the fact that G, is acyclic in order to use a minimum weight path
algorithm that is faster than Dijkstra’s algorithm. We consider the minimum weight
path algorithm in acyclic graphs to be a part of the folklore, but we still present a
version of the algorithm, specially adapted for this setting. As G, is acyclic we can
find a topological ordering of G, in time O(n3) [14]. Given the topological ordering
of the vertices we now can find a minimum weight path from A, U D, to C, U D,
using Dynamic Programming. That is, for a vertex (v,p) of G, we let 7(v,p) be the
weight of the minimum weight path starting in A, or D, and ending in (v,p). Thus,
for every vertex in A, or D, 7(v,p) = p. For every other vertex, 7(v,p) = oo if (v, p)
has no incoming vertices and 7(v, p) = p + min ¢, where the minimum is taken over all
vertices (w,q) so that (w,q) — (v,p) is an edge in G,. The weight of the minimum
weight path from will A,,UD, to C,UD,, then be ming, ,)cc,up, 7(v,p). The minimum
weight path itself can be retrieved from 7 using a technique called backtracking. Call
an edge (v,p) — (w,q) satisfying 7(v,p) + ¢ = 7(w, q) an equality edge. We can now
observe that if (v,p) — (w, ¢) is an equality edge and 7(w, q) # oo then there must be
a minimum weight path from A, U D, to (w, q) passing through (v, p).

Algorithm Find a minimum weight path in G,
Input: A graph G,, The vertex sets A,, C,, and D,,.
Output: A minimum weight path P from A, U D, to C, U D,,.
begin
Find a topological ordering of G,;
for each vertex (v,p) in V(G,) do
7(v, p) := o0;
for each vertex (v,p) in A, U D, do
(v, p) == p;
for each vertex (v,p) in V(G,) in topological order do
for each edge (w,q) — (v,p) in E(G,) do
if 7(w, q) + p < tau(v, p) then
7(v,p) = 7(w,q) + p;
end-for
end-for
Find a vertex (v,p) in Cy U D,, minimizing 7
(Qu, @p) = (v,p);
P:= {(Q’Ua Q;D)}?
while (Q,,Q,) ¢ A, U D, do

for each edge (w,q) — (Q.,Q)) in E(G,) do
if 7(w, q) + Qp = 7(Qv, @p) then
(Qu, @) := (w,9);
P = {(Qu, @), Pk

end-for
end-do
Return P
end

Now, during the computation of 7 each edge is considered exactly once. The same
holds when we retrieve P. If we assume that we can check for membership in A,
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Cy and D, in constant time, an assumption we will justify later in this section, the
algorithm above computes in O(n?) steps. We have now found a way to find a minimum
weight path in G, in O(n?) steps, an improvement from the O(n*logn?) time bound
in the original algorithm. However, to improve the asymptotical running time of the
whole algorithm we need to build G, faster.

In order to move workload outside the outer loop, we can observe that the sets A,
B,, C, and D, do not change so much when we change u. First we can notice that
the set D,, does not depend on the choice of v at all; thus we rename this set as D,
independent of u. Now we define the following sets that are independent of wu:

e A={(v,p) | G(V\ B(v,p)) is connected}
e B={(v,p) | G(V\ B(v,p)) has two connected components}.

These sets can be computed by the following algorithm:

Algorithm Compute A, B, and D
Input: A graph G = (V, E).
Output: The sets A, B, and D.
begin
A=0; B=0; D= 0;
for each vertex w in V(G) do
for each integer k in {1, ...,rad(G)} do
V' =0;
for each vertex v in V' do
if g (u,v) > k then

VI =V'U{v};
Compute ¢, the number of connected components in G(V’);
if V' =0 then

D =D U{(u,k)};
else if c =1 then
A=AU{(u,k)};
else if ¢ = 2 then
B = BU{(u,k)};
end-for
end

Now, obviously A, UC, = A and B,, C B for any u. This means that, if the sets A
and B are pre-computed, and we want to determine A, and C,,, we only need to iterate
through every element (v,p) in A and determine whether to put it in A, or in C,.
That is done by checking whether u € B(v,p), something that can be done in constant
time by checking whether d¢(u,v) < p, assuming that the distance between every pair
of vertices in G is pre-computed. To compute B, we iterate through (v,p) € B, and
assert that dg(u,v) > p in order for (v,p) to be in B,,.

Now that we have improved the running time for finding the vertices of G,,, we wish
to accelerate the computation of the edges. In order to achieve that we need to be able
to check for membership in A,, B,, and C, in constant time. To do this we construct
an array Member, and the following algorithm explains this construction.
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Algorithm Compute A,, B, and C,, and Member
Input: A graph G = (V, E), a vertex u and the sets A and B.
Output: The sets A,, B, Cy, and Member.
begin
Ay =0; By =0; C, = 0;
for every v € V and every k € {1,...,7ad(G)} do
Member(v, k) = 0;
for each element (v, k) in A do
if 6¢(u,v) < k then
Ay = A, U{(v,k)};
Member(v, k) = Ay;
else
Cy=Cy U {(’U, k)}a
Member(v, k) = Cy;
end-if
for each element (v, k) in B do
if ¢ (u,v) > k then
B, =B, U{(v,k)};
Member(v, k) = By;
end-if
end

After computing the vertices of G, we want to compute the edges. Recall the three
conditions given on page 7 for (v, p) — (w, q) to be an edge in G,,. We can find the edges
of G, by trying all possible combinations of v, p, and w, letting ¢ = dg(v,w) —p — 1
(see Claim 5.2.4), and checking the conditions for an edge from (v,p) to (w,q). But
before we do that, we need to verify that (v,p) and (w,q) indeed are vertices of G,,.
This is easily done using the Member array.

The first condition of being an edge is fulfilled by our choice of ¢, as dg(v,w) =
p+q+1>p+ q. The second condition can be tested using the following observation

Observation 5.2.6 Let (v,p) be a vertex of G,. Then Ry (v,p) # 0 < (v,p) € A,UBy,
and Ly, (v,p) # 0 < (v,p) € B, UC,.

Since we can use the Member array to test membership in A,, B, and C, in
constant time, we can use Observation 5.2.6 to test for the second condition in constant
time. Now, notice that we check whether (v,p) and (w, q) are vertices of G, twice, first
before testing for the first condition, and then when testing the second. This is clearly
unnecessary, so the first of these tests can be omitted.

Now we want to speed up the testing of the third condition of an edge. In order to
do that, we will often need to know whether a pair of vertices lie in the same connected
component in a given graph G’ on the form G’ = G(V \ B(u,p)) where (u,p) is a
vertex of G,. By the definition of vertices in G, such a graph has at most two con-
nected components. Therefore we pre-compute a three dimensional array Component
that assigns a 1 or a 0 to each vertex of G(V \ B(u,p)). Thus, for a vertex (u,p) in
V(Gu), Component(u,p,v) = Component(u, p,w) if and only if v and w lie in the same
connected component of G(V '\ B(u, p)). This array can trivially be computed in O(n?)
time by performing a depth first search in G(V '\ B(u,p)) for every vertex (u,p) in G,.
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Algorithm Compute Component
Input: A graph G = (V, E) and the set B.
Output: The array Component.
begin
for every pair of vertices u,v € V and every p € {1,...,rad(G)} do
Component(u, p,v) = 0;
for every (u,p) in B do
V' = 0;
for each vertex v in V' do
if 0¢(u,v) > p then
V' =V"U{v};
if V' # () then
w = first element of V’;
Compute C, the connected component of G(V’) containing w;
for each vertex v in V(C') do
Component(u, p,v) = 1;
end-if
end-for
end

In the following discussion, we will say that a pair of vertices of G, form an edge
candidate if G(V \ B(v,p)) has a nonempty component C, and G(V \ B(w,q)) has a
nonempty component Cy, such that (Ng(B(w,q))NCy)) € B(v,p) and (Ng(B(v,p))N
Cy) € B(w,q) in G.

Figure 5.3: The input graph G is depicted. The vertices x,y,p and z have been high-
lighted. Also the endpoint vertices a and b have been colored black. Now, (z,3), (y,1),
(2,3) and (p,1) are all in the set B. ((y,1),(x,3)) and ((2,3),(p,1)) form edge candi-
dates. Notice that if u = a then (y,1) — (2,3)) and (z,3) — (p,1) are edges in G,. If
u = b then the edges go the other way. If u =y then (2,3) — (p,1) is an edge in G,
while (y,1) — (z,3)) is not.

Observation 5.2.7 If (v,p) — (w,q) is an edge in G, then the pair (v,p), (w,q) is an
edge candidate.
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Proof. We let C,, = R, (v,p) and Cy, = Ly (w, q), and the proof follows. =

Now, we see that one can test whether a pair (v,p), (w,q) is an edge candidate
outside the loop over all u’s. This means that we can build a three dimensional boolean
array Candidate where an entry Candidate(v, w, p) is set to true if and only if the pair
(v,p) and (w,dg(v,w) —p — 1) form an edge candidate. This array can be built in
O(n*) time, as we can let ¢ = 6g(v,w) — p — 1, scan all the neighbors of B(v,p) in
G(V \ B(v,p)) in the component labelled 0, and check whether they are contained in
B(w, q). We repeat the scan in the component labelled 1. Now we are done checking
whether there exists a Cy, so that (Ng(B(v,p))NCy)) € B(w, q). The other part of the
requirement can be checked similarly.

Algorithm Compute Candidate
Input: A graph G = (V, E) and the array Component.
Output: The array Candidate.
begin
for every pair v,w € V and every p € {1...rad(G)} do
q=9dg(v,w) —p—1;
1sCandidateV (0 = true;
i1sCandidateV'1 = true;
1sCandidateW 0 = true;
1sCandidateW1 = true;
for every z in V do
if 6¢(v,z) = p+ 1 A Component(v,p,z) = 0 A dg(w,z) > g then
isCandidateV 0 = false;
if 0¢(v,z) = p+ 1 A Component(v,p,x) =1 A dg(w,z) > q then
isCandidateV'1 = false;
if 0g(w,z) = ¢+ 1 A Component(w, g,x) =0 A dg(v,z) > p then
isCandidateW (0 = false;
if 6g(w,z) = g+ 1 A Component(w,q,z) =1 A dg(v,z) > p then
isCandidateW1 = false;
end-for
Candidate(v,w, p) = (isCandidateVO0 V isCandidateV1) A (isCandidateW0 V isCandidateW1);
end-for
end

The next lemma shows how this structure can be used.

Lemma 5.2.8 There is an edge (v,p) — (w,q) in G, if and only if (v,p) and (w,q)
are contained in A, U By U Cy, fulfill the first two conditions for an edge in G, form
an edge candidate, and satisfy w € Ry (v,p) Av € Ly(w,q).

Proof. If there is an edge from (v,p) to (w,q) then one can easily confirm that all
requirements in the lemma are met. In the other direction, we see that the first two
conditions for an edge are fulfilled. As for the third, we have that they form an edge
candidate, so it holds to show that C, is in fact R, (v,p) while Cy, is Ly, (w,q). Assume
for contradiction that C, is Ly, (v,p). Then B(w,q) contains vertices both in L, (v, p)
and R, (v,p) which is impossible as B(w, q) is connected while L, (v,p) and Ry (v,p)
are separate components. This means that C), indeed must be R, (v, p). The proof that
Cy is Ly(w, q) uses the same strategy and the lemma follows. =
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In order to check for an edge in G, one can use the requirements in Lemma 5.2.8.
If we make use of our pre-computed arrays we can check whether a given pair (v, p),
(w, q) fits these requirements in constant time. We are now ready to give the details of
a more efficient version of Algorithm MPBD.

Algorithm Revised Minimum Path Broadcast Domination - RMPBD
Input: A graph G = (V, E).
Output: An efficient broadcast domination function f with Cy(V) < v, (G).
begin
Find the distance matrix and the radius of G;
Compute A, B, and D;
Compute Component;
Compute Candidate;
for each vertex v in G do
f(v) =0;
Let P be a dummy path with W (P) = rad(G) + 1;
for each vertex v in G do
Compute A,, B,, C,, and Member;
E(G.) = 0;
for each pair v,w € V and each p € {1, ...,dg(v,w) — 3} do
q=dc(v,w)—p—1
if not (Member(v,p) = A, V Member(v,p) = B,,)
AN Member(w,q) = B, V Member(w,q) = C,) then continue
if not Candidate(v,w,p) then continue
if 0 (u,v) — p < dg(u,w) — g then
E(G.) = E(Gu) U ((v,p) — (w,0));
else
E(G.) = E(Gu) U ((w,q) — (1,));
end-for
Compute a minimum weight path P, starting in a vertex of A, U D and
ending in a vertex of C\,, U D;
if W(P,) < W(P) then

end-for
for each vertex (v,p) on P do
f(v) =p;

end

The correctness of this algorithm follows directly from Lemma 5.1.7, because this
algorithm does exactly the same things as the one proposed in the previous section.
The complexity analysis is deduced from the discussion above.

Lemma 5.2.9 The running time of Algorithm RMPBD on a graph G with n vertices
is O(n?).

Proof. From our discussion above, it should be clear that all the pre-computation can
be done in O(n?) time. In the loop over vertices u we can compute the sets A4, B, and
C, using O(n?) operations. The edges of G, are found in O(n?) time, and a minimum
weight path is found in O(n?) time as well. As these operations are inside the loop
over u they are repeated O(n) times, yielding a time complexity of O(n?) for the whole
algorithm. =

32



5.3 Optimal Broadcast Domination for all cases

Now we want to compute an optimal broadcast domination for any given graph G.
Our approach will be as follows. Let x be any vertex of GG. For each k between 1 and
rad(G) such that G’ = G(V \ B(x,k)) is connected or empty, we run the Minimum
Path Broadcast Domination algorithm RMPBD on G’. Our algorithm for the general
case is given below.

Algorithm Optimal Broadcast Domination - OBD
Input: A graph G = (V, E).
Output: An optimal broadcast domination function f on G.
begin
opt = rad(G) + 1;
for each vertex z in G do
for k =1 to rad(G) do
if G’ = G(V \ B(x,k)) is connected or empty then
f = RMPBD(G");
if ¢y (V \ B(z,k)) + k < opt then
opt = cy(V \ B(z,k)) + k;

f(@) = k;
for each vertex v in B(xz, k) \ {z} do
flv) =0;
end-if

end-if
end

In this way, we consider all broadcast dominations f whose corresponding domina-
tion graphs are paths or cycles. The advantage of this approach is its simplicity. The
disadvantage is that we also consider many cases that do not correspond to a path
or a cycle, which we could have detected with a longer and more involved algorithm.
However, these unnecessary cases do not threaten the correctness of the algorithm, and
detecting them does not decrease the asymptotic time bound.

Theorem 5.3.1 Algorithm OBD computes an optimal broadcast domination of any
given graph.

Proof. Let G = (V, E) be the input graph. By Theorem 4.4.2 and Corollary 4.4.4, there
is a vertex 2 in V and an integer k € [1,7ad(G)] such that the graph G’ = G(V\ B(x, k))
has an efficient optimal broadcast domination f’ where the domination graph G’f, is a
path, and that f’ can be extended to an optimal broadcast domination f for G with
f(z) =k, f(v) =0 for v € B(x,k) with x # v, and f(v) = f'(v) for all other vertices
v. Algorithm RMPBD computes an optimal broadcast domination of G’, and since
Algorithm OBD tries all possibilities for (z, k), the result follows. =

Note that although there is always an efficient optimal broadcast domination f
such that Gy is a cycle or a path, there can of course exist other optimal broadcast
dominations f" with ¢y/(V') = c¢¢(V) such that Gy is not a path or a cycle, and such
that f’ is not efficient. The optimal broadcast domination returned by algorithm OBD
does not necessarily correspond to a path or a cycle, since we do not force the endpoints
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(or forbid the interior points) of the path for G’ to be neighbors of B(z, k). Nor is the
returned broadcast necessarily efficient, as some ball B(v,p) might have an outreach
outside of G’ and might overlap with B(z, k).

Theorem 5.3.2 The running time of Algorithm OBD on a graph G with n vertices is
O(n").

Proof. First, algorithm OBD finds the radius of G, which can be done in O(n?) time.
For every iteration of the inner loop we find out whether G’ is connected, and call
algorithm RMPBD. The first of these tasks can be done in O(n + m) = O(n?) time,
while the second is done in O(n*) time by Lemma 5.2.9. The inner loop iterates O(n?)
times, and the proof is complete. n

The polynomial time algorithm to solve Optimal Broadcast Domination is the main
result of this thesis. The work, without the part on optimizing up algorithm MPBD,
was presented at the 31st International Workshop on Graph-Theoretic Concepts in
Computer Science [12]. We will now proceed to consider a couple variations of the
problem.
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Chapter 6

(Generalizations of Broadcast
Domination

Having coped with the original form of Broadcast Domination we wish to study more
general and realistic versions. For instance, our original motivation to study Broadcast
Domination was to devise a model that we could use to optimize placement of trans-
mitters or radio stations. In our model, building and operating a transmitter that can
send a signal p units away from itself has a cost of p. This is an assumption that is
natural because it yields the simplest model. However, this assumption does not hold
from a physical point of view. Since a transmitter sends a signal away from itself in all
directions, the energy of the transmitted signal is inverse proportional to the square of
the distance to the transmitter. Thus, sending a signal p distance units would require
O(p?) units of energy - and O(p?) units of money to pay for this energy.

6.1 Broadcast Domination with other cost functions

A way to extend our model in order to handle this problem, is to provide a cost
function ¢ : ZT — ZT. The interpretation of ¢ will be that a dominator of power p
costs ((p). That is, we redefine C't(S) to be > g ((f(v)). As not building anything
at all doesn’t cost anything we will assume that ((0) = 0. Also, we will assume that ¢
is a nondecreasing function, as it seems illogical that a stronger transmitter would be
cheaper than a weak. Now, we still wish to find the broadcast domination of G that
minimizes C¢(V'), the only difference is that the definition Cy has changed. We will
use Ypp—¢(G) to denote the minimum cost of a broadcast domination of G when using
¢ as a cost function.

If we let the cost function ¢ be a part of the input, the problem immediately becomes
NP-complete. We can show this by giving a simple reduction from Dominating Set.

Lemma 6.1.1 Dominating Set <t Broadcast Domination with General Cost Func-
tions.

Proof. For a given graph G = (V| F) as input to Dominating Set, use G as input for
Broadcast Domination with General Cost Functions. Also, let ((1) = 1 and ((k) =
|[V|+1 for k > 1. Now, in any optimal broadcast domination f, f(v) <= 1 for all
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vertices v. This is because using a dominator of power 2 would cost more than making
all vertices dominators with power 1. But Broadcast Domination with power restricted
to be less than or equal to 1 is just Dominating Set m

Since letting the cost function be part of the input makes the problem to hard to
handle, we wish to concentrate on specific cost functions, and classes of cost functions.
First, observe that letting ((k) = k returns us to the original Broadcast Domination.
In this case, we obviously can apply algorithm OBD. It is interesting to see whether
there are other cost functions for which this algorithm can be used. The answer to this
question is yes, and actually, the algorithm can be used on quite a wide range of cost
functions.

We only give an outline of the proof of this claim. A rigorous proof would require
us to go through all the calculations again, but using the new definition of C; instead
of the old one. This would require a large amount of space, and it should be fairly
obvious that these calculations indeed do go through.

Claim 6.1.2 If ((a) 4+ ¢(b) > ((a + b) for all integers a and b, Algorithm OBD gives
the correct answer for Broadcast Domination with cost function (.

Proof. The algorithm is based on the existence of an optimal efficient broadcast
domination whose domination graph is either a path or a cycle. In the proof of the
existence of such a broadcast domination we used the fact that if an optimal broadcast
domination violates one of these conditions we could replace some of the transmitters
with a strong one while keeping the total cost at the same level. In the original setting
C(a) + ¢(b) = {(a+ b), while in the new setting ((a) + {(b) > ((a + b). This means
that replacing many weak transmitters by one strong will cost us at most as much as
it did when ((k) = k. Hence the proofs of Lemma 4.2.1 and Theorem 4.4.2 will still go
through. Having confirmed that these results still hold, one can easily check that the
algorithm still works =

This result might seem uplifting - we now have many cost functions for which we can
apply the algorithm. Unfortunately, these functions all grow slower than (k) = k, while
the cost functions that we argued to be the most realistic from a physical perspective
all grow a lot faster than ((k) = k. And the bad news just keeps coming. Not only
does the algorithm give incorrect results for cost functions that grow asymptotically
faster than ((k) = k. The algorithm even breaks down when ((k) = 2k — 1 for k > 0
and ¢(0) = 0. The reason for this is that the efficiency result from Dunbar et al. no
longer applies.

Observation 6.1.3 If ((k) = 2k — 1 for k > 0, ((0) = 0, the only optimal broadcast
domination for the graph on Figure 6.1 is inefficient.

As the efficiency result is so crucial to the presented algorithm for Broadcast Dom-
ination, it seems improbable that a modified version of algorithm OBD might tackle
these cost functions. At the same time, that does not mean that Broadcast Domination
is N'P-complete for all these cost functions. We give a result that shows that faster
growing cost functions are harder to tackle than functions that grow slow.
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Figure 6.1: This is clearly the only way to dominate the graph only using two dominators
with power 1. A single dominator with power 2 costs more than two dominators with
power 1

The idea is as follows: In Broadcast Domination we are free to use as powerful
dominators as we want. If we make the powerful dominators to costly to be used we
would have to dominate the graph only using weak dominators. Then the problem of
doing this at minimum cost would start to resemble Dominating Set - an NP-complete
problem. In fact, we are going to show that if the cost function grows fast enough, and
the graph is sparse enough, finding an optimal broadcast domination with the given
cost function is equivalent to finding a minimum cardinality dominating set in that
graph.

Lemma 6.1.4 If ((1) - v(B(v,p)) < ((p) then vpp—¢(G) =v(G) - ((1)

Proof. First of all, v,—¢(G) < v(G) - (1) as any dominating set corresponds to a
broadcast domination with all dominators having power 1. Second, suppose you have
an optimal broadcast domination f with respect to (. Then, for each v € V; let D,
be a minimum cardinality dominating set of B(v, f(v)). Now, D = Uuevf D, is a
dominating set of G. This yields the chain of inequalities ((1) x v(G) < ((1) x |D| <
C(1) x Xpey, [Do] = 2ver, C1) X v(IB(v, f(0)]) < Xpev, C(f(0) = Yop—¢(G) =

If {(1) = 1 which is often the case, one can simplify the equations in lemma 6.1.4
Corollary 6.1.5 If ((1) =1 and v(B(v,p)) < {(p) then vop—c(G) = v(G)

Since determining v(G) is an NP-complete problem, we can use Corollary 6.1.5 to
give a class of cost functions for which Broadcast Domination is in N'PC.

Lemma 6.1.6 If Dominating Set is in N'PC when input is restricted to a graph class
with all member graphs having v(B(v,p)) < ((p), ((1) = 1 then Broadcast Domination
with cost function ¢ is N'P-complete

Proof. We give a reduction from Dominating Set with restricted input to Broadcast
Domination with ¢ as cost function. The trick is simply to use the same graph G as
input to both problems. By Corollary 6.1.5 vy,—¢(G) = v(G). Thus by determining
Yep—¢(G) we automatically determine y(G) »

A simple consequence of Lemma 6.1.6 is that there is some threshold cost function
n so that Broadcast Domination is N'P-complete with all cost functions ¢ > 7. Finally,
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we are going to study Quadratic Broadcast Domination, Broadcast Domination with
the quadratic cost function ((p) = p?. We are going to use Lemma 6.1.6 to give a
connection between Quadratic Dominating Set and Grid Dominating Set - Dominating
Set when the input graphs are restricted to subgraphs of grids.

An m by n grid graph is a graph G = (V, E) where V is the cartesian product of
{1,2,...m} and {1,2,...n}. There is an edge ((x1,91), (z2,y2)) € E if |1 — 2| + |y1 —
y2| = 1 A simple way to envision an m by n grid graph is just an m by n rectangular
grid with the lines representing edges and the intersection points being the vertices.
When talking about vertices in a grid graph, we say that a vertex (z,y) is even if
x + y is an even number, and odd otherwise. We define the set of all even grid vertices
Vi = {(x,y) € Z? : x+yis even} and similarly the set of all odd ones, Vo = {(z,y) € Z?
: ¢+ y is odd}. Observe that in a subgraph of a grid, an even vertex can only have
odd neighbors, and an odd vertex can only have even.

O—0O0—0—0—0
O—O0—0——C0—0
O—0O—0—0—70
O M O M O

Figure 6.2: A 4 by 5 grid.

A ball in a grid graph has a very special structure. In fact, in a grid graph G,
B((z,y),p) is just VN{(2',y) : [x—2'|+|y—y'| < p}. If G is a connected subgraph of a
grid, we can see that for a given ball B((z,y), p) both B((x,y),p)NVg and B((z,y),p)N
Vo are dominating sets of B((z,y),p). This is because every vertex in a ball has a
neighbor inside the ball, and every even vertex has only odd neighbors and vice versa.

Observation 6.1.7 Let k be the minimum of |{(2/,vy) : |x — 2'| + |y — V| < p} N Vg
and [{(z',y) : |z —2'| + |y — /| < p} N Vo|. Then k = p?

Proof. First, observe that k is independent of the choice of x and y. Hence we only
need to prove the statement for x = y = 0. We prove that |{(2/,y) : |2/| + |[¢/| <
p} N Vi| = p? if p is odd by induction. For p = 1 this is trivially true. Assume true
for a given odd p. Then |{(z,v) : |2/| + || < p+2} N Vg| = {(@,y) : |2/| + || <
PY Vel + (') 12/] + o/ = p+ 2. Now, [{(a',9/) : /| + /] = p+ 2} = dp + 4.
Hence [{(2',y) : |2/| + || < p+2}NVg| =p?> +4p+4 = (p+ 2)%. Using a similar
proof we can show that [{(z/,v') : |2/| + |¢/| < p} N Vo| = p? if p is even. Also, by
similar arguments |{(2',y) : |2/| + |y'| < p} N VE| = (p + 1)? when p is even and
H(2',y') 12|+ |y'| < p}NVo| = (p+1)? if p is odd. Together these results complete
the proof. =
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Figure 6.3: Two balls in a grid. To the left a ball with radius 2 and a dominating
set of size 4. To the right a ball with radius 3 with a dominating set of size 9. The
center of the balls is marked by a C. The grey balls are the receivers, the black ones the
dominators.

Lemma 6.1.8 If G is a subgraph of a grid, then v(B((z,y),p)) < p?.

Proof. As G is a subgraph of a grid, D, = B((z,y),p)NVg and D, = B((z,y),p)NVo
are dominating sets of B((x,y),p) Now, D, = B((z,y),p) N Ve C {(«,v) : |z — /| +
=y <p}nVenV C{(@y) : |z —2a'|+ |y — /| < p}NVp. Similarly D, € {(2',y/) :
|z — 2’| + |y — ¥/| < p} N Vo. Hence, by Observation 6.1.7, min(|D.|, |D,|) < p*. =

Theorem 6.1.9 If Grid Dominating Set is N'P-complete then Quadratic Broadcast
Domination is N'P-complete as well.

Proof. By Lemma 6.1.8 subgraphs of grids satisfy v(B((x,%),p)) < p?>. Now, assume
Grid Dominating Set is NP-complete. Thus, by Lemma 6.1.6 Quadratic Broadcast
Domination NP-complete. =

To complete the proof that Quadratic Broadcast Domination indeed is N'P-complete
we need to show that Grid Dominating Set is in APC. We do not have this result, but
we can get somewhere along the road to it by providing a conjecture that if proven true
will prove the AN'P-completeness of Grid Dominating Set. We will call an edge (u,v)
contractible if the following three conditions are satisfied:

o d(u) =d(v) =2
e Nu] # N[v]
o If z € Nu|\ N[v] and y € N[u] \ N[v] then (u,v) ¢ E

Notice that given that the two first conditions are satisfied, the vertices x and y are
uniquely defined. Now, if (u,v) is a contractible edge we let Gy, = (V \ {u,v,y}, E\
{(z,u), (u,v)} U{(y,k) : k € V})U{(x,k) : (y,k) € E}). This corresponds to taking
G and contracting the vertices x,u,v and y into one vertex.
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Figure 6.4: On the left hand side we have G with the vertices x,u,v and y highlighted.
On the right is G, which is obtained by contracting uw,v and y into x.

Lemma 6.1.10 If G has a contractible edge (u,v) then v(G) =k + 1 < v(Gyy) = k.

Proof. Suppose G, has a dominating set D’ of size k. If x € D’ then D = D' U {y}
is a dominating set of size k + 1. If x ¢ D’ then z has a neighbor k£ in D’. Now, in G
either (k,x) € F or (k,y) € E. In the first case D = D’ U v, in the second D = D' Uu
is a dominating set of G of size k + 1.

In the other direction, suppose G has a dominating set D of size k + 1. If |[D N
{z,u,v,y}| > 2 then D' = DU {a} \ {u,v,y} is a dominating set of G, with size k.
If |DN{z,u,v,y}| = 1 then |D N {u,v}| = 1 as z cannot dominate v and y cannot
dominate u. Also, as u cannot dominate y and v cannot dominate x we know that
either z or y has a neighbor in D\ {x, u,v,y}. Hence in this case D' = D\ {z,u,v,y} is
a dominating set of Gy, of size k. Finally observe that D N {z,u,v,y} = 0 contradicts
that D is a dominating set and is impossible. »

We will extend our notation in order to be able to properly formulate the last
results of this section. We define a relation <o on graphs as follows: H <¢ G if G
has a contractible edge (u,v) so that H = G,. Also, if H <¢ G and H' < H then
H’ <o G. Each time we contract, we contract 4 vertices into one. Thus, if H < G it is
easy to compute how many contractions are needed to go from G to H.

Corollary 6.1.11 Assume H <¢ G. Then(P)I h,C(LS )a dominating set of size k if and
G)-V(H

only if G has a dominating set of size k + v =

Using this notation we can prove that Cubic Planar Dominating Set, Dominating
Set when input is restricted to planar graphs with maximum degree 3, is N'P-complete.
This theorem has been known for some time, however no complete proof for it has yet
been published in the literature.

Lemma 6.1.12 For a planar graph G there is a cubic planar graph H satisfying G <¢
H. H can be computed from G in polynomial time.

Proof. Let T(G) be the set of all vertices in G with degree at least 4. We prove by
induction over Z(G) = 3_, 7 d(v). Obviously, if Z(G) < 4 we are done. Otherwise,
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let x be a vertex of degree A(G). We build G’ as follows: Attach z to the endpoint u of
a path {u,v,y}. Now, let (z,w) and (z, z) be two edges adjacent to the face that y is
in. Remove these edges from the graph and add the edges (y,w) and (y, z). Now, it is
easy to see that G’ is still planar. Also (u,v) forms a contractible edge, and G, = G.
Finally, note that the degree of all vertices in G’ except x remains the same in G’ as in
G. Also, in G', d(y) = 3, d(u) = d(v) = 2 and the degree of x decreases by one from G
to G'. Hence T(G') C T(G) and Z(G") < Z(G) as the degree of x decreases. As Z(G)
is at most n? at the start of this process, at most n? such replacements are needed to
compute H =

Theorem 6.1.13 Planar Dominating Set <t Planar Cubic Dominating Set.

Proof. On input G to Planar Dominating Set, use H as described in Lemma 6.1.12 as
input to Planar Cubic Dominating Set. By Lemma 6.1.12 H is computed in polynomial
time. By Corollary 6.1.11, G has a dominating set of size k if and only if H has a

dominating set of size k + w .

We believe that one can use the way of splitting a vertex into a path on four vertices
presented in Lemma 6.1.10 to make a given cubic planar graph sparse enough to be
embedded on a grid. More formally, we present the following conjecture, on the same
form as Lemma 6.1.12:

Conjecture 6.1.14 For a cubic planar graph G there is a graph H that subgraph of a
grid, satisfying G <¢c H. H can be computed from G in polynomial time.

If the conjecture is true, it follows that Grid Dominating Set is in NPC which in
turn implies N'P-completeness of Quadratic Broadcast Domination.

6.2 Weighted Broadcast Domination

A natural generalization of Broadcast Domination problem is to consider the problem
on weighted graphs. We return to the original cost model, that is we again let C't(.5)
be defined as ) .o f(v). The difference between Weighted Broadcast Domination and
the original problem, is that the input graph G now has weights w : F — N associated
with the edges. We redefine the length of a path to be the sum of the weights of all
edges in the path. The distance §(u,v) between two vertices u and v in a weighted
graph is still the length of a shortest path between u and v.

Having redefined distance we need to readjust our notion of broadcast dominations
and related objects to the new situation. In this setting, a broadcast domination is
defined just as in the unweighted case, as a function f : V — Z% satisfying that for
every u € V there is a v € Vj satisfying 6(u,v) < f(v). The cost of a broadcast
domination is C¢(V) and the minimum cost over all broadcast dominations will be
denoted 7y, (G). A ball B(v,p) with center v and radius r defined as in the unweighted
model, B(v,p) = {u: d(u,v) < p}.

Unfortunately, the similarities to the original problem seem end at the definitions.
Just as for Quadratic Broadcast Domination, it is easy to provide an example where
the only optimal broadcast domination is inefficient.
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Figure 6.5: No other broadcast domination with cost 3 exists. Black vertices are trans-
mitters with their strength indicated inside them. The weight of the edges is shown in
parentheses besides the edges

Again, the radius of G, rad(G) provides an upper bound on 7,p(G). However, in
this case, the radius can be a bad upper bound as edges can have enormous weighs.
Just consider a graph G with an edge of weight 1000n between every pair of vertices.
The optimal broadcast domination is just a function that assigns 1 to every vertex.
This broadcast domination has cost n, while the radius of G is 1000n. Because of this
example, we refine the upper bound to be v, (G) < min(n,rad(G)). One should note
that as a consequence, an optimal broadcast domination will never have a vertex v with
f(v) > n. Because of this, edges with weight larger than n can be safely deleted from
the input graph. Finally, the example above shows that %(G)
holds for weighted graphs.

Even though we do not have an efficiency result for the weighted case, it seems hard
to devise a proof that Weighted Broadcast Domination is N'P-complete. In fact it seems
that one in Weighted Broadcast Domination still gets optimal solutions that have a
certain structure. We wish to formalize this intuition. In order to do this, we generalize
domination graphs to weighted graphs. In a domination graph the dominators are
vertices, and there is an edge between dominators if they are “close enough” in the
graph. In the original setting, “close enough” meant that (u,v) was an edge in G if
d(u,v) = f(u) + f(v) + 1. However we do not have efficiency when the input graphs
are weighted. Hence it is reasonable to say that (u,v) is an edge in Gy if 6(u,v) <
F(u)+ f(v) + 1.

If we attempt to go through with the proof of Theorem 4.4.2 we see that the
argument in the case where f(x) 4+ f(y) > f(z) is still valid, while the one in the case
that f(z) > f(z) + f(y), is not. We can use the valid part to show the existence of an
optimal solution where all vertices in the domination graph have degree O(logn).

< Yw(G) no longer

Lemma 6.2.1 There is an optimal broadcast domination f of the weighted graph G
satisfying that if all neighbors of a transmitter v in Gy, x1....x), are sorted so that

f(xi) < flwigr), then f(x;) > S22 f(xi).

Proof. We show that if f violates the condition above, we can build a new broadcast
domination f" with Cp/(V) = Cy(V) and |Vj| < [V§|. The result then follows by
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induction.

Suppose f violates the condition in the lemma. Then there must be a vertex
v € Vy satisfying the following: If v’s neighbors z;....x; in Gy are sorted by power in
nondecreasing order, there is an integer p’ so that f(zy) < Z?:ll f(x;). In this case,
let p be the smallest possible integer so that f(z),) < Zf:_ll f(x;). Observe that p > 3,
as 0 < z1 < xg. Now, we let f/(u) = f(u) for all u € V (v UU_; ), f/'(u) = 0 for all
win ULy @i and f'(v) = f(v) + X0, f ().

We have both that Cy (V) = C¢(V) and that [V < [Vf|. It remains to show that
f' is a broadcast domination. Thus we have to show that any vertex hearing x;, i < p,
when f was used as broadcast domination can hear v now that f’ is used. Suppose
u heard z;, © < p, when f was used. As z; is a neighbor of v in Gy, we have that
6(v,u) < 6(v,27) + (i, w) < f(0) + Fw:) + 1+ Flag) < F0) + f(p) + Flay) + 1. But
Flap) +1 < 500 f(i). Thus f(0) + flay) + Flap) + 1< () + X0, f(w) = f/(v)

completing the proof. =

Let f be a broadcast domination of GG satisfying the conditions in 6.2.1, and let v
be a vertex of degree p > 2 in the domination graph. Order the neighbors of v in G by
power in nondecreasing order from z; to z,. We know that f(xe => f(z1) > 1. Also
f(@3) > f(zo)+f(z1) > 2. i p >4, f(x4) > f(w3)+ fz2)+f(x1) > 41fp > 5, f(25) >
f(xq) + f(x3) + f(z2) + f(x1) > 8. It is a simple exercise to use induction to prove
that in fact, if p = k > 2 then f(x;) > 2¥72. As a consequence, Zle flzg) > 2k
Since an optimal broadcast domination f satisfies n > Cf(V) > Zle flx;) > 281 we
have that 2n > 2¥ = 2P, As p was the degree of a vertex in G ¢ we can conclude that
A(Gy) <logn + 1.

Observation 6.2.2 If f is an optimal broadcast domination of G satisfying the con-
ditions in Lemma 6.2.1 then A(Gy) <logn + 1.

It seems difficult to exploit Lemma 6.2.1 to design an efficient algorithm for Weighted
Broadcast Domination. At the same time, this result explains the difficulties with prov-
ing the problem NP-complete, as it guarantees the existence of an optimal solution
that is quite close to being efficient. Probably, stronger structural results are required
in order to settle the computational complexity of the problem. Unfortunately, it seems
very hard to squeeze out more information from arguments similar to that in the proof
of Lemma 4.2.1, Theorem 4.4.2 or Lemma 6.2.1. For instance, one can show that the
logn + 1 bound on A(Gy) is asymptotically tight.

A star of size k is a graph consisting of a vertex u, called the central vertex, with
k vertices of degree 1, leaves, attached to it. We define the weighted star Sy, to be
a star of size k with weight w on all the edges. Observe that the optimal broadcast
domination of Sj , is to let f(u) = k for the central vertex u, and f(I) = 0 for all the
leaves .

Using stars we build a sequence of graphs {H;} for ¢ > 1. We build the sequence
inductively. The graph Hj is a root vertex r connected to the central vertex of a star
S2,1 with edges of weight 3. To build H;;q from H; you take the graph H; and attach
an edge of weight 2°~! + 2 to the center of a new star Syi-1, 1 gi-1.

The construction is the way it is so that optimal broadcast dominations of graphs
in this sequence have a special form. The form of this broadcast domination is easy to
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Figure 6.6: The graphs S1,1, S32 and S5

Figure 6.7: The graphs Hy, H1, Ha and Hs. Root vertex is dark grey, central vertices
of stars are light grey. Edge weights in parentheses.
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guess, but somewhat technically involved to prove.

Lemma 6.2.3 The only optimal broadcast domination f of a graph Hy satisfies f(r) =
1 for the root v, f(I) = 0 for all leaves, and f(c) = w for every central vertex ¢ of a
star Skw-

Proof. We prove this by contradiction. Let f be optimal and suppose the root vertex
r can hear a vertex v in a star Sy ,, with central vertex c. Without loss of generality,
assume that v is the vertex of Sy, that maximizes f(v) — d(v,r). Observe that in this
case, f(v) > w+ 2 Now, let f'(u) = f(u) for all vertices u not in the given star. Also
let f'(¢) = w and f(l) = 0 for all leaves [ in the star, and let f'(r) = f(r)+ f(v) —w—2.
All vertices in the star now hear c. All vertices outside the star that heard v now hear
r. Hence f’ is a broadcast domination. The cost of f’ can be bounded from above,
Cp(V)<Cp(V)=fv)+w+ f(v) —w—2 = Cf(V) -2, contradicting that f is optimal.
Hence we can safely assume that in an optimal broadcast domination the root vertex
cannot hear any other vertices and hence is a dominator.

If f is optimal, all stars S}, whose leaves that cannot hear the root vertex satisfy
f(c) = w for the central vertex and f(I) = 0 for all leaves of the star. Hence, if there
is a vertex v in one of the stars hearing the root vertex then f(r) = d6(r,) for some
leaf I. Thus f(r) = 2° 4 2 for a nonnegative integer i. In this case Cy(V(Hy)) is
2042+ Zz':i_u 2l =241+ Z;;B 27 4 23;1 2J = 24 2! which is larger than the cost
of the broadcast domination proposed in the lemma, 2 + Zé: 2/ =1+ 2¢. Hence, in
an optimal broadcast domination of H; no vertices except the root vertex itself hears
the root vertex. Thus f(r) = 1 and the result is proved. =

Now, obviously H; has O(2!) vertices while the degree of r in the domination graph
of the optimal broadcast domination is ¢ + 1. Thus A(Gy) = O(logn) and the bound
given in Observation 6.2.2 is asymptotically tight.
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Chapter 7

Concluding remarks

In this thesis we have studied Broadcast Domination, and a couple variants of the
problem. If we see Broadcast Domination as a generalization of Dominating Set it
is somewhat surprising that while Dominating Set is NP-complete, we were able to
give an O(n®) algorithm for Broadcast Domination. On one hand this is a textbook
example that a small change in the problem statement of an NP-complete problem
often makes it polynomial time solvable. On the other hand, this change is usually
a restriction on the input or output. In this case we have the opposite, Dominating
Set is just Broadcast Domination with restricted output. From this we can draw the
conclusion that while restrictions on the output narrow the search space they can rule
out solutions that are easy to find. As an allegory, consider the task of finding a lion
that is not in a city. The task might seem easier than that of just finding a lion, as we
do not have to look in the cities. However, a simple way to find a lion is to go to the
city zoo. Hence, we have made our life more difficult by restricting the search space.

In addition to Broadcast Domination, we considered Broadcast Domination with
general cost functions. We showed that if the cost function ¢ is a part of the in-
put, Broadcast Domination is NP-complete. Following this we proceeded to study
Broadcast Domination with cost function ¢ fixed to ((p) = p?, Quadratic Broadcast
Domination. We conjectured that Quadratic Broadcast Domination is NP-complete,
and would be interested in a proof or counterexample for Conjecture 6.1.14.

Finally, we took a look at Weighted Broadcast Domination. It seems difficult to
settle the computational complexity of this problem. Observation 6.2.2 should give an
intuition why it is hard to give a proof of N"P-completeness, as it effectively bounds the
amount of interdependencies in an optimal solution. At the same time Lemma 6.2.3
shows that we can not use the same approach for Weighted Broadcast Domination as
for the original Broadcast Domination problem. Thus, any proof of N"P-completeness
or algorithm for Weighted Broadcast Domination would probably have to contain some
interesting new idea.

Also, while our O(n) algorithm for Broadcast Domination is polynomial, it is not
fast enough to be able to run the algorithm on large data sets. Thus we would encourage
the reader to attempt finding a more efficient algorithm for this problem.
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