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Chapter 1

Introduction

Parameterized Algorithms and Complexity is a natural way to cope with problems
that are considered intractable according to the classical P versus NP dichotomy.
In practice, large instances of NP-complete problems are solved exactly every
day. The reason for why this is possible is that problem instances that occur
naturally often have a hidden structure. The basic idea of Parameterized Algo-
rithms and Complexity is to extract and harness the power of this structure. In
Parameterized Algorithms and Complexity every problem instance comes with a
relevant secondary measurement k, called a parameter. The parameter measures
how difficult the instance is, the larger the parameter, the harder the instance.
The hope is that at least for small values of the parameter, the problem instances
can be solved efficiently. This naturally leads to the definition of fixed param-
eter tractability. We say that a problem is fixed parameter tractable (FPT) if
problem instances of size n can be solved in f(k)nO(1) time for some function f
independent of n.

Over the last two decades, Parameterized Algorithms and Complexity has
established itself as an important subfield of Theoretical Computer Science. Pa-
rameterized Algorithms has its roots in the Graph Minors project of Robertson
and Seymour [122], but in fact, such algorithms have been made since the early
seventees [54, 108]. In the late eightees several FPT algorithms were discov-
ered [61, 59] but despite considerable efforts no fixed parameter tractable algo-
rithm was found for problems like Independent Set and Dominating Set.
In the early ninetees, Downey and Fellows [51, 50] developed a framework for
showing infeasibility of FPT algorithms for parameterized problems under cer-
tain complexity theoretic assumptions, and showed that the existence of FPT
algorithms for Independent Set and Dominating Set is unlikely.

The possibility of showing lower as well as upper bounds sparked interest in
the field, and considerable progress has been made in developing methods to show
tractability and intractability of parameterized problems. Notable methods that
have been developed include Bounded Search Trees, Kernelization, Color Coding
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and Iterative Compression. Over the last few years Kernelization has grown into a
subfield of its own, due to a connection to polynomial time preprocessing and the
techniques that have been developed over the last year for showing kernelization
lower bounds [70, 20].

In this thesis we develop new methods for showing upper and lower bounds,
both for Parameterized Algorithms and for Kernelization.

1.1 Overview of the Thesis

In Section 1.2 we give the necessary notation and definitions for the thesis. In
Part I we give an overview of existing techniques in Parameterized Algorithms
and Complexity. This part of the thesis is organized as follows. First we cover
techniques for algorithm design, then we review existing medthods for show-
ing running time lower bounds up to certain complexity-theoretic assumptions.
Then we turn our attention to kernelization or polynomial time preprocessing.
In Chapter 4 we describe the most well-known techniques for proving kerneliza-
tion results. In Chapter 5 we survey the recent methods developed for giving
kernelization lower bounds.

In Part II we describe new methods in Parameterized Algorithms and Com-
plexity that were developed as part of the author’s PhD research. The part is
organized similarly to Part I, that is, we first consider algorithmic upper and
lower bounds, before turning our attention to upper and lower bounds for ker-
nelization. In Chapter 6 we describe a new color-coding based scheme to give
subexponential time algorithms for problems on dense structures. In Chapter 7
we illustrate how explicit identification makes it easier to construct hardness re-
ductions, and use this kind of reductions to show a trade-off between expressive
power and computational tractability. In Chapter 8 we give two results. Our first
result is a meta-theorem for kernelization of graph problems restricted to graphs
embeddable into surfaces with constant genus. Our second result is a demonstra-
tion that a relaxed notion of kernelization called Turing kernelization indeed is
more powerful than kernelization in the traditional sense. Finally, in Chapter 9
we show that explicit identification is useful not only in hardness reductions, but
also to show kernelization lower bounds. Several such lower bounds are derived
by applying the proposed method.

Parts of this thesis have been published as conference articles and some parts
are excerpts from articles currently under peer review. Below we give an overview
of the articles that were used as a basis for this work.

• Section 2.3 is based on the manuscript Simpler Parameterized Algorithm
for OCT, coauthored with S. Saurabh and S. Sikdar.

• Section 2.8 is based on an excerpt from the article Graph Layout problems
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Parameterized by Vertex Cover, coauthored with M. Fellows, N. Misra, F.
A. Rosamond and S. Saurabh. Proceedings of ISAAC 2008, pages 294-305.

• Section 4.2 is based on an excerpt from the manuscript Hypergraph Coloring
meets Hypergraph Spanning Tree, coauthored with S. Saurabh.

• Chapter 6 is based on the manuscript Fast FAST, coauthored with N. Alon
and S. Saurabh.

• Section 7.1.1 is based on an excerpt from the article On the Complexity
of Some Colorful Problems Parameterized by Treewidth, coauthored with
M. Fellows, F. V. Fomin, F. Rosamond, S. Saurabh, S. Szeider and C.
Thomassen. In the proceedings of COCOA 2007, pages 366-377. (Invited
Paper.)

• Section 7.1.2 is based on an excerpt from the article Capacitated Domination
and Covering: A Parameterized Perspective, coauthored with M. Dom, Y.
Villanger and S. Saurabh. Proceedings of IWPEC 2008, pages 78-90.

• Section 7.2 is based on the article Clique-width: On the Price of Generality,
coauthored with F. V. Fomin, P. A. Golovach and S.Saurabh. Proceedings
of SODA 2009, pages 825-834.

• Section 8.1 is based on the manuscript (Meta)-Kernelization, coauthored
with H. Bodlaender, F. V. Fomin, E. Penninkx, S. Saurabh and D. Thilikos.

• Sections 8.2 and 9.1 are based on the article Kernel(s) for Problems With no
Kernel: On Out-Trees With Many Leaves, coauthored with H. Fernau, F.
V. Fomin, D. Raible, S. Saurabh and Y. Villanger. Proceedings of STACS
2009, pages 421-432.

• Section 9.2 is based om the manuscript Incompressibility through Colors
and IDs, coauthored with M. Dom and S. Saurabh.

1.2 Notation and Definitions

Basic Notions We assume that the reader is familiar with basic notions like
sets, functions, polynomials, relations, integers etc. In particular, for these no-
tions we follow the setup of [116].

Problems A problem or language is a set L of strings over a finite alphabet
Σ, that is L ⊆ (Σ)∗. A string s ∈ L is a yes instance of L and a string s /∈ L
is a no instance of L. A parameterized problem is a subset Π of (Σ)∗ × N, that
is, every instance of Π comes with a natural number called the parameter. In an
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optimization problem we are given as input an instance s, defining a set F (s) of
feasible solutions for a problem specific function F . The objective is to find an
element x ∈ F (s) that minimizes or maximizes a certain problem spesific objective
function g(x). If the objective is to minimize (maximize) g(x) the problem is
referred to as a minimization (maximization) problem. The minimum (maximum)
value of the objective function over all the feasible solutions for an instance s is
called the optimal value of the objective function.

Function Growth We employ big-Oh notation which suppresses constant fac-
tors and lower order terms. That is, for two functions f : N → N and g : N → N

we say f(n) = O(g(n)) if there are constants c0, c1 > 0 such that for all x ≥ c0,
f(x) ≤ c1g(x). We say that a function f is singly exponential if f = O(2nc

) for

some constant c. If f = O(22nc

) for some constant c we say f is doubly exponen-
tial. We will sometimes misuse notation and say that f(n) is at least O(g(n)),
meaning that g(n) = O(f(n)).

Algorithms An algorithm for the problem L is an algorithm that for a string
s determines whether s ∈ L. The running time of the algorithm is measured in
the number of steps the algorithm performs. We will assume a single processor,
random-access machine as the underlying machine model throughout this thesis.
In the random-access machine any simple operation (arithmetic, if-statements,
memory-access etc.) takes unit length of time, and the word size is sufficiently
large to hold numbers that are singly exponential in the size of the input. A
c-approximation algorithm for a minimization problem is an algorithm that for a
given instance finds a feasible solution x such that the value of the of the objective
function g(x) is at most c times the optimal value. Similarly a c-approximation
algorithm for a maximization problem is an algorithm that for a given instance
finds a feasible solution x such that the value of the of the objective function
g(x) is at least 1/c times the optimal value. An optimization problem that has
a c-approximation algorithm is said to be c-approximable. A polynomial time
approximation scheme (PTAS) for an optimization problem is an algorithm that
for any fixed ǫ > 0 computes a polynomial time (1 + ǫ)-approximation algorithm
for the problem.

Graphs A graph G is a set V (G) of vertices and a set E(G) of unordered
pairs of vertices called edges. A vertex u and a vertex v are adjacent if the
edge uv ∈ E(G), and the vertices u and v are incident to the edge uv. The
vertices u and v are referred to as the endpoints of the edge uv. If vv /∈ E(G) for
all v ∈ V (G) the graph G is called simple. Unless specifically stated otherwise
the graphs considered in this thesis are simple. The open neighbourhood or just
neighbourhood of a vertex v in the graph G is the set NG(v) = {u : uv ∈ E(G)}
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and the closed neighbourhood of a vertex v is the set NG[v] = NG(v) ∪ {v}. The
neighbourhood of a vertex set S is NG(S) = (

⋃
v∈S N(v)) \ S. For a vertex set

S ⊂ V (G), we define ∂G(S) as the set of vertices in S that have a neighbor in
V \S. The degree of a vertex v is |NG(v)|. For v ∈ V (G), by EG(v) we mean the
set of edges incident to v. When the graph is clear from the context we will omit
the subscripts.

A walk in a graph G is a sequence v1, . . . , vk of vertices such that vivi+1 ∈
E(G). A walk that never contains the same vertex twice is called a path. A walk
where the first and the last vertex is the same but the other vertices are unique
is called a cycle. The length of a walk is k − 1. A subgraph of G is a graph G′

such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph induced by a vertex
set S is G[S] = (S, {uv ∈ E(G) : u ∈ S ∧ v ∈ S}). For an edge set S, by
G \ S we denote G′ = (V (G), E(G) \ S) and for a vertex set S ′, G \ S we denote
G[V (G) \ S]. For a vertex x and edge e, G \ x and G \ e is defined as G \ {x}
and G \ {e} respectively. Contracting an edge uv of G amounts to removing
the vertices u and v from the graph and adding a new vertex u′ and making u′

adjacent to N(u) ∪ N(v) \ {u, v}. If H can be obtained from G by repeatedly
contracting edges, we say that H is a contraction of G. If H is a subgraph of a
contraction of G we say that H is a minor of G, and that H ≤M G. A graph G
is connected if there is a path between every pair of vertices. We will say that
a vertex or edge set with a specific property is minimal (maximal) if no proper
subset (superset) of the set has the property. A connected component of G is an
induced subgraph C of G such that V (C) is a maximal subset of V (G) such that
G[V (C)] is connected. A set S ⊆ V (G) is a separator if G \ S is disconnected.

A set S ⊆ V (G) of pairwise adjacent vertices is called a clique and a set of a
set S ⊆ V (G) of pairwise non-adjacent vertices is called an independent set. A
set S ⊆ V (G) such that every edge has an endpoint in S is called a vertex cover
of G. A set S such that every vertex in V (G) \ S has a neighbour in V is called
a dominating set of G.

Treewidth A tree decomposition of a graph G is a pair (X, T ) where T is a tree
whose vertices we will call nodes and X = ({Xi | i ∈ V (T )}) is a collection of
subsets of V (G) such that

1.
⋃

i∈V (T )Xi = V (G),

2. for each edge vw ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) equals maxi∈V (T ){|Xi| −
1}. The treewidth of a graph G is the minimum width over all tree decompositions
of G. We use notation tw(G) to denote the treewidth of a graph G. A tree
decomposition is called a nice tree decomposition if the following conditions are
satisfied: Every node of the tree T has at most two children; if a node t has two
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children t1 and t2, then Xt = Xt1 = Xt2 ; and if a node t has one child t1, then
either |Xt| = |Xt1 | + 1 and Xt1 ⊂ Xt or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 . It is
possible to transform a given tree decomposition into a nice tree decomposition
in time O(|V | + |E|) [18].

Clique-width Let G be a graph, and k be a positive integer. A k-graph is a
graph whose vertices are labeled by integers from {1, 2, . . . , k}. We call the k-
graph consisting of exactly one vertex labeled by some integer from {1, 2, . . . , k}
an initial k-graph. The cliquewidth cwd(G) is the smallest integer k such that a
k-graph isomorphic to G can be constructed by means of repeated application of
the following four operations:

1. Introduce, construction of an initial k-graph labeled by i, denoted by i(v).

2. Disjoint union, denoted by ⊕.

3. Relabel, changing all labels i to j, denoted by ρi→j.

4. Join, connecting all vertices labeled by i with all vertices labeled by j by
edges, denoted by ηi,j.

An expression tree of a graph G is a rooted tree T of the following form:

• The nodes of T are of four types i, ⊕, η and ρ.

• Introduce nodes i(v) are leaves of T , corresponding to initial k-graphs with
vertices v, which are labeled i.

• A union node ⊕ stands for a disjoint union of graphs associated with its
children.

• A relabel node ρi→j has one child and is associated with the k-graph, which
is the result of relabeling operation for the graph corresponding to the child.

• A join node ηi,j has one child and is associated with the k-graph, which is
the result of join operation for the graph corresponding to the child.

• The graph G is isomorphic to the graph associated with the root of T (with
all labels removed).

The w idth of the tree T is the number of different labels appearing in T . If a
graph G has cwd(G) ≤ k then it is possible to construct a rooted expression
tree T with width k of G. A well-known fact is that if the treewidth of a graph
is bounded then its cliquewidth also is bounded. On the other hand, complete
graphs have clique-width 2 and unbounded treewidth.

Theorem 1.2.1 ([34]) If graph G has treewidth at most t, then cwd(G) is at
most k = 3 · 2t−1. Moreover, an expression tree for G of width at most k can
be constructed in FPT time (with treewidth being the parameter) from the tree
decomposition of G.
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The second claim in Theorem 1.2.1 is not given explicitly in [34]. However
it can be shown since the upper bound proof in [34] is constructive (see also
[37, 57]). Note that if a graph has bounded treewidth then the corresponding
tree decomposition can be constructed in linear time [18].

Graphs on Surfaces We refer to the textbook “Graphs on Surfaces” by Mohar
and Thomassen [110] for an introduction to the topological graph theory used
here. Let Gg be the class of all graphs that can be embedded into a surface Σ of
Euler-genus at most g. We say that a graph G is Σ-embedded if it is accompanied
with an embedding of the graph into Σ. The radial distance between x and y
is defined to be one less than the minimum length of a sequence starting from
x and ending at y such that vertices and faces alternate in the sequence. Given
an Σ-embedded graph G = (V,E) and a set S ⊆ V , we denote by Rr

G(S) and
Br

G(S) the set of all vertices that are in radial distance at most r and distance
at most r from some vertex in S respectively. Notice that for every set S ⊆ V
and every r ≥ 0, it holds that Br

G(S) ⊆ R2r+1
G (S) for any embedding of G into a

surface Σ. An alternative way of viewing radial distance is to consider the radial
graph, RG: an embedded multigraph whose vertices are the vertices and the faces
of G (each face f of G is represented by a point vf in it). An edge between a
vertex v and a vertex vf is drawn if and only if v is incident to f . Thus RG is a
bipartite multigraph, embedded in the same surface as G. Hence, if G ∈ Gg then
RG ∈ Gg. Also the radial distance between a pair of vertices in G corresponds to
the normal distance in RG.

t-Boundaried Graphs We define the notion of t-boundaried graphs and various
operations on them.

Definition 1.2.2 [t-Boundaried Graphs] A t-boundaried graph is a graph G =
(V,E) with t distinguished vertices, uniquely labelled from 1 to t. The set ∂(G)
of labelled vertices is called the boundary of G. The vertices in ∂(G) are referred
to as boundary vertices or terminals.

For a graph G = (V,E) and a vertex set S ⊆ V , we will sometimes consider
the graph G[S] as the |∂(S)|-boundaried graph with ∂(S) being the boundary.

Definition 1.2.3 [Gluing by ⊕] Let G1 and G2 be two t-boundaried graphs. We
denote by G1⊕G2 the t-boundaried graph obtained by taking the disjoint union of
G1 and G2 and identifying each vertex of ∂(G1) with the vertex of ∂(G2) with the
same label; that is, we glue them together on the boundaries. In G1 ⊕G2 there is
an edge between two labelled vertices if there is an edge between them in G1 or in
G2.
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Definition 1.2.4 [Legality] Let G be a graph class, G1 and G2 be two t-boundaried
graphs, and G1, G2 ∈ G. We say that G1 ⊕ G2 is legal with respect to G if the
unified graph G1 ⊕G2 ∈ G. If the class G is clear from the context we do not say
with respect to which graph class the operation is legal.

Definition 1.2.5 [Replacement] Let G = (V,E) be a graph containing an ex-
tended r-protrusion X. Let X ′ be the restricted protrusion of X and let G1 be an
r-boundaried graph. The act of replacing X ′ with G1 corresponds to changing G
into G[V \X ′] ⊕ G1. Replacing G[X] with G1 corresponds to replacing X ′ with
G1.

Finite Integer Index

Definition 1.2.6 For a parameterized problem, Π on a graph class G and two
t-boundaried graphs G1 and G2, we say that G1 ≡Π G2 if there exists a constant
c such that for all t-boundaried graphs G3 and for all k,

• G1 ⊕G3 is legal if and only if G2 ⊕G3 is legal.

• (G1 ⊕G3, k) ∈ Π if and only if (G2 ⊕G3, k + c) ∈ Π.

Definition 1.2.7 [Finite Integer Index] Π has finite integer index in G if for
every t there exists a finite set S of t-boundaried graphs such that S ⊆ G and for
any t-boundaried graph G1 there exists a G2 ∈ S such that G2 ≡Π G1. Such a set
S is called a set of representatives for (Π, t)

Note that for every t, the relation ≡Π on t-boundaried graphs is an equivalence
relation. A problem Π is finite integer index, if and only if for every t, ≡Π is of
finite index, that is, has a finite number of equivalence classes. The term finite
integer index first appeared in the work by Bodlaender and van Antwerpen-de
Fluiter [25, 41] and is similar to the notion of finite state [2, 27, 38].

Digraphs A digraph or directed graph D is a set V (D) of vertices and a set
A(D) of ordered pairs of vertices called arcs. Given a subset V ′ ⊆ V (D) of a
digraph D, by D[V ′] we mean the digraph induced on V ′. A vertex y of D is an
in-neighbor (out-neighbor) of a vertex x if yx ∈ A (xy ∈ A). The in-degree (out-
degree) of a vertex x is the number of its in-neighbors (out-neighbors) in D. A
path in a digraph is a sequence P = p1p2 . . . pℓ of vertices such that pipi+1 ∈ A(D)
for every i. Let P = p1p2 . . . pℓ be a given path. Then by P [pipj] we denote a
subpath of P starting at vertex pi and ending at vertex pj . A cycle in D is
a sequence C = c1c2 . . . cℓ of vertices such that cici+1 ∈ A(D) for every i and
cℓc1 ∈ A(D).

A digraph D is acyclic if D does not contain any cycles. It is well known
that a digraph D is acyclic if and only if the vertices of D can be ordered into
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v1 . . . vn such that for every arc vivj ∈ A(D) we have i < j. Such an ordering is
called a topological ordering of D. A feedback arc set of a digraph D is an arc
set S such that D \ S is acyclic. An out-tree is an acyclic digraph where every
vertex except one has indegree 1 and one vertex, called the root with indegree
0. An out-branching in a digraph D is an out-tree in D containing all vertices of
D. For a given vertex q ∈ V (D), by q-out-branching (or q-out-tree) we denote an
out-branching (out-tree) of D rooted at vertex q.

We say that the removal of an arc uv (or a vertex set S) disconnects a vertex
w from the root r if every path from r to w in D contains arc uv (or one of the
vertices in S). An arc uv is contracted as follows: add a new vertex u′, and for
each arc wv or wu add the arc wu′, and for an arc vw or uw add the arc u′w,
remove all arcs incident to u and v and the vertices u and v.

Let T be an out-tree of a digraph D. We say that u is a parent of v and v is
a child of u if uv ∈ A(T ). We say that u is an ancestor of v if there is a directed
path from u to v in T . An arc uv in A(D) \A(T ) is called a forward arc if u is an
ancestor of v, a backward arc if v is an ancestor of u and a cross arc, otherwise.

A tournament is a digraph T where every pair of vertices is connected by
exactly one arc. An arc weighted tournament is a tournament which comes with
a weight function w : A → R. For an arc weighted tournament we define the
weight function w∗ : V × V → R such that w∗(u, v) = w(uv) if uv ∈ A and 0
otherwise. Given a directed graph D = (V,A) and a set F of arcs in A define
D{F} to be the directed graph obtained from D by reversing all arcs of F . The
following is a useful characterization of minimal feedback arc sets in directed
graphs.

Proposition 1.2.8 ([119]) Let D = (V,A) be a directed graph and F be a subset
of A. Then F is a minimal feedback arc set of D if and only if F is a minimal
set of arcs such that D{F} is a directed acyclic graph.

Given a minimal feedback arc set F of a tournament T , the ordering σ cor-
responding to F is the unique topological ordering of T{F}. Conversely, given
an ordering σ of the vertices of T , the feedback arc set F corresponding to σ is
the set of arcs whose endpoint appears before their startpoint in σ. The cost of
an arc set F is

∑
e∈F w(e) and the cost of a vertex ordering σ is the cost of the

feedback arc set corresponding to σ.

Types of Logic The syntax of Monadic Second Order Logic (MSO2) of graphs
includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, set
of vertices and sets of edges, the quantifiers ∀, ∃ that can be applied to these
variables, and the following five binary relations: (1) u ∈ U where u is a vertex
variable and U is a vertex set variable; (2) d ∈ D where d is an edge variable and
D is an edge set variable; (3) inc(d, u), where d is an edge variable, u is a vertex
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variable, and the interpretation is that the edge d is incident on the vertex u; (4)
adj(u, v), where u and v are vertex variables u, and the interpretation is that u
and v are adjacent; (5) equality of variables representing vertices, edges, set of
vertices and set of edges. If we do not have variables for sets of edges, this type
of logic is called MSO1 logic. If we only allow variables for vertices and edges, i.e
there are no set variables we get First Order (FO) logic. An extention of MSO2

called counting monadic second-order logic or CMSO is obtained from MSO2 by
also allowing atomic formulas for testing whether the cardinality of a set is equal
to n modulo p, where n and p are integers such that 0 ≤ n < p and p ≥ 2.
Essentially, CMSO is just MSO2 equipped with the following atomic formula: If
U denotes a set X, then cardn,p(U) = true if and only if |X| is n mod p. It
is known that every set F of graphs of bounded treewidth is CMSO-definable if
and only if F is finite state [101].

Vectors For a pair of integer row vectors p̂ = [p1, . . . , pt], q̂ = [q1, . . . , qt] we
say that p̂ ≤ q̂ if pi ≤ qi for all i. The transpose of a row vector p̂ is denoted
by p̂†. The t-sized vector ê is [1, 1, . . . , 1], 0̂ is [0, 0, . . . , 0] and êi is the t-sized
vector with all entries 0 except for the i’th which is 1. Let Õ(

√
k) denote, as

usual, any function which is O(
√
k(log k)O(1)). For any positive integer m put

[m] = {1, 2, . . . , m}.
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Chapter 2

Algorithmic Techniques

2.1 Bounded Search Trees

Bounded Search Trees is a simple yet powerful technique that has found many
applications in Parameterized Algorithm Design [116]. The basic idea is to reduce
a given instance (I, k) to f(k) independent instances (I1, k1), . . . (If(k), kf(k)) in
polynomial time such that

• For every 1 ≤ i ≤ f(k) we have ki < k and |Ii| ≤ |I| · g(k) for a function g.

• Instances (I, 0) are polynomial time solvable.

• The functions f and g are non-decreasing and depend only on k.

While the definition above might seem somewhat involved, most algorithms
that apply the Bounded Search Tree technique do so with f(k) ≤ ko(1) and
g(k) = 1. One might even argue that usually f(k) is a constant independent of
k. Let (I, k) be the considered instance. If k > 0 the algorithm performs the
reduction to (I1, k1), . . . (If(k), kf(k)) in polynomial time and makes recursive calls
to (Ii, ki) for every i between 1 and f(k). Let c be a constant such that reducing
an instance to the f(k) smaller ones and solving instances (I, 0) with |I| ≤ n both
take O(nc) time, and let T (n, k) be an upper bound on the running time of the
algorithm on an instance (I, k). Then T (n, k) ≤ f(k) · T (g(k)n, k − 1) + O(nc).
Expanding this recurrence k times yields T (n, k) = O((f(k)g(k)c)k · nc)). As
an example we demonstrate how to apply this technique to get a simple FPT
algorithm for the Vertex Cover problem where we are given a gragh G and an
integer k and asked whether there is a subset S of V (G) of size at most k such
that every edge in E(G) has at least one endpoint in S.

Theorem 2.1.1 ([108, 52]) There is an O(2kn)-time algorithm for Vertex
Cover.

13
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Proof. First observe that a graph G has a vertex cover of size 0 if and only if G
has no edges. Consider now an instance (G, k) of Vertex Cover with k > 0
and an edge uv ∈ E(G). Any vertex cover S of G contains either u or v since
S must contain at least one endpoint of uv. A set S that contains a vertex x
is a vertex cover of G if and only if S \ {x} is a vertex cover of G \ x since the
vertex x covers all edges incident to it. Hence G has a vertex cover of size at
most k if and only if G \u or G \ v has a vertex cover of size at most k− 1. Thus
there is a polynomial time reduction from the instance (G, k) to the two instances
(G \ u, k − 1), (G \ v, k − 1). The functions f and g in the discussion above are
f(k) = 2 and g(k) = 1 and hence this algorithm runs in time O(2k · n +m).

The above algorithm first appeared already in 1984 in a monograph by Mel-
horn [108]. However, this went unnoticed by the FPT community. In the “Pa-
rameterized Complexity” monograph of Downey and Fellows [52], which was
published in 1999, the history of the development of algorithms for the Ver-
tex Cover problem is described. In 1987, Fellows and Langston showed that as
a consequence of deep theorems in the Graph Minors project of Robertson and
Seymour, Vertex Cover can be solved in O(n3) time for every fixed value of
k [61]. Later the same year, Johnson showed that the Vertex Cover prob-
lem can be solved in time O(n2) for every fixed value of k. Neither Fellows and
Langston nor Johnson give explicitely the dependence of the running time on k,
and this dependence is at least doubly exponential in k. In 1988, Fellows [59]
independently rediscovered the O(2kn + m) algorithm from Theorem 2.1.1. In
1989, Buss [52] described an algorithm with running time O(kn+ 2kk2k+2). One
should notice that in this algorithm, the dependence on k is worse than in the
algorithm of Theorem 2.1.1, but that this dependence is separated completely
from the dependence on n, that is, this term is additive instead of multiplicative.
In 1992, combining the ideas of Buss and the algorithm in [59], Balasubramanian
et al. [13] gave an algorithm with running time O(kn + 2kk2). In 1996, Bala-
subramanian et al. [13] gave an algorithm with running time O(kn + (4

3
)kk2).

Independently of this development, in 1993 Papadimitriou and Yannakakis [118]
gave an algorithm with running time O(3kn), based on matching techniques. In
a series of papers, the ideas in [13] were refined, and to this date the best known
algorithm for Vertex Cover is due to Chen et al. [30] and takes O(1.274k +kn)
time. In the next section we give a brief introduction to some ideas that can be
used to improve the running time of bounded search tree algorithms.

2.2 Reduction Rules and Branching Recurrences

A reduction rule is a rule or a polynomial time algorithm that transforms an
instance (I, k) of a parameterized problem to an “equivalent and simpler” instance
(I ′, k′). Here equivalent means that (I, k) is a yes instance if and only if (I ′, k′)
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is and the precise definition of what “simpler” means varies from problem to
problem. It could mean that |I ′| < |I|, it could mean that k′ < k or it could
mean that the instance I ′ contains fewer occurances of a particular substructure.
We will say that a reduction rule is correct if the instances (I, k) and (I ′, k′)
indeed are equivalent.

A good thing about reduction rules is that as long as one is only interested
in whether (I, k) is a yes or no instance, there is absoutely no reason for not
performing the reduction rule. Even better, quite often we can give performance
guarantees on our reduction rules and show that an instance (I, k) to which our
reduction rules can not be applied must satisfy |I| ≤ f(k) for some function f . In
this case we say that the problem admits an f(k) − kernel. The study of kernels
has developed to become a flourishing subfield of Parameterized Algorithms and
Complexity. A more thorough introduction to kernelization is deferred to Chapter
4. Reduction rules can often be useful independently of whether they give a kernel
for the problem. In particular combining reduction rules with the Bounded Search
Tree technique often gives improved running time bounds over a plain Bounded
Search Tree algorithm. We illustrate this by describing an algorithm for Vertex
Cover with running time better than the algorithm from Theorem 2.1.1.

Theorem 2.2.1 (Folklore) There is an O(1.6181kn2) time algorithm for Vertex
Cover.

Proof. We apply the following two rules: If G has a vertex u with degree 0
then let (G′, k′) = (G \ u, k). If G has a vertex u with degree 1, let (G′, k′) =
(G \N [u], k − 1). Correctness of the first rule is obvious, and the second rule is
correct because any vertex cover containing u could be swapped with a vertex
cover containing N(u) instead. If neither rule can be applied, all vertices have
degree at least 2. Pick a vertex u. Any vertex cover of G must contain either u or
N(u). Thus (G, k) is a yes instance to Vertex Cover if and only if (G\u, k−1)
or (G \N(u), k − |N(u)|) is. Let T (n, k) is an upper bound on the running time
of our algorithm. Since |N(u)| ≥ 2 we have T (n, k) ≤ T (n, k− 1)+T (n, k− 2)+
O(n2). Thus T (n, k) ≤ O(λkn2) where λ is the largest root of the characteristic
polynomial λk−λk−1−λk−2 of the recurrence. The largest root of this polynomial
is the golden ratio (1 +

√
5)/2 ≤ 1.6181 so T (n, k) ≤ O(1.6181kn2) completing

the proof.

A trait of branching algorithms is that the running time bound often can be
improved by a refined case analysis. The positive aspect of this is that quite good
running time bounds are achievable. A drawback is that considering more and
more cases in the algorithm reduces clarity and makes the constant hidden in
the big-Oh notation larger. Simulations have shown that in practice, the more
advanced reduction and branching rules often slow the algorithm down [128].
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2.3 Iterative Compression

Iterative Compression is a tool that has recently been used successfully to give
FPT algorithms for a number of problems. This technique was first introduced
by Reed, Smith and Vetta in order to solve the Odd Cycle Transversal
problem [120]. In this problem we are given a graph G together with an integer
k. The objective is to find a set S of at most k vertices whose deletion makes the
graph bipartite, and a set S such that G \ S is bipartite is called an odd cycle
transversal of G. The method of Iterative Compression was used in obtaining
faster fixed parameter tractable (FPT) algorithms for Feedback Vertex Set,
Edge Bipartization, Chordal Deletion and Cluster Vertex Deletion
on undirected graphs [42, 77, 107, 85]. The technique was also used by Chen et
al. [31] to show that the Directed Feedback Vertex Set problem is FPT,
resolving a long standing open problem in Parameterized Complexity. In this
section we present a reinterpretation of the algorithm given by Reed, Smith and
Vetta for Odd Cycle Transversal. In particular, we give a new proof of the
following theorem.

Theorem 2.3.1 There is an algorithm that given a graph G = (V,E) and integer
k decides whether G has an odd cycle transversal of size at most k in time O(3k ·
k · |E| · |V |).

Proof. The idea is to reduce the problem in question to a modified version,
where we are also given as input a solution that is almost good enough, but not
quite. For the case of Odd Cycle Transversal, we are given an odd cycle
transversal S ′ of G of size k+1. We call this problem the compression version of
Odd Cycle Transversal. The crux of the Iterative Compression method is
that often the compression version of a problem is easier to solve than the original
one.

Suppose we could solve the compression version of the problem in O(f(k)nc)
time. We show how to solve the original problem in O(f(k)nc+1) time. Order the
vertices of V (G) into v1v2 . . . vn and define Vi = {v1 . . . vi} for every i. Notice that
if G has an odd cycle transversal S of size k then S∩Vi is an odd cycle transversal
of G[Vi] for every i ≤ n. Furthermore, if S is an odd cycle transversal of G[Vi]
then S ∪ {vi+1} is an odd cycle transversal of G[Vi+1]. Finally, Vk is an odd cycle
transversal of size k ofG[Vk]. These three facts together with the f(k)nc algorithm
for the compression version of Odd Cycle Transversal give an f(k)nc+1 time
algorithm for Odd Cycle Transversal as follows. Call the algorithm for
the compression version with input (G[Vk+1], Vk+1, k). The algorithm will either
report that (G[Vk+1, k]) has no odd cycle transversal of size k or return such an
odd cycle transversal, call it Sk+1. In the first case G has no odd cycle transversal
of size k. In the second, call the algorithm for the compression version with input
(G[Vk+2], Sk+1 ∪ {vk+2}, k). Again we either receive a “no” answer or a odd cycle
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transversal Sk+2 of G[Vk+2] of size k and again, if the answer is negative then G
has no k-sized odd cycle transversal. Otherwise we call the compression algorithm
with input (G, Sk+2 ∪ {vk+3}, k) and keep going on in a similar manner. If we
receive a negative answer at some step we answer that G has no k-sized odd
cycle transversal. If we do not receive a negative answer at any step, then after
n− k calls to the compression algorithm we have a k-sized odd cycle transversal
of G[Vn] = G. Thus we have resolved the input instance in time O(f(k)nc+1).
We refer to [116] for a more thorough introduction to Iterative Compression.

We now show how to solve the compression version of Odd Cycle Transver-
sal in time O(3k · k · |E|). From the discussion in the previous paragraph it will
follow that Odd Cycle Transversal can be solved in time O(3k · k · |E| · |V |).
For two vertex subsets V1 and V2 of V (G) a walk from V1 to V2 is a walk with one
endpoint in V1 and the other in V2, or a single vertex in V1 ∩ V2. The following is
a simple fact about bipartite graphs.

Fact 2.3.2 Let G = (V1⊎V2, E) be a bipartite graph with vertex bipartition V1⊎V2.
Then

1. For i ∈ {1, 2}, no walk from Vi to Vi has odd length.

2. No walk from V1 to V2 has even length.

Recall that we are given a graph G and an odd cycle transversal S ′ of G of
size k + 1 and we have to decide whether G has an odd cycle transversal of size
at most k. If such an odd cycle transversal S exists then there exists a partition
of S ′ into L⊎R⊎T , where T = S ′∩S and L and R are subsets of the left and right
bipartitions of the resulting graph. The algorithm iterates over all 3k partitions
of S into L⊎R⊎T . For each partition we run an algorithm that takes as input a
partition of S ′ into L ⊎R ⊎ T , runs in O(k · |E|) time and decides whether there
exists a set of vertices T ′ of size at most k − |T | in G \ S ′ such that G \ (T ∪ T ′)
is bipartite with bipartitions VL and VR such that L ⊆ VL and R ⊆ VR. In the
remainder of this section we give such an algorithm. This algorithm together with
the outer loop over all partitions of S ′ yields the O(3k · k · |E|) time algorithm for
the compression step.

Before proceeding we do a simple “sanity check”. If there is an edge in G[L]
or G[R] it is clear that X can not exist since then either VL or VR can not be an
independent set. Hence if there is an edge in G[L] or G[R] we can immediately
skip to the next partition of S ′. Now, since G \ S ′ is bipartite, let A ⊎ B be a
bipartition of G\S ′. Let Al and Bl be the neighbors of L in A and B respectively.
Similarly let Ar and Br be the neighbours of R in A and B respectively.

Claim 2.3.3 Let (G, S ′, k) be an instance of the compression version of Odd
Cycle Transversal and let S ′ = L ⊎ R ⊎ T . If X ⊆ (V (G) \ S ′) is a set of
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vertices such that G \ (T ∪X) is bipartite with bipartitions VL and VR such that
L ⊆ VL and R ⊆ VR, then in G \ (S ′ ∪X), there are no paths between Al and Bl;
Bl and Br; Br and Ar; and, Ar and Al.

Proof. Any path from Al to Bl in G \ (S ′ ∪ X) has odd length and can be
extended to a walk from L to L of odd length in G′ \ (T ∪ X), contradicting
Fact 2.3.2. A symmetric argument shows that there are no paths between Br

and Ar in G \ (S ′ ∪X). Any path from Bl to Br in G \ (S ′ ∪X) must be of even
length and can be extended to a walk in G \ (T ∪X) from L to R of even length,
again contradicting Fact 2.3.2. A symmetric argument yields that there are no
paths between Ar and Al.

Claim 2.3.4 Let (G, S ′, k) be an instance of the compression version of Odd
Cycle Transversal and let S = L ⊎ R ⊎ T such that G[L] and G[R] are
independent sets. Let X be a set of vertices in V (G)\S ′ such that in G\(S ′∪X),
there are no paths between Al and Bl; Bl and Br; Br and Ar; and, Ar and Al.
Then G \ (T ∪X) is bipartite with bipartitions VL and VR such that L ⊆ VL and
R ⊆ VR.

Proof. Notice that every path from a vertex in L to another vertex in L with
inner vertices only in V (G)\(S ′∪X) must have even length. Similarly every path
from a vertex inR to another vertex inR with inner vertices only in V (G)\(S ′∪X)
must have even length and every path from a vertex in L to a vertex in R with
inner vertices only in V (G) \ (S ′ ∪ X) must have odd length. Since G[L] and
G[R] are independent sets it follows that if G \ (T ∪ X) is bipartite then it has
bipartitions VL and VR such that L ⊆ VL and R ⊆ VR. We now prove that
G \ (T ∪X) is bipartite.

Consider a cycle in G \ (T ∪X). If C does not contain any vertices of (L∪R)
then |E(C)| is even since G \ S ′ is bipartite. Let v1, v2, . . . vt be the vertices of
(L ∪ R) ∩ C in their order of appearance along C. Let v0 = vt, then we have
that |E(C)| =

∑t−1
i=0 dc(vi, vi+1). But then E(C) must be even since the number

if indices i such that vi ∈ L and vi+1 ∈ R is equal to the number of indices j such
that vj ∈ R and vj+1 ∈ L. This concludes the proof.

To check whether G \T has an odd cycle transversal X such that G \ (T ∪X)
is bipartite with bipartitions VL and VR such that L ⊆ VL and R ⊆ VR we
proceed as follows. Construct an auxiliary graph G̃ from G \ S ′ by introducing
two special vertices s, t and connecting s to each vertex in Al ∪Br and t to each
vertex in Ar ∪ Bl. The Claims 2.3.3 and 2.3.4 show that it is sufficient to check
whether there is an st-separator in G̃ of size at most k − |T ∪ T ′|. This can be
done using max flow in time O(k ·|E|). This discussion together with Claims 2.3.3
and 2.3.4 complete the proof of Theorem 2.3.1
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2.4 Dynamic Programming and Courcelle’s The-

orem

The Dynamic Programming (DP) technique has found many applications in the
design of algorithms, Parameterized Algorithms being no exception. When de-
signing Dynamic Programming based parameterized algorithms, the key is to try
to keep the size of the DP table and the time needed to compute each cell in the
table down to f(k)nO(1).

A well-known example of Dynamic Prorgramming in Parameterized Algo-
rithms is the Dreyfus-Wagner algorithm for the Steiner Tree problem [54]. In
the Steiner Tree problem we are given a connected graph G together with a
subset X of V (G). The set X is called a set of terminals and |X| = k. The
objective is to find a subtree T of G containing all terminals, minimizing |V (T )|,
the number of vertices in T . The Dreyfus-Wagner algorithm solves this problem
in time O(3knO(1)). Interestingly, if you parameterize Steiner Tree problem
by the maximum number of non-terminal vertices allowed in the solution, the
problem becomes intractable. This is discussed in detail in Section 3.3.

Parameterized problems where the parameter is the treewidth of the input
graph G are often tackled by doing dynamic programming over the tree de-
composition of G. In particular it has been shown that Independent Set,
Vertex Cover and Dominating Set in graphs of treewidth at most k can
be solved in time O(2kkO(1)n), O(2kkO(1)n) and O(4kn) respectively [116]. Many
other problems admit fast dynamic programming algorithms in graphs of bounded
treewidth.

A very useful tool for showing that a problem is FPT parameterized by
treewidth is the celebrated Courcelle’s theorem, which states that every problem
expressible in Monadic Second Order Logic is fixed parameter tractable parame-
terized by the treewidth of the input graph. For a graph predicate φ expressed
in MSO2 let |φ| be the length of the MSO2 expression for φ.

Theorem 2.4.1 (Courcelle’s Theorem [35]) There is a function f : N×N →
N and an algorithm that given a graph G together with a tree-decomposition of G
of width t and a MSO2 predicate φ decides whether φ(G) holds in time f(|φ|, t)n.

To apply Courcelle’s theorem on a specific problem we need to show that the
problem is expressible in monadic second order logic. For example consider the
Independent Set problem. Here we are given as input a graph G, a tree-
decomposition ofG of width t and an integer k. The objective is to decide whether
G has an independent set of size at least k. We formulate the Independent Set
problem in MSO2. That is, a graph G has an independent set of size k if and
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only if the following predicate holds:

φ(G) = ∃v1, v2, . . . , vk ∈ V (G) : v1 6= v2 ∧ ¬adj(v1, v2), v1 6= v3 ∧ ¬adj(v1, v2),

. . . v2 6= v3 ∧ ¬adj(v2, v3), . . . vk−1 6= vk ∧ ¬adj(vk−1, vk)

Observe that the length of the predicate φ depends only on k, and not on the size
of the graph G. Hence, by Theorem 2.4.1, there is an algorithm that given a graph
G together with a tree-decomposition of G of width at most t and an integer k
decides whether G has an independent set of size at least k in time f(k, t)n for
some function f . In fact, it is not really necessary that the tree-decomposition of
G is given. Due to a result of Bodlaender [18], a tree-decomposition of width t of
a graph G of treewidth t can be computed in time f(t)n for some function f .

Theorem 2.4.2 (Bodlaender’s Theorem [18]) There is a function f : N →
N and an f(t)n time algorithm that given a graph G and integer t decides whether
G has treewidth at most t, and if so, constructs a tree-decomposition of width at
most t.

Hence, combining Theorems 2.4.1 and 2.4.2 yields that there is a function f :
N × N → N and an algorithm that given a graph G of treewidth t and a MSO2

predicate φ decides whether φ(G) holds in time f(|φ|, t)n. For example, by the
discussion in the previous paragraph there is an algorithm that given a graph G
of treewidth t and an integer k decides whether G has an independent set of size
at most k in time f(t, k)n for some function f .

Theorem 2.4.1 has been generalized even further. For instance it has been
shown that MSO2-optimization problems are fixed parameter tractable parame-
terized by the treewidth of the input graph. In a MSO2-minimization problem
you are given a graph G and a predicate φ in MSO2 that describes a property
of a vertex (edge) set in a graph. The objective is to find a vertex (edge) set S
of minimum size such that φ(G, S) holds. In a MSO2-maximization problem the
objective is to find a set S of maximum size such that φ(G, S) holds.

Theorem 2.4.3 ([27, 12]) There is a function f : N × N → N and an algo-
rithm that given a graph G of treewidth t and a MSO2 predicate φ finds a largest
(smallest) set S such that φ(G, S) holds in time f(|φ|, t)n.

Turning our attention back to the Independent Set problem, we can observe
that by applying Theorem 2.4.3 we can obtain a stronger result than from The-
orem 2.4.1. In particular, the Independent Set can be expressed as a MSO2-
maximization problem as follows:

max |S| s.t:

φ(G, S) = ∀v1, v2v1 = v2 ∨ ¬adj(v1, v2) holds



21

Hence, by Theorem 2.4.3 there is an algorithm that given a graph G of treewidth t
as input can find a maximum size independent set in time f(t)n for some function
f .

Another way to generalize Theorem 2.4.1 is to consider larger classes of graphs
than graphs of bounded treewidth. In particular, if we restrict the predicate φ to
MSO1 logic, Theorem 2.4.3 can be extended to graphs of bounded cliquewidth.

Theorem 2.4.4 ([36]) There is a function f : N×N → N and an algorithm that
given a graph G and a clique-expression of G of width t and a MSO1 predicate
φ finds a largest (smallest) set S such that φ(G, S) holds in time f(|φ|, t)n.

There are natural problems expressible in MSO2 but not in MSO1. Examples
include Hamiltonian Cycle and Max Cut. In Section 7.2 we show that
up to certain complexity-theoretic assumptions, one can not hope to be able to
generalize Theorem 2.4.4 to also handle all problems in MSO2.

2.5 Well Quasi Ordering

The set of natural numbers is well-ordered since every two natural numbers are
comparable, that is, for any two numbers a and b such that a 6= b, either a < b
or b < a. An unusual way to describe a well-ordered set is to say that it contains
no anti-chain of length at least 2, where an anti-chain is a sequence a1, a2, . . . ak

such that for every i 6= j we have ai 6= aj and neither ai < aj nor ai > aj . We
can relax the notion of well-ordering, and say that a set S is well-quasi-ordered
under a relation < if every anti-chain in S is finite.

Robertson and Seymour, proved in their graph minors project that the set
of graphs is well-quasi-ordered under the minor relation, thereby proving the
Graph Minor Theorem and resolving Wagner’s Conjecture [135]. On the way
they defined many other interesting and useful concepts and showed results that
have been very useful for Parameterized Algorithms and Complexity. The concept
of treewidth was for instance introduced as a part of the graph minors project, and
the Bidimensionality theory discussed in Section 2.6 relies heavily on the graph
minors project. In this section, however, we only discuss the direct implications
of the Graph Minor Theorem to Parameterized Algorithms and Complexity.

Proposition 2.5.1 (Graph Minor Theorem [122]) The set of graphs is well-
quasi-ordered under the minor relation.

Consider a graph class G that is closed under taking minors. That is, if G ∈ G
and H ≤M G then H ∈ G as well. Consider the set of graphs F consisting of
all graphs not in G such that all their minors is in G. We call this set the set
of forbidden minors of G. Notice that every graph G that is not in G must have
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some minor in F . Notice also that by definition, F is an antichain, and that by
the Graph Minor Theorem F is finite. Hence, to check whether G belongs to G
it is sufficient to check for every H ∈ F whether G contains H as a minor. To
this end, the following theorem, also from the graph minors project, is useful.

Proposition 2.5.2 ([121]) For every fixed graph H there is an O(n3) time al-
gorithm to check for an input graph G whether H ≤M G.

Combining the Graph Minors Theorem with Proposition 2.5.2 yields that
every minor closed graph class G can be recognized in O(n3) time, where the
constant hidden in the big-Oh notation depends on G. To put this in terms
of Parameterized Algorithms - the problem of deciding whether G belongs to a
minor closed class G is FPT parameterized by G.

Corollary 2.5.3 ([61]) Vertex Cover is fixed parameter tractable.

Proof. We prove that if a graph G has a vertex cover C of size at most k then
so do all the minors of G. For any edge e ∈ E(G), C is a vertex cover of G \ e.
Similarly for any v ∈ V (G), C \{v} is a vertex cover of G\v. Finally, for an edge
uv ∈ E(G) let Guv be the graph obtained by contracting the edge uv and let u′

be the vertex obtained from u and v during the contraction. Then, every edge in
E(G) with u or v being one of its endpoints will have u′ as its endpoint in Guv.
Hence, if neither u nor v are in C then C is a vertex cover of Guv. If u ∈ C or
v ∈ C then (C \ {u, v}) ∪ {u′} is a vertex cover of size at most k of Guv. Hence,
for a fixed integer k ≥ 0 the class Ck of graphs that have a vertex cover of size at
most k is closed under taking minors.

By Theorem 2.5.1 Ck has a finite set Fk of forbidden minors. By Proposition
2.5.2, for each H ∈ Fk we can decide whether G contains H as a minor in time
O(f(|H|)n3) for some function f : N → N. Let h be the size of the largest graph
in Fk. Then deciding whether a particular graph G is in Ck can be done in time
O(|Fk|f(h)n3).

For a fixed minor closed graph class G, consider the following problem. Input
is graph G and integer k. The parameter is k and the objective is to determine
whether there exists a set vertex set S of size at most k such that G\S ∈ G. The
proof of Corollary 2.5.3 can easily be modified to show that for any fixed minor
closed graph class G this problem is FPT.

2.6 Win / Wins

The concept of Win/Wins is simple, yet it has proven useful both for showing
problems fixed parameter tractable and for designing efficient FPT algorithms.
A Win / Win consists of perfoming a polynomial time test on the input instance,
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and then proceeding depending on the test outcome. The idea is that for some
tests all outcomes give useful information about the instance in question. We
give an example with Max Leaf Spanning Tree (MLST). In this problem
we are given a graph G together with an integer k and asked whether there is a
spanning tree of G with at least k leaves.

Theorem 2.6.1 ([58]) Max Leaf Spanning Tree is fixed parameter tractable.

Proof. On an input instance (G, k) we do a polynomial test. In particular we
pick an arbitrary vertex v ∈ V (G) and run a breadth first search (BFS) starting
at v. There are three outcomes, (a) : G is disconnected. (b) : G is connected,
some BFS-layer has at least k vertices or (c) G is connected and all BFS layers
have at most k−1 vertices. We show how all three outcomes give us information
that help us decide the instance.

If G is disconnected then G has no spanning tree, so we can immediately
answer no. Assume now that G is connected. If some BFS-layer has at least k
vertices then the BFS-tree rooted at v is a spanning tree with at least k leaves
and we can answer yes. If all BFS layers have at most k−1 vertices, we construct
a path decomposition of G my making a bag out of every two consequtive layers.
This decomposition has width at most 2k − 3 so the pathwidth of G is at most
2k − 3 in this case. Since the property that G has at least k leaves is express-
ible in monadic second order logic, the theorem follows by Courcelle’s theorem.
Expressing that G has at least k leaves in monadic second order logic is routine.

2.6.1 Bidimensionality

Win / Wins have been especially useful to develop subexponential time fixed pa-
rameter algorithms for problems in planar graphs, and more generally in graphs
excluding a fixed graph H as a minor. For brevity, we only describe how these al-
gorithms work in planar graphs. Many parameterized problems are optimization
problems parameterzied by the objective function value. The objective function
is said to be bidimensional, if the optimal value of an n×m-grid is O(nm), and
if the optimal value of any minor H of G is at most the optimal value of G.
A parameterized problem is bidimensional if the input is a graph G and an in-
teger k which is the parameter, and the objective is to determine whether the
optimal value of a bidimensional objective function on G is at most k. Most
bidimensional problems exhibit nice algorithmic properties on planar graphs. In
particular, it was proved by Demaine et al. [43] that any bidimensional prob-
lem which can be solved in time 2O(t+k)nO(1) on graphs of treewidth t admits a
2O(

√
k)nO(1) time algorithm in planar graphs. The results proved in [43] are for

more general classes of graphs and more general classes of problems than consid-
ered here. We demonstrate how these ideas apply to Vertex Cover in planar
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graphs. We will need two propositions about about treewidth and graph minors
that we will use as black boxes. Notice that if a minor of G has treewidth at least
t then the treewidth of G is also at least t.

Proposition 2.6.2 (Excluded Grid Theorem [123]) Every planar graph G
of treewidth at least t contains a t

4
× t

4
-grid as a minor.

Proposition 2.6.3 ([125]) The treewidth of planar graphs can be 3
2
-approximated

in polynomial time.

We explain how to exploit the above propositions to show that Vertex
Cover in planar graphs can be solved in time 2O(

√
k). As observed in Section 2.5,

if a graph has a vertex cover of size at most k, then so do all its minors. Observe
also that the size of a minimum vertex cover of a k × k grid is at least k2/2.

Theorem 2.6.4 ([43, 46, 49]) There is an 2O(
√

k)nO(1) time algorithm for Ver-
tex Cover on planar graphs.

Proof. On an input instance (G, k) we perform a test in polynomial time - we run
the 3/2-approximation for treewidth on G, and let t be the width of the decomo-
sition returned by the approximation algorithm. We have two possible outcomes,
either ( 2t

3∗4)
2/2 = t2

72
> k or not. If not, then we can find an optimal vertex cover

in time O(2tnO(1)) ≤ 2O(
√

(k)nO(1) by applying the 2tnO(1) time dynamic program-
ming algorithm for Vertex Cover in graphs of bounded treewidth []. If t2

72
> k

then G contains a (
√

2k + 1×
√

2k + 1) grid as a minor. The size of the minimum
vertex cover of this grid is more than k and hence (G, k) is a no-instance.

Algorithms of the above type can be given for any bidimensional problem
which can be solved efficiently in grahps of bounded treewidth, and several survery
papers have been written on Bidimensionality [43, 46, 49].

2.7 Color Coding

The Color Coding technique was developed by Alon et al [11] as a tool to detect a
k-sized subgraph F of constant treewidth in an input graph G in time 2O(k)nO(1).
The color coding technique is typically applied when we are searching for a small
structure S in a larger structure X. We randomly color X with a set of colors
and show that if X contains S as a substructure then the probability that S has
been colored “nicely” is high. Here “nicely” means that the coloring is helpful for
finding S quickly. In this section we describe the color coding algorithm of Alon
et al [11] for the Longest Path problem. In this problem we are given as input
a graph G and an integer k and asked whether G contains a path on k vertices
as a subgraph.
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We start by giving a randomized algorithm for the problem, and then show
how to derandomize it in order to get a deterministic algorithm. Our randomized
algorithm will run in time O((2e)knO(1)) and if G does not contain a k-path then
the algorithm returns that it does not. On the other hand, of G does contain a
k-path the algorithm detects such a path with probability at least 3/4. Repeating
the algorithm more times gives an arbitrarily good probability of returning the
correct answer.

The algorithm proceeds as follows. We color V (G) with colors from {1, . . . , k}
uniformly at random, and run an algorithm to detect whether there is a path
P on k the vertices of P have been distinctly colored. We say that a path is
multicolored if it contains at most one vertex of each color. If G contains a path
P ′ on k vertices then the probability that P is multicolored is k!/kk = (1/ek)kO(1)

by Stirlings formula.

Lemma 2.7.1 ([11]) There is an O(2knO(1)) time algorithm to decide whether
there is a multicolored path in a colored graph G.

Proof. Let V1, . . . , Vk be a partitioning of V (G) such that all vertices in Vi are
colored i. We apply dynamic programming, for a subset S of {1, . . . , k} and a
vertex u /∈ ⋃i∈S Vi we define the function PATH(S, u) to return TRUE if there
is a multicolored path on |S| + 1 vertices in G[{u}⋃i∈S Vi] with one endpoint in
u, and FALSE otherwise. Since any multicolored path can visit every color class
at most once the recurrence

PATH(S, u) =
∨

i∈S,v∈Vi,uv∈E(G)

PATH(S \ {i}, v)

holds. Clearly all values of PATH can be computed in O(2knO(1)) time by apply-
ing the above recurrence. To determine whether there is a multicolored k-path
in G we loop over every i from 1 to k and for each vertex in Vi check whether
PATH(v, {1, . . . , i− 1, i+ 1, . . . , k}) is set to TRUE. If it is for some choice for
i and v, then there is a path, otherwise not. Given a positive answer the multi-
colored path itself can be reconstructed using a standard backtracking technique.

Suppose G has a k-path. If we color V (G) with colors from {1, . . . , k} uni-
formly at random and then run the algorithm from Lemma 2.7.1 then the prob-
ability that we detect this path is (1/(ekkO(1)). On the other hand, if G has
no k-path then we correctly return that it indeed does not. If we repeat this
procedure O(ekkO(1)) times the probability that we detect a k-path, if it exists,
is at least 3/4. This yields the O((2e)knO(1)) expected time algorithm for the
Longest Path problem.

We now discuss how to derandomize the algorithm, that is, to replace the
randomized coloring step by a deterministic step that does the same job. To this
end, the following result is helpful.
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Proposition 2.7.2 ([114]) For every n, k there is a family of functions F of
size O(ek · kO(log k) · log n) such that every function f ∈ F is a function from
{1, . . . , n} to {1, . . . , k} and for every subset S of {1, . . . , n} there is a function
f ∈ F that is bijective when restricted to S. Furthermore, given n and k, F can
be computed in time O(ek · kO(log k) · logn).

The family F above can replace the random coloring step of our algorithm.
In particular, instead of the random coloring step we construct the family F ,
iterate over every f ∈ F and use f as a coloring of the graph. It follows from
Proposition 2.7.2 that if G contains a path P on k vertices then there is some
f ∈ F such that P is multicolored when f is used to color V (G). This yields the
following theorem.

Theorem 2.7.3 ([11, 114]) There is an O((2e)knO(1)) time algorithm for Longest
Path.

For the case of Longest Path, algorithms with improved running times have
later been published. The currently fastest deterministic algorithm for the prob-
lem runs in time O(4knO(1)) and is based on a combination of the Color Coding
and Divide and Conquer techniques [95]. The fastest randomized algorithm is
due to Williams [136] and runs in expected time O(2knO(1)).

2.8 Integer Linear Programming

In the early 80’s, Lenstra [102] proved that Integer Linear Programming
is Fixed Parameter Tractable when parameterized by the number p of variables,
giving an algorithm with running time doubly exponential in p. His result was
subsequently improved by Kannan [88] to a pO(p)nO(1) time algorithm. This algo-
rithm uses Minkowski’s Convex Body theorem and other results from Geometry
of Numbers. A bottleneck in this algorithm was that it required space exponen-
tial in p. Using the method of simultaneous Diophantine approximation, Frank
and Tardos [71] describe preprocessing techniques, using which it is shown that
Lenstra’s and Kannan’s algorithms can be made to run in polynomial space.
They also slightly improve the running time of the algorithm. For our purposes,
we will use this algorithm.

Because of the vast expressive power of Integer Linear Programming it is
natural to expect that it should be possible to prove problems Fixed Parameter
Tractable by reducing the problem to Integer Linear Programming with few
variables. Quite surprisingly this technique has not yet found many applications
in Parameterized Complezity. To the authors best knowledge the method has only
been used to give a FPT algorithm for the Closest String problem [75] and,
in an EPTAS for Min-Makespan-Scheduling problem [113] and to prove that
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four graph layout problems are classFPT when parameterized by the size of the
minimum vertex cover of the input graph [63]. We believe that it is quite probable
that Integer Linear Programming could turn out useful for other problems as well.
In this section we state the theorems necessary to apply the method and give an
example of an FPT algorithm based on Integer Linear Programming.

Integer Linear Programming (p-ILP): Given matrices A ∈ Z
m×p

and b ∈ Z
m×1, the question is whether there exists a vector x̄ ∈ Z

p×1

satisfying the m inequalities, that is, A · x̄ ≤ b. The number of vari-
ables p is the parameter.

Theorem 2.8.1 ([88],[102],[71]) p-ILP can be solved using O(p2.5p+o(p) · L)
arithmetic operations and space polynomial in L. Here L is the number of bits in
the input and p the number of variables in the integer linear program.

In order to be able to use an algorithm for p-ILP as a subroutine in our
algorithms, we need the optimization version of p-ILP rather than the feasibility
version. We proceed to define the minimization version of p-ILP.

p-Variable Integer Linear Programming Optimization (p-
Opt-ILP): Let matrices A ∈ Z

m×p, b ∈ Z
m×1 and c ∈ Z

1×p be given.
We want to find a vector x̄ ∈ Z

p×1 that minimizes the objective
function c · x̄ and satisfies the m inequalities, that is, A · x̄ ≥ b. The
number of variables p is the parameter.

Theorem 2.8.2 p-Opt-ILP can be solved using O(p2.5p+o(p)·L·log (MN)) arith-
metic operations and space polynomial in L. Here, L is the number of bits in the
input, N is the maximum of the absolute values any variable can take, and M
is an upper bound on the absolute value of the minimum taken by the objective
function.

Proof. We can first do a binary search to find the minimum value of the objective
function. For an example suppose we guess that c · x̄ ≤ M

2
. Now we make a new

matrix A′ of dimension (m + 1) × p whose first row consists of c and rest of the
rows is −A(by multiplying each entry of A by −1). We will denote the matrix

A′ as [ c
−A

]. Similarly we make b′ = [M/2
−b

]. Now we apply Theorem 2.8.1 to check
whether there exists a vector x′ ∈ Z

p×1 such that A′ · x′ ≤ b′. Having found the
minimum value of the objective function in this way, we find the lexicographically
smallest solution satisfying these inequalities. We determine the value of one
variable at a time by doing a binary search similar to the one we used to find the
minimum of the objective function. For all this we need to run the algorithm for
ILP easibility at most O(p · logN + logM) times.

Now we give an example for how Theorem 2.8.2 can be used applied to show
that a problem is FPT.
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An Algorithm for Graph Imbalance: In order to define the Imbalance
problem we need to introduce some notation. A permutation π : V → {1, 2, . . . , n}
orders the vertex set into v1 <π v2 <π . . . <π vn. For every i, the set Vi is
{v1, . . . , vi} and ∂(Vi) = {uv | uv ∈ E, u ∈ Vi, v ∈ V \ Vi}. We define Lπ(v) to be
{u | u ∈ N(v), u <π v} and Rπ(v) is {u | u ∈ N(v), v <π u}.

In the Imbalance problem, we are given a graph G = (V,E) with a vertex
cover C = {c1, . . . , ck} ⊆ V of size k as input and asked to find a permutation
π : V → {1, 2, . . . , n} that minimizes

∑
i≤n |Lπ(vi)−Rπ(vi)|. The parameter is k,

that is, the size of the vertex cover C. One should notice that this means that an
algorithm whose running time depends exponentially on the objective function is
not and FPT algorithm for this parameterized problem. We show how to apply
Theorem 2.8.2 in order to give an FPT algorithm for Imbalance parameterized
by the size of the minimum vertex cover of G.

We are looking for a permutation π : V → {1, 2, . . . , n} for which fim(π) is
minimized. In order to do this, we loop over all possible permutations of the
vertex cover C and for each such permutation πc, find the best permutation
π of V that agrees with πc. We say that π and πc agree if for all ci, cj ∈ C
we have that ci <π cj if and only of ci <πc

cj . In other words, the relative
ordering π imposes on C is precisely πc. Thus, at a cost of a factor of k! in the
running time we can assume that there exists an optimal permutation π such
that c1 <π c2 <π . . . <π ck.

Definition 2.8.3 Let πc be an ordering of C such that c1 <πc
c2 <πc

. . . <πc
ck.

We define Ci to be {c1, c2, . . . , ci} for every i such that 1 ≤ i ≤ k.

Let I be the independent set V \ C. We associate a type with each vertex in
I. A type is simply a subset of C.

Definition 2.8.4 Let I be the independent set V \C. The type of a vertex v in
I is N(v). For a type S ⊆ C the set I(S) is the set of all vertices in I of type S.

Notice that two vertices of the same type are indistinguishable up to automor-
phisms of G, and that there are 2k different types.

Observe that every vertex of I is either mapped between two vertices of C, to
the left of c1 or to the right of ck by a permutation π. For a permutation π we
say that a vertex v is at location 0 if v <π c1 and at location i if i is the largest
integer such that ci <π v. The set of vertices that are at location i is denoted by
Li. We define the inner order of π at location i to be the permutation defined by
π restricted to Li.

The task of finding an optimal permutation can be divided into two parts.
The first part is to partition the set I into L0, . . . , Lk, while the second part
consists of finding an optimal inner order at all locations. One should notice that
partitioning I into L0, . . . , Lk amounts to deciding how many vertices of each
type are at location i for each i. Observe that permuting the inner order of π at
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location i does not change the imbalance of any single vertex, where the imbalance
of a vertex v is |Lπ(v) − Rπ(v)|. Hence, the inner orders are in fact irrelevant
and finding the optimal ordering of the vertices thus reduces to finding the right
partition of I into L0, . . . , Lk. We formalize this as an instance of p-Opt-ILP.

For a type S and location i we let xi
S be a variable that encodes the number

of vertices of type S that are at location i. Also, for every vertex ci in C we have
a variable yi that represents the imbalance of ci. In order to represent a feasible
permutation, all the variables must be non-negative. Also the variables xi

S must
satisfy that for every type S,

∑k
i=0 x

i
S = |I(S)|. For every vertex ci of the vertex

cover let ei = |N(ci) ∩Ci−1| − |N(ci) ∩ (C \ Ci)| be a constant. Finally for every
ci ∈ C we add the constraint

yi =
∣∣ei +

∑

{S⊆C|ci∈S}

( i−1∑

j=0

xj
S −

k∑

j=i

xj
S

)∣∣.

One should notice that the last set of constraints is not a set of linear con-
straints. However, we can guess the sign of

y′i = ei +
∑

{S⊆C|ci∈S}

( i−1∑

j=0

xj
S −

k∑

j=i

xj
S

)

for every i in an optimal solution. This increases the running time by a factor of
2k. For every i we let ti take the value 1 if we have guessed that y′i ≥ 0 and we
let ti take the value −1 if we have guessed that y′i < 0. We can now replace the
non-linear constraints with the linear constraints yi = tiy

′
i for every i. Finally,

for every type S and location i, let zi
S be the constant

∣∣|S ∩Ci| − |S ∩ (C \Ci)|
∣∣.

We are now ready to formulate the integer linear program.

min

k∑

i=1

ti · yi +
∑

S⊆C

zi
S · xi

S

such that
∑

i

xi
S = |I(S)| for all i ∈ {0, . . . , k}, S ⊆ C

yi = tiei +
∑

{S⊆C|ci∈S}

(∑i−1
j=0 tix

j
S −∑k

j=i tix
j
S

)
for all i ∈ {1, . . . , k}

xi
S , yi ≥ 0 for all i ∈ {0, . . . , k}, S ⊆ C

Since the value of fim(π) is bounded by n2 and the value of any variable in the
integer linear program is bounded by n, Theorem 2.8.2 implies that this integer
linear program can be solved in FPT time, thus implying the following theorem.

Theorem 2.8.5 The Imbalance problem parameterized by the vertex cover
number of the input graph is fixed parameter tractable.
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The proof of Theorem 2.8.5 serves as an example for how to apply Theorem
2.8.2 to give FPT algorithms. The result of Lenstra was extended by Khachiyan
and Porkolab [92] to semidefinite integer programming. In their work, they show
that if Y is a convex set in Rk defined by polynomial inequalities and equations of
degree at most d ≥ 2, with integer coefficients of binary length at most l, then for
fixed k, the problem of computing an optimal integral solution y∗ to the problem
min {yk | y(y1, . . . , yl) ∈ Y ∪Zk} admits an FPT algorithm. Their algorithm was
further improved by Heinz [84] in the specific case of minimizing a polynomial F̂
on the set of integer points described by an inequality system Fi ≤ 0, 1 ≤ i ≤ s
where the Fi’s are quasiconvex polynomials in p variables with integer coefficients.
It would be interesting to see if these even more general results can be useful for
showing problems fixed parameter tractable.



Chapter 3

Running Time Lower Bounds

In this chapter we discuss techniques for showing lower bounds for the running
time of algorithms for parameterized problems, up to certain complexity theoretic
assumptions. We take an “engineering” approach to the topic, that is, we do not
dwell on the underlying complexity theory. Instead we discuss the types of bounds
one can obtain under different assumptions and give examples of how to show
such bounds.

3.1 NP-hardness vs. ParaNP-hardness

NP-hardness of a parameterized problem rules out algorithms with running time
nO(1), assuming P 6= NP . On the other hand, one might have an algorithm with
running time nf(k). For instance, the Independent Set problem admits a simple
O(nk) time algorithm: try all possible vertex subsets of size k and check whether
they form an independent set. However, not all problems have algorithms with
running time of this form. Some parameterized problems, as we demonstrate
below, remain NP-hard even when k is a fixed integer. Parameterized problems
that are NP-hard for every fixed value of k above some threshold K are called
ParaNP-hard. For these problems one can not hope for algorithms with running
time on the form O(nO(f(k))), let alone FPT algorithms.

Theorem 3.1.1 ([126]) Graph Coloring is ParaNP-hard

Proof. We show that for every fixed k ≥ 3, the problem of deciding whether
an input graph G is k-colorable is NP-complete. A reduction showing that
Graph Coloring is NP-complete for k = 3 is given in for example the book
of Sipser [126]. For a given graph G we can make a graph G′ by adding a new
vertex adjacent to all vertices of G. It follows that G is k-colorable if and only
if G′ is k + 1-colorable and hence Graph Coloring is NP-complete for every
fixed k > 3.

31
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Quite a few problems share this property, and for many of them showing
ParaNP-hardness turned out to be easier than showing W [1]-hardness (explained
below). Examples include Treelength [103], Metric Embedding Into the
Line [60] and Minimum Fill-in parameterized by the number of vertices that
has to be deleted from the input graph to make it chordal [106].

3.2 Hardness for W[1]

How can we show that a problem does not have an algorithm with running time
f(k)·nO(1)? One approach would be to show NP-hardness. But with this method,
we can not distinguish between problems that are solvable in time nf(k) from prob-
lems solvable in time f(k) ·nO(1). To be able to do this, Downey and Fellows [52]
introduced the W-hierarchy. The hierarchy consists of a complexity class W[t]
for every integer t ≥ 1 such that W[t] ⊂ W[t + 1] for all t. Downey and Fel-
lows [52] proved that FPT ⊆ W[1] ⊆ W[2] . . . ⊆ W[t] and conjectured that strict
containment holds.

In particular, the assumption FPT ⊂ W[1] is the fundamental complexity
theoretic assumption in Parameterized Complexity. The reason for this is that the
assumption is a natural parameterized analogue of the conjecture that P 6= NP .
The assumption P 6= NP can be reformulated as “The Non-Deterministic
Turning Machine Acceptance problem can not be solvable in polynomial
time”. In this problem we are given a non-deterministic turing machine M , a
string s and an integer k coded in unary. The question is whether M can make
its non-deterministic choices in such a way that it accepts s in at most k steps.
The intuition behind the P 6= NP conjecture is that this problem is so general
and random that it is not likely to be in P. Similarly, one would not expect the
problem parameterized by k to be fixed parameter tractable.

From our “engineering” viewpoint, how can we use the assumption that
FPT 6= W[1] to rule out f(k) · nO(1) time algorithms for a particular problem?
Downey and Fellows showed that the Independent Set problem is not in FPT
unless FPT = W[1]. If we can show for a particular parameterized problem Π,
that if Π is fixed parameter tractable then so is Independent Set, then this
implies that Π /∈ FPT unless FPT = W[1]. To this end, we define the notion of
FPT-reductions.

Definition 3.2.1 ([52]) Let P and Q be parameterized problems. We say that
P is FPT-reducible to Q, written P ≤FPT Q, if there exists an algorithm that
given as input an instance (x, k), runs in time |x|O(1)f(k) for some function
f : N :→ N, and outputs an instance (x′, k′) such that (a) (x, k) ∈ P if and only
(x′, k′) = f(x, k) ∈ Q and (b) k′ ≤ g(k) for some function g : N :→ N.

The class W[1] is the set of all parameterized problem that are FPT-reducible
to the parameterized Non-Deterministic Turning Machine Acceptance
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problem. A parameterized problem is said to be W[1]-hard if all problems in W[1]
FPT-reduce to it. The following theorem follows directly from Definition 3.2.1.

Theorem 3.2.2 ([52]) Let P and Q be parameterized problems. If P ≤FPT Q
and Q is in FPT then P is in FPT. Furthermore, if P ≤FPT Q and P is W[1]-
hard then Q is W[1]-hard.

Theorem 3.2.2 implies that a W[1]-hard problem can not be in FPT unless
FPT = W[1]. As mentioned above, it was proved in [52] that Independent
Set is W[1]-hard. We now give two examples of FPT-reductions. First, we show
that the Multicolor Clique problem is W[1]-hard.

Multicolor Clique: Given an integer k and a connected undi-
rected graph G = (V [1] ∪ V [2] · · · ∪C[k], E) such that for every i the
vertices of V [i] induce an independent set, is there a k-clique C in G?

The approach for using the Multicolor Clique problem in reductions is
described in [62], and has been proven to be very useful in showing hardness
results in Parameterized Complexity.

Theorem 3.2.3 Multicolor Clique is W[1]-hard.

Proof. We reduce from the Independent Set problem. Given an instance
(G, k) to Independent Set we construct a new graph G′ = (V ′, E ′) as follows.
For each vertex v ∈ V (G) we make k copies of v in V ′ with the i’th copy being
colored with the i’th color. For every pair u,v ∈ V (G) such that uv /∈ E(G) we
add edges between all copies of u and all copies of v with different colors. It is
easy to see that G has an independent set of size k if and only if G′ contains a
clique of size k. This concludes the proof.

One should notice that the reduction produces instances to Multicolor
Clique with a quite specific structure. In particular, all color classes have the
same size and the number of edges between every pair of color classes is the same.
It is often helpful to exploit this fact when reducing from Multicolor Clique
to a specific problem. We now give an example of a slightly more involved FPT-
reduction.

Theorem 3.2.4 Dominating Set is W[1]-hard.

Proof. We reduce from the Multicolor Clique problem. Given an instance
(G, k) to Multicolor Clique we construct a new graph G′. For every i ≤ k
let Vi be the set of vertices in G colored i and for every pair of distinct integers
i, j ≤ k let Ei,j be the set of edges in G[Vi ∪ Vj ]. We start making G′ by taking
a copy of Vi for every i ≤ k and making this copy into a clique. Now, for every
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i ≤ k we add a set Si of k + 1 vertices and make them adjacent to all vertices
of Vi. Finally, for every pair of distinct integers i, j ≤ k we consider the edges
in Ei,j.For every pair of vertices u ∈ Vi and v ∈ Vj such that uv /∈ Ei,j we add
a vertex xuv and make it adjacent to all vertices in Vi \ {u} and all vertices in
Vj \ {v}. This concludes the construction. We argue that G contains a k-clique
if and only if G′ has a dominating set of size at most k.

If G contains a k-clique C then C is a dominating set of G′. In the other
direction, suppose G′ has a dominating set S of size at most k. If for some i,
S ∩ Vi = ∅ then Si ⊆ S, contradicting that S has size at most k. Hence for every
i ≤ k, S∩Vi 6= ∅ and thus S contains exactly one vertex vi from Vi for each i, and
S contains no other vertices. Finally, we argue that S is a clique in G. Suppose
that vivj /∈ Ei,j . Then there is a vertex x in V (G′) with neighbourhood Vi \ {u}
and Vj \ {v}. This x is not in S and has no neighbours in S contradicting that S
is a dominating set of G′.

In fact, it was an FPT-reduction from Independent Set to Dominating
Set that was the startpoint of the complexity part of parameterized algorithms
and complexity. In 1989, Fellows realised that one could give a FPT-reduction
from Independent Set to Dominating Set, but that it did not seem plausible
to give a reduction in the other direction. Later, Downey and Fellows proved
that the Dominating Set problem in fact is complete for the class W[2] while
Independent Set is complete for W[1] [52]. It is therefore unlikely that an
FPT-reduction from Dominating Set to Independent Set can exist. The
theorem 3.2.4 is due to Downey and Fellows. The proof presented in this thesis is
somewhat simpler than the original proof and due to the author. For a thorough
introduction to the W-hierarchy we refer the reader to the books of Downey and
Fellows [52] and Flum and Grohe [66].

3.3 Hardness for W[2]

Even though it was shown by Downey and Fellows that Dominating Set is
complete for W[2] while Independent Set is complete for W[1] [52], there are
problems for which it is easier to give FPT-reductions from Dominating Set
than from Independent Set. A typical example is the Steiner Tree problem,
parameterized by the number of non-terminals in the solution. In the Steiner
Tree problem we are given a connected graph G together with a subset X of
V (G) and an integer k. The vertices in the X are called terminals. The objective
is to find a subtree T of G containing all terminals and at most k non-terminals.
Such a tree is called a steiner tree of G. Here we give a proof that the Steiner
Tree problem parameterized by the number of non-terminals in the steiner tree
is W[2] hard. The proof of the following theorem first appeared in [17].

Theorem 3.3.1 ([17]) The Steiner Tree problem parameterized by |V (T ) \
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X| is W[2]-hard.

Proof. We reduce from the Dominating Set problem. For an instance (G, k)
we build a graph G′ as follows. We make two copies of V (G), call them X ′ and
N . The copy x ∈ X ′ of each vertex v ∈ V (G) is made adjacent to the copies in N
of the vertices in N(v). Finally the vertex set X is obtained from X ′ by adding
a single vertex uX and making it adjacent to all vertices in N . This concludes
the construction of G′. We prove that G has a dominating set of size at most k
if and only if G′ has a steiner tree with at most |X| + k vertices.

In one direction, suppose G has a dominating set S on k vertices. Let S ′ be
the copy of S in N . Then the graph G′[X ∪S ′] is connected. Let T be a spanning
tree of G′[X ∪S ′], then T is a steiner tree of G′ with at most |X|+ k vertices. In
the other direction, suppose G′ has a steiner tree T on at most |X| + k vertices
and let S ′ = V (T ) ∩ N . Then |S ′| ≤ k and since X is an independent set in G′

every vertex in X has a neighbour in S ′. Thus, if we let S be the copy of S ′ in
V (G) then S is a dominating set of G of size at most k.
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Chapter 4

Kernelization

Polynomial time preprocessing to reduce instance size is one of the most widely
used approaches to tackle computationally hard problems. A natural question
in this regard is how to measure the quality of preprocessing rules proposed for
a specific problem. Parameterized complexity provides a natural mathematical
framework to give performance guarantees of preprocessing rules. A parame-
terized problem is said to admit an f(k) kernel if there is a polynomial time
algorithm, called a kernelization algorithm, that reduces the input instance down
to an instance with size bounded by f(k) in k, while preserving the answer. This
reduced instance is called an f(k) kernel for the problem.

Definition 4.0.2 A kernelization algorithm, or in short, a kernel for a parame-
terized problem Q ⊆ Σ∗ × N is an algorithm that given (x, k) ∈ Σ∗ × N outputs
in time polynomial in |x| + k a pair (x′, k′) ∈ Σ∗ × N such that (a) (x, k) ∈ Q
if and only if (x′, k′) ∈ Q and (b) |x′|, k ≤ g(k), where g is an arbitrary com-
putable function. The function g is referred to as the size of the kernel. If g is a
polynomial function then we say that Q admits a polynomial kernel.

It is easy to see that if a decidable problem admits an f(k) kernel for some
function f , then the problem is FPT. Interestingly, the converse also holds, that
is, if a problem is FPT then it admits an f(k) kernel for some function f [116].
The proof of this fact is quite simple, and we present it here.

Fact 4.0.3 (Folklore, [116]) If a parameterized problem Π is FPT then Π ad-
mits an f(k) kernel for some function f .

Proof. Suppose there is a decision algorithm for Π running in f(k)nc time for
some function f and constant c. Given an instance (I, k) with |I| = n, if n ≥ f(k)
then we run the decision algorithm on the instance in time f(k)nc ≤ nc+1. If the
decision algorithm outputs yes, the kernelization algorithm outputs a constant
size yes instance, and if the decision algorithm outputs no, the kernelization
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algorithm outputs a constant size no instance. On the other hand, if n < f(k)
the kernelization algorithm just outputs (I, k). This yields an f(k) kernel for the
problem.

Fact 4.0.3 implies that a problem has a kernel if and only if it is fixed parameter
tractable. However, we are interested in kernels that are as small as possible, and
a kernel obtained using Fact 4.0.3 has size that equals the dependence on k in the
running time of the best known FPT algorithm for the problem. The question
is - can we do better? The answer is that quite often we can. In fact, for many
problems we can obtain kc kernels, called polynomial kernels. In this chapter we
suvey some of the known techniques for showing that problems admit polynomial
kernels.

4.1 Reduction Rules

We have already seen the main tool for showing that a problem admits an f(k)-
kernel in a different context. Namely, we briefly touched upon reduction rules
in Section 2.2. Recall that a reduction rule is a polynomial time algorithm that
transforms an instance (I, k) of a parameterized problem to an ‘equivalent and
simpler instance (I ′, k′), where equivalent means that (I, k) is a yes instance if
and only if (I ′, k′) is. In Section 2.2 we used reduction rules to identify “good”
structures to branch on. Here we will show that for some problems we can give
reduction rules such that any instance to which no reduction rules can be applied
must have size bounded by a function of k. This will immediately give us the
desired kernel.

We show how a simple set of reduction rules gives a k2 kernel for the Point
Line Cover problem. An instance of this problem is a pair (S, k) where S is a
set of n points in the plane with no two points in the exact same spot and k is
an integer. The objective is to find a set C of k lines in the plane such that every
point lies on some line in C. For a line l in the plane let P (l) be the set of points
that are covered by l. To tackle the problem, it is enough to make the following
observations:

1. It is sufficient to only consider lines containing at least 2 points.

2. Any two lines intersect in at most one point.

Hence any line that contains at least k + 1 points must be in the solution set
S, since otherwise S must contain at least k + 1 lines. This yields the following
reduction rule.

RedRule 4.1.0.1 If some line l covers at least k+1 points, return (S \P (l), k−
1).
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Rule 4.1.0.1 is correct since any line except for l covers at most one point in
P (l). Hence if the solution set C does not contain l then it must contain at least
P (l) > k lines.

Theorem 4.1.1 The Point Line Cover problem admits a k2 kernel.

Proof. Consider an instance (S, k) to which Rule 4.1.0.1 can not be applied. We
argue that if |S| > k2, then (S, k) is a no-instance. Suppose for contradiction
that there is a set C of at most k lines such that the lines in C together cover
all points in S. Since Rule 4.1.0.1 can not be applied every line in C covers at
most k points in S. Thus the lines in C cover at most k2 points of S in total,
contradicting that S is covered.

Theorem 4.1.1 imediately yields a O(k4knO(1)) time algorithm for the Point

Line Cover problem: after obtaining the k2 kernel, iterate over all
((k2

2 )
k

)
ways to

chose k lines and check whether they cover all the points. In fact, a O(k2) kernel
and a O(kO(k)nO(1)) time algorithm for this problem is a corollary of a result by
Langerman and Morin [100]. However, no o(k2) sized kernel or O(2o(k2)nO(1))
time algorithm is known for the problem to this date and remains an interesting
open problem.

4.2 Crown Reductions

A crown decomposition of a graph G is a decomposition of V (G) into C ⊎H ⊎R
such that N(C) ⊆ H , G[C] is an independent set and there is a matching from H
to C. The set C is called the crown, H is called the head and R is called the rest
or body of the decomposition. For many problems, if a crown decomposition of the
input graph, or a graph modelling the problem, is found then the crown can be
removed or reduced. We give an example by giving a kernel for the Maximum
Satisfiability problem. In the Maximum Satisfiability problem we are
given a formula φ in conjunctive normal form and an integer k. The formula has
n variables and m clauses and the question is whether there is an assignment
to the variables that satisfies at least k of the clauses. We give a kernel based
on crown reductions with less than k variables and less than 2k clauses. Let
Gφ be the variable-clause incidence graph of φ. That is, Gφ is a bipartite graph
with one bipartition X corresponding to the variables of φ and a bipartition Y
corresponding to the clauses. For a vertex x ∈ X we will refer to x as both the
vertex in Gφ and the corresponding variable in φ. Similarly, for a vertex c ∈ Y we
will refer to c as both the vertex in Gφ and the corresponding clause in φ. In Gφ

there is an edge between a variable x ∈ X and a clause c ∈ Y if x or its negation
occurs in c. We assume that every clause of φ contains at least one variable.
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Theorem 4.2.1 The Maximum Satisfiability problem admits a kernel with
less than k variables and less than 2k clauses.

Proof. If we assign values to the variables uniformly at random, linearity of
expectation yields that the expected number of satisfied clauses it at least m/2.
Since there has to be at least one assigment satisfying at least the expected
number of clauses this means that if m ≥ 2k then (φ, k) is a yes-instance. In the
rest of this section we show how to give a kernel where n < k. Whenever possible
we apply a cleaning rule; if some variable does not occur in any clauses, remove
the variable.

Let Gφ be the variable-clause incidence graph of φ, X and Y be the bipar-
titions of Gφ corresponding to variables and clauses respectively. If there is a
matching from X to Y in Gφ there is an assignment to the variables satisfying
at least n clauses. This is true because we can set each variable in X in such a
way that the clause matched to it becomes satisfied. In this manner, at least |X|
clauses are satisfied. We now show that if φ has at least k variables then we can,
in polynomial time, either reduce φ to an equivalent smaller instance or find an
assignment to the variables satisfying at least k clauses.

Suppose φ has at least k variables. Using Hall’s Theorem and an algorithm
for Maximum Matching we can in polynomial time find either a matching from
X to Y or an inclusion minimal set C ⊆ X such that |N(C)| < |C|. If we found a
matching we are done, as we can satisfy at least |X| ≥ k clauses. So suppose we
found a set C as described. Let H be N(C) and R = V (Gφ) \ (C ∪H). Clearly,
N(C) ⊆ H , N(R) ⊆ H and G[C] is an independent set. Furthermore, for a vertex
x ∈ C we have that there is a matching from C \ x to H since |N(C ′)| ≥ |C ′|
for any C ′ ⊆ (C \ x). Since |C > H| the matching from C \ x to H is in fact a
matching from H to C. Hence C ⊎H ⊎ R is a crown decomposition of Gφ.

We prove that all clauses in H are satisfied in every truth assignment to
the variables satisfying the maximum number of clauses. Indeed, consider any
assignment ψ of values to the variables that does not satisfy all clauses in H . For
every variable y in C\{x} change the value of y such that the clause inH matched
to y is satisfied. Let ψ′ be the new assignment obtained from ψ in this manner.
Since N(C) ⊆ H and ψ′ satisfies all clauses in H , ψ′ satisfies more clauses than
ψ does, and hence ψ can not be an assigment satisfying the maximum number of
clauses.

The argument above shows that (φ, k) is a yes instance to Maximum Sat-
isfiability if and only if (φ \ (C ∪ H), k − |H|) is. This gives rise to a simple
reduction rule: remove (C ∪ H) from φ and decrease k by |H|. This completes
the proof of the theorem.

To the author’s best knowledge, the best kernel known before this result is a
kernel with 2k variables and O(k2) clauses [116].
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4.3 LP based kernelization

One of the classical results in algorithms is a polynomial time algorithm to solve
Linear Programming [93]. This result has proved extremely useful in the
design of approximation algorithms. In particular, any problem in NP can be
formulated as an integer linear program (ILP), an LP with the additional restric-
tion that the variables only are allowed to take integer values. Since Integer
Linear Programming is NP-complete we can not hope to solve the integer lin-
ear program in polynomial time. Instead we settle for an approximate solution by
solving the corresponding linear programming relaxation of the ILP, which is just
the ILP without the integrality constraint on the variables. A (not necessarially
optimal) solution to the ILP is obtained by rounding the variables in an optimal
solution to the LP relaxation in an appropriate way. Linear Programming is
also helpful to give problem kernels. We show how to obtain a 2k kernel for the
Vertex Cover problem by applying Linear Programming. This kernel is due
to [29, 115].

Given a graph G and integer k we construct an ILP with n variables, one
variable xv for each vertex v ∈ V (G). Setting the variable xv to 1 means that v
goes into the vertex cover, while setting xv to 0 means that v is not in the vertex
cover. This yields the following ILP:

min
∑

v∈V (G)

xv subject to:

xu + xv ≥ 1 for every uv ∈ E(G)

xv ∈ {0, 1} for every v ∈ V (G)

Clearly the optimal value of the ILP is at most k if and only if G has a vertex
cover of size at most k. We relax the ILP by replacing the constraint xv ∈ {0, 1}
for every v ∈ V (G) with the constraint 0 ≤ xv ≤ 1 for every v ∈ V (G). Now
we solve this LP in polynomial time. If the optimal value of the LP is greater
then k then it must be greater than k for the ILP as well and we return that
G has no vertex cover of size at most k. Otherwise, let x∗v be the value of xv in
the produced optimal solution to the LP. We partition the vertex set of G into
three sets, C = {v : x∗v < 1/2}, H = {v : x∗v > 1/2} and R = {v : x∗v = 1/2}.
The name choice for the three sets is not arbitrary, as V (G) = C ⊎H ⊎ R is in
fact a crown decomposition of G. No edge can go between two vertices of C or
between a vertex of C and a vertex of R since this would violate the constraint
that xu + xv ≥ 1 for every uv ∈ E(G). Furthermore, if for any subset H ′ ⊆ H
we have |H ′| > |N(H)∩C| then decreasing the value of xv by ǫ for every v ∈ H ′

and increasing the value of x∗v by ǫ for every v ∈ N(H)∩C would yield a feasible
solution to the LP with a lower value of min

∑
v∈V (G) xv, contradictiong that x∗
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was an optimal solution to the LP. By Halls Theorem H is matched into C in G.
For a vertex v ∈ H , let m(v) be the vertex in C matched to v.

Theorem 4.3.1 The Vertex Cover problem admits a 2k kernel.

Proof. We first prove that there is an optimal vertex cover S of G containing all
vertices of H and no vertices of C. Let S ′ be an optimal vertex cover of G. For
every vertex v ∈ H \ S ′, m(v) must be in S ′. Hence S = (S ′ ∪H) \C is a vertex
cover of G with |S| ≤ |S ′|. This gives rise to a reduction rule since (G, k) is a yes
instance to Vertex Cover if and only if (G \ (C ∪ S), k − |H|) is. If H and C
are non-empty, remove H and C from the graph and reduce k by |H|. Now, if C
is empty then x∗v ≥ 1/2 for all v ∈ V (G). But

∑
v∈V (G) xv ≤ k so |V (G)| ≤ 2k.



Chapter 5

Kernelization Lower Bounds

In Chapter 4 we saw that a parameterized problem admits a kernel if and only if
it is FPT, and that for many fixed parameter tractable problems we are able to
obtain kernels of size polynomial in the parameter k. In Chapter 3 we discussed
methods for showing that a problem is not FPT under different complexity-
theoretic assumptions. Of course, due to Fact 4.0.3 if we can show that a prob-
lem is not FPT under a certain complexity-theoretic assumption then under the
same assumption the problem does not admit an f(k) kernel for any function f .
However, this method will not let us separate “good”, that is polynomial, kernels
from “bad” f(k) kernels. It is only very recently that a methodology to rule out
polynomial kernels has been developed [20, 70]. In this chapter we survey the
tecniques that have been developed to show kernelization lower bounds.

5.1 Composition Algorithms

Consider the Longest Path problem. In Section 2.7 we saw an FPT algo-
rithm for this problem. Is it feasible that it also admits a polynomial kernel?
We argue that intuitively this should not be possible. Consider a large set
(G1, k), (G2, k), . . . , (Gt, k) of instances to the Longest Path problem. If we
make a new graph G by just taking the disjoint union of the graphs G1 . . . Gt

we see that G contains a path of length k if and only if Gi contains a path of
length k for some i ≤ t. Suppose the Longest Path problem had a polynomial
kernel, and we ran the kernelization algorithm on G. Then this algorithm would
in polynomial time return a new instance (G′, k′) such that |V (G)| = kO(1), a
number potentially much smaller than t. This means that in some sense, the
kernelization algorithm considers the instances (G1, k), (G2, k) . . . (Gt, k) and in
polynomial time figures out which of the instances are the most likely to contain
a path of length k. However, at least intuitively, this seems almost as difficult
as solving the instances themselves and since the Longest Path problem is
NP-complete, this seems unlikely. We now formalize this intuition.
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Definition 5.1.1 [Distillation [20]]

• An OR-distillation algorithm for a language L ⊆ Σ∗ is an algorithm that
receives as input a sequence x1, . . . , xt, with xi ∈ Σ∗ for each 1 ≤ i ≤ t,
uses time polynomial in

∑t
i=1 |xi|, and outputs y ∈ Σ∗ with (a) y ∈ L ⇐⇒

xi ∈ L for some 1 ≤ i ≤ t and (b) |y| is polynomial in maxi≤t |xi|. A
language L is OR-distillable if there is a OR-distillation algorithm for it.

• An AND-distillation algorithm for a language L ⊆ Σ∗ is an algorithm that
receives as input a sequence x1, . . . , xt, with xi ∈ Σ∗ for each 1 ≤ i ≤ t,
uses time polynomial in

∑t
i=1 |xi|, and outputs y ∈ Σ∗ with (a) y ∈ L ⇐⇒

xi ∈ L for all 1 ≤ i ≤ t and (b) |y| is polynomial in maxi≤t |xi|. A language
L is AND-distillable if there is an AND-distillation algorithm for it.

Observe that the notion of distillation is defined for unparameterized problems.
Bodlaender et al. [20] conjectured that no NP-complete language can have an
OR-distillation or an AND-distillation algorithm.

Conjecture 5.1.2 (OR-Distillation Conjecture [20]) No NP-complete lan-
guage L is OR-distillable.

Conjecture 5.1.3 (AND-Distillation Conjecture [20]) No NP-complete lan-
guage L is AND-distillable.

One should notice that if any NP-complete language is distillable, then so
are all of them. Fortnow and Santhanam [70] were able to connect the OR-
Distillation Conjecture to a well-known conjecture in classical complexity. In
particular they proved that if the OR-Distillation Conjecture fails, the polynomial
time hierarchy [131] collapses to the third level, a collapse that is deemed unlikely.
No such connection is currently known for the AND-Distillation Conjecture, and
for reasons soon to become apparent, a proof of such a connection would have
significant impact in Parameterized Complexity. By PH=Σ3

p we will denote the
complexity-theoretic event that the polynomial time hierarchy collapses to the
third level.

Theorem 5.1.4 ([70]) If the OR-Distillation Conjecture fails, then PH=Σ3
p.

We are now ready to define the parameterized analogue of distillation algo-
rithms and connect this notion to the Conjectures 5.1.2 and 5.1.3

Definition 5.1.5 [Composition [20]]
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• A composition algorithm (also called OR-composition algorithm) for a pa-
rameterized problem Π ⊆ Σ∗ × N is an algorithm that receives as input a
sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗ × N

+ for each 1 ≤ i ≤ t,
uses time polynomial in

∑t
i=1 |xi|+k, and outputs (y, k′) ∈ Σ∗×N

+ with (a)
(y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for some 1 ≤ i ≤ t and (b) k′ is polynomial
in k. A parameterized problem is compositional (or OR-compositional) if
there is a composition algorithm for it.

• An AND-composition algorithm for a parameterized problem Π ⊆ Σ∗ × N

is an algorithm that receives as input a sequence ((x1, k), . . . , (xt, k)), with
(xi, k) ∈ Σ∗×N

+ for each 1 ≤ i ≤ t, uses time polynomial in
∑t

i=1 |xi|+ k,
and outputs (y, k′) ∈ Σ∗ × N

+ with (a) (y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for
all 1 ≤ i ≤ t and (b) k′ is polynomial in k. A parameterized problem is
AND-compositional if there is an AND-composition algorithm for it.

Composition and distillation algorithms are very similar. The main difference
between the two notions is that the restriction on output size for distillation
algorithms is replaced by a restriction on the parameter size for the instance
the composition algorithm outputs. We define the notion of the unparameterized
version of a parameterized problem L. The mapping of parameterized problems
to unparameterized problems is done by mapping (x, k) to the string x#1k, where
# /∈ Σ denotes the blank letter and 1 is an arbitrary letter in Σ. In this way,
the unparameterized version of a parameterized problem Π is the language Π̃ =
{x#1k | (x, k) ∈ Π}. The following theorem yields the desired connection between
the two notions.

Theorem 5.1.6 ([20, 70]) Let Π be a compositional parameterized problem whose

unparameterized version Π̃ is NP-complete. Then, if Π has a polynomial kernel
then PH=Σ3

p. Similarly, let Π be an AND-compositional parameterized problem

whose unparameterized version Π̃ is NP-complete. Then, if Π has a polynomial
kernel the AND-Distillation Conjecture fails.

We can now formalize the discussion from the beginning of this section.

Theorem 5.1.7 ([20]) Longest Path does not admit a polynomial kernel un-
less PH=Σ3

p.

Proof. The unparameterized version of Longest Path is known to be NP-
complete [72]. We now give a composition algorithm for the problem. Given a
sequence (G1, k) . . . (Gt, k) of instances we output (G, k) where G is the disjoint
union of G1 . . . Gt. Clearly G contains a path of length k if and only if Gi contains
a path of length k for some i ≤ t. By Theorem 5.1.6 Longest Path does not
have a polynomial kernel unless PH=Σ3

p.
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An identical proof can be used to show that the Longest Cycle problem
does not admit a polynomial kernel unless PH=Σ3

p. For many problems, it is
easy to give AND-composition algorithms. For instance, the “disjoint union”
trick yields AND-composition algorithms for the Treewidth, Cutwidth and
Pathwidth problems, among many others. Coupled with Theorem 5.1.6 this
implies that these problems do not admit polynomial kernels unless the AND-
Distillation Conjecture fails. However, to this date, there is no strong complexity
theoretic evidence known to support the AND-Distillation Conjecture. Therefore
it would be interesting to see if such evidence could be provided.

5.2 Polynomial Parameter Transformations

For some problems, obtaining a composition algorithm directly is a difficult task.
Instead, we can give a reduction from a problem that provably has no polynomial
kernel unless PH=Σ3

p to the problem in question such that a polynomial kernel
for the problem considered would give a kernel for the problem we reduced from.
We now define the notion of polynomial parameter transformations.

Definition 5.2.1 ([24]) Let P and Q be parameterized problems. We say that
P is polynomial parameter reducible to Q, written P ≤Ptp Q, if there exists a
polynomial time computable function f : Σ∗ × N → Σ∗ × N and a polynomial p,
such that for all (x, k) ∈ Σ∗ × N (a) (x, k) ∈ P if and only (x′, k′) = f(x, k) ∈ Q
and (b) k′ ≤ p(k). The function f is called polynomial parameter transformation.

Proposition 5.2.2 ([24]) Let P and Q be the parameterized problems and P̃
and Q̃ be the unparameterized versions of P and Q respectively. Suppose that P̃
is NP-complete and Q̃ is in NP. Furthermore if there is a polynomial parameter
transformation from P to Q, then if Q has a polynomial kernel then P also has
a polynomial kernel.

Proposition 5.2.2 shows how to use polynomial parameter transformations to show
kernelization lower bounds. A notion similar to polynomial parameter transfor-
mation was independently used by Fernau et al. [65] albeit without being explic-
itly defined. We now give an example of how Proposition 5.2.2 can be useful
for showing that a problem does not admit a polynomial kernel. In particular,
we show that the Path Packing problem does not admit a polynomial kernel
unless PH=Σ3

p. In this problem you are given a graph G together with an integer
k and asked whether there exists a collection of k mutually vertex-disjoint paths
of length k in G. This problem is known to be fixed parameter tractable [11]
and is easy to see that for this problem the “disjoint union” trick discussed in
Section 5.1 does not directly apply. Thus we resort to polynomial parameter
transformations.
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Theorem 5.2.3 Path Packing does not admit a polynomial kernel unless PH=Σ3
p.

Proof. We give a polynomial parameter transformation from the Longest Path
problem. Given an instance (G, k) to Longest Path we construct a graph G′

from G by adding k−1 vertex disjoint paths of length k. Now G contains a path
of length k if and only if G′ contains k paths of length k. This concludes the
proof.
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Part II

New Methods
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Chapter 6

Algorithmic Method: Chromatic
Coding

In this chapter we present a subexponential-time algorithm for the k-Weighted
Feedback Arc Set in Tournaments problem, defined in the next section.
Our algorithm is based on a novel version of the Color Coding technique initiated
in [11] and described in Section 2.7. The basic idea of Color Coding is to randomly
color the input graph in order to make the solution more visible. That is, it
is argued that with sufficiently high probability the random coloring unveils a
structure that makes it easier to solve the problem instance. However, the more
helpful we require the coloring to be, the less likely it is that a random coloring
will be useful for our purposes. In the original Color Coding algorithm of Alon et
al. [11] one required the coloring to color all vertices of the solution with different
colors. Subsequently, the Divide and Color paradigm [95, 32] was introduced, and
here the coloring was required only to split the solution in half in a specific way,
thus making it possible to speed up some of the algorithms of Alon et al. [11].

In the algorithm we present, the set of usable colorings is much larger. We
consider the solution set as a k-edge graph and require the random coloring to
properly color this graph, that is the endpoints of every edge in this graph are
colored with different colors. We call this variation of the Color Coding technique
Chromatic Coding. Our algorithm runs in subexponential time, a trait uncommon
to parameterized algorithms. In fact, to the author’s best knowledge the only
parameterized problems for which non-trivial subexponential time algorithms are
known are bidimensional problems in planar graphs or graphs excluding a certain
fixed graph H as a minor [43, 46, 49].

In order to derandomize our algorithm we construct a new kind of universal
hash functions, that we coin universal coloring families. For integers m, k and
r, a family F of functions from [m] to [r] is called a universal (m, k, r)-coloring
family if for any graph G on the set of vertices [m] with at most k edges, there
exists an f ∈ F which is a proper vertex coloring of G. In the last section of the
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paper we give an explicit construction of a (10k2, k, O(
√
k))-coloring family F of

size |F| ≤ 2Õ(
√

k) and an explicit universal (n, k, O(
√
k))-coloring family F of size

|F| ≤ 2Õ(
√

k) log n. We believe that these constructions can turn out to be useful
to solve other edge subset problems in dense structures.

6.1 Tournament Feedback Arc Set

In a competition where everyone plays against everyone it is uncommon that
the results are acyclic and hence one cannot rank the players by simply using
a topological ordering. A natural ranking is one that minimizes the number of
upsets, where an upset is a pair of players such that the lower ranked player
beats the higher ranked one. The problem of finding such a ranking given the
match outcomes is the Feedback Arc Set problem restricted to tournaments.
A tournament is a directed graph where every pair of vertices is connected by
exactly one arc, and a feedback arc set is a set of arcs whose removal makes
the graph acyclic. Feedback arc sets in tournaments are well studied, both from
the combinatorial [56, 64, 86, 89, 90, 124, 129, 130, 137], statistical [127] and
algorithmic [3, 6, 33, 91, 133, 134] points of view.

Unfortunately, the problem of finding a feedback arc set of minimum size in
an unweighted tournament is NP-hard [6]. However, even the weighted version
of the problem admits a polynomial time approximation scheme [91] and has
been shown to be fixed parameter tractable [119]. One should note that the
weighted generalization shown to admit a PTAS in [91] differs slightly from the
one considered in this thesis. We consider the following problem:

k-Weighted Feedback Arc Set in Tournaments (k-FAST)
Instance: A tournament T = (V,A), a weight function w : A →
{x ∈ R : x ≥ 1} and an integer k.
Question: Is there an arc set S ⊆ A such that

∑
e∈S w(e) ≤ k and

T \ S is acyclic?

The fastest previously known parameterized algorithm for k-FAST by Raman
and Saurabh [119] runs in time O(2.415k ·k4.752 +nO(1)), and it was an open prob-
lem of Guo et al. [76] whether k-FAST can be solved in time 2k ·nO(1). We give a

randomized and a deterministic algorithm both running in time 2O(
√

k log2 k)+nO(1).

6.1.1 Color and Conquer

Our algorithm consists of three steps. In the first step we reduce the instance to a
problem kernel with at most O(k2) vertices, showing how to efficiently reduce the
input tournament into one with O(k2) vertices, so that the original tournament
has a feedback arc set of weight at most k, if and only if the new one has such a
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1. Perform a data reduction to obtain a tournament T ′ of size O(k2).

2. Let t =
√

8k. Color the vertices of T ′ uniformly at random with colors from
{1, . . . , t}.

3. Let Ac be the set of arcs whose endpoints have different colors. Find a mini-
mum weight feedback arc set contained in Ac, or conclude that no such feed-
back arc set exists.

Figure 6.1: Outline of the algorithm for k-FAST.

set. In the second step we randomly color the vertices of our graph with t =
√

8k
colors, and define the arc set Ac to be the set of arcs whose endpoints have
different colors. In the last step the algorithm checks whether there is a weight k
feedback arc set S ⊆ Ac. A summary of the algorithm is given in Figure 6.1.

6.1.2 Kernelization

For the first step of the algorithm we use the kernelization algorithm provided
by Dom et al. [48]. They only show that the data reduction is feasible for
the unweighted case, while in fact, it works for the weighted case as well. For
completeness we provide a short proof of this. A triangle in what follows means
a directed cyclic triangle.

Lemma 6.1.1 k-FAST has a kernel with O(k2) vertices.

Proof. We give two simple reduction rules.

1. If an arc e is contained in at least k+1 triangles reverse the arc and reduce
k by w(e).

2. If a vertex v is not contained in any triangle, delete v from T .

The first rule is safe because any feedback arc set that does not contain the
arc e must contain at least one arc from each of the k + 1 triangles containing e
and thus must have weight at least k+1. The second rule is safe because the fact
that v is not contained in any triangle implies that all arcs between N−(v) and
N+(v) are oriented from N−(v) to N+(v). Hence for any feedback arc set S1 of
T [N−(v)] and feedback arc set S2 of T [N+(v)], S1 ∪S2 is a feedback arc set of T .

Finally we show that any reduced yes instance T has at most k(k+2) vertices.
Let S be a feedback arc set of T with weight at most k. The set S contains at
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most k arcs, and for every arc e ∈ S, aside from the two endpoints of e, there are
at most k vertices that are contained in a triangle containing e, because otherwise
the first rule would have applied. Since every triangle in T contains an arc of S
and every vertex of T is in a triangle, T has at most k(k + 2) vertices.

6.1.3 Probability of a Good Coloring

We now proceed to analyze the second step of the algorithm. What we aim for,
is to show that if T does have a feedback arc set S of weight at most k, then the
probability that S is a subset of Ac is at least 2−c

√
k for some fixed constant c.

We show this by showing that if we randomly color the vertices of a k edge graph
G with t =

√
8k colors, then the probability that G has been properly colored is

at least 2−c
√

k.

Lemma 6.1.2 If a graph on q edges is colored randomly with
√

8q colors then

the probability that G is properly colored is at least (2e)−
√

q/8.

Proof. Arrange the vertices of the graph by repeatedly removing a vertex of
lowest degree. Let d1, d2, . . . , ds be the degrees of the vertices when they have
been removed. Then for each i, di(s− i+1) ≤ 2q, since when vertex i is removed
each vertex had degree at least di. Furthermore, di ≤ s − i for all i, since the
degree of the vertex removed can not exceed the number of remaining vertices at
that point. Thus di ≤

√
2q for all i. In the coloring, consider the colors of each

vertex one by one starting from the last one, that is vertex number s. When vertex
number i is colored, the probability that it will be colored by a color that differs
from all those of its di neighbors following it is at least (1 − di√

8q
) ≥ (2e)−di/

√
8q

because
√

8q ≥ 2di. Hence the probability that G is properly colored is at least

s∏

i=1

(1 − di√
8q

) ≥
s∏

i=1

(2e)−di/
√

8q = (2e)−
√

q/8.

6.1.4 Solving a Colored Instance

Given a t-colored tournament T , we will say that an arc set F is colorful if no
arc in F is monochromatic. An ordering σ of T is colorful if the feedback arc
set corresponding to σ is colorful. An optimal colorful ordering of T is a colorful
ordering of T with minimum cost among all colorful orderings. We now give an
algorithm that takes a t-colored arc weighted tournament T as input and finds a
colorful feedback arc set of minimum weight, or concludes that no such feedback
arc set exists.
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Observation 6.1.3 Let T = (V1 ∪ V2 ∪ . . . ∪ Vt, A) be a t-colored tournament.
There exists a colorful feedback arc set of T if and only if T [Vi] induces an acyclic
tournament for every i.

We say that a colored tournament T is feasible if T [Vi] induces an acyclic tour-
nament for every i. Let ni = |Vi| for every i and let n̂ be the vector [n1, n2 . . . nt].
Let σ = v1v2 . . . vn be the ordering of V corresponding to a colorful feedback
arc set F of T . For every color class Vi of T , let v1

i v
2
i . . . v

ni

i be the order in
which the vertices of Vi appear according to σ. Observe that since F is colorful,
v1

i v
2
i . . . v

ni

i must be the unique topological ordering of T [Vi]. We exploit this to
give a dynamic programming algorithm for the problem.

Lemma 6.1.4 Given a feasible t-colored tournament T , we can find a minimum
weight colorful feedback arc set in O(t · nt+1) time and O(nt) space.

Proof. For an integer x ≥ 1, define Sx = {v1 . . . , vx} and Si
x = {vi

1 . . . , v
i
x}. Let

S0 = Si
0 = ∅. Notice that for any x there must be some x′ such that Sx∩Vi = Sx′.

Given an integer vector p̂ of length t in which the ith entry is between 0 and ni,
let T (p̂) be T [S1

p1
∪ S2

p2
. . . ∪ St

pt
].

For a feasible t-colored tournament T , let Fas(T ) be the weight of the mini-
mum weight colorful feedback arc set of T . Observe that if a t-colored tournament
T is feasible then so are all induced subtournaments of T , and hence the function
Fas is well defined on all induced subtournaments of T . We proceed to prove
that the following recurrence holds for Fas(T (p̂)).

Fas(T (p̂)) = min
i : p̂i>0

(Fas(T (p̂ − êi)) +
∑

u∈V (T (p̂))

w∗(vi
p̂i

, u)) (6.1)

First we prove that the left hand side is at most the right hand side. Let i be
the integer that minimizes the right hand side. Taking the optimal ordering of
T (p̂− êi) and appending it with vi

p̂i
gives an ordering of T (p̂) with cost at most

Fas(T (p̂− êi)) +
∑

u∈V (T (p̂))w
∗(vi

p̂i
, u).

To prove that the right hand side is at most the left hand side, take an optimal
colorful ordering σ of T (p̂) and let v be the last vertex of this ordering. There is
an i such that v = vi

p̂i
. Thus σ restricted to V (T (p̂ − êi)) is a colorful ordering

of T (p̂− êi) and the total weight of the edges with startpoint in v and endpoint
in V (T (p̂− êi)) is exactly

∑
u∈V (T (p̂)) w

∗(vi
p̂i
, u). Thus the cost of σ is at least the

value of the right hand side of the inequality, completing the proof.
Recurrence 6.1 naturally leads to a dynamic programming algorithm for the

problem. We build a table containing Fas(T (p̂)) for every p̂. There are O(nt)
table entries, for each entry it takes O(nt) time to compute it giving the O(t·nt+1)
time bound.
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In fact, the algorithm provided in Lemma 6.1.4 can be made to run slightly
faster by pre-computing the value of

∑
u∈V (T (p̂)) w

∗(vi
p̂i
, u)) for every p̂ and i using

dynamic programming, and storing it in a table. This would let us reduce the
time to compute a table entry using Recurrence 6.1 from O(nt) to O(t) yielding
an algorithm that runs in time and space O(t · nt).

Lemma 6.1.5 k-FAST (for a tournament of size O(k2)) can be solved in ex-

pected time 2O(
√

k log k) and 2O(
√

k log k) space.

Proof. Our algorithm proceeds as described in Figure 6.1. The correctness
of the algorithm follows from Lemma 6.1.4. Combining Lemmata 6.1.1, 6.1.2,

6.1.4 yields an expected running time of O((2e)
√

k/8) ·O(
√

8k · (k2 + 2k)1+
√

8k) ≤
2O(

√
k log k) for finding a feedback arc set of weight at most k if one exists. The

space required by the algorithm is O((k2 + 2k)1+
√

8k) ≤ 2O(
√

k log k).

The dynamic programming algorithm from Lemma 6.1.4 can be turned into
a divide and conquer algorithm that runs in polynomial space, at a small cost in
the running time.

Lemma 6.1.6 Given a feasible t-colored tournament T , we can find a minimum
weight colorful feedback arc set in time O(n1+(t+2)·log n) in polynomial space.

Proof. By expanding Recurrence (6.1) ⌊n/2⌋ times and simplifying the right
hand side we obtain the following recurrence.

Fas(T (p̂)) = min
q̂≥0̂

q̂†·ê=⌈n/2⌉

{Fas(T (q̂)) + Fas(T \ V (T (q̂))) +
∑

u∈V (T (q̂))
v/∈V (T (q̂))

w∗(v, u)} (6.2)

Recurrence 6.2 immediately yields a divide and conquer algorithm for the
problem. Let T (n) be the running time of the algorithm restricted to a sub-
tournament of T with n vertices. For a particular vector q̂ it takes at most n2

time to find the value of
∑

u∈V (T (q̂)),v /∈V (T (q̂)) w
∗(v, u). It follows that T (n) ≤

nt+2 · 2 · T (n/2) ≤ 2log n · n(t+2)·log n = n1+(t+2)·log n.

Theorem 6.1.7 k-FAST (for a tournament of size O(k2)) can be solved in ex-

pected time 2O(
√

k log2 k) and polynomial space. Therefore, k-FAST for a tourna-
ment of size n can be solved in expected time 2O(

√
k log2 k) + nO(1) and polynomial

space.
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6.2 Universal Coloring Families

For integers m, k and r, a family F of functions from [m] to [r] is called a universal
(m, k, r)-coloring family if for any graph G on the set of vertices [m] with at most
k edges, there exists an f ∈ F which is a proper vertex coloring of G. An explicit
construction of a (10k2, k, O(

√
k))-coloring family can replace the randomized

coloring step in the algorithm for k-FAST. In this section, we provide such a
construction.

Theorem 6.2.1 There exists an explicit universal (10k2, k, O(
√
k))-coloring fam-

ily F of size |F| ≤ 2Õ(
√

k).

Proof. For simplicity we omit all floor and ceiling signs whenever these are not
crucial. We make no attempt to optimize the absolute constants in the Õ(

√
k) or

in the O(
√
k) notation. Whenever this is needed, we assume that k is sufficiently

large.
Let G be an explicit family of functions g from [10k2] to [

√
k] so that every

coordinate of g is uniformly distributed in [
√
k], and every two coordinates are

pairwise independent. There are known constructions of such a family G with
|G| ≤ kO(1). Indeed, each function g represents the values of 10k2 pairwise in-
dependent random variables distributed uniformly in [

√
k] in a point of a small

sample space supporting such variables; a construction is given, for example, in
[7]. The family G is obtained from the family of all linear polynomials over a
finite field with some kO(1) elements, as described in [7].

We can now describe the required family F . Each f ∈ F is described by a
subset T ⊂ [10k2] of size |T | =

√
k and by a function g ∈ G. For each i ∈ [10k2],

the value of f(i) is determined as follows. Suppose T = {i1, i2, . . . , i√k}, with

i1 < i2 < . . . < i√k. If i = ij ∈ T , define f(i) =
√
k + j. Otherwise, f(i) = g(i).

Note that the range of f is of size
√
k +

√
k = 2

√
k, and the size of F is at most

(
10k2

√
k

)
|G| ≤

(
10k2

√
k

)
kO(1) ≤ 2O(

√
k log k) ≤ 2Õ(

√
k).

To complete the proof we have to show that for every graph G on the set of
vertices [10k2] with at most k edges, there is an f ∈ F which is a proper vertex
coloring of G. Fix such a graph G.

The idea is to choose T and g in the definition of the function f that will
provide the required coloring for G as follows. The function g is chosen at random
in G, and is used to properly color all but at most

√
k edges. The set T is chosen

to contain at least one endpoint of each of these edges, and the vertices in the
set T will be re-colored by a unique color that is used only once by f . Using
the properties of G we now observe that with positive probability the number of
edges of G which are monochromatic is bounded by

√
k.
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Claim 6.2.2 If the vertices of G are colored by a function g chosen at random
from G, then the expected number of monochromatic edges is

√
k.

Proof. Fix an edge e in the graph G and j ∈ [
√
k]. As g maps the vertices

in a pairwise independent manner, the probability that both the end points of
e get mapped to j is precisely 1

(
√

k)2
. There are

√
k possibilities for j and hence

the probability that e is monochromatic is given by
√

k
(
√

k)2
= 1√

k
. Let X be the

random variable denoting the number of monochromatic edges. By linearity of
expectation, the expected value of X is k · 1√

k
=

√
k.

Returning to the proof of the theorem, observe that by the above claim, with
positive probability, the number of monochromatic edges is upper bounded by√
k. Fix a g ∈ G for which this holds and let T = {i1, i2, . . . , i√k} be a set of

√
k

vertices containing at least one endpoint of each monochromatic edge. Consider
the function f defined by this T and g. As mentioned above f colors each of the
vertices in T by a unique color, which is used only once by f , and hence we only
need to consider the coloring of G \ T . However all edges in G \ T are properly
colored by g and f coincides with g on G \ T . Hence f is a proper coloring of G,
completing the proof of the theorem.

Remarks:

• Each universal (n, k, O(
√
k))-coloring family must also be an (n,

√
k,O(

√
k))-

hashing family, as it must contain, for every set S of
√
k vertices in [n], a

function that maps the elements of S in a one-to-one manner, since these
vertices may form a clique that has to be properly colored by a function of
the family. Therefore, by the known bounds for families of hash functions
(see, e.g., [117]), each such family must be of size at least 2Ω̃(

√
k) log n.

Although the next result is not required for our results on the Tournament
Feedback Arc Set problem, we present it here as it may be useful in similar
applications.

Theorem 6.2.3 For any n > 10k2 there exists an explicit universal (n, k, O(
√
k))-

coloring family F of size |F| ≤ 2Õ(
√

k) log n.

Proof. Let F1 be an explicit (n, 2k, 10k2)-family of hash functions from [n] to
10k2 of size |F1| ≤ kO(1) log n. This means that for every set S ⊂ [n] of size at
most 2k there is an f ∈ F1 mapping S in a one-to-one fashion. The existence
of such a family is well known, and follows, for example, from constructions of
small spaces supporting n nearly pairwise independent random variables taking
values in [10k2]. Let F2 be an explicit universal (10k2, k, O(

√
k))-coloring family,

as described in Theorem 6.2.1. The required family F is simply the family of all
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compositions of a function from F2 followed by one from F1. It is easy to check
that F satisfies the assertion of Theorem 6.2.3.

Finally, combining the algorithm from Theorem 6.1.7 with the universal col-
oring family given by Theorem 6.2.1 yields a deterministic subexponential time
polynomial space algorithm for k-FAST.

Theorem 6.2.4 k-FAST can be solved in time 2Õ(
√

k) + nO(1) and polynomial
space.
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Chapter 7

Explicit Identification in
W[1]-Hardness Reductions

In hardness reductions one has to code one combinatorial problem in the language
of another problem. To this end we require gadgets, small constructions that act
as “subroutines” in our encoding. Typically one needs to construct gadgets that
encode selection of an element from a specific set, and gadgets that pass around
information on which elements that have been selected. How this information is
encoded greatly affects how the corresponding gadgets have to behave. In Sections
7.1.1 and 7.1.2 we show that sometimes it is useful to assign identification numbers
to the elements of the sets we are working with, because numbers often can be
encoded in a combinatorial problem as a distribution of resources. In Section 7.2
we show that the results from Sections 7.1.1 and 7.1.2 can be used to prove an
interesting trade-off between expressive power and computational tractability.

7.1 Hardness for Treewidth-Parameterizations

Due to Courcelle’s Theorem (Theorem 2.4.1) many problems admit FPT algo-
rithms on graphs of bounded treewidth. It is natural to ask whether all problems
that can be solved in polynomial time on graphs with constant treewidth ad-
mit FPT algorithms when parameterized by the treewidth of the input graph.
That is, are all problems that are solvable in time nf(tw(G)) also solvable in
time g(tw(G))nO(1)? We show that the answer to this question is no, unless
FPT = W[1]. In particular, we show that the Equitable Coloring and
Capacitated Dominating Set problems are W[1]-hard parameterized by the
treewidth of the input graph. These were the first problems to be shown W[1]-
hard parameterized by the treewidth of the input graph.
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7.1.1 Equitable Coloring

The notion of equitable coloring seems to have been first introduced by Meyer
in 1973, where an application to scheduling garbage trucks is described [109].
Recently, Bodlaender and Fomin have shown that determining whether a graph
of treewidth at most t admits an equitable coloring, can be solved in time O(nO(t))
[21].

We consider the parameterized complexity of Equitable Coloring (ECP)
in graphs with bounded treewidth. We show that when ECP is parameterized
by (t, r), where t is the treewidth bound, and r is the number of color classes,
the problem is W[1]-hard. We reduce from the Multicolor Clique problem
defined in Section 3.2. Our reduction is based on a methodology which is some-
times termed as edge representation strategy. This strategy is very basic and is
useful for many reductions. Consider that the instance G = (V,E) of Multi-
color Clique has its vertices colored by the integers 1, ..., k. Let V [i] denote
the set of vertices of color i, and let E[i, j], for 1 ≤ i < j ≤ k, denote the set
of edges e = uv, where u ∈ V [i] and v ∈ V [j]. We also assume that |V [i]| = N
for all i, and that |E[i, j]| = M for all i < j, that is, the vertex color classes
of G, and also the edge sets between them, have uniform sizes. See Section 3.2
for a justification of these assumptions. In this methodology our basic encoding
gadgets correspond to edges which we call edge gadget. We generally have three
kind of gadgets which are engineered together to get a reduction for the problem.

Selection Gadget: This gadget job is to select exactly one edge gadget among
edge gadgets corresponding to edges between any two color classes V [i] and
V [j].

Coherence Gadget: This gadget makes sure that the edge gadgets selected
among edge gadgets corresponding to edges emanating out from a particular
color class V [i] has a vertex in common in V [i]. That is all the edges
corresponding to selected edge gadgets emanates from the same vertex in
V [i].

Match Gadget: This gadget ensures that if we have selected an edge gadget
corresponding to an edge (u, v) between V [i] and V [j] then the edge gadget
selected between V [j] and V [i] corresponds to (v, u).

In what follows next we show how to adhere to this strategy and form gadgets in
the context of reduction from Multicolor Clique to Equitable Coloring
Problem in graphs with bounded treewidth. To show the desired reduction, we
introduce two more general problems. List analogues of equitable coloring have
been previously studied by Kostochka, et al. [1].

List Equitable Coloring Problem (LECP): Given an input
graph G = (V,E), lists Lv of colors for every vertex v ∈ V and a
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positive integer r; does there exist a proper coloring f of G with r
colors that for every vertex v ∈ V uses a color from its list Lv such
that for any two color class, Vi and Vj of the coloring f , ||Vi|−|Vj || ≤ 1?

Number List Coloring Problem (NLCP): Given an input graph
G = (V,E), lists Lv of colors for every vertex v ∈ V , a function
h : ∪v∈V Lv → N, associating a number to each color, and a positive
integer r; does there exist a proper coloring f of G with r colors that
for every vertex v ∈ V uses a color from its list Lv, such that any
color class Vc of the coloring f is of size h(c)?

Our main effort is in the reduction of the Multicolor Clique problem to
NLCP. We will use the following sets of colors in our construction of an instance
of NLCP:

1. S = {σ[i, j] : 1 ≤ i 6= j ≤ k}
2. S ′ = {σ′[i, j] : 1 ≤ i 6= j ≤ k}
3. T = {τi[r, s] : 1 ≤ i ≤ k, 1 ≤ r < s ≤ k, r 6= i, s 6= i}
4. T ′ = {τ ′i [r, s] : 1 ≤ i ≤ k, 1 ≤ r < s ≤ k, r 6= i, s 6= i}
5. E = {ǫ[i, j] : 1 ≤ i < j ≤ k}
6. E ′ = {ǫ′[i, j] : 1 ≤ i < j ≤ k}

Note that |S| = |S ′| = 2
(

k
2

)
, that is, there are distinct colors σ[2, 3] and σ[3, 2],

etc. In contrast, the colors τi[r, s] are only defined for r < s. We associate with
each vertex and edge of G a pair of (unique) identification numbers. The up-
identification number v[up] for a vertex v should be in the range [n2 + 1, n2 + n],
if G has n vertices and it could be chosen arbitrarily, but uniquely. Similarly, the
up-identification number e[up] of an edge e of G can be assigned (arbitrarily, but
uniquely) in the range [2n2 + 1, 2n2 +m], assuming G has m edges.

Choose a suitably large positive integer Z0, for example Z0 = n3, and define
the down-identification number v[down] for a vertex v to be Z0 − v[up], and
similarly for the edges e of G, define the down-identification number e[down] to
be Z0 − e[up]. Choose a second large positive integer, Z1 >> Z0, for example, we
may take Z1 = n6.

Next we describe various gadgets and the way they are combined in the re-
duction. First we describe the gadget which encodes the selection of the edge
going between two particular color classes in G. In other words, we will think of
the representation of a k-clique in G as involving the selection of edges (with each
edge selected twice, once in each direction) between the color classes of vertices
in G, with gadgets for selection, and to check two things: (1) that the selections
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in opposite color directions match, and (2) that the edges chosen from color class
V [i] going to V [j] (for various j 6= i) all emanate from the same vertex in V [i].

There are 2
(

k
2

)
groups of gadgets, one for each pair of color indices i 6= j. If

1 ≤ i < j ≤ k, then we will refer to the gadgets in the group G[i, j] as forward
gadgets, and we will refer to the gadgets in the group G[j, i] as backward gadgets.

If e ∈ E[i, j], then there is one forward gadget corresponding to e in the
group G[i, j], and one backward gadget corresponding to e in the group G[j, i].
The construction of these gadgets is described as follows.

The forward gadget corresponding to e = uv ∈ E[i, j].
The gadget has a root vertex r[i, j, e], and consists of a tree of height 2. The
list assigned to this root vertex contains two colors: σ[i, j] and σ′[i, j]. The root
vertex has Z1 + 1 children, and each of these is also assigned the two-element
list containing the colors σ[i, j] and σ′[i, j]. One of the children vertices is distin-
guished, and has 2(k − 1) groups of further children:

• e[up] children assigned the list {σ′[i, j], ǫ[i, j]}.

• e[down] children assigned the list {σ′[i, j], ǫ′[i, j]}.

• For each r in the range j < r ≤ k, u[up] children assigned the list {σ′[i, j], τi[j, r]}.

• For each r in the range j < r ≤ k, u[down] children assigned {σ′[i, j], τ ′i [j, r]}.

• For each r in the range 1 ≤ r < j, u[down] children assigned {σ′[i, j], τi[r, j]}.

• For each r in the range 1 ≤ r < j, u[up] children assigned the list {σ′[i, j], τ ′i [r, j]}.

The backward gadget corresponding to e = uv ∈ E[i, j].
The gadget has a root vertex r[j, i, e], and consists of a tree of height 2. The list
assigned to this root vertex contains two colors: σ[j, i] and σ′[j, i]. The root vertex
has Z1 + 1 children, and each of these is also assigned the two-element list con-
taining the colors σ[j, i] and σ′[j, i]. One of the children vertices is distinguished,
and has 2k groups of further children:

• e[up] children assigned the list {σ′[j, i], ǫ′[i, j]}.

• e[down] children assigned the list {σ′[j, i], ǫ[i, j]}.

• For each r in the range i < r ≤ k, v[up] children assigned the list {σ′[j, i], τj [i, r]}.

• For each r in the range i < r ≤ k, v[down] children assigned {σ′[j, i], τ ′j [i, r]}.

• For each r in the range 1 ≤ r < i, v[down] children assigned {σ′[j, i], τj [r, i]}.

• For each r in the range 1 ≤ r < i, v[up] children assigned the list {σ′[j, i], τ ′j [r, i]}.
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The numerical targets (h function) .

1. For all c ∈ (T ∪ T ′), h(c) = Z0.

2. For all c ∈ (E ∪ E ′), h(c) = Z0.

3. For all c ∈ S, h(c) = (M − 1)(Z1 + 1) + 1.

4. For all c ∈ S ′, h(c) = (M − 1) + (Z1 + 1) + (k − 1)(M − 1)Z0.

That completes the formal description of the reduction from Multicolor
Clique to NLCP. We turn now to some motivating remarks about the design of
the reduction.

Remarks on the colors, their numerical targets, and their role in the
reduction.

(1). There are 2
(

k
2

)
groups of gadgets. Each edge of G gives rise to two gadgets.

Between any two color classes of G there are precisely M edges, and therefore
M ·

(
k
2

)
edges in G in total. Each group of gadgets therefore contains M gadgets.

The gadgets in each group have two “helper” colors. For example, the group of
gadgets G[4, 2] has the helper colors σ[4, 2] and σ′[4, 2]. The role of the gadgets
in this group is to indicate a choice of an edge going from a vertex in the color
class V [4] of G to a vertex in the color class V [2] of G. The role of the 2

(
k
2

)

groups of gadgets is to represent the selection of
(

k
2

)
edges of G that form a k-

clique, with each edge chosen twice, once in each direction. If i < j then the
choice is represented by the coloring of the gadgets in the group G[i, j], and these
are the forward gadgets of the edge choice. If j < i, then the gadgets in G[i, j]
are backward gadgets (representing the edge selection in the opposite direction,
relative to the ordering of the color classes of G). The numerical targets for the
colors in S ∪ S ′ are chosen to force exactly one edge to be selected (forward or
backward) by each group of gadgets, and to force the gadgets that are colored in
a way that indicates the edge was not selected into being colored in a particular
way (else the numerical targets cannot be attained). The numerical targets for
these colors are complicated, because of this role (which is asymmetric between
the pair of colors σ[i, j] and σ′[i, j]).

(2). The colors in T ∪T ′ and E∪E ′ are organized in symmetric pairs, and each pair
is used to transmit (and check) information. Due to the enforcements alluded to
above, each “selection” coloring of a gadget (there will be only one possible in each
group of gadgets) will force some number of vertices to be colored with these pairs
of colors, which can be thought of as an information transmission. For example,
when a gadget in G[4, 2] is colored with a “selection” coloring, this indicates that
the edge from which the gadget arises is selected as the edge from the color class
V [4] of G, to the color class V [2]. There is a pair of colors that handles the
information transmission concerning which edge is selected between the groups
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G[2, 4] and G[4, 2]. (Of course, something has to check that the edge selected in
one direction, is the same as the edge selected in the other direction.) There is
something elegant about the dual-color transmission channel for this information.
Each vertex and edge has two unique identification numbers, “up” and “down”,
that sum to Z0. To continue the concrete example, G[4, 2] uses the (number
of vertices colored by the) pair of colors ǫ[2, 4] and ǫ′[2, 4] to communicate to
G[2, 4] about the edge selected. The signal from one side consists of e[up] vertices
colored ǫ[2, 4] and e[down] vertices colored ǫ′[2, 4]. The signal from the other side
consists of e[down] vertices colored ǫ[2, 4] and e[up] vertices colored ǫ′[2, 4]. Thus
the numerical targets for these colors allow us to check whether the same edge
has been selected in each direction (if each color target of Z0 is met). There
is the additional advantage that the amount of signal in each direction is the
same: in each direction a total of Z0 colored vertices, with the two paired colors,
constitutes the signal. This means that, modulo the discussion in (1) above,
when an edge is not selected, the corresponding non-selection coloring involves
uniformly the same number (i.e., Z0) of vertices colored “otherwise” for each of
the (M − 1) gadgets colored in the non-selection way: this explains (part of) the
(k − 1)(M − 1)Z0 term in (4) of the numerical targets.

(3). In a similar manner to the communication task discussed above, each of the
k − 1 groups of gadgets G[i, ] need to check that each has selected an edge from
V [i] that originates at the same vertex in V [i]. Hence there are pairs of colors
that provide a communication channel similar to that in (2) for this information.
This role is played by the colors in T ∪ T ′. (Because of the bookkeeping issues,
this becomes somewhat intricate in the formal definition of the reduction.)

The above remarks are intended to aid an intuitive understanding of the
reduction. We now return to a more formal argument.

Claim 7.1.1 If G has a k-multicolor clique, then G′ is a yes-instance to NLCP.

Proof. The proof of this claim is relatively straightforward. The gadgets corre-
sponding to the edges of a k-clique in G are colored in a manner that indicates
“selected” (for both the forward and the backward gadgets) and all other gadgets
are colored in manner that indicates “non-selected”. The coloring that corre-
sponds to “selected” colors the root vertex with the color σ[i, j], and this forces
the rest of the coloring of the gadget. The coloring that corresponds to “non-
selected” colors the root vertex with the color σ′[i, j]. In this case the coloring
of the rest of the gadget is not entirely forced, but if the grandchildren vertices
of the gadget are also colored with σ′[i, j], then all the numerical targets will be
met.

Claim 7.1.2 Suppose that Γ is a list coloring of G′ that meets all the numerical
targets. Then in each group of gadgets, exactly one gadget is colored in a way
that indicates “selection”.
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Proof. We argue this as follows. There cannot be two gadgets in any group
colored in the “selection” manner, since this would make it impossible to meet
the numerical target for a color in S. If no gadget is colored in the “selection”
manner, then again the targets cannot be met for the colors in S ∪S ′ used in the
lists for this group of gadgets.

Claim 7.1.3 Suppose that Γ is a list coloring of G′ that meets all the numerical
targets. Then in each group of gadgets, every gadget that is not colored in a way
that indicates “selection” must have all of its grandchildren vertices colored with
the appropriate color in S ′.

Proof. This claim follows from Claim 7.1.2, noting that the numerical targets
for the S ′ colors cannot be met unless this is so.

It follows from Claims 7.1.2 and 7.1.3, that if Γ is a list coloring of G′ that
meets all the numerical targets, then in each group of gadgets, exactly one gadget
is colored in the “selection” manner, and all other gadgets are colored in a com-
pletely determined “nonselection” manner. Each “selection” coloring of a gadget
produces a numerical signal (based on vertex and edge identification numbers)
carried by the colors in T ∪ T ′ and E ∪ E ′, with two signals per color. The target
of Z0 for these colors can only be achieved if the selection colorings indicate a
clique in G.

Theorem 7.1.4 NLCP is W[1]-hard for trees, parameterized by the number of
colors that appear on the lists.

The reduction from NLCP to LECP is almost trivial, achieved by padding
with isolated vertices having single-color lists. The reduction from LECP to ECP
is described as follows. Create a clique of size r, the number of colors occurring on
the lists, and connect the vertices of this clique to the vertices of G′ in a manner
that enforces the lists. Since G′ is a tree, the treewidth of the resulting graph is
at most r. We have:

Theorem 7.1.5 Equitable Coloring is W[1]-hard parameterized by treewidth
and the number r of colors.

7.1.2 Capacitated Dominating Set

In this section we show that Capacitated Dominating Set is W [1]-hard when
parameterized by treewidth and solution size. Just as in the previous section, we
reduce from Multicolor Clique. See Section 3.2 for the definition of this
problem. In fact, we will reduce to a slightly modified version of Capacitated
Dominating Set, Marked Capacitated Dominating Set where we mark
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some vertices and demand that all marked vertices must be in the dominating set.
We can then reduce from Marked Capacitated Dominating Set to Capac-
itated Dominating Set by attaching k + 1 leaves to each marked vertex and
increasing the capacity of each marked vertex by k+ 1. It is easy to see that the
new instance has a k-capacitated dominating set if and only if the original one
had a k-capacitated dominating set that contained all marked vertices, and that
this operation does not increase the treewidth of the graph. Thus, to prove that
Capacitated Dominating Set is W [1]-hard when parameterized by treewidth
and solution size, it is sufficient to prove that Marked Capacitated Dominat-
ing Set is. We will show how given an instance (G, k) of Multicolor Clique,
we can build an instance (H, c, k′) of Marked Capacitated Dominating Set
such that

• k′ = 7k(k − 1) + 2k,

• G has a clique of size k if and only if H has a capacitated dominating set
of size k′, and

• the treewidth of H is O(k4).

We employ a strategy similar to the edge representation strategy we used
to show that Equitable Coloring is W[1]-hard parameterized by treewidth.
The main difference in our approach is that the coherence gadget is switched
out with a vertex selection gadget and the vertex and edge selection gadgets are
joined together in such a way that one only can pick an edge if one also picks its
endpoints.

For a pair of distinct integers i, j, let E[i, j] be the set of edges with one
endpoint in V [i] and the other in V [j]. Without loss of generality, we will assume
that |V [i]| = N and |E[i, j]| = M for all i, j, i 6= j. To each vertex v we
assign a unique identification number vup between N + 1 and 2N , and we set
vdown = 2N − vup. For two vertices u and v, by adding an (A,B)-arrow from u
to v we will mean adding A subdivided edges between u and v and attaching B
leaves to v (see Fig. 7.1). Now we describe how to build the graph H for a given
instance (G = (V [1] ∪ V [2] · · · ∪ V [k], E), k) of Multicolor Clique.

(A,B)
u v

=
vu

1
2

A

2 B1

Figure 7.1: Adding an (A,B)-arrow from u to v.

For every integer i between 1 and k we add a marked vertex x̂i that has a
neighbor v for every vertex v in V [i]. For every j 6= i, we add a marked vertex ŷij
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and a marked vertex ẑij . Now, for every vertex v ∈ V [i] and every integer j 6= i
we add a (vup, vdown)-arrow from v to ŷij and a (vdown, vup)-arrow from v to ẑij .
Finally we add a set Si of k′ + 1 vertices and make every vertex in Si adjacent to
every vertex v with v ∈ V [i]. See Fig. 7.2 for an illustration.
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Figure 7.2: Vertex and edge selection gadgets.

Similarly, for every pair of integers i, j with i < j, we add a marked vertex x̂ij

with a neighbor e for every edge e in E[i, j]. Moreover, we add four new marked
vertices p̂ij, p̂ji, q̂ij, and q̂ji. For every edge e = {u, v} in E[i, j] with u ∈ V [i] and
v ∈ V [j], we add a (udown, uup)-arrow from e to p̂ij, a (uup, udown)-arrow from e to
q̂ij , a (vdown, vup)-arrow from e to p̂ji and a (vup, vdown)-arrow from e to p̂ji. We
also add a set Sij of k′ +1 vertices and make every vertex in Sij adjacent to every
vertex e with e ∈ E[i, j]. See Fig. 7.2 for an illustration.

Finally, we add a marked vertex r̂ij and a marked vertex ŝij for every i 6= j.
For every i 6= j, we add (2N, 0)-arrows from ŷij to r̂ij, from p̂ij to r̂ij , from ẑij

to ŝij , and from q̂ij to ŝij (see Fig. 7.3). This concludes the description of the
graph H .

Figure 7.3: Vertex-Edge incidence gadget

We now describe the capacities of the vertices. For every i 6= j, the vertex x̂i

has capacity N − 1, the vertex x̂ij has capacity M − 1, the vertices ŷij and ẑij

both have capacity 2N2, the vertices p̂ij and q̂ij have capacity 2NM , and both r̂ij

and ŝij have capacity 2N . For all other vertices, their capacity is equal to their
degree in H .

Observation 7.1.6 The treewidth of H is O(k4).
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Proof. If we remove all marked vertices (
⋃k

i=1 Si and
⋃

i6=j Sij), a total of O(k4)
vertices, from H , we obtain a forest. As deleting a vertex reduces the treewidth
by at most one, this concludes the proof.

Lemma 7.1.7 If G has a multicolor clique C = {v1, v2, . . . , vk} then H has a
capacitated dominating set D of size k′ containing all marked vertices.

Proof. For every i < j let eij be the edge from vi to vj in G. In addition
to all the marked vertices, let D contain vi and eij for every i < j. Clearly D
contains exactly k′ vertices, so it remains to prove that D is indeed a capacitated
dominating set.For every i < j, let x̂i and x̂ij dominate all their neighbors except
for vi and eij respectively. The vertices vi and eij can dominate all their neighbors,
since their capacity is equal to their degree. Let r̂ij dominate vdown

i of the vertices
in the (2N, 0)-arrow from ŷij, and vup

i of the vertices of the (2N, 0)-arrow from
p̂ij. Similarly let ŝij dominate vup

i of the vertices in the (2N, 0)-arrow from ẑij ,
and vdown

i of the vertices of the (2N, 0)-arrow from q̂ij . Finally, for every i 6= j we
let ŷij, ẑij , p̂ij and q̂ij dominate all their neighbors that have not been dominated
yet. One can easily check that every vertex of H will either be a dominator or
dominated in this manner, and that no dominator dominates more vertices than
its capacity.

Lemma 7.1.8 If H has a capacitated dominating set D of size k′ containing all
marked vertices, then G has a multicolor clique of size k.

Proof. Observe that for every integer 1 ≤ i ≤ k, there must be a vi ∈ V [i] such
that vi ∈ D. Otherwise we have that Si ⊂ D and, since |Si| > k′, we obtain a
contradiction. Similarly, for every pair of integers i, j with i < j there must be
an edge eij ∈ E[i, j] such that eij ∈ D. We let eji = eij . Since |D| ≤ k′ it follows
that these are the only unmarked vertices in D. Since all the unmarked vertices
in D have capacity equal to their degree, we can assume that each such vertex
dominates all its neighbors. We now proceed with proving that for every pair of
integers i,j with i 6= j, eij = uv is incident to vi. We prove this by showing that
if u ∈ V [i] then vup

i + udown = 2N .
Suppose for a contradiction that vup

i + udown < 2N . Observe that each vertex
of T = (N(ŷij)∪N(r̂ij)∪N(p̂ij)) \ (N(vi)∪N(eij)) must be dominated by either
ŷij, r̂ij, or p̂ij . However, by our assumption that vup

i +udown < 2N , it follows that
|T | = 2N2 + 4N + 2MN − (vup

i + udown) > 2N2 + 2N + 2MN . The sum of the
capacities of ŷij, r̂ij, and p̂ij is exactly 2N2 + 2N + 2MN . Thus it is impossible
that every vertex of T is dominated by one of ŷij, r̂ij , and p̂ij, a contradiction. If
vup

i +udown > 2N then vdown
i +uup < 2N , and we can apply an identical argument

for ẑij, ŝij , and q̂ij .
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Thus, it follows that for every i 6= j there is an edge eij incident both to vi

and to vj . Thus {v1, v2, . . . , vk} forms a clique in G. As any k-clique in G is a
multicolor clique this completes the proof.

Observation 7.1.6, Lemma 7.1.7 and Lemma 7.1.8 immediately imply the fol-
lowing theorem.

Theorem 7.1.9 Capacitated Dominating Set parameterized by treewidth
and solution size is W [1]-hard.

7.2 Hardness for Cliquewidth-Parameterizations

By the seminal result of Courcelle [35] (Theorem 2.4.1), all problems expressible
in MSO2 logic are FPT when parameterized by the treewidth of the input graph.
The result of Courcelle was extended by Courcelle, Makowsky and Rotics [36]
(Theorem 2.4.4) who proved that all problems expressible in MSO1 logic are
FPT in parameterized by the cliquewidth of the input graph. For several of the
problems expressible in MSO2 but not MSO1, like Hamiltonian Cycle and
Edge Dominating Set algorithms with running times on the form nf(cwd(G))

were derived, but no FPT algorithms for Hamiltonian Cycle and Edge Dom-
inating Set were found. Another classical problem that is known to be FPT
parameterized by treewidth and solvable in nf(cwd(G)) time is Graph Color-
ing. The question on the existence of fixed parameter tractable algorithms (with
clique-width being the parameter) for all these problems (or their generalizations)
was asked by Gerber and Kobler [73], Kobler and Rotics [96, 97], Makowsky,
Rotics, Averbouch, Kotek, and Godlin [105, 74]. In the next sections we show
that Graph Coloring, Hamiltonian Cycle and Edge Dominating Set
all are W[1]-hard parameterized by the cliquewidth of the input graph. This im-
plies that unless FPT = W[1], any extension of Courcelle’s theorem to graphs of
bounded cliquewidth can not apply to all problems expressible in MSO2.

7.2.1 Graph Coloring — Chromatic Number

In this section, we prove that Graph Coloring is W [1]-hard parameterized by
clique-width.

Graph Coloring (or Chromatic Number): The chromatic num-
ber of a graph G = (V (G), E(G)) is the smallest number of colors
χ(G) needed to color the vertices of G so that no two adjacent ver-
tices are of the same color.

Our reduction is from the Equitable Coloring problem parameterized
by the number r of colors used, and the treewidth of the input graph. In the
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Equitable Coloring problem one is given a graph G and integer r and asked
whether G can be properly r-colored in such a way that the number of vertices
in any two color classes differs by at most 1. Notice that if n is divisible by r
this implies that all color classes must contain the same number of vertices. In
our reduction we will assume that in the instance we reduce from, n is divisible
by r. For a justification of this assumption, if r does not divide n we can add a
clique of size n+ r−⌊n

r
⌋r to G. We reduce from the exact version of Equitable

Coloring, that is, the version where we are looking for an equitable coloring of
G with exactly r colors. Recall that in Section 7.1.1 we proved that Equitable
Coloring is W [1]-hard parameterized by the treewidth t of the input graph and
the number of colors r.

Construction: On input (G, r) to Equitable Coloring, we construct an
instance (G′, r′) of Graph Coloring as follows. We start with a copy of G and
let r′ = r+nr. We now add a clique P of size r′ to G′. The clique P will function
as a palette in our reduction, as we have to use all r′ available colors to properly
color it. We partition P into r + 1 parts as follows, P = PM ∪ P1 ∪ P2 · · · ∪ Pr

where PM has size r and Pi has size n for every i. We call PM the main palette,
and denote the vertices in PM by pi for 1 ≤ i ≤ r. We add edges between every
vertex of P \ PM and every vertex of the copy of G. For each vertex u ∈ V (G)
we assign a vertex uPi

∈ Pi for every i. Now, for every 1 ≤ i ≤ r we add a set
Si of vertices. For each vertex u ∈ V (G) we make a vertex uSi

in Si for every
1 ≤ i ≤ r, and make uSi

adjacent to u and the entire palette P except for uPi

and pi. We conclude the construction by adding a clique Ci of n r−1
r

vertices
and making every vertex of Ci adjacent to all of the vertices of Si and the entire
palette except for Pi.

Lemma 7.2.1 If G has an equitable r-coloring ψ, then G′ has an r′-coloring φ.

Proof. We construct a coloring φ of G′ as follows. The coloring φ colors the copy
of G in G′ in the same way that ψ colors G. We color the palette, assigning a
unique color to each vertex and making sure that the main palette PM is colored
using the same colors that are used to color the vertices of G. For every vertex
uSi

we color uSi
with φ(pi) if φ(u) 6= φ(pi) and with φ(uPi

) if φ(u) = φ(pi). We
color every vertex of Ci with some color from Pi (a color used to color a vertex of
Pi). To do this we need n r−1

r
different colors from Pi. Since exactly n/r vertices

of G are colored with φ(pi), exactly n r−1
r

of Si are colored with φ(pi) and thus
n/r vertices of Si are colored with colors of Pi. Hence there are n r−1

r
colors of Pi

available to color Ci. Thus, φ is a proper r′-coloring of G concluding the proof.

Lemma 7.2.2 If G′ has an r′-coloring φ, then G has an equitable r-coloring ψ.
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Proof. We prove that the restriction of φ to the copy of G in G′ in fact is an
equitable r-coloring of G. Since φ can only use the colors of PM , φ is a proper
r-coloring of G. It remains to prove that for any i between 1 and r, at most
n/r vertices of G are colored with φ(pi). Suppose for contradiction that there is
an i such that more than n/r vertices of G are colored with φ(pi). Then there
are more than n/r vertices of Si that are colored with colors of Pi. Since each
such vertex must take a different color from Pi, there are less than n r−1

r
different

colors of Pi available to color the vertices of Ci. However, since Ci is a clique on
n r−1

r
vertices that must be colored with colors of Pi, this is a contradiction.

Lemma 7.2.3 If the treewidth of G is t, then the cliquewidth of G′ is at most
k = 3 · 2t−1 + 7r + 3. Furthermore, an expression tree of width k for G′ can be
computed in FPT time.

Proof. By Theorem 1.2.1, we can compute an expression tree for G of width at
most 3·2t−1 in FPT time. Our strategy is as follows. We first show how to modify
the expression tree to give a width k expression tree for G′ \ (PM

⋃r
i=1Ci). Then

we change this tree into an expression tree for G′. In order to give an expression
tree for G′ we introduce the following extra labels.

• For every 1 ≤ i ≤ r the labels αi, α
L
i and αR

i for vertices in Pi.

• For every 1 ≤ i ≤ r the labels βi, β
L
i and βR

i for vertices in Si.

• For every 1 ≤ i ≤ r the label ζi for vertices in Ci.

• A “work” label – γW , and a label γM for PM .

In the expression tree for G, we replace every introduce-node i(v) with a small
expression tree Ti(v). In Ti(v), the vertex v is introduced with label γW and the
vertices vP1 , . . . , vPr

and vS1 , . . . , vSr
are introduced with labels α1, . . . , αr and

β1, . . . , βr respectively. Also, γW is joined to β1, . . . , βr and for every p, βp is
joined with every label in {αq : q 6= p}. Also, for every p 6= q, αp is joined with
αq. Finally, γW is relabelled to i.

Now, for every union node in the expression tree (not the union nodes inside
the Ti’s) we add extra vertices on the edges incident to this node. On the edge
from the node to its left child, we add nodes that relabel αp to αL

p and βp to βL
p

for every p. Similarly, on the edge from the union node to its right child, we add
nodes that relabel αp to αR

p and βp to βR
p for every p. Finally, on the edge from

the union node to its parent we add nodes that first join every αL
p with every βR

q

and αR
q , join every αR

p with every βL
q , and then relabel every αL

p and αR
p to αp

and every βL
p and βR

p to βp.
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To conclude the construction of G′ \ (PM
⋃r

i=1Ci) we need to add some extra
nodes above the root of the expression tree. We add the edges between P \ PM

and G by joining every αp with all labels used for constructing G.

We now need to add the construction of PM and
⋃r

i=1Ci to our expression
tree. We start by making Cp for every p between 1 and r. For every p we add
a clique on n r−1

r
vertices labelled ζp. Every ζp is joined to βp and for every pair

p 6= q, ζp is joined with αq.

Finally, we add the construction of PM . For every i, we introduce the vertex
pi with label γW , join γW to αj and ζj for every j, γW with βj for every j 6= i and
finally join γW to γM and relabel γW to γM . This concludes the construction of
G′. Notice that this expression tree for G′ uses k = 3 · 2t−1 + 9r + 3 labels.

Lemmas 7.2.1, 7.2.2 and 7.2.3 together imply the following result.

Theorem 7.2.4 The Graph Coloring problem is W [1]-hard when parame-
terized by clique-width. Moreover, this problem remains W [1]-hard even if the
expression tree is given.

7.2.2 Edge Dominating Set

In this section, we show that Edge Dominating Set is W [1]-hard parameter-
ized by clique-width.

Edge Dominating Set: Given a graph G = (V,E), find a minimum
set of edges X ⊆ E(G) such that every edge of G is either included
in X, or it is adjacent to at least one edge of X. The set X is called
an edge dominating set of G

Our reduction is from a variant of Capacitated Dominating Set problem,
Exact Saturated Capacitated Dominating Set: A capacitated graph is
a pair (G, c), where G is a graph and c : V (G) → N is a capacity function such
that 1 ≤ c(v) ≤ deg(v) for every vertex v ∈ V (G) (sometimes we simply say
that G is a capacitated graph if the capacity function is clear from the context).
A set S ⊆ V (G) is called a capacitated dominating set if there is a domination
mapping f : V (G) \ S → S which maps every vertex in (V (G) \ S) to one of
its neighbors such that the total number of vertices mapped by f to any vertex
v ∈ S does not exceed its capacity c(v). We say that for a vertex u ∈ S, vertices
in the set f−1(u) are dominated by u. The Capacitated Dominating Set
problem is formulated as follows: given a capacitated graph (G, c) and a positive
integer k, determine whether there exists a capacitated dominating set S for G
containing at most k vertices. Recall that in Section 7.1.2 we proved this problem
is W [1]-hard when parameterized by treewidth.
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For the intractability proof of Edge Dominating Set, we need a special
variant of Capacitated Dominating Set problem which we call Exact Sat-
urated Capacitated Dominating Set. Given a capacitated dominating set
S, a vertex v ∈ S is called saturated if the corresponding domination mapping f
maps c(v) vertices to v, that is, |f−1(v)| = c(v). A capacitated dominating set
S ⊆ V (G) is called saturated if there is a domination mapping f which saturates
all vertices of S. In Exact Saturated Capacitated Dominating Set a ca-
pacitated graph (G, c) and a positive integer k is given. The question is whether
G has a saturated capacitated dominating set S with exactly k vertices.

Lemma 7.2.5 The Exact Saturated Capacitated Dominating Set prob-
lem is W [1]-hard when parameterized by clique-width. Moreover, this problem
remains W [1]-hard even if the expression tree is given.

Proof. We show a stronger statement, namely that the Exact Saturated
Capacitated Dominating Set problem is W [1]-hard when parameterized by
the treewidth of the input graph. The statement of the lemma then follows di-
rectly from Theorem 1.2.1. To show that the Exact Saturated Capacitated
Dominating Set problem is W [1]-hard when parameterized by the treewidth
of the input graph, we consider the reduction from Multicolor Clique to
Capacitated Dominating Set presented in Section 7.1.2. We tweak the re-
duction a little bit by for every i, j ≤ k giving all the neighbours of x̂i and x̂ij

capacity one less than their degree instead of their degree. Let c′ be the tweaked
capacity function. One can now verify that (H, c′, k′) has a capacitated dominat-
ing set of size at most k′ if and only if (H, c, k′) does, and that if (H, c′, k′) has a
capacitated dominating set of size at most k′ then this set has size exactly k′ and
is saturated. Observe also that the reduction from the marked version of Ca-
pacitated Dominating Set to the original version preserves exact saturating
capacitated dominating sets.

We now proceed to show that Edge Dominating Set is W [1]-hard param-
eterized by clique-width by giving a reduction from Exact Saturated Domi-
nating Set. We start with descriptions of auxiliary gadgets.

Auxiliary gadgets: Let s ≤ t be positive integers. We construct a graph Fs,t

with the vertex set {x1, . . . , xs, y1, . . . , ys, z1, . . . , zt} and edges xiyi, 1 ≤ i ≤ s and
yizj, 1 ≤ i ≤ s and 1 ≤ j ≤ t. Basically we have complete bipartite graph between
yi’s and zj ’s with pendent vertices attached to yi’s. The vertices z1, z2, . . . , zt are
called roots of Fs,t.

Graph Fs,t has the following property.

Lemma 7.2.6 Any set of s edges incident to vertices y1, . . . , ys forms an edge
dominating set in Fs,t. Furthermore, let G be a graph obtained by the union of
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Figure 7.4: Graph G′

Fs,t with some other graph H such that V (Fs,t)∩V (H) = {z1, . . . , zt}. Then every
edge dominating set of G contains at least s edges from Fs,t.

The proof of the lemma follows from the fact that every edge dominating set
includes at least one edge from E(yi) for i ∈ {1, . . . , s}.

Now we describe our reduction. Let (G, c) be a capacitated graph with the
vertex set {u1, . . . , un}, and k be a positive integer. For every vertex ui, the
set Ui with c(ui) vertices is introduced, and then vertex sets {v1, . . . , vn} and
{w1, . . . , wn} are added. For every edge uiuj ∈ E(G), all vertices of Ui are joined
with vj and all vertices of Uj are joined with vi by edges. Then every vertex vi is
joined to its counterpart wi and to every vertex vi we add one additional leaf (a
pendent vertex). Now vertex sets {a1, . . . , an} and {b1, . . . , bn} are constructed,
and vertices ai are made adjacent to all vertices of Ui, wi and bi. For every vertex
bi, a set Ri of c(ui)+1 vertices is added and bi is made adjacent to all the vertices
in Ri. Then we add to every vertex of R1 ∪ R2 ∪ · · · ∪ Rn a path of length two.
Let X be the set of middle vertices of these paths. We denote the obtained graph
by G′ (see Fig 7.4). Finally, we introduce three copies of Fs,t:

• a copy of Fn−k,n with roots {a1, . . . , an},

• a copy of Fk,n with roots {b1, . . . , bn}, and a

• a copy of Fn,r where r =
n∑

i=1

c(ui) with roots in X.

Let this final resulting graph be H .

Lemma 7.2.7 A graph G has an exact saturated dominating set of the size k if
and only if H has an edge dominating set of cardinality at most 2n+ r.

Proof. Let S be an exact saturated dominating set of the size k in G and f
be its corresponding domination mapping. For convenience (without loss of a
generality) we assume that S = {u1, . . . , uk}. We construct the edge dominating
set as follows. First we select an edge emanating from every vertex in the set
{v1, . . . , vn}. For every vertex vi, 1 ≤ i ≤ k, the edge viwi is selected. Now let us
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assume that k < i ≤ n and f(ui) = uj. We choose a vertex u in Uj which is not
incident to already chosen edges and add the edge uvi to our set. Notice that we
always have such a choice of u ∈ Uj as c(uj) = |Uj |. We observe that these edges
already dominates all the edges in the sets E(vi), 1 ≤ i ≤ n, and in sets E(u) for
u ∈ U1 ∪ · · · ∪Uk ∪ {w1, . . . , wk}. Now we add n− k edges from Fn−k,n which are
incident to vertices in {ak+1, . . . , an} and k edges from Fk,n which are incident
to {b1, . . . , bk}. Then r − n matching edges joining vertices of Rk+1, . . . , Rn to
the vertices of X are included in the set. Finally, we add n edges form Fn,r

which are incident to vertices of X which are adjacent to vertices of R1, . . . , Rk.
Since S is an exact capacitated dominating set,

∑k
i=1(c(ui) + 1) = n, and from

our description it is clear that the resulting set is an edge dominating set of size
2n+ r for H .

We proceed by proving the other direction of the equivalence. Let L be an
edge dominating set of cardinality at most 2n+ r. The set L is forced to contain
at least one edge from every E(vi), at least n − k edges from Fn−k,n, at least
k edges from Fk,n, and at least one edge from E(x) for all x ∈ X because of
pendent edges. This implies that |L| = 2n + r, and L contains exactly one edge
from every E(vi), exactly n−k edges from Fn−k,n, exactly k edges from Fk,n, and
exactly one edge from E(x) for all x ∈ X. Every edge aibi needs to be dominated
by some edge of L, in particular it must be dominated from either an edge of
Fn−k,n, or Fk,n. Let I = {i : ai is incident to an edge from L ∩ E(Fn−k,n)} and
J = {j : bj is incident to an edge from L ∩ E(Fk,n)}. The above constraints on
the set L implies that |I| = n − k, |J | = k, and these sets form a partition of
{1, . . . , n}. The edges which join vertices bi and Ri for i ∈ I are not dominated by
edges from L∩E(Fk,n). Hence to dominate these edges we need at least

∑
i∈I |Ri|

edges which connect sets Ri andX. Since at least n edges of Fn,r are included in L,
we have that

∑
i∈I |Ri| ≤ r−n and

∑
j∈J |Rj | = r−∑i∈I |Ri| ≥ r− (r− n) ≥ n.

Let S = {uj : j ∈ J}. Clearly, |S| = k. Now we show that S is a saturated
capacitated dominating set. For j ∈ J , edges which join a vertex aj to Uj and
wj are not dominated by edges from L ∩ E(Fn−k,k), and hence they have to be
dominated by edges from sets E(vi). Since n ≤∑j∈J |Rj| =

∑
j∈J(|Uj|+1), there

are exactly n such edges, and every such edge must be dominated by exactly one
edge from L. An edge ajwj can only be dominated by edge vjwj . We also know
that L ∩ E(vi) 6= ∅ for all i ∈ {1, . . . , n} and hence for every vi, i /∈ J , there
is exactly one edge which joins it with some vertex u ∈ Uj for some j ∈ J .
Furthermore, all these edges are not adjacent, that is, they form a matching.
We define f(ui) = uj for i /∈ J . From our construction it follows that f is a
domination mapping for S and S is an exact saturated dominating set in G.

The next lemma shows that if the graph G we started with has bounded
clique-width then H also has bounded clique-width.

Lemma 7.2.8 If cwd(G) ≤ t then cwd(H) ≤ 2t + 16, and an expression tree
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for H of width at most w = 2t+ 16 can be constructed in a polynomial time from
the expression tree for G.

Proof. The graph G is of clique-width at most t. Suppose that the expression
tree for G uses t-labels {α1, . . . , αt}. To construct the expression tree for H we
need following additional labels:

• Labels β1, . . . , βt for the vertices in U1, . . . , Un.

• Labels ξ1, ξ2, and ξ3 for attaching Fn−k,n, Fk,n and Fn,r respectively.

• Labels ζ1, . . . , ζ4 for marking some vertices like w1, . . . , wn.

• Working labels γ1, . . . , γ9.

When a vertex ui ∈ V (G) labeled αj is introduced, we perform following set of
operations. First we introduce following vertices with some working labels: vi

with label γ1, c(ui) vertices of Ui with label γ2, the vertex wi with label γ3, and
the additional vertex (the leaf attached to vi) with label γ4. Now we join the
vertex labelled with γ1 to vertices labelled with γ3 and γ4 (basically joining vi

with wi and its pendent leaf). Finally, we relabel γ4 to ζ1 and γ1 to βj. Now we
introduce vertices ai and bi with labels γ5 and γ6 respectively. Then we join the
vertex labelled γ4 (ai) with all the vertices labelled with γ2, γ3 and γ6 (Ui, wi, bi).
The join operation is followed by relabeling γ3 to ζ2, γ2 to αj and γ5 with ξ1.

Now we want to make the vertices of Ri and the paths attached to it. To
do so we perform following operations c(ui) + 1 times: (a) introduce three nodes
labelled with γ7, γ8 and γ9 (b) join γ6 with γ7, γ7 with γ8 and γ8 with γ9 and
(c) finally we relabel γ6 to ξ2, γ7 to ζ3, γ8 to ξ3 and γ9 to ζ4. We omit the union
operations from the description and assume that if some vertex is introduced then
this operation is performed.

If in the expression tree of G, we have join operation between two labels say
αi and αj then we simulate this by applying join operations between αi and βj

and αj and βi. The relabel operation in the expression tree of G, that is, relabel
αi to αj is replaced by relabel αi to αj and relabel βi to βj. Union operations in
the expression tree is done as before.

Finally to complete the expression tree for H , we need to add Fn−k,n, Fk,n and
Fn,r. Notice that all the vertices in {a1, . . . , an}, {b1, . . . , bn} and X are labelled
ξ1, ξ2 and ξ3 respectively. From here we can easily add Fn−k,n, Fk,n and Fn,r

with root vertices {a1, . . . , an}, {b1, . . . , bn} and X respectively by using working
labels. This concludes the description for the expression tree for H .

Lemmas 7.2.7 and 7.2.8 together imply the following result.

Theorem 7.2.9 The Edge Dominating Set problem is W [1]-hard when pa-
rameterized by clique-width. Moreover, the problem remains W [1]-hard even if
the expression tree is given.
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7.2.3 Hamiltonian Cycle

In this section we show that the Hamiltonian Cycle problem is W [1]-hard for
the graphs of bounded clique-width.

Hamiltonian Cycle: Given a graph G, check whether there exists
a cycle passing through every vertex of G.

Our reduction is from the Capacitated Dominating Set problem described
in Section 7.1.2 and shown to be W [1]-hard in Theorem 7.1.9. We describe a few
auxiliary gadgets.

Auxiliary gadgets: We denote by L1, the graph with the vertex set {x, y, z, a, b, c, d}
and the edge set {xa, ab, bc, cd, dy, bz, cz}. Let P1 be the path xabzcdy, and
P2 = xabcdy. (See Fig. 7.5.)

We abstract a property of this graph in the following lemma.

Lemma 7.2.10 Let G be a Hamiltonian graph such that G[V ′] is isomorphic to
L1. Furthermore, if all edges in E(G) \ E(G[V ′]) incident to V ′ are incident to
the copies of the vertices x, y, and z in V ′, then every Hamiltonian cycle in G
either includes the path P1, or the path P2 as a segment.

Our second auxiliary gadget is the graph L2. This graph has {x, y, z, s, t, a,
b, c, d, e, f, g, h} as its vertex set. We first include following {xa, ab, bz, cz, cd, dy,
se, ef , fb, ch, hg, gt} in its edge set. Then x, y-path of length 10 xw1 · · ·w9y is
added, and edges fw3, w1w6, w4w9, w7h are included in the set of edges. Let P =
xabzcdy, R1 = sefbaxw1w2 . . . w9ydchgt, andR2 = sefw3w2w1w6w5w4w9w8w7hgt.
(See Fig. 7.5.) This graph has the following property.

x y

z

R1

s t

x y

P

z

s t

R2

Figure 7.5: Graphs L1 and L2. Paths P1, P2, R1, R2 and P are shown by thick
lines

Lemma 7.2.11 Let G be a Hamiltonian graph such that G[V ′] is isomorphic to
L2. Furthermore, if all edges in E(G) \ E(G[V ′]) incident to V ′ are incident to
the copies of the vertices x, y, z, s, t in V ′, then every Hamiltonian cycle in G
includes either the path R1, or two paths P and R2 as segments.
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The lemma easily follows from the presence of degree 2 vertices in the graph
L2, since for any such a vertex, it and adjacent vertices have to belong to one
segment of a Hamiltonian path.

Now we are ready to describe our reduction. Let (G, c) be a capacitated graph
with the vertex set {v1, . . . , vn}, m edges, and let k be a positive integer. For
every vertex vi, four vertices ai, bi, ci and wi are introduced and the vertices bi
and ci are joined by c(vi)+1 paths of length two. Let Ci denote the set of middle
vertices of these paths, and Xi = Ci∪{ai, bi, ci}. Then a copy Li

2 of the graph L2

with z = wi is added and vertices x and y of this gadget are joined by edges to ai

and bi respectively. By si and ti we denote the vertices s and t of Li
2. For every

ordered pair {vi, vj} such that vivj ∈ E(G), a copy Lij
2 of L2 is attached with

z = wj and vertices x and y made adjacent to all the vertices of Ci. The vertices
corresponding to s and t are called sij and tij in Lij

2 . Furthermore, let xij and
yij denote the vertices corresponding to x and y in Lij

2 . The path corresponding
to P in Li

2 is called P i. Similarly, the path corresponding to P , R1 and R2 are
called P ij, Rij

1 and Rij
2 respectively in Lij

2 . Denote the obtained graph by G′(c).
(See Fig. 7.6 for an illustration.)

In the next step we add two vertices g and h which are joined by
∑n

i=1(c(vi)+
4) + n+ 2m+ 1 paths of length two. Let Y be the set of middle vertices of these
paths. All vertices si, ti, sij and tij are joined by edges with all vertices of Y .
For every vertex r such that r ∈ Xi (recall Xi = Ci ∪ {ai, bi, ci}), i ∈ {1, . . . , n},
a copy Lr

1 of L1 with z = r is attached and the vertices x, y of this gadget are
joined to all vertices of Y . We let xr and yr denote the vertices corresponding to
x and y in Lr

1. Similarly P r
1 and P r

2 denotes paths in Lr
1 corresponding to P1 and

P2 respectively.

ai bi ci aj bj cj

wi wjw1 wn

a1 cn

z

x y

s t

L2

Figure 7.6: Graph G′(c)

Finally we add k+1 vertices, namely {p1, . . . , pk+1}, and make them adjacent
to all the vertices {ai, ci : 1 ≤ i ≤ n} and to g and h. Let this resultant graph be
H . The construction of H can easily be done in time polynomial in n and m.

Lemma 7.2.12 A graph (G, c) has a capacitated dominating set of size at most
k if and only if H has a Hamiltonian cycle.
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Proof. Let S be a capacitated dominating set of size at most k in (G, c) with the
corresponding dominating mapping f . Without loss of a generality we assume
that |S| = k and S = {v1, . . . , vk}. The Hamiltonian cycle we are trying to
construct is naturally divided into k+ 1 parts by the vertices {p1, . . . , pk+1}. We
construct the Hamiltonian cycle starting from the vertex p1. Assume that the
part of the cycle up to the vertex pi is already constructed. We show how to
construct the part from pi to pi+1. We include the edge piai in it. We add to the
cycle the path P i and two edges, which join the endpoints of Pi with ai and bi.
Let J = {j : f(vj) = vi}. If J = ∅ then a bi − ci-path of length two which goes
through one vertex of Ci is included in the cycle. Otherwise all paths P ij for j ∈ J
are included in the cycle as follows. We consider the paths P ij in the increasing
order of indices in J and add them to the cycle. We take the first path say P ij′

and attach xij′ and yij′ to a pair of vertices {j1, j2} in Ci. Suppose iteratively we
have included first l ≥ 1 paths in J , and the lth path is incident to some {jl, jl+1}
in Ci, now we attach the (l + 1)th path by attaching xit of this to jl+1 and yit of
this to jl+2, where jl+2 is a new vertex not incident to any previously included
paths. We can always find such a vertex as |J | ≤ c(vi) = |Ci|−1. Now we include
the edge bij1 and j|J |+1ci. Finally we include the edge cipi+1.

When the vertex pk+1 is reached we move to the set Y . Note that at this stage
all vertices {w1, . . . , wn} are already included in the cycle. We start by including
the edge pk+1g. We will add following segments to the cycle an connect them
appropriately.

• For every Li
2 we add the path Ri

1 to the cycle if P i was not included to it,
and include the path Ri

2 otherwise. The number of such paths is n.

• Similarly, for every Lij
2 , the path Rij

1 is added to the cycle if P ij was not
included to it, else the path Rij

2 is added. Note that 2m such paths are
included to the cycle.

• For every vertex r such that r ∈ Xi for some i ∈ {1, . . . , n}, the path P r
2 is

included in the cycle if r is already included in the constructed part of the
cycle, else the path P r

1 is added. Clearly, we add
∑n

i=1(c(vi) + 4) paths.

Finally the total number of paths we will add is
∑n

i=1(c(vi)+4)+n+2m = |Y |−1.
We add the segments of the paths mentioned with the help of vertices in Y , in the
way we added the paths P ij with the help of vertices in Ci. Let the end points of
the resultant joined path be {q1, q2}. Notice that (a) q1, q2 ∈ Y and (b) this path
include all the vertices of Y . Now we add edges gq1, q2h and hp1. This completes
the construction of the Hamiltonian cycle.

For the reverse direction of the proof, we assume that we have been given C,
a Hamiltonian cycle in H . Let S =

{
vi

∣∣ pjai ∈ E(C), aips /∈ E(C), j 6= s, for
some j ∈ {1, 2, . . . , k + 1}

}
. We prove that S is a capacitated dominating set in

G of cardinality at most k. We first argue about the size of S, clearly its size is
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upper bounded by k + 1. To argue that it is at most k, it is enough to observe
that by Lemmas 7.2.10 and 7.2.11 either pjg, or pjh must be in E(C) for some
j ∈ {1, . . . , k + 1}. Now we show that S is indeed a capacitated dominating set.
Our proof is based on following observations.

• Every vertex wj, either appear in a vertex segment, that is P j, or an edge
segment, that is, P ij for some j ∈ {1, . . . , n} in C.

• If some P ij appear as a segment in C, then from the gadgets Lbi

1 and Lci

1 the
paths P bi

2 and P ci

2 are part of C. Hence the only way to include bi in C is
by using the edge incident to it from the gadget Li

2. This implies that from
the gadget Li

2 we use the path P i and two edges, which join the endpoints
of Pi with ai and bi.

• By Lemma 7.2.10 the cycle contains the edge which joins ai to some vertex
in {p1, . . . , pk+1}.

Now given vj ∈ V (G) \ S, for the domination function f , we assign it to vi for
which P ij is segment in C. Clearly vi ∈ S as by above observation there exits a
j ∈ {1, 2, . . . , k + 1} such that pjai ∈ E(C), aips /∈ E(C) and j 6= s. For every
vi ∈ S, the set f−1(vi) contains at most c(vi) vertices as |Ci| = c(vi) + 1. This
concludes the proof.

The next lemma upper bounds the clique-width of the resulting graph H .

Lemma 7.2.13 If tw(G) ≤ t then cwd(H) ≤ 9·2max{2t,24}+12 and an expression
tree for H of width at most w = 9 · 2max{2t,24} + 12 can be constructed in FPT
time.

Proof. We define c′(vi) = 0 for all i ∈ {1, 2, . . . , n} and consider the graph G′(c′).
It is easy to see that tw(G′(c′)) ≤ max{2t + 1, |V (L2)| + 3} = max{2t + 1, 25}.
By Theorem 1.2.1 cwd(G′(c′)) ≤ 3 · 2max{2t,24}, i.e. we can construct the labeled
graph G′(c′) by using at most l = 3 · 2max{2t,24} labels α1, . . . , αl. Using l + 1
additional labels β1, . . . , βl and γ1 we can ensure that all vertices si, ti, sij and tij
are labeled by the label γ1, and only these vertices have label γ1 in the following
way. At the moment when such a vertex r labeled e.g. j is introduced, we label
it by the label βj , and then these labels are used in the operations in same way as
labels αj . Finally, all vertices labeled by these labels are relabeled γ1. Similarly,
by using l + 1 more labels we assume that all vertices ai and ci are labeled by
the label γ2, and this label is used only for these vertices. Denote by di the only
vertex in the set Ci in G′(c′). The graph G′(c) can be obtained from G′(c′) by the
substitution of di by c(vi) + 1 vertices with same neighborhoods. This operation
does not change clique-width, and cwd(G′(c)) ≤ 3l + 2.

Recall that for every vertex r ∈ Xi we add a copy of L1 with z = r. We
show how to construct the obtained graph using no more than |V (L1)| + 1 = 8
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additional labels, in such a way that vertices xr and yr are labeled by the label
γ1. When a vertex r is introduced, we construct a copy of L1 using |V (L1)| extra
labels making sure that the z in this copy gets r’s label. Then we relabel x and
y by γ1, and the remaining |V (L1)| − 3 vertices are relabeled by an additional
label, ζ , which acts as a “waste” label. We use 2 labels to construct the vertices
g and h with |Y | paths of length two between them. Additionaly, we ensure that
at the end of this construction g and h are labeled with γ2, and that the vertices
of Y are labeled by γ3.

Now, the join operation is done for vertices labeled γ1 and γ3. Now by using
one more label γ4, the vertices p1, p2, . . . , pk+1 are introduced, and the join oper-
ation is performed on the labels γ2 and γ4. We used no more than 3l + 12 labels
to construct H , and cwd(H) ≤ 3l+ 12 ≤ 9 · 2max{2t,24} +12. The second claim of
the lemma is obvious.

Lemmas 7.2.12 and 7.2.13 together imply the following result.

Theorem 7.2.14 The Hamiltonian Cycle problem is W [1]-hard when param-
eterized by clique-width. Moreover, this problem remains W [1]-hard even if the
expression tree is given.

7.2.4 Conclusion

Our results rule out FPT algorithms for Graph Coloring, Hamiltonian Cy-
cle and Edge Dominating Set parameterized by cliquewidth unless FPT=W[1].
We conclude the chapter with two open problems. The best known algorithms
for these problems have running times on the form n2O(cwd(G))

, an interesting ques-
tion is, can they be solved in nkO(1)

time? Another graph problem expressible in
MSO2 but not MSO1 is the Max Cut problem. Is this problem also W[1]-hard
parameterized by cliquewidth, or can an FPT algorithm be derived for it?
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Chapter 8

Kernelization Techniques

8.1 Meta-Theorems for Kernelization

One of the most important results in the area of kernelization is given by Alber
et al. [5]. They provided the first kernel of linear size for the Dominating Set
problem on planar graphs. The work of Alber et al. [5] has triggered an explo-
sion of papers on kernelization, and in particular on kernelization of problems on
planar graphs. Combining the ideas of Alber et al. [5] with problem specific data
reduction rules, kernels of linear sizes were obtained for a variety of parameterized
problems on planar graphs including Connected Vertex Cover, Minimum
Edge Dominating Set, Maximum Triangle Packing, Efficient Edge
Dominating Set, Induced Matching, Full-Degree Spanning Tree,
Feedback Vertex Set, Cycle Packing, and Connected Dominating
Set [5, 22, 23, 28, 79, 80, 87, 104, 112]

Most of the papers on linear kernels on planar graphs have the following idea
in common: find an appropriate region decomposition of the input planar graph
based on the problem in question, and then perform problem specific rules to
reduce the part of the graph inside each region. The first step towards the general
abstraction of all these algorithms was initiated by Guo and Niedermeier [79],
who introduced the notion of “problems with distance property”. However, to
prove that some problem admits a linear kernel on planar graphs, the approach
of Guo and Niedermeier still requires the design of problem specific reduction
rules. In this section we show that if a problem satisfies certain conditions,
like expressibility in a certain kind of logic, then these reduction rules can be
automatically generated. We also extend the decomposition theorems proved
by Guo and Niedermeier [79] to graphs of bounded genus, and show that our
reduction rules apply in bounded genus graphs as well. Our theorems unify and
extend all previously known kernelization results for planar graph problems.

We say that a parameterized problem Π ⊆ Gg × N is compact if there exists
an integer r such that for all (G = (V,E), k) ∈ Π there is an embedding of G
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into a surface Σ of Euler-genus at most g and a set S ⊆ V such that |S| ≤ r · k,
Rr

G(S) = V , and k ≤ |V |r. Similarly, Π is quasi-compact if there exists an integer
r such that for every (G, k) ∈ Π there is an embedding of G into a surface Σ of
Euler-genus at most g and a set S ⊆ V such that |S| ≤ r · k, tw(G \Rr

G(S)) ≤ r
and k ≤ |V |r. Notice that if a problem is compact then it is also quasi-compact.

The first result proved in this section concerns a parameterized analogue of
graph optimization problems where the objective is to find a maximum or mini-
mum sized vertex or edge set satisfying a CMSO-expressible property. In partic-
ular, the problems considered are defined as follows. In a p-min-CMSO graph
problem Π ⊆ Gg ×N, we are given a graph G = (V,E) and an integer k as input.
The objective is to decide whether there is a vertex/edge set S of size at most
k such that the CMSO-expressible predicate PΠ(G, S) is satisfied. In a p-eq-
CMSO problem the size of S is required to be exactly k and in a p-max-CMSO
problem the size of S is required to be at least k. The annotated version Πα of
a p-min/eq/max-CMSO problem Π is defined as follows. The input is a triple
(G = (V,E), Y, k) where G is a graph, Y ⊆ V is a set of black vertices, and k
is a non-negative integer. In the annotated version of a p-min/eq-CMSO graph
problem, S is additionally required to be a subset of Y . For the annotated version
of a p-max-CMSO graph problem S is not required to be a subset of Y , but
instead of |S| ≥ k we demand that |S ∩ Y | ≥ k.

Our results. For a parameterized problem Π ⊆ Gg ×N, let Π ⊆ Gg ×N denote
the set of all no-instances of Π. The first main result of this chapter is the
following theorem.

Theorem 8.1.1 Let Π ⊆ Gg×N be a p-min/eq/max-CMSO problem and either
Π or Π is compact. Then the annotated version Πα admits a cubic kernel if Π
is a p-eq-CMSO problem and a quadratic kernel if Π is a p-min/max-CMSO
problem.

We remark that a polynomial kernel for an annotated graph problem Πα, is a
polynomial time algorithm that given an input (G = (V,E), Y, k) of Πα, computes
an equivalent instance (G′ = (V ′, E ′), Y ′, k′) of Πα such that |V ′| and k′ ≤ kO(1).
Theorem 8.1.1 has the following corollary.

Corollary 8.1.2 Let Π ⊆ Gg × N be an NP-complete p-min/eq/max-CMSO
problem such that either Π or Π is compact and Πα is in NP . Then Π admits a
polynomial kernel.

Theorem 8.1.1 and its corollary give polynomial kernels for all graph problems
on surfaces for which such kernels are known. However, many problems in the
literature are known to admit linear kernels on planar graphs. Our next theorem
unifies and generalizes all known linear kernels for graph problems on surfaces.
To this end we utilize the notion of finite integer index.



87

Theorem 8.1.3 Let Π ⊆ Gg × N has finite integer index and either Π or Π is
quasi-compact. Then Π admits a linear kernel.

Theorems 8.1.1 and 8.1.3 will be proved in Section 8.1.3. The theorems are
similar in spirit, yet they have a few differences. In particular, not every p-
min/eq/max-CMSO graph problem has finite integer index. For an example
the Independent Dominating Set problem is a p-min-CMSO problem, but
it does not have finite integer index. Also, the class of problems that have finite
integer index does not have a syntactic characterization and hence it takes some
more work to apply Theorem 8.1.3 than Theorem 8.1.1. On the other hand,
Theorem 8.1.3 yields linear kernels, applies to quasi-compact problems and is not
harder to apply than to design dynamic programming algorithms for graphs of
bounded treewidth.

To demonstrate the applicability of our results we show in Section 8.1.4 how
our theorems lead to polynomial or linear kernels for a variety of problems. For
ease of reference we provide a compendium of parameterized problems for which
polynomial or linear kernels are derived in Section 8.1.5. We now proceed to
develop the tools necessary to prove Theorems 8.1.1 and 8.1.3.

8.1.1 Reduction Rules

In this section we give reduction rules for compact annotated p-min/eq/max-
CMSO graph problems and quasi-compact parameterized problems having finite
integer index. Our reduction rules have the following form:

If there is a constant size separator such that after its removal we
obtain a connected component of unbounded size and of constant
treewidth, then we replace this component with something of constant
size.

The implementation of this rule depends on whether we are dealing with an
annotated p-min-CMSO, p-eq-CMSO or p-max-CMSO problems, or whether
the problem in question has finite integer index. Our reduction rules for annotated
p-min/eq/max-CMSO problems have three parts. In the first two parts we zero
in on an area to reduce, in the last part we perform the reduction. We now define
the notion of protrusions which formalizes the notion if a constant size separator
whose removal creates a large connected component of constant treewidth.

Definition 8.1.4 [r-protrusion] Given a graph G = (V,E), we say that a set
X ′ ⊆ V is an r-protrusion of G if |N(X ′)| ≤ r and tw(G[X ′ ∪N(X ′)]) ≤ r. For
an r-protrusion X ′, the vertex set X = X ′ ∪N(X ′) is an extended r-protrusion.
The set X is the extended protrusion of X ′ and X ′ is the protrusion of X.

In the following discussion we only treat annotated p-min/eq/max-CMSO prob-
lems where the set S being searched for is a set of vertices. The case where S is
a set of edges can be dealt in an identical manner.
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Reduction for Annotated p-min-CMSO Problems

We now describe the reduction rule that we apply for annotated p-min-CMSO
problems. The technique employed in this section will act as a template for
how we handle the annotated p-eq/max-CMSO problems. Recall that in an
annotated p-min-CMSO problem Πα we are given a graph G = (V,E) where a
subset Y of the vertices of G is colored black and an integer k. The objective is
to find a set S ⊆ Y of size at most k such that a fixed CMSO-definable property
PΠ(G, S) holds. For our reduction rule, we are also given a sufficiently large r-
protrusion X ′. In the first step of the reduction, we show that the set Y ∩X ′ can
be reduced to O(k) vertices without changing whether (G, k) is a yes-instance to
Πα or not. In the second step we show that the r-protrusion X ′ can be covered
by O(k) r′-protrusions such that each r′-protrusion contains at most a constant
number of vertices from Y . In the third and final step of the reduction rule,
we replace the largest r′-protrusion with an equivalent, but smaller r′-boundaried
graph. We now provide the reduction rule for annotated p-min-CMSO problems.

Lemma 8.1.5 Let Πα be an annotated p-min-CMSO problem. Let G = (V,E)
be a graph, Y ⊆ V be the set of black vertices and k be an integer. Let X be
an extended r-protrusion of G. Then there is an integer c, and an O(|X|) time
algorithm, that computes a set of vertices Z ⊆ X ∩ Y with |Z| ≤ ck, such that if
there exists a W ⊆ Y with PΠ(G,W ) and |W | ≤ k, then there exists a W ′ ⊆ Y
with PΠ(G,W ′), |W ′| ≤ k′, and W ′ ∩X ⊆ Z.

Proof. The algorithm starts by making a tree decomposition of G[X] of width at
most r, using the linear time algorithm to compute treewidth by Bodlaender [18].
Now we add ∂(X) to each bag, and add one bag containing only the vertices in
∂(X). The tree decomposition has width at most 2r as the bag size is at most
r + 1 + |∂(X)| ≤ 2r + 1.

Consider the following equivalence relation on subsets Q ⊆ X ∩ Y . We say
that Q ∼ Q′, if and only if for all R ⊆ V −X:

PΠ(G,Q ∪R) ⇔ PΠ(G,Q′ ∪R). (8.1)

The number of equivalence classes is bounded by a function of the treewidth [27,
39] of G[X], and thus for fixed r, can be assumed to be bounded by a constant,
say c. We would like to find a minimum sized representative of each of the
equivalence classes. We describe an algorithm running in time O(|X|) to find the
desired set in each equivalence class. Let us consider an algorithm that solves an
optimization version of the problem

min{|W | | W ⊆ Y ∧ PΠ(G,W )}

on graphs of bounded treewidth, using a dynamic programming approach. For an
example, we can use the algorithm described by Borie et al. [27]. The algorithm of
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Borie et al. [27] computes for each equivalence class in Relation 8.1 (or, possibly,
a refinement of the Relation 8.1) the minimum size of a set in the class. This is
done in a dynamic programming fashion, computing each value given a table of
these values for the children of the bag in the tree decomposition. The running
time is linear for fixed c. It is not hard to observe that we can also compute for
each equivalence class a minimum size set Q ⊆ X ∩ Y that belongs to the class.
This can be done in linear time. If there are more than one minimum size sets in
a class, then the algorithm just picks one.

Let Q denote that set of equivalence classes of Relation 8.1 and suppose that
for each class q ∈ Q that is non-empty, we have a minimum size representative
Qq. By the above argument we can find a minimum size representative Qq for
each class in O(|X|) time. Now, set

Z =
⋃

q∈Q,|Qq|≤k

Qq .

Suppose now that there exists W ⊆ Y with PΠ(G,W ) and |W | ≤ k. Consider
the equivalence class q that contains X ∩W . Let Qq be the selected minimum
size representative of q. Consider the set W ′ = (W \ X) ∪ Qq. As PΠ(G, (W \
X) ∪ (X ∩W )), we have that PΠ(G, (W \ X) ∪ Qc) = PΠ(G,W ′). Since, Qq is
a minimum size representative from q, we have that |Qq| ≤ |W \ X|, and that
|W ′| ≤ |W |. Finally, since the number of equivalence classes in Q is a function of
r and each representative Qq has size at most k, we have that |Z| = O(k). This
proves the lemma.

Using Lemma 8.1.5, we change the set Y to (Y \X) ∪ Z. We now show how
to exploit the fact that Z contains O(k) vertices.

Partitioning Protrusions: In the second step of the reduction rule we parti-
tion the extended r-protrusion X into smaller r′-protrusions.

Lemma 8.1.6 Let G = (V,E) be a graph, Y ⊆ V be the set of black vertices
of G and k be an integer. Furthermore, let X be an extended r-protrusion and
Z = X ∩ Y . There is an O(|X|) time algorithm that finds O(|Z|) extended r′-
protrusions X1, X2, . . . , Xℓ such that X = X1 ∪X2 ∪ . . .∪Xℓ and for every i ≤ ℓ,
Z ∩Xi ⊆ ∂(Xi).

Proof. We start by making a nice tree decomposition of G[X], and adding ∂(X)
to all bags. Now, we mark a number of bags. First, we mark the root bag and
each forget node where a vertex in Z is forgotten. As each vertex is forgotten at
most once in a nice tree decomposition, so far we have O(|Z|) marked bags. Now,
mark each bag that is the lowest common ancestor of two marked bags, until we
cannot marks in this fashion. Standard counting arguments for trees show that
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this operation at most doubles the number of marks. Hence, there are at most
O(|Z|) marked bags.

We now split X into X1, X2, . . . , Xℓ as follows: we take parts of the tree
decomposition, with internally no marked bags, plus the marked bags at the
border. Note that each such part has at most two marked bags, each of size at
most 2r and thus the size of ∂(Xi) is at most 4r for every i ≤ ℓ. Note that by
the way we constructed the sets Xi, Z ∩Xi ⊆ ∂(Xi) for every i.

Reducing Protrusions: In the third phase of our reduction rule, we find a
protrusion to replace, and perform the replacement. Notice that this part of
the reduction works both for annotated p-min-CMSO and for annotated p-eq-
CMSO problems.

Lemma 8.1.7 Let Πα be an annotated p-min-CMSO or p-eq-CMSO problem.
There is a fixed constant c depending only on Πα such that there is an algorithm
that given a graph G = (V,E) ∈ Gg, a set Y ⊆ V of black vertices, an integer k
and an extended r-protrusion X with |X| > c such that Y ∩X ⊆ ∂(X), runs in
time O(|X|), and produces a graph G∗ = (V ∗, E∗) ∈ Gg such that |V ∗| < |V | and
(G∗, k) ∈ Πα if and only if (G, k) ∈ Πα.

Proof. For two t-boundaried graphs G1 and G2, we say that they are equivalent
with respect to a subset S of ∂(G1) = ∂(G2) if for every G3 = (V3, E3) and set
S ′ ⊆ V3 we have that PΠ(G1⊕G3, S∪S ′) if and only if PΠ(G2⊕G3, S∪S ′). If G1

and G2 are equivalent with respect to S we say that G1 ∼S G2. The canonical
equivalence relation for CMSO properties with free set variables has finite in-
dex [27, 39] and hence the number of equivalence classes of ∼S depends only on t
for every fixed https://www.easychair.org/login.cgi?a=a01749b032b2;iid=12978
S ⊆ ∂(G1). We make a new equivalence relation defined on the set of t-boundaried
graphs belonging to a graph class G. Two t-boundaried graphs G1, G2 ∈ Gg are
equivalent if

• for every t-boundaried graph G3, G1 ⊕G3 is legal if and only if G2 ⊕G3 is
legal; and

• for every S ⊆ ∂(G1) = ∂(G2), G1 ∼S G2.

Now, ∼S has a finite number of equivalence classes for every S ⊆ ∂(G1) and the
class Gg is characterized by a finite set of forbidden minors. Hence the number
of equivalence classes in the equivalence relation defined above is a function of t.
Let S be a set of r-boundaried graphs containing one smallest representative for
each equivalence class of the relation above. Let c the size of the largest graph
in S. We have that X is a r-boundaried graph with boundary ∂(X). Let G1 be
a graph in S such that G1 and G[X] are equivalent.
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Now we replace G[X] with G1 = (V1, E1) in the graph G, and let the resulting
graph be G∗ = (V ∗, E∗). Let Y1 be the set of black vertices in ∂(G1). We let
Y ∗ = Y \X ∪ Y1 be the set of black vertices in G∗. Since |X| > c, we have that
|V1| < |X| and hence |V ∗| < |V |. It remains to prove that (G, k) ∈ Πα if and
only if (G∗, k) ∈ Πα. In one direction, suppose there is a set S ⊆ Y such that
PΠ(G, S) holds. Then S ∩ X ⊆ ∂(G[X]) and since G[X] and G1 are equivalent
with respect to the relation above we have that PΠ(G∗, S) holds. In the other
direction, suppose PΠ(G∗, S) holds. Since Y ∗ ∩ V1 ⊆ ∂(G1) and G[X] and G1 are
equivalent with respect to the relation above, we have that PΠ(G, S) holds. This
concludes the proof.

Lemmata 8.1.5, 8.1.6 and 8.1.7 together yield a reduction rule for all annotated
p-min-CMSO problems.

Lemma 8.1.8 Let Πα be an annotated p-min-CMSO problem. There is a fixed
constant c depending only on Πα such that there is an algorithm that given a
graph G = (V,E) ∈ Gg, a set Y ⊆ V of black vertices, an integer k and an
extended r-protrusion X with |X| > ck, runs in time O(|X|), and produces a
graph G∗ = (V ∗, E∗) ∈ Gg such that |V ∗| < |V | and (G∗, k) ∈ Πα if and only if
(G, k) ∈ Πα.

Proof. The algorithm starts by applying Lemma 8.1.5 to X, thus making all
but at most ak black vertices uncolored for some fixed constant a. By Lemma
8.1.6, X = X1∪X2 . . .∪Xbk for some fixed constant b, where for every i, Xi is an
extended 4r-protrusion such that Y ∩Xi ⊆ ∂(Xi). By the pigeon-hole principle
some Xi has size at least |X|/bk > c/b. Choose c such that c/b is sufficiently
large to apply the algorithm in Lemma 8.1.7, and then apply Lemma 8.1.7 on the
extended protrusion Xi. This concludes the proof.

Reduction for Annotated p-eq-CMSO Problems

In this section we give a reduction rule for annotated p-eq-CMSO problems.
The rule is very similar to the one for the p-min-CMSO problems described in
the previous section. Therefore we only highlight the differences between the two
rules in our arguments. The main difference between the two problem variants
is that we need to keep track of solutions of every fixed size between 0 and k,
instead of just the smallest one in each class. Because of this we require the
protrusion to contain at least ck2 vertices instead of ck vertices, in order to be
able to reduce it.

Lemma 8.1.9 Let Πα be an annotated p-eq-CMSO problem. There is a fixed
constant c depending only on Πα such that there is an algorithm that given a
graph G = (V,E) ∈ Gg, a set Y ⊆ V of black vertices, an integer k and an
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extended r-protrusion X with |X| > ck2, runs in time O(k|X|), and produces a
graph G∗ = (V ∗, E∗) ∈ Gg such that |V ∗| < |V | and (G∗, k) ∈ Πα if and only if
(G, k) ∈ Πα.

Proof. We show that if Y ∩ X ≥ ak2 for some fixed constant k, then we can
remove some vertices from Y preserving the answer. The proof proceeds almost
as the proof of Lemma 8.1.5. The main difference is that now, instead of taking a
minimum size representative from each equivalence class we consider all possible
sizes for S between 0 and k, for each equivalence class. That is, for each ℓ,
0 ≤ ℓ ≤ k, and each equivalence class q, we make a set Qq,ℓ ⊆ X from the class
with |Qq,ℓ| = ℓ. Now, set

Z =
⋃

q∈Q,0≤ℓ≤k,|Qq,ℓ|=ℓ

Qq,ℓ .

In the dynamic programming algorithm, we must also have one table entry for
each class and each size. This gives a running time of O(k|X|) for the first part
of the reduction rule.

Next, we remove all vertices in X \ Z from Y and apply Lemma 8.1.6. This
gives us X = X1 ∪X2 . . . ∪Xbk2 for some constant b, where for every i, Xi is an
extended 4r-protrusion with Z ∩Xi ⊆ ∂(Xi).

By the pigeon-hole principle some Xi has size at least |X|/bk2 > c/b. Choose
c such that c/b is sufficiently large to apply the algorithm in Lemma 8.1.7, and
then we apply Lemma 8.1.7 on the extended protrusion Xi. This concludes the
proof.

Reduction for Annotated p-max-CMSO Problems

We now give a reduction rule for annotated p-max-CMSO problems. The rule
is still similar to the ones described in the two previous sections, but differs more
from the p-min-CMSO problems than p-eq-CMSO did.

Lemma 8.1.10 Let Πα be an annotated p-max-CMSO problem. There is a
fixed constant c depending only on Πα such that there is an algorithm that given
a graph G = (V,E) ∈ Gg, a set Y ⊆ V of black vertices, an integer k and an
extended r-protrusion X with |X| > ck, runs in time O(|X|), and produces a
graph G∗ = (V ∗, E∗) ∈ Gg such that |V ∗| < |V | and (G∗, k) ∈ Πα if and only if
(G, k) ∈ Πα.

Proof. We again begin in a manner similar to the proof of Lemma 8.1.5. The
main ingredient in the proof of Lemma 8.1.5 is that for a given extended r-
protrusion X, we consider the equivalence relation ∼ on subsets Q ⊆ X, where
we demand that Q ∼ Q′ if and only if for all R ⊆ V −X: PΠ(Q∪R) ⇔ PΠ(Q′ ∪
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R). The number of equivalence classes of ∼ is bounded, but for maximization
problems we need to keep the largest representative of each class. Hence we can
not guarantee that the union of all the representatives we store is bounded by a
function of k. To overcome this difficulty we use the expressive power provided
by annotation. We compute a largest representative Qq ⊆ X for each equivalence
class q of ∼. Then, we build a vertex set Z ⊆ X ∩ Y as follows. For each
non-empty equivalence class q, if |Qq ∩ Y | ≤ k, then we add Qq ∩ Y to Z. If
|Qq ∩ Y | > k, then we select arbitrarily a k-sized subset of Qq ∩ Y and add it to
Z. Thus |Z| ≤ ak for some constant a. We remove all vertices in X \ Z from Y ,
without changing the membership of (G, k) in Πα.

Next we apply Lemma 8.1.6 on X. This gives us X = X1 ∪ X2 . . . ∪ Xbk

for some constant b, where for every i, Xi is an extended 4r-protrusion with
Z ∩Xi ⊆ ∂(Xi).

We now describe how to modify Lemma 8.1.7 so that it can also be applied
to annotated p-max-CMSO problems. For a set S ⊆ Y we define P ′

Π(G, S) as
there exists a set S ′ containing S such that PΠ(G, S ′) holds. Clearly (G, k) ∈ Πα

if and only if there is a set S ⊆ Y of size k such that P ′
Π(G, S). If the relation

∼S in Lemma 8.1.7 is defined using P ′
Π(G, S) instead of PΠ(G, S), the proof goes

through also for annotated p-max-CMSO problems.

By the pigeon-hole principle some Xi has size at least |X|/bk > c/b. Choose
c such that c/b is sufficiently large to apply the algorithm in the modified version
of Lemma 8.1.7, and then apply the modified version of Lemma 8.1.7 to p-max-
CMSO problems on the extended protrusion Xi. This concludes the proof.

Reductions Based on Finite Integer Index

In the previous sections we gave reduction rules for annotated p-min/eq/max-
CMSO problems. These reduction rules, together with the results proved later
in this article will give quadratic or cubic kernels for the problems in question.
However, for many problems we can in fact show that they admit a linear kernel.
In this section we provide reduction rules for graph problems that have finite
integer index. These reduction rules will yield linear kernels for the problems
they apply to. We are now ready to prove the reduction lemma for problems that
have finite integer index.

Lemma 8.1.11 Let Π ⊆ Gg × N be problem with finite integer index in Gg such
that either Π or Π is quasi-compact. There exists a constant c and an algorithm
that given a graph G = (V,E) ∈ G, an integer k and an extended r-protrusion X
in G with |X| > c, runs in time O(|X|) and returns a graph G∗ = (V ∗, E∗) ∈ Gg

and an integer k∗ such that |V ∗| < |V |, k∗ ≤ k and (G∗, k∗) ∈ Π if and only if
(G, k) ∈ Π.
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Proof. Let S be a set of representatives for (Π, r) and let c = maxY ∈S |Y |.
Similarly let S ′ be a set of representatives for (Π, 2r) and let c′ = maxY ∈S′ |Y |.
If |X| > 3c′ we find an extended 2r-protrusion X ′ ⊆ X such that c′ < |X ′| ≤ 3c′

and work on X ′ instead of X. This can be done in time O(|X|) since G[X] has
treewidth at most r. From now on, we assume that |X| ≤ 3c′. This initial step is
the only step of the algorithm that does not work with constant size structures,
and hence the running time of the algorithm is upper bounded by O(|X|). The
algorithm proceeds as follows.

Because Π has finite integer index there is a graph H = (VH , EH) ∈ S such
that H ≡Π G[X]. We show how to compute H from X. Let kmax = (6c′)p where
p is the smallest constant that satisfies the conditions for Π or Π being quasi-
compact. For every G1 = (V1, E1) ∈ S, G2 = (V2, E2) ∈ S and k′ ≤ kmax we
compute whether (G1 ⊕G2, k

′) ∈ Π. For each such triple the computation can be
done in time O((|V1| + |V2|)p) since Π has finite integer index [25, 41]. Now, for
every G1 ∈ S and k′ ≤ (|X| + |V1|)p we compute whether (G[X] ⊕ G1, k

′) ∈ Π.
When all these computations are done, the results are stored in a table.

It is not hard to see that H ≡Π G[X] if and only if there exists a constant c
such that for allG2 ∈ S and k′ ≤ kmax, (H⊕G2, k

′) ∈ Π ⇔ (G[X]⊕G2, k
′+c) ∈ Π.

Also, c is the constant such that for all r-boundaried graphs G2 and and integers
k′, (H ⊕ G2, k

′) ∈ Π ⇔ (G[X] ⊕ G2, k
′ + c) ∈ Π. For each H ∈ C we can check

whether H ≡Π G[X] using this condition and the pre-computed table, and if
H ≡Π G[X], find the constant c.

After we have found a H ∈ S and the corresponding constant c, such that
H ≡Π G[X], we make G∗ from G by replacing the extended r-protrusion X with
H . Also, we set k∗ = k − c. Since |X| > c and H has at most c vertices,
|V ∗| < |V |. By the choice of H and c, (G∗, k∗) ∈ Π if and only if (G, k) ∈ Π.
This concludes the proof.

8.1.2 Decomposition Theorems

Definition 8.1.12 We say that a graph G = (V,E) is (α, β, γ)-structured around
S if |S| ≤ α and V can be partitioned into S,C1, C2, . . . , Cγ such that NG(Ci) ⊆ S,
and max{|NG(Ci)|, tw(G[Ci ∪NG(Ci)])} ≤ β, for every i = 1, . . . , γ.

Let G = (V,E) be a graph embedded in some surface Σ. A noose in G is a
closed curve N of Σ meeting only the vertices of G, we denote these vertices by
VN = V ∩ N . We also define the length of N as the number of vertices it meets
and we denote it by |N |, that is, |N | = |VN |. The face-width of G is the minimum
length of a non-contractible noose in G. We denote the Euler genus of a surface
Σ by eg(Σ).

Lemma 8.1.13 Let G = (V,E) be a graph in Gg and let S ⊆ V such that
Br

G(S) ≤ q. Then, tw(G) ≤ 4(2r + 1)
√
q + 2g + 8r + 12g.
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Proof. The result follows closely the argument of the proof of [44, Theorem 3.2]
that, in turn, is based on [44, Lemma 3.1] about the distribution of every such
set S in the interior of a (ρ × ρ)-grid. As now we have graphs of higher genus
we have to apply [47, theorem 4.7] and find a lower bound to the size of S in the
graph obtained by a (ρ× ρ)-grid after adding O(g) edges.

From now on, we set f(r, g) = 4(2r + 1)
√

2 + 2g + 8r + 12g.

Lemma 8.1.14 Let G = (V,E) be a graph, embedded in a surface Σ of Euler
genus g such that either g = 0 or the face-width of G is strictly greater than
4r+2. Let S ⊆ V be a set containing at least 3 vertices where Br

G(S) = V . Then
there exists a set S ′ ⊆ V such that S ⊆ S ′ and G is (r · (4r + 2) · (3|S| − 6 +
6g), f(r, g), r · (3|S| − 6 + 6g))-structured around S ′.

Proof. We first need the following claim.
Claim: Let G = (V,E) be a graph, embedded in a surface Σ of Euler genus g
such that either g = 0 or the face-width of G is more than 4r + 2. Let S be a
set of at least 3 vertices such that Br

G(S) = V . Then there is a collection R of
closed subsets of Σ, also known as regions, such that

• If two sets in R have common points, then these points lay on their bound-
aries.

• ⋃R∈RR ∩ V = V .

• The boundary of each R ∈ R is the union of two paths of length ≤ 2r + 1
between two vertices of S called the anchors of R. We denote the set of
vertices on the boundary of R by bor(R).

• For each R ∈ R with u and v as anchors it holds that R∩ V ⊆ Br
G({u, v}).

• For each R ∈ R with u and v as anchors it holds that S ∩ R = {u, v}.
• |R| ≤ r · (3|S| + 6g − 6).

The above claim follows from [79, Lemma 1] for the case where g = 0. For the sake
of completeness, we briefly present this proof together with its natural extension
for embeddings of higher genus provided that the face-width of G is > 4r + 2.
A collection R of closed subsets of Σ is constructed by a greedy algorithm as
follows: Start with an empty R and, as long as there are vertices not contained
in some region R in R, find a area-maximal region R defined by two paths of
length ≤ 2r + 1 between two vertices in S (its anchors) that do not contain any
vertex in S and add it to R. Notice that such a region R always exists even for
non-planar embeddings, provided that the face-width ofG is bigger than 4r+2, as
this region is always inside a big enough disk of the surface. To prove the claimed
upper bound on the size of R, consider a multigraph GR (again embedded in Σ)
with vertex set S and there is an edge between u, v ∈ S whenever u and v are the
anchors of some region R ∈ R. Notice that GR is also embedded in Σ and has
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face-width bigger than 1. This in turn implies that if two vertices u, v are joined
by many copies of the same edge in GR, then a pair of these edges will define a
disk ∆ in Σ containing in its interior all other copies. Moreover, we may assume
that Σ \ ∆ contains a vertex w of S (this is necessary in case G has no planar
embedding). We claim that the following thinness property holds: if there are
x ≥ 2r copies of the edge {u, v}, then there exists a vertex w′ ∈ S laying in the
interior of one of the the x−1 ≥ 2r−1 area minimal disks ∆1, . . . ,∆x defined by
the copies of {u, v} inside ∆ (the order is chosen such that consecutive disks have
common edges). We prove this using the argument of the proof of [79, Lemma
1]. Assume to the contrary and consider the disk ∆r. Indeed, by area-maximally
of the choice of the regions in the above greedy procedure, it follows that ∆r

contains a vertex z ∈ V whose distance in G from u and v and every other vertex
in S is bigger than r, a contradiction. This implies that there exists a vertex
w′ ∈ S laying in the interior of one of the the x − 1 ≥ 2r − 1 area minimal
disks ∆1, . . . ,∆x defined by the copies of {u, v} inside ∆. Using the thinness
property of GR (see also [5, Lemma 5]) along with the Euler formula for graphs
embedded in higher genus surfaces, we derive the claimed bound for |R| and the
claim follows.

To complete the proof of the lemma, we define S ′ =
⋃

R∈R bor(R) ∩ V , that
is, S ′ contains all the vertices belonging to the boundary of the sets in R. As
each such boundary is the union of two (u, v)-paths of length ≤ 2r + 1 where
u, v ∈ S, we have that such a boundary can have at most 4r + 2 vertices. As
|R| ≤ r · (3|S| + 6g − 6), we obtain that |S ′| ≤ r · (4r + 2) · (3|S| − 6 + 6g). For
each Ri ∈ R assign a set Ci containing each connected component C = (VC , EC)
of G \S ′ for which NG(VC) ⊆ bor(R). If a connected component of G \S ′ can be
assigned to more than one Ri, break ties arbitrarily so that {Ci, i = 1, . . . , |R|}
forms a partition of the set of the connected components of G \ S ′. Notice that
for each C ∈ Ci, NG(VC) ⊆ Ri ⊆ S ′ and if we set Ci = ∪C∈Ci

VC we have that
NG(Ci) ⊆ Ri ⊆ S ′ and thus |NG(Ci)| ≤ 4r + 2 ≤ f(r, g) (for i = 1, . . . , |R|).
It remains to prove that if Ji = G[Ci ∪ NG(Ci)] then tw(Ji) ≤ f(r, g). For
this, recall that R ∩ V ⊆ Br

G({u, v}) and from Lemma 8.1.13, we obtain that
tw(Ji) ≤ f(r, g), (for j = 1, . . . , |R|).

We are now in position to prove the following.

Lemma 8.1.15 Let G = (V,E) be a graph, embedded in a surface Σ of Euler
genus g and let S ⊆ V , |S| ≥ 3 such that Rr

G(S) = V for some r ≥ 0. Then there
exists a set S ′ such that S ⊆ S ′ and G is (h(r, g)·|S|, h(r, g), h(r, g)·|S|)-structured
around S ′, where h(r, g) = O(rg).

Proof. We use induction on g. In particular, we prove that there exists a set
S ′ ⊆ V such that G is (αg,|S|, βg, γg,|S|)-structured around S ′ where, for g = 0, we
set α0,x = r · (4r+ 2) · (3x− 6), β0 = f(r, 0) and γ0,x = r · (3x− 6) and for g ≥ 1
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we have αg,x = (2g − 1) · r · 6(4r + 2)2 + r · (4r + 2) · (3x+ 6g − 6), βg = f(r, g)
and γg,x = (2g−1) · r · 6(4r+2)+ r · (3x+6g−6). Once we have proved this, the
lemma follows by suitably choosing the function h. For our proof we distinguish
two cases:

Case 1. g = 0 or the embedding of G has face-width > 4r + 2. Then we
draw G together with its radial graph RG = (VR, ER) and denote it by G =
G∪RG = (V ,E), the superposition of the two drawings. By the definition of the
radial graph, it follows that Br

G
(S) = V . Clearly, as G is a subgraph of G, the

result will follow if we prove that G is (αg,|S|, βg, γg,|S|)-structured around some
set S ′ ⊆ VR. If G is embeddable in the sphere, then G is also embeddable in the
sphere and if G is embeddable in a surface Σ of Euler genus g > 4r + 2 then the
face-width of G is also greater than 4r + 2. Therefore, in either case we have all
the conditions required to apply Lemma 8.1.14 and hence the claim follows by
applying Lemma 8.1.14.

Case 2. There is a non-contractible noose N in Σ of length at most 4r+2. Then
we split the graph along the vertices VN of the noose and we distinguish two
subcases depending if N is a surface separating or not.

Subcase 2.1. If N is a surface separating noose, then the splitting of the vertices
of N creates two graphs G1 = (V1, E1) and G2 = (V2, E2) embedded in surfaces
Σ1 and Σ2 respectively such that if eg(Σi) = gi, i = 1, 2 then g1 + g2 ≤ g and
g1 · g2 > 0. Let Si consists of the vertices in S ∩ Vi and all the (duplicated)
vertices met by N . Notice that Rr

Gi
(Si) = Vi and that |S1|+ |S2| ≤ 2|N |+ |S| ≤

2(4r + 2) + |S|.
By the induction hypothesis, Gi is (αgi,|Si|, βgi

, γgi,|Si|)-structured around some
set S ′

i where Si ⊆ S ′
i and gi > 1, i = 1, 2. Let G+ be the disjoint union of G1

and G2 and observe that G+ is (αg1,|S1| + αg2,|S2|,max{βg1, βg2}, γg1,|S1| + γg2,|S2|)-
structured around S ′

1 ∪ S ′
2. Notice that

αg1,|S1| + αg2,|S2| ≤ (2g1 − 1 + 2g2 − 1) · r · 6(4r + 2)2 +

r · (4r + 2)(3|S1| + 3|S2| + 6g1 + 6g2 − 12)

≤ (2g1 + 2g2 − 2) · r · 6(4r + 2)2 +

r · (4r + 2)(3(2(4r + 2) + |S|) + 6g − 6)

≤ (2g1 + 2g2 − 1) · r · 6(4r + 2)2 − r · 6(4r + 2)2 +

r · 6(4r + 2)2 + r · (4r + 2) · (3|S| + 6g − 6)

≤ (2g − 1) · r · 6(4r + 2)2 + r · (4r + 2) · (3|S| + 6g − 6)

= αg,|S|

Similarly, we can show that γg1,|S1| + γg2,|S2| ≤ γg,|S| and, as max{βg1, βg2} ≤ βg,
we conclude that G+ is (αg,|S|, βg, γg,|S|)-structured around S ′

1 ∪ S ′
2. As all the

duplicated vertices of VN are in S1 ∪ S2, we can identify back these duplicated
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vertices occuring in S1 and S2 and obtain that G is (αg,|S|, βg, γg,|S|)-structured
around some set S ′.

Subcase 2.2. If N is not a surface separating noose, then the splitting of the
vertices of N creates a new graph G0 = (V0, E0) embedded in a surface Σ0 of Euler
genus g0 where g0 < g. Notice that if S0 is the set of vertices inG0 consisting of the
non-duplicated vertices of S and all the duplicated vertices, then Rr

G0
(S0) = V0

and |S0| ≤ 2|N | + |S| ≤ 2(4r + 2) + |S|. From the induction hypothesis G0 is
(αg0,|S0|, βg0, γg0,|S0|)-structured around some set S ′

0 where S0 ⊆ S ′
0. Notice that

αg0,|S0| ≤ (2g0 − 1) · r · 6(4r + 2)2 + r · (4r + 2) · (3|S0| + 6g0 − 6)

≤ (2(g − 1) − 1) · r · 6(4r + 2)2 + r · (4r + 2) · (3(2(4r + 2) + |S|) + 6g − 6)

≤ (2g − 1) · r · 6(4r + 2)2 − 2 · r · 6(4r + 2)2 +

r · 6(4r + 2)2 + r · (4r + 2) · (3|S| + 6g − 6)

(2g − 1) · r · 6(4r + 2)2 + r · (4r + 2) · (3|S| + 6g − 6)

= αg,|S|

and similarly γg0,|S0| ≤ γg,|S|. As βg0 ≤ βg, we conclude thatG0 is (αg,|S|, βg, γg,|S|)-
structured around S ′

0. As all the duplicated vertices of VN are in S0, we can
identify them back and deduce that G is (αg,|S|, βg, γg,|S|)-structured around some
set S ′. This concludes the proof.

8.1.3 Kernels

Armed with the tools developed in the previous two sections, we are now ready
to prove Theorems 8.1.1 and 8.1.3. We say that an instance (G′, k′) of a parame-
terized problem Π is reduced with respect to a set Q of reduction rules if none of
the reduction rules in Q can be applied to (G′, k′).

Proof of Theorem 8.1.1

Proof. We first give a proof for the case when Π is compact and Πα is an
annotated p-min-CMSO problem. A proof for the case when Π is compact and
Πα is an annotated p-eq/max-CMSO problem is identical.

We know that Π is compact and hence there exists an integer r such that
for all (G = (V,E), k) ∈ Πα, there is an embedding of G into a surface of genus
at most g, and a set S ⊆ V such that Rr

G(S) = V and |S| ≤ r · k. We show
that for all (G, k) ∈ Πα, the equivalent instance (G′ = (V ′, E ′), k), reduced with
respect to the reduction rule given by Lemma 8.1.8, has |V ′| = O(k2). Since
(G′ = (V ′, E ′), k) ∈ Πα and Π is compact, there exists an embedding of G′ into
a surface of genus at most g and a set S ⊆ V ′ such that Rr

G′(S) = V ′. Hence
by applying Lemma 8.1.15 we obtain a set S ′ such that G′ is (α, β, γ)-structured
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around S ′, where α, γ = O(rg|S|) and β = O(rg). This implies that V ′ can be
partitioned into S ′, C1, C2, . . . , Cγ such that NG′(Ci) ⊆ S ′, |NG′(Ci)| ≤ β and
tw(G′[Ci ∪NG(Ci)]) ≤ β for every i ≤ γ. Observe that each Ci is a β-protrusion
in G′ and |Ci ∪ NG(Ci)| ≤ ck, where c is a constant of Lemma 8.1.8, otherwise
we could have applied Lemma 8.1.8. This implies that

|V ′| ≤ |S ′| +
γ∑

i=1

|Ci| = O

(
rg|S|+

γ∑

i=1

ck

)
= O(k2),

for some fixed g and r. Here constants hidden in big-Oh depend only on r and g.
So given an input (G, k), if the size of the reduced graph is more than c∗k2 for

some constant c∗ then we return NO else we have G′ as the desired annotated
kernel for G.

Now we give a proof for the case when Π is compact and Πα is an annotated
p-max-CMSO problem. A proof for the case when Π is compact and Πα is
an annotated p-min/eq-CMSO problem is similar. Towards this end, we claim
that for all (G, k) ∈ Π

α
, the equivalent instance (G′ = (V ′, E ′), k), reduced with

respect to the reduction rule given by Lemma 8.1.10, has |V ′| = O(k2). The
proof for the claim is identical to the one we gave above to bound all the YES
instance for an annotated compact p-min-CMSO problem. So given an input
(G, k), if the equivalent instance (G′ = (V ′, E ′), k), reduced with respect to the
reduction rule given by Lemma 8.1.10, is more than c∗k2 for some constant c∗

then we return YES else we have G′ as the desired annotated kernel for G. The
reason we return YES is that if (G, k) would have a NO instance then the size
of |V ′| ≤ c∗k2 as (G, k) ∈ Π

α
.

Proof of Corollary 8.1.2

Proof. We know that Π is NP-complete and the annotated version Πα is in NP.
So given an instance (G = (V,E), k), we apply Theorem 8.1.1 on the annotated
instance (G = (V,E), V, k), that is we take V as Y , the set of black vertices. If we
get YES or NO as an answer then we return the same. Else for (G′ = (V ′, E ′), k)
of size polynomial in k, we apply polynomial time many to one reduction from
Πα to Π on G′ and obtain a graph G′′ = (V ′′, E ′′) ∈ Gg and an integer k′ such
that |V ′′|, k′ ≤ kO(1) and (G′, k) ∈ Πα if and only if (G′′, k′) ∈ Π. This implies
that in this case we have polynomial kernel for Π.

Proof of Theorem 8.1.3

The idea of the proof is that if a problem has finite integer index then an in-
stance reduced with respect to the reduction rule given by Lemma 8.1.11 has
bounded radial distance. We first prove a lemma which will assist us in proving
Theorem 8.1.3.
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Lemma 8.1.16 Let G = (V,E) be a graph embedded into a surface of genus at
most g and S ⊆ V such that tw(G \Rr

G(S)) ≤ r and all r-protrusions of G have
size at most m. Then there exists a S ′ ⊆ V such that |S ′| ≤ |S|+ g · (m+2r+ 1)
and V = Rm+3r+1

G (S ′).

Proof. We prove the lemma using induction on Euler genus g of the graph
G \ Rr

G(S). We distinguish two cases:

Case 1. g = 0 or the embedding of G \ Rr
G(S) has face-width > m + 2r + 1.

We claim that V = Rm+3r+1
G (S), that is, S ′ = S. For this assume, towards a

contradiction, that x ∈ V \Rm+3r+1
G (S) and consider the subgraph J of G induced

by the set Rm+2r+1
G (x), that is, the vertices of G that are within radial distance

at most m+ 2r + 1 from x. Notice that J is a subgraph of G \Rr
G(S), therefore

tw(J) ≤ r. As either g = 0 or because the face-width of G is > m + 2r + 1, all
the vertices and edges of J are embedded inside a closed disk in Σ. Moreover,
there exist m + 2r + 1 nested disjoint cycles C1, . . . , Cm+2r+1 with vertex sets
V1, . . . , Vm+2r+1 respectively in RG such that, if ∆i is the closed disk with Ci as its
border and contains x then i < j implies that ∆i ⊂ ∆j . For i = 1, . . . , m+2r+1,
Vi contains vertices and faces whose radial distance from x, in G, is exactly i. We
need the following claim.
Claim. Each cycle of the radial graph RG that is entirely in (∆m+r+1 \ ∆m) and
separates S and x, has length > 2r.
Proof. Indeed, if this is not the case for some cycle C with vertex set VC , then
L = V ∩ VC is a separator of G where |L| ≤ r and such that the connected
component, say F , of G \ L that contains x is a subgraph of J . Then tw(F ) ≤
tw(J) ≤ r and F is an r-protrusion of G. As F contains x and has more than m
vertices, it is a contradiction to the assumption that all r-protrusions of G have
size at most m.

Applying the above claim to the cycles Cm+1, . . . , Cm+2r+1 we obtain that
they all have length > 2r. We now construct an auxiliary graph R∗ by taking
RG ∩ (∆m+r+1 \ ∆m), adding a vertex s adjacent to all vertices of Cm+1 and
adding a vertex t adjacent to all vertices in Cm+2r+1. We claim that there is no
(s, t)-separator in R∗ of size ≤ 2r. Indeed, such a separator would imply the
existence of a cycle C in RG of size ≤ 2r, a contradiction to the above claim. By
Menger’s theorem, it follows that there are > 2r disjoint (s, t)-paths in R∗ that
correspond to > 2r disjoint paths from the vertices of Cm+1 to the vertices of
Cm+2r+1. The intersection of these paths with cycles Cm+1, . . . , Cm+2r+1, imply
the existence of a (2r + 1) × (2r + 1)-grid as a minor of RJ , where RJ is the
radial graph corresponding to J . Therefore, tw(RJ) > 2r (from [19, Lemma 88]),
which, using [98, Lemma 3], implies that tw(J) > r, a contradiction.

Case 2. There is a non-contractible noose N , meeting the vertices of V in VN ,
in G \ Rr

G(S) of length at most r′ = m + 2r + 1 (assume that G \ Rr
G(S) is

embedded in a surface Σ). Let S ′′ = S ∪ VN . Observe that tw(G \ Rr
G(S ′′)) ≤ r
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and all r-protrusions of G have size at most m. Furthermore let Σ′ be the surface
in which G \ Rr

G(S ′′) can be embedded. Then eg(Σ′) < eg(Σ) ≤ g. Hence by
induction hypothesis, there exists a set S ′ such that

|S ′| ≤ |S ′′|+(g−1)(m+2r+1) ≤ |S|+|VN |+(g−1)(m+2r+1) ≤ |S|+g(m+2r+1),

and V = Rm+3r+1
G (S ′). This concludes the proof.

We are now in position to give the proof of Theorem 8.1.3.

Proof. Let us assume that Π is quasi-compact. Fix t = c∗rg where c∗ is a
constant to be defined later. Let (G′ = (V ′, E ′), k′), k′ ≤ k, be a reduced instance
with respect to reduction rule given by Lemma 8.1.11. Hence there is no extended
t-protrusion of size more than c, where c is a constant appearing in the statement
of Lemma 8.1.11 and (G, k) ∈ Π if and only if (G′, k′) ∈ Π and G′ ∈ Gg. Hence,
what remains to show is that |V ′| = O(k). The proof for this is similar to the
one given for Theorem 8.1.1.

Now we show that if (G′ = (V ′, E ′), k′) ∈ Π then |V ′| ≤ O(k). Since Π is
quasi-compact and (G′, k′) ∈ Π, there is an embedding of G into a surface of genus
at most g and a set S ⊆ V ′ such that |S| ≤ r · k′ and tw(G′ \Rr

G′(S)) ≤ r. Since
all t-protrusions of G′ are of size most c we have that all r-protrusions of G′ are of
size at most c. Hence by Lemma 8.1.16 there exists a set S ′ such that |S ′| ≤ |S|+
g ·(c+2r+1) and V ′ = R3r+c+1

G′ (S ′). Given S ′, we apply Lemma 8.1.15 and obtain
a set S ′′ such that G′ is (α, β, γ)-structured around S ′′, where α, γ = O(rg|S ′|)
and β = O(rg). This implies that V ′ can be partitioned into S ′′, C1, C2, . . . , Cγ

such that NG′(Ci) ⊆ S ′′, |NG′(Ci)| ≤ β and tw(G′[Ci ∪ NG′(Ci)]) ≤ β for every
i ≤ γ. Fix c∗ such that t ≥ β. This implies that G′[Ci∪NG′(Ci)] is a t-protrusion
of G′ and hence its size is bounded by c. Now we are ready to bound the size of
V ′.

|V ′| ≤ |S ′′| +
γ∑

i=1

|Ci| ≤ |S ′′| + γ · β · c = O(r3g3c2k) = O(k),

for fixed r, g and c. So given an input (G, k), if the size of the reduced graph is
more than c̃ · k for some c̃, we return NO else we have G′ as the desired kernel.

The proof for the case when Π is quasi-compact is similar to the proof we
gave for the case when Π was compact and Πα was an annotated p-max-CMSO
problem in Theorem 8.1.1. This concludes the proof.

8.1.4 Implications of Our Results

In this section we mention a few parameterized problems for which we can obtain
either polynomial or linear kernel using either Theorem 8.1.1 or Theorem 8.1.3.
Various other problems for which we can obtain either polynomial or linear kernels
using our results are mentioned in appendix.
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A Sufficient Condition for Finite Integer Index

We first give a sufficient condition which implies that a large class of p-min/max-
CMSO problems has finite integer index. We prove it here for vertex versions
of p-min/max-CMSO problems that is if Π is a p-min/max-CMSO problem
then PΠ is a property of vertex sets. The edge version can be dealt in a similar
manner.

Let Π be a p-min-CMSO problem and Ft be the set of pairs (G = (V,E), S)
where G is a t-boundaried graph and S ⊆ V . For a t-boundaried graph G =
(V,E) we define the function ζG : Ft → N ∪ {∞} as follows. For a pair (G′ =
(V ′, E ′), S ′) ∈ Ft, if there is no set S ⊆ V (S ⊆ E) such that PΠ(G⊕G′, S ∪ S ′)
holds, then ζG((G′, S ′)) = ∞. Otherwise ζG((G′, S ′)) is the size of the smallest
S ⊆ V (S ⊆ E) such that PΠ(G ⊕ G′, S ∪ S ′) holds. If Π is a p-max-CMSO
problem then we define ζG((G′, S ′)) to be the size of the largest S ⊆ V (S ⊆ E)
such that PΠ(G⊕ G′, S ∪ S ′) holds. If there is no set S ⊆ V (S ⊆ E) such that
PΠ(G⊕G′, S ∪ S ′) holds then ζG((G′, S ′)) = ∞.

Definition 8.1.17 A p-min-CMSO problem Π is said to be strongly monotone
if there exists a function f : N → N such that the following condition is satisfied.
For every t-boundaried graph G = (V,E), there is a subset S ⊆ V such that for
every (G′ = (V ′, E ′), S ′) ∈ Ft such that ζG((G′, S ′)) is finite, PΠ(G⊕G′, S ∪ S ′)
holds and |S| ≤ ζG((G′, S ′)) + f(t).

Definition 8.1.18 A p-max-CMSO problem Π is said to be strongly monotone
if there exists a function f : N → N such that the following condition is satisfied.
For every t-boundaried graph G = (V,E), there is a subset S ⊆ V such that for
every (G′ = (V ′, E ′), S ′) ∈ Ft such that ζG((G′, S ′)) is finite, PΠ(G⊕G′, S ∪ S ′)
holds and |S| ≥ ζG((G′, S ′)) − f(t).

Lemma 8.1.19 Every strongly monotone p-min-CMSO and p-max-CMSO prob-
lem has finite integer index.

Proof. We prove for p-min-CMSO problems, the proof for p-max-CMSO is
similar. Let Π be a monotone p-min-CMSO problem. Then PΠ is a finite
state property of t-boundaried graphs with a distinguished vertex set S [27, 39].
In particular for every t, there exists a finite set S of pairs (G, S) such that
G = (V,E) is a t-boundaried graph and S ⊆ V such that the set S satisfies
the following properties. For any t-boundaried graph G1 = (V1, E1) and set
S1 ⊆ V1 there is a pair (G2 = (V2, E2), S2) ∈ S such that for every t-boundaried
graph G3 = (V3, E3) and set S3 ⊆ V3 we have that PΠ(G1 ⊕ G3, S1 ∪ S3) ⇐⇒
PΠ(G2 ⊕G3, S2 ∪ S3). We fix such a set S.

For a t-boundaried graph G = (V,E) we define the signature ζSG : S →
N ∪ {∞} of G to be ζG with domain restricted to S. We now argue that for
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any t-boundaried graph G, the maximum finite value of ζSG is at most f(t) larger
than the minimum finite value taken by ζSG. Since Π is strongly monotone there
exists a subset S of V that satisfies the conditions of Definition 8.1.17. Let (G′ =
(V ′, E ′), S ′) ∈ S such that ζSG((G′, S ′)) is finite. Then PΠ(G⊕G′, S∪S ′) holds and
hence ζSG((G′, S ′)) ≤ |S|. Furthermore the conditions of Definition 8.1.17 imply
that |S|−f(t) ≤ ζSG((G′, S ′)) ≤ |S|. Hence the minimum and the maximum finite
values of ζSG can differ by at most f(t). By the pigeon hole principle there is a
finite set R of t-boundaried graphs such that for any t-boundaried graph G there
is a GR ∈ R and a constant cR depending only on the size of G and GR, such
that for all (G′, S ′) ∈ S we have ζGR

((G′, S ′)) + cR = ζG((G′, S ′)).
We now argue that R forms a set of representatives for (Π, t). Let G = (V,E)

be a t-boundaried graph and let GR = (VR, ER) ∈ R and cR be a constant such
that for all (G′, S ′) ∈ S we have ζGR

((G′, S ′)) + cR = ζG((G′, S ′)). Let G′ =
(V ′, E ′) be a t-boundaried graph and k be an integer such that (G⊕G′, k) ∈ Π.
We argue that (GR⊕G′, k−cR) ∈ Π. Let Z ⊆ V ∪V ′ be a minimum size set such
that PΠ(G⊕G′, Z) is satisfied, Z ′ = Z∩V ′ and ZG = Z\Z ′. Since (G⊕G′, k) ∈ Π
we have that |Z| ≤ k and hence ζG(G′, Z ∩ V ′) is finite. Let (GS , ZS) ∈ S be
the representative of (G′, Z ′). Then PΠ(G ⊕ GS , ZG ∪ ZS) holds and |ZG| =
ζG(GS , ZS). Now we have that ζGR

((GS , ZS)) + cR = ζG((GS , ZS)). Hence, there
is a set SR ⊆ VR of size |ZG|−cR such that PΠ(GR⊕GS , SR∪ZS) holds. Then, since
(GS , ZS) is the representative of (G′, Z ′) we have that PΠ(GR⊕G′, SR∪Z ′) holds.
Now we have that |SR ∪Z ′| ≤ |SR|+ |Z ′| = |ZG| − cR + |Z ′| = |Z| − cR ≤ k− cR.
This implies that (GR ⊕ G′, k − cR) ∈ Π. The proof for the other direction that
if (GR ⊕G′, k − cR) ∈ Π then (G⊕G′, k) ∈ Π is symmetric. This concludes the
lemma.

Covering and Packing Problems

Minor Covering and Packing: We give below a few generic problems which
subsumes many problems in itself and fit in our kernelization framework. Let H
be a finite set of connected planar graphs.

Vertex-H-Covering
Input: A graph G = (V,E) ∈ Gg and a non-negative integer k.
Question: Is there an S ⊆ V such that |S| ≤ k and G[V \ S] does not contain

any of the graphs in H as a minor?

Vertex-H-Packing
Input: A graph G ∈ Gg and a non-negative integer k.
Question: Does there exist k vertex disjoint subgraphs G1, . . . , Gk of G such

that each of them contains some graph in H as a minor?
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Lemma 8.1.20 Let H be a finite set of connected planar graphs and let Π1 denote
Vertex-H-Packing. Then Vertex-H-Covering has finite integer index and
is quasi-compact and Vertex-H-Packing has finite integer index and Π1 is
quasi-compact.

Proof. Let Πv denote Vertex-H-Covering. We first show that Πv is quasi
compact. If (G = (V,E), k) ∈ Πv then we know that there exists a set S ⊆ V
such that G[V \S] does not contain any graph in H as a minor. Now we show that
the treewidth of G[V \ S] is at most a constant. To show this we need following
results.

• Every planar graph H = (VH , EH) is a minor of the r × r grid, where
r = 14|VH | − 24 [123].

• For any fixed graph H , every H-minor free graph that does not contain a
w × w grid as a minor has treewidth O(w) [45].

Let q = max{|H| | H ∈ H} and w = 14q − 24. Then observe that G[V \ S] does
not contain w×w grid as a minor and hence tw(G[V \S]) ≤ O(w). This implies
that Πv is quasi-compact.

Next we show that Π1 is quasi-compact. We first introduce some definitions.
Given a graph G = (V,E), we define the covering number of G with respect to
the class H, covH(G), as the minimum k such that there exists S ⊆ V of size
k such that G[V \ S] does not contain any of the graphs in H as a minor. The
packing number of G with respect to the class H, is defined as,

packH(G) = max{k | ∃ a partition V1, . . . , Vk of V such that

∀i∈{1,...,k}G[Vi] contains a graph in H as a minor}.

Less formally, packH(G) ≥ k if G contains k vertex-disjoint minors in H. We
need the following Erdős-Pósa type of result shown in [67] for our purpose.

Claim 8.1.21 Let H be a finite set of connected planar graphs, q = max{|H| | H ∈
H} and G be a non-trivial minor-closed graph class. Then there is a constant σG,q

depending only on G and q such that for every graph G ∈ G, it holds that

packH(G) ≤ coverH(G) ≤ σG,q · packH(G).

Using Claim 8.1.21 we show that Π1 is quasi-compact. Observe that if (G, k) ∈ Π1

and (G, k + 1) /∈ Π1, then by Claim 8.1.21, coverH(G) = O(k). Hence by an
argument, similar to the one used for showing that Πv is quasi-compact, we have
that Π1 is quasi-compact.

It is known that Πv is a p-min-CMSO problem and Π1 is a p-max-CMSO
problem. Now using Lemma 8.1.19 we show that Πv is finite integer index. We
show that Πv is strongly monotone. Given a t-boundaried graph G = (V,E),
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with ∂(G) as its boundary, let S ′′ ⊆ V be a minimum set of vertices in G such
that G[V \S ′′] does not contain any graph in H as a minor. Take S = S ′′∪∂(G).
Now for any (G′ = (V ′, E ′), S ′) ∈ Ft such that ζG((G′, S ′)) is finite we have that
G ⊕ G′[(V ∪ V ′) \ (S ∪ S ′)] does not contain any graph in H as a minor and
|S| ≤ ζG((G′, S ′)) + t. This proves that Πv is strongly monotone.

Next we show that Π1 is finite integer index. Given a t-boundaried graph
G = (V,E), we define its signature, ζG, as follows. Let F qt

t ⊆ Gg be the set of all
t-boundaried graph of size at most qt and ζG : F qt

t → N. For every G′ ∈ F qt
t we

define ζG(G′) = packH(G⊕G′). For any G′, G′′ ∈ F qt
t , |ζG(G′)−ζG(G′′)| ≤ t+qt,

as ζG(∅) ≤ ζG(G′) ≤ ζG(∅) + qt + t for all G′ ∈ F qt
t . Hence, by the pigeon

hole principle there is a finite set R of t-boundaried graphs such that for any
t-boundaried graph G there is a GR ∈ R and a constant cR depending only on
the size of G and GR, such that ζGR

+ cR = ζG.
We now argue that R forms a set of representatives for (Π1, t). Let G = (V,E)

be a t-boundaried graph and let GR = (VR, ER) ∈ R and cR be a constant such
that ζGR

+cR = ζG. Let G′ = (V ′, E ′) be a t-boundaried graph and k be an integer
such that (G⊕G′, k) ∈ Π1. We argue that (GR⊕G′, k−cR) ∈ Π1. Let S be a set
of k vertex disjoint minors in G ⊕ G′ and H be a minor in S which goes across
or touch the boundary ∂(G). Now contract the part of this minor belonging to
the side of G′ as much close to the boundary ∂(G) as possible. Since the size
of largest graph in H is at most q, we have that the part of the H belonging to
the side of G′ can be contracted to the border except for some q vertices, which
could possibly be hanging out of the boundary. We do this for every minor in S
which is going across. Let S ′ be the set of minors resulting after the contraction
operation has been performed. Now we take the boundary ∂(G) and all the
minors of S ′ hanging out of it, and call this resulting graph G̃ = (Ṽ , Ẽ). Observe
that we can have at most t minors in S ′ which can hang out of the border as
these are vertex disjoint minors. Hence |Ṽ | ≤ qt and G̃ is a t-boundaried graph.
Now we know that ζGR

+ cR = ζG and hence ζGR
(G̃) + cR = ζG(G̃). By definition

ζGR
(G̃) = packH(G⊕G̃) = packH(G⊕G′), and hence (GR⊕G′, k−cR) ∈ Π1. The

proof for the other direction that if (GR⊕G′, k− cR) ∈ Π1, then (G⊕G′, k) ∈ Π1

is symmetric. This concludes that Π1 is finite integer index.

Vertex-H-Covering contains various problems as a special case, for ex-
ample: (a) Feedback Vertex Set by taking H = {△} where △ is a cycle of
length at most 3; deleting at most k vertices to obtain a graph of fixed treewidth
t; deleting at most k vertices to obtain a graph into a graph class M, where M is
characterized by a finite set of minors. Similarly Vertex-H-Packing contains
problem like Cycle Packing as a special case.

Subgraph Covering and Packing:

Let S be a finite set of connected graphs.
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Vertex-S-Covering
Input: A graph G ∈ Gg and a non-negative integer k.
Question: Is there a S ⊆ V such that |S| ≤ k and G[V \ S] does not contain

any of the graphs in S as a subgraph?

We similarly define Edge-S-Covering by demanding S ⊆ E in the above defi-
nition.

Vertex-S-Packing
Input: A graph G ∈ Gg and a non-negative integer k.
Question: Does there exists k vertex disjoint subgraphs G1, G2, ..., Gk in G

such that, for all i Gi is isomorphic to a graph in S.

We define Edge-S-Packing by demanding that G1, . . . , Gk be edge disjoint sub-
graphs of G.

We can not show that Vertex/Edge-S-Covering or Vertex/Edge-S-
Packing or there no instances are compact unless we do the following simple
preprocessing.
Redundant Vertex and Edge Rule: Given an input (G = (V,E), k) to Vertex/Edge-
S-Covering or Vertex/Edge-S-Packing remove all edges and vertices that
are not part of any subgraph isomorphic to any graph in S.

We can perform the Redundant Vertex and Edge Rule in O(|V | · |S|) time by
looking at a small ball around an edge e or a vertex v and check whether the
ball contains a subgraph isomorphic to a graph in S and contains the edge e or
the vertex v. This algorithm to check a subgraph isomorphic to a given graph
containing a particular vertex or edge appears in a paper by Eppstein [55].

Lemma 8.1.22 Let S be a finite set of connected graphs and Π1 and Π2 cor-
respond to Vertex-S-Packing and Edge-S-Packing respectively. Then the
following hold: (a) Vertex-S-Covering has finite integer index and is com-
pact; (b) Vertex-S-Packing has finite integer index and Π1 is compact; (c)
Edge-S-Covering is p-min-CMSO problem and is compact; and (d) Edge-
S-Packing is p-max-CMSO problem and Π2 is compact.

Proof. Let Πv and Πe denote Vertex-S-Covering and Edge-S-Covering
respectively. Let s = max{|V ∗| | G∗ = (V ∗, E∗) ∈ S}. Without loss of generality
we assume that an input (G, k) to all these problems are reduced with respect to
Redundant Vertex and Edge Rule.

We first show that these problems or their no instances are compact. Let
(G, k) ∈ Πv then we know that there is a S ⊆ V such that |S| ≤ k and G[V \ S]
does not contain any of the graphs in S as a subgraph and every vertex and edge
is in some subgraph in G which is isomorphic to a subgraph in S. This implies
that every vertex in u ∈ V \S is in at most r = O(s) distance away from a vertex
in S and hence Br

G(S) = V . We can similarly show that Πe is compact. Next we
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show that Π1 is compact. Observe that if (G, k) ∈ Π1 and (G, k + 1) /∈ Π1 then
we know that we have a set Z of k vertex disjoint subgraphs in G where each of
them is isomorphic to a subgraph in S. Take S as the union of all the vertices
appearing in any of the subgraph in Z. Note that |S| ≤ s ·k. Observe that S hits
all the subgraphs isomorphic to a subgraph in S and hence Br

G(S) = V , where
r = O(s). This implies that Π1 is compact. We can similarly show that Π2 is
compact.

It is well known that Πv and Πe are p-min-CMSO problems while Π1 and Π2

are p-max-CMSO problems. The proof that Πv and Π1 are finite integer index is
similar to the proof given for Vertex-H-Covering and Vertex-H-Packing,
where H is a finite set of connected planar graphs, have finite integer index in
Lemma 8.1.20. The only thing we need to replace is minors by subgraphs in that
proof.

Domination and its Variants

In the r-Dominating Set problem, we are given a graph G = (V,E), and
a positive integer k, and the objective is to find a subset S ⊆ V such that
Br

G(S) = V and |S| ≤ k. For r = 1, if we demand that G[S] is connected
then we get Connected Dominating Set. A problem is called q-Threshold
Dominating Set if we demand that B1

G(S) = V and for all v ∈ (V \ S),
|N(v) ∩ S| ≥ q. An independent set C of vertices in a graph G = (V,E) is an
efficient dominating set (or perfect code) when each vertex not in C is adjacent
to exactly one vertex in C. In Efficient Dominating Set problem we are
given a graph G = (V,E) and a positive integer k and the objective is to find an
efficient dominating set of size at most k.

Lemma 8.1.23 r-Dominating Set, Connected Dominating Set, Effi-
cient Dominating Set and q-Threshold Dominating Set are compact
and have finite integer index.

Proof. All these problems are compact by definition. To show that these prob-
lems have finite integer index, we make use of Lemma 8.1.19. Clearly, they are p-
min-CMSO problems. We now show that these problems are strongly monotone.
We first show it for r-Dominating Set. Given a t-boundaried graphG = (V,E),
with ∂(G) as its boundary, let S ′′ ⊆ V be a minimum r-dominating set of G. Take
S = S ′′∪∂(G). Now for any (G′ = (V ′, E ′), S ′) ∈ Ft such that ζG((G′, S ′)) is finite
we have that S ∪ S ′ is a r-dominating set and |S| ≤ ζG((G′, S ′)) + t. This proves
that r-Dominating Set is strongly monotone. Similarly, we can show that q-
Threshold Dominating Set is strongly monotone by taking S = S ′′ ∪ ∂(G)
where S ′′ ⊆ V is a minimum q-threshold dominating set of G. To show that Con-
nected Dominating Set is strongly monotone we take S = S ′′ ∪ ∂(G) where
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S ′′ ⊆ V is a union of minimum connected dominating set for each connected
components of G.

We now prove that Efficient Dominating Set has finite integer index. Let
Π be the Dominating Set problem and Π′ be the Efficient Dominating Set
problem. The property P (G) that G has an efficient dominating set (of any size)
is expressible in CMSO and hence this property is finite state in t-boundaried
graphs. As argued in the above paragraph, Dominating Set has finite integer
index. Furthermore by a theorem of Bange et al. [14], if a graph G has an efficient
dominating set, then the size of the minimum efficient dominating set is equal to
the size of the minimum dominating set of the graph. Hence for two t-boundaried
graphs G1, G2 if G1 and G2 are in the same equivalence class of P and G1 ≡Π G2

then G1 ≡Π′ G2. Hence Π′ has a finite set of representatives.

Problems on Directed Graphs

Our results also apply to problems on directed graphs of bounded genus. In this
direction we mention three problems considered in the literature. In Directed
Domination [4] we are given a directed graph D = (V,A) and a positive integer
k and the objective is to find a subset S ⊆ V of size at most k such that for very
vertex u ∈ V \ S there is a vertex v ∈ S such that (u, v) ∈ A. Independent
Directed Domination1 [83] takes as input a directed graph D = (V,A) and
a positive integer k and the objective is to find a subset S ⊆ V of size at most
k such that S is an independent set and for every vertex u ∈ V \ S there is a
vertex v ∈ S such that (u, v) ∈ A. In the Minimum Leaf Out-branching [82]
problem we are given a directed graph D = (V,A) and a positive integer k and
the objective is to find a rooted directed spanning tree (with all arcs directed
outwards from the vertices) with at least k internal vertices.

Lemma 8.1.24 Independent Directed Domination is a p-min-CMSO com-
pact problem, Directed Domination is compact and has finite integer index
and Π=Minimum Leaf Out-branching is a p-max-CMSO problem and Π
is compact.

Proof. Independent Directed Domination and Directed Domination
can easily be seen to be p-min-CMSO problems and by their definition they are
compact. Directed Domination can be shown to have finite integer index
as follows: given a t-boundaried graph G = (V,E), with ∂(G) as its boundary,
let S ′′ ⊆ V be a minimum directed dominating set of G. Take S = S ′′ ∪ ∂(G).
Now for any (G′ = (V ′, E ′), S ′) ∈ Ft such that ζG((G′, S ′)) is finite we have that

1In literature it is known as “Kernels”. We call it differently here to avoid confusion with
problem kernels.
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S ∪ S ′ is a directed dominating set and |S| ≤ ζG((G′, S ′)) + t. This proves that
Directed Dominating Set is strongly monotone.

Let Π be the Minimum Leaf Out-branching problem. Observe that Π is
a p-max-CMSO problem. The set of no instances can be seen to be compact
by observing the fact that if (G, k) ∈ Π and (G, k + 1) /∈ Π then G has an out-
branching with exactly k internal vertices with all other vertices being its leaves.
This implies that Π is compact.

Finally by applying Theorem 8.1.3 together with Lemmata 8.1.19, 8.1.20,
8.1.22, 8.1.23, and 8.1.24 we get the following corollary.

Corollary 8.1.25 For g ≥ 0, Feedback Vertex Set, Edge Dominating
Set, Vertex Cover, Dominating Set, r-Dominating Set, q-Threshold
Dominating Set, Connected Dominating Set, Directed Domination,
Connected Vertex Cover, Minimum-Vertex Feedback Edge Set, In-
duced Matching, Minimum Maximal Matching, Efficient Dominating
Set, Independent Set, Induced d-Degree Subgraph, Min Leaf Span-
ning Tree, Triangle Packing, Cycle Packing, Cycle Domination,
Maximum Full-Degree Spanning Tree, Vertex-H-Packing, Vertex-
H-Covering, Vertex-S-Covering and Vertex-S-Packing admit a linear
kernel on graph of genus at most g.

Corollary 8.1.25 unifies and generalizes results presented in [4, 5, 22, 23, 28,
69, 79, 80, 87, 104, 112]. By applying Theorem 8.1.1, Corollary 8.1.2, and
Lemmata 8.1.20, 8.1.22, 8.1.23, and 8.1.24, we get the following corollary for
problems which are not finite integer index.

Corollary 8.1.26 For g ≥ 0, Independent Dominating Set, Indepen-
dent Directed Domination, Minimum Leaf Out-branching, Edge-S-
Covering and Edge-S-Packing admit a polynomial kernels on graphs of genus
at most g.

8.1.5 Practical considerations:

Our meta-theorems provide a simple criteria to decide whether a problem admits
a polynomial or linear kernel. Our proofs are constructive and essentially provide
meta-algorithms that construct kernels for problems in an automated way. Of
course, it is expected that for concrete problems, tailor-made kernels will give
better bounds. Indeed, many of the published proofs for concrete problems have
much smaller constant factors than would follow from a direct application of
our proofs. However, our approach might be useful for computer aided design
of kernelization algorithms: with a Myhill-Nerode approach, we can get a set
of rules that transform each region to the size of some minimum representative,
and we can let the computer calculate such sizes or even output the reductions
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of the corresponding kernel. This seems an interesting (and far from trivial)
algorithm-engineering problem.

In general, finding linear kernels with small constant factors for concrete prob-
lems on planar graphs or graphs with small genus remains a worthy topic of
further research.

Compendium of Problems Considered in Section 8.1

Problems that have Finite Integer Index and Quasi-Compactness Prop-
erty – Linear Kernels Dominating Set, r-Dominating Set, q-Threshold
Dominating Set, Cycle Domination, Vertex Cover, Feedback Ver-
tex Set, Connected Dominating Set, Connected r-Dominating Set,
Connected Vertex Cover, Minimum-Vertex Feedback Edge Set, Edge
Dominating Set, Minimum Maximal Matching, Efficient Dominating
Set, Vertex-H-Covering, Vertex-S-Covering, Almost-Outerplanar,
Clique-Transversal.

Problems that have Finite Integer Index and No Instances having
Quasi-Compactness Property – Linear Kernels Independent Set, In-
duced d-Degree Subgraph, Min Leaf Spanning Tree, Induced Match-
ing, Triangle Packing, Cycle Packing, Maximum Full-Degree Span-
ning Tree, Vertex-H-Packing, Vertex-S-Packing.

Problems that are not covered above and are p-min/eq/max-CMSO
problems having Compactness Property – Polynomial Kernels Inde-
pendent Dominating Set, Independent Directed Domination, Mini-
mum Leaf Out-branching, Edge-S-Covering, Edge-S-Packing.

Problems that have Finite Integer Index but neither the problem nor
its no-instances satisfy Quasi-Compactness Property Minimum Par-
tition Into Cliques, Hamiltonin Path Completion.

Problems that do not have Finite Integer Index Longest Path, Longest
Cycle, Maximum Cut, Minimum Covering by Cliques, Independent
Dominating Set, Minimum Leaf Out-branching.

8.2 Turing Kernels

As we have seen in Chapter 5, it is not always possible to obtain polynomial
kernels for all FPT problems. However, the traditional notion of kernelization
does not seem to capture all feasible variants of polynomial time preprocessing.
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For instance, the results from Chapter 5 can not be used to rule out a “cheat
kernelization algorithm” that reduces the input instance (I, k) to |I| indepen-
dent kernels of size O(k). That is, such an algorithm would output instances
(X1, k

′) . . . (X|I|, k
′) such that (I, k) is a yes instance if and only if (Xi, k

′) is a
yes instance for some i, and if |Xi| = O(k) for every i. While an algorithm like
this is not as useful as an actual kernelization algorithm, it could still turn out
to be quite helpful in practice. In particular problems admitting such a “cheat
kernel” would be very amenable for parallel algorithms. In 2008, Guo and Fel-
lows [16] asked whether there exist problems that admit such “cheat” polynomial
kernels, but provably do not admit polynomial a kernel unless PH=Σ3

p. The re-
sults in this section, together with the results in Section 9.1, give an affirmative
answer to this question.

We now formally define the notion of Turing kernelization. Our notion is
somewhat more general than the “cheat kernel” notion proposed by Guo and
Fellows in [16]. The reason we find this notion more appropriate is that even
though our notion is more general, problems that admit turing kernels have almost
as good algorithmic properties as the problems that admit “cheat kernels”. In
order to define turing kernels we first define the notion of a t-oracle.

Definition 8.2.1 A t-oracle for a parameterized problem Π is an oracle that
takes as input (I, k) with |I| ≤ t, k ≤ t and decides whether (I, k) ∈ Π in
constant time.

Definition 8.2.2 A parameterized problem Π is said to have g(k)-sized turing
kernel if there is an algorithm which given an input (I, k) together with a g(k)-
oracle for Π decides whether (I, k) ∈ Π in time polynomial in |I| and k.

Observe that the traditional notion of kernelization is a special case of turing
kernelization. In particular, a kernel is equivalent to a turing kernel where the
kernelization algorithm is only allowed to make one oracle call and must return
the same answer as the oracle.

8.2.1 The Rooted k-Leaf Out-Branching Problem

The k-Leaf Out-Branching problem is to find an out-branching, that is a
rooted oriented spanning tree, with at least k leaves in a given digraph. The
problem has recently received much attention from the viewpoint of parame-
terized algorithms [9, 8, 26, 94, 40]. Here, we take a kernelization based ap-
proach to the k-Leaf-Out-Branching problem. We give the first polyno-
mial kernel for Rooted k-Leaf-Out-Branching, a variant of k-Leaf-Out-
Branching where the root of the tree searched for is also a part of the input.
Our kernel has cubic size and is obtained using extremal combinatorics. Our
kernel for Rooted k-Leaf-Out-Branching yields a “cheat kernel” for the
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k-Leaf-Out-Branching problem. In Section 9.1 we show that the k-Leaf-
Out-Branching problem does not admit a polynomial kernel unless PH=Σ3

p.
These two results put together dempnstrate that turing kernelization indeed is
more powerful than kernelization in the traditional sense. We now give all the
data reduction rules we apply on the given instance of Rooted k-Leaf Out-
Branching to shrink its size.

Proposition 8.2.3 ([94]) Let D be a digraph and r be a vertex from which every
vertex in V (D) is reachable. Then if we have an out-tree rooted at r with k leaves
then we also have an out-branching rooted at r with k leaves.

RedRule 8.2.1.1 [Reachability Rule] If there exists a vertex u which is discon-
nected from the root r, then return No.

For the Rooted k-Leaf Out-Tree problem, Rule 8.2.1.1 translates into
following: If a vertex u is disconnected from the root r, then remove u and all
in-arcs to u and out-arcs from u.

RedRule 8.2.1.2 [Useless Arc Rule] If vertex u disconnects a vertex v from the
root r, then remove the arc vu.

Lemma 8.2.4 Reduction Rules 8.2.1.1 and 8.2.1.2 are correct.

Proof. If there exists a vertex which can not be reached from the root r then
a digraph can not have any r-out-branching. For Reduction Rule 8.2.1.2, all
paths from r to v contain the vertex u and thus the arc vu is a back arc in any
r-out-branching of D.

RedRule 8.2.1.3 [Bridge Rule] If an arc uv disconnects at least two vertices
from the root r, contract arc uv.

Lemma 8.2.5 Reduction Rule 8.2.1.3 is correct.

Proof. Let the arc uv disconnect at least two vertices v and w from r and let D′

be the digraph obtained from D by contracting the arc uv. Let T be an r-out-
branching of D with at least k leaves. Since every path from r to w contains the
arc uv, T contains uv as well and neither u nor v are leaves of T . Let T ′ be the
tree obtained from T by contracting uv. T ′ is an r-out-branching of D′ with at
least k leaves.

In the opposite direction, let T ′ be an r-out-branching of D′ with at least k
leaves. Let u′ be the vertex in D′ obtained by contracting the arc uv, and let x be
the parent of u′ in T ′. Notice that the arc xu′ in T ′ was initially the arc xu before
the contraction of uv, since there is no path from r to v avoiding u in D. We make
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Figure 8.1: An Illustration of Reduction Rule 8.2.1.5.

an r-out-branching T of D from T ′, by replacing the vertex u′ by the vertices u
and v and adding the arcs xu, uv and arc sets {vy : u′y ∈ A(T ′) ∧ vy ∈ A(D)}
and {uy : u′y ∈ A(T ′) ∧ vy /∈ A(D)}. All these arcs belong to A(D) because all
out-neighbors of u′ in D′ are out-neighbors either of u or of v in D. Finally, u′

must be an inner vertex of T ′ since u′ disconnects w from r. Hence T has at least
as many leaves as T ′.

RedRule 8.2.1.4 [Avoidable Arc Rule] If a vertex set S, |S| ≤ 2, disconnects a
vertex v from the root r, vw ∈ A(D) and xw ∈ A(D) for all x ∈ S, then delete
the arc vw.

Lemma 8.2.6 Reduction Rule 8.2.1.4 is correct.

Proof. Let D′ be the graph obtained by removing the arc vw from D and let
T be an r-out-branching of D. If vw /∈ A(T ), T is an r-out-branching of D′,
so suppose vw ∈ A(T ). Any r-out-branching of D contains the vertex v, and
since all paths from r to v contain some vertex x ∈ S, some vertex u ∈ S is
an ancestor of v in T . Let T ′ = (T ∪ uw) \ vw. T ′ is an out-branching of D′.
Furthermore, since u is an ancestor of v in T , T ′ has at least as many leaves as
T . For the opposite direction observe that any r-out-branching of D′ is also an
r-out-branching of D.

RedRule 8.2.1.5 [Two Directional Path Rule] If there is a path P = p1p2 . . . pl−1pl

with l = 7 or l = 8 such that

• p1 and pin ∈ {pl−1, pl} are the only vertices with in-arcs from the outside of
P .

• pl and pout ∈ {p1, p2} are the only vertices with out-arcs to the outside of
P .
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• The path P is the unique out-branching of D[V (P )] rooted at p1.

• There is a path Q that is the unique out-branching of D[V (P )] rooted at pin.

• The vertex after pout on P is not the same as the vertex after pl on Q.

Then delete R = P \ {p1, pin, pout, pl} and all arcs incident to these vertices from
D. Add two vertices u and v and the arc set {poutu, uv, vpin, plv, vu, up1} to D.

Notice that every vertex on P has in-degree at most 2 and out-degree at most
2. Figure 8.1 gives an example of an application of Reduction Rule 8.2.1.5.

Lemma 8.2.7 Reduction Rule 8.2.1.5 is correct.

Proof. Let D′ be the graph obtained by performing Reduction Rule 8.2.1.5 to a
path P in D. Let Pu be the path p1poutuvpinpl and Qv be the path pinplvup1pout.
Notice that Pu is the unique out-branching of D′[V (Pu)] rooted at p1 and that
Qv is the unique out-branching of D′[V (Pu)] rooted at pin.

Let T be an r-out-branching of D with at least k leaves. Notice that since P is
the unique out-branching of D[V (P )] rooted at p1, Q is the unique out-branching
of D[V (P )] rooted at pin and p1 and pin are the only vertices with in-arcs from
the outside of P , T [V (P )] is either a path or the union of two vertex disjoint
paths. Thus, T has at most two leaves in V (P ) and at least one of the following
three cases must apply.

1. T [V (P )] is the path P from p1 to pl.

2. T [V (P )] is the path Q from pin to pout.

3. T [V (P )] is the vertex disjoint union of a path P̃ that is a subpath of P
rooted at p1, and a path Q̃ that is a subpath of Q rooted at pin.

In the first case we can replace the path P in T by the path Pu to get an
r-out-branching of D′ with at least k leaves. Similarly, in the second case, we
can replace the path Q in T by the path Qv to get an r-out-branching of D′

with at least k leaves. For the third case, observe that P̃ must contain pout since
pout = p1 or p1 appears before pout on Q and thus, pout can only be reached from
p1. Similarly, Q̃ must contain pl. Thus, T \R is an r-out-branching of D \R. We
build an r-out-branching T ′ of D′ by taking T \ R and letting u be the child of
pout and v be the child of pl. In this case T and T ′ have same number of leaves
outside of V (P ) and T has at most two leaves in V (P ) while both u and v are
leaves in T ′. Hence T ′ has at least k leaves.

To show the other direction, let T ′ be an r-out-branching of D′ with at least
k leaves. Notice that since Pu is the unique out-branching of D′[V (Pu)] rooted
at p1, Qv is the unique out-branching of D′[V (Pu)] rooted at pin and p1 and pin

are the only vertices with in-arcs from the outside of V (Pu), T
′[V (Pu)] is either a

path or the union of two vertex disjoint paths. Thus, T ′ has at most two leaves
in V (Pu) and at least one of the following three cases must apply.
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1. T ′[V (Pu)] is the path Pu from p1 to pl.

2. T ′[V (Pu)] is the path Qv from pin to pout.

3. T ′[V (Pu)] is the vertex disjoint union of a path P̃u that is a subpath of Pu

rooted at p1, and a path Q̃v that is a subpath of Qv rooted at pin.

In the first case we can replace the path Pu in T ′ by the path P to get an
r-out-branching of D with at least k leaves. Similarly, in the second case, we
can replace the path Qv in T ′ by the path Q to get an r-out-branching of D′

with at least k leaves. For the third case, observe that P̃u must contain pout since
pout = p1 or p1 appears before pout on Qv and thus, pout can only be reached
from p1. Similarly, Q̃v must contain pl. Thus, T ′ \ {u, v} is an r-out-branching
of D′ \ {u, v}. Let x be the vertex after pout on P , and let y be the vertex after
pl on Q. Vertices x and y must be distinct vertices in R and thus there must
be two vertex disjoint paths Px and Qy rooted at x and y, respectively, so that
V (Px)∪ V (Qy) = R. We build an r-out-branching T from (T ′ \ {u, v})∪Px ∪Qy

by letting x be the child of pout and y be the child of pin. In this case T ′ and T
have the same number of leaves outside of V (P ) and T ′ has at most two leaves
in V (Pu) while both the leaf of Pu and the leaf of Qv are leaves in T . Hence T
has at least k leaves.

We say that a digraph D is a reduced instance of Rooted k-Leaf Out-
Branching if none of the reduction rules (Rules 1–5) can be applied to D. It
is easy to observe from the description of the reduction rules that we can apply
them in polynomial time, resulting in the following lemma.

Lemma 8.2.8 For a digraph D on n vertices, we can obtain a reduced instance
D′ in polynomial time.

8.2.2 Bounding Entry and Exit Points

We show that any reduced no-instance of Rooted k-Leaf Out-Branching
must have at most O(k3) vertices. In order to do so we start with T , a breadth-
first search-tree (or BFS-tree for short) rooted at r, of a reduced instance D and
look at a path P of T such that every vertex on P has out-degree one in T .
We now bound the number of endpoints of arcs with one endpoint in P and one
endpoint outside of P .

Let D be a reduced no-instance, and T be a BFS-tree rooted at r. The BFS-
tree T has at most k− 1 leaves and hence at most k− 2 vertices with out-degree
at least 2 in T . Now, let P = p1p2 . . . pl be a path in T such that all vertices
in V (P ) have out-degree 1 in T (P does not need to be a maximal path of T ).
Let T1 be the subtree of T induced by the vertices reachable from r in T without
using vertices in P and let T2 be the subtree of T rooted at the child r2 of pl in
T . Since T is a BFS-tree, it does not have any forward arcs, and thus plr2 is the
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only arc from P to T2. Thus all arcs originating in P and ending outside of P
must have their endpoint in T1.

Lemma 8.2.9 Let D be a reduced instance, T be a BFS-tree rooted at r, and
P = p1p2 . . . pl be a path in T such that all vertices in V (P ) have out-degree 1 in
T . Let upi ∈ A(D), for some i between 1 and l, be an arc with u /∈ P . There is
a path Pupi

from r to pi using the arc upi, such that V (Pupi
) ∩ V (P ) ⊆ {pi, pl}.

Proof. Let T1 be the subtree of T induced by the vertices reachable from r in
T without using vertices in P and let T2 be the subtree of T rooted at the child
r2 of pl in T . If u ∈ V (T1) there is a path from r to u avoiding P . Appending
the arc upi to this path yields the desired path Pupi

, so assume u ∈ V (T2). If all
paths from r to u use the arc pl−1pl then pl−1pl is an arc disconnecting pl and
r2 from r, contradicting the fact that Reduction Rule 8.2.1.3 can not be applied.
Let P ′ be a path from r to u not using the arc pl−1pl. Let x be the last vertex
from T1 visited by P ′. Since P ′ avoids pl−1pl we know that P ′ does not visit any
vertices of P \ {pl} after x. We obtain the desired path Pupi

by taking the path
from r to x in T1 followed by the subpath of P ′ from x to u appended by the arc
upi.

Corollary 8.2.10 Let D be a reduced no-instance, T be a BFS-tree rooted at r
and P = p1p2 . . . pl be a path in T such that all vertices in V (P ) have out-degree
1 in T . There are at most k vertices in P that are endpoints of arcs originating
outside of P .

Proof. Let S be the set of vertices in P\{pl} that are endpoints of arcs originating
outside of P . For the sake of contradiction suppose that there are at least k + 1
vertices in P that are endpoints of arcs originating outside of P . Then |S| ≥ k. By
Lemma 8.2.9 there exists a path from the root r to every vertex in S, that avoids
vertices of P \ {pl} as an intermediate vertex. Using these paths we can build an
r-out-tree with every vertex in S as a leaf. This r-out-tree can be extended to
a r-out-branching with at least k leaves by Proposition 8.2.3, contradicting the
fact that D is a no-instance.

Lemma 8.2.11 Let D be a reduced no-instance, T be a BFS-tree rooted at r and
P = p1p2 . . . pl be a path in T such that all vertices in V (P ) have out-degree 1 in
T . There are at most 7(k − 1) vertices outside of P that are endpoints of arcs
originating in P .

Proof. Let X be the set of vertices outside P which are out-neighbors of the
vertices on P . Let P ′ be the path from r to p1 in T and r2 be the unique child
of pl in T . First, observe that since there are no forward arcs, r2 is the only out-
neighbor of vertices in V (P ) in the subtree of T rooted at r2. In order to bound
the size of X, we differentiate between two kinds of out-neighbors of vertices on
P .
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• Out-neighbors of P that are not in V (P ′).

• Out-neighbors of P in V (P ′).

First, observe that |X \ V (P ′)| ≤ k − 1. Otherwise we could have made an r-
out-tree with at least k leaves by taking the path P ′P and adding X \ V (P ′) as
leaves with parents in V (P ).

In the rest of the proof we bound |X ∩V (P ′)|. Let Y be the set of vertices on
P ′ with out-degree at least 2 in T and let P1, P2, . . . , Pt be the remaining subpaths
of P ′ when vertices in Y are removed. For every i ≤ t, Pi = vi1vi2 . . . viq. We
define the vertex set Z to contain the two last vertices of each path Pi. The
number of vertices with out-degree at least 2 in T is upper bounded by k − 2 as
T has at most k − 1 leaves. Hence, |Y | ≤ k − 2, t ≤ k − 1 and |Z| ≤ 2(k − 1).

Claim 8.2.12 For every path Pi = vi1vi2 . . . viq, 1 ≤ i ≤ t, there is either an arc
uiviq−1 or uiviq where ui /∈ V (Pi).

To see the claim observe that the removal of arc viq−2viq−1 does not disconnect
the root r from both viq−1 and viq else Rule 8.2.1.3 would have been applicable
to our reduced instance. For brevity assume that viq−1 is reachable from r after
the removal of arc viq−2viq−1. Hence there exists a path from r to viq. Let uiviq

be the last arc of this path. The fact that the BFS-tree T does not have any
forward arcs implies that ui /∈ V (Pi).

To every path Pi = vi1vi2 . . . viq, 1 ≤ i ≤ t, we associate an interval Ii =
vi1vi2 . . . viq−2 and an arc uiviq′, q

′ ∈ {q − 1, q}. This arc exists by Claim 8.2.12.
Claim 8.2.12 and Lemma 8.2.9 together imply that for every path Pi there is a
path Pri from the root r to viq′ that does not use any vertex in V (Pi)\{viq−1, viq}
as an intermediate vertex. That is, V (Pri ∩ (V (Pi) \ {viq−1, viq}) = ∅.

Let P ′
ri be a subpath of Pri starting at a vertex xi before vi1 on P ′ and ending

in a vertex yi after viq−2 on P ′. We say that a path P ′
ri covers a vertex x if x is

on the subpath of P ′ between xi and yi and we say that it covers an interval Ij
if xi appears before vj1 on the path P ′ and yi appears after vjq−2 on P ′. Observe
that the path P ′

ri covers the interval Ii.
Let P = {P ′

1, P
′
2, . . . , P

′
l } ⊆ {P ′

r1, . . . , P
′
rt} be a minimum collection of paths,

such that every interval Ii, 1 ≤ i ≤ t, is covered by at least one of the paths
in P. Furthermore, let the paths of P be numbered by the appearance of their
first vertex on P ′. The minimality of P implies that for every P ′

i ∈ P there is an
interval I ′i ∈ {I1, . . . , It} such that P ′

i is the only path in P that covers I ′i.

Claim 8.2.13 For every 1 ≤ i ≤ l, no vertex of P ′ is covered by both P ′
i and

P ′
i+3.

The path P ′
i+1 is the only path in P that covers the interval I ′i+1 and hence P ′

i

does not cover the last vertex of I ′i+1. Similarly P ′
i+2 is the only path in P that
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covers the interval I ′i+2 and hence P ′
i+3 does not cover the first vertex of I ′i+2.

Thus the set of vertices covered by both P ′
i and P ′

i+3 is empty.
Since paths P ′

i and P ′
i+3 do not cover a common vertex, we have that the end

vertex of P ′
i appears before the start vertex of P ′

i+3 on P ′ or is the same as the
start vertex of P ′

i+3. Partition the paths of P into three sets P0,P1,P2, where
path P ′

i ∈ Pi mod 3. Also let Ii be the set of intervals covered by Pi. Observe that
every interval Ij , 1 ≤ j ≤ t, is part of some Ii for i ∈ {0, 1, 2}.

Let i ≤ 3 and consider an interval Ij ∈ Ii. There is a path Pj′ ∈ Pi that
covers Ij such that both endpoints of Pj′ and none of the inner vertices of Pj′ lie
on P ′. Furthermore for any pair of paths Pa, Pb ∈ Pi such that a < b, there is a
subpath in P ′ from the endpoint of Pa to the starting point of Pb. Thus for every
i ≤ 3 there is a path P ∗

i from the root r to p1 which does not use any vertex of
the intervals covered by the paths in Pi.

We now claim that the total number of vertices on intervals Ij, 1 ≤ j ≤ t,
which are out-neighbors of vertices on V (P ) is bounded by 3(k− 1). If not, then
for some i, the number of out-neighbors in Ii is at least k. Now we can make an
r-out-tree with k leaves by taking any r-out-tree in D[V (P ∗

i )∪V (P )] and adding
the out-neighbors of the vertices on V (P ) in Ii as leaves with parents in V (P ).

Summing up the obtained upper bounds yields |X| ≤ (k− 1) + |{r2}|+ |Y |+
|Z|+3(k− 1) ≤ (k− 1)+1+ (k− 2)+2(k− 1)+3(k− 1) = 7(k− 1), concluding
the proof.

Remark: Observe that the path P used in Lemmas 8.2.9 and 8.2.11 and Corol-
lary 8.2.10 need not be a maximal path in T with its vertices having out-degree
one in T .

8.2.3 Bounding the Length of a Path

Now we bound the size of any maximal path with every vertex having out-degree
one in T and use the results proved here together with the ones in the precious
section to bound the size of any reduced no-instance of Rooted k-Leaf Out-
Branching by O(k3). For a reduced instance D, a BFS-tree T of D rooted at r,
let P = p1p2 . . . pl be a path in T such that all vertices in V (P ) have out-degree
1 in T , and let S be the set of vertices in V (P ) \ {pl} with an in-arc from the
outside of P .

Definition 8.2.14 A subforest F = (V (P ), A(F )) of D[V (P )] is said to be a
nice forest of P if the following three properties are satisfied: (a) F is a forest of
directed trees rooted at vertices in S; (b) If pipj ∈ A(F ) and i < j then pi has
out-degree at least 2 in F or pj has in-degree 1 in D; and (c) If pipj ∈ A(F ) and
i > j then for all q > i, pqpj /∈ A(D).

In order to bound the size of a reduced no-instance D we are going to consider
a nice forest with the maximum number of leaves. However, in order to do this,
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we first need to show the existence of a nice forest of P .
In the following discussion let D be a reduced no-instance, T be a BFS-tree

T of D rooted at r, P = p1p2 . . . pl be a path in T such that all vertices in V (P )
have out-degree 1 in T and S be the set of vertices in V (P ) \ {pl} with an in-arc
from the outside of P .

Lemma 8.2.15 There is a nice forest in P .

Proof. We define a subgraph F of D[V (P )] as follows. The vertex set of F
is V (P ) and an arc ptps is in A(F ) if ps 6∈ S and t is the largest number so
that ptps ∈ A(D). Notice that all arcs of F are covered by property (b) in the
definition of a nice forest.

We prove that F is a forest. Suppose for contradiction that there is a cycle
C in F . By definition of F every vertex has in-degree at most 1, C must be a
directed cycle. Since every vertex in S has in-degree 0 in F , C ∩S = ∅. Consider
the highest numbered vertex pi on C. Since P has no forward arcs, pi−1 is the
predecessor of pi in C. The construction of F implies that there can not be an arc
pqpi where q > i in A(D). Also, pi does not have any in-arcs from outside of P .
Thus, pi−1 disconnects pi from the root. Hence, by Rule 8.2.1.2 pipi−1 6∈ A(D).
Let pj be the predecessor of pi−1 in C. Then j < i− 1, since pipi−1 6∈ A(D) and
pi is the highest numbered vertex in C. Hence j = i − 2. This contradicts the
fact that D is a reduced instance since the arc pi−2pi−1 disconnects pi−1 and pi

from the root r implying that Rule 8.2.1.3 can be applied. Since F is a forest and
since every vertex in V (P ) except for vertices in S have in-degree 1 we conclude
that F is a forest of directed trees rooted at vertices in S. Since F is a forest and
P has no forward arcs, F is a nice forest.

For a nice forest F of P , we define the set of key vertices of F to be the set
of vertices in S, the leaves of F , the vertices of F with out-degree at least 2 and
the set of vertices whose parent in F has out-degree at least 2.

Lemma 8.2.16 Let F be a nice forest of P . There are at most 5(k − 1) key
vertices of F .

Proof. By the proof of Corollary 8.2.10 there is an r-out-tree TS with (V (TS) ∩
V (P )) ⊆ (S ∪ {pl}) and (A(TS) ∩ A(P )) = ∅, such that all vertices in S \ {pl}
are leaves of TS. We build an r-out-tree TF = (V (TS) ∪ V (P ), A(TS) ∪ A(F )).
Notice that every leaf of F is a leaf of TF , except possibly for pl. Since D is a
no-instance TF has at most k−1 leaves and k−2 vertices with out-degree at least
2. Thus, F has at most k leaves and at most k − 2 vertices with out-degree at
least 2. Hence the number of vertices in F whose parent in F has out-degree at
least 2 is at most 2k − 2. Finally, by Corollary 8.2.10, |S| ≤ k. Adding up these
upper bounds yields that there are at most k− 1 + k− 2 + 2k− 2 + k = 5(k− 1)
key vertices of F .
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We can now turn our attention to a nice forest F of P with the maximum
number of leaves. Our goal is to show that if the key vertices of F are too spaced
out on P then some of our reduction rules must apply. First, however, we need
some more observations about the interplay between P and F .

Observation 8.2.17 [Unique Path] For any two vertices pi, pj in V (P ) such
that i < j, pipi+1 . . . pj is the only path from pi to pj in D[V (P )].

Proof. As T is a BFS-tree it has no forward arcs. So any vertex set X =
{p1, p2, . . . , pq} with q < |V (P )|, the arc pqpq+1 is the only arc in D from a vertex
in X to a vertex in V (P ) \X.

Corollary 8.2.18 No arc pipi+1 is a forward arc of F .

Proof. If pipi+1 is a forward arc of F then there is a path from pi to pi+1 in
F . By Observation 8.2.17 pipi+1 is the unique path from pi to pi+1 in D[V (P )].
Hence pipi+1 ∈ A(F ) contradicting the fact that it is a forward arc.

Observation 8.2.19 Let ptpj be an arc in A(F ) such that neither pt nor pj are
key vertices, and t ∈ {j − 1, j + 1, . . . , l}. Then for all q > t, pqpj 6∈ A(D).

Observation 8.2.19 follows directly from the definitions of a nice forest and key
vertices.

Observation 8.2.20 If neither pi nor pi+1 are key vertices, then either pipi+1 /∈
A(F ) or pi+1pi+2 /∈ A(F ).

Proof. Assume for contradiction that pipi+1 ∈ A(F ) and pi+1pi+2 ∈ A(F ). Since
neither pi nor pi+1 are key vertices, both pi+1 and pi+2 must have in-degree 1 in
D. Then the arc pipi+1 disconnects both pi+1 and pi+2 from the root r and Rule
8.2.1.3 can be applied, contradicting the fact that D is a reduced instance.

In the following discussion let F be a nice forest of P with the maximum
number of leaves and let P ′ = pxpx+1 . . . py be a subpath of P containing no key
vertices, and additionally having the property that px−1px /∈ A(F ) and pypy+1 /∈
A(F ).

Lemma 8.2.21 V (P ′) induces a directed path in F .

Proof. We first prove that for any arc pipi+1 ∈ A(P ′) such that pipi+1 /∈ A(F ),
there is a path from pi+1 to pi in F . Suppose for contradiction that there is no
path from pi+1 to pi in F , and let x be the parent of pi+1 in F . Then pipi+1 is not
a backward arc of F and hence F ′ = (F \xpi+1)∪{pipi+1} is a forest of out-trees
rooted at vertices in S. Also, since pi+1 is not a key vertex, x has out-degree 1 in
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F and thus x is a leaf in F ′. Since pi is not a leaf in F , F ′ has one more leaf than
F . Now, every vertex with out-degree at least 2 in F has out-degree at least 2 in
F ′. Additionally, pi has out-degree 2 in F ′. Hence F ′ is a nice forest of P with
more leaves than F , contradicting the choice of F .

Now, notice that by Observation 8.2.17 any path in D[V (P )] from a vertex
u ∈ V (P ′) to a vertex v ∈ V (P ′) that contains a vertex w /∈ V (P ′) must contain
either the arc px−1px or the arc pypy+1. Since neither of those two arcs are arcs
of F it follows that for any arc pipi+1 ∈ A(P ′) such that pipi+1 /∈ A(F ), there is
a path from pi+1 to pi in F [V (P ′)]. Hence F [V (P ′)] is weakly connected, that is,
the underlying undirected graph is connected. Since every vertex in V (P ′) has
in-degree 1 and out-degree 1 in F we conclude that F [V (P ′)] is a directed path.

In the following discussion let Q′ be the directed path F [V (P ′)].

Observation 8.2.22 For any pair of vertices pi, pj ∈ V (P ′) if i ≤ j − 2 then pj

appears before pi in Q′.

Proof. Suppose for contradiction that pi appears before pj in Q′. By Observation
8.2.17 pipi+1pi+2 . . . pj is the unique path from pi to pj in D[V (P ′)]. This path
contains both the arc pipi+1 and pi+1pi+2 contradicting Observation 8.2.20.

Lemma 8.2.23 All arcs of D[V (P ′)] are contained in A(P ′) ∪A(F ).

Proof. Since P has no forward arcs it is enough to prove that any arc pjpi ∈
A(D[V (P ′)]) with i < j is an arc of F . Suppose this is not the case and let pq

be the parent of pi in F . We know that pi has in-degree at least 2 in D and also
since pi is not a key vertex pq has in-degree one in F . Hence by definition of F
being a nice forest, we have that for every t > q, ptpi /∈ A(D). It follows that
i < j < q. By Lemma 8.2.21 F [V (P ′)] is a directed path Q′ containing both pi

and pj. If pj appears after pi in Q′, Observation 8.2.22 implies that i = j− 1 and
that pj has in-degree 1 in D since F is a nice forest. Thus pi separates pj from
the root and Rule 8.2.1.2 can be applied to pjpi contradicting the fact that D is
a reduced instance. Hence pj appears before pi in Q′.

Since pj is an ancestor of pi in F and pq is the parent of pi in F , pj is an
ancestor of pq in F and hence pq ∈ V (Q′) = V (P ′). Now, pj comes before pq

in Q′ and j < q so Observation 8.2.22 implies that q = j + 1 and that pq has
in-degree 1 in D since F is a nice forest. Thus pj separates pq from the root r and
both pjpi and pqpi are arcs of D. Hence Rule 8.2.1.4 can be applied to remove
the arc pqpi contradicting the fact that D is a reduced instance.

Lemma 8.2.24 If |P ′| ≥ 3 there are exactly 2 vertices in P ′ that are endpoints
of arcs starting outside of P ′.
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Proof. By Observation 8.2.17, px−1px is the only arc between {p1, p2, . . . , px−1}
and P ′. By Lemma 8.2.21, F [V (P ′)] is a directed path Q′. Let pq be the first
vertex onQ′ and notice that the parent of pq in F is outside of V (P ′). Observation
8.2.22 implies that q ≥ y − 1. Hence pq and px are two distinct vertices that are
endpoints of arcs starting outside of P ′. It remains to prove that they are the
only such vertices. Let pi be any vertex in P ′ \ {px, pq}. By Lemma 8.2.21 V (P ′)
induces a directed path Q′ in F , and since pq is the first vertex of Q′, the parent
of pi in F is in V (P ′). Observation 8.2.19 yields then that ptpi 6∈ A(D) for any
t > y.

Observation 8.2.25 Let Q′ = F [V (P ′)]. For any pair of vertices u, v such that
there is a path Q′[uv] from u to v in Q′, Q′[uv] is the unique path from u to v in
D[V (P ′)].

Proof. By Lemma 8.2.21 Q′ is a directed path f1f2 . . . f|P ′| and let Q′[f1fi] be
the path f1f2 . . . fi. We prove that for any i < |Q′|, fifi+1 is the only arc from
V (Q′[f1fi]) to V (Q′[fi+1f|P ′|]). By Lemma 8.2.23 all arcs of D[V (P ′)] are either
arcs of P ′ or arcs of Q′. Since Q′ is a path, fifi+1 is the only arc from V (Q′[f1fi])
to V (Q′[fi+1f|P ′|]) in Q′. By Corollary 8.2.18 there are no arcs from V (Q′[f1fi])
to V (Q′[fi+1f|P ′|]) in P ′, except possibly for fifi+1.

Lemma 8.2.26 For any vertex x /∈ V (P ′) there are at most 2 vertices in P ′ with
arcs to x.

Proof. Suppose there are 3 vertices pa, pb, pc in V (P ′) such that a < b < c and
such that pax, pbx, pcx ∈ A(D). By Lemma 8.2.21 Q′ = F [V (P ′)] is a directed
path. If pa appears before pb in Q′ then Observation 8.2.22 implies that a+1 = b
and that pb has in-degree 1 in D. Then pa separates pb from the root and hence
Rule 8.2.1.4 can be applied to remove the arc pbx contradicting the fact that D is
a reduced instance. Hence pb appears before pa in Q′. By an identical argument
pc appears before pb in Q′.

Let Pb be a path in D from the root to pb and let u be the last vertex in Pb

outside of V (P ′). Let v be the vertex in Pb after u. By Lemma 8.2.24, u is either
px or the first vertex pq of Q′. If u = px then Observation 8.2.17 implies that Pb

contains pa, whereas if u = pq then Observation 8.2.25 implies that Pb contains
pc. Thus the set {pa, pc} separates pb from the root and hence Rule 8.2.1.4 can be
applied to remove the arc pbx contradicting the fact that D is a reduced instance.

Corollary 8.2.27 There are at most 14(k− 1) vertices in P ′ with out-neighbors
outside of P ′.
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Proof. By Lemma 8.2.11 there are at most 7(k − 1) vertices that are endpoints
of arcs originating in P ′. By Lemma 8.2.26 each such vertex is the endpoint of
at most 2 arcs from vertices in P ′.

Lemma 8.2.28 |P ′| ≤ 154(k − 1) + 10.

Proof. Assume for contradiction that |P ′| > 154(k − 1) + 10 and let X be the
set of vertices in P ′ with arcs to vertices outside of P ′. By Corollary 8.2.27,
|X| ≤ 14(k − 1). Hence there is a subpath of P ′ on at least (154(k − 1) +
10)/(14(k − 1) + 1) = 9 vertices containing no vertices of X. By Observation
8.2.20 there is a subpath P ′′ = papa+1 . . . pb of P ′ on 7 or 8 vertices such that
neither pa−1pa nor pbpb+1 are arcs of F . By Lemma 8.2.21 F [V (P ′′)] is a directed
path Q′′. Let pq and pt be the first and last vertices of Q′′, respectively. By
Lemma 8.2.24 pa and pq are the only vertices with in-arcs from outside of P ′′.
By Observation 8.2.22 pq ∈ {pb−1, pb} and pt ∈ {pa, pa+1}. By the choice of P ′′

no vertex of P ′′ has an arc to a vertex outside of P ′. Furthermore, since P ′′ is
a subpath of P ′ and Q′′ is a subpath of Q′ Lemma 8.2.23 implies that pb and pt

are the only vertices of P ′ with out-arcs to the outside of P ′′. By Lemma 8.2.17,
the path P ′′ is the unique out-branching of D[V (P ′′)] rooted at pa. By Lemma
8.2.25, the path Q′′ is the unique out-branching of D[V (P ′′)] rooted at pq. By
Observation 8.2.22 pb−2 appears before pa+2 in Q′′ and hence the vertex after pb

in Q′′ and pt+1 is not the same vertex. Thus Rule 8.2.1.5 can be applied on P ′′,
contradicting the fact that D is a reduced instance.

Lemma 8.2.29 Let D be a reduced no-instance to Rooted k-Leaf Out-Branching.
Then |V (D)| = O(k3). More specifically, |V (D)| ≤ 1540k3.

Proof. Let T be a BFS-tree of D. T has at most k − 1 leaves and at most
k − 2 inner vertices with out-degree at least 2. The remaining vertices can be
partitioned into at most 2k−3 paths P1 . . . Pt with all vertices having out-degree
1 in T . We prove that for every q ∈ {1, . . . , t}, |Pq| = O(k2). Let F be a nice
forest of Pq with the maximum number of leaves. By Lemma 8.2.16, F has at
most 5(k − 1) key vertices. Let pi and pj be consecutive key vertices of F on
Pq. By Observation 8.2.20, there is a path P ′ = pxpx+1 . . . py containing no key
vertices, with x ≤ i+1 and y ≥ j−1, such that neither px−1px nor pypy+1 are arcs
of F . By Lemma 8.2.28 |P ′| ≤ 154(k−1)+10 so |Pq| ≤ (5(k−1)+1)(154(k−1)+
10)+3(5(k−1)). Hence, |V (D)| ≤ 2k(5k(154(k−1)+10+3)) ≤ 1540k3 = O(k3).

Lemma 8.2.29 results in a cubic kernel for Rooted k-Leaf Out-Branching
as follows.

Theorem 8.2.30 Rooted k-Leaf Out-Branching and Rooted k-Leaf
Out-Tree admits a kernel of size O(k3).
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Proof. Let D be the reduced instance of Rooted k-Leaf Out-Branching
obtained in polynomial time using Lemma 8.2.8. If the size of D is more than
1540k3 then return Yes. Else we have an instance of size bounded by O(k3). The
correctness of this step follows from Lemma 8.2.29 which shows that any reduced
no-instance to Rooted k-Leaf Out-Branching has size bounded by O(k3).
The result for Rooted k-Leaf Out-Tree follows similarly.



Chapter 9

Kernelization Lower Bounds

9.1 Polynomial Parameter Transformations with

Turing Kernels

In the previous chapter we gave a cubic kernel for Rooted k-Leaf Out-
Branching, yielding a polynomial turing kernel for k-Leaf Out-Branching.
It is natural to ask whether k-Leaf Out-Branching has a polynomial kernel.
The answer to this question, somewhat surprisingly, is no, unless PH=Σ3

p. To
show this we first show that k-Leaf Out-Tree admits no polynomial kernel
unless PH=Σ3

p by giving a composition algorithm. Then we give a polynomial pa-
rameter transformation from k-Leaf Out-Tree to k-Leaf Out-Branching.
Our polynomial parameter transformation differs somewhat from the common
way a Karp reduction is done. In particular, to give the transformation we em-
ploy the cubic kernel for Rooted k-Leaf Out-Branching that we proved in
the previous chapter together with the fact that NP-completeness guarantees the
existence of polynomial time reductions.

Theorem 9.1.1 k-Leaf Out-Tree has no polynomial kernel unless PH=Σ3
p.

Proof. The problem is NP-complete [9]. We prove that it is compositional and
thus, Theorem 5.1.6 will imply the statement of the theorem. A simple composi-
tion algorithm for this problem is as follows. On input (D1, k), (D2, k), . . . , (Dt, k)
output the instance (D, k) where D is the disjoint union of D1, . . . , Dt. Since an
out-tree must be completely contained in a connected component of the underly-
ing undirected graph of D, (D, k) is a yes-instance to k-Leaf Out-Tree if and
only if any out of (Di, k), 1 ≤ i ≤ t, is. This concludes the proof.

A willow graph [53]D = (V,A1∪A2) is a directed graph such thatD′ = (V,A1)
is a directed path P = p1p2 . . . pn on all vertices of D and D′′ = (V,A2) is a
directed acyclic graph with one vertex r of in-degree 0, such that every arc of
A2 is a backwards arc of P . p1 is called the bottom vertex of the willow, pn
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is called the top of the willow and P is called the stem. A nice willow graph
D = (V,A1 ∪ A2) is a willow graph where pnpn−1 and pnpn−2 are arcs of D,
neither pn−1 nor pn−2 are incident to any other arcs of A2 and D′′ = (V,A2) has
a pn-out-branching.

Observation 9.1.2 Let D = (V,A1 ∪ A2) be a nice willow graph. Every out-
branching of D with the maximum number of leaves is rooted at the top vertex
pn.

Proof. Let P = p1p2 . . . pn be the stem of D and suppose for contradiction that
there is an out-branching T with the maximum number of leaves rooted at pi,
i < n. Since D is a nice willow D′ = (V,A2) has a pn-out-branching T ′. Since
every arc of A2 is a back arc of P , T ′[{vj : j ≥ i}] is an pn-out-branching of
D[{vj : j ≥ i}]. Then T ′′ = (V, {vxvy ∈ A(T ′) : y ≥ i} ∪ {vxvy ∈ A(T ) : y < i}) is
an out-branching of D. If i = n− 1 then pn is not a leaf of T since the only arcs
going out of the set {pn, pn−1} start in pn. Thus, in this case, all leaves of T are
leaves of T ′′ and pn−1 is a leaf of T ′′ and not a leaf of T , contradicting the fact
that T has the maximum number of leaves.

Lemma 9.1.3 k-Leaf Out-Tree in nice willow graphs is NP-complete under
Karp reductions.

Proof. We reduce from the well known NP-complete Set Cover problem [72].
A set cover of a universe U is a family F ′ of sets over U such that every element
of u appears in some set in F ′. In the Set Cover problem one is given a
family F = {S1, S2, . . . Sm} of sets over a universe U , |U | = n, together with a
number b ≤ m and asked whether there is a set cover F ′ ⊂ F with |F ′| ≤ b
of U . In our reduction we will assume that every element of U is contained in
at least one set in F . We will also assume that b ≤ m − 2. These assumptions
are safe because if either of them does not hold, the Set Cover instance can be
resolved in polynomial time. From an instance of Set Cover we build a digraph
D = (V,A1 ∪ A2) as follows. The vertex set V of D is a root r, vertices si for
each 1 ≤ i ≤ m representing the sets in F , vertices ei, 1 ≤ i ≤ n representing
elements in U and finally 2 vertices p and p′.

The arc set A2 is as follows, there is an arc from r to each vertex si, 1 ≤ i ≤ m
and there is an arc from a vertex si representing a set to a vertex ej representing
an element if ej ∈ Si. Furthermore, rp and rp′ are arcs in A2. Finally, we let
A1 = {ei+1ei : 1 ≤ i < n} ∪ {si+1si : 1 ≤ i < m} ∪ {e1sm, s1p, pp

′, p′r}. This
concludes the description of D. We now proceed to prove that there is a set cover
F ′ ⊂ F with |F ′| ≤ b if and only if there is an out-branching in D with at least
n+m+ 2 − b leaves.

Suppose that there is a set cover F ′ ⊂ F with |F ′| ≤ b. We build a directed
tree T rooted at r as follows. Every vertex si, 1 ≤ i ≤ m, p and p′ has r as their
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parent. For every element ej , 1 ≤ i ≤ n we chose the parent of ej to be si such
that ej ∈ Si and Si ∈ F ′ and for every i′ < i either Si′ /∈ |F ′| or ej /∈ Si′ . Since
the only inner nodes of T except for the root r are vertices representing sets in
the set cover, T is an out-branching of D with at least n+m+ 2 − b leaves.

In the other direction suppose that there is an out-branching T of D with at
least n + m + 2 − b leaves, and suppose that T has the most leaves out of all
out-branchings of D. Since D is a nice willow with r as top vertex, Observation
9.1.2 implies that T is an r-out-branching of D. Now, if there is an arc ei+1ei ∈
A(T ) then let sj be a vertex such that ei ∈ Sj . Then T ′ = (T \ ei+1ei) ∪ sjei

is an r-out-branching of D with as many leaves as T . Hence, without loss of
generality, for every i between 1 and n, the parent of ei in T is some sj . Let
F ′ = {Si : si is an inner vertex of T}. F ′ is a set cover of U with size at most
n+m+ 2 − (n+m+ 2 − b) = b, concluding the proof.

Theorem 9.1.4 k-Leaf Out-Branching does not admit a polynomial kernel
unless PH=Σ3

p.

Proof. We give a polynomial parameter transformation from k-Leaf Out-
Tree to k-Leaf Out-Branching. Let (D, k) be an instance to k-Leaf Out-
Tree. For every vertex v ∈ V we make an instance (D, v, k) to Rooted k-Leaf
Out-Tree. Clearly, (D, k) is a yes-instance for k-Leaf Out-Tree if and only
if (D, v, k) is a yes-instance to Rooted k-Leaf Out-Tree for some v ∈ V .
By Theorem 8.2.30 Rooted k-Leaf Out-Tree has a O(k3) kernel, so we can
apply the kernelization algorithm for Rooted k-Leaf Out-Tree separately
to each of the n instances of Rooted k-Leaf Out-Tree to get n instances
(D1, v1, k), (D2, v2, k), . . ., (Dn, vn, k) with |V (Di)| = O(k3) for each i ≤ n. By
Lemma 9.1.3, k-Leaf Out-Branching in nice willow graphs is NP-complete
under Karp reductions, so we can reduce each instance (Di, vi, k) of Rooted
k-Leaf Out-Tree to an instance (Wi, bi) of k-Leaf Out-Branching in nice
willow graphs in polynomial time in |Di|, and hence in polynomial time in k.
Thus, in each such instance, bi ≤ (k + 1)c for some fixed constant c independent
of both n and k. Let bmax = maxi≤n bi. Without loss of generality, bi = bmax for
every i. This assumption is safe because if it does not hold we can modify the
instance (Wi, bi) by replacing bi with bmax, subdividing the last arc of the stem
bmax − bi times and adding an edge from ri to each subdivision vertex.

From the instances (W1, bmax), . . ., (Wn, bmax) we build an instance (D′, bmax+
1) of k-Leaf Out-Branching. Let ri and si be the top and bottom vertices of
Wi, respectively. We build D′ simply by taking the disjoint union of the willows
graphs W1,W2, . . . ,Wn and adding in an arc risi+1 for i < n and the arc rns1.
Let C be the directed cycle in D obtained by taking the stem of D′ and adding
the arc rns1.

If for any i ≤ n, Wi has an out-branching with at least bmax leaves, then Wi

has an out-branching rooted at ri with at least bmax leaves. We can extend this
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to an out-branching of D′ with at least bmax + 1 leaves by following C from ri.
In the other direction suppose D′ has an out-branching T with at least bmax + 1
leaves. Let i be the integer such that the root r of T is in V (Wi). For any vertex
v in V (D′) outside of V (Wi), the only path from r to v in D′ is the directed
path from r to v in C. Hence, T has at most 1 leaf outside of V (Wi). Thus,
T [V (W1)] contains an out-tree with at least bmax leaves. Since bmax ≤ (k + 1)c

the reduction is a polynomial parameter transformation from k-Leaf Out-Tree
to k-Leaf Out-Branching. By Theorem 9.1.1 and Proposition 5.2.2 k-Leaf
Out-Branching has no polynomial kernel unless PH=Σ3

p.

9.2 Explicit Identification in Composition Algo-

rithms

The kernelization lower bound for k-Leaf Out-Branching presented in the
previous section, together with a result of Bodlaender et al. [24] that the Disjoint
Cycles problem does not admit a polynomial kernel were the first non-trivial
applications of the framework developed by Bodlaender et al. [20] and Fortnow
and Santhanam [70]. In this section we give several non-trivial applications of
this framework. In particular we describe a “cookbook” for showing kernelization
lower bounds using explicit identification. We then apply this cookbook to show
that a wide variety of problems do not admit polynomial kernels, resolving several
open problems posed in the literature [10, 15, 78, 81, 111]. To show that a problem
does not admit a polynomial size kernel we go through the following steps.

1. Find a suitable parameterization of the problem considered. Quite often
parameterizations that impose extra structure make it easier to give a com-
position algorithm.

2. Define a suitable colored version of the problem. This is in order to get
more control over how solutions to problem instances can look.

3. Show that the colored version of the problem is NP-complete.

4. Give a polynomial parameter transformation from the colored to the uncol-
ored version. This will imply that if the uncolored version has a polynomial
kernel then so does the colored version. Hence kernelization lower bounds
for the colored version directly transfer to the original problem.

5. Show that the colored version parameterized by k is solvable in time 2kc ·
nO(1) for a fixed constant c.

6. Finally, show that the colored version is compositional and thus has no
polynomial kernel. To do so, proceed as follows.
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(a) If the number of instances in the input to the composition algorithm
is at least 2kc

then running the parameterized algorithm on each in-
stance takes time polynomial in input size. This automatically yields
a composition algorithm.

(b) If the number of instances is less than 2kc

, every instance receives an
unique identifier. Notice that in order to uniquely code the identi-
fiers (ID) of all instances, kc bits per instance is sufficient. The IDs
are coded either as an integer, or as a subset of a poly(k) sized set.

(c) Use the coding power provided by colors and IDs to complete the
composition algorithm.

In the following sections we show how to apply this approach to show incom-
pressibility and kernelization lower bounds for a variety of problems.

9.2.1 Steiner Tree, Variants of Vertex Cover, and Bounded
Rank Set Cover

The problems Steiner Tree, Connected Vertex Cover (ConVC), Ca-
pacitated Vertex Cover (CapVC), and Bounded Rank Set Cover are
defined as follows. In Steiner Tree we are given a graph a graphG = (T∪N,E)
and an integer k and asked for a vertex set N ′ ⊆ N of size at most k such
that G[T ∪N ′] is connected. In ConVC we are given a graph G = (V,E) and an
integer k and asked for a vertex cover of size at most k that induces a connected
subgraph in G. A vertex cover is a set C ⊆ V such that each edge in E has at
least one endpoint in C. The problem CapVC takes as input a graph G = (V,E),
a capacity function cap : V → N

+ and an integer k, and the task is to find a
vertex cover C and a mapping from E to C in such a way that at most cap(v)
edges are mapped to every vertex v ∈ C. Finally, an instance of Bounded
Rank Set Cover consists of a set family F over a universe U where every
set S ∈ F has size at most d, and a positive integer k. The task is to find a
subfamily F ′ ⊆ F of size at most k such that ∪S∈F ′S = U . All four problems
are known to be NP-complete (e.g., see [72] and the proof of Theorem 9.2.3); in
this section, we show that the problems do not admit polynomial kernels for the
parameter (|T |, k) (in the case of Steiner Tree), k (in the case of ConVC
and CapVC), and (d, k) (in the case of Bounded Rank Set Cover), respec-
tively. To this end, we first use the framework presented at the beginning of this
chapter to prove that another problem, which is called RBDS, does not have a
polynomial kernel. Then, by giving polynomial parameter transformations from
RBDS to the above problems, we show the non-existence of polynomial kernels
for these problems.

In Red-Blue Dominating Set (RBDS) we are given a bipartite graph
G = (T ∪ N,E) and an integer k and asked whether there exists a vertex
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set N ′ ⊆ N of size at most k such that every vertex in T has at least one
neighbor in N ′. We show that RBDS parameterized by (|T |, k) does not have a
polynomial kernel. In the literature, the sets T and N are called “blue vertices”
and “red vertices”, respectively. In this paper we will call the vertices “terminals”
and “nonterminals” in order to avoid confusion with the colored version of the
problem that we are going to introduce. RBDS is equivalent to Set Cover and
Hitting Set and is, therefore, NP-complete [72].

In the colored version of RBDS, denoted by Colored Red-Blue Dom-
inating Set (Col-RBDS), the vertices of N are colored with colors chosen
from {1, . . . , k}, that is, we are additionally given a function col : N → {1, . . . , k},
and N ′ is required to contain exactly one vertex of each color. We will now follow
the framework described at the beginning of this chapter.

Lemma 9.2.1 (1) The unparameterized version of Col-RBDS is NP-complete.
(2) There is a polynomial parameter transformation from Col-RBDS to RBDS.
(3) Col-RBDS is solvable in 2|T |+k · |T ∪N |O(1) time.

Proof. (1) It is easy to see that Col-RBDS is in NP. To prove its NP-
hardness, we reduce the NP-complete problem RBDS to Col-RBDS: Given
an instance (G = (T ∪N,E), k) of RBDS, we construct an instance (G′ = (T ∪
N ′, E ′), k, col) of Col-RBDS where the vertex setN ′ consists of k copies v1, . . . , vk

of every vertex v ∈ V , one copy of each color. That is, N ′ =
⋃

a∈{1,...,k}{va | v ∈
N}, and the color of every vertex va ∈ Na is col(va) = a. The edge set E ′ is given
by

E ′ =
⋃

a∈{1,...,k}
{{u, va} | u ∈ T ∧ a ∈ {1, . . . , k} ∧ {u, v} ∈ E} .

Now, there is a set S ⊂ N of size k dominating all vertices in T in G if and only
if in G′, there is a set S ′ ⊂ N ′ of size k containing one vertex of each color.

(2) Given an instance (G = (T ∪ N,E), k, col) of Col-RBDS, we construct
an instance (G′ = (T ′ ∪ N,E ′), k) of RBDS. The set T ′ consists of all vertices
from T plus k additional vertices z1, . . . , zk. The edge set E ′ consists of all edges
from E plus the edges

{{za, v} | a ∈ {1, . . . , k} ∧ v ∈ N ∧ col(v) = a}.

Now, there is a set S ′ ⊂ N ′ of size k dominating all vertices in T ′ in G′ if and
only if in G, there is a set S ⊂ N of size k containing one vertex of each color.

(3) To solve Col-RBDS in the claimed running time, we first use the re-
duction given in (2) from Col-RBDS to RBDS. The number |T ′| of termi-
nals in the constructed instance of RBDS is |T | + k. Next, we transform the
RBDS instance (G′, k) into an instance (F , U, k) of Set Cover where the
elements in U one-to-one correspond to the vertices in T ′ and the sets in F
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one-to-one correspond to the vertices in N . Since Set Cover can be solved
in O(2|U | · |U | · |F|) time [68, Lemma 2], statement (3) follows.

Lemma 9.2.2 Col-RBDS parameterized by (|T |, k) is compositional.

Proof. Given a sequence

(G1 = (T1 ∪N1, E1), k, col1), . . . , (Gt = (Tt ∪Nt, Et), k, colt)

of Col-RBDS instances with |T1| = |T2| = . . . = |Tt| = p, we show how to
construct a Col-RBDS instance (G = (T ∪N,E), k, col) as described in Defini-
tion 5.1.5.

For i ∈ {1, . . . , t}, let Ti := {ui
1, . . . , u

i
p} and Ni := {vi

1, . . . , v
i
qi
}. We start

with adding p vertices u1, . . . , up to the set T of terminals to be constructed. (We
will add more vertices to T later.) Next, we add to the set N of nonterminals
all vertices from the vertex sets N1, . . . , Nt, preserving the colors of the vertices.
That is, we set N =

⋃
i∈{1,...,t}Ni, and for every vertex vi

j ∈ N we define col(vi
j) =

coli(v
i
j). Now, we add the edge set

⋃
i∈{1,...,t}

{
{uj1, v

i
j2} | {ui

j1, v
i
j2} ∈ Ei

}
to G (see

Figure 9.1). The graphG and the coloring col constructed so far have the following
property: If at least one of the Col-RBDS instances (G1, k, col1), . . . , (Gt, k, colt)
is a yes-instance, then (G, k, col) is also a yes-instance because if for any i ∈
{1, . . . , t} a size-k subset fromNi dominates all vertices in Ti, then the same vertex
set selected fromN also dominates all vertices in T . However, (G, k, col) may even
be a yes-instance in the case where all instances (G1, k, col1), . . . , (Gt, k, colt) are
no-instances, because in G one can select vertices into the solution that originate
from different instances of the input sequence.

To ensure the correctness of the composition, we add more vertices and
edges to G. We define for every graph Gi of the input sequence a unique
identifier ID(Gi), which consists of a size-(p + k) subset of {1, . . . , 2(p + k)}
Since

(
2(p+k)

p+k

)
≥ 2p+k and since we can assume that the input sequence does not

contain more than 2p+k instances, it is always possible to assign unique identi-
fiers to all instances of the input sequence. (Note that if there are more than
2p+k instances, then we can solve all these instances in

∑t
i=1 2p+k · (p+ qi)

O(1) ≤
t ·∑t

i=1(p + qi)
O(1) time, which yields a composition algorithm.) For each color

pair (a, b) ∈ {1, . . . , k} × {1, . . . , k} with a 6= b, we add a vertex set W(a,b) =

{w(a,b)
1 , . . . , w

(a,b)
2(p+k)} to T , and we add to E the edge set

⋃

i∈{1,...,t},j1∈{1,...,qi}

{
{vi

j1
, w

(a,b)
j2

} | a = col(vi
j1

) ∧ b ∈ {1, . . . , k} \ {a} ∧ j2 ∈ ID(Gi)
}

∪

⋃

i∈{1,...,t},j1∈{1,...,qi}

{
{vi

j1 , w
(a,b)
j2

} | b = col(vi
j1) ∧ a ∈ {1, . . . , k} \ {b} ∧ j2 /∈ ID(Gi)

}
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W(white,black)

. . .. . .
w

(white,black)
1 . . . w

(white,black)
4 . . . w

(white,black)
7

ID(G1) =

{1, 2, 5, 7}
ID(G2) =

{2, 6, 7, 8}

N

Figure 9.1: Example for the composition algorithm for Col-RBDS. The upper
part of the figure shows an input sequence consisting of two instances with k = 3
(there are three colors: white, checkered, and black). The lower part of the
figure shows the output of the composition algorithm. For the sake of clarity,
only the vertex set W(white,black) is displayed, whereas five other vertex sets W(a,b)

with a, b ∈ {white, checkered, black} are omitted. Since k = 3 and p = 5, each
ID should consist of eight numbers, and W(white,black) should contain 16 vertices.
For the sake of clarity, the displayed IDs consist of only four numbers each,
and W(white,black) contains only eight vertices.

(see Figure 9.1).

Note that the construction conforms to the definition of a composition algo-
rithm; in particular, k remains unchanged and the size of T is polynomial in p, k
because |T | = p + k(k − 1) · 2(p + k). To prove the correctness of the construc-
tion, we show that (G, k, col) has a solution N ′ ⊆ N if and only if at least one
instance (Gi, k, coli) from the input sequence has a solution N ′

i ⊆ Ni.

In one direction, if N ′
i ⊆ Ni is a solution for (Gi, k, coli), then the same vertex

set chosen from N forms a solution for (G, k, col). To see this, first note that the
vertices from T are dominated by the chosen vertices. Moreover, for every color
pair (a, b) ∈ {1, . . . , k} × {1, . . . , k} with a 6= b, each vertex from W(a,b) is either
connected to all vertices v from Ni with col(v) = a or to all vertices v from Ni

with col(v) = b. Since N ′
i contains one vertex of each color class from Ni, each

vertex in W(a,b) is dominated by a vertex from N chosen into the solution.

In the other direction, to show that any solution N ′ ⊆ N for (G, k, col) is a
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solution for at least one instance (Gi, k, coli), we prove that N ′ cannot contain
vertices originating from different instances of the input sequence. To this end,
note that each two vertices in N ′ must have different colors. Assume, for the sake
of a contradiction, that N ′ contains a vertex vi1

j1
with col(vi1

j1
) = a originating

from the instance (Gi1 , k, coli1) and a vertex vi2
j2

with col(vi2
j2

) = b originating
from a different instance (Gi2 , k, coli2). Due to the construction of the IDs, we
have ID(Gi1) \ ID(Gi2) 6= ∅ and ID(Gi2) \ ID(Gi1) 6= ∅. This implies that there

are vertices in W(a,b) (namely, all vertices w
(a,b)
j with j ∈ ID(Gi2) \ ID(Gi1)) and

vertices in W(b,a) (namely, all vertices w
(b,a)
j with j ∈ ID(Gi1) \ ID(Gi2)) that are

neither adjacent to vi1
j1

nor to vi2
j2

. Therefore, N ′ does not dominate all vertices
from T , which is a contradiction to the fact that N ′ is a solution for (G, k, col).

Theorem 9.2.3 Red-Blue Dominating Set and Steiner Tree, both pa-
rameterized by (|T |, k), Connected Vertex Cover and Capacitated Ver-
tex Cover, both parameterized by k, and Bounded Rank Set Cover, pa-
rameterized by (k, d), do not admit polynomial kernels unless PH = Σ3

p.

Proof. For RBDS the statement of the theorem follows directly by Theorem
5.1.6 together with Lemmata 9.2.1 and 9.2.2.

To show that the statement is true for the other four problems, we give poly-
nomial parameter transformations from RBDS to each of them—due to Propo-
sition 5.2.2, this suffices to prove the statement. Let (G = (T ∪ N,E), k) be
an instance of RBDS. To transform it into an instance (G′ = (T ′ ∪ N,E ′), k)
of Steiner Tree, define T ′ = T ∪ {ũ} where ũ is a new vertex and let E ′ =
E ∪ {{ũ, vi} | vi ∈ N}. It is easy to see that every solution for Steiner Tree
on (G′, k) one-to-one corresponds to a solution for RBDS on (G, k).

To transform (G, k) into an instance (G′′ = (V ′′, E ′′), k′′) of ConVC, first
construct the graph G′ = (T ′ ∪ N,E ′) as described above. The graph G′′ is
then obtained from G′ by attaching a leaf to every vertex in T ′. Now, G′′ has a
connected vertex cover of size k′′ = |T ′|+ k = |T |+ 1 + k iff G′ has a steiner tree
containing k vertices from N iff all vertices from T can be dominated in G by
k vertices from N .

Next, we describe how to transform (G, k) into an instance (G′′′ = (V ′′′, E ′′′),
cap, k′′′) of CapVC. First, for each vertex ui ∈ T , add a clique toG′′′ that contains
four vertices u0

i , u
1
i , u

2
i , u

3
i . Second, for each vertex vi ∈ N , add a vertex v′′′i

to G′′′. Finally, for each edge {ui, vj} ∈ E with ui ∈ T and vj ∈ N , add the
edge {u0

i , v
′′′
j } toG′′′. The capacities of the vertices are defined as follows: For each

vertex ui ∈ T , the vertices u1
i , u

2
i , u

3
i ∈ V ′′′ have capacity 1 and the vertex u0

i ∈ V ′′′

has capacity degG′′′(u0
i )− 1. Each vertex v′′′i has capacity degG′′′(v′′′i ). Clearly, in

order to cover the edges of the size-4 cliques inserted for the vertices of T , every
capacitated vertex cover for G′′′ must contain all vertices u0

i , u
1
i , u

2
i , u

3
i . Moreover,

since the capacity of each vertex u0
i is too small to cover all edges incident to u0

i ,
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at least one neighbor v′′′j of u0
i must be selected into every capacitated vertex

cover for G′′′. Therefore, it is not hard to see that G′′′ has a capacitated vertex
cover of size k′′′ = 4 · |T | + k iff all vertices from T can be dominated in G by
k vertices from N .

Finally, to transform (G, k) into an instance (F , U, k) of Bounded Rank Set
Cover, add one element ei to U for every vertex ui ∈ T . For every vertex vj ∈ N ,
add one set {ei | {ui, vj} ∈ E} to F . The correctness of the construction is
obvious, and since |U | = |T |, every set in F contains at most d = |T | elements.

9.2.2 Unique Coverage

In the Unique Coverage problem we are given a universe U , a family of sets
F over U and an integer k. The problem is to find a sub-family F ′ of F and a set
S of elements in U such that |S| ≥ k and every element of S appears in exactly
one set in F ′, that is, the number of elements uniquely covered by F ′ is at least
k.

In order to obtain our negative results we have to utilize positive kernelization
results for the problem. In some sense, we have to compress our instances as much
as possible in order to show that what remains is incompressible even though it
is big. We utilize the following well-known and simple reduction rules for the
problem: (a) If any set S ∈ F contains at least k elements, return yes; (b) If any
element e is not contained in any set in F , remove e from U ; and (c) If none of
the above rules can be applied and |U | ≥ k(k − 1) return yes.

We show that the Unique Coverage problem does not have a polynomial
kernel unless PH=Σ3

p. Notice that while the above reduction rules will compress
the instance to an instance with at most O(k2) elements, this is not a polynomial
kernel because there is no polynomial bound on the size of F . Hence, our nega-
tive result implies that unless PH=Σ3

p the size of F can not be compressed to a
polynomial in k in polynomial time. We start by defining the colorful reduced ver-
sion Colored Reduced Unique Coverage (Col-Red-UC) of the Unique
Coverage problem which is useful for making the composition algorithm. In
this version the sets of F are colored with colors from the set {1, . . . , k} and F ′ is
required to contain exactly one set of each color. Furthermore, in Col-Red-UC
every set S in F has size at most k − 1 and |U | ≤ k2.

Lemma 9.2.4 (1) The unparameterized version of Col-Red-UC is NP-complete.
(2) There is a polynomial parameter transformation from Col-Red-UC to Unique
Coverage. (3) Col-Red-UC parameterized by k is solvable in time O(k2k2

).

Proof. (1) To show that that Col-Red-UC is NP-complete we reduce from the
Unique Coverage problem. For an instance (F , U, k) of Unique Coverage
we first apply the reduction rules above. We now assume that the given instance



135

cannot be reduced any further. Now we make k copies of F , one copy of each color.
This new instance has a colored subfamily uniquely covering at least k elements
if and only if (F , U, k) is a yes instance to Unique Coverage. Furthermore,
even in the new instance we have that |U | ≤ k2 and that every set has at most
k − 1 elements.

(2) We now prove that there is a polynomial parameter transformation from
Col-Red-UC to Unique Coverage. For an instance (F , U, k) of Col-Red-
UC we make a new instance (H, U ′, k′) to Unique Coverage. Let k′ = k(k2 +
1) + k and for every color i we add a set Ui of k2 + 1 new elements to U and
make all sets colored with i contain Ui in addition to what they already contain.
Thus we have that U ′ = U ∪⋃i∈{1,...,k}Ui. Notice that in order to cover at least

k(k2 + 1) elements uniquely one has to pick exactly one set of each color. This
concludes the polynomial parameter transformation.

(3) Finally, observe that Col-Red-UC can be solved in time O(k2k2
) because

the size of |U | is bounded by k2.

Lemma 9.2.5 The Col-Red-UC problem is compositional.

Proof. Given a sequence of Col-Red-UC instances I1 = (U,F1, k), . . . , It =
(U,Ft, k), we construct an Col-Red-UC instance I = (U ′,F , k′). If the number
of instances t is at least 22k2 log k then running the algorithm from Lemma 9.2.4 on
all instances takes time polynomial in the input size yielding a trivial composition
algorithm. Thus we assume that t is at most 22k2 log k. We now construct ID’s
for for every instance, this is done in two steps. In the first step every instance i
gets a unique small id ID′(Ii) which is a subset of size k3/2 of the set {1, . . . , k3}.
The identifier of instance i is the set ID(Ii) which is defined to be ID(Ii) = {x ∈
N : ⌊x/k3⌋ ∈ ID′(Ii)}. In other words, ID(Ii) = {k3 · j + j′ | j ∈ ID′(Ii) ∧ j′ ∈
{0, . . . , k3 − 1}}. Notice that the identifier of every instance is now a subset of
size k6/2 of the set {1, . . . , k6} and that the ID’s of two different instances differ
in at least k3 places.

We start building the instance I by letting U ′ = U and F = F1 ∪F2 . . .∪Ft.
The sets have the same color as in their respective instance. For every distinct
ordered pair of colors i, j ≤ k we add the set Ui,j = {u1

i,j, . . . , u
k6

i,j} to U ′. For every
instance Ip we consider the sets colored i and j respectively in Fp. To every set
S with color i in Fp we add the set {ux

i,j : x ∈ ID(Ip)}. Also, to every set S with
color j in Fp we add the set {ux

i,j : x /∈ ID(Ip)}. Finally we set k′ = k(k−1)k6+k.
This concludes the construction.

If some Ip has a colored subfamily F ′ covering k elements uniquely, we show
that the same subfamily covers k′ elements uniquely in I. First note that F ′

covers k elements uniquely in U . It remains to prove that for every distinct
ordered pair i, j of colors, all elements of Ui,j are covered uniquely by F ′ in I.
Consider an element uq

i,j ∈ Ui,j and let Si and Sj be the sets colored i and j
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respectively in F ′. If q ∈ ID(Ip) then Si contains uq
i,j and Sj does not. Similarly

if q /∈ ID(Ip) then Sj contains uq
i,j and Si does not. Furthermore no other set of

F ′ contains uq
i,j and thus this element is uniquely covered.

In the other direction, suppose I has a colored subfamily F ′ covering k′ ele-
ments uniquely. Suppose for contradiction that there is a color i and a color j
such that the set Si ∈ F ′ with color i and the set Sj ∈ F ′ with color j originate
from different instances. Observe that in the set Ui,j the sets Si and Sj intersect
in at least k3 elements, and thus these elements are not covered uniquely by F ′.
Then the total number of elements that can be uniquely covered by F ′ is upper
bounded by k(k−1)k6 +k2−k3 < k(k−1)k6 < k′ yielding a contradiction. Thus
all the sets in F ′ come from the same instance Ip and uniquely cover at least k
elements in Ip. This concludes the proof.

Theorem 9.2.6 The Unique Coverage problem does not admit a polynomial
kernel unless PH = Σ3

p.

9.2.3 Bounded Rank Disjoint Sets

In the Bounded Rank Disjoint Sets problem we are given a family F over
a universe U with every set S ∈ F having size at most d together with a positive
integer k. The question is whether there exists a subfamily F ′ of F with |F ′| ≥ k
such that for every pair of sets S1, S2 ∈ F ′ we have that S1 ∩ S2 = ∅. The
problem can be solved in time 2O(dk)nO(1) using color-coding and an application
of dk-perfect hash families. We outline a proof which shows that this problem
does not admit a poly(k, d) kernel. To do so we define a variation of the Perfect
Code problem on graphs, which we call Bipartite Regular Perfect Code
problem. In Bipartite Regular Perfect Code we are given a bipartite
graph G = (T ∪ N,E), where every vertex in N has the same degree, and an
integer k and asked whether there exists a vertex set N ′ ⊆ N of size at most k
such that every vertex in T has exactly one neighbor in N ′. The set N ′ is called
a bipartite perfect code. Now we are ready to state the main theorem of this
subsection.

Theorem 9.2.7 Bipartite Regular Perfect Code parameterized by (|T |, k)
and Bounded Rank Disjoint Sets parameterized by (d, k) do not have a poly-
nomial kernel unless PH = Σ3

p.

Proof. We can show that Bipartite Regular Perfect Code parameter-
ized by (|T |, k) does not have a polynomial kernel along the lines of the proof
of Theorem 9.2.3, which shows that RBDS parameterized by (|T |, k) does not
have a polynomial kernel. Bipartite Regular Perfect Code is known to
be NP-complete even when every vertex in N has degree exactly 3 [99]. The
proof showing that the colored version of Bipartite Regular Perfect Code
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(1) is NP-complete, (2) has a fixed-parameter algorithm of the desired kind, and
(3) has a polynomial parameter transformation to Bipartite Regular Per-
fect Code is just a minor modification as for RBDS. For the composition,
it is enough to observe that if the input graphs to the composition algorithm
are one sided regular then the composed graph will remain one sided regular in
Lemma 9.2.2. This is true as every vertex is made adjacent to the same number
of newly added vertices and newly added vertices are added to T .

Finally, to show that Bounded Rank Disjoint Sets parameterized by
(d, k) does not have a polynomial kernel we give a polynomial parameter transfor-
mation from Bipartite Regular Perfect Code to Bounded Rank Dis-
joint Sets. To this end, given an instance (G = (T ∪ N,E), k) for Bipar-
tite Regular Perfect Code, we make an instance (U,F , k′, d) for Bounded
Rank Disjoint Sets as follows. Let U = T , F = {Fv | v ∈ N, Fv = N(v)},
k′ = k and d = r where r is the degree of any vertex inN . Observe that k = |T |/r.
From here it easily follows that G has a bipartite perfect code of size k if and
only if (U,F , k, d) has a subfamily F ′ of F of pairwise disjoint sets.

9.2.4 Domination and Transversals

In the Small Universe Hitting Set problem we are given a set family F over
a universe U with |U | ≤ d together with a positive integer k. The question is
whether there exists a subset S in U of size at most k such that every set in F has
a non-empty intersection with S. We show that the Small Universe Hitting
Set problem parameterized by the solution size k and the size d = |U | of the
universe does not have a kernel of size polynomial in (k, d) unless PH = Σ3

p.
One should notice that while Hitting Set and Set Cover in fact are the
same problem, Small Universe Hitting Set and Small Universe Set
Cover are not, because in the former we are restricting the number of potential
dominators while in the later we restrict the number of objects to be dominated.

We define the colored version of Small Universe Hitting Set, called Col-
SUHS as follows. We are given a set family F over a universe U with |U | ≤ d,
and a positive integer k. The elements of U are colored with colors from the set
{1, . . . , k} and the question is whether there exists a subset S ⊆ U containing
exactly one element of each color such that every set in F has a non-empty
intersection with S.

Lemma 9.2.8 (1) The unparameterized version of Col-SUHS is NP-complete.
(2) There is a polynomial parameter transformation from Col-SUHS to Small
Universe Hitting Set. (3) Col-SUHS parameterized by d, k is solvable in
time O(2d · nO(1)).

Proof. (1) We show that Col-SUHS is NP-complete by reducing from Small
Universe Hitting Set, which is easily seen to be NP-complete by a reduction
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from Dominating Set. Given an instance (F , U, d, k) to Small Universe
Hitting Set we make an instance (F ′, U ′, d · k, k) of Col-BRHS by letting U ′

contain k copies of U , with one element of each color. For every set S in F we
make a set S ′ in F ′ by letting S ′ contain all copies of all elements in S. From the
construction it follows that (F , U, d, k) has a hitting set of size at most k if and
only if (F ′, U ′, d · k, k) has a colored hitting set of size k.

(2) We now give a polynomial parameter transformation from Col-SUHS to
Small Universe Hitting Set. For an instance (F ′, U, d, k) to Col-SUHS we
make an instance (F , U, d, k) to Small Universe Hitting Set as follows. For
every i between 1 and k let Ui be the set of elements in U colored with i. We
construct F by starting with F ′ and for every i adding the set Ui to F ′. Now, a
subset S of U hits every set of F if and only if it hits every set of F ′ and contains
at least one vertex of each color.

(3) Finally, observe that Col-SUHS parameterized by d, k is solvable in time
O(2d · nO(1)) by enumerating all subsets of U and for each set checking whether
it is a hitting set with at least one vertex of each color.

Lemma 9.2.9 The problem Col-SUHS is compositional.

Proof. We have to show how, given a sequence of Col-SUHS instances (F1, U, d,
k), . . ., (Ft, U, d, k) to Col-SUHS where |U | ≤ d, to construct a Col-SUHS
instance (F , U ′, d′, k′) as described in Definition 5.1.5.

If the number of instances is at least 2d then running the algorithm from
Lemma 9.2.8 on all instances takes time polynomial in the input size yielding a
trivial composition algorithm. Thus we can assume that t ≤ 2d. Furthermore,
we need the number of instances to be a power of 2. To make this true we add
in an appropriate number of no-instances. As we never add more than t extra
instances in order to make the number of instances a power of 2 this can be done
in polynomial time and hence we can safely assume that t is a power of 2, say
2l. Observe that since t ≤ 2d we have that l ≤ d. Now, let every instance be
identified by a unique number from 0 to t− 1.

We let k′ = k+l and start building (F , U ′, d′, k′) from (F1, U, d, k), . . . , (Ft, U, d,
k) by letting U ′ = U and letting elements keep their color. For every i ≤ t we add
the family Fi to F . We now add 2l new elements C = {a1, b1, . . . , al, bl} to U ′ and
for every i ≤ l, {ai, bi} comprise a new color class. We conclude the construction
by modifying the sets in F that came from the input instances to the composition
algorithm. For every j ≤ t we consider all sets in Fj. For every such set S we
proceed as follows. Let ID(j) be the identification number of instance number j.
For every i ≤ l we look at the i’th bit in the binary representation of ID(j). If
this bit is set to 1 we add ai to S and if the bit is set to 0 we add bi to S. This
concludes the construction.

Now, if there is a colored hitting set S for Fj with |S| ≤ k we construct a
colored hitting set S ′ for F of size k+ l as follows. First we add S to S ′ and then
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we consider the identification number ID(j) of instance j. For every i between 1
and l we consider the i’th bit of ID(j). If this bit is set to 1 we add bj to S ′ else
we add aj to S ′. Clearly S ′ is a hitting set for Fi, has size k+ l and contains one
vertex of each color. It remains to show that S ′ hits all other sets of F . Consider
any set X ∈ Fq for some q 6= j. Then there is an i such that ID(q) differs from
ID(j) in the i’th bit. If the i’th bit of ID(q) is 1 then the i’th bit of ID(j) is 0
and hence ai ∈ S ′. Since the i’th bit of ID(q) is 1, ai ∈ X.

In the other direction, suppose there is a colored hitting set S ′ of size l + k
of F . For every i ≤ l, exactly one out of the vertices ai and bi is in S ′. Let p be
the number between 0 and 2l − 1 such that for every i the i’th bit of p is 1 if and
only if bi ∈ S ′. Observe that the sets in F originating from the family Fj such
that ID(j) = p do not contain any of the elements of S ′∩C. Thus S ′′ = S ′∩U is
a colored hitting set for Fj containing at most one element from each color class.
S ′′ can thus be extended to a colored hitting set S of Fj with |S| = k, concluding
the proof.

Theorem 9.2.10 Small Universe Hitting Set parameterized by solution
size k and universe size |U | = d does not have a polynomial kernel unless PH =
Σ3

p. The Dominating Set problem parameterized by the solution size k and the
size c of a minimum vertex cover of the input graph does not have a polynomial
kernel.

Proof. The first part of the theorem follows immediately from Lemmata 9.2.8
and 9.2.9. To show that the Dominating Set problem parameterized by the
solution size k and the size c of a minimum vertex cover of the input graph does
not have a polynomial kernel we give a polynomial parameter transformation
from Col-SUHS to Dominating Set. On input (F , U, d, k) to Col-SUHS we
make an instance (G, k) to Dominating Set as follows. We start by letting G be
the bipartite element-set incidence graph of (F , U). Now we and add one vertex
vi for every color class i and make vi adjacent to every vertex in G corresponding
to an element of U with color i. This concludes the construction.

First, observe that U is a vertex cover of size d of G. Second, observe that if
there is a colored hitting set S with |S| ≤ k of (F , U, d, k) then S is a dominating
set of G. Finally, if S is a dominating set of G then for every i there is a vertex in
S ∩N [vi]. Hence, S ∩ U is a hitting set for F containing at most one element of
each color. Thus this set can be extended to a colorful hitting set of F , concluding
the proof.

Theorem 9.2.10 has some interesting consequences. For instance, it implies
that the Hitting Set problem parameterized by solution size k and the max-
imum size d of any set in F does not have a kernel of size poly(k, d) unless
PH = Σ3

p. The second part of Theorem 9.2.10 implies that the Dominating
Set problem in graphs excluding a fixed graph H as a minor parameterized by
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(k, |H|) does not have a kernel of size poly(k, |H|) unless PH = Σ3
p. This follows

from the well-known fact that every graph with a vertex cover of size c excludes
the complete graph Kc+2 as a minor. Similarly, since every graph with a vertex
cover of size c is c-degenerate it follows that the Dominating Set problem in
d-degenerate graphs does not have a kernel of size poly(k, d) unless PH = Σ3

p.

Theorem 9.2.11 Unless PH = Σ3
p the problems Hitting Set parameterized

by solution size k and the maximum size d of any set in F , Dominating Set
in H-Minor Free Graphs parameterized by (k, |H|), and Dominating Set
parameterized by solution size k and degeneracy d of the input graph do not have
a polynomial kernel.

9.2.5 Numeric Problem: Small Subset Sum

In the Subset Sum problem we are given a set S of n integers and a target
t and asked whether there is a subset S ′ of S that adds up to exactly t. In
the most common parameterization of this problem one is also given an integer
k and asked whether there is a subset S ′ of S of size at most k that adds up
to t. This parameterization, however, is W [1]-hard. We consider a stronger
parameterization where in addition to k an extra parameter d is provided and the
integers in S are required to have size at most 2d. This version, Small Subset
Sum is trivially fixed parameter tractable by dynamic programming. We believe
that Small Subset Sum is the most restrictive plausible parameterization of
the Subset Sum problem. We show that even this version does not admit a
polynomial kernel, by giving a polynomial parameter transformation from the
Colored Red-Blue Dominating Set (Col-RBDS) problem.

Theorem 9.2.12 Small Subset Sum parameterized by (d, k) does not admit
a kernel polynomial in (d, k) unless PH = Σ3

p.

Proof. We give a polynomial parameter transformation from the Colored
Red-Blue Dominating Set (Col-RBDS) problem to Small Subset Sum.
Given an instance (G = (T ∪N,E), k, d) to Col-RBDS, such that |T | = d and
N has been colored with colors from {1, . . . , k}, we build an instance (S, t, k′, d′)
to Small Subset Sum. For an integer x ∈ S we treat x both as a number and
as a string—the encoding of x in the number system with base k(k + 1).

We let t be a length-(d + 2k) string of digits representing the number 1 +
k(k + 1)/2 and k′ = k(d + 1). Now, order the elements of T in some order, say
T = t1, t2, . . . , td. For a vertex v ∈ N we define the string Z(v) to be a string on
d digits, where the i’th digit is set to 1 if {v, ti} ∈ E and 0 otherwise. For an
integer i between 1 and k we define the string B(i) to be a length-k string with
zeroes everywhere, except in the i’th digit, which is 1 + k(k + 1)/2. For every
vertex x ∈ N we add a string to S: Let i be the color of x. We add the string



141

B(i)Z(x)B(k + 1 − i) to S and we will say that this string (or the number it
represents) corresponds to x. Even though the numbers in the Small Subset
Sum are uncolored, we color the string corresponding to x with the same color
as x in order to ease the discussion. Finally we add a set of uncolored numbers
to S: For every i between 1 and d and every j between 1 and k the string ui,j

is a string of length 2k + d with zeroes everywhere except for the k + i’th digit,
which is set to j. This concludes the construction. One should notice that every
number is bounded by (k(k + 1))2k+d and hence we can set d′ = 3(2k + d) log k.
We prove that there is a set N ′ ⊆ N containing one vertex of each color such
that every vertex of T has a neighbor in N ′ if and only if there is a set S ′ ⊆ S of
at most k′ numbers that add up to t.

Suppose that there is a set N ′ ⊆ N containing one vertex of each color such
that every vertex of T has a neighbor in N ′. We pick S ′ ⊆ S as follows. For
every vertex v ∈ N ′ we add the string corresponding to v to S ′. Furthermore, for
every i ≤ d, let xi be the number of neighbors the vertex ti ∈ T has in N ′. We
add the set {ui,j : 1 ≤ j ≤ k ∧ j 6= xi − 1} to S ′. Since we picked one number of
each color, when we add up the numbers in S ′ there are no carries. Since every
vertex ti ∈ T sees at least one and at most k vertices in N ′, the k + i’th digit of
the sum of all numbers in S ′ is exactly 1 + k(k + 1)/2.

In the other direction, suppose there is a set S ′ ⊆ S with at most k′ numbers
that add up to t. If S contains no numbers colored 1, then the last digit of∑

x∈S′ x must be zero, a contradiction. If S contains at least two numbers colored
1 then

∑
x∈S′ x > t again yielding a contradiction. Hence S ′ contains exactly one

number colored 1. Let s1 be the number in S ′ colored 1. Now, if S ′ contains no
numbers colored 2 then the second last digit of

∑
x∈S′ x is zero and if S ′ contains

at least 2 numbers colored 2 then −s1 +
∑

x∈S′ x > t − s1, again contradicting
that t =

∑
x∈S′ x. Repeating the argument for the remaining colors yields that

S ′ contains exactly one number of each color. For every i ≤ k we let si be the
number in S ′ colored i. For every i let vi be the vertex in N corresponding to
si. We prove that for every i the vertex ti ∈ T has a neighbor in N ′. To achieve
this we argue that there is a number sj such that the k + i’th digit of sj is 1.
Suppose for contradiction that this is not the case. Notice that since there is
at most one number of each color in S ′ there are no carries when we add up
the numbers of S ′, even if S ′ contains all uncolored numbers. Hence, even if
S ′ contains all uncolored numbers whose k + i’th digit is non-zero the k + i’th
digit of

∑
x∈S′ x must be strictly less than 1 + k(k + 1)/2, yielding the desired

contradiction, thereby completing the proof.
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Chapter 10

Concluding Remarks and Open
Problems

In this thesis, we have provided new methods for showing upper and lower bounds
in Parameterized Algorithms and Complexity and in Kernelization. We conclude
the thesis with a list of open problems that naturally arise from our results, or
to which the techniques developed here might be amenable.

Algorithmic

• Our algorithm for k-Feedback Arc Set in Tournaments runs time 2Õ(
√

k) +
nO(1). Can the polylogarithmic term be removed from the exponent, that
is, can k-Feedback Arc Set in Tournaments be solved in time 2O(

√
k)+nO(1)?

• Can the chromatic coding technique be applied to other problems in dense
structures? In particular, in the Edge Bipartization problem input is a
graph G and integer k. The objective is to find a set of at most k edges
whose removal makes the graph bipartite. Is there an 2o(k) time algorithm
for the Edge Bipartization problem restricted to graphs where every
vertex has degree at least c · n for every fixed constant c > 0?

Hardness

• Is Max Cut FPT parameterized by cliquewidth? In this problem we are
given a graph G of cliquewidth at most k and asked to color the vertices of
G black or white such that the maximum number of edges have endpoints
with different colors. We conjecture that the problem is W[1]-hard.

• A well-known open problem is whether the Biclique problem is FPT. In
this problem we are given a graph G and an integer k and asked whether G
contains a complete bipartite graph with both bipartitions of size at least
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k as subgraph. This problem is believed to be W[1]-hard. Can a novel
application of explicit identification be used to prove that Biclique indeed
is W[1]-hard?

Kernelization

• Do all compact p-min/eq/max-CMSO problems admit a linear kernel in
graphs of bounded genus? If so, do all quasi-compact p-min/eq/max-
CMSO problems admit a linear kernel in graphs of bounded genus?

• Is there a semantical characterization of the problems that have finite inte-
ger index?

• Can Theorems 8.1.1 and 8.1.3 be extended to graph classes excluding a
fixed graph H as a minor, or at least for minor closed graph classes with
bounded local treewidth [66]?

• It does not seem possible to directly apply Theorems 8.1.1 and 8.1.3 to the
Odd Cycle Transversal problem. Does Odd Cycle Transversal
admit a polynomial kernel in planar graphs?

• Longest Path is known not to admit a polynomial kernel unless PH=Σ3
p [20],

even when input is restricted to planar graphs. Does Longest Path in
planar graphs admit a polynomial size turing kernel?

• Feedback Vertex Set is known to admit a O(k2) kernel [132]. Does
Feedback Vertex Set admit a linear size turing kernel?

Kernelization Lower Bounds

• Several of the problems we have considered are parameterized by two vari-
ables, like Bounded Rank Hitting Set and Bounded Rank Set
Cover parameterized by solution size k and maximum set size d, and
Dominating Set in H-Minor Free Graphs parameterized by (k, |H|).
While we show that the problems do not admit a kernel polynomial in both
k and d, the problems do admit a polynomial kernel in the solution size
k when the other parameter is regarded as a constant. In particular both
Bounded Rank Hitting Set and Bounded Rank Set Cover admit
kO(d) kernels while Dominating Set in H-Minor Free Graphs admits
a kf(|H|) kernel. Is there something in between? Or, more specifically, do
Bounded Rank Hitting Set and Bounded Rank Set Cover admit
kernels of size f(d) · kO(1), and does Dominating Set in H-Minor Free
Graphs admit a f(|H|) · kO(1) kernel? We coin this kind of kernels, uni-
formly polynomial kernels and ask the general question - which problems
admit uniformly polynomial kernels, and which do not?
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• Is there a way to rule out the existence of polynomial size turing kernels for
an FPT problem, up to some complexity-theoretical assumption?
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