
Sharp Separation and Applications to Exact and

Parameterized Algorithms∗

Fedor V. Fomin† Fabrizio Grandoni‡ Daniel Lokshtanov§ Saket Saurabh¶

Abstract

Many divide-and-conquer algorithms employ the fact that the vertex set of a graph of

bounded treewidth can be separated in two roughly balanced subsets by removing a small

subset of vertices, referred to as a separator. In this paper we prove a trade-off between

the size of the separator and the sharpness with which we can fix the size of the two sides

of the partition. Our result appears to be a handy and powerful tool for the design of exact

and parameterized algorithms for NP-hard problems. We illustrate that by presenting two

applications.

Our first application is a O(2n+o(n))-time algorithm for the DEGREE CONSTRAINED

SPANNING TREE problem: find a spanning tree of a graph with the maximum number

of nodes satisfying given degree constraints. This problem generalizes some well-studied

problems, among them Hamiltonian Path, Full Degree Spanning Tree, Bounded Degree

Spanning Tree, and Maximum Internal Spanning Tree.

The second application is a parameterized algorithm with running time O(16k+o(k) +

nO(1)) for the k-INTERNAL OUT-BRANCHING problem: here the goal is to compute an out-

branching of a digraph with at least k internal nodes. This is a significant improvement

over the best previously known parameterized algorithm for the problem by [Cohen et

al.’09], running in time O(49.4k + nO(1)).

1 Introduction

The aim of parameterized and exact algorithms is to solve NP-hard problems exactly, with the

smallest possible (exponential) worst-case running time. While exact algorithms are designed

to minimize the running time as a function of the input size, parameterized algorithms seek

to perform better when the instance considered has more structure than a general instance

to the problem. (For an introduction to the topic, see e.g. [19, 40]). Exact and parameter-

ized algorithms have an old history [9, 27, 33], but they have been at the forefront in the

∗A preliminary version of this paper appeared in the proceedings of LATIN 2010 [20].
†Department of Informatics, University of Bergen, Bergen Norway. fedor.fomin@ii.uib.no
‡Computer Science Department, University of Rome Tor Vergata, Roma, Italy. grandoni@disp.uniroma2.it
§Department of Informatics, University of Bergen, Bergen Norway. daniello@ii.uib.no
¶The Institute of Mathematical Sciences, Chennai, India. saket@imsc.res.in

1

last decade. In the last few years, many new techniques have been developed to design and

analyze exact algorithms, among them Inclusion-Exclusion [5], Subset Convolution [4], Mea-

sure & Conquer [17], and Iterative Compression [43]. Among the best-studied problems, let

us recall Independent Set [7, 17, 44, 46], (Connected) Dominating Set [15, 17, 18, 25, 47],

Steiner Tree [4, 16, 21, 39], Feedback Vertex Set [13, 42], Coloring [2, 5, 33], Satisfiability

[32, 37], Travelling Salesman and Hamiltonian Path [3, 27, 28, 31, 36, 48], and many others.

A classical approach to solve combinatorial problems is divide-and-conquer: decompose

the problem in two or more sub-problems, solve them independently and merge the obtained

solutions. Several divide-and-conquer algorithms rely on the existence of a small separator,

which is defined as follows. Let G be an n-vertex graph with vertex set V = V (G) and edge set

E = E(G). A set of vertices S is called an α-separator of G, 0 < α ≤ 1, if the vertex set V \ S

can be partitioned into sets VL and VR of size at most αn such that no vertex of VL is adjacent

to any vertex of VR. For example, the classical result of Lipton and Tarjan [34] that every

planar graph has a 2
3 -separator of size O(

√
n) can be used to solve many NP-hard problems in

planar graphs in time O(2O(
√

n)) [35]. Alon, Seymour and Thomas [1] generalized the result

of Lipton and Tarjan [34] and proved that every graph excluding a fixed graph H as a minor

has a 2
3 -separator of size O(|V (H)|3/2√n). It is well known that every tree has a 2

3 -separator

of size 1. This result was generalized to graphs of bounded treewidth in [6], where it is shown

that every graph of treewidth t has a 2
3 -separator of size at most t + 1.

1.1 Our Results

In this paper (see Section 2) we prove a trade-off between the size of the separator S and the

sharpness with which we can fix the size of VL and VR in the partition, for graphs of treewidth

t (see Section 1.2 for the definition of treewidth). Given a function w : X → R, we define

w(Y) =
∑

y∈Y w(y) for any Y ⊆ X.

Lemma 1 (Sharp Separation). Let G = (V,E) be a graph of treewidth t and w : V → {0, 1}.

Then for any integer p ≥ 0 and 0 ≤ x ≤ w(V), there is a partition (VL, S, VR) of V such that

|S| ≤ t · p, w(VL) ≤ x + ⌊w(V)
2p ⌋, w(VR) ≤ w(V) − x + ⌊w(V)

2p ⌋, and there is no edge in G with

one endpoint in VL and the other endpoint in VR, that is, S separates VL from VR. Given a

tree-decomposition of G of width t, S can be computed in polynomial time.

Here the weight function w is used to model a subset W ⊆ V of vertices that we wish to

separate. Lemma 1 implies for example that, with a separator of logarithmic size (for bounded

treewidth graphs), we can obtain a perfectly balanced partition with max{|VL|, |VR|} ≤ n/2. In

this paper we will always choose p = log2−ε n, for a small constant ε > 0, so that the additive

term ⌊w(V)
2p ⌋ disappears. The base of the logarithm will be omitted, in order to lighten the

notation.

Let us remark that, in the applications considered in this paper, we will use a restricted

version of the above lemma where the considered graph is a tree (hence t = 1), and all node

weights are one. Furthermore, we will never need to compute a tree-decomposition (since for

2

our algorithms the only thing we need is the separator and that will be guessed). However,

we decided to present the lemma in the above form since it captures other applications which

are not discussed here. For example, w can be used to model Steiner-tree-like problems.

Furthermore, our basic approach (differently from other techniques in the literature) allows

one to find graphs of bounded treewidth (with given properties) rather than trees.

Our Sharp Separation Lemma is a handy tool in the design of parameterized and exact

algorithms based on the divide-and-conquer paradigm. We illustrate that by presenting two

applications.

Degree constrained spanning tree. For a given graph G = (V,E), let dG(v) denote the

degree of v ∈ V in G. Our first result is an algorithm for the following problem:

DEGREE CONSTRAINED SPANNING TREE (DCST). Given a graph G = (V,E) and a

function D : V → 2{1,...,n}. Find a spanning tree T of G maximizing |{v ∈ V :

dT (v) ∈ D(v)}|.

Intuitively, D(v) can be seen as a set of desirable degrees for a vertex v in the spanning tree.

We have a hit each time dT (v) ∈ D(v) for some v. The goal is maximizing the number of hits.

DCST naturally generalizes many NP-hard spanning tree and path problems studied in the

literature. For instance we can code the famous HAMILTONIAN PATH problem, find a spanning

path of a given graph, by letting D(v) = {1, 2} for all vertices; A spanning tree with n hits is a

Hamiltonian path. Another example is the FULL DEGREE SPANNING TREE problem, where we

search for a spanning tree which maximizes the number of vertices having the same degree

in the graph as in the tree [29]. To code this problem we set D(v) = {dG(v)} for every vertex

v. Another well-studied spanning tree problem is the BOUNDED DEGREE SPANNING TREE

problem [22, 24, 45]. Here we search for a spanning tree such that the degree of each vertex

v in the spanning tree is bounded by an integer Bv ≤ n − 1 given as input. Clearly setting

D(v) = {1, . . . , Bv} yields an encoding of this problem as well. Finally, to code the MAXIMUM

INTERNAL SPANNING TREE problem, where the aim is to find a spanning tree maximizing the

number of internal vertices, we set D(v) = {2, . . . , dG(v)} for every vertex v.

One of the earliest results in the field of exact algorithms [27, 28, 31] is a O(2nnO(1))

time algorithm for HAMILTONIAN PATH. In a very recent, breakthrough paper, Björklund [3]

improved the running time to O(1.66n). Gaspers et al. [23] give a O(1.92n) time algorithm

for FULL DEGREE SPANNING TREE. Fernau et al. [12] give a O(3nnO(1)) time algorithm for

MAXIMUM INTERNAL SPANNING TREE [12].

Here we present an algorithm which solves DCST in O(2n+o(n)) time and space, where

n is the number of nodes in the graph. Recently and independently, Nederlof [39] gave

an Inclusion-Exclusion based algorithm running in time O(2nnO(1)) and polynomial space

for DCST. Though his technique gives better results for DCST, our approach seems to be

more flexible. In particular, our method works for the weighted version of the problem (with

arbitrarily large weights).

3

k-Internal Out-Branching The second application of the Sharp Separation Lemma is a pa-

rameterized algorithm for the following problem.

k-INTERNAL OUT-BRANCHING: Given a digraph G = (V,E) and a positive integer

k, check whether there exists an out-branching with at least k internal vertices.

The undirected counterpart to this problem, namely k-INTERNAL SPANNING TREE, was first

studied by Prieto and Sloper [41], who gave an algorithm with running time 24k log knO(1)

and a kernel of size O(k2) for the problem. Recently, Fomin et al. [14] gave an improved

algorithm with running time 8knO(1) and a kernel with at most 3k vertices. For k-INTERNAL

OUT-BRANCHING, Gutin et al. [26] obtained an algorithm of running time 2O(k log k)nO(1) and

gave a kernel of size O(k2). A faster algorithm, running in time O(49.4knO(1)) was subse-

quently developed by Cohen et al. [10]. In this paper we use the Sharp Separation Lemma to

obtain an algorithm with running time O(16k+o(k) +nO(1)). The space complexity is exponen-

tial (in k). However, it can be made polynomial by means of randomization.

1.2 Preliminaries

For basic graph terminology we refer the reader, e.g., to [11]. Let G = (V,E) be an undirected

graph, V ′ ⊆ V and E′ ⊆ E. The degree of node v is denoted by dG(v). By G[V ′] we denote

the subgraph of G induced by V ′. We use G− V ′ as a shortcut for G[V − V ′]. We also use the

shortcut G − E′ = (V,E − E′). We sometimes confuse E′ with the corresponding subgraph.

For a subgraph G′, V (G′) and E(G′) denote the node and edge set of G′, respectively. For

two subgraphs G′ and G′′, G′ ∪ G′′ = (V (G′) ∪ V (G′′), E(G′) ∪ E(G′′)). We use G′ ⊎ G′′ =

(V (G′) ∪ V (G′′), E(G′) ⊎ E(G′′)) to denote the corresponding multi-graph, where edges are

counted with their multiplicity. By contracting an undirected edge {u, v}, we mean replacing

u and v with a new node z, which inherits all the edges incident to u and v. Symmetrically,

by splitting {u, v}, we mean replacing it with two edges {u, z} and {z, v}, where z is a newly

created node.

Consider now a digraph G = (V,E). We use the same notation as above, with analogous

meaning. Let us remark that, when splitting (u, v), the two new edges are (u, z) and (z, v).

Furthermore, we let d+(v) be the out-degree of node v. An r-out-tree in a digraph G is a

subtree T of G rooted at r, such that all arcs of T are oriented away from r. If T contains all

vertices of G, T is said to be an r-out-branching.

A tree decomposition of a (undirected) graph G = (V,E) is a pair (X,U) where U = (W,F)

is a tree, and X = ({Xi | i ∈ W}) is a collection of subsets of V such that: (i)
⋃

i∈W Xi = V ,

(ii) for each edge {v, u} ∈ E, there is an i ∈ W such that v, u ∈ Xi, and (iii) for each v ∈ V

the set of vertices {i | v ∈ Xi} forms a subtree of U . The width of (X,U) is maxi∈W {|Xi| − 1}.

The treewidth tw(G) of G is the minimum width over all the tree decompositions of G. We

recall that the treewidth of a tree is 1.

We will exploit the following definition and theorem.

4

Definition 2 ([38]). An (n, t)-universal set F is a set of functions from {1, . . . , n} to {0, 1}, such

that for every subset S ⊆ {1, . . . , n}, |S| = t, the set F|S = {f |S | f ∈ F} is equal to the set 2S

of all the functions from S to {0, 1}.

Theorem 3 ([38]). There is a deterministic algorithm with running time O(2ttO(log t)n log n)

that constructs an (n, t)-universal set F such that |F| = 2ttO(log t) log n.

2 Sharp Separation in Graphs of Bounded Treewidth

In this section we prove our Sharp Separation Lemma, which is at the heart of the algorithms

described in the following sections. In order to prove that, we need the following well-known

result.

Lemma 4 ([6]). Given a n-vertex graph G = (V,E) of treewidth t and w : V → {0, 1}. There

is a set T of vertices of size at most t + 1 such that for any connected component G[C] of G \ T ,

w(C) ≤ w(V)/2. Given a tree-decomposition of G of width t, T can be computed in polynomial

time.

Now we are ready to prove Lemma 1.

Proof. (Lemma 1) We construct VL, VR and S iteratively, starting from empty sets, as follows.

By Lemma 4 there is a set T of size at most t such that for any connected component G[C] of

G \ T , w(C) ≤ w(V)/2. We add T to S and for each component G[C] of G \ T , add C to VL

or VR if this does not violate w(VL) ≤ x or w(VR) ≤ w(V) − x, respectively.

Let us show that at the end of the process there is at most one component G[C] left.

Suppose by contradiction that there are at least 2 such components, say G[C1] and G[C2].

Without loss of generality assume w(C1) ≤ w(C2). This implies that w(VL) + w(C1) > x and

w(VR) + w(C1) > w(V) − x. Consequently,

w(VL) + w(VR) + 2w(C1) > w(V).

However, this contradicts the fact that

w(VL) + w(VR) + 2w(C1) ≤ w(VL) + w(VR) + w(C1) + w(C2) ≤ w(V).

Now we iteratively reapply the construction above for p − 1 times, each time considering

the component G[C] left from previous step. Eventually we add C to either VL or VR.

At each iteration the weight of the considered component C halves, so at the end of the

process w(C) ≤ ⌊w(V)/2p⌋. The upper bound on the weight of VL and VR follows. Since at

each step we add to S a set of size at most t, we eventually obtain |S| ≤ t · p. The running

time claim follows immediately from Lemma 4. This concludes the proof.

5

3 Degree Constrained Spanning Tree

In this section we present our O(2n+o(n))-time algorithm for the DEGREE CONSTRAINED SPAN-

NING TREE problem (DCST). Indeed, we rather consider a weighted generalization of the

problem. Here we are given an undirected graph G = (V,E), with node weights w : V → R≥0,

and a list of desirable degrees D(v) for each vertex v. The hits hit(G′) of a subgraph G′ is the

set of nodes v such that dG′(v) ∈ D(v). Our goal is to find a spanning tree T of maximum

weight w(hit(T)) :=
∑

v∈hit(T) w(v).

Our recursive algorithm is described in Figure 1. The base case of the recursion is given in

Figure 1 Algorithm for DCST. Here a is a sufficiently large constant, M is the largest input

node weight, and n is the number of nodes.

dcst(G,w,D)

(1) If G is disconnected, return ∅. If M = 0, return any spanning tree. If n ≤ a, solve

the problem by brute force and return the obtained solution. If the problem solution is

present in the memoization table, return it.

(2) For any subset of nodes S ⊆ V (G), with |S| ≤ log n, for any two disjoint subsets

EL, ER ⊆ S2(= S × S) such that EL ∪ ER is a spanning tree of (S, S2), for any bi-

partion (VL, VR) of V − S such that |VL| ≤ n/ log2 n and |VR| ≤ n − n/ log2 n, for any

two degree assignments dL : S → {1, . . . , n − 1} and dR : S → {1, . . . , n − 1}:

(2.a) Construct a graph GL from G, by removing nodes VR, adding edges ER, and split-

ting those edges. Let DR and FR be the new nodes and edges, respectively, created

by the splittings.

(2.b) Define a node weight function wL on GL, with wL(v) = M ′ := M · (n + 1) for

v ∈ DR ∪ S, and wL(v) = w(v) otherwise.

(2.c) Define degree constraints DL on GL, with DL(v) = {dL(v)} for v ∈ S, DL(v) = {2}
for v ∈ DR, and DL(v) = D(v) otherwise.

(2.d) Compute SOL′
L := dcst(GL, wL,DL), and let SOLL := SOL′

L − DR.

(2.e) Compute SOLR symmetrically. Let SOL := SOLL ∪ SOLR.

(3) Among the subgraphs SOL computed above, return a feasible solution of maximum

weight, if any. Otherwise, return ∅.

Step (1). If there is no solution, the algorithm returns the empty graph ∅. Here the algorithm

exploits an (initially empty) memoization table, where it stores the solutions to each solved

subproblem. This prevents the algorithm from solving the same subproblem twice. There is a

technical detail which is worth discussing. Due to the creation of new nodes, the subgraphs

created by the algorithm are not induced subgraphs of the initial graph. This creates some

troubles when one needs to search for a subproblem in the memoization table. One way to

6

Figure 2 (a) Example of construction of (EL, ER, dL, dR) for DCST. On the left, the optimum

solution OPT (dashed edges belong to OPTR). Black nodes belong to S. On the right, the

edges EL (full) and ER (dashed). The degrees dL and dR are indicated at the left and right

of each node, respectively. (b) Example of construction of (EL, ER, d+
L , d+

R) for DCOT, with an

analogous notation.

1 2

3 2

1 1

3 3

1 1

1 1

(a)

1 2

2 1

0 0

2 2

0 0

0 0

(b)

solve this issue is to guarantee that original nodes maintain the same labels in the subproblems

as in the input problem, while new nodes take different labels. As we will discuss, the number

of new nodes at any time is bounded by a poly-logarithm in the initial number of nodes: hence

one can find the desired entry in the table in sub-exponential time 2o(n).

In Step (2) the algorithm creates a set of pairs of DCST instances (GL, wL,DL) and

(GR, wR,DR), and solves them recursively. The reasons behind the choice of those pairs

will be clearer from the correctness analysis. In the subproblems we set the weight of some

nodes to a very large value, and restrict their degree set to a unique value. Intuitively, this

forces the corresponding solutions to set the degree of those nodes to the mentioned values.

Lemma 5 (correctness). If there exists a feasible solution, algorithm dcst returns one such

solution of maximum weight.

Proof. By definition, if the algorithm returns a solution, it is feasible. Let us prove by induc-

tion on n that, if there exists a feasible solution, the algorithm returns one such solution of

maximum weight. The claim is trivially true if the algorithm halts at Step (1).

Otherwise, consider the following choice for the tuple (S,EL, ER, VL, VR, dL, dR) (see also

Figure 2.a), with the corresponding graphs SOL, SOLL etc. Let OPT be the optimal solution.

We let S be a minimum-cardinality separator of OPT which partitions V − S into (VL, VR)

as required. By the Sharp Separation Lemma, |S| ≤ log n as needed. Define OPTL :=

OPT [VL ∪ S] and OPTR := OPT [VR ∪ S] − E(OPT [S]). Observe that OPTL and OPTR

bipartition the edges of OPT .

7

We next define ER and dL, the definition of EL and dR being symmetric. Let us iteratively

contract the edges of OPTR which contain at least one node outside S (the new node inherits

the label of the endpoint in S, if any). The resulting set of edges in S2 defines ER. Let

us remark that EL ∪ ER defines a spanning tree on node set S. For any s ∈ S, we set

dL(s) := dOPTL
(s) + dER

(s) (i.e., the degree of s in OPTL ∪ ER, since OPTL and ER are

edge-disjoint).

Let us first show that SOL = SOLL ∪ SOLR is a spanning tree, i.e. for any two distinct

nodes s′ and s′′, there exists exactly one (simple) path among them in SOL. We prove the

stronger claim that SOL′ := SOLL ⊎ SOLR satisfies that property. By construction, it is

sufficient to prove the claim for s′, s′′ ∈ S. Both SOL′
L = SOLL ∪ FR = SOLL ⊎ FR and

SOL′
R = SOLR ∪ FL = SOLR ⊎ FL contain exactly one path between s′ and s′′. Hence

SOL′
L ⊎ SOL′

R = (SOLL ⊎ SOLR) ⊎ (FL ⊎ FR) = SOL′ ⊎ (FL ∪ FR) contains exactly two

edge disjoint paths between s′ and s′′. Since (FL ∪ FR) contains exactly one such path (being

EL ∪ ER a tree), the same must hold for SOL′.

It remains to show that w(hit(SOL)) ≥ w(hit(OPT)). Observe that OPT ′
L := OPTL ∪FR

is a feasible solution to subproblem (GL, wL,DL). By construction

hit(OPT ′
L) = (hit(OPT ′

L) ∩ VL) ∪ (DR ∪ S) = (hit(OPTL) ∩ VL) ∪ (DR ∪ S),

which implies wL(hit(OPT ′
L)) ≥ M ′|DR ∪ S|. As a consequence,

hit(SOL′
L) = (hit(SOL′

L) ∩ VL) ∪ (DR ∪ S) = (hit(SOLL) ∩ VL) ∪ (DR ∪ S).

In fact, any solution not satisfying this property would have weight at most M ′(|DR ∪ S| −
1) + Mn = M ′|DR ∪ S| − M < wL(hit(OPT ′

L)). We can conclude that

w(hit(SOLL) ∩ VL) = wL(hit(SOLL) ∩ VL) = wL(hit(SOL′
L)) − wL(DR ∪ S)

≥ wL(hit(OPT ′
L)) − wL(DR ∪ S) = wL(hit(OPTL) ∩ VL)

= w(hit(OPTL) ∩ VL). (1)

A symmetric argument yields

w(hit(SOLR) ∩ VR) ≥ w(hit(OPTR) ∩ VR). (2)

Observe that FR is contained in both SOL′
L and OPT ′

L. Hence any node v ∈ S has the same

degree in SOLL and OPTL. Similarly for SOLR and OPTR. Consequently:

H := hit(OPT) ∩ S = hit(SOL) ∩ S. (3)

Putting everything together:

w(hit(SOL)) = w(hit(SOL) ∩ VL) + w(hit(SOL) ∩ VR) + w(hit(SOL) ∩ S)

(3)
= w(hit(SOLL) ∩ VL) + w(hit(SOLR) ∩ VR) + w(H)

(1)+(2)
≥ w(hit(OPTL) ∩ VL) + w(hit(OPTR) ∩ VR) + w(H)

(3)
= w(hit(OPT)).

8

Lemma 6 (running time). The running time and space complexity of algorithm dcst is O(2n+o(n)).

Proof. The space complexity of the algorithm is upper bounded by the overall cost of con-

structing the memoization table, and hence by the running time of the algorithm. Thus it is

sufficient to bound the running time.

This time is bounded, modulo a sub-exponential factor 2o(n), by the number of possible en-

tries in the memoization table, times the number of possible tuples (S,EL, ER, VL, VR, dL, dR).

The latter quantity is at most:

2

(

n

log n

)

·
(

log2 n

log n − 1

)

2log n−1 · 2
(

n

n/ log2 n

)

· nlog n · nlog n = 2o(n).

In order to bound the number of table entries, observe that at each recursive call the num-

ber of nodes in each subproblem decreases by a factor (1 − 1/ log2 n) or more. Consequently,

the depth of the recursion tree is O(log3 n). Since the new nodes created at each recursive

call are O(log n), the number of new nodes with respect to the initial problem is O(log4 n)

in any subproblem. By the same argument, the overall number of nodes involved in some

set S (including ancestor subproblems) is O(log4 n) in any subproblem. Hence any graph in

some subproblem can be obtained via the following procedure: take the subgraph induced by

a subset of nodes V ′ ⊆ V , add O(log4 n) new nodes W , and add arbitrary edges {u, v} with

at least one endpoint in W . The number of graphs which can be obtained with this procedure

is 2n · O(log8 n) · O(n · log4 n) = 2n+o(n).

Node weights are either original weights or weights of the type (M · (n + 1))i, with i =

O(log3 n) and M the largest weight in the initial instance. The latter case can happen only

for O(log4 n) nodes. As a consequence, the possible weight functions for a given graph are at

most
(

n

O(log4 n)

)

O((log3 n)O(log4 n)) = 2o(n).

By a similar argument, the possible degree constraint functions on a given graph are
(

n

O(log4 n)

)

O(nO(log4 n)) = 2o(n).

Hence the memoization table has size 2n+o(n). The claim follows.

Lemmas 5 and 6 together imply the following theorem.

Theorem 7. There is a 2n+o(n) time and space algorithm for (node weighted) DCST.

Remark: The approach above can be adapted (at the cost of a more technical algorithm and

analysis) to find degree constrained spanning subgraphs of treewidth t in time O(2n+o(n))

for every fixed constant t. The basic idea is exploiting separators of size O(t log n), whose

existence is guaranteed by the Sharp Separation Lemma.

9

4 k-Internal Out-Branching

In this section we give a parameterized algorithm with running time O(16k+o(k) + nO(1)) for

the k-INTERNAL OUT-BRANCHING problem. Our approach combines the Sharp Separation

Lemma with the divide-and-color paradigm in [8, 30], and a polynomial-size kernel for the

problem [26]. One important difference with respect to the algorithm in previous section is

that the Sharp Separation Lemma is used to divide the problem into balanced (rather than

very unbalanced) subproblems.

4.1 Some Reductions

The first step of our algorithm is to apply the kernelization algorithm of Gutin et al. [26]. Given

an instance (G, k) of k-INTERNAL OUT-BRANCHING, that algorithm produces a new instance

(G′, k′) with |V (G′)| = O(k2) and k′ ≤ k such that G′ has an out-branching with at least k′

internal vertices if and only if G has an out-branching with at least k internal vertices. After

this step we can assume that the number n of vertices in the input digraph G is O(k2).

Now, the algorithm guesses the root r of the out-branching (by trying all the n possible

values), and verifies that there indeed is some out-branching of G rooted at r. This guessing

step, together with the following observation, allows us to search for r-out-trees instead of

r-out-branchings of G.

Lemma 8 ([10]). Let G be a digraph and r be a node of G such that there is an r-out-branching

of G. Then, for any r-out-tree T with at least k internal nodes there is an r-out-branching T ′

with at least k internal nodes containing T as a subtree. Moreover such a T ′ can be found in

polynomial time.

When looking for r-out-trees with at least k internal nodes, it is sufficient to restrict our-

selves to r-out-trees with at most 2k nodes. The reason for this is that if some internal node

sees at least two leaves of the r-out-tree, then one of the leaves can be removed without

changing any internal node into a leaf. We formalize this as an observation.

Lemma 9 ([10]). Let G be a digraph and r be a node of G. If there is an r-out-tree T with at

least k internal nodes then there is an r-out-tree T ′ on at most 2k nodes with at least k internal

nodes.

At this point it is convenient to turn the original problem into a weighted maximization

problem, with degree constraints. This way, we can re-use most of the machinery developed

for DCST. In more detail, let us consider the following DEGREE-CONSTRAINED OUT-TREE prob-

lem (DCOT). We are given a directed graph G = (V,E), with node weights w : V → R≥0 and

out-degree sets D+(v) ⊆ {0, . . . , n − 1} for every v ∈ V . For a subgraph G′, the hits hit(G′)
of G′ is the set of nodes v such that d+

G′(v) ∈ D+(v). The goal is finding an r-out-tree T on at

most t nodes which maximizes w(hit(T)) :=
∑

v∈hit(T) w(v).

10

The original problem can be encoded in a DCOT instance by setting all node weights to

1, letting D+(v) = {1, . . . , n − 1}, and setting t = 2k′ ≤ 2k. In next section we show how to

solve DCOT.

4.2 An Algorithm for DCOT

Our algorithm for DCOT is described in Figure 3. If t is sufficiently small, the problem is

Figure 3 Algorithm for DCOT. Here a is a sufficiently large constant, M denotes the largest

node weight, and n the number of nodes.

dcot(G,w,D+, r, t)

(1) If t ≤ a, solve the problem by brute force and return the obtained solution. If M = 0,

return ({r}, {}).
(2) Compute a (n, t)-universal set F with the algorithm in [38].

(3) For any subset of nodes S ⊆ V (G), with r ∈ S and |S| ≤ log t+1, for any two out-degree

assignments d+
L : S → {0, . . . , n − 1} and d+

R : S → {0, . . . , n − 1}, for any two disjoint

subsets EL, ER ⊆ S × S such that EL ∪ ER is an r-out-branching of (S, S × S), for any

f ∈ F:

(3.a) Consider the partition (VL, VR) of V − S induced by f .

(3.b) Construct a graph GL from G, by removing nodes VR, adding edges ER, and split-

ting those edges. Let DR and FR be the new nodes and edges, respectively, created

by the splittings.

(3.c) Define a node weight function wL on GL, with wL(v) = M ′ := M · (n + 1) for

v ∈ DR ∪ S, and wL(v) = w(v) otherwise.

(3.d) Define degree constraints D+
L on GL, with D+

L (v) = {d+
L (v)} for v ∈ S, D+

L (v) =

{2} for v ∈ DR, and D+
L (v) = D+(v) otherwise.

(3.e) Compute SOL′
L := dcot(GL, wL,D+

L , r, tL), tL = (t + |S|)/2 + |DR|, and set

SOLL := SOL′
L − DR.

(3.f) Construct SOLR symmetrically. Let SOL := SOLL ∪ SOLR.

(4) Among the subgraphs SOL of G computed above, return a feasible solution of largest

weight.

solved by brute force (in polynomial time).

Otherwise the algorithm computes, using the algorithm in [38], an (n, t)-universal set

F . Then it generates a proper set of pairs of DCOT subproblems (GL, wL,D+
L , r, tL) and

(GR, wR,D+
R , r, tR), and solved them recursively. The reasons behind the choice of the pairs

will be clearer from the correctness analysis. One obtains a bipartition (VL, VR) of V −S from

11

f ∈ F by placing v ∈ V − S in set VL if f(v) = 0, and in set VR otherwise. Like for DCST, we

set the weight of some nodes to a large value, and restrict the associated desirable degrees to

a unique degree: this will force the solution to set the degree of those nodes accordingly.

Lemma 10 (correctness). Algorithm dcot returns a feasible solution of maximum weight.

Proof. If the algorithm returns a solution, it is feasible. Let us show by induction on t that

the algorithm returns a feasible solution of maximum weight. The claim is trivially true if the

algorithm halts at Step (1).

Otherwise, consider the following choice for the tuple (S, d+
L , d+

R, EL, ER, f) (see also

Figure 2.b), with the corresponding digraphs SOL, SOLL etc. Let OPT be the optimum

solution. We let S be a minimum-cardinality perfectly balanced separator of OPT , with

r ∈ S. The Sharp Separation Lemma guarantees the existence of such S, with |S| ≤ log t + 1

(the +1 coming from r). Let WL and WR be the partition of OPT induced by S. We

choose a function f such that WL ⊆ VL and WR ⊆ VR. Note that, since |WR ∪ WL| ≤ t,

there must be an f ∈ F which satisfies this property. Let OPTL := OPT [WL ∪ S] and

OPTR := OPT [WR ∪ S] − E(OPT [S]). Observe that OPTL and OPTR bipartition the edges

of OPT .

We next define ER and d+
L , the definition of EL and d+

R being symmetric. Let us iteratively

contract the edges of OPTR which contain at least one node outside S (the new node inherits

the label of the endpoint in S, if any). The resulting set of edges in S × S defines ER. Let us

remark that EL ∪ ER defines an r-out-branching on node set S, as required. For any s ∈ S,

we set d+
L (s) := d+

OPTL
(s) + d+

ER
(s) (i.e., the out-degree of s in OPTL ∪ ER, since OPTL and

ER are edge-disjoint).

Let us first show that SOL is a feasible solution. By construction, SOL contains at most

(t − |S|)/2 + (t − |S|)/2 + |S| = t nodes. In order to show that SOL is an r-out-tree, it is

sufficient to show that, for any s ∈ S − {r}, there is exactly one simple path from r to s. This

can be proved exactly in the same manner as in the proof of Lemma 5, where pair (r, s) plays

the role of pair {s′, s′′}, and directed paths replace undirected paths.

Observe that OPT ′
L := OPTL∪FR is a feasible solution for the subproblem (GL, wL,D+

L , r, tL).

In fact, it is an r-out-tree of GL. Furthermore, it contains at most (t− |S|)/2 + |S| nodes from

OPTL, and |DR| extra nodes from FR. By the same approach as in Lemma 5, it is not hard

to derive w(hit(SOLL) ∩ VL) ≥ w(hit(OPTL) ∩ VL). Symmetrically, w(hit(SOLR) ∩ VR) ≥
w(hit(OPTR) ∩ VR). Also in this case, each s ∈ S has exactly the same degree in OPTL and

SOLL (resp., OPTR and SOLR), which implies H := hit(OPT) ∩ S = hit(SOL) ∩ S. One

can derive w(hit(SOL)) ≥ w(hit(OPT)) by the same chain of inequalities as in Lemma 5.

Lemma 11 (running time). The running time of dcot is O(4tnO(log2 t)), and its space complexity

is O(2ttO(log t)n log n).

12

Proof. Assume n ≥ 2. We prove by induction on t that the running time T (n, t) of the algo-

rithm satisfies

T (n, t) ≤ 4tnb log2 t,

for a proper constant b. The claim is trivially true when the algorithm halts at Step (1).

Next assume n ≥ t ≫ 1, and consider an instance where the algorithm branches. The

number of possible choices for the tuple (S, d+
L , d+

R, EL, ER, f) is at most:

2

(

n

log t + 1

)

· nlog t+1 · nlog t+1 ·
(

(log t + 1)2

log t

)

2log t · 2ttO(log t) log n.

This is at most 2tnc log t for a proper constant c, and it dominates the running time to construct

the universal set. Observe that tL, tR ≤ (t + log t + 1)/2 + log t ≤ t/2 + 2 log t ≤ 2t/3. The

overall running time therefore satisfies, for a constant b large enough,

T (n, t) ≤ 2tnc log t · (T (n, tL) + T (n, tR)) ≤ 2tnc log t · 2 · 4t/2+2 log tnb log2(2t/3)

≤ 4t nc log t+1+2 log t+b(log t−log(3/2))2 ≤ 4tnb log2 t.

The space complexity is dominated by the space needed to store the universal sets in a

chain of O(log t) recursive calls, which is at most

∑

i≥1

2t/2i · tO(log t)n log n = O(2ttO(log t)n log n).

Theorem 12. There is a deterministic algorithm which solves k-INTERNAL OUT-BRANCHING in

O(16k+o(k) + nO(1)) time and O(4k+o(k) + nO(1)) space.

Proof. Consider the algorithm which first applies the reductions from Section 4.1, and then

applies dcot. The reductions take polynomial time and space. The resulting DCOT instance

contains n = O(k2) nodes and has t ≤ 2k. Hence the running time is O(nO(1)+42kkO(log2 k)) =

O(16k+o(k) + nO(1)), and the space complexity is O(nO(1) + 22kkO(log k)) = O(4k+o(k) + nO(1)).

4.3 Saving Space via Randomization

The space complexity can be made polynomial, without increasing the running time, by means

of randomization. The resulting algorithm however might fail to find a feasible solution. The

idea is replacing the universal set with a sufficiently large number N of random partitions of

the node set. One can show that N = Θ(2t) is sufficient to achieve a constant probability of

success of the overall algorithm. We leave the details to the interested reader.

13

5 Conclusions

In this paper we proved a new, simple separation theorem for graphs of bounded treewidth,

which turns out to be a useful tool in the design of divide-and-conquer algorithms, both

exact (exponential) and parameterized. We demonstrated the applicability of our theorem by

giving an algorithm for k-INTERNAL OUT-BRANCHING running in O(16k+o(k) +nO(1)) time and

an algorithm for DEGREE CONSTRAINED SPANNING TREE running in time O(2n+o(n)). It would

be interesting to find further applications of our separation result in the fields of exact and

parameterized algorithms.

References

[1] N. Alon, P. Seymour, and R. Thomas. A separator theorem for non-planar graphs. Jour-

nal of the AMS, 3:801–808, 1990.

[2] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n)). Journal of Algorithms,

54(2):168–204, 2005.

[3] A. Björklund. Determinant sums for undirected Hamiltonicity. In IEEE Symposium on

Foundations of Computer Science (FOCS), pages 173–182, 2010.

[4] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: Fast subset

convolution. In ACM Symposium on Theory of Computing (STOC), pages 67–74, 2007.

[5] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM

Journal on Computing, 39(2):546–563, 2009.

[6] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical

Computer Science, 209(1-2):1–45, 1998.

[7] N. Bourgeois, B. Escoffier, V. T. Paschos, and J. M. M. van Rooij. A bottom-up method

and fast algorithms for max independent set. In Scandinavian Symposium and Workshops

on Algorithm Theory (SWAT), pages 62–73, 2010.

[8] J. Chen, S. Lu, S.-H. Sze, and F. Zhang. Improved algorithms for path, matching, and

packing problems. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 298–

307, 2007.

[9] N. Christofides. An algorithm for the chromatic number of a graph. The Computer

Journal, 14(1):38–39, 1971.

[10] N. Cohen, F. V. Fomin, G. Gutin, E. J. Kim, S. Saurabh, and A. Yeo. Algorithm for finding

k-vertex out-trees and its application to k-internal out-branching problem. Journal of

Computer and System Sciences, 76(7):650–662, 2010.

14

[11] R. Diestel. Graph Theory. Springer, 2010.

[12] H. Fernau, S. Gaspers, and D. Raible. Exact and parameterized algorithms for max inter-

nal spanning tree. In International Workshop on Graph-Theoretic Concepts in Computer

Science (WG), pages 100–111, 2009.

[13] F. V. Fomin, S. Gaspers, A. V. Pyatkin, and I. Razgon. On the minimum feedback vertex

set problem: Exact and enumeration algorithms. Algorithmica, 52(2):293–307, 2008.

[14] F. V. Fomin, S. Gaspers, S. Saurabh, and S. Thomassé. A linear vertex kernel for maxi-

mum internal spanning tree. In International Symposium on Algorithms and Computation

(ISAAC), pages 275–282, 2009.

[15] F. V. Fomin, F. Grandoni, and D. Kratsch. Faster Steiner tree computation in polynomial-

space. In European Symposium on Algorithms (ESA), pages 430–441, 2008.

[16] F. V. Fomin, F. Grandoni, and D. Kratsch. Solving connected dominating set faster than

2n. Algorithmica, 52(2):153–166, 2008.

[17] F. V. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach for the analysis

of exact algorithms. Journal of the ACM, 56(5), 2009.

[18] F. V. Fomin, F. Grandoni, A. V. Pyatkin, and A. A. Stepanov. Combinatorial bounds

via measure and conquer: Bounding minimal dominating sets and applications. ACM

Transactions on Algorithms, 5(1), 2008.

[19] F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer, 2010.

[20] F. V. Fomin, D. Lokshtanov, F. Grandoni, and S. Saurabh. Sharp separation and ap-

plications to exact and parameterized algorithms. In Latin American Symposium on

Theoretical Informatics (LATIN), pages 72–83, 2010.

[21] Bernhard Fuchs, Walter Kern, Daniel Mölle, Stefan Richter, Peter Rossmanith, and Xin-

hui Wang. Dynamic programming for minimum steiner trees. Theory Comput. Syst.,

41(3):493–500, 2007.

[22] M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner tree to

within one of optimal. Journal of Algorithms, 17(3):409–423, 1994.

[23] S. Gaspers, S. Saurabh, and A. A. Stepanov. A moderately exponential time algorithm

for full degree spanning tree. In International Conference on Theory and Applications of

Models of Computation (TAMC), pages 479–489, 2008.

[24] M. X. Goemans. Minimum bounded degree spanning trees. In IEEE Symposium on

Foundations of Computer Science (FOCS), pages 273–282, 2006.

15

[25] F. Grandoni. A note on the complexity of minimum dominating set. Journal of Discrete

Algorithms, 4(2):209–214, 2006.

[26] G. Gutin, I. Razgon, and E. J. Kim. Minimum leaf out-branching and related problems.

Theoretical Computer Science, 410(45):4571–4579, 2009.

[27] M. Held and R. M. Karp. A dynamic programming approach to sequencing problems.

Journal of SIAM, 10:196–210, 1962.

[28] R. M. Karp. Dynamic programming meets the principle of inclusion and exclusion.

Operations Research Letters, 1:49–51, 1982.

[29] S. Khuller, R. Bhatia, and R. Pless. On local search and placement of meters in networks.

SIAM Journal on Computing, 32(2):470–487, 2003.

[30] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Divide-and-color. In International

Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 58–67, 2006.

[31] S. Kohn, A. Gottlieb, and M. Kohn. A generating function approach to the traveling

salesman problem. In ACM Annual Conference, pages 294–300, 1977.

[32] O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical

Computer Science, 223(1-2):1–72, 1999.

[33] E. L. Lawler. A note on the complexity of the chromatic number problem. Information

Processing Letters, 5(3):66–67, 1976.

[34] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal on

Applied Mathematics, 36:177–189, 1979.

[35] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM Journal

on Computing, 9:615–627, 1980.

[36] D. Lokshtanov and J. Nederlof. Saving space by algebraization. In ACM Symposium on

Theory of Computing (STOC), pages 321–330, 2010.

[37] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discrete

Applied Mathematics, 10(3):287–295, 1985.

[38] M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal derandomization.

In IEEE Symposium on Foundations of Computer Science (FOCS), pages 182–191, 1995.

[39] J. Nederlof. Fast polynomial-space algorithms using Möbius inversion: Improving on

Steiner tree and related problems. In International Colloquium on Automata, Languages

and Programming (ICALP), pages 713–725, 2009.

[40] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

16

[41] E. Prieto and C. Sloper. Reducing to independent set structure – the case of k-internal

spanning tree. Nordic Journal of Computing, 12(3):308–318, 2005.

[42] I. Razgon. Exact computation of maximum induced forest. In Scandinavian Symposium

and Workshops on Algorithm Theory (SWAT), pages 160–171, 2006.

[43] B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations Research

Letters, 32(4):299–301, 2004.

[44] J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms,

7(3):425–440, 1986.

[45] M. Singh and L. C. Lau. Approximating minimum bounded degree spanning trees to

within one of optimal. In ACM Symposium on Theory of Computing (STOC), pages 661–

670, 2007.

[46] R. E. Tarjan and A. E. Trojanowski. Finding a maximum independent set. SIAM Journal

on Computing, 6(3):537–546, 1977.

[47] J. M. M. van Rooij and H. L. Bodlaender. Design by measure and conquer, a faster exact

algorithm for dominating set. In Symposium on Theoretical Aspects of Computer Science

(STACS), pages 657–668, 2008.

[48] R. Williams. Finding paths of length k in O∗(2k) time. Information Processing Letters,

109(6):315–318, 2009.

17

