
PARAMETERIZED SINGLE-EXPONENTIAL TIME POLYNOMIAL
SPACE ALGORITHM FOR STEINER TREE∗

FEDOR V. FOMIN† , PETTERI KASKI‡ , DANIEL LOKSHTANOV§ , FAHAD PANOLAN† ,

AND SAKET SAURABH¶

Abstract. In the Steiner Tree problem, we are given as input a connected n-vertex graph
with edge weights in {1, 2, . . . ,W}, and a set of k terminal vertices. Our task is to compute a
minimum-weight tree that contains all the terminals. The main result of the paper is an algorithm
solving Steiner Tree in time O(7.97k · n4 · logW) and using O(n3 · lognW · log k) space. This is
the first single-exponential time, polynomial-space FPT algorithm for the weighted Steiner Tree
problem.

Whereas our main result seeks to optimize the polynomial dependency in n for both the running
time and space usage, it is possible to trade between polynomial dependence in n and the single-
exponential dependence in k to obtain faster running time as a function of k, but at the cost of
increased running time and space usage as a function of n. In particular, we show that there exists
a polynomial-space algorithm for Steiner Tree running in O(6.751knO(1) logW) time. Finally, by
pushing such a trade-off between polynomial in n and exponential in k dependencies, we show that
for any ε > 0 there is a nO(f(ε)) logW space 4(1+ε)knO(f(ε)) logW time algorithm for Steiner Tree,
where f is a computable function depending only on ε.

Key words. Steiner Tree, FPT algorithm, Recurrence relation

AMS subject classifications. 05C85, 68Q25, 68W05, 68W40

1. Introduction. Steiner Tree problem, or minimum Steiner Tree prob-
lem is a term for a class of problems in combinatorial optimization. Steiner Tree
problem is formulated in various sub-fields of computer science like graph algorithms,
computational geometry, etc. In this work we study Steiner Tree problem in
graphs. In the Steiner Tree problem, we are given as input a connected n-vertex
graph, a non-negative weight function w : E(G) → {1, 2, . . . ,W}, and a set of ter-
minal vertices T ⊆ V (G). The task is to find a minimum-weight connected subgraph
ST of G containing all terminal nodes T . In this paper we use the parameter k = |T |.
In this work we consider the word RAM model of computation. But we assume that
the edge weights are large and hence the memory required for weight W is O(logW)
words. Moreover, operations like compare, add or multiply two weights W1 and W2

takes O(log(W1 ·W2)) time.
Steiner Tree is one of the central and best-studied problems in Computer

Science with various applications. We refer to the book of Prömel and Steger [22]
for an overview of the results and applications of the Steiner tree problem. Steiner
Tree is known to be APX-complete, even when the graph is complete and all edge
weights are either 1 or 2 [2]. On the other hand, the problem admits a constant factor

∗ Preliminary versions of this paper appeared in the proceedings of ICALP 2015.
Funding: The research leading to these results has received funding from the European Research

Council under the European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreements 267959, 338077 and 306992, and NFR MULTIVAL project.
†Department of Informatics, University of Bergen, Norway (fomin@ii.uib.no, fa-

had.panolan@ii.uib.no).
‡Department of Information and Computer Science, Aalto University, Finland (pet-

teri.kaski@aalto.fi).
§Department of Computer Science, University of California Santa Barbara, USA

(daniello@ucsb.edu)
¶The Institute of Mathematical Sciences, HBNI, Chennai, India and Department of Informatics,

University of Bergen, Norway (saket@imsc.res.in).

1

mailto:fomin@ii.uib.no
mailto:fahad.panolan@ii.uib.no
mailto:fahad.panolan@ii.uib.no
mailto:petteri.kaski@aalto.fi
mailto:petteri.kaski@aalto.fi
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in

2 F.V. FOMIN, P. KASKI, D. LOKSHTANOV, F. PANOLAN AND S. SAURABH

approximation algorithm, and the currently best such algorithm (after a long chain
of improvements) is due to Byrka et al. and has approximation ratio ln 4 + ε < 1.39
[6].

Steiner Tree is a fundamental problem in parameterized algorithms [7, 8, 10,
19]. The classic algorithm for Steiner Tree of Dreyfus and Wagner [9] from 1971
might well be the first parameterized algorithm for any problem. The study of param-
eterized algorithms for Steiner Tree has led to the design of important techniques,
such as Fast Subset Convolution [3] and the use of branching walks [18]. Research
on the parameterized complexity of Steiner Tree is still on-going, with very recent
significant advances for the planar version of the problem [20, 21, 17].

Algorithms for Steiner Tree are frequently used as a subroutine in fixed-
parameter tractable (FPT) algorithms for other problems; examples include vertex
cover problems [15], near-perfect phylogenetic tree reconstruction [4], and connectivity
augmentation problems [1].

Motivation and earlier work. For more than 30 years, the fastest FPT al-
gorithm for Steiner Tree was the 3k · logW · nO(1)-time dynamic programming
algorithm by Dreyfus and Wagner [9]. Fuchs et al. [14] gave an improved algorithm
with running time O((2 + ε)knf(1/ε) logW). For the unweighted version of the prob-
lem, Björklund et al. [3] gave a 2knO(1) time algorithm. All of these algorithms are
based on dynamic programming and use exponential space.

Algorithms with high space complexity are in practice more constrained because
the amount of memory is not easily scaled beyond hardware constraints, whereas time
complexity can be alleviated by allowing for more time for the algorithm to finish.
Furthermore, algorithms with low space complexity are typically easier to parallelize
and more cache-friendly. These considerations motivate a quest for algorithms whose
memory requirements scale polynomially in the size of the input, even if such algo-
rithms may be slower than their exponential-space counterparts. The first polynomial
space 2O(k)nO(1)-time algorithm for the unweighted Steiner Tree problem is due
to Nederlof [18]. This algorithm runs in time 2knO(1), matching the running time of
the best known exponential space algorithm. Nederlof’s algorithm can be extended
to the weighted case, unfortunately this comes at the cost of a O(W) factor both in
the time and the space complexity. Lokshtanov and Nederlof [16] showed that the
O(W) factor can be removed from the space bound, but with a factor O(W) in the
running time. The algorithm of Lokshtanov and Nederlof [16] runs in 2k · nO(1) ·W
time and uses nO(1) logW space. Note that both the algorithm of Nederlof [18] and
the algorithm of Lokshtanov and Nederlof [16] have a O(W) factor in their running
time. Thus the running time of these algorithms depends exponentially on the input
size, and therefore these algorithms are not FPT algorithms for weighted Steiner
Tree.

For weighted Steiner Tree, the only known polynomial space FPT algorithm
has a 2O(k log k) running time dependence on the parameter k. This algorithm follows
from combining a (27/4)k ·nO(log k) ·logW time, polynomial space algorithm by Fomin
et al. [11] with the Dreyfus–Wagner algorithm. Indeed, one runs the algorithm of
Fomin et al. [11] if n ≤ 2k, and the Dreyfus–Wagner algorithm if n > 2k. If n ≤ 2k,
the running time of the algorithm of Fomin et al. is bounded from above by 2O(k log k).
When n > 2k, the Dreyfus–Wagner algorithm becomes a polynomial time (and space)
algorithm.

Prior to this work, the existence of a polynomial space algorithm with running
time 2O(k) · nO(1) · logW , i.e., a single exponential time polynomial space FPT algo-
rithm, was an open problem asked explicitly in [11, 16].

SINGLE-EXPONENTIAL TIME POLY-SPACE ALGORITHM FOR STEINER TREE 3

Contributions and methodology. The starting point of our present algorithm
is the (27/4)k ·nO(log k) · logW time, polynomial-space algorithm by Fomin et al. [11].
This algorithm crucially exploits the possibility for balanced separation (cf. Theo-
rem 2.1 below). Specifically, an optimal Steiner tree ST can be partitioned into two
trees ST1 and ST2 containing the terminal sets T1 and T2 respectively, so that the
following three properties are satisfied:

(1) The two trees share exactly one vertex v and no edges.
(2) Neither of the two trees ST1 or ST2 contain more than a 2/3 fraction of the

terminal set T .
(3) The tree ST1 is an optimal Steiner tree for the terminal set T1∪{v}, and ST2

is an optimal Steiner tree for the terminal set T2 ∪ {v}.
Conversely, to find the optimal tree ST for the terminal set T , it suffices to (1)

guess the vertex v, (2) partition T into T1 and T2, and (3) recursively find optimal
trees for the terminal sets T1 ∪ {v} and T2 ∪ {v}. The most unbalanced partition
(T1, T2) of T in (2) has one block contain 1/3 fraction of T and other block contain
2/3 fraction of T . Since there are n choices for v, and

(
k
k/3

)
ways to partition T

into two sets T1 and T2 such that |T1| = |T |/3, the running time of the algorithm is
essentially governed by the recurrence

(1.1) T (n, k) ≤ n ·
(
k

k/3

)
· (T (n, k/3) + T (n, 2k/3)).

Unraveling (1.1) gives the (27/4)k ·nO(log k) · logW upper bound for the running time,
and it is easy to see that the algorithm runs in polynomial space. However, this
algorithm is not an FPT algorithm because of the nO(log k) factor in the running time.

The factor nO(log k) is incurred by the factor n in (1.1), which in turn originates
from the need to iterate over all possible choices for the vertex v in each recursive
call. In effect the recursion tracks an O(log k)-sized set S of split vertices (together
with a subset T ′ of the terminal vertices T) when it traverses the recursion tree from
the root to a leaf.

The key idea in our new algorithm is to redesign the recurrence for optimal Steiner
trees so that we obtain control over the size of S using an alternation between

1. balanced separation steps (as described above), and
2. novel resplitting steps that maintain the size of S at no more than 3 vertices

throughout the recurrence.
In essence, a resplit takes a set S of size 3 and splits that set into three sets of size
2 by combining each element in S with an arbitrary vertex v, while at the same
time splitting the terminal set T ′ into three parts in all possible (not only balanced)
ways. While the combinatorial intuition for resplitting is elementary (cf. Theorem 2.2
below), the implementation and analysis requires a somewhat careful combination of
ingredients.

Namely, to run in polynomial space, it is not possible to use extensive amounts of
memory to store intermediate results to avoid recomputation. Yet, if no memoization
is used, the novel recurrence does not lead to an FPT algorithm, let alone to a single-
exponential FPT algorithm. Thus neither a purely dynamic programming nor a purely
recursive implementation will lead to the desired algorithm. A combination of the two
will, however, give a single-exponential time algorithm that uses polynomial space.

Roughly, our approach is to employ recursive evaluation over subsets T ′ of the
terminal set T , but each recursive call with T ′ will compute and return the optimal
solutions for every possible set S of split vertices. Since by resplitting we have arranged

4 F.V. FOMIN, P. KASKI, D. LOKSHTANOV, F. PANOLAN AND S. SAURABH

that S always has size at most 3, this hybrid evaluation approach will use polynomial
space. Since each recursive call on T ′ yields the optimum weights for every possible
S, we can use dynamic programming to efficiently combine these weights so that
single-exponential running time results.

In precise terms, our main result is as follows:

Theorem 1.1. Steiner Tree can be solved in time O(7.97kn4 log(nW)) using
space O(n3 log(nW) log k).

Whereas our main result seeks to optimize the polynomial dependency in n for
both the running time and space usage, it is possible to trade between polynomial
dependency in n and the single-exponential dependency in k to obtain faster running
time as a function of k, but at the cost of increased running time and space usage
as a function of n. In particular, we can use larger (but still constant-size) sets S to
avoid recomputation and to arrive at a somewhat faster algorithm:

Theorem 1.2. There exists a polynomial-space algorithm for Steiner Tree
running in O(6.751knO(1) logW) time.

Finally, by using more ideas, like introducing even balanced separators of larger
cardinality in trees and generalizing our Steiner Tree algorithm on Subset Steiner
Forest, we obtain the following theorem.

Theorem 1.3. For any ε > 0 there is a nO(f(ε)) logW space 4(1+ε)knO(f(ε)) logW
time algorithm for Steiner Tree, where f is a computable function depending only
on ε.

Notice that to get polynomial space parameterized single-exponential time al-
gorithms for the unweighted version of Steiner Tree, it is enough to substitute
uniform weight to all the edges (for example weight of each edge is 2) in the above
theorems.

2. Preliminaries. Given a graph G, we write V (G) and E(G) for the set of
vertices and edges of G, respectively. For subgraphs G1, G2 of G, we write G1 + G2

for the subgraph of G with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2).
For a graph G, S ⊆ V (G) and v ∈ V (G), we use G − S and G − v to denote the
induced subgraphs G[V (G)\S] and G[V (G)\{v}] respectively. The minimum weight
of a Steiner tree of G on terminals T is denoted by stG(T). When graph G is clear
from the context, we will simply write st(T). For a set U and a non-negative integer
i, we use

(
U
i

)
and

(
U
≤i
)

to denote the set of all subsets of U of size exactly i and the
set of all subsets of U of size at most i, respectively.

Partitions. A partition of a non-empty set U is a collection of non-empty, pair-
wise disjoint subsets of U whose union is U . The subsets are called blocks. For a set
U , we write U1] U2] · · ·] U` = U if U1, U2, . . . , U` is a partition of U . For a set U
and a positive integer i, we use P(U) and Pi(U) to denote the set of all partitions of
U and the set of all partitions of U into i blocks, respectively. For convenience we use
P(∅) = {∅}. For a set U and a constant ε ≥ 0, we use Bε(U) to denote the set of all
partitions (U1, U2) of U into two blocks such that |U1|, |U2| ≤

(
1
2 + ε

)
|U |. For a set

U , a subset U ′ of U and a partition P ∈ P(U), we use P [U ′] to denote the restriction
of partition P on the set U ′, i.e, the blocks in P [U ′] are obtained by deleting U \ U ′
from the blocks of P . For a set U and partitions P1, P2 ∈ P(U), we say partition P1

refines partition P2, denoted by P1 � P2, if every block of P1 is contained in some
block of P2. We also use P1 � P2 if P1 is a restriction of a partition in P(U) which
refines partition P2. That is, for a set U , a subset U ′ of U and partitions P1 ∈ P(U ′)

SINGLE-EXPONENTIAL TIME POLY-SPACE ALGORITHM FOR STEINER TREE 5

and P2 ∈ P(U), we write P1 � P2, if each block of P1 is contained in some block of
P2. For two partitions P1 and P2 in P(U), the join of P1 and P2, denoted by P1 tP2

is the smallest (with respect to �) partition P refined by both P1 and P2. For a graph
G, we use PG to denote the partition {V (C) | C is a connected component of G} of
V (G).

Separation and resplitting. A set of nodes S is called an α-separator of a
graph G, 0 < α ≤ 1, if the vertex set V (G) \ S can be partitioned into sets VL and
VR of size at most αn each, such that no vertex of VL is adjacent to any vertex of VR.
We next define a similar notion, which turns out to be useful for Steiner trees. Given
a Steiner tree ST on terminals T , an α-Steiner separator S of ST is a subset of nodes
which partitions ST − S in two forests R1 and R2, each one containing at most αk
terminals from T .

Lemma 2.1 (Separation). [5, 11] Every Steiner tree ST on terminal set T , |T | ≥
3, has a 2/3-Steiner separator S = {s} of size one.

The following easy lemma enables us to control the size of the split S set at no
more than 3 vertices.

Lemma 2.2 (Resplitting). Let F be a tree and S ∈
(
V (F)

3

)
. Then there is a

vertex v ∈ V (F) such that each connected component in F − v contains at most one
vertex of S.

Proof. Let S = {s1, s2, s3}. Let P1 be the unique path between s1 and s3 in the
tree F . Let P2 be the unique path between s3 and s2 in the tree F . If P1 and P2

are edge-disjoint, then V (P1) ∩ V (P2) = {s3} and P1P2 is the unique path between
s1 and s2. Thus any connected component in G − s3 will not contain both s1 and
s2. In this case s3 is the required vertex. Suppose V (P1)∩ V (P2) 6= {s3}. For a path

P = u1u2 · · ·u` in a graph G, let
←−
P denote the reverse path u`u`−1 · · ·u1. Consider

the unique path
←−
P1 between s3 and s1, which is the reverse of the path P1. Since F is

a tree, these paths
←−
P1 and P2 will be of the form P1 = Q

←−
P1
′ and P2 = QP ′2. Note that

Q is a path starting at s3. Let w be the last vertex in the path Q. Since F is a tree,

V (
←−
P1
′) ∩ V (P ′2) = {w}. Now consider the graph G − w. Any connected component

in G− w will not contain more than one vertex from {s1, s2, s3}, because the unique
path between any pair of vertices in {s1, s2, s3} passes through w.

3. Algorithm. In this section, we design an algorithm for Steiner Tree which
runs in O(7.97kn4 log(nW)) time using O(n3 log(nW) log k) space. Most algorithms
for Steiner Tree, including ours, are based on recurrence relations that reduce
finding an optimal Steiner tree to finding optimal Steiner trees in the same graph,
but with a smaller terminal set.We first define two functions fi for i ∈ {2, 3}. Each
function fi, i ∈ {2, 3} takes as input a vertex set S of size at most i (the split set
defined in the introduction) and a subset T ′ of T . The function fi(S, T

′) returns a
real number. We will define the functions using recurrence relations, and then prove
that fi(S, T

′) is exactly stG(T ′ ∪ S). These two functions are alternatively invoked
by our algorithm. Later we define two more functions fi for i ∈ {0, 1} and they are
invoked only in the first two recursive steps of our algorithm.

For T ′ ⊆ T , i ∈ {2, 3}, and S ∈
(
V (G)
≤i
)
, we define fi(S, T

′) as follows. When

|T ′| ≤ 2, we set fi(S, T
′) = stG(T ′ ∪ S). For |T ′| ≥ 3, we define fi(S, T

′) using the
following recurrences.

6 F.V. FOMIN, P. KASKI, D. LOKSHTANOV, F. PANOLAN AND S. SAURABH

Separation.

f2(S, T ′) = min
(T1,T2)∈B 1

6
(T ′)

min
v∈V (G)
S1]S2=S

f3
(
S1 ∪ {v}, T1

)
+ f3

(
S2 ∪ {v}, T2

)
(3.1)

Resplitting.

f3(S, T ′) = min
(T1,T2,T3)∈P3(T ′)

min
S1]S2]S3=S
|S1|,|S2|,|S3|≤1

v∈V (G)

3∑
r=1

f2
(
Sr ∪ {v}, Tr

)
(3.2)

The recurrences (3.1) and (3.2) are recurrence relations for Steiner Tree:

Lemma 3.1. For all T ′ ⊆ T , i ∈ {2, 3}, and S ∈
(
V (G)
≤i
)

it holds that fi(S, T
′) =

stG(T ′ ∪ S).

Proof. We prove the lemma using induction on |T ′|. For the base case |T ′| ≤ 2,
the lemma holds by the definition of fi. For the inductive step, let us assume that
the lemma holds for all T ′′ of size less than j. We proceed to show that fi(S, T

′) =
stG(T ′ ∪ S) for all T ′ ⊆ T with |T ′| = j. We split into cases based on i and in each
case establish the inequalities fi(S, T

′) ≤ stG(T ′ ∪ S) and fi(S, T
′) ≥ stG(T ′ ∪ S) to

conclude equality.

Case 1: i = 2. By (3.1), we know that there is a vertex v ∈ V (G), a partition
S1]S2 = S and another partition (T1, T2) ∈ B1/6(T ′) such that fi(S, T

′) = fi+1(S1 ∪
{v}, T1) + fi+1(S2 ∪ {v}, T2). Since (T1, T2) ∈ B1/6(T ′) and |T ′| ≥ 3, we have that
|T1|, |T2| < |T ′|. Then by induction hypothesis,

fi+1(S1 ∪ {v}, T1) = stG(T1 ∪ S1 ∪ {v})

and
fi+1(S2 ∪ {v}, T2) = stG(T2 ∪ S2 ∪ {v}).

So we have that

fi(S, T
′) = stG(T1 ∪ S1 ∪ {v}) + stG(T2 ∪ S2 ∪ {v}).

Let ST1 be an optimum Steiner tree for the set of terminals T1 ∪S1 ∪{v} and ST2 be
an optimum Steiner tree for the set of terminals T2 ∪ S2 ∪ {v}. Note that ST1 + ST2
is a connected subgraph containing T1 ∪ T2 ∪ S and

w(E(ST1 + ST2)) ≤ stG(T1 ∪ S1 ∪ {v}) + stG(T2 ∪ S2 ∪ {v}).

This implies that

stG(T ′∪S) ≤ w(E(ST1 +ST2)) ≤ stG(T1∪S1∪{v}) +stG(T2∪S2∪{v}) = fi(S, T
′).

Hence fi(S, T
′) ≥ stG(T ′ ∪ S).

Conversely, let ST be an optimum Steiner tree for the set of terminals T ′ ∪ S.
Thus ST is also a Steiner tree for the set of terminals T ′. Hence by Theorem 2.1,
we know that there is a 2/3-Steiner separator {v} of size one for the tree ST on the
terminal set T ′. Let F1 and F2 be two forests created by the separator {v}, such that
V (Fr) ∩ T ′ ≤ 2|T ′|/3 for each 1 ≤ r ≤ 2. Let Tr = V (Fr) ∩ T ′, 1 ≤ r ≤ 2. If v ∈ T ′
and |T1| ≤ |T2|, then we replace T1 with T1 ∪ {v}. If v ∈ T ′ and |T1| > |T2|, then

SINGLE-EXPONENTIAL TIME POLY-SPACE ALGORITHM FOR STEINER TREE 7

we replace T2 with T2 ∪ {v}. Note that (T1, T2) is a partition of T ′. Since {v} is a
2/3-Steiner separator and |T ′| ≥ 3, we have that

|T1|, |T2| ≤ 2|T ′|/3 ≤
(

1

2
+

1

6

)
|T ′| < |T ′|.

Hence (T1, T2) ∈ B1/6(T ′). For any r ∈ {1, 2}, let STr = ST [V (Fr) ∪ {v}] and let
Sr = V (STr) ∩ S. Thus

fi+1(S1 ∪ {v}, T1) + fi+1(S2 ∪ {v}, T2) ≥ fi(S, T ′).

Note that ST1 = ST [V (F1) ∪ {v}] and ST2 = ST [V (F2) ∪ {v}] are subtrees of ST .
By the induction hypothesis, we have that fi+1(S1 ∪ {v}, T1) = stG(T1 ∪ S1 ∪ {v})
and fi+1(S2 ∪ {v}, T2) = stG(T2 ∪ S2 ∪ {v}). Since ST1 and ST2 are trees containing
T1 ∪ S1 ∪ {v} and T2 ∪ S2 ∪ {v} respectively, we have

w(E(ST1)) + w(E(ST2)) ≥ stG(T1 ∪ S1 ∪ {v}) + stG(T2 ∪ S2 ∪ {v})
= fi+1(S1 ∪ {v}, T1) + fi+1(S2 ∪ {v}, T2) ≥ fi(S, T ′).

Since V (ST1)∩V (ST2) = {v} and T ′ ∪S ⊆ V (ST1)∪V (ST2), we have that stG(T ′ ∪
S) = w(E(ST1)) + w(E(ST2)). Thus fi(S, T

′) ≤ stG(T ′ ∪ S).

Case 2: i = 3. By (3.2), there is v ∈ V (G), S1, S2, S3 ∈
(
S
≤1
)
, S1] S2] S3 = S,

and a partition (T1, T2, T3) ∈ P3(T ′) such that

f3(S, T ′) =

3∑
r=1

f2(Sr ∪ {v}, Tr).

We have shown (in Case 1) that f2(Sr∪{v}, Tr) = stG(Tr∪Sr∪{v}) for all 1 ≤ r ≤ 3.

Therefore f3(S, T ′) =
∑3
r=1 stG(Tr ∪ Sr ∪ {v}). Let STr be an optimum Steiner tree

for the set of terminals Tr∪Sr∪{v} for all r. Note that ST1+ST2+ST3 is a connected
subgraph containing T1 ∪ T2 ∪ T3 ∪ S and

w(E(ST1 + ST2 + ST3)) ≤
3∑
r=1

stG(Tr ∪ Sr ∪ {v}).

Thus

stG(T ′ ∪ S) ≤ w(E(ST1 + ST2 + ST3)) ≤
3∑
r=1

stG(Tr ∪ Sr ∪ {v}) = f3(S, T ′).

Hence f3(S, T ′) ≥ stG(T ′ ∪ S).
Conversely, let ST be an optimum Steiner tree for the set of terminals T ′ ∪ S.

By Theorem 2.2, there is a vertex v ∈ V (ST) such that each connected component
C in ST − v contains at most one vertex from S. Let C1, C2 and C3 be a partition of
connected components of ST −v such that |V (Cr)∩S| ≤ 1 for all 1 ≤ r ≤ 3. For each
r, let Tr = T ′ ∩V (Cr) and STr = ST [V (Cr)∪{v}]. If v ∈ T ′, then we replace T1 with
T1 ∪ {v}. Note that (T1, T2, T3) is a partition of T ′. Hence (T1, T2, T3) ∈ P3(T ′). For
each r, let Sr = (S \ {v}) ∩ V (STr). Since each Cr contains at most one vertex from
S, |Sr| ≤ 1. This implies

3∑
r=1

f2(Sr ∪ {v}, Tr) ≥ f3(S, T ′).

8 F.V. FOMIN, P. KASKI, D. LOKSHTANOV, F. PANOLAN AND S. SAURABH

Note that STr = ST [V (Cr)∪ {v}] is a tree for each r. Since V (C1)∪ V (C2)∪ V (C3)∪
{v} = V (ST) and for all 1 ≤ r1 6= r2 ≤ 3 it holds that V (Cr1) ∩ V (Cr2) = ∅, we have

stG(T ′ ∪ S) = w(E(ST))

=

3∑
r=1

w(E(STr)) ≥
3∑
r=1

f2(Sr ∪ {v}, Tr) ≥ f3(S, T ′).

Thus f3(S, T ′) ≤ stG(T ′ ∪ S).

We would like to mention that 3 is the smallest size of S for which we can do
resplitting and reduce the size of the separator (i.e, first argument in the function fi).
Our algorithm uses (3.1) and (3.2) repeatedly to compute the weight of an optimum
Steiner tree. Notice that f2(∅, T) is equal to the weight of an optimum Steiner tree.
Since f3 runs over all partitions of size 3, unlike the balanced partitions in the case
of f2, f3 is costlier for the runtime of the algorithm. Also notice that f2(∅, T) invokes
two instances of f3 with the first argument being size one sets each. In fact for those
two instances of f3, we do not have to make a resplitting step. Thus towards designing
a faster algorithm we define two more function f0 and f1 which is defined similar to
f2. For T ′ ⊆ T , i ∈ {0, 1}, and S ∈

(
V (G)
≤i
)
, we define fi(S, T

′) as follows. When

|T ′| ≤ 2, we set fi(S, T
′) = stG(T ′ ∪ S). For |T ′| ≥ 3, we define fi(S, T

′) using the
following recurrences.

fi(S, T
′) = min

(T1,T2)∈B 1
6
(T ′)

min
v∈V (G)
S1]S2=S

fi+1

(
S1 ∪ {v}, T1

)
+ fi+1

(
S2 ∪ {v}, T2

)
(3.3)

Lemma 3.2. For all T ′ ⊆ T , i ∈ {0, 1}, and S ∈
(
V (G)
≤i
)

it holds that fi(S, T
′) =

stG(T ′ ∪ S).

Proof. By substituting i = 1 in Case 1 of the proof of Lemma 3.2 and the fact
that f2(S1∪{v}, T1) = stG(T1∪S1∪{v}) and f2(S2∪{v}, T2) = stG(T2∪S2∪{v}) (by
Lemma 3.2) we conclude that f1(S, T ′) = stG(T ′ ∪ S). Again, by arguments similar
to that of the proof for the case i = 1, we conclude that f0(S, T ′) = stG(T ′ ∪ S).

A näıve way of turning the recurrences into an algorithm would be to simply make
one recursive procedure for each fi, and apply (3.3), (3.1) and (3.2) directly. However,
this would result in a factor nO(log k) in the running time, which we seek to avoid.
The reason to get a factor nO(log k) in the running time of a näıve implementation is
the number of branches of each node in the recurrence tree is at least nO(1) (because
the number of choices of separators for each recurrence is nO(1)) and the depth of
the recurrence tree is O(log k) (because of the balanced partition in (3.1)). Like the
näıve approach, our algorithm has one recursive procedure Fi for each function fi.
The procedure Fi takes as input a subset T ′ of the terminal set, and returns an array
that, for every S ∈

(
V (G)
≤i
)
, contains fi(S, T

′).

The key observation is that if we seek to compute fi(S, T
′) for a fixed T ′ and

all choices of S ∈
(
V (G)
≤i
)

using recurrence (3.3) or (3.1) or (3.2), we should not just

iterate over every choice of S and then apply the recurrence to compute fi(S, T
′); it

is much faster to compute all the entries of the return array of Fi simultaneously, by
iterating over every eligible partition of T ′, making the required calls to Fi+1 (or Fi−1
if we are using recurrence (3.2)), and updating the appropriate array entries to yield
the return array of Fi. Next we give pseudocode for the procedures F0, F1, F2, F3.

SINGLE-EXPONENTIAL TIME POLY-SPACE ALGORITHM FOR STEINER TREE 9

Algorithm 3.1 Implementation of procedure Fi for i ∈ {0, 1, 2}
Input: T ′ ⊆ T
Output: stG(T ′ ∪ S) for all S ∈

(
V (G)
≤i
)

1 if |T ′| ≤ 2 then

2 for S ∈
(
V (G)
≤i
)
do

3 A[S]← stG(T ′ ∪ S) (compute using the Dreyfus–Wagner algorithm)
4 end
5 return A

6 end

7 for S ∈
(
V (G)
≤i
)
do

8 A[S]←∞
9 end

10 for T1, T2 ∈ B1/6(T ′) do
11 A1 ← Fi+1(T1)

A2 ← Fi+1(T2)

12 for S1] S2 ∈
(
V (G)
≤i
)

such that |S2| ≤ |S1| and v ∈ V (G) do

13 if A[S1] S2] > A1[S1 ∪ {v}] +A2[S2 ∪ {v}] then
14 A[S1] S2]← A1[S1 ∪ {v}] +A2[S2 ∪ {v}]
15 end

16 end

17 end
18 return A.

The procedure Fi for 0 ≤ i ≤ 2 operates as follows. (See algorithm 3.1.) Let
T ′ ⊆ T be the input to the procedure Fi. If |T ′| ≤ 2, then Fi computes stG(T ′ ∪ S)

for all S ∈
(
V (G)
≤i
)

using the Dreyfus–Wagner algorithm and returns these values. The

procedure Fi has an array A indexed by S ∈
(
V (G)
≤i
)
. At the end of the procedure

Fi, A[S] will contain the value stG(T ′ ∪ S) for each S ∈
(
V (G)
≤i
)
. For each (T1, T2) ∈

B1/6(T ′) (line 10), Fi calls Fi+1(T1) and Fi+1(T2) and it returns two sets of values

{fi+1(S, T1) | S ∈
(
V (G)
≤i+1

)
} and {fi(S, T2) | S ∈

(
V (G)
≤i
)
}, respectively. Let A1 and A2

be two arrays used to store the return values of Fi+1(T1) and Fi+1(T2) respectively.

That is, A1[S] = fi+1(S, T1) for each S ∈
(
V (G)
≤i+1

)
and A2[S′] = fi+1(S′, T2) for each

S′ ∈
(
V (G)
≤i+1

)
. Now we update A as follows. For each S1] S2 ∈

(
V (G)
≤i
)

and v ∈ V (G)

(line 12), if A[S1] S2] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}], then we update the entry
A[S1]S2], with the value A1[S1 ∪ {v}] +A2[S2 ∪ {v}]. So at the end of the inner for
loop, A[S] contains the value

min
v∈V (G)
S1]S2=S

fi+1(S1 ∪ {v}, T1) + fi+1(S2 ∪ {v}, T2).

Since we do have a outer for loop which runs over (T1, T2) ∈ B1/6(T ′), we have
updated A[S] with

min
(T1,T2)∈B1/6(T ′)

min
v∈V (G)
S1]S2=S

fi+1(S1 ∪ {v}, T1) + fi+1(S2 ∪ {v}, T2).

10 F.V. FOMIN, P. KASKI, D. LOKSHTANOV, F. PANOLAN AND S. SAURABH

Algorithm 3.2 Implementation of procedure F3

Input: T ′ ⊆ T
Output: stG(T ′ ∪ S) for all S ∈

(
V (G)
≤3
)

19 if |T ′| ≤ 2 then

20 for S ∈
(
V (G)
≤3
)
do

21 A[S]← stG(T ′ ∪ S) (compute using the Dreyfus–Wagner algorithm)
22 end
23 return A

24 end

25 for S ∈
(
V (G)
≤3
)
do

26 A[S]←∞
27 end
28 for T1, T2, T3 ∈ P3(T ′) do
29 A1 ← F2(T1)

A2 ← F2(T2)
A3 ← F2(T3)

30 for S1, S2, S3 ∈
(
V (G)
≤1
)

and v ∈ V (G) do

31 if A[S1 ∪ S2 ∪ S3] > A1[S1 ∪ {v}] +A2[S2 ∪ {v}] +A3[S3 ∪ {v}] then
32 A[S1 ∪ S2 ∪ S3]← A1[S1 ∪ {v}] +A2[S2 ∪ {v}] +A3[S3 ∪ {v}]
33 end

34 end

35 end
36 return A.

at the end of the procedure. Then Fi will return A.
The procedure F3 works as follows. (See algorithm 3.2.) Let T ′ ⊆ T be the input

to the procedure F3. If |T ′| ≤ 2, then F3 computes stG(T ′ ∪ S) for all S ∈
(
V (G)
≤3
)

using the Dreyfus–Wagner algorithm and returns these values. The procedure F3

has an array A indexed by S ∈
(
V (G)
≤3
)
. At the end of the procedure F3, A[S] will

contain the value stG(T ′ ∪ S) for all S ∈
(
V (G)
≤3
)
. For each (T1, T2, T3) ∈ P3(T ′)

(line 28), F3 calls F2(T1), F2(T2) and F2(T3), and it returns three sets of values

{f2(S, T1) | S ∈
(
V (G)
≤2
)
}, {f2(S, T2) | S ∈

(
V (G)
≤2
)
} and {f2(S, T3) | S ∈

(
V (G)
≤2
)
},

respectively. Let A1, A2 and A3 be three arrays used to store the outputs of F2(T1),
F2(T2) and F2(T3) respectively. That is, Ar[S] = f2(S, Tr) for r ∈ {1, 2, 3}. Now

we update A as follows. For each S1, S2, S3 ∈
(
V (G)
≤1
)

and v ∈ V (G) (line 30), if

A[S1 ∪ S2 ∪ S3] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}] + A3[S3 ∪ {v}], then we update the
entry A[S1 ∪ S2 ∪ S3], with the value A1[S1 ∪ {v}] +A2[S2 ∪ {v}] +A3[S3 ∪ {v}]. So
at the end of the inner for loop, A[S] contains the value

min
S1∪S2∪S3=S
|S1|,|S2|,|S3|≤1

v∈V (G)

3∑
r=1

f2(Sr ∪ {v}, Tr).

Since we do have a outer for loop which runs over (T1, T2, T3) ∈ P3(T ′), we have

SINGLE-EXPONENTIAL TIME POLY-SPACE ALGORITHM FOR STEINER TREE 11

updated A[S] with

min
(T1,T2,T3)∈P3(T ′)

min
S1∪S2∪S3=S
|S1|,|S2|,|S3|≤1

v∈V (G)

3∑
r=1

f2(Sr ∪ {v}, Tr).

at the end of the procedure. Then F3 will return A as the output.
In what follows, we prove the correctness and analyze the running time and

memory usage of the call to the procedure F0(T).

Lemma 3.3. For every i ≤ 3, and every set T ′ ⊆ T , the procedure Fi(T
′) outputs

an array that contains fi(S, T
′) for every S ∈

(
V (G)
≤i
)
.

Proof. Correctness of the lemma follows directly by an induction on |T |. Indeed,
assuming that the lemma statement holds for the recursive calls made by the procedure
Fi, it is easy to see that each entry of the output table is exactly equal to the right
hand side of recurrence (3.3) or (3.1) (recurrence (3.2) in the case of F3).

Observation 3.1. The recursion tree of the procedure F0(T) has depth O(log k).

Proof. For every i ≤ 2 the procedure Fi(T
′) only makes recursive calls to Fi+1(T ′′)

where |T ′′| ≤ 2|T ′|/3. The procedure F3(T ′) makes recursive calls to F2(T ′′) where
|T ′′| ≤ |T ′|. Therefore, on any root-leaf path in the recursion tree, the size of the
considered terminal set T ′ drops by a constant factor every second step. When the
terminal set reaches size at most 2, no further recursive calls are made. Thus any
root-leaf path has length at most O(log k).

Lemma 3.4. The procedure F0(T) uses O(n3 log(nW) log k) space.

Proof. As each Fi, i ∈ {0, 1, 2, 3}, is a recursive procedure once its recursive call is
returned, the memory used by the recursive procedure can be reused. Thus to upper
bound the space used by the procedure F0(T), it is sufficient to upper bound the
memory usage of every individual recursive call, not taking into account the memory
used by its recursive calls, and then multiply this upper bound by the depth of the
recursion tree.

Each individual recursive call will at any point of time keep a constant number
of tables, each containing at most O(n3) entries. Each entry is a number less than or
equal to nW , therefore each entry can be represented using at most O(log(nW)) bits.
Thus each individual recursive call uses at most O(n3 log(nW)) bits. Combining this
with 3.1 proves the lemma.

Next we analyze the running time of the algorithm. On an n-vertex graph, let
τi(k) be the total number of arithmetic operations of the procedure Fi(T

′) for all
i ≤ 3, where k = |T ′|. It follows directly from the structure of the procedures Fi for
i ≤ 2, that there exists a constant C such that the following recurrences hold for τi,
i ≤ 2:

τi(k) ≤
∑

k
3≤j≤

2k
3

(
k

j

)
(τi+1(j) + τi+1(k − j) + Cn3)

≤ 2
∑

k
3≤j≤

2k
3

(
k

j

)
(τi+1(j) + Cn3) ≤ 2k max

k
3≤j≤

2k
3

(
k

j

)
(τi+1(j) + Cn3)(3.4)

In the above expression, the term Cn3 is the time required to execute the inner for
loop of Fi. Let

(
k

i1,i2,i3

)
be the number of partitions of k distinct elements into sets

12 F.V. FOMIN, P. KASKI, D. LOKSHTANOV, F. PANOLAN AND S. SAURABH

of sizes i1, i2, and i3 such that i1 + i2 + i3 = k. It follows directly from the structure
of the procedure F3 that there exists a constant C such that the following recurrence
holds for τ3:

τ3(k) =
∑

i1+i2+i3=k

(
k

i1, i2, i3

)
(τ2(i1) + τ2(i2) + τ2(i3) + Cn4)

≤
∑

i1≥i2,i3
i1+i2+i3=k

(
k

i1, i2, i3

)
3 · (τ2(i1) + Cn4)

≤ 3
∑
i1≥ k3

(
k

i1

)
2k−i1 · (τ2(i1) + Cn4)

≤ 3kmax
i1≥ k3

(
k

i1

)
2k−i1 · (τ2(i1) + Cn4)(3.5)

In the above expression, the term Cn4 is the time required to execute the inner for
loop of F3. Now we will bound τ3(k) from above using (3.4) and (3.5). The following
facts are required for the proof.

Fact 1 ([13, Lemma 3.13]). By Stirling’s approximation,
(
k
αk

)
≤
(
α−α(1− α)(α−1)

)k
.

Fact 2. For every fixed x ≥ 4, the function f(y) = xy

yy(1−y)1−y is increasing on

the interval (0, 2/3].

Lemma 3.5. There exists a constant C such that τ3(k) ≤ C · 11.7899kn4

Proof. We prove by induction on k, that τ2(k) ≤ Ĉk(c log k)9.78977kn4 and τ3(k) ≤
Ĉk(c log k)11.7898kn4, where Ĉ and c are constants. We will select the constant Ĉ to
be larger than the constants of (3.4) and (3.5), and sufficiently large so that the base
case of the induction holds. We prove the inductive step. By the induction hypothesis
and (3.4), we have that

τ2(k) ≤ 2k max
1
3≤α≤

2
3

(
k

αk

)(
Ĉ(αk)(c logαk)11.7898αkn4 + Ĉn3

)
≤ 2k

(
11.78982/3

(2/3)2/3(1/3)1/3

)k
·

(
Ĉ

(
2k

3

)(c log 2k/3)

n4 + Ĉn3

)
(Facts 1 and 2)

≤ 2k · (9.78977)k ·

(
Ĉ

(
2k

3

)(c log 2k/3)

n4 + Ĉn3

)
≤ 9.78977k · Ĉk(c log k)n4

The last inequality holds if c is a sufficiently large constant (independent of k). By
the induction hypothesis and (3.5), we have that

τ3(k) ≤ 3k max
1≥α≥ 1

3

(
k

αk

)
2(1−α)k ·

(
9.78977αk · Ĉ(αk)(c logαk)n4 + Ĉn4

)
≤ 3k max

1≥α≥ 1
3

(
α−α(1− α)(α−1)2(1−α)9.78977α

)k
·
(
Ĉ(αk)(c logαk) + Ĉn4

)
≤ 11.7898k · Ĉk(c log k)n4

SINGLE-EXPONENTIAL TIME POLY-SPACE ALGORITHM FOR STEINER TREE 13

The last inequality holds for sufficiently large constants Ĉ and c. For a sufficiently
large constant C it holds that

C · 11.7899kn4 ≥ 11.7898k · Ĉk(c log k)n4,

completing the proof.

To upper bound τ0(k) from τ3(k), we repeatedly use the following lemma.

Lemma 3.6. For every i ≤ 2 and constants Ci+1 and βi+1 ≥ 4 such that for
every k ≥ 1 we have τi+1(k) ≤ Ci+1β

k
i+1n

4, there exists a constant Ci such that

τi(k) ≤ Ci · 1.8899k · β2k/3
i+1 · n4.

Proof. By (3.4) we have that

τi(k) ≤ 2k max
k
3≤j≤

2k
3

(
k

j

)
(τi+1(j) + Cn3)

≤ (2k + C) max
k
3≤j≤

2k
3

(
k

j

)
(Ci+1β

j
i+1n

4)

≤ Ci+1 · (2k + C) ·
(

3

22/3

)k
· β2k/3

i+1 · n
4

≤ Ci · 1.8899k · β2k/3
i+1 · n

4

The last inequality holds for a sufficiently large Ci depending on Ci+1 and βi+1 but
not on k.

Lemma 3.7. The procedure F0(T) uses O(7.97kn4 log(nW)) time.

Proof. We show that τ0(k) = O(7.9631kn4). Since each arithmetic operation
takes at most O(log(nW)) time, the lemma follows. Applying Theorem 3.6 on the
upper bound for τ3(k) from Theorem 3.5 proves that

τ2(k) = O(1.8899k · 11.78992k/3n4) = O(9.790kn4).

Re-applying Theorem 3.6 on the above upper bound for τ2(k) yields

τ1(k) = O(1.8899k · 9.7902k/3n4) = O(8.6489kn4).

Re-applying Theorem 3.6 on the above upper bound for τ1(k) yields

τ0(k) = O(1.8899k · 8.64892k/3n4) = O(7.9631kn4).

This completes the proof.

We are now in position to prove our main theorem.

Proof of Theorem 1.1. The algorithm calls the procedure F0(T) and returns the
value stored for f0(∅, T). By Theorem 3.3, the procedure F0(T) correctly computes
f0(∅, T), and by Theorem 3.1, this is exactly equal to the weight of an optimal Steiner
tree. By Theorem 3.4, the space used by the algorithm is at most O(n3 log(nW) log k),
and by Theorem 3.7, the time used is O(7.97kn4 log(nW)).

14 F.V. FOMIN, P. KASKI, D. LOKSHTANOV, F. PANOLAN AND S. SAURABH

3.1. Obtaining better parameter dependence. The algorithm from Theo-
rem 1.1 is based on defining and computing the functions fi, 0 ≤ i ≤ 3. The functions
fi, i ≤ 2 are defined using recurrence (3.1), while the function f3 is defined using
recurrence (3.2). For every constant t ≥ 4, we could obtain an algorithm for Steiner
Tree by defining functions fi, 0 ≤ i ≤ t − 1 using (3.1) and ft using (3.2). A proof
identical to that of Theorem 3.1 shows that fi(S, T

′) = STG(S ∪ T ′) for every i ≤ t.
We can now compute f0(∅, T) using an algorithm almost identical to the algorithm

of Theorem 1.1, except that now we have t + 1 procedures, namely a procedure Fi
for each i ≤ t. For each i and terminal set T ′ ⊆ T , a call to the procedure Fi(T

′)
computes an array containing fi(S, T

′) for every set S of size at most i.
For i < t, the procedure Fi is based on (3.1) and is essentially the same as

Algorithm 3.1. Further, the procedure Ft is based on (3.2) and is essentially the
same as Algorithm 3.2. The correctness of the algorithm and an O(nt log(nW))
upper bound on the space usage follows from arguments identical to Theorem 3.3 and
Theorem 3.4 respectively.

For the running time bound, an argument identical to Theorem 3.5 shows that
τt(k) = O(11.7899knt+1). Furthermore, Theorem 3.6 now holds for i ≤ t − 1. In
the proof of Theorem 3.7, the bound for τ0(k) is obtained by starting with the
O(11.7899kn4) bound for τ3 and applying Theorem 3.6 three times. Here we can
upper bound τ0(k) by starting with the O(11.7899knt+1) bound for τt and applying
Theorem 3.6 t times. This yields a C0 · βk0 upper bound for τ0(k), where

β0 = (11.7899(2/3)
t

)1.8899
∑t−1
i=0(2/3)

i

It is easy to see that, when t ≥ 25 the upper bound for β0 is a number between 6.75
and 6.751. This proves Theorem 1.2.

4. Faster polynomial space algorithm. In this section, for any ε > 0, we de-
sign a 4(1+ε)knO(f(ε)) logW time, nO(f ′(ε)) logW space algorithm for Steiner Tree,
where f and f ′ are computable functions that depend only on ε. Towards that we
need to explain Subset Steiner Forest problem and show that the algorithm in
Section 3 can be generalized to an algorithm for Subset Steiner Forest. In Sub-
section 4.1 we explain Subset Steiner Forest. Then in Subsection 4.2 we give a
faster polynomial space algorithm for Steiner Tree.

4.1. Subset Steiner Forest. In this subsection we generalize our parameter-
ized single exponential time polynomial space algorithm (the algorithm in Section 3)
to a general version of the Steiner Tree problem, named Subset Steiner Forest.

Definition 4.1. Let G be a graph, w : E(G)→ {1, 2, . . . ,W} be a non-negative
weight function, S be a partition of a subset of vertices and T ⊆ V (G) be a set of
terminals. A subgraph G′ of G is called a subset Steiner forest of G on the partition
S and the terminal set T , if the following conditions hold.

• T ∪
(⋃

S∈S S
)
⊆ V (G′),

• for all S ∈ S, there is a connected component C in G′ such that S ⊆ V (C),
and

• for any t ∈ T , the connected component C in G′, containing t, also contains
some S ∈ S.

We use sfG(S, T) to denote the minimum weight of a subset Steiner forest of G on
the partition S and the terminal set T .

In the Subset Steiner Forest, the objective is to find a subset Steiner forest
of minimum weight for an input graph G, a set of terminals T and a partition S of a

SINGLE-EXPONENTIAL TIME POLY-SPACE ALGORITHM FOR STEINER TREE 15

subset Y of vertices. For the application considered in this paper, we assume that |Y |
is a constant. Thus, the formal definition of Subset Steiner Forest is as follows.

Subset Steiner Forest Parameter: k = |T |
Input: An undirected graph G, a non-negative weight function w : E(G) →
{1, 2, . . . ,W}, a partition S of a subset Y of vertices and a set of terminals T ,
where |Y | is a constant
Question: A minimum weight subset Steiner forest of G on the partition S and
the terminal set T

The recurrence relations defined for Steiner Tree ((3.3), (3.1) and (3.2)) can
be generalized to get recurrence relations for Subset Steiner Forest. That is, we
define four functions fi for i ∈ {0, 1, 2, 3}. In what follows let S = {S1, . . . , Sr} be
a partition of a subset Y of the vertex set such that for all j, |Sj | ≤ c, where c and
r are constants. Each function fi takes as input a subset T ′ of T and a partition S
of a vertex subset Y , of size r, such that for all S ∈ S, |S| ≤ c + i. These functions
fi are recurrence relations for Subset Steiner Forest. That is fi(S, T ′) is exactly
sfG(S, T ′). Now we define fi(S, T ′) for all i ∈ {0, 1, 2, 3}. When |T ′| ≤ c + 3,
fi(S, T ′) = sfG(S, T ′). For |T ′| > c + 3, we define fi(S, T

′) using the following
recurrences.

Separation. For i ∈ {0, 1, 2}, let us define

fi(S, T ′) = min

2∑
`=1

fi+1

(
{S(`)

1 ∪ {v1}, . . . , {S(`)
r ∪ {vr}}, T`

)
,(4.1)

where minimum is taken over partition (T1, T2) ∈ B 1
6
(T ′), vertices v1, . . . , vr ∈ V (G),

and partition S
(1)
j] S

(2)
j of Sj for all j ∈ [r].

Resplitting. For i = 3, let us define

fi(S, T ′) = min

3∑
`=1

fi−1
(
{S(`)

1 ∪ {v1}, . . . , {S(`)
r ∪ {vr}}, T`

)
(4.2)

where minimum is taken over partition (T1, T2, T3) ∈ P3(T ′), vertices v1, . . . , vr ∈
V (G), and for all j ∈ [r], partition S

(1)
j]S

(2)
j]S

(3)
j of Sj such that |S(1)

j |, |S
(2)
j |, |S

(3)
j | ≤

c− 2.
The proof of correctness of the above recurrence relation is a generalization of the

proof of correctness of the recurrence relations of Steiner Tree ((3.3), (3.1), and
(3.2)). As in Section 3, a recursive algorithm using (4.1) and (4.2) can be designed,
which leads to the following theorem.

Theorem 4.2. Subset Steiner Forest can be solved in O(7.97knr(c+4) log(nW))
time using nr(c+3) log(nW) · log k space.

4.2. Polynomial space 4(1+ε)knO(f(ε)) time algorithm. In this subsection we
design a faster polynomial space algorithm for Steiner Tree using Subset Steiner
Forest. We design a new recurrence relation for subset Steiner forest using a notion
of α-Steiner separator for subset Steiner forest. Given a subset Steiner forest SF on
a set of terminals T and a partition S of a vertex subset, an α-Steiner separator S of
SF is a subset of nodes which partitions SF − S in two forests R1 and R2, each one
containing at most α|T | terminals from T . The following lemma follows from Lemma
1 (Sharp Separation) of [12].

16 F.V. FOMIN, P. KASKI, D. LOKSHTANOV, F. PANOLAN AND S. SAURABH

Lemma 4.3 (c-Separation). For any constant c ≥ 0, every subset Steiner forest
SF on terminal set T and family S has a

(
1
2 + 1

2c/2

)
-Steiner separator S of size at

most c.

We design a recurrence relation g(c) for subset Steiner forest for any constant
c ≥ 2. The function g(c) takes inputs S ⊆ V (G), PS ∈ P(S) and a set of terminals
T . When |T | ≤ c, the value of g(c)(S, PS , T) is defined to be sfG(PS , T). Otherwise
g(c)(S, PS , T) is defined by the following recurrence relation. Let us fix α = 1

2(c/2)
.

g(c)(S, PS , T) = min(g(c)(S′, P1, T1) + g(c)(S′, P2, T2))(4.3)

where the minimum is taken over partition (T1, T2) ∈ Bα(T), a super set S′ ⊇ S and
partitions P1, P2 ∈ P(S′) such that |S′ \ S| ≤ c and PS � P1 t P2.

We need to show that (4.3) is a recurrence relation for Subset Steiner forest and
we prove it in Theorem 4.5. The following lemma is useful for proving Theorem 4.5.

Lemma 4.4. Let G be a graph, S′, T ⊆ V (G) and P1, P2 ∈ P(S′). Let F1 and F2

be subset Steiner forests for the pairs (P1, T) and (P2, T) respectively. Let S ⊆ S′ and
PS ∈ P(S) such that PS � P1 t P2. Then F1 + F2 is a subset Steiner forest for the
pair (PS , T).

Proof. Let F = F1 + F2. Since F1 is a subset Steiner forest for the pair (P1, T),
where P1 ∈ P(S′), we have that S′ ∪ T ⊆ V (F1). This implies that S ∪ T ⊆ V (F).
Now we need to show that for any Q ∈ PS , there is a component C in F such that
Q ⊆ V (C). Since F1 and F2 are subset Steiner forests for the pairs (P1, T) and (P2, T)
respectively, the graph F = F1 +F2 is a subset Steiner forest for the pair (P1tP2, T).
Since PS � P1 t P2 any Q ∈ PS is completely contained in a block Q′ in P1 t P2.
Since F is a subset Steiner forest for the pair (P1 tP2, T), there is a component C in
F such that Q′ ⊆ V (C). This implies that Q ⊆ V (C). This completes the proof of
the Lemma.

Now we show that the above recurrence (4.3) is indeed a recurrence relation for
subset Steiner forest:

Lemma 4.5. For any T ⊆ V (G), any partition PS of vertex subset S of G and
any constant c ≥ 2, it holds that g(c)(S, PS , T) = sfG(PS , T).

Proof. We prove the lemma using induction on |T |. For the base case, when
|T | ≤ c, the lemma holds by the definition of g(c). For the inductive step, let us
assume that the lemma holds for all T ′ of size less than j and any S′ ⊆ V (G) and
any partition PS′ ∈ P(S′). We now show that g(c)(S, PS , T) = sfG(PS , T) for all

T ∈
(
V (G)
j

)
, S ⊆ V (G) and PS ∈ P(S). Fix a set T ∈

(
V (G)
j

)
, S ⊆ V (G) and

PS ∈ P(S). Let α = 1
2(c/2)

.

First we show that g(c)(S, PS , T) ≥ sfG(PS , T). By (4.3), we know there exists
(T1, T2) ∈ Bα(T), S′ ⊇ S and P1, P2 ∈ P(S′) such that |S′ \S| ≤ c, PS � P1 tP2 and

g(c)(S, PS , T) = g(c)(S′, P1, T1) + g(c)(S′, P2, T2).

Since (T1, T2) ∈ Bα(T) and |T | ≥ 2, we have that |T1|, |T2| < |T |. Then by
induction hypothesis g(c)(S′, P1, T1) = sfG(P1, T1) and g(c)(S′, P2, T2) = sfG(P2, T2).
So we have that g(c)(S, PS , T) = sfG(P1, T1) + sfG(P2, T2). Let SF1 and SF2 be
optimum subset Steiner forests for the pairs (P1, T1) and (P2, T2) respectively. Hence,
by Theorem 4.4, G′ = SF1 + SF2 is a subset Steiner forest for the pair (PS , T).

SINGLE-EXPONENTIAL TIME POLY-SPACE ALGORITHM FOR STEINER TREE 17

Thus we have shown that G′ is subset Steiner forest of the pair (PS , T) of weight
g(c)(S, PS , T). This implies that g(c)(S, PS , T) ≥ sfG(PS , T).

Conversely, let SF be an optimum subset Steiner forest for the pair (PS , T). By
Theorem 4.3 we know that there exists an (1

2+α)-Steiner separator S′′ of SF such that
|S′′| ≤ c. Let S′ = S′′∪S. Since S′ ⊇ S′′, S′ is also an (1

2 +α)-Steiner separator of SF .
Let R1 and R2 be the forests created by S′ such that |V (R1) ∩ T | ≤ (1

2 + α)|T | and
|V (R2)∩T | ≤ (1

2+α)|T |. Let T1 = V (R1)∩T and T2 = V (R2)∩T . If T1∪T2 6= T , then
arbitrarily add each vertex in T \(T1∪T2) to either T1 or T2 such that |Tr| ≤ (1

2 +α)|T |
for any r ∈ {0, 1}. Note that (T1, T2) ∈ Bα(T). Since S′ is a separator for R1 and R2

in SF , there is no edge in E(SF) which is incident to both R1 and R2. Let E1 be the
set of edges in E(SF) which are incident to R1 and let E2 = E(SF) \ E1. Consider
the graphs F1 = (V (R1) ∪ S′, E1) and F2 = (V (R2) ∪ S′, E2). The graphs F1 and
F2 are subset Steiner forests for the pairs (PF1

[S′], T1) and (PF2
[S′], T2), respectively

(recall that for a graph G, PG is the partition of V (G), where each block is the vertex
set of a component in G). Thus we have that

w(SF) = w(F1) + w(F2) ≥ sfG(PF1
[S′], T1) + sfG(PF2

[S′], T2)(4.4)

Since F1 + F2 = SF , we have that PS � PF1
[S′] t PF2

[S′]. Thus, we have that
|S′ \ S| ≤ c, (T1, T2) ∈ Bα(T) and PF1 [S′], PF2 [S′] ∈ P(S′) such that PS � PF1 [S′] t
PF2 [S′]. Hence by induction hypothesis and our recurrence relation (4.3), we have
that sfG(PF1

[S′], T1) + sfG(PF2
[S′], T2) ≥ g(c)(S, PS , T). Combining this with (4.4),

we get g(c)(S, PS , T) ≤ w(SF) = sfG(PS , T).

Now for any ε > 0, we explain an nO(f ′(ε)) logW space 4(1+ε)knO(f(ε)) logW time
algorithm for Steiner Tree. We fix (later) two constants c ≥ 4 and d based on ε.

Let α = 1
2(c/2)

and β =
(
1
2 + α

)d
. The algorithm is a recursive algorithm based on

(4.3). Whenever the cardinality of the terminal set in a recursive call is bounded by
βk, the algorithm uses Theorem 4.2 as a black box, otherwise it branches according
to (4.3). The initial call to the recurrence is on the set of terminals T , S = ∅ and
PS = ∅. Since each application of (4.3) reduces the cardinality of the terminal set
by a factor of (1

2 + α), the depth of the recurrence tree is bounded by d. Hence the
total number of vertices in the partition when our algorithm invokes Theorem 4.2 is
bounded by d · c. This implies that the space usage of our algorithm is bounded by
(ndc(dc+1) + d) logW .

Now we bound the running time of the algorithm. Let T (k) be the running time
of the algorithm for an n-vertex graph.

Lemma 4.6. There exists a constant C such that for any k′ ≤ k,

T (k′) = C · (dc)(2dc)d
′
ncd

′
ncd(cd+4)2d

′
log nW · (7.97)βk4k

′
2

2k′
1−2α ,

where d′ = log 1
2+α

βk
k′ .

Proof. Let C be a constant such that the algorithm in Theorem 4.2 runs in time
C · 7.97knr(c+4) log(nW). We prove the lemma by induction on k′. Assume that the
lemma holds for all values of k′ < k. Now we need to bound T (k). According to (4.3),

T (k) = ncc2c2k · 2 · T
((

1

2
+ α

)
k

)
(4.5)

Let γ =
(
1
2 + α

)
. Now by induction hypothesis, we simplify (4.5) as

T (k) = ncc2c2k · 2 · T (γk)

= ncc2c2k+1 · C(dc)(2dc)d
′
ncd

′
ncd(cd+4)2d

′
log(nW) · (7.97)βk4γk2

2γk
1−2α ,(4.6)

18 F.V. FOMIN, P. KASKI, D. LOKSHTANOV, F. PANOLAN AND S. SAURABH

where d′ = logγ
βk
γk ≤ d− 1.

Substituting d′ = d− 1 in (4.6),

T (k) = C · (dc)(2dc)dncdncd(cd+4)2d log(nW) · 2k(7.97)βk4γk2
2γk

1−2α(4.7)

Claim 4.7. 2k4γk2
2γk

1−2α ≤ 4k2
2k

1−2α

Proof.

2k4γk2
2γk

1−2α ≤ 2k · 2(1+2α)k · 2
(1+2α)k
1−2α

≤ 4k · 2(2α+ 1+2α
1−2α)k(4.8)

Here α = 1
2(c/2)

. For c ≥ 4,
(

2α+ 1+2α
1−2α

)
≤ 2

1−2α . This completes the proof of the

claim.

By applying Theorem 4.7 in (4.7), we get

T (k) = C · (dc)(2dc)dncdncd(cd+4)2d log(nW) · (7.97)βk4k2
2k

1−2α

Thus, for any ε > 0, by choosing constants c and d such that (7.97)βk2
2k

1−2α ≤ 4εk, we
derive the following theorem.

Theorem 1.3. For any ε > 0 there is a nO(f ′(ε)) logW space 4(1+ε)knO(f(ε)) logW
time algorithm for Steiner Tree, where f and f ′ are computable functions depending
only on ε.

5. Conclusion. In this paper we designed the first polynomial space single expo-
nential FPT algorithm for Steiner Tree. Our algorithm runs inO(7.96kn4 log(nW))
time. We also designed a O(4(1+ε)knf(ε)) algorithm with O(nf

′(ε)) space complexity
for any ε > 0. Getting a faster algorithm without paying much on the polynomial
factor and the space usage is an interesting open problem.

REFERENCES

[1] M. Basavaraju, F. V. Fomin, P. A. Golovach, P. Misra, M. S. Ramanujan, and
S. Saurabh, Parameterized algorithms to preserve connectivity, in Proceedings of the 41st
International Colloquium of Automata, Languages and Programming (ICALP), vol. 8572
of Lecture Notes in Comput. Sci., Springer, 2014, pp. 800–811.

[2] M. W. Bern and P. E. Plassmann, The Steiner problem with edge lengths 1 and 2, Inf.
Process. Lett., 32 (1989), pp. 171–176.

[3] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets Möbius: fast subset
convolution, in Proceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC), New York, 2007, ACM, pp. 67–74.

[4] G. E. Blelloch, K. Dhamdhere, E. Halperin, R. Ravi, R. Schwartz, and S. Sridhar,
Fixed parameter tractability of binary near-perfect phylogenetic tree reconstruction., in
Proceedings of the 33rd International Colloquium of Automata, Languages and Program-
ming (ICALP), vol. 4051 of Lecture Notes in Comput. Sci., Springer, 2006, pp. 667–678.

[5] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoretical Com-
puter Science, 209 (1998), pp. 1–45.

[6] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, Steiner tree approximation via iterative
randomized rounding, J. ACM, 60 (2013), p. 6.

[7] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015.

SINGLE-EXPONENTIAL TIME POLY-SPACE ALGORITHM FOR STEINER TREE 19

[8] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts in
Computer Science, Springer, 2013.

[9] S. E. Dreyfus and R. A. Wagner, The Steiner problem in graphs, Networks, 1 (1971),
pp. 195–207.

[10] J. Flum and M. Grohe, Parameterized Complexity Theory, Texts in Theoretical Computer
Science. An EATCS Series, Springer-Verlag, Berlin, 2006.

[11] F. V. Fomin, F. Grandoni, D. Kratsch, D. Lokshtanov, and S. Saurabh, Computing
optimal Steiner trees in polynomial space, Algorithmica, 65 (2013), pp. 584–604.

[12] F. V. Fomin, F. Grandoni, D. Lokshtanov, and S. Saurabh, Sharp separation and appli-
cations to exact and parameterized algorithms, Algorithmica, 63 (2012), pp. 692–706.

[13] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Springer, 2010. An EATCS
Series: Texts in Theoretical Computer Science.

[14] B. Fuchs, W. Kern, D. Mölle, S. Richter, P. Rossmanith, and X. Wang, Dynamic pro-
gramming for minimum Steiner trees, Theory of Computing Systems, 41 (2007), pp. 493–
500.

[15] J. Guo, R. Niedermeier, and S. Wernicke, Parameterized complexity of generalized vertex
cover problems., in Proceedings of the 9th International Workshop Algorithms and Data
Structures (WADS), vol. 3608 of Lecture Notes in Comput. Sci., Springer, 2005, pp. 36–48.

[16] D. Lokshtanov and J. Nederlof, Saving space by algebraization, in Proceedings of the 42nd
Annual ACM Symposium on Theory of Computing (STOC), ACM, 2010, pp. 321–330.

[17] D. Marx, M. Pilipczuk, and M. Pilipczuk, On subexponential parameterized algorithms for
Steiner Tree and Directed Subset TSP on planar graphs, ArXiv e-prints, (2017), https:
//arxiv.org/abs/1707.02190.

[18] J. Nederlof, Fast polynomial-space algorithms using inclusion-exclusion, Algorithmica, 65
(2013), pp. 868–884.

[19] R. Niedermeier, Invitation to fixed-parameter algorithms, vol. 31 of Oxford Lecture Series in
Mathematics and its Applications, Oxford University Press, Oxford, 2006.

[20] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen, Subexponential-time
parameterized algorithm for Steiner tree on planar graphs, in Proceedings of the 30th
International Symposium on Theoretical Aspects of Computer Science (STACS), vol. 20
of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2013,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 353–364.

[21] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen, Network sparsification
for Steiner problems on planar and bounded-genus graphs, in Proceedings of the 55th
Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2014, pp. 276–
285.

[22] H. J. Prömel and A. Steger, The Steiner Tree Problem, Advanced Lectures in Mathematics,
Friedr. Vieweg & Sohn, Braunschweig, 2002.

https://arxiv.org/abs/1707.02190
https://arxiv.org/abs/1707.02190

	Introduction
	Preliminaries
	Algorithm
	Obtaining better parameter dependence

	Faster polynomial space algorithm
	Subset Steiner Forest
	Polynomial space 4(1+)knO(f()) time algorithm

	Conclusion
	References

