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KERNELIZATION OF CYCLE PACKING WITH RELAXED
DISJOINTNESS CONSTRAINTS*

AKANKSHA AGRAWAL', DANIEL LOKSHTANOV?#, DIPTAPRIYO MAJUMDARS, AMER
E. MOUAWADY, AND SAKET SAURABH!

Abstract. A key result in the field of kernelization, a subfield of parameterized complexity,
states that the classic DiSJOINT CYCLE PACKING problem, i.e. finding k vertex disjoint cycles in a
given graph G, admits no polynomial kernel unless NP C coNP/poly. However, very little is known
about this problem beyond the aforementioned kernelization lower bound (within the parameterized
complexity framework). In the hope of clarifying the picture and better understanding the types
of “constraints” that separate “kernelizable” from “non-kernelizable” variants of DiSJOINT CYCLE
PACKING, we investigate two relaxations of the problem. The first variant, which we call ALMOST
DisjoINT CYCLE PACKING, introduces a “global” relaxation parameter t. That is, given a graph G
and integers k and ¢, the goal is to find at least k distinct cycles such that every vertex of G appears in
at most ¢ of the cycles. The second variant, PAIRWISE DISJOINT CYCLE PACKING, introduces a “local”
relaxation parameter and we seek at least k distinct cycles such that every two cycles intersect in at
most ¢ vertices. While the PAIRWISE DISJOINT CYCLE PACKING problem admits a polynomial kernel
for all ¢ > 1, the kernelization complexity of ALMOST DISJOINT CYCLE PACKING reveals an interesting
spectrum of upper and lower bounds. In particular, for ¢t = %, where ¢ could be a function of k, we
obtain a kernel of size (9(2c2 k™*¢log3 k) whenever ¢ € o(vk). Thus the kernel size varies from being
sub-exponential when ¢ € o(Vk), to quasi-polynomial when ¢ € o(loge k), £ € R4, and polynomial
when ¢ € O(1). We complement these results for ALMOST DISJOINT CYCLE PACKING by showing
that the problem does not admit a polynomial kernel whenever ¢ € O(k€), for any 0 < e < 1, unless
NP C coNP/poly.

Key words. parameterized complexity, cycle packing, kernelization, lower bounds, relaxation
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1. Introduction. Polynomial-time preprocessing is one of the widely used meth-
ods to tackle NP-hard problems in practice, as it plays well with exact algorithms,
heuristics, and approximation algorithms. Until recently, there was no robust math-
ematical framework to analyze the performance of preprocessing routines. Progress
in parameterized complexity [12] made such an analysis possible. In parameterized
complexity, each problem instance is coupled with an integer k, which is called as
the parameter, and the parameterized problem is said to admit a kernel if there is a
polynomial-time algorithm, called a kernelization algorithm, that reduces the input
instance down to an instance whose size is bounded by a function f(k) in k, while
preserving the answer. Such an algorithm is called an f(k)-kernel for the problem.
If f(k) is a polynomial, quasi-polynomial, subexponential, or exponential function of
k, we say that this is a polynomial, quasi-polynomial, subexponential, or exponential
kernel, respectively. Over the last decade or so, kernelization has become a very active
field of study, especially with the development of complexity-theoretic tools to show
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2 A. AGRAWAL ET AL.

that a problem does not admit a polynomial kernel [4, 13, 17, 20], or a kernel of a
specific size [9, 10, 21]. We refer the reader to the survey articles by Kratsch [22] and
Lokshtanov et al. [23] for recent developments.

One of the first and important problems to which the lower-bounds machinery
was applied is the NP-complete D1SJOINT CYCLE PACKING problem. In the DISJOINT
CYCLE PACKING problem, we are given as input an n-vertex graph G and an integer
k, and the task is to find a collection C of at least k pairwise disjoint vertex sets of G,
such that every set C' € C is a cycle in G. The DISJOINT CYCLE PACKING problem
can be solved in O(k*1°8 kno(l)) using dynamic programming over graphs of bounded
treewidth [3, 5]. Bodlaender et al. [6] showed that, when parameterized by k, DISJOINT
CYCLE PACKING does not admit a polynomial kernel unless NP C coNP /poly (and the
polynomial hierarchy collapses to its third level, which is considered very unlikely).
Beyond the aforementioned negative result for polynomial kernels and the folklore
O(kF1oekpOM)_time algorithm, the D1SJOINT CYCLE PACKING problem has remained
mostly unexplored from the viewpoint of parameterized complexity.

Our problems and results. In this paper we study two variants of DISJOINT CYCLE
PACKING, obtained by relaxing the disjointness constraint. In particular, we focus on
the kernelization complexity of the DISJOINT CYCLE PACKING problem by considering
two relaxed versions of the problem, one with a “local” relaxation parameter and the
other with a “global” relaxation parameter. In the locally relaxed variant, which we
call PAIRWISE DISJOINT CYCLE PACKING, the goal is to find at least k distinct cycles
in a graph G such that they pairwise intersect in at most ¢ vertices.

PAIRWISE DISJOINT CYCLE PACKING Parameter: &
Input: An undirected (multi) graph G and integers k and ¢.

Question: Does G have at least k distinct cycles Cy,. .., Cy such that [V (C;) N
V(Cy)| <t for all i # 57

We consider two cycles to be distinct whenever their edge sets differ by at least one ele-
ment. Note that when ¢ = 0, PAIRWISE DISJOINT CYCLE PACKING corresponds to the
original D1SJOINT CYCLE PACKING problem. However, when ¢ = |V(G)| the PAIR-
WISE DISJOINT CYCLE PACKING problem is solvable in time polynomial in |V(G)]
and k since we can enumerate distinct cycles in a graph with polynomial delay [26].
In other words, any k distinct cycles in a graph will trivially pairwise intersect in at
most |V(G)| vertices. We show that PAIRWISE DisJOINT CYCLE PACKING remains
NP-complete when ¢t = 1. Then, we complement this result by showing that the prob-
lem admits a polynomial kernel for ¢t = 1 and a polynomial compression for ¢ > 2. An
interesting problem which remains unclear is to determine what value of ¢ separates
NP-hard instances from polynomial-time solvable ones.

The second relaxation we consider is ALMOST DiSJOINT CYCLE PACKING. The
goal in ALMOST DI1SJOINT CYCLE PACKING is to determine whether G contains at
least k distinct cycles such that every vertex in V(@) appears in at most ¢ of them.
As we shall see, the kernelization complexity landscape for ALMOST DI1SJOINT CYCLE
PACKING is much more diverse than that of PAIRWISE DISJOINT CYCLE PACKING.
In some sense, this suggests that the global relaxation parameter does a “better job”
of capturing the “hardness” of the original problem.
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Fic. 1. Spectrum of kernelization algorithms for ALMOST DISJOINT CYCLE PACKING as ¢ grows
in the denominator of t = %

ALMOST Di1sJOINT CYCLE PACKING Parameter: k
Input: An undirected (multi) graph G and integers k and t.

Question: Does G have at least k distinct cycles Cq,...,C such that every
vertex in V(G) appears in at most ¢ of them?

Again, for t = 1, ALMOST DISJOINT CYCLE PACKING corresponds to DISJOINT
CYCLE PACKING and when ¢ = k the problem is solvable in time polynomial in |V (G)|
and k by simply enumerating distinct cycles. However, and rather surprisingly, we
show that ¢ has to be “very close” to k for this relaxation to become “easier” than
the original problem, at least in terms of kernelization. In fact, we show that as long
as t = O(k'~¢), where 0 < € < 1, ALMOST DISJOINT CYCLE PACKING remains NP-
complete and admits no polynomial kernel unless NP C coNP/poly. We complement
our hardness result by a spectrum of kernel upper bounds. To that end, we consider
the case t = %, where ¢ is a constant or a function of k. We show that we can (in
polynomial time) compress an instance of ALMOST DISJOINT CYCLE PACKING into an
equivalent instance with (9(202 k7t¢log® k) vertices. This implies polynomial, quasi-
polynomial, or subexponential size kernels for ALMOST DisJOINT CYCLE PACKING,
depending on whether ¢ is a constant, ¢ € o(logk), or ¢ € o(vk), respectively. It
remains open whether the problem is in P or NP-hard for ¢ = %, when c is a constant.
A high level summary of our results for ALMOST DISJOINT CYCLE PACKING is given
in Figure 1.

Related Results. Our results also fit into the relatively new direction of research
that is concerned with the parameterized complexity of problems with relaxed pack-
ing/covering constraints. For several important problems (that we need to solve),
there are settings in which we need not be very strict about constraints. This is
particularly interesting for “strict” problems where, e.g., (a) it is known that no poly-
nomial kernels are possible unless NP C coNP/poly, or where (b) the algorithm with
the best running time matches the known lower bound, or where (¢) no considerable
improvements have been made either algorithmically or in terms of kernel upper /lower
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4 A. AGRAWAL ET AL.

ArLMoSsT DISJOINT PAIRWISE DISJOINT
CYCLE PACKING CYCLE PACKING
NP-complete Poly. kernel NP-complete Poly. kernel
t=20 Yes No
t=1 Yes No Yes Yes
t=0(1) Yes No Open Yes
t = O(k°) Yes No Open Yes
t= % Open Yes Open Yes
TABLE 1

Summary of our results and some open problems.

bounds. The DisJOINT CYCLE PACKING problem, which is the main subject of this
work, falls into categories (a) and (c). Before we delve into the technical details of
our results, let us look at some examples where the introduction of relaxation param-
eters has been successful. Abasi et al. [1], followed by Gabizon et al. [18], studied a
generalization of the k-PATH problem, namely r-SIMPLE k-PATH, where the task is
to find a walk of length k that never visits any vertex more than r times. Here r is
the relaxation parameter. By definition, the generalized problem is computationally
harder than the original. However, observe that for r = 1 the problem is exactly the
problem of finding a simple path of length k£ in G. On the other hand, for r = k the
problem is easily solvable in polynomial time, as any walk in G of length &k will suf-
fice. In some sense, the “further away” an instance of the generalized problem is from
being an instance of the original, the easier the instance is. Put differently, gradually
increasing 7 from 1 to k should make the problem computationally easier. This intu-
ition was confirmed by the authors by providing, amongst other results, algorithms
for the generalized problem whose worst-case running time matches the running time
of the best algorithm for the original problem up to constants in the exponent, and
improves significantly as the relaxation parameter increases. Also closely related is
the work of Romero et. al. [28, 29] and Fernau et al. [15] who studied relaxations of
graph packing problems allowing certain overlaps.

2. Preliminaries. We let N denote the set of natural numbers, R denote the set
of real numbers, R denote the set of non-zero positive real numbers, and R>; denote
the set of real numbers greater than or equal to one. For r € N, by [r] we denote the
set {1,2,...,r}.

Graphs. We use standard terminology from the book of Diestel [11] for those
graph-related terms which are not explicitly defined here. We only consider finite
graphs possibly having loops and multi-edges. For a graph G, V(G) and E(G) denote
the vertex and edge sets of the graph G, respectively. For a vertex v € V(G), we
use dg(v) to denote the degree of v, i.e the number of edges incident on v, in the
(multi) graph G. We also use the convention that a loop at a vertex v contributes
two to its degree. For a vertex subset S C V(G), G[S] and G — S are the graphs
induced on S and V(G) \ S, respectively. For a vertex subset S C V(G), we let
Ng(S) and Ng[S] denote the open and closed neighborhood of S in G. That is,
Ng(S) ={v| (u,v) € E(G),u € S} \ S and Ng[S] = Ng(S) U S. For a graph G and
an edge e € F(G), G/e denotes the graph obtained by contracting e in G (loops and
multi-edges are preserved).

A path in a graph is a sequence of distinct vertices vy, v1, . . ., v¢ such that (v, v;y1)
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CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 5

is an edge for all 0 < ¢ < £. A cycle in a graph is a sequence of distinct vertices
V0, V1, . .., V¢ such that (vi, V(;41) mod ¢+1) is an edge for all 0 < i < £. We note that
both a double edge and a loop are cycles. If P is a path from a vertex u to a vertex
v in graph G then we say that u and v are the end vertices of the path P and P is a
(u,v)-path. For a path or a cycle @, we use V(Q) to denote the set of vertices in @
and the length of @ is denoted by |Q] (i, |Q| = |V(Q)|). For a path or a cycle @ we
use Ng(Q) and N¢[Q] to denote the sets Ng(V(Q)) and Ng[V(Q)], respectively. For
a collection of paths/cycles Q, we use |Q| to denote the number of paths/cycles in Q
and V(Q) to denote the set Jgco V(Q). We sometimes refer to a path or a cycle @
as a |@|-path or |Q|-cycle. Given a vertex v € V(G), a v-flower of order k is a set
of k cycles in G whose pairwise intersection is exactly {v}. We say a set of distinct
vertices P = {v1,...,v¢} in G forms a degree-two path if P is a path and all vertices
{v1,...,ve} have degree exactly two in G. We say P is a mazimal degree-two path if
no proper superset of P also forms a degree-two path. Finally, a feedback vertex set
is a subset S of vertices such that G — S is a forest.

Theorem 2.1 (see [14]). There exists a constant ¢ such that every (multi) graph
either contains k vertex disjoint cycles or it has a feedback vertex set of size at most
cklogk. Moreover, there is a polynomial-time algorithm that takes a graph G and an
integer k as input, and outputs either k verter disjoint cycles or a feedback vertex set
of size at most cklogk.

Parameterized Complexity. We only state the basic definitions and general results
needed for our purposes. For more details on parameterized complexity in general,
and kernelization in particular, we refer the reader to the books of Downey and
Fellows [12], Flum and Grohe [16], Niedermeier [25], and the more recent book by
Cygan et al. [8].

Definition 1. A reduction rule that replaces an instance (I, k) of a parameterized
language L by a new instance (I' k') is said to be sound or safe if (I,k) € L if and
only if (I',k') € L.

Definition 2. A polynomial compression of a parameterized language L C ¥* xN
into a language R C X* is an algorithm that takes as input an instance (I,k) € ¥*xN,
works in time polynomial in |I| + k, and returns a string I' such that:

o |I'| < p(k) for some polynomial p(.), and
e I' e Rif and only if (I,k) € L.
In case |Z| = 2, the polynomial p(.) is called the bitsize of the compression.

Note that polynomial compressions are a generalization of kernels and being able
to rule out a compression algorithm automatically rules out a kernelization algorithm.
Like in classical complexity, in the world of kernel lower bounds, it is often easier to
“transfer” hardness from one problem to another. To be able to do so, we need an
appropriate notion of reduction.

Definition 3. Let L, R C ¥* x N be two parameterized problems. An algorithm
A is called a polynomial parameter transformation (PPT, for short) from L to R if,
given an instance (I,k) of problem L, A works in polynomial time and outputs an
equivalent instance (I', k") of problem R, i.e., (I,k) € L if and only if (I',k") € R,
such that k' < p(k) for some polynomial p(.).

Theorem 2.2 (see [8]). Let L,R C ¥* x N be two parameterized problems and
assume that there exists a polynomial parameter transformation from L to R. Then,
if L does not admit a polynomial compression (into any language), neither does R.
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6 A. AGRAWAL ET AL.

3. Almost Disjoint Cycle Packing. As previously noted, Bodlaender et al. [6]
showed that DisJOINT CYCLE PACKING admits no polynomial kernel unless NP C
coNP/poly. On the other hand, finding k distinct cycles in a graph is solvable in
time polynomial in n = |V(G)| and k [26]. The intuition is that the more cycles
we allow a vertex to belong to, the easier the problem of finding k distinct cycles
should become. In this section, we study the spectrum of kernelization algorithms for
A1LMOST DisJOINT CYCLE PACKING based on the “distance” between k and ¢t. Recall
that given an instance (G, k,t) of ALMOST DiSJOINT CYCLE PACKING, our goal is
to find at least k distinct cycles such that each vertex appears in at most ¢ of them.
To formalize the notion of distance between k and ¢, we define the following class of
problems.

Let L = {(G,k,t) | G has k cycles such that every vertex appears in at most ¢
of them}. Basically, L is the language ALMOST DisJOINT CYCLE PACKING. For a
non-decreasing and polynomial-time computable function f : N — R, (polynomial in
k), we define the following sub-language of L.

Ly ={(G,k,t)| (G,k,t) € Land t = [k/f(k)]}.

When f is the identity function, i.e. when f(k) = k, Ly is exactly the DISJOINT
CYCLE PACKING problem, which is known not to admit a polynomial kernel [6]. In
Section 3.1, we show that even when f(k) = k¢, for any fixed 0 < ¢ < 1, Ly (or
equivalently ALMOST DI1SJOINT CYCLE PACKING with ¢t = k7€) is NP-complete and
does not admit a polynomial kernel unless NP C coNP/poly. If f = a (a constant
function), where @ < 1 and ¢ € Ry, then Ly can be decided in polynomial time
(as finding any k distinct cycles is enough). This implies that for f = a we have a
constant kernel. In Section 3.2, we obtain a polynomial kernel for f = ¢ (another
constant function), where ¢ > 1 and ¢ € R. In fact, our result implies that for
feo), feolog'k) (¢ eN), or f e o(vk), we can (in polynomial time) compress
an instance of ALMOST DiSJOINT CYCLE PACKING into an equivalent instance of
polynomial, quasi-polynomial, or subexponential size, respectively (see Figure 1).

Before we consider the kernelization complexity of the ALMOST DISJOINT CYCLE
PACKING problem, we first show, using standard arguments, that the problem is
fixed-parameter tractable when parameterized by k, i.e., the problem can be solved
in f(k)n®® time, where n = |[V(G)| and f is a computable function. Armed with
Theorem 2.1, we can assume that, for an instance (G,k,t) of ALMOST DISJOINT
CYCLE PACKING, the treewidth of G is at most O(k log k); as G has a feedback vertex
set of size at most O(klog k). Courcelle’s Theorem [7] gives a powerful way of quickly
showing that a problem is fixed-parameter tractable on bounded treewidth graphs.
That is, it suffices to show that our problem can be expressed in monadic second-order
logic (MSO3). We only briefly review the syntax and semantics of MSOs. The reader
is referred to the excellent survey by Martin Grohe [19] for more details. Sentences in
MSO; contain quantifiers, logical connectives (-, V, and A), vertex variables, vertex
set variables, edge set variables, binary relations € and =, and the atomic formula
E(u,v) expressing that v and v are adjacent. If a graph property can be described in
this language, then this description can be made algorithmic:

Theorem 3.1 (see [7]). If a graph property can be described as a formula
¢ in the monadic second-order logic of graphs, then it can be recognized in time
fUloll, tw(G)(|E(G)| + |V(G)]) if a given graph G has this property, where f is a
computable function, |||| is the length of the encoding of ¢ as a string, and tw(G) is
the treewidth of G.
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Lemma 3.1. ALMOST DISJOINT CYCLE PACKING can be solved in f(k)n®M)
time, for some computable function f. In other words, the problem is fixed-parameter
tractable when parameterized by k.

Proof. Given an instance (G, k,t) of ALMOST DISJOINT CYCLE PACKING, we
construct a formula ¢ such that ||¢|| is bounded by an exponential function in & and
t. Given that ¢ < k and that the treewidth of G is at most O(klogk), applying
Theorem 3.1 completes the proof.

We set

¢ =3¢, ... 3, (VUGV(G) cap(v,C1,...,Ck) /\ cycle(C;) /\ distinct(C;, Cj))

1<i<k 1<i#j<k

where C; C E(G), cycle(C}) is true if and only if C; is a cycle, distinct(C;, C;) is true
if and only if C; and C; are distinct (as edge sets), and cap(v,Ci,...,Cy) is true if
and only if v appears in at most t cycles. Formally, we set

cycle(C;) = connected(C;) A not-empty(C;) A (¥, degree-two(v, C;) Vv & C;)
distinct(Cy, C5) = (eeo,Vereo e # €') V (Feec,Vercc,e # €)

cap(v,Cy,...,Cy) = /\ appears-in(v, S) — misses(v, [£k] \ ).
S={i1,....ir } ()

In order to guarantee that C; is a cycle we make sure that it induces a non-empty
(not-empty(C;)) connected graph (connected(C;)) and that every vertex v is either
incident to exactly two edges of C; (degree-two(v,C;)) or not in C;. The formula
distinet(C;, C;) is true if and only if the symmetric difference of C; and C; contains
at least one edge. For a set S = {i1,...,i,} C (M), appears-in(v, S) is true if and
only if vertex v appears in all cycles C;,, ..., C;,. The formula misses(v, [k]\.S) is true
if and only v does not belong to any of the cycles in {C1,...,Cy} \{Ci,,...,Cy, }. It
is not hard to see that G |= ¢ if and only if (G, k,t) is a yes-instance. Furthermore,
note that ||¢|| depends only on k and t < k. 0

3.1. Refuting polynomial kernels for t = O(k'~¢). We now show that AL-
MOST Di1sJOINT CYCLE PACKING restricted to Ly, where f(k) = k¢, does not admit
a polynomial kernel, for any 0 < € < 1, unless NP C coNP/poly. Here k is the number

of required cycles and t = % = k1€ is the maximum number of cycles a vertex can

belong to. Below we define the DISJOINT FACTORS problem [6] which is known to
admit no polynomial compression unless NP C coNP /poly.

Let X, be an alphabet set of ¢ elements. By Y7 we denote the set of all strings
over ¥,. A factor of a string § = y1y2...y, € Xy is a pair (s,e), where s,e € [n]
and s < e, such that ysys11 ...y is a substring of § and ys = y.. Two factors (s,e)
and (s',€’) of § are said to be disjoint if {s,s +1,...,e} N{s’,s +1,...,¢'} = 0.
The string ¥ is said to have disjoint factors over 3, if for all z € X, there is a factor
(sg,€z) such that ys, = ye, = z, and for all distinct z,& € X, (sz,€5) and (sz,€z)
are disjoint factors.

DI1sJOINT FACTORS Parameter: ¢
Input: Alphabet set ¥, string § € X7.
Question: Does § have disjoint factors over 3,7

This manuscript is for review purposes only.
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Construction. We give a polynomial parameter transformation from an instance
(X4,7) of DISJOINT FACTORS to an instance (G, k,t) of ALMOST DI1SJOINT CYCLE
PACKING. For technical reasons, we will assume that t — 1 = 2!, for some [ € N.
Note that this can be achieved by at most doubling the value of ¢ while keeping ¢ in
O(k'=¢). We let | = logy(t — 1). The end goal will be to construct a graph in which
we have to find k cycles such that every vertex appears in at most t = O(k'~¢) of
them.

The reduction is as follows. Let ¥, = {z1,22,...24}. We create a vertex &; €
V(G) corresponding to each element x;, where i € [¢]. For § = y1y2...yn € ¥} we
create a path Py = (u, 1,92, . .. Yn, ') by adding two new vertices u and v’. We add
an edge between z; and §;, for i € [¢] and j € [n], if and only if z; = y;. We also
add four more vertices ui, ug, uj, and v to V(G) and add edges (u1,uz), (uz,u),
(u,ur), (uf,uy), (uh,u'), and (v',u)) to E(G) (see Figure 2). For each z; € ¥, we
attach ¢ — 1 triangles to #;, i.e. we add edges {21 2h), (22,%2), ..., (271 2071} and
(2], &), (&, %)), for j € [t—1]. Next, we create a path P, = (w, w), ws, wz, e, W, W)
in G. We add a set R = {r; | i € [I]} of | independent vertices and for i € [l], we
add the edges (w;, r;) and (w},7;) to E(G). Finally, we add edges (u, w1) and (w}, v’)
(see Figure 2). We set k = tq+t+ 1+ 1. This completes the construction. In what
follows, we let (G, k,t) denote an instance of ALMOST DISJOINT CYCLE PACKING
given by the above construction for an instance (34, %) of DISJOINT FACTORS. The
next proposition follows by construction.

Proposition 1. Let P = (s,a1,a},a2,0ab,...,an,a,,s") be a path and B = {b; |

€ [n]} be a set of independent vertices. Let H be the gmph consisting of path P, the

set B, and, for i € [n], the edges (a;,b;) and (a},b;). Then, for each B’ C B, there

exists a unique path Pp: between s and s’ such that V(Pp/) N B = B’. Moreover, the
set B={Pp/ | B' C B} is the set of all possible paths between s and s’ in H.

Applying Proposition 1 to G, for each R’ C R, we have a (unique) cycle C'r/ which
contains all the vertices in V(P,), all the vertices in P,,, and exactly the vertices of the
set R’ from R. We define a family of cycles R = {Cgr/ | R’ C R}U{(w;, w},r;) | ¢ € []]}.
Note that [R| =2 +1=1t+1—1 and each C € R is a cycle in G. The intuition of
having the set of cycles {Cr/ | R’ C R} in G is that each vertex in the path P, appears
in t — 1 of these cycles, and can therefore participate in at most one additional cycle
(which contains vertices in V' (P,)). Our end goal is to associate this extra cycle with a
factor. We let U = {(u, u1,uz), (v, u},ub)} and Z = {(zz, f,xl) |i€lql,jelt—1]}.
Note that each C' € U U Z forms a cycle in G.

Lemma 3.2. If (G,k=tq+t+1+1,t) is a yes-instance of ALMOST DISJOINT
CYCLE PACKING then there is a solution containing all cycles in Z UU.

Proof. Let S be the set of k>k cycles in G such that every vertex belongs to at
most ¢ cycles in S. We create another solution S’ with &’ cycles such that &’ > k and
ZUU C 8. Initially, we have S’ = §. Suppose for some i € [¢] and j € [t — 1], cycle
(2],%,4;) ¢ S. If &; belongs to less than ¢ cycles in S, then we can add (27, 2/, &;) to
S’ and obtain a larger solution. Otherwise, let C; be the set of cycles in S\ (ZUU) in
which Z; is present. Pick any cycle C € C; and replace it by (27, 2 f ,&;) in &’. Observe
that z; separates zi and zf from the rest of the graph. Therefore, there is a unique
(simple) cycle in G containing zf and Zf . Also, we can do the above replacement at
most t — 1 times. This implies that, even after the replacement, every vertex appears
in at most ¢ cycles in §’. A similar argument can be given for cycles in U. Therefore,
we can obtain a solution S’ consisting of k" cycles, where k' > k, ZUU C &', and
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Fic. 2. An instance (G,k = tq+t+ 1+ 1,t) of ALMOST DIiSJOINT CYCLE PACKING from an
instance (Xq,y) of DISJOINT FACTORS.

every vertex appears in at most ¢ of the cycles. 0

Lemma 3.3. If (G,k =tq+t+1+1,t) is a yes-instance of ALMOST DISJOINT
CYCLE PACKING and S is a set of k cycles such that every vertex appears in at most
t of the cycles then S contains all the cycles in R.

Proof. Let S be a set of k cycles in G such that every vertex v € V(G) belongs
to at most t cycles in S. Observe that, for ¢ € [¢], #; can appear in at most ¢ cycles
in 8. Therefore, the number of cycles C € S such that V(C) N {%; | i € [q]} # 0 is at
most tq.

Since u is a cut vertex separating u; and us from the rest of the graph, the only
cycle containing both u; and wus is (u,u1,us). Similarly, the only cycle containing
both v} and u} is (u/, v}, u}). Therefore, the remaining cycles in S (not considered so
far) are cycles in G = G[V'] as well, where V' = RUV(P,) UV (P,).

By construction P, and P, are induced paths in G’ (and in G). Moreover, vertices
in V(P,) are degree-two vertices in G’. Therefore, a cycle in G’ either contains all
the vertices from P, or none of the vertices in P,. By Proposition 1, the number of
distinct paths (excluding P,) between u and u’ (i.e. the start and end vertices of P,)
is 2 =t — 1. Observe that each of these paths forms a cycle C in G’ along with the
path P, and C' € R. This implies that the number of cycles containing vertices from
V(P,) is t — 1. The cycles in G’ which do not contain vertices from path P, are the
cycles in G'[P, UR]. Given that P, is an induced path in G’[P,, U R], the only cycles
that G'[P,, U R] contains are the vertex disjoint cycles formed by w;, w;, r;, for ¢ € [I].
Also, for each i € [I], (w;,w}, ;) € R. Note that the vertices in V(P,) U R belong
to exactly ¢ cycles in R. Consequently, if S does not contain all cycles in R then
S| <tg+2+t—14+1=1tg+t+1+1; a contradiction. O

Lemma 3.4. If (G,k =tq+t+1+1,t) is a yes-instance of ALMOST DISJOINT
CYCLE PACKING then there is a set S of k cycles such that every vertex appears in
at most t of the cycles in S and, for allC € S, V(C)N{&; | i€ [q]} <1.

Proof. Let S be a set of k cycles in G such that every vertex appears in at most
t of the cycles in §. By Lemmas 3.2 and 3.3, we can assume that ZUUUR C S.
Suppose that there is a cycle C' € S such that C contains at least two vertices
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from {&; | i € [¢]}. Let &; and &, be two such vertices. By Lemma 3.2, we know that,
for each p € [q], 2, can belong to at most one more cycle in S\ Z. Since C' € S, the
number of cycles in S can be at most tq + ¢ + [, contradicting the fact that S is a
solution of size tq +t+1+ 1. 0

Lemma 3.5. Let (£,,7) be an instance of DISJOINT FACTORS and (G, k = tq+
t+ 1+ 1,t) be the corresponding instance of ALMOST DISJIOINT CYCLE PACKING.
Then, (X4,7) is a yes-instance of DISJOINT FACTORS if and only if (G, k,t) is a
yes-instance of ALMOST DISJOINT CYCLE PACKING.

Proof. In the forward direction let (s;,e;) be a factor for z;, i € [q]. We construct
a solution S for (G, k,t) as follows. We include all the cycles in ZUU UR to S. For
i € [q], we add the cycle C; = (£i,Js;s Usi+1s---5Ue;) to S. Note that s;,e; € [n],
s; < e;, and, for distinct ¢,j € [q], the sets {s;, Siy1,...,e;} and {s;, Sj41,...,€;} are
disjoint sets. Therefore, for C; and C;, i # j and ¢, j € [¢], we have V/(C;)NV(C;) = 0.
Observe that, for ¢ € [q], &; appears in t — 1 cycles in ZUU UR and in the cycle C;.
Therefore, #; belongs to at most ¢ cycles in S. Also, vertices in path P, belong to
t—1 cyclesin ZUU U R and at most one of the cycles in {C; | i € [y]}. Therefore,
every vertex appears in at most ¢ of the cycles in S and |S| = |ZUU UR|+ |E,| =
IZ|+ U+ R+ [Zgl=(t—1)g+2+t—1+1+g=tg+t+1+1=k, as needed.

In the reverse direction, consider a set of k cycles S in G such that every vertex
appears in at most t of the cycles. By Lemmas 3.2 and 3.3, we can assume that
C=ZUUUR C S. Furthermore, C € S\ C cannot contain any vertex from
V(Py) U {u,u'}, since these vertices already belong to ¢ cycles in 4 UR. Also, C
cannot contain any vertices from {z],z] | i € [¢],t € [t — 1]}, as there is a unique
cycle containing them which is present in Z. Therefore, C' contains vertices only
from {&; | i € [¢]} UV(P,). Moreover, vertices in V(P,) belong to t — 1 cycles in
R. Therefore, cach vertex in V(P,) can belong to at most one cycle C' € S\ C. By
Lemma 3.4, we know that, for each C' € S\C, C contains at most one vertex from {z;,
i € [q]}. Also, all the cycles in S\C must contain a vertex from {Z;, i € [g]}. Therefore,
cycle C' contains a vertex from {&;, i € [¢]} and some vertices from V(P,). Observe
that C' must contain consecutive vertices from P,. For a cycle C which contains &;, for

some i € [q], and vertices §s,, Js,,,,- -, Je,» We return a factor (s;, e;), where s; < e;.
Note that for i,j € ¢ and ¢ # 7, {si, Si+1,.--,€i} N{sj,8j+1,...,€;} = 0. Therefore,
we have a factor for each z;, ¢ € ¢. This concludes the proof. 0

We can now state the main theorem of this section.

Theorem 3.2. Let f : N = R>q be a non-decreasing computable function such
that f(k) € O(k®), where 0 < ¢ < 1. Then, ALMOST DISJOINT CYCLE PACKING
admits no polynomial kernel restricted to Ly unless NP C coNP/poly.

Proof. We refute polynomial kernels for ALMOST DISJOINT CYCLE PACKING
restricted to L. Since f(k) € O(k), we have that t = O(k'~¢) = O(k*'). We start
with an instance (Xg,7) of DISJOINT FACTORS and create an instance (G, k,t) of
ALMOST Di1sJOINT CYCLE PACKING by applying the reduction as described. Note
that the parameter for DISJOINT FACTORS is q. Moreover, k = C’)(q%) whenever

t=q7, k=tq+t+1+1, and | = logy(t —1). Replacing ¢ by t o for k,
we get t7 < k < 2tv and hence t = O(k:el). By Lemma 3.5, this polynomial
time reduction is a polynomial parameter transformation from DISJOINT FACTORS

to ALMOST DISJOINT CYCLE PACKING. Therefore, assuming we have a polynomial
kernel for ALMOST DisJOINT CYCLE PACKING, where t = O(k€) and 0 < ¢/ < 1,
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implies a polynomial compression for DISJOINT FACTORS, contradicting Theorem 2.2.
So, ALMOST Di1sJOINT CYCLE PACKING restricted to Ly has no polynomial kernel
unless NP C coNP/poly. d

3.2. A kernel for Almost Disjoint Cycle Packing. Let f : N — R>; be
a non-decreasing computable function such that f(k) € o(vk). In this section, we
consider the ALMOST DISJOINT CYCLE PACKING problem restricted to Ly. The
kernelization algorithm presented here is inspired from the lossy kernel for the CYCLE
PACKING problem (Section 5, [24]). To simplify notation, we let ¢ = f(k) and use ¢
instead of f(k) throughout the section, which implies that t = (%W As we shall see, the
assumption ¢ € o(v/k) is required to guarantee that our kernelization algorithm does
in fact run in time polynomial in the input size. We show that, as long as ¢ € 0(\/%),
we can in polynomial time reduce an instance to at most @(2[012k7+ (1 log® k) vertices.
Our kernelization algorithm can be more or less divided into three stages. We start
by computing (using Theorem 2.1) a feedback vertex set of size at most O(klogk)
and denote this set by F' (assuming no k vertex disjoint cycles were found). We let
T =G —F and let T<;, T3, and T>3, denote the sets of vertices in 7" having degree at
most one in T, degree exactly two in T', and degree greater than two in T, respectively.
Moreover, we let P denote the set of all maximal degree-two paths in G[T]. Next, we
bound the size of T'<;. We know that 7" is a forest. By a property of forests, we know
that |T>3| < |T<1| and |P| < |T>3] + |T<1]. So, an upper bound on |T<:| provides an
upper bound on |T>3| and |P|. In the second stage, we show that (roughly speaking)
the graph can have at most [¢] — 1 vertices of high degree. Using this fact, the last
stage consists of bounding the size of T5. Note that bounding the sizes of T<i, T5,
T>3, and P implies a bound on the size of 7. Combining this bound with the fact
that F' is of size at most O(klogk), we get the claimed kernel.

Bounding the size of T<;. First, we get rid of vertices of degree one and two in
the graph G using Reduction Rules A1l and A2. Observe that we can safely delete
vertices of degree zero or one (in G) as they do not participate in any cycle.

ReEDUCTION RULE Al. Delete vertices of degree zero or one in G.

REDUCTION RULE A2. If there is a vertex v of degree exactly two in G then delete
v and connect its two neighbors by a new edge.

Lemma 3.6. Reduction Rule A2 is safe.

Proof. Let u be a vertex of degree two in G and let Ng(u) = {v,w}. Let G’ be
the graph obtained after contracting edge (u,v) onto vertex v.

Consider a set C = {C1,...,Cy} of cycles such that every vertex in V(G) partic-
ipates in at most ¢t of them. There can be at most ¢ cycles in C to which u belongs.
Moreover, both v and w (and hence the edge (u,v)) must be present in all those
cycles. Now, after contracting the edge (u,v) onto v, we can see that v is present in
exactly those cycles where u was also present. Therefore, if (G, k,t) is a yes-instance
then so is (G, k, t).

Let (G',k,t) be a yes-instance such that C' = {Cy,...,C}} is a solution for
(G',k,t). Consider those cycles in C’ containing the edge (v,w). There can be at
most ¢ such cycles. Now, when we translate back to the graph G, the edge (v, w)
corresponds to a path of length three. Therefore, v, u, and w, all participate in at
most t cycles, as needed. ]

REDUCTION RULE A3. If there exists an edge (u,v) € E(G) of multiplicity more
than 2t then reduce its multiplicity to 2t < 2k.
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The safeness of Reduction Rule A3 follows from the fact that any pair of vertices
can belong to at most ¢ cycles. The fact that we can assume 2t < 2k follows from the
observation that when t = k the problem becomes solvable in time polynomial in n
and k. Once Reduction Rules A1, A2, and A3 are no longer applicable, the minimum
degree of the graph G is three and the multiplicity of every edge is at most 2¢. Note
that every vertex in T<; is either a leaf or an isolated vertex in 7". Therefore, every
vertex of T<; has at least two neighbours in F. For (u,v) € F x F, let L(u,v) be
the set of vertices of degree at most one in T'= G — F such that each z € L(u,v) is
adjacent to both u and v (if u = v, then L(u, u) is the set of vertices which have degree
at most one in T'= G — F and at least two edges to u). For each pair (u,v) € F x F,
we mark |F|[£7] + 2k + 1 vertices from L(u,v) if L(u,v) > |F|[£] + 2k + 1 and mark
all vertices in L(u,v) if L(u,v) < |F|[%] 4+ 2k + 1.

REDUCTION RULE Ad. If [T<i| > |F|*(|F|[%] + 2k + 1) + 1 then there exists an
unmarked verter v € T<y.
o Ifdg_p(v) =0 then delete v.
o If dg_r(v) = 1 contract the unique edge in G — F which is incident to v.
We let e denote this unique edge and we let w denote the other endpoint onto
which we contract e.

Reduction Rule A4 is also available as Lemma 5.7 in [24].
Lemma 3.7. Reduction Rule A) is safe.

Proof. Since we marked at most |F|[£] + 2k + 1 vertices for each pair (u,v) €
F x F, there can be at most |F|?(|F|[£] 4 2k + 1) marked vertices in T<;. Let v be
an unmarked vertex. We only consider the case where dg_p(v) = 1, as the other case
can be proved analogously.

Let C be a maximum packing in G such that every vertex in V(G) appears in at
most t = (%1 cycles of C. Observe that if C does not contain any cycles intersecting
{v} then contracting e will keep all the cycles in C present in G’ = G/e. Consider
those cycles in C containing vertex v. Such cycles either contain both v and (its
unique neighbor in T') w or contain v and two of its neighbors in F. Note that cycles
containing both v and w are also present in G’ as w is connected to all neighbors of v.
Hence, we only need to show that cycles containing v and two of its neighbors in F' can
be reconstructed in G’. Fix such a cycle C' and let z and y be the neighbors of v in F'
(z and y are not necessarily distinct). Since v € L(z,y) and it is unmarked, there are
|F|[£7+2k+1 vertices in L(z,y) which are already marked by the marking procedure.
Furthermore, since G can have at most | F| (%1 cycles such that every vertex appears in
at most (%1 of them, at least one of these marked vertices, call it v/, is not present in
any of the cycles in C; this is true since, for any cycle C' € C, |[V(C)NF| > V(C)NT<1,
which implies that at most | F|[£7] marked vertices can belong to cycles in C. Therefore
we can route the cycle C' through v’ instead of v. Since v can appear in at most (%1
cycles and we have marked |F|[5]+2k+1 > [F|[£]42[%] +1 vertices for each pair
in F', we can repeat the same procedure for each cycle in C containing v to obtain a
packing C’ in G’ whose size is at least |C|.

For the reverse direction, let C’ be a maximum packing in G’ such that every
vertex in V(G') appears in at most t = [£] cycles of C’. The only cycles in G’ which
do not correspond to cycles in G are those cycles containing an edge (w, z), where
z € Ng/(w) but z € Ng(w). However, we can simply replace such edges by a path
on three vertices in GG, namely w, v, and z. It is not hard to see that v appears in at
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CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 13

most as many cycles as w. Hence, we can construct, from C’, a packing C in G whose
size is at least |C’|. This completes the proof. d

Bounding the number of high-degree vertices. When none of the aforementioned
reduction rules are applicable, the size of T<y, T3, and P, is at most |F|?(|F|[£] +
2k + 1) = O(k*log® k). Consider P, i.e. the collection of maximal degree-two paths
in T, and assume that there exists a set Fy,) = {z1,..., 21} C F (of size [c]) such
that for every vertex x € Fy. there exists a path P € P such that x has at least 4k[c]
neighbours in P. Our goal is to show that if FT.; exists then we have a yes-instance.
Before we do so, we need to prove the following lemma.

Lemma 3.8. If [¢] € o(Vk) and [¢] > [%] then ALMOST DISJOINT CYCLE
PACKING can be solved in time polynomial in n.

Proof. When [c] > [%], k < [c]?. Moreover, observe that if [c] € o(vk) then
k is a constant. Therefore, we can simply apply the algorithm of Lemma 3.1 which
runs in time polynomial in n when k is a constant. a

REDUCTION RULE A5. If there exists a set of [c| vertices Frop = {w1,..., 21} C
F such that for all z;, 1 < i < [c], [Ng(z;:) N V(P)| > |FI*(|F|[%] + 2k + 1)4k[c],
then return o trivial yes-instance.

Lemma 3.9. Reduction Rule A5 is safe.

Proof. For each z;, we mark a path P; € P satisfying the condition |Ng(z;) N
V(P)| 2 4k[c]. Since [P| < |[FP(|FI[£]+2k+1) and [No(z)WV (P)| > |[FP(FI[A]+
2k + 1)4k[c] such a path must exist. Next, we construct a set of cycles C;, for each
x;, as follows. Given z; and P;, we pick (any) 2[%] neighbors of z; to form [£] cycles
pairwise intersecting only in z;. Note that every vertex in V(P;) appears at most
once in C;. We claim that C = C; U ... UC, is in fact the desired solution. Clearly,
IC| = [c][£] > k. Every vertex in F, appears in exactly [%] cycles and every other
vertex appears in at most [¢] < [%] cycles (assuming [c¢] € o(vk) and applying
Lemma 3.8 otherwise), as needed. |

After applying Reduction Rule A5, there can be at most [¢] — 1 vertices in F
having more than |F|?(|F|[%] 4 2k + 1)4k[c] = O(k® log® k) neighbors in T5. We let
Frep—1 € F denote the maximum sized such subset and we let F* = F'\ Fys_;. For
any vertex « € F*, [Ng(z) N V(P)| < |F|*(|F|[%] + 2k + 1)4k[c] and, consequently,
ING(F*) N V(P)| < [FP(FI[E] + 2k + D4k[c]|[F*| < [FP(|FITE] + 2k + 1)dk[c] =
O(kSlog® k).

Bounding the size of T>. We start by marking all vertices in F, T<y, T>3, and
Na(F*) N V(P). The total number of marked vertices is therefore in O(k®log® k).
Moreover, all the unmarked vertices must be in T5 and form degree-two paths. As
minimum degree of G is at least three, each unmarked vertex must have at least one
neighbor in Fi._; and cannot have neighbors in F*. We call a set of unmarked ver-
tices a region if they form a maximal path in G[Ts]. At this point, the total number of
regions is in O(k%log® k), as the number of marked vertices is in O(kS log® k). There-
fore, our last step is to bound the size of each region. To do so, we first recursively
further subdivide each region as follows. Fix a region R and check for each vertex
z; € Fj¢-1, the value of |[Ng(z;) N R|. If |[Ng(z;) N R| < 4k[c]2¢!, then we again
mark the vertices in Ng(2;) N R, increasing the number of regions by a multiplicative
factor of at most 4k[c]2/¢l. We repeat this process as long as there exists a region R
and a vertex z; € FJ—; satisfying [Ng(z;) N R| < 4k[c]27l. Since |Fre1-1] < [el,
repeating this procedure for every region and every vertex in Ff,_; increases the
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number of regions to at most Q21 kS+1¢1 1og® k); each of the initial O(kSlog® k)
regions can be subdivided into at most (4k[c]2(¢1)[¢l subregions.

Lemma 3.10. Let H be a graph consisting of a path P and an independent set
X ={z1,...,21} of size [c] > 1. Let k > [c]® be an integer. If Va € X we have
|Np(z)| > 4k[c]2° and Vp € V(P) we have [Ny (p) N X| > 0, then we can construct
a set of distinct cycles C = CyU...UCfe such that (a) |C;| = [£], (b) all cycles in C;
pairwise intersect in x;, and (c) every vertex in P appears in at most one cycle in C.

Proof. We prove the lemma by induction on the number of vertices in X. Let
P = {p1,...,pp|}. For the base case, we have [c] = 1 and X = {x1}. Since every
vertex on the path is connected to x; and x; has at least 8%k neighbors, we know
that |V (P)| > 8k. Therefore, taking the first 2k vertices on the path we can easily
construct k cycles pairwise intersecting only at {x}.

Suppose the statement holds for all [¢], where 1 < [¢] < [¢] — 1, and consider
the case [¢] = [¢q]. We claim that there exists a vertex x in X such that we can
pack f%] cycles pairwise intersecting only at {«} using only the first 4k([¢q] — 1) + 1
vertices on the path, i.e. {p1,...,par(q1-1)+1}. In fact, it is enough to show that
at least one vertex x € X has at least 2k neighbours in {p1,...,par(rq1=1)+1}-
If no such vertex exists then |[Ng(X) N {p1,...,par(rq—1)} < 2k[q]. But since
Hpi,- s Par(rq1=1)+1 3 = 4k([q] —1)+1 > 2k[q] (for [q] > 2) this contradicts the fact

that every vertex in {p1, ..., Pax([q]—1)+1} Mmust have at least one neighbor in X. Now
delete vertex  from X and vertices {p1,...,Par([q]—1)+1} from P. Moreover, if after
deleting x some vertices in P’ = P\ {p1,...,Pak([q]—1)+1) Do longer have neighbors

in X’ = X \ {z} simply delete those vertices and add an edge connecting their two

unique neighbors in P. Call this new graph H’. Observe that for all z € X', we have

[Np ()] > 4k[q]219 — dk([q] —1) =1 = 4k[q] (2191 — 1) +4k =1 > dk([q] — D)2/,

when [¢]| > 2. Applying the induction hypothesis to X’ and P’, we know that we can
E

pack [%1 > [4] cycles for each vertex x € X’, as needed. O

Using Lemma 3.10, we can get an upper bound on the size of a region R by apply-
ing the following reduction rule. Recall that by construction (and after subdividing
regions), vertices of a region have neighbours only in Ff._;, where Fy_; is a set of
at most [c] — 1 vertices. In fact, for each region R, there exists a set Fr C Ff—1
such that each vertex in R has at least one neighbor in F'r and each vertex in Fg has
at least 4k[c]2!¢! neighbors in R.

REDUCTION RULE A6. Let R be a region such that |R| > 4k[c]4l¢l. Let Q =
{Q1,Q2,...} be a family of sets which partitions R such that for any two vertices
u,v € R, we have u,v € Q; if and only if Ng(u) N Fr = Ng(v) N Fr. In other
words, two vertices belong to the same set in Q if and only if they share the same
neighborhood in Fg. Since |R| > 4k[c]4ll and |Q| < 2[¢1, there exists a set Q € Q
such that |Q| > 4k[c]21¢l. Let v be a vertex in Q and let w be a neighbor of v in R
(v can have at most two neighbors in R). Contract the edge (v, w) onto w. Note that
since |Q| > 4k[c]211, each vertex in Fr has at least 4k[c|21¢! neighbors in R even
after the contraction.

Lemma 3.11. Reduction Rule A6 is safe.

Proof. Let C be a maximum packing in G and C’ be a maximum packing in G’
such that every vertex in V(G) and V(G') appears in at most t = £ cycles of C and
C’, respectively.

Since G’ = G//e is a minor of G, we have |C| > |C|’. We now show that |C’'| > |C].

This manuscript is for review purposes only.



CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 15

Let Cr denote the cycles in C which intersect with both R and Fgr. Observe that
all cycles in C \ Cr are still present in G’ (possibly of shorter length). Moreover, in
C \ Cg, all the vertices of R appear in the same number of cycles, as any such cycle
must cross all of the region. Consider the at most |Fg| f%} cycles in Cr. By applying
Lemma 3.10, we can find at least as many cycles in G'[R U Fg]. Every vertex in Fg
appears in at most (%W of them and every vertex in R appears in at most one of them.
Therefore no vertex is ever used more than [£] times, as needed. |

Since the number of regions is in (’)(2”1214;64'M log® k) and the size of a region is
at most 4kc4°, the theorem follows.

Theorem 3.3. Let f : N = R>q be a non-decreasing computable function such
that f(k) € o(Vk). For ¢ = f(k), ALMOST DISJOINT CYCLE PACKING admits a
kernel consisting of at most (’)(2c2 ETte 1og3 k) wertices over L.

Theorem 3.3 implies that when ¢ € o(v/k) the ALMOST DiSJOINT CYCLE PACK-
ING problem admits a subexponential kernel. When c € o(loglZ k), £ € N, the problem
admits a quasi-polynomial kernel. Finally, when ¢ € O(1) the problem admits a
polynomial kernel.

4. Pairwise Disjoint Cycle Packing. Recall that in the PAIRWISE DISJOINT
CYCLE PACKING problem, given a graph G and integers k and ¢, the goal is to find
at least k cycles such that every pair of cycles intersects in at most ¢ vertices.

4.1. NP-completeness for t = 1. To show NP-completeness of PAIRWISE D1s-
JOINT CYCLE PACKING, for t = 1, we give a reduction from a variant of SAT called
2/2/4-SAT defined as follows: Each clause contains four literals, each variable ap-
pears four times in the formula, twice negated and twice not negated, and the question
is whether there is a truth assignment of the variables such that in each clause there
are exactly two true literals. This variant was shown to be NP-complete by Ratner
and Warrnuth [27]. We let ¢ denote the formula, U = {us,...,uy|} denote the set
of variables, and W = {wy, ..., w)|} denote the set of clauses.

Variable gadget. For each variable u € U, we construct a graph G,, which we
call a necklace graph, as follows. G, consists of 32 vertices. The first set of 16

vertices form a cycle Ci* = {vi,... vis} and the second set of 16 vertices form cycle
Cout = {v? ..., v%}. We add an edge viv? for 1 <i < 16. Informally, G,, consists of

16 4-cycles where every two consecutive cycles share an edge (see Figure 3). Cycle C"
is the inner cycle, C2“ is the outer cycle, and we number all 4-cycles from 1 to 16 in a
clockwise order, i.e. we denote the cycles by {C},... CL®}. It is not hard to see that
the maximum size of a packing of distinct cycles, pairwise intersecting in at most one
vertex, is 8. Such a packing consists of picking either odd-numbered or even-numbered
cycles. We adopt the convention that picking odd-numbered cycles corresponds to
setting the variable to true and picking even-numbered cycles corresponds to setting
the variable to false. Since each variable appears in exactly four clauses, we mark two
consecutive 4-cycles for each clause as follows. Assume variable u appears in wy, ws,
ws, and wy. Then cycles numbered 1 and 2 are reserved for the clause gadget of w1,
cycles numbered 5 and 6 are reserved for the clause gadget of ws, cycles numbered 9
and 10 are reserved for the clause gadget of ws, and finally cycles numbered 13 and
14 are reserved for the clause gadget of wy. Note that every pair of marked cycles will
be separated by at least two consecutive 4-cycles. For a cycle Ci, 1 < i < 16, we let
e!, denote the edge of C! which lies on the outer cycle C2%'. These outer edges will
be used to connect variable gadgets to clause gadgets.
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Fic. 3. Variable gadgets

Clause gadget. Let w € W be a clause in ¢ and let uy, us, us, and uyg be the
variables appearing in w. We construct the clause gadget for w as follows (Figure 4).
First, we add two pairs of vertices, a red pair and a blue pair, denoted by P, =
{{rl r23,{bL, b2 }}. Let G, be the graph constructed as variable gadget for variable
u;, ¢ € {1,2,3,4}, and assume, without loss of generality, that cycles C’i and 03 in
G, are marked for clause w. If u; appears positively in w, we add an edge from r}
to one endpoint of the outer edge e, and another edge from r7, to the other endpoint
of e}%. We say {rl,r2} is linked to 671“. If u; appears negatively in w, we add an edge
from 7. to one endpoint of the outer edge 612” and another edge from 72, to the other
endpoint of e2 . We do the reverse construction for {b,,b2}. That is, if u; appears
positively in w we add an edge from bl to one endpoint of the outer edge 612” and
another edge from b2, to the other endpoint of el . If u; appears negatively in w we
add an edge from bl to one endpoint of the outer edge e}” and another edge from b2,
to the other endpoint of eii. The process is repeated for every variable appearing in
the clause. Since each clause consists of four variables, every vertex in a clause gadget
will have exactly four neighbors in (different) variable gadgets.

The construction. Given an instance ¢ of 2/2/4-SAT, we first construct all vari-
able gadgets followed by all clause gadgets. To complete the construction, we add
(4“2/[/') — 2|W] cycles of length four, which we call auxiliary cycles, as follows. Recall
that for each clause w € W we create two pairs of vertices P, = {{rl,r2}, {bL, b2 }}.
We add internally vertex disjoint 4-cycles between r?, and b/, i,j € {1,2} (Figure 4),
i.e., 4-cycles whose only common vertices are 7%, and b’,. Finally, for every two
clauses w,w’ € W we add internally vertex disjoint 4-cycles between 7% and r’,, bl
and bfu,, and ¢ and bfw i,7 € {1,2}. Since every pair of vertices in clause gadgets
are connected by a cycle except for 2|W| pairs, namely {rl 72} and {b}, %} for each
w € W, the total number of added cycles follows. We let G be the resulting graph
and (G, k = 8|U| + (4“2/‘/'),75 = 1) denotes the resulting PAIRWISE DI1SJOINT CYCLE

PACKING instance.

Lemma 4.1. Let G be a graph constructed from a given 2/2/4-SAT formula as
described above. Then, any packing of distinct cycles pairwise intersecting in at most
one vertex has size at most 8|U| + (4“2}[/').

Proof. Consider any cycle C' which is not fully contained inside a variable gadget
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Fic. 4. Clause gadget and its corresponding auxiliary cycles

(i.e. a necklace graph). We claim that such a cycle must contain at least two ver-
tices from clause gadgets (not necessarily the same clause gadget). To see why, it is
enough to note that C' must contain at least one such vertex, say v (recall that all
vertices in auxiliary cycles are either in clause gadgets or have degree exactly two).
However, v has exactly one neighbor in any variable gadget and all neighbors of v not
in clause gadgets have degree exactly two (and connect two different vertices from
clause gadgets).

Since any cycle not fully contained inside a variable gadget must use at least two
vertices from clause gadgets and no two cycles can share more than a single vertex, we
know that the total number of such cycles is at most (4“2”'). To conclude the proof,
note that any variable gadget can contribute at most 8 cycles that pairwise intersect
in at most one vertex (in this case the cycles are in fact vertex disjoint). d

Lemma 4.2. If ¢ is a yes-instance of 2/2/4-SAT then (G, k = 8|U|+ (4|‘2}V|)7t =
1) is a yes-instance of PAIRWISE DISJOINT CYCLE PACKING.

Proof. Consider a satisfying assignment of the variables such that in each clause
there are exactly two true literals. If a variable is set to false we pack all even-
numbered cycles in its corresponding gadget. Similarly, if a variable is set to true we
pack all odd-numbered cycles. The total number of such cycles is 8|U| and all cycles
are vertex disjoint. Next, we pack all (4“2/‘/') — 2|W| auxiliary cycles. These cycles
pairwise intersect in at most one vertex by construction. Hence, we still need to pack
exactly 2|W| cycles. Let w € W be a clause in ¢, P, = {{r},r2},{bL,02}}, and let
u1, ug, uz, and uy be the variables appearing in w. Note that the vertices in {rl 2
do not share an auxiliary cycle nor do the vertices in {b},, b2 }. We show that for each
clause we can pack two cycles using each of its pairs exactly once.

Let G,, be the variable gadget constructed for variable w;, i € {1,2,3,4}, and
assume, without loss of generality, that cycles Cii and CZi in G, are marked for
clause w. Out of the eight edges, {el ,eZ ,... ey, el }, we know that exactly four
belong to some cycle that was already packed (based on the truth value of each
variable). Hence, we need to show that, out of the remaining four free edges, {r},r2}

is linked to two of them and {b! b2} is linked to the other two. If so, then we can
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18 A. AGRAWAL ET AL.

pack two additional cycles without violating the pairwise disjointness constraint. By
construction, we known that (a) if u; appears positively in w then {rl 72} is linked

w?r 't w
to ey, and {bl,, b2} is linked to €2 and (b) if u; appears negatively in w then {r},,r2}
is linked to e%i and {b},b2} is linked to e}“. However, we know that in each clause

there are exactly two true literals (and hence two false literals). If both false literals
are negated variables, say u; and wus, then both variables must be true and therefore
{ri,r2} islinked to both €2 and €2 (which are free). If both false literals are positive
variables, say u; and ug, then both variables must be false and therefore {rl r2} is
linked to both e}, and e, (which are free). If u; is negative and uy is positive (in w)
then both u; must be true and us must be false and therefore {rl r2} is linked to
both 612“ and 611;2 (which are free). Using similar arguments for positive literals we can
show that {bL,b2} must be linked to the remaining two free edges, which completes
the proof. ]

Lemma 4.3. If (G,k = 8|U| + (4“2/”),15 = 1) is a yes-instance of PAIRWISE
D1sJOINT CYCLE PACKING then ¢ is a yes-instance of 2/2/4-SAT.

Proof. Let C be a packing of distinct cycles of size 8|U|+ (4“2/[/‘) such that all cycles

pairwise intersect in at most one vertex. By Lemma 4.1, we know that such a packing
is maximum. Moreover, any cycle not fully contained in a variable gadget must use
at least two vertices from clause gadgets and the maximum number of such cycles is
(“¥1). Therefore, we can safely assume that C contains all (*I}]) — 2| auxiliary
cycles; if an auxiliary cycle is not in C then the corresponding pair of vertices from
clause gadgets must belong to some other cycle in C (since C is maximum). Therefore
we can replace that cycle with the auxiliary cycle. Clearly, each variable gadget
can contribute at most eight cycles. Assume some gadget contributes less. Then, the
maximum size of C would be 8|U|+ (4“2”') —1, a contradiction. It follows that for each
clause w, each pair in P, = {{r},r2} {bl, b2 }} must use exactly two external edges
belonging to variable gadgets to form a cycle and these four edges must all belong to
different variable gadgets; it is easy to check that using more than one external edge
or any non-external edge from a variable gadget would reduce the number of cycles
that can be packed within the gadget by at least one.

Assume that for some clause w the assignment implied by the packing does not
result in exactly two true literals and two false literals. Then, we claim that one of the
pairs in P,, cannot form a cycle. Consider the case where three literals are false (the
other cases can be handled similarly). If all three false literals are negated variables,
say w1, uz, and us, then all three variables must be true and therefore {rl 72} is
linked to e} , €2 , and e, which are free, but {b},,b2} is linked to e, , e}, , and e}, ,
which are not free.

The next theorem follows from combining the previous two lemmas with the fact
that 2/2/4-SAT is NP-hard.

Theorem 4.1. PAIRWISE DiSJOINT CYCLE PACKING is NP-complete fort = 1.

4.2. A polynomial kernel for ¢ = 1. There are many similarities but also
some subtle differences when dealing with the cases t = 1 and ¢ > 2. For instance, for
any value of ¢t > 1, finding a flower of order k£ in the graph is sufficient to solve the
problem. On the other hand, we can not apply Reduction Rule A2 (which is the same
as Reduction Rule B2) for all vertices of degree two when ¢ > 2. More importantly,
finding two vertices in G with more than 2k common neighbors is enough to solve the
problem for ¢ > 2 but not for t = 1. As we shall see, this seemingly small difference
requires major changes when dealing with the case t = 1. We start with some classical
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results and reduction rules which will be used throughout. Whenever some reduction
rule applies, we apply the lowest-numbered applicable rule. For clarity, we will always
denote a reduced instance by (G, k,t) (the one where reduction rules do not apply).

The first step in our kernelization algorithm is to run the algorithm of Theorem 2.1
and either output a trivial yes-instance (if k vertex disjoint cycles are found) or mark
the vertices of the feedback vertex set and denote this set by F'. We proceed with the
following simple reduction rules to handle low-degree vertices and self-loops in the
graph.

REDUCTION RULE B1. Delete vertices of degree zero or one in G.

REDUCTION RULE B2. If there is a vertex v of degree exactly two in G then delete
v and connect its two neighbors by a new edge.

REDUCTION RULE B3. If there exists a vertex v € V(G) with a self-loop then
delete the loop (not the vertex) and decrease the parameter k by one.

REDUCTION RULE B4. If there is a pair of vertices u and v in V(G) such that
there are more than two parallel edges between them then reduce the multiplicity of
the edge to two.

Lemma 4.4. Reduction Rule B2 is safe.

Proof. Let (G, k,t) denote the original instance and let (G’, k,t) denote the in-
stance obtained after applying Reduction Rule B2, i.e. after deleting vertex v and
adding an edge between its two neighbors u and w.

Assume (G, k,t) is a yes-instance and let C' = {C1,...,C},} denote the set of k
distinct cycles satisfying [V/(C}) NV(C})| < 1, for all 1 <4, < k and i # j. Consider
a cycle O’ € C'. If only one of u or w is in C’ then C’ is also a cycle in G. If both u
and w are in C’ then every other cycle in C’ contains at most one of the two. Hence,
if such a cycle exists we can obtain a corresponding cycle in G by simply replacing
the edge (u,w) by the path formed by u, v, and w.

For the other direction, let (G, k,t) be a yes-instance and let C = {C4,...,Cx}
denote the corresponding solution. Assume, without loss of generality, that there
exists a cycle C' € C such that v € V(C); otherwise C is also a solution for G’. Since
v has degree two in G, both v and w must also belong to C. Let C’ denote the cycle
in G’ obtained by deleting v and connecting u and w by an edge. We claim that
C'=(C\{C}) U’ is a solution in G’. To see why, it is enough to note there can be
at most one cycle in C containing v; otherwise at least one pair of cycles in C violates
the disjointness constraint |V (C;) NV (C;)| < 1,1 <4,j <k and i # j. 0

Lemma 4.5. Reduction Rule B3 is safe.

Proof. Let (G, k,t) denote the original instance and let (G’,k — 1,t) denote the
instance obtained after applying Reduction Rule B3, i.e. after deleting the loop at
vertex v.

Assume (G, k —1,t) is a yes-instance and let C’ = {C1,...,C},_,} denote the set
of k — 1 distinct cycles satisfying [V/(C}) N V(C})| < 1, for all 1 <i,j <k —1 and
i # j. Any cycle in C’ can intersect with {v} in at most one vertex. Therefore, adding
the cycle corresponding to the loop at v we obtain a solution of size k for G.

For the other direction, let (G, k,t) be a yes-instance and let C = {C,...,Cx}
denote the corresponding solution. Even though v could have multiple self-loops, each
such loop corresponds to at most one cycle in C. Therefore, (G',k — 1,t) is also a
yes-instance. 0

Lemma 4.6. Reduction Rule B/ is safe.
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Proof. Assume u and v are connected by more than two parallel edges in G. Since
t = 1, u and v can appear together in at most one cycle. Either this cycle includes
other vertices, in which case at most one (u,v) edge is used, or the cycle consists of
only u and v, in which case exactly two (u,v) edges are required. Therefore, reducing
the multiplicity of any edge to two is safe. O

Once none of the above reduction rules are applicable, our next goal is to bound
the maximum degree in the graph. To do so, we make use of the following.

Lemma 4.7 (see [8]). Given a (multi) graph G, an integer k, and a vertex
v € V(Q), there is a polynomial-time algorithm that either finds a v-flower of order
k or finds a set Z, such that Z, C V(G)\ {v} intersects all cycles passing through v,
|Z,| < 2k, and there are at most 2k edges incident to v and with second endpoint in
Zy.

A q¢-star, ¢ > 1, is a graph with ¢ + 1 vertices, one vertex of degree ¢ and all other
vertices of degree 1. Let G be a bipartite graph with vertex bipartition (A, B). A set
of edges M C E(G) is called a g-expansion of A into B if
e Every vertex of A is incident with exactly ¢ edges of M
e M saturates exactly g|A| vertices in B, i.e. there is a set of ¢|A| vertices in
B that are incident to edges in M.

Lemma 4.8 (see [8, 30]). Let q be a positive integer and G be a bipartite graph
with vertex bipartition (A, B) such that |B| > q|A| and there are no isolated vertices
in B. Then, there exist nonempty vertex sets X C A and Y C B such that:

e X has a q-expansion into Y and
e no vertex in'Y has a neighbour outside X, i.e. N(Y) C X.
Furthermore, the sets X and Y can be found in time polynomial in the size of G.

For every vertex v € V(G) of high degree (which will be specified later), we apply the
algorithm of Lemma 4.7. If the algorithm finds a v-flower of order k, the following
reduction rule allows us to deal with it.

ReEDUCTION RULE B5. If G has a vertex v such that there is a v-flower of order
at least k then return a trivial yes-instance.

Hence, in what follows we assume that no such flower was found but instead we have
a set Z, of size at most 2k such that Z, C V(G) intersects all cycles passing through
v. Consider the connected components of the graph G[V(G) \ (Z, U {v})]. At most
k — 1 of those components can contain a cycle, as otherwise we again have a trivial
yes-instance consisting of k vertex disjoint cycles.

REDUCTION RULE B6. If there are k or more components in G\ ({v}U Z,) con-
taining a cycle then return a trivial yes-instance.

Moreover, for every component D of G[V (G)\(Z,U{v})], we have [Ng(v)NV(D)| < 1.
In other words, v has at most one neighbor in any component and out of those
components at most k — 1 are not trees (see Figure 5). Let D = {Dy,Ds,..., Dy}
denote those trees in which v has a neighbor. Since the minimum degree of the graph
is three, every leaf of a tree in D must have at least one neighbor in Z,,.

Lemma 4.9. Let C = {C4,...,Cy} be a solution in G and let C be a cycle in C
such that V(C)N(Z,U{v}) # 0. Then, C can intersect with at most 2k+1 components
in D and therefore the solution C can intersect with at most 2k% + k components in
D.
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Fi1a. 5. A vertez v € V(G), its corresponding set Z,, and the set D = {D1,Da,...,Dq}

Proof. Consider any cycle C' € C that intersects Z, U {v}. We contract all edges
of C that are not incident to any vertex in Z, U {v} and denote this new cycle by
C’. Between any two consecutive vertices in C' N (Z, U {v}), there is either an edge
from E(G) or a path passing through a vertex z ¢ Z, U {v}, where z corresponds to
a contracted path from some component in G\ (Z, U {v}). Since |Z, U {v}| < 2k +1,
there can be at most 2k 4 1 such vertices. Therefore, any cycle C € C can intersect
with at most 2k + 1 components from G\ (Z, U {v}). Summing up for the k cycles in
C, we get the desired bound. ]

We now construct a bipartite graph H with bipartition (A = Z,, B = D). We
slightly abuse notation and assume that every component in D corresponds to a vertex
in B and every vertex in Z, corresponds to a vertex in A. For every D; € D and
for every z € Z,, (D;,z) € E(H) if and only if there exists u € V(D;) such that
(u,z) € E(G). After exhaustive application of Reduction Rule B4, every pair of
vertices in G can have at most two edges between them. In particular, there can be
at most two edges between any z € Z, and v. Therefore, if the degree of v in G is
more than (2k% + k + 2)2k + 3k — 1 then the number of components |D| is at least
(2k% + k + 2)2k (taking into account the at most k — 1 neighbors of v in components
containing a cycle as well as the at most 2k edges incident to v and some vertex in
Z,). Consequently, |D| > (2k? + k + 2)|Z,|. We are now ready to state our main
reduction rule.

REDUCTION RULE B7. If there exists a vertexv € V(G) such that dg(v) > (2k*+
k+2)2k+ 3k —1 then apply Lemma /.8 with q = 2k? +k+2 in the bipartite graph H.
o Let D' C D and Z! C Z, be the sets obtained after applying Lemma /.8 with
q=2k*+k+2, A= Z,, and B = D, such that Z!, has a (2k*>+k+2)-ezpansion
into D' in H.
e Delete all the edges of the form (u,v) € E(GQ) such that w € D; and D; € D'.
o Add two parallel edges between v and every vertex in Z).

Lemma 4.10. Reduction Rule B7 is safe.

Proof. Let (G, k,t) be the instance obtained after applying Reduction Rule B7,
let (G, k,t) be the original instance, and let C = {Cy,...,Ci} be the cycles in G
satisfying the pairwise intersection constraint. We let C, C C be the set of cycles
containing the high degree vertex v. Note that any such cycle must also contain at
least one vertex from Z,. From Lemma 4.8 and Reduction Rule B7, we know that
Ng(D') C Z!. Hence, any cycle C € C, which contains a vertex from D’ must also
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contain a vertex from Z. In other words, whenever a cycle passes through D’ it must
also pass through Z!. We let C, C C, denote all these cycles. Note that any cycle in
C\ C} is not modified in G’ and hence such cycles can still be packed in G’. Moreover,
for any two cycles C7 and Cs in C), we have (V(C1)NZ)) N (V(Cy) N Z)) = 0, as
both C; and Cs contain v. Now, let V(C) N Z! denote the set of vertices in cycle
C € C],. We can pick any vertex z € V(C)N Z! and replace the cycle C' with the cycle
consisting of only z and v (as we added two edges between them). Consequently, for
any packing C of size k in G we can find a corresponding packing C’ of size k in G’,
as needed.

Assume (G, k,t) is a yes-instance and let ¢’ = {C1,...,C}} be a collection of k
cycles pairwise intersecting in at most one vertex. Consider those cycles in C’ which
contain an edge (v,z) ¢ E(G) (z € Z!). Such cycles can be of two types. Either
they contain a single edge (v, z) ¢ E(G) or they contain two edges (v, z) ¢ E(G) and
(v,2") ¢ E(G), with 2’ possibly equal to z. Therefore, for every vertex z € Z/, we
need to have two components whose intersection with C is empty. However, we know
that, for every z € Z!, 2 is connected to at least ¢ = 2k% + k + 2 distinct components
in D’. By Lemma 4.9, C intersects at most 2k% 4+ k components in D’. In other words,
for every vertex z € Z/ there are at least two components in D', say Dy and Da, such
that V(D1) NV (C) = V(D) NV (C) = 0. Consequently, we can find a solution in G
by replacing any edge of the form (v,z) ¢ E(G) by a path that starts from z, goes
through Dy (or Ds), and finally reaches v. O

We now have all the required ingredients to bound the size of our kernel. From
Theorem 2.1, we know that the graph has a feedback vertex set F' of size at most
O(klogk). The degree of any vertex in the graph is at least three (Reduction Rule B2)
and at most in O(k?®) (Reduction Rule B7). Theorem 4.2 follows from combining these
facts with Lemma 4.11.

Lemma 4.11 (see [8]). Let G = (V, E) be an undirected (multi) graph having
minimum degree at least three, mazximum degree at most d, and a feedback vertex set
of size at most r. Then, |V(G)| < (d+ 1)r and |E(G)| < 2dr.

Theorem 4.2. Fort =1, PAIRWISE DISJOINT CYCLE PACKING admits a kernel
with O(k*log k) vertices and O(k*logk) edges.

4.3. A polynomial compression for ¢ > 2 (independent of t). When ¢ > 2,
finding two vertices in G with 2k internally vertex-disjoint paths connecting them is
enough to pack k cycles pairwise intersecting in at most 2 vertices. Hence, bounding
the maximum degree is relatively easy. We first mark the feedback vertex set F' and
exhaustively apply Reduction Rule B1 and the following modified variant of Reduction
Rule B2.

REDUCTION RULE B8. If there exists a set of vertices P = {v1,..., 0119} C V(QG)
such that G[P] is a path and dg(v;) =2, 2 <1i <t+1, then contract the edge vivs.

As before, for every vertex v € V(G), we apply the algorithm of Lemma 4.7. If the
algorithm finds a v-flower of order k, we apply Reduction Rule B5. Otherwise, consider
the connected components of the graph G[V(G) \ (Z, U{v})]. We ignore the at most
k —1 components that can contain a cycle and focus on the set D = {D1, Da,..., Dy}
of trees in which v has a neighbor (recall that |[Ng(v) NV(D)| <1 for all D € D and
each component D must have a neighbor in Z,).

REDUCTION RULE B9. If |D| > 4k — 2 (or equivalently if dg(v) > Tk — 3) return
a trivial yes-instance.
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Lemma 4.12. Reduction Rule B9 is safe.

Proof. Let v be a vertex in V(G), Z, be the set given by Lemma 4.7, and D =
{D1,Ds,...,D,} be the set of trees in which v has a neighbor. Observe that each
D € D contains at least one vertex which is adjacent to some vertex in Z,. Let
Zy = {z,22,...,21}, where | < 2k. For i = 1 to [ (in increasing order), we let
D;={D|DeDAz € Nog(D)NZ, ANViyr<;D & Dy }. In other words, D; contains a
component D € D whenever D contains a vertex which is adjacent to z; and D does
not belong to D;/, for all i/ < i.

Once we have constructed the set D;, for all i € [l], we arbitrarily pair the
components in D; (all pairs being disjoint); there can be at most one component
in D; which is left unpaired. If we can find k pairs in U;c;;D;, then for each pair
(D1, D) € D; we can pack a cycle formed by vertices in V(D) UV (D2) U {v, 2; }.
Every pair of such cycles intersects in at most two vertices, namely {v, z;}, and we
have a total of at least k cycles, as needed. Otherwise, |D| < 2(k—1) +1 < 4k — 2.
Since v can have at most k& — 1 additional neighbors in G[V(G)\ (Z, U{v})] and there
are at most 2k edges incident to v with second endpoint in Z,, the bound on dg(v)
follows. d

Having bounded the maximum degree of any vertex by O(k), we immediately
obtain a bound of O(k?logk) on |T<1|, |T>3|, and the number of maximal degree-two
paths in T5. Recall that T<y, T, and T3, are the sets of vertices in T' = G[V(G) \ F]
having degree at most one in T, degree exactly two in T, and degree greater than
two in T, respectively. To bound the size of T5, note that if we mark all vertices
in F U Ng(F) we would have marked a total of O(k%logk) vertices and the only
unmarked vertices form (not necessarily maximal) degree-two paths in T (and G),
which we call segments. However, we know from Reduction Rule B8 that the size of
any segment is at most ¢ 4+ 1. Moreover, the total number of such segments is at most
O(k*log k). Putting it all together, we now have a kernel with O(tk?log k) vertices.

Lemma 4.13. For any t > 2, PAIRWISE DISJOINT CYCLE PACKING admits a
kernel with O(tk?log k) vertices.

More work is needed to get rid of the dependence on t. The first step is to show
that we can solve PAIRWISE D1SJOINT CYCLE PACKING in ¢?®)n®M) time, where ¢
is a fixed constant and p(.) is a polynomial function in k. In the second step, we
introduce a “succinct” version of PAIRWISE DISJOINT CYCLE PACKING, namely SUC-
CINCT PAIRWISE DISJOINT CYCLE PACKING, and show that we can reduce PAIRWISE
Di1sjoINT CYCLE PACKING to an instance of SUCCINCT PAIRWISE DISJOINT CYCLE
PACKING where all the information can be encoded using a number of bits polynomi-
ally bounded in k alone. As is usually the case, we assume that the weight of a set of
vertices/edges is equal to the sum of the weights of the individual vertices/edges.

SucCINCT PAIRWISE DISJOINT CYCLE PACKING Parameter: k
Input: An undirected (multi) graph G, integers k and ¢, a weight function « :
V(G) — N, and a weight function 8 : E(G) — N.

Question: Does G have at least k distinct cycles Cy, ..., Cy such that o(V(C;)N
V(Cy)) <t and B(E(C;) N E(C;)) <t for all i # j?

Lemma 4.14. For any t > 2, PAIRWISE DISJOINT CYCLE PACKING can be
solved in 28108 kO time.

Proof. We first obtain the kernel guaranteed by Lemma 4.13. Note that both the
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number of vertices having degree three or more and the number of segments in the
reduced instance is bounded by O(k%logk). We assume, without loss of generality,
that any cycle in the solution must contain at least one degree-three vertex (if some
components of G consist of degree-two cycles we can greedily pack those cycles).
Hence, we can guess, for each cycle, which of those O(k?log k) vertices and segments
will be included in (9(2’“2 log k) time. Repeating this process for each of the k cycles
and checking that they satisfy the pairwise intersection constraint can therefore be
accomplished in O(2F 1°8%) time. 0

Theorem 4.3. For any t > 2, we can compress an instance of PAIRWISE DIs-
JOINT CYCLE PACKING to an equivalent instance of SUCCINCT PAIRWISE DISJOINT
CYCLE PACKING using at most O(k® log® k) bits. In other words, PAIRWISE DISJOINT
CYCLE PACKING admits a polynomial compression.

Proof. Given an instance of PAIRWISE DI1SJOINT CYCLE PACKING we apply the
kernelization algorithm to obtain an equivalent instance on at most O(tk?log k) ver-
tices. Then, we create an equivalent instance of SUCCINCT PAIRWISE DISJOINT Cy-
CLE PACKING, where each vertex is assigned weight 1 and each edge is assigned weight
0. Note that in this new instance we still have a total number of at most O(k? log k)
segments each of size at most ¢ + 1. We replace each such segment by an edge whose
weight is equal to the number of vertices on the segment, which requires logt < logn
bits at most. However, if logn > k3logk, by Lemma 4.14, we can solve the corre-
sponding PAIRWISE DI1SJOINT CYCLE PACKING instance in time polynomial in n (and
obtain a polynomial kernel). Hence, the number of bits required to encode the weight
of each such edge is at most k>logk. Multiplying by the total number of segments
we obtain the claimed bound. ]

5. Conclusion. To summarize, we have showed that when relaxing the Dis-
JOINT CYCLE PACKING problem by allowing pairwise overlapping cycles (i.e. PAIR-
WISE DISJOINT CYCLE PACKING) then polynomial kernels are relatively easy to ob-
tain, even when cycles can share at most one vertex. On the other hand, relaxing
the D1sJOINT CYCLE PACKING problem by limiting the number of cycles each vertex
can appear in has much more diverse consequences on the kernelization complexity.
However, even though we obtain a polynomial kernel for ALMOST DI1SJOINT CYCLE
PACKING with ¢ = %, where ¢ is a constant, it is not clear whether the problem is
even NP-complete in this case. It would be very interesting to settle this question
(probably more interesting to settle it negatively). Finally, it would also be inter-
esting to consider relaxed variants of more problems known to admit no polynomial
kernels and determine whether (for any of them) there exists a “smooth” relation-
ship between relaxation parameters and kernelization complexity, i.e. whether kernel
bounds improve as the relaxation parameter increases.
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