
KERNELIZATION OF CYCLE PACKING WITH RELAXED1

DISJOINTNESS CONSTRAINTS∗2

AKANKSHA AGRAWAL† , DANIEL LOKSHTANOV‡ , DIPTAPRIYO MAJUMDAR§ , AMER3

E. MOUAWAD¶, AND SAKET SAURABH‖4

Abstract. A key result in the field of kernelization, a subfield of parameterized complexity,5
states that the classic Disjoint Cycle Packing problem, i.e. finding k vertex disjoint cycles in a6
given graph G, admits no polynomial kernel unless NP ⊆ coNP/poly. However, very little is known7
about this problem beyond the aforementioned kernelization lower bound (within the parameterized8
complexity framework). In the hope of clarifying the picture and better understanding the types9
of “constraints” that separate “kernelizable” from “non-kernelizable” variants of Disjoint Cycle10
Packing, we investigate two relaxations of the problem. The first variant, which we call Almost11
Disjoint Cycle Packing, introduces a “global” relaxation parameter t. That is, given a graph G12
and integers k and t, the goal is to find at least k distinct cycles such that every vertex of G appears in13
at most t of the cycles. The second variant, Pairwise Disjoint Cycle Packing, introduces a “local”14
relaxation parameter and we seek at least k distinct cycles such that every two cycles intersect in at15
most t vertices. While the Pairwise Disjoint Cycle Packing problem admits a polynomial kernel16
for all t ≥ 1, the kernelization complexity of Almost Disjoint Cycle Packing reveals an interesting17
spectrum of upper and lower bounds. In particular, for t = k

c
, where c could be a function of k, we18

obtain a kernel of size O(2c
2
k7+c log3 k) whenever c ∈ o(

√
k). Thus the kernel size varies from being19

sub-exponential when c ∈ o(
√
k), to quasi-polynomial when c ∈ o(log` k), ` ∈ R+, and polynomial20

when c ∈ O(1). We complement these results for Almost Disjoint Cycle Packing by showing21
that the problem does not admit a polynomial kernel whenever t ∈ O(kε), for any 0 ≤ ε < 1, unless22
NP ⊆ coNP/poly.23

Key words. parameterized complexity, cycle packing, kernelization, lower bounds, relaxation24

AMS subject classifications. 68Q25, 68Q15, 68Q17, 68R1025

1. Introduction. Polynomial-time preprocessing is one of the widely used meth-26

ods to tackle NP-hard problems in practice, as it plays well with exact algorithms,27

heuristics, and approximation algorithms. Until recently, there was no robust math-28

ematical framework to analyze the performance of preprocessing routines. Progress29

in parameterized complexity [12] made such an analysis possible. In parameterized30

complexity, each problem instance is coupled with an integer k, which is called as31

the parameter, and the parameterized problem is said to admit a kernel if there is a32

polynomial-time algorithm, called a kernelization algorithm, that reduces the input33

instance down to an instance whose size is bounded by a function f(k) in k, while34

preserving the answer. Such an algorithm is called an f(k)-kernel for the problem.35

If f(k) is a polynomial, quasi-polynomial, subexponential, or exponential function of36

k, we say that this is a polynomial, quasi-polynomial, subexponential, or exponential37

kernel, respectively. Over the last decade or so, kernelization has become a very active38

field of study, especially with the development of complexity-theoretic tools to show39

∗An extended abstract of this paper [2] has appeared in the proceedings of the 43rd International
Colloquium on Automata, Languages, and Programming (ICALP 2016).

Funding: The research leading to these results received funding from the BeHard grant under
the recruitment programme of the of Bergen Research Foundation (D. Lokshtanov) and the European
Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) /
ERC Grant Agreements no. 306992 (S. Saurabh).
†Department of Informatics, University of Bergen, Norway (akanksha.agrawal@uib.no).
‡Department of Informatics, University of Bergen, Norway (daniello@ii.uib.no).
§Institute of Mathematical Sciences, Chennai, India (diptapriyom@imsc.res.in).
¶Department of Informatics, University of Bergen, Norway (a.mouawad@uib.no).
‖Institute of Mathematical Sciences, Chennai, India (saket@imsc.res.in).

1

This manuscript is for review purposes only.

mailto:akanksha.agrawal@uib.no
mailto:daniello@ii.uib.no
mailto:diptapriyom@imsc.res.in
mailto:a.mouawad@uib.no
mailto:saket@imsc.res.in

2 A. AGRAWAL ET AL.

that a problem does not admit a polynomial kernel [4, 13, 17, 20], or a kernel of a40

specific size [9, 10, 21]. We refer the reader to the survey articles by Kratsch [22] and41

Lokshtanov et al. [23] for recent developments.42

One of the first and important problems to which the lower-bounds machinery43

was applied is the NP-complete Disjoint Cycle Packing problem. In the Disjoint44

Cycle Packing problem, we are given as input an n-vertex graph G and an integer45

k, and the task is to find a collection C of at least k pairwise disjoint vertex sets of G,46

such that every set C ∈ C is a cycle in G. The Disjoint Cycle Packing problem47

can be solved in O(kk log knO(1)) using dynamic programming over graphs of bounded48

treewidth [3, 5]. Bodlaender et al. [6] showed that, when parameterized by k, Disjoint49

Cycle Packing does not admit a polynomial kernel unless NP ⊆ coNP/poly (and the50

polynomial hierarchy collapses to its third level, which is considered very unlikely).51

Beyond the aforementioned negative result for polynomial kernels and the folklore52

O(kk log knO(1))-time algorithm, the Disjoint Cycle Packing problem has remained53

mostly unexplored from the viewpoint of parameterized complexity.54

Our problems and results. In this paper we study two variants of Disjoint Cycle55

Packing, obtained by relaxing the disjointness constraint. In particular, we focus on56

the kernelization complexity of the Disjoint Cycle Packing problem by considering57

two relaxed versions of the problem, one with a “local” relaxation parameter and the58

other with a “global” relaxation parameter. In the locally relaxed variant, which we59

call Pairwise Disjoint Cycle Packing, the goal is to find at least k distinct cycles60

in a graph G such that they pairwise intersect in at most t vertices.61

Pairwise Disjoint Cycle Packing Parameter: k
Input: An undirected (multi) graph G and integers k and t.
Question: Does G have at least k distinct cycles C1, . . . , Ck such that |V (Ci) ∩
V (Cj)| ≤ t for all i 6= j?

62

We consider two cycles to be distinct whenever their edge sets differ by at least one ele-63

ment. Note that when t = 0, Pairwise Disjoint Cycle Packing corresponds to the64

original Disjoint Cycle Packing problem. However, when t = |V (G)| the Pair-65

wise Disjoint Cycle Packing problem is solvable in time polynomial in |V (G)|66

and k since we can enumerate distinct cycles in a graph with polynomial delay [26].67

In other words, any k distinct cycles in a graph will trivially pairwise intersect in at68

most |V (G)| vertices. We show that Pairwise Disjoint Cycle Packing remains69

NP-complete when t = 1. Then, we complement this result by showing that the prob-70

lem admits a polynomial kernel for t = 1 and a polynomial compression for t ≥ 2. An71

interesting problem which remains unclear is to determine what value of t separates72

NP-hard instances from polynomial-time solvable ones.73

The second relaxation we consider is Almost Disjoint Cycle Packing. The74

goal in Almost Disjoint Cycle Packing is to determine whether G contains at75

least k distinct cycles such that every vertex in V (G) appears in at most t of them.76

As we shall see, the kernelization complexity landscape for Almost Disjoint Cycle77

Packing is much more diverse than that of Pairwise Disjoint Cycle Packing.78

In some sense, this suggests that the global relaxation parameter does a “better job”79

of capturing the “hardness” of the original problem.80

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 3

Si
ze

 o
f k

er
ne

l

c

constant
kernel

c  1
c 2 O(1)

c 2 o(
p

k)

polynomial
kernel

quasi-
polynomial

kernel

sub-exponential
kernel

c 2 o(log` k)

po
ly

no
m

ia
l

ke
rn

el
no

 p
ol

yn
om

ia
l

ke
rn

el

no
 k

no
w

n
 p

ol
yn

om
ia

l
ke

rn
el

Fig. 1. Spectrum of kernelization algorithms for Almost Disjoint Cycle Packing as c grows
in the denominator of t = k

c
.

Almost Disjoint Cycle Packing Parameter: k
Input: An undirected (multi) graph G and integers k and t.
Question: Does G have at least k distinct cycles C1, . . . , Ck such that every
vertex in V (G) appears in at most t of them?

81

Again, for t = 1, Almost Disjoint Cycle Packing corresponds to Disjoint82

Cycle Packing and when t = k the problem is solvable in time polynomial in |V (G)|83

and k by simply enumerating distinct cycles. However, and rather surprisingly, we84

show that t has to be “very close” to k for this relaxation to become “easier” than85

the original problem, at least in terms of kernelization. In fact, we show that as long86

as t = O(k1−ε), where 0 < ε ≤ 1, Almost Disjoint Cycle Packing remains NP-87

complete and admits no polynomial kernel unless NP ⊆ coNP/poly. We complement88

our hardness result by a spectrum of kernel upper bounds. To that end, we consider89

the case t = k
c , where c is a constant or a function of k. We show that we can (in90

polynomial time) compress an instance of Almost Disjoint Cycle Packing into an91

equivalent instance with O(2c
2

k7+c log3 k) vertices. This implies polynomial, quasi-92

polynomial, or subexponential size kernels for Almost Disjoint Cycle Packing,93

depending on whether c is a constant, c ∈ o(log k), or c ∈ o(
√
k), respectively. It94

remains open whether the problem is in P or NP-hard for t = k
c , when c is a constant.95

A high level summary of our results for Almost Disjoint Cycle Packing is given96

in Figure 1.97

Related Results. Our results also fit into the relatively new direction of research98

that is concerned with the parameterized complexity of problems with relaxed pack-99

ing/covering constraints. For several important problems (that we need to solve),100

there are settings in which we need not be very strict about constraints. This is101

particularly interesting for “strict” problems where, e.g., (a) it is known that no poly-102

nomial kernels are possible unless NP ⊆ coNP/poly, or where (b) the algorithm with103

the best running time matches the known lower bound, or where (c) no considerable104

improvements have been made either algorithmically or in terms of kernel upper/lower105

This manuscript is for review purposes only.

4 A. AGRAWAL ET AL.

Almost Disjoint Pairwise Disjoint
Cycle Packing Cycle Packing

NP-complete Poly. kernel NP-complete Poly. kernel

t = 0 Yes No
t = 1 Yes No Yes Yes

t = O(1) Yes No Open Yes
t = O(kε) Yes No Open Yes
t = k

c Open Yes Open Yes

Table 1
Summary of our results and some open problems.

bounds. The Disjoint Cycle Packing problem, which is the main subject of this106

work, falls into categories (a) and (c). Before we delve into the technical details of107

our results, let us look at some examples where the introduction of relaxation param-108

eters has been successful. Abasi et al. [1], followed by Gabizon et al. [18], studied a109

generalization of the k-Path problem, namely r-Simple k-Path, where the task is110

to find a walk of length k that never visits any vertex more than r times. Here r is111

the relaxation parameter. By definition, the generalized problem is computationally112

harder than the original. However, observe that for r = 1 the problem is exactly the113

problem of finding a simple path of length k in G. On the other hand, for r = k the114

problem is easily solvable in polynomial time, as any walk in G of length k will suf-115

fice. In some sense, the “further away” an instance of the generalized problem is from116

being an instance of the original, the easier the instance is. Put differently, gradually117

increasing r from 1 to k should make the problem computationally easier. This intu-118

ition was confirmed by the authors by providing, amongst other results, algorithms119

for the generalized problem whose worst-case running time matches the running time120

of the best algorithm for the original problem up to constants in the exponent, and121

improves significantly as the relaxation parameter increases. Also closely related is122

the work of Romero et. al. [28, 29] and Fernau et al. [15] who studied relaxations of123

graph packing problems allowing certain overlaps.124

2. Preliminaries. We let N denote the set of natural numbers, R denote the set125

of real numbers, R+ denote the set of non-zero positive real numbers, and R≥1 denote126

the set of real numbers greater than or equal to one. For r ∈ N, by [r] we denote the127

set {1, 2, . . . , r}.128

Graphs. We use standard terminology from the book of Diestel [11] for those129

graph-related terms which are not explicitly defined here. We only consider finite130

graphs possibly having loops and multi-edges. For a graph G, V (G) and E(G) denote131

the vertex and edge sets of the graph G, respectively. For a vertex v ∈ V (G), we132

use dG(v) to denote the degree of v, i.e the number of edges incident on v, in the133

(multi) graph G. We also use the convention that a loop at a vertex v contributes134

two to its degree. For a vertex subset S ⊆ V (G), G[S] and G − S are the graphs135

induced on S and V (G) \ S, respectively. For a vertex subset S ⊆ V (G), we let136

NG(S) and NG[S] denote the open and closed neighborhood of S in G. That is,137

NG(S) = {v | (u, v) ∈ E(G), u ∈ S} \ S and NG[S] = NG(S) ∪ S. For a graph G and138

an edge e ∈ E(G), G/e denotes the graph obtained by contracting e in G (loops and139

multi-edges are preserved).140

A path in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that (vi, vi+1)141

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 5

is an edge for all 0 ≤ i < `. A cycle in a graph is a sequence of distinct vertices142

v0, v1, . . . , v` such that (vi, v(i+1) mod `+1) is an edge for all 0 ≤ i ≤ `. We note that143

both a double edge and a loop are cycles. If P is a path from a vertex u to a vertex144

v in graph G then we say that u and v are the end vertices of the path P and P is a145

(u, v)-path. For a path or a cycle Q, we use V (Q) to denote the set of vertices in Q146

and the length of Q is denoted by |Q| (i.e, |Q| = |V (Q)|). For a path or a cycle Q we147

use NG(Q) and NG[Q] to denote the sets NG(V (Q)) and NG[V (Q)], respectively. For148

a collection of paths/cycles Q, we use |Q| to denote the number of paths/cycles in Q149

and V (Q) to denote the set
⋃
Q∈Q V (Q). We sometimes refer to a path or a cycle Q150

as a |Q|-path or |Q|-cycle. Given a vertex v ∈ V (G), a v-flower of order k is a set151

of k cycles in G whose pairwise intersection is exactly {v}. We say a set of distinct152

vertices P = {v1, . . . , v`} in G forms a degree-two path if P is a path and all vertices153

{v1, . . . , v`} have degree exactly two in G. We say P is a maximal degree-two path if154

no proper superset of P also forms a degree-two path. Finally, a feedback vertex set155

is a subset S of vertices such that G− S is a forest.156

Theorem 2.1 (see [14]). There exists a constant c such that every (multi) graph157

either contains k vertex disjoint cycles or it has a feedback vertex set of size at most158

ck log k. Moreover, there is a polynomial-time algorithm that takes a graph G and an159

integer k as input, and outputs either k vertex disjoint cycles or a feedback vertex set160

of size at most ck log k.161

Parameterized Complexity. We only state the basic definitions and general results162

needed for our purposes. For more details on parameterized complexity in general,163

and kernelization in particular, we refer the reader to the books of Downey and164

Fellows [12], Flum and Grohe [16], Niedermeier [25], and the more recent book by165

Cygan et al. [8].166

Definition 1. A reduction rule that replaces an instance (I, k) of a parameterized167

language L by a new instance (I ′, k′) is said to be sound or safe if (I, k) ∈ L if and168

only if (I ′, k′) ∈ L.169

Definition 2. A polynomial compression of a parameterized language L ⊆ Σ∗×N170

into a language R ⊆ Σ∗ is an algorithm that takes as input an instance (I, k) ∈ Σ∗×N,171

works in time polynomial in |I|+ k, and returns a string I ′ such that:172

• |I ′| ≤ p(k) for some polynomial p(.), and173

• I ′ ∈ R if and only if (I, k) ∈ L.174

In case |Σ| = 2, the polynomial p(.) is called the bitsize of the compression.175

Note that polynomial compressions are a generalization of kernels and being able176

to rule out a compression algorithm automatically rules out a kernelization algorithm.177

Like in classical complexity, in the world of kernel lower bounds, it is often easier to178

“transfer” hardness from one problem to another. To be able to do so, we need an179

appropriate notion of reduction.180

Definition 3. Let L,R ⊆ Σ∗ × N be two parameterized problems. An algorithm181

A is called a polynomial parameter transformation (PPT, for short) from L to R if,182

given an instance (I, k) of problem L, A works in polynomial time and outputs an183

equivalent instance (I ′, k′) of problem R, i.e., (I, k) ∈ L if and only if (I ′, k′) ∈ R,184

such that k′ ≤ p(k) for some polynomial p(.).185

Theorem 2.2 (see [8]). Let L,R ⊆ Σ∗ × N be two parameterized problems and186

assume that there exists a polynomial parameter transformation from L to R. Then,187

if L does not admit a polynomial compression (into any language), neither does R.188

This manuscript is for review purposes only.

6 A. AGRAWAL ET AL.

3. Almost Disjoint Cycle Packing. As previously noted, Bodlaender et al. [6]189

showed that Disjoint Cycle Packing admits no polynomial kernel unless NP ⊆190

coNP/poly. On the other hand, finding k distinct cycles in a graph is solvable in191

time polynomial in n = |V (G)| and k [26]. The intuition is that the more cycles192

we allow a vertex to belong to, the easier the problem of finding k distinct cycles193

should become. In this section, we study the spectrum of kernelization algorithms for194

Almost Disjoint Cycle Packing based on the “distance” between k and t. Recall195

that given an instance (G, k, t) of Almost Disjoint Cycle Packing, our goal is196

to find at least k distinct cycles such that each vertex appears in at most t of them.197

To formalize the notion of distance between k and t, we define the following class of198

problems.199

Let L = {(G, k, t) | G has k cycles such that every vertex appears in at most t200

of them}. Basically, L is the language Almost Disjoint Cycle Packing. For a201

non-decreasing and polynomial-time computable function f : N→ R+ (polynomial in202

k), we define the following sub-language of L.203

Lf = {(G, k, t) | (G, k, t) ∈ L and t = dk/f(k)e}.
When f is the identity function, i.e. when f(k) = k, Lf is exactly the Disjoint204

Cycle Packing problem, which is known not to admit a polynomial kernel [6]. In205

Section 3.1, we show that even when f(k) = kε, for any fixed 0 < ε ≤ 1, Lf (or206

equivalently Almost Disjoint Cycle Packing with t = k1−ε) is NP-complete and207

does not admit a polynomial kernel unless NP ⊆ coNP/poly. If f = a (a constant208

function), where a ≤ 1 and a ∈ R+, then Lf can be decided in polynomial time209

(as finding any k distinct cycles is enough). This implies that for f = a we have a210

constant kernel. In Section 3.2, we obtain a polynomial kernel for f = c (another211

constant function), where c > 1 and c ∈ R. In fact, our result implies that for212

f ∈ O(1), f ∈ o(log` k) (` ∈ N), or f ∈ o(
√
k), we can (in polynomial time) compress213

an instance of Almost Disjoint Cycle Packing into an equivalent instance of214

polynomial, quasi-polynomial, or subexponential size, respectively (see Figure 1).215

Before we consider the kernelization complexity of the Almost Disjoint Cycle216

Packing problem, we first show, using standard arguments, that the problem is217

fixed-parameter tractable when parameterized by k, i.e., the problem can be solved218

in f(k)nO(1) time, where n = |V (G)| and f is a computable function. Armed with219

Theorem 2.1, we can assume that, for an instance (G, k, t) of Almost Disjoint220

Cycle Packing, the treewidth of G is at most O(k log k); as G has a feedback vertex221

set of size at most O(k log k). Courcelle’s Theorem [7] gives a powerful way of quickly222

showing that a problem is fixed-parameter tractable on bounded treewidth graphs.223

That is, it suffices to show that our problem can be expressed in monadic second-order224

logic (MSO2). We only briefly review the syntax and semantics of MSO2. The reader225

is referred to the excellent survey by Martin Grohe [19] for more details. Sentences in226

MSO2 contain quantifiers, logical connectives (¬, ∨, and ∧), vertex variables, vertex227

set variables, edge set variables, binary relations ∈ and =, and the atomic formula228

E(u, v) expressing that u and v are adjacent. If a graph property can be described in229

this language, then this description can be made algorithmic:230

Theorem 3.1 (see [7]). If a graph property can be described as a formula231

φ in the monadic second-order logic of graphs, then it can be recognized in time232

f(||φ||, tw(G))(|E(G)| + |V (G)|) if a given graph G has this property, where f is a233

computable function, ||φ|| is the length of the encoding of φ as a string, and tw(G) is234

the treewidth of G.235

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 7

Lemma 3.1. Almost Disjoint Cycle Packing can be solved in f(k)nO(1)236

time, for some computable function f . In other words, the problem is fixed-parameter237

tractable when parameterized by k.238

Proof. Given an instance (G, k, t) of Almost Disjoint Cycle Packing, we239

construct a formula φ such that ||φ|| is bounded by an exponential function in k and240

t. Given that t ≤ k and that the treewidth of G is at most O(k log k), applying241

Theorem 3.1 completes the proof.242

We set

φ = ∃C1 . . . ∃Ck
(
∀v∈V (G) cap(v, C1, . . . , Ck)

∧
1≤i≤k

cycle(Ci)
∧

1≤i 6=j≤k
distinct(Ci, Cj)

)
where Ci ⊆ E(G), cycle(Ci) is true if and only if Ci is a cycle, distinct(Ci, Cj) is true
if and only if Ci and Cj are distinct (as edge sets), and cap(v, C1, . . . , Ck) is true if
and only if v appears in at most t cycles. Formally, we set

cycle(Ci) = connected(Ci) ∧ not-empty(Ci) ∧ (∀v degree-two(v, Ci) ∨ v 6∈ Ci)

distinct(Ci, Cj) = (∃e∈Ci∀e′∈Cje 6= e′) ∨ (∃e∈Cj∀e′∈Cie 6= e′)

cap(v, C1, . . . , Ck) =
∧

S={i1,...,it}⊆([k]
t)

appears-in(v, S)→ misses(v, [k] \ S).

In order to guarantee that Ci is a cycle we make sure that it induces a non-empty243

(not-empty(Ci)) connected graph (connected(Ci)) and that every vertex v is either244

incident to exactly two edges of Ci (degree-two(v, Ci)) or not in Ci. The formula245

distinct(Ci, Cj) is true if and only if the symmetric difference of Ci and Cj contains246

at least one edge. For a set S = {i1, . . . , it} ⊆
(
[k]
t

)
, appears-in(v, S) is true if and247

only if vertex v appears in all cycles Ci1 , . . ., Cit . The formula misses(v, [k]\S) is true248

if and only v does not belong to any of the cycles in {C1, . . . , Ck} \ {Ci1 , . . . , Cit}. It249

is not hard to see that G |= φ if and only if (G, k, t) is a yes-instance. Furthermore,250

note that ||φ|| depends only on k and t ≤ k.251

3.1. Refuting polynomial kernels for t = O(k1−ε). We now show that Al-252

most Disjoint Cycle Packing restricted to Lf , where f(k) = kε, does not admit253

a polynomial kernel, for any 0 < ε ≤ 1, unless NP ⊆ coNP/poly. Here k is the number254

of required cycles and t = k
f(k) = k1−ε is the maximum number of cycles a vertex can255

belong to. Below we define the Disjoint Factors problem [6] which is known to256

admit no polynomial compression unless NP ⊆ coNP/poly.257

Let Σq be an alphabet set of q elements. By Σ∗q we denote the set of all strings258

over Σq. A factor of a string ȳ = y1y2 . . . yn ∈ Σ∗q is a pair (s, e), where s, e ∈ [n]259

and s < e, such that ysys+1 . . . ye is a substring of ȳ and ys = ye. Two factors (s, e)260

and (s′, e′) of ȳ are said to be disjoint if {s, s + 1, . . . , e} ∩ {s′, s′ + 1, . . . , e′} = ∅.261

The string ȳ is said to have disjoint factors over Σq if for all x ∈ Σq there is a factor262

(sx, ex) such that ysx = yex = x, and for all distinct x, x̂ ∈ Σq, (sx, ex) and (sx̂, ex̂)263

are disjoint factors.264

Disjoint Factors Parameter: q
Input: Alphabet set Σq, string ȳ ∈ Σ∗q .
Question: Does ȳ have disjoint factors over Σq?

265

This manuscript is for review purposes only.

8 A. AGRAWAL ET AL.

Construction. We give a polynomial parameter transformation from an instance266

(Σq, ȳ) of Disjoint Factors to an instance (G, k, t) of Almost Disjoint Cycle267

Packing. For technical reasons, we will assume that t − 1 = 2l, for some l ∈ N.268

Note that this can be achieved by at most doubling the value of t while keeping t in269

O(k1−ε). We let l = log2(t− 1). The end goal will be to construct a graph in which270

we have to find k cycles such that every vertex appears in at most t = O(k1−ε) of271

them.272

The reduction is as follows. Let Σq = {x1, x2, . . . xq}. We create a vertex x̂i ∈273

V (G) corresponding to each element xi, where i ∈ [q]. For ȳ = y1y2 . . . yn ∈ Σ∗q we274

create a path Py = (u, ŷ1, ŷ2, . . . ŷn, u
′) by adding two new vertices u and u′. We add275

an edge between x̂i and ŷj , for i ∈ [q] and j ∈ [n], if and only if xi = yj . We also276

add four more vertices u1, u2, u′1, and u′2 to V (G) and add edges (u1, u2), (u2, u),277

(u, u1), (u′1, u
′
2), (u′2, u

′), and (u′, u′1) to E(G) (see Figure 2). For each xi ∈ Σq, we278

attach t− 1 triangles to x̂i, i.e. we add edges {(z1i , z̃1i), (z2i , z̃
2
i), . . . , (zt−1i , z̃t−1i)} and279

(zji , x̂i), (x̂i, z̃
j
i), for j ∈ [t−1]. Next, we create a path Pw = (w1, w

′
1, w2, w

′
2, . . . , wl, w

′
l)280

in G. We add a set R = {ri | i ∈ [l]} of l independent vertices and for i ∈ [l], we281

add the edges (wi, ri) and (w′i, ri) to E(G). Finally, we add edges (u,w1) and (w′l, u
′)282

(see Figure 2). We set k = tq + t + l + 1. This completes the construction. In what283

follows, we let (G, k, t) denote an instance of Almost Disjoint Cycle Packing284

given by the above construction for an instance (Σq, ȳ) of Disjoint Factors. The285

next proposition follows by construction.286

Proposition 1. Let P = (s, a1, a
′
1, a2, a

′
2, . . . , an, a

′
n, s
′) be a path and B = {bi |287

i ∈ [n]} be a set of independent vertices. Let H be the graph consisting of path P , the288

set B, and, for i ∈ [n], the edges (ai, bi) and (a′i, bi). Then, for each B′ ⊆ B, there289

exists a unique path PB′ between s and s′ such that V (PB′) ∩B = B′. Moreover, the290

set B = {PB′ | B′ ⊆ B} is the set of all possible paths between s and s′ in H.291

Applying Proposition 1 to G, for each R′ ⊆ R, we have a (unique) cycle CR′ which292

contains all the vertices in V (Py), all the vertices in Pw, and exactly the vertices of the293

set R′ from R. We define a family of cyclesR = {CR′ | R′ ⊆ R}∪{(wi, w′i, ri) | i ∈ [l]}.294

Note that |R| = 2l + l = t + l − 1 and each C ∈ R is a cycle in G. The intuition of295

having the set of cycles {CR′ | R′ ⊆ R} in G is that each vertex in the path Py appears296

in t− 1 of these cycles, and can therefore participate in at most one additional cycle297

(which contains vertices in V (Py)). Our end goal is to associate this extra cycle with a298

factor. We let U = {(u, u1, u2), (u′, u′1, u
′
2)} and Z = {(zji , z̃ji , x̂i) | i ∈ [q], j ∈ [t− 1]}.299

Note that each C ∈ U ∪ Z forms a cycle in G.300

Lemma 3.2. If (G, k = tq + t+ l + 1, t) is a yes-instance of Almost Disjoint301

Cycle Packing then there is a solution containing all cycles in Z ∪ U .302

Proof. Let S be the set of k̂ ≥ k cycles in G such that every vertex belongs to at303

most t cycles in S. We create another solution S ′ with k′ cycles such that k′ ≥ k̂ and304

Z ∪ U ⊆ S ′. Initially, we have S ′ = S. Suppose for some i ∈ [q] and j ∈ [t− 1], cycle305

(zji , z̃
j
i , x̂i) /∈ S. If x̂i belongs to less than t cycles in S, then we can add (zji , z̃

j
i , x̂i) to306

S ′ and obtain a larger solution. Otherwise, let Ci be the set of cycles in S \ (Z ∪U) in307

which x̂i is present. Pick any cycle C ∈ Ci and replace it by (zji , z̃
j
i , x̂i) in S ′. Observe308

that x̂i separates zji and z̃ji from the rest of the graph. Therefore, there is a unique309

(simple) cycle in G containing zji and z̃ji . Also, we can do the above replacement at310

most t− 1 times. This implies that, even after the replacement, every vertex appears311

in at most t cycles in S ′. A similar argument can be given for cycles in U . Therefore,312

we can obtain a solution S ′ consisting of k′ cycles, where k′ ≥ k̂, Z ∪ U ⊆ S ′, and313

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 9

u0
1u1

u2 u0
2

u0u

x̂1 x̂2 x̂q

ŷ1 ŷ2 ŷ3 ŷi ŷi+1 ŷn�1 ŷn

w1
w0

1
w0

2 w0
3

w0
lwlw2 w3

r3
r2

rlr1

z̃1
1

z̃2
1

z̃t�1
1

zt�1
1

z1
1

z2
1

Fig. 2. An instance (G, k = tq + t + l + 1, t) of Almost Disjoint Cycle Packing from an
instance (Σq , ȳ) of Disjoint Factors.

every vertex appears in at most t of the cycles.314

Lemma 3.3. If (G, k = tq + t+ l + 1, t) is a yes-instance of Almost Disjoint315

Cycle Packing and S is a set of k cycles such that every vertex appears in at most316

t of the cycles then S contains all the cycles in R.317

Proof. Let S be a set of k cycles in G such that every vertex v ∈ V (G) belongs318

to at most t cycles in S. Observe that, for i ∈ [q], x̂i can appear in at most t cycles319

in S. Therefore, the number of cycles C ∈ S such that V (C) ∩ {x̂i | i ∈ [q]} 6= ∅ is at320

most tq.321

Since u is a cut vertex separating u1 and u2 from the rest of the graph, the only322

cycle containing both u1 and u2 is (u, u1, u2). Similarly, the only cycle containing323

both u′1 and u′2 is (u′, u′1, u
′
2). Therefore, the remaining cycles in S (not considered so324

far) are cycles in G′ = G[V ′] as well, where V ′ = R ∪ V (Pw) ∪ V (Py).325

By construction Pw and Py are induced paths in G′ (and in G). Moreover, vertices326

in V (Py) are degree-two vertices in G′. Therefore, a cycle in G′ either contains all327

the vertices from Py or none of the vertices in Py. By Proposition 1, the number of328

distinct paths (excluding Py) between u and u′ (i.e. the start and end vertices of Py)329

is 2l = t− 1. Observe that each of these paths forms a cycle C in G′ along with the330

path Py and C ∈ R. This implies that the number of cycles containing vertices from331

V (Py) is t− 1. The cycles in G′ which do not contain vertices from path Py are the332

cycles in G′[Pw ∪R]. Given that Pw is an induced path in G′[Pw ∪R], the only cycles333

that G′[Pw ∪R] contains are the vertex disjoint cycles formed by wi, w
′
i, ri, for i ∈ [l].334

Also, for each i ∈ [l], (wi, w
′
i, ri) ∈ R. Note that the vertices in V (Pw) ∪ R belong335

to exactly t cycles in R. Consequently, if S does not contain all cycles in R then336

|S| < tq + 2 + t− 1 + l = tq + t+ l + 1; a contradiction.337

Lemma 3.4. If (G, k = tq + t+ l + 1, t) is a yes-instance of Almost Disjoint338

Cycle Packing then there is a set S of k cycles such that every vertex appears in339

at most t of the cycles in S and, for all C ∈ S, V (C) ∩ {x̂i | i ∈ [q]} ≤ 1.340

Proof. Let S be a set of k cycles in G such that every vertex appears in at most341

t of the cycles in S. By Lemmas 3.2 and 3.3, we can assume that Z ∪ U ∪R ⊆ S.342

Suppose that there is a cycle C ∈ S such that C contains at least two vertices343

This manuscript is for review purposes only.

10 A. AGRAWAL ET AL.

from {x̂i | i ∈ [q]}. Let x̂i and x̂j be two such vertices. By Lemma 3.2, we know that,344

for each p ∈ [q], x̂p can belong to at most one more cycle in S \ Z. Since C ∈ S, the345

number of cycles in S can be at most tq + t + l, contradicting the fact that S is a346

solution of size tq + t+ l + 1.347

Lemma 3.5. Let (Σq, ȳ) be an instance of Disjoint Factors and (G, k = tq +348

t + l + 1, t) be the corresponding instance of Almost Disjoint Cycle Packing.349

Then, (Σq, ȳ) is a yes-instance of Disjoint Factors if and only if (G, k, t) is a350

yes-instance of Almost Disjoint Cycle Packing.351

Proof. In the forward direction let (si, ei) be a factor for xi, i ∈ [q]. We construct352

a solution S for (G, k, t) as follows. We include all the cycles in Z ∪ U ∪R to S. For353

i ∈ [q], we add the cycle Ci = (x̂i, ŷsi , ŷsi+1, . . . , ŷei) to S. Note that si, ei ∈ [n],354

si < ei, and, for distinct i, j ∈ [q], the sets {si, si+1, . . . , ei} and {sj , sj+1, . . . , ej} are355

disjoint sets. Therefore, for Ci and Cj , i 6= j and i, j ∈ [q], we have V (Ci)∩V (Cj) = ∅.356

Observe that, for i ∈ [q], x̂i appears in t− 1 cycles in Z ∪ U ∪R and in the cycle Ci.357

Therefore, x̂i belongs to at most t cycles in S. Also, vertices in path Py belong to358

t − 1 cycles in Z ∪ U ∪ R and at most one of the cycles in {Ci | i ∈ [y]}. Therefore,359

every vertex appears in at most t of the cycles in S and |S| = |Z ∪ U ∪ R| + |Σq| =360

|Z|+ |U|+ |R|+ |Σq| = (t− 1)q + 2 + t− 1 + l + q = tq + t+ l + 1 = k, as needed.361

In the reverse direction, consider a set of k cycles S in G such that every vertex362

appears in at most t of the cycles. By Lemmas 3.2 and 3.3, we can assume that363

C = Z ∪ U ∪ R ⊆ S. Furthermore, C ∈ S \ C cannot contain any vertex from364

V (Pw) ∪ {u, u′}, since these vertices already belong to t cycles in U ∪ R. Also, C365

cannot contain any vertices from {zji , z̃ji | i ∈ [q], t ∈ [t − 1]}, as there is a unique366

cycle containing them which is present in Z. Therefore, C contains vertices only367

from {x̂i | i ∈ [q]} ∪ V (Py). Moreover, vertices in V (Py) belong to t − 1 cycles in368

R. Therefore, each vertex in V (Py) can belong to at most one cycle C ∈ S \ C. By369

Lemma 3.4, we know that, for each C ∈ S\C, C contains at most one vertex from {x̂i,370

i ∈ [q]}. Also, all the cycles in S\C must contain a vertex from {x̂i, i ∈ [q]}. Therefore,371

cycle C contains a vertex from {x̂i, i ∈ [q]} and some vertices from V (Py). Observe372

that C must contain consecutive vertices from Py. For a cycle C which contains x̂i, for373

some i ∈ [q], and vertices ŷsi , ŷsi+1
, . . . , ŷei , we return a factor (si, ei), where si < ei.374

Note that for i, j ∈ q and i 6= j, {si, si+1, . . . , ei} ∩ {sj , sj+1, . . . , ej} = ∅. Therefore,375

we have a factor for each xi, i ∈ q. This concludes the proof.376

We can now state the main theorem of this section.377

Theorem 3.2. Let f : N → R≥1 be a non-decreasing computable function such378

that f(k) ∈ O(kε), where 0 < ε ≤ 1. Then, Almost Disjoint Cycle Packing379

admits no polynomial kernel restricted to Lf unless NP ⊆ coNP/poly.380

Proof. We refute polynomial kernels for Almost Disjoint Cycle Packing381

restricted to Lf . Since f(k) ∈ O(kε), we have that t = O(k1−ε) = O(kε
′
). We start382

with an instance (Σq, ȳ) of Disjoint Factors and create an instance (G, k, t) of383

Almost Disjoint Cycle Packing by applying the reduction as described. Note384

that the parameter for Disjoint Factors is q. Moreover, k = O(q
1
ε) whenever385

t = q
ε′

1−ε′ , k = tq + t + l + 1, and l = log2(t − 1). Replacing q by t
1−ε′
ε′ for k,386

we get t
1
ε′ < k < 2t

1
ε′ and hence t = O(kε

′
). By Lemma 3.5, this polynomial387

time reduction is a polynomial parameter transformation from Disjoint Factors388

to Almost Disjoint Cycle Packing. Therefore, assuming we have a polynomial389

kernel for Almost Disjoint Cycle Packing, where t = O(kε
′
) and 0 < ε′ < 1,390

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 11

implies a polynomial compression for Disjoint Factors, contradicting Theorem 2.2.391

So, Almost Disjoint Cycle Packing restricted to Lf has no polynomial kernel392

unless NP ⊆ coNP/poly.393

3.2. A kernel for Almost Disjoint Cycle Packing. Let f : N → R≥1 be394

a non-decreasing computable function such that f(k) ∈ o(
√
k). In this section, we395

consider the Almost Disjoint Cycle Packing problem restricted to Lf . The396

kernelization algorithm presented here is inspired from the lossy kernel for the Cycle397

Packing problem (Section 5, [24]). To simplify notation, we let c = f(k) and use c398

instead of f(k) throughout the section, which implies that t = dkc e. As we shall see, the399

assumption c ∈ o(
√
k) is required to guarantee that our kernelization algorithm does400

in fact run in time polynomial in the input size. We show that, as long as c ∈ o(
√
k),401

we can in polynomial time reduce an instance to at most O(2dce
2

k7+dce log3 k) vertices.402

Our kernelization algorithm can be more or less divided into three stages. We start403

by computing (using Theorem 2.1) a feedback vertex set of size at most O(k log k)404

and denote this set by F (assuming no k vertex disjoint cycles were found). We let405

T = G−F and let T≤1, T2, and T≥3, denote the sets of vertices in T having degree at406

most one in T , degree exactly two in T , and degree greater than two in T , respectively.407

Moreover, we let P denote the set of all maximal degree-two paths in G[T]. Next, we408

bound the size of T≤1. We know that T is a forest. By a property of forests, we know409

that |T≥3| ≤ |T≤1| and |P| ≤ |T≥3|+ |T≤1|. So, an upper bound on |T≤1| provides an410

upper bound on |T≥3| and |P|. In the second stage, we show that (roughly speaking)411

the graph can have at most dce − 1 vertices of high degree. Using this fact, the last412

stage consists of bounding the size of T2. Note that bounding the sizes of T≤1, T2,413

T≥3, and P implies a bound on the size of T . Combining this bound with the fact414

that F is of size at most O(k log k), we get the claimed kernel.415

Bounding the size of T≤1. First, we get rid of vertices of degree one and two in416

the graph G using Reduction Rules A1 and A2. Observe that we can safely delete417

vertices of degree zero or one (in G) as they do not participate in any cycle.418

Reduction Rule A1. Delete vertices of degree zero or one in G.419

Reduction Rule A2. If there is a vertex v of degree exactly two in G then delete420

v and connect its two neighbors by a new edge.421

Lemma 3.6. Reduction Rule A2 is safe.422

Proof. Let u be a vertex of degree two in G and let NG(u) = {v, w}. Let G′ be423

the graph obtained after contracting edge (u, v) onto vertex v.424

Consider a set C = {C1, . . . , Ck} of cycles such that every vertex in V (G) partic-425

ipates in at most t of them. There can be at most t cycles in C to which u belongs.426

Moreover, both v and w (and hence the edge (u, v)) must be present in all those427

cycles. Now, after contracting the edge (u, v) onto v, we can see that v is present in428

exactly those cycles where u was also present. Therefore, if (G, k, t) is a yes-instance429

then so is (G′, k, t).430

Let (G′, k, t) be a yes-instance such that C′ = {C ′1, . . . , C ′k} is a solution for431

(G′, k, t). Consider those cycles in C′ containing the edge (v, w). There can be at432

most t such cycles. Now, when we translate back to the graph G, the edge (v, w)433

corresponds to a path of length three. Therefore, v, u, and w, all participate in at434

most t cycles, as needed.435

Reduction Rule A3. If there exists an edge (u, v) ∈ E(G) of multiplicity more436

than 2t then reduce its multiplicity to 2t ≤ 2k.437

This manuscript is for review purposes only.

12 A. AGRAWAL ET AL.

The safeness of Reduction Rule A3 follows from the fact that any pair of vertices438

can belong to at most t cycles. The fact that we can assume 2t ≤ 2k follows from the439

observation that when t = k the problem becomes solvable in time polynomial in n440

and k. Once Reduction Rules A1, A2, and A3 are no longer applicable, the minimum441

degree of the graph G is three and the multiplicity of every edge is at most 2t. Note442

that every vertex in T≤1 is either a leaf or an isolated vertex in T . Therefore, every443

vertex of T≤1 has at least two neighbours in F . For (u, v) ∈ F × F , let L(u, v) be444

the set of vertices of degree at most one in T = G − F such that each x ∈ L(u, v) is445

adjacent to both u and v (if u = v, then L(u, u) is the set of vertices which have degree446

at most one in T = G−F and at least two edges to u). For each pair (u, v) ∈ F ×F ,447

we mark |F |dkc e+ 2k + 1 vertices from L(u, v) if L(u, v) > |F |dkc e+ 2k + 1 and mark448

all vertices in L(u, v) if L(u, v) ≤ |F |dkc e+ 2k + 1.449

Reduction Rule A4. If |T≤1| ≥ |F |2(|F |dkc e+ 2k + 1) + 1 then there exists an450

unmarked vertex v ∈ T≤1.451

• If dG−F (v) = 0 then delete v.452

• If dG−F (v) = 1 contract the unique edge in G − F which is incident to v.453

We let e denote this unique edge and we let w denote the other endpoint onto454

which we contract e.455

Reduction Rule A4 is also available as Lemma 5.7 in [24].456

Lemma 3.7. Reduction Rule A4 is safe.457

Proof. Since we marked at most |F |dkc e + 2k + 1 vertices for each pair (u, v) ∈458

F × F , there can be at most |F |2(|F |dkc e+ 2k + 1) marked vertices in T≤1. Let v be459

an unmarked vertex. We only consider the case where dG−F (v) = 1, as the other case460

can be proved analogously.461

Let C be a maximum packing in G such that every vertex in V (G) appears in at462

most t = dkc e cycles of C. Observe that if C does not contain any cycles intersecting463

{v} then contracting e will keep all the cycles in C present in G′ = G/e. Consider464

those cycles in C containing vertex v. Such cycles either contain both v and (its465

unique neighbor in T) w or contain v and two of its neighbors in F . Note that cycles466

containing both v and w are also present in G′ as w is connected to all neighbors of v.467

Hence, we only need to show that cycles containing v and two of its neighbors in F can468

be reconstructed in G′. Fix such a cycle C and let x and y be the neighbors of v in F469

(x and y are not necessarily distinct). Since v ∈ L(x, y) and it is unmarked, there are470

|F |dkc e+2k+1 vertices in L(x, y) which are already marked by the marking procedure.471

Furthermore, since G can have at most |F |dkc e cycles such that every vertex appears in472

at most dkc e of them, at least one of these marked vertices, call it v′, is not present in473

any of the cycles in C; this is true since, for any cycle C ∈ C, |V (C)∩F | ≥ V (C)∩T≤1,474

which implies that at most |F |dkc emarked vertices can belong to cycles in C. Therefore475

we can route the cycle C through v′ instead of v. Since v can appear in at most dkc e476

cycles and we have marked |F |dkc e+ 2k+ 1 > |F |dkc e+ 2dkc e+ 1 vertices for each pair477

in F , we can repeat the same procedure for each cycle in C containing v to obtain a478

packing C′ in G′ whose size is at least |C|.479

For the reverse direction, let C′ be a maximum packing in G′ such that every480

vertex in V (G′) appears in at most t = dkc e cycles of C′. The only cycles in G′ which481

do not correspond to cycles in G are those cycles containing an edge (w, z), where482

z ∈ NG′(w) but z 6∈ NG(w). However, we can simply replace such edges by a path483

on three vertices in G, namely w, v, and z. It is not hard to see that v appears in at484

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 13

most as many cycles as w. Hence, we can construct, from C′, a packing C in G whose485

size is at least |C′|. This completes the proof.486

Bounding the number of high-degree vertices. When none of the aforementioned487

reduction rules are applicable, the size of T≤1, T≥3, and P, is at most |F |2(|F |dkc e+488

2k + 1) = O(k4 log3 k). Consider P, i.e. the collection of maximal degree-two paths489

in T2, and assume that there exists a set Fdce = {x1, . . . , xdce} ⊆ F (of size dce) such490

that for every vertex x ∈ Fdce there exists a path P ∈ P such that x has at least 4kdce491

neighbours in P . Our goal is to show that if Fdce exists then we have a yes-instance.492

Before we do so, we need to prove the following lemma.493

Lemma 3.8. If dce ∈ o(
√
k) and dce > dkc e then Almost Disjoint Cycle494

Packing can be solved in time polynomial in n.495

Proof. When dce > dkc e, k < dce2. Moreover, observe that if dce ∈ o(
√
k) then496

k is a constant. Therefore, we can simply apply the algorithm of Lemma 3.1 which497

runs in time polynomial in n when k is a constant.498

Reduction Rule A5. If there exists a set of dce vertices Fdce = {x1, . . . , xdce} ⊆499

F such that for all xi, 1 ≤ i ≤ dce, |NG(xi) ∩ V (P)| > |F |2(|F |dkc e + 2k + 1)4kdce,500

then return a trivial yes-instance.501

Lemma 3.9. Reduction Rule A5 is safe.502

Proof. For each xi, we mark a path Pi ∈ P satisfying the condition |NG(xi) ∩503

V (Pi)| ≥ 4kdce. Since |P| ≤ |F |2(|F |dkc e+2k+1) and |NG(xi)∩V (P)| > |F |2(|F |dkc e+504

2k + 1)4kdce such a path must exist. Next, we construct a set of cycles Ci, for each505

xi, as follows. Given xi and Pi, we pick (any) 2dkc e neighbors of xi to form dkc e cycles506

pairwise intersecting only in xi. Note that every vertex in V (Pi) appears at most507

once in Ci. We claim that C = C1 ∪ . . . ∪ Cc is in fact the desired solution. Clearly,508

|C| = dcedkc e ≥ k. Every vertex in Fdce appears in exactly dkc e cycles and every other509

vertex appears in at most dce ≤ dkc e cycles (assuming dce ∈ o(
√
k) and applying510

Lemma 3.8 otherwise), as needed.511

After applying Reduction Rule A5, there can be at most dce − 1 vertices in F512

having more than |F |2(|F |dkc e+ 2k + 1)4kdce = O(k5 log3 k) neighbors in T2. We let513

Fdce−1 ⊆ F denote the maximum sized such subset and we let F ? = F \ Fdce−1. For514

any vertex x ∈ F ?, |NG(x) ∩ V (P)| ≤ |F |2(|F |dkc e+ 2k + 1)4kdce and, consequently,515

|NG(F ?) ∩ V (P)| ≤ |F |2(|F |dkc e+ 2k + 1)4kdce|F ?| ≤ |F |3(|F |dkc e+ 2k + 1)4kdce =516

O(k6 log3 k).517

Bounding the size of T2. We start by marking all vertices in F , T≤1, T≥3, and518

NG(F ?) ∩ V (P). The total number of marked vertices is therefore in O(k6 log3 k).519

Moreover, all the unmarked vertices must be in T2 and form degree-two paths. As520

minimum degree of G is at least three, each unmarked vertex must have at least one521

neighbor in Fdce−1 and cannot have neighbors in F ?. We call a set of unmarked ver-522

tices a region if they form a maximal path in G[T2]. At this point, the total number of523

regions is in O(k6 log3 k), as the number of marked vertices is in O(k6 log3 k). There-524

fore, our last step is to bound the size of each region. To do so, we first recursively525

further subdivide each region as follows. Fix a region R and check for each vertex526

xi ∈ Fdce−1, the value of |NG(xi) ∩ R|. If |NG(xi) ∩ R| < 4kdce2dce, then we again527

mark the vertices in NG(xi)∩R, increasing the number of regions by a multiplicative528

factor of at most 4kdce2dce. We repeat this process as long as there exists a region R529

and a vertex xi ∈ Fdce−1 satisfying |NG(xi) ∩ R| < 4kdce2dce. Since |Fdce−1| < dce,530

repeating this procedure for every region and every vertex in Fdce−1 increases the531

This manuscript is for review purposes only.

14 A. AGRAWAL ET AL.

number of regions to at most O(2dce
2

k6+dce log3 k); each of the initial O(k6 log3 k)532

regions can be subdivided into at most (4kdce2dce)dce subregions.533

Lemma 3.10. Let H be a graph consisting of a path P and an independent set534

X = {x1, . . . , xdce} of size dce ≥ 1. Let k ≥ dce2 be an integer. If ∀x ∈ X we have535

|NH(x)| ≥ 4kdce2dce and ∀p ∈ V (P) we have |NH(p)∩X| > 0, then we can construct536

a set of distinct cycles C = C1 ∪ . . .∪ Cdce such that (a) |Ci| = dkc e, (b) all cycles in Ci537

pairwise intersect in xi, and (c) every vertex in P appears in at most one cycle in C.538

Proof. We prove the lemma by induction on the number of vertices in X. Let539

P = {p1, . . . , p|P |}. For the base case, we have dce = 1 and X = {x1}. Since every540

vertex on the path is connected to x1 and x1 has at least 8k neighbors, we know541

that |V (P)| ≥ 8k. Therefore, taking the first 2k vertices on the path we can easily542

construct k cycles pairwise intersecting only at {x}.543

Suppose the statement holds for all dce, where 1 < dce ≤ dqe − 1, and consider544

the case dce = dqe. We claim that there exists a vertex x in X such that we can545

pack dkq e cycles pairwise intersecting only at {x} using only the first 4k(dqe − 1) + 1546

vertices on the path, i.e. {p1, . . . , p4k(dqe−1)+1}. In fact, it is enough to show that547

at least one vertex x ∈ X has at least 2k neighbours in {p1, . . . , p4k(dqe−1)+1}.548

If no such vertex exists then |NH(X) ∩ {p1, . . . , p4k(dqe−1)}| < 2kdqe. But since549

|{p1, . . . , p4k(dqe−1)+1}| = 4k(dqe−1)+1 > 2kdqe (for dqe ≥ 2) this contradicts the fact550

that every vertex in {p1, . . . , p4k(dqe−1)+1} must have at least one neighbor in X. Now551

delete vertex x from X and vertices {p1, . . . , p4k(dqe−1)+1} from P . Moreover, if after552

deleting x some vertices in P ′ = P \ {p1, . . . , p4k(dqe−1)+1} no longer have neighbors553

in X ′ = X \ {x} simply delete those vertices and add an edge connecting their two554

unique neighbors in P . Call this new graph H ′. Observe that for all x ∈ X ′, we have555

|NH′(x)| > 4kdqe2dqe−4k(dqe−1)−1 = 4kdqe(2dqe−1) + 4k−1 ≥ 4k(dqe−1)2dqe−1,556

when dqe ≥ 2. Applying the induction hypothesis to X ′ and P ′, we know that we can557

pack d k
q−1e ≥ dkq e cycles for each vertex x ∈ X ′, as needed.558

Using Lemma 3.10, we can get an upper bound on the size of a region R by apply-559

ing the following reduction rule. Recall that by construction (and after subdividing560

regions), vertices of a region have neighbours only in Fdce−1, where Fdce−1 is a set of561

at most dce − 1 vertices. In fact, for each region R, there exists a set FR ⊆ Fdce−1562

such that each vertex in R has at least one neighbor in FR and each vertex in FR has563

at least 4kdce2dce neighbors in R.564

Reduction Rule A6. Let R be a region such that |R| > 4kdce4dce. Let Q =565

{Q1, Q2, . . .} be a family of sets which partitions R such that for any two vertices566

u, v ∈ R, we have u, v ∈ Qi if and only if NG(u) ∩ FR = NG(v) ∩ FR. In other567

words, two vertices belong to the same set in Q if and only if they share the same568

neighborhood in FR. Since |R| > 4kdce4dce and |Q| ≤ 2dce, there exists a set Q ∈ Q569

such that |Q| > 4kdce2dce. Let v be a vertex in Q and let w be a neighbor of v in R570

(v can have at most two neighbors in R). Contract the edge (v, w) onto w. Note that571

since |Q| > 4kdce2dce, each vertex in FR has at least 4kdce2dce neighbors in R even572

after the contraction.573

Lemma 3.11. Reduction Rule A6 is safe.574

Proof. Let C be a maximum packing in G and C′ be a maximum packing in G′575

such that every vertex in V (G) and V (G′) appears in at most t = k
c cycles of C and576

C′, respectively.577

Since G′ = G/e is a minor of G, we have |C| ≥ |C|′. We now show that |C′| ≥ |C|.578

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 15

Let CR denote the cycles in C which intersect with both R and FR. Observe that579

all cycles in C \ CR are still present in G′ (possibly of shorter length). Moreover, in580

C \ CR, all the vertices of R appear in the same number of cycles, as any such cycle581

must cross all of the region. Consider the at most |FR|dkc e cycles in CR. By applying582

Lemma 3.10, we can find at least as many cycles in G′[R ∪ FR]. Every vertex in FR583

appears in at most dkc e of them and every vertex in R appears in at most one of them.584

Therefore no vertex is ever used more than dkc e times, as needed.585

Since the number of regions is in O(2dce
2

k6+dce log3 k) and the size of a region is586

at most 4kc4c, the theorem follows.587

Theorem 3.3. Let f : N → R≥1 be a non-decreasing computable function such588

that f(k) ∈ o(
√
k). For c = f(k), Almost Disjoint Cycle Packing admits a589

kernel consisting of at most O(2c
2

k7+c log3 k) vertices over Lf .590

Theorem 3.3 implies that when c ∈ o(
√
k) the Almost Disjoint Cycle Pack-591

ing problem admits a subexponential kernel. When c ∈ o(log` k), ` ∈ N, the problem592

admits a quasi-polynomial kernel. Finally, when c ∈ O(1) the problem admits a593

polynomial kernel.594

4. Pairwise Disjoint Cycle Packing. Recall that in the Pairwise Disjoint595

Cycle Packing problem, given a graph G and integers k and t, the goal is to find596

at least k cycles such that every pair of cycles intersects in at most t vertices.597

4.1. NP-completeness for t = 1. To show NP-completeness of Pairwise Dis-598

joint Cycle Packing, for t = 1, we give a reduction from a variant of SAT called599

2/2/4-SAT defined as follows: Each clause contains four literals, each variable ap-600

pears four times in the formula, twice negated and twice not negated, and the question601

is whether there is a truth assignment of the variables such that in each clause there602

are exactly two true literals. This variant was shown to be NP-complete by Ratner603

and Warrnuth [27]. We let φ denote the formula, U = {u1, . . . , u|U |} denote the set604

of variables, and W = {w1, . . . , w|W |} denote the set of clauses.605

Variable gadget. For each variable u ∈ U , we construct a graph Gu, which we606

call a necklace graph, as follows. Gu consists of 32 vertices. The first set of 16607

vertices form a cycle Cinu = {v11 , . . . , v116} and the second set of 16 vertices form cycle608

Coutu = {v21 , . . . , v216}. We add an edge v1i v
2
i for 1 ≤ i ≤ 16. Informally, Gu consists of609

16 4-cycles where every two consecutive cycles share an edge (see Figure 3). Cycle Cinu610

is the inner cycle, Coutu is the outer cycle, and we number all 4-cycles from 1 to 16 in a611

clockwise order, i.e. we denote the cycles by {C1
u, . . . , C

16
u }. It is not hard to see that612

the maximum size of a packing of distinct cycles, pairwise intersecting in at most one613

vertex, is 8. Such a packing consists of picking either odd-numbered or even-numbered614

cycles. We adopt the convention that picking odd-numbered cycles corresponds to615

setting the variable to true and picking even-numbered cycles corresponds to setting616

the variable to false. Since each variable appears in exactly four clauses, we mark two617

consecutive 4-cycles for each clause as follows. Assume variable u appears in w1, w2,618

w3, and w4. Then cycles numbered 1 and 2 are reserved for the clause gadget of w1,619

cycles numbered 5 and 6 are reserved for the clause gadget of w2, cycles numbered 9620

and 10 are reserved for the clause gadget of w3, and finally cycles numbered 13 and621

14 are reserved for the clause gadget of w4. Note that every pair of marked cycles will622

be separated by at least two consecutive 4-cycles. For a cycle Ciu, 1 ≤ i ≤ 16, we let623

eiu denote the edge of Ciu which lies on the outer cycle Coutu . These outer edges will624

be used to connect variable gadgets to clause gadgets.625

This manuscript is for review purposes only.

16 A. AGRAWAL ET AL.

v1
1

v1
2 v1

3v1
16 v1

4

v1
8

v1
9

v1
7

v1
5

v1
6

v1
15

v1
14

v1
13

v1
12

v1
10

v1
11

v2
11 v2

10
v2
9

v2
8

v2
7

v2
6

v2
5

v2
1

v2
2 v2

3

v2
4

v2
12

v2
13

v2
14

v2
15

v2
16

Fig. 3. Variable gadgets

Clause gadget. Let w ∈ W be a clause in φ and let u1, u2, u3, and u4 be the626

variables appearing in w. We construct the clause gadget for w as follows (Figure 4).627

First, we add two pairs of vertices, a red pair and a blue pair, denoted by Pw =628

{{r1w, r2w}, {b1w, b2w}}. Let Gui be the graph constructed as variable gadget for variable629

ui, i ∈ {1, 2, 3, 4}, and assume, without loss of generality, that cycles C1
ui and C2

ui in630

Gui are marked for clause w. If ui appears positively in w, we add an edge from r1w631

to one endpoint of the outer edge e1ui and another edge from r2w to the other endpoint632

of e1ui . We say {r1w, r2w} is linked to e1ui . If ui appears negatively in w, we add an edge633

from r1w to one endpoint of the outer edge e2ui and another edge from r2w to the other634

endpoint of e2ui . We do the reverse construction for {b1w, b2w}. That is, if ui appears635

positively in w we add an edge from b1w to one endpoint of the outer edge e2ui and636

another edge from b2w to the other endpoint of e2ui . If ui appears negatively in w we637

add an edge from b1w to one endpoint of the outer edge e1ui and another edge from b2w638

to the other endpoint of e1ui . The process is repeated for every variable appearing in639

the clause. Since each clause consists of four variables, every vertex in a clause gadget640

will have exactly four neighbors in (different) variable gadgets.641

The construction. Given an instance φ of 2/2/4-SAT, we first construct all vari-642

able gadgets followed by all clause gadgets. To complete the construction, we add643 (
4|W |
2

)
− 2|W | cycles of length four, which we call auxiliary cycles, as follows. Recall644

that for each clause w ∈W we create two pairs of vertices Pw = {{r1w, r2w}, {b1w, b2w}}.645

We add internally vertex disjoint 4-cycles between riw and bjw, i, j ∈ {1, 2} (Figure 4),646

i.e., 4-cycles whose only common vertices are riw and bjw. Finally, for every two647

clauses w,w′ ∈ W we add internally vertex disjoint 4-cycles between riw and rjw′ , b
i
w648

and bjw′ , and riw and bjw′ , i, j ∈ {1, 2}. Since every pair of vertices in clause gadgets649

are connected by a cycle except for 2|W | pairs, namely {r1w, r2w} and {b1w, b2w} for each650

w ∈ W , the total number of added cycles follows. We let G be the resulting graph651

and (G, k = 8|U | +
(
4|W |
2

)
, t = 1) denotes the resulting Pairwise Disjoint Cycle652

Packing instance.653

Lemma 4.1. Let G be a graph constructed from a given 2/2/4-SAT formula as654

described above. Then, any packing of distinct cycles pairwise intersecting in at most655

one vertex has size at most 8|U |+
(
4|W |
2

)
.656

Proof. Consider any cycle C which is not fully contained inside a variable gadget657

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 17

r1
w

r2
w b2

w
b1
w

Fig. 4. Clause gadget and its corresponding auxiliary cycles

(i.e. a necklace graph). We claim that such a cycle must contain at least two ver-658

tices from clause gadgets (not necessarily the same clause gadget). To see why, it is659

enough to note that C must contain at least one such vertex, say v (recall that all660

vertices in auxiliary cycles are either in clause gadgets or have degree exactly two).661

However, v has exactly one neighbor in any variable gadget and all neighbors of v not662

in clause gadgets have degree exactly two (and connect two different vertices from663

clause gadgets).664

Since any cycle not fully contained inside a variable gadget must use at least two665

vertices from clause gadgets and no two cycles can share more than a single vertex, we666

know that the total number of such cycles is at most
(
4|W |
2

)
. To conclude the proof,667

note that any variable gadget can contribute at most 8 cycles that pairwise intersect668

in at most one vertex (in this case the cycles are in fact vertex disjoint).669

Lemma 4.2. If φ is a yes-instance of 2/2/4-SAT then (G, k = 8|U |+
(
4|W |
2

)
, t =670

1) is a yes-instance of Pairwise Disjoint Cycle Packing.671

Proof. Consider a satisfying assignment of the variables such that in each clause672

there are exactly two true literals. If a variable is set to false we pack all even-673

numbered cycles in its corresponding gadget. Similarly, if a variable is set to true we674

pack all odd-numbered cycles. The total number of such cycles is 8|U | and all cycles675

are vertex disjoint. Next, we pack all
(
4|W |
2

)
− 2|W | auxiliary cycles. These cycles676

pairwise intersect in at most one vertex by construction. Hence, we still need to pack677

exactly 2|W | cycles. Let w ∈ W be a clause in φ, Pw = {{r1w, r2w}, {b1w, b2w}}, and let678

u1, u2, u3, and u4 be the variables appearing in w. Note that the vertices in {r1w, r2w}679

do not share an auxiliary cycle nor do the vertices in {b1w, b2w}. We show that for each680

clause we can pack two cycles using each of its pairs exactly once.681

Let Gui be the variable gadget constructed for variable ui, i ∈ {1, 2, 3, 4}, and682

assume, without loss of generality, that cycles C1
ui and C2

ui in Gui are marked for683

clause w. Out of the eight edges, {e1u1
, e2u1

, . . . , e1u4
, e2u4
}, we know that exactly four684

belong to some cycle that was already packed (based on the truth value of each685

variable). Hence, we need to show that, out of the remaining four free edges, {r1w, r2w}686

is linked to two of them and {b1w, b2w} is linked to the other two. If so, then we can687

This manuscript is for review purposes only.

18 A. AGRAWAL ET AL.

pack two additional cycles without violating the pairwise disjointness constraint. By688

construction, we known that (a) if ui appears positively in w then {r1w, r2w} is linked689

to e1ui and {b1w, b2w} is linked to e2ui and (b) if ui appears negatively in w then {r1w, r2w}690

is linked to e2ui and {b1w, b2w} is linked to e1ui . However, we know that in each clause691

there are exactly two true literals (and hence two false literals). If both false literals692

are negated variables, say u1 and u2, then both variables must be true and therefore693

{r1w, r2w} is linked to both e2u1
and e2u2

(which are free). If both false literals are positive694

variables, say u1 and u2, then both variables must be false and therefore {r1w, r2w} is695

linked to both e1u1
and e1u2

(which are free). If u1 is negative and u2 is positive (in w)696

then both u1 must be true and u2 must be false and therefore {r1w, r2w} is linked to697

both e2u1
and e1u2

(which are free). Using similar arguments for positive literals we can698

show that {b1w, b2w} must be linked to the remaining two free edges, which completes699

the proof.700

Lemma 4.3. If (G, k = 8|U | +
(
4|W |
2

)
, t = 1) is a yes-instance of Pairwise701

Disjoint Cycle Packing then φ is a yes-instance of 2/2/4-SAT.702

Proof. Let C be a packing of distinct cycles of size 8|U |+
(
4|W |
2

)
such that all cycles703

pairwise intersect in at most one vertex. By Lemma 4.1, we know that such a packing704

is maximum. Moreover, any cycle not fully contained in a variable gadget must use705

at least two vertices from clause gadgets and the maximum number of such cycles is706 (
4|W |
2

)
. Therefore, we can safely assume that C contains all

(
4|W |
2

)
− 2|W | auxiliary707

cycles; if an auxiliary cycle is not in C then the corresponding pair of vertices from708

clause gadgets must belong to some other cycle in C (since C is maximum). Therefore709

we can replace that cycle with the auxiliary cycle. Clearly, each variable gadget710

can contribute at most eight cycles. Assume some gadget contributes less. Then, the711

maximum size of C would be 8|U |+
(
4|W |
2

)
−1, a contradiction. It follows that for each712

clause w, each pair in Pw = {{r1w, r2w}, {b1w, b2w}} must use exactly two external edges713

belonging to variable gadgets to form a cycle and these four edges must all belong to714

different variable gadgets; it is easy to check that using more than one external edge715

or any non-external edge from a variable gadget would reduce the number of cycles716

that can be packed within the gadget by at least one.717

Assume that for some clause w the assignment implied by the packing does not718

result in exactly two true literals and two false literals. Then, we claim that one of the719

pairs in Pw cannot form a cycle. Consider the case where three literals are false (the720

other cases can be handled similarly). If all three false literals are negated variables,721

say u1, u2, and u3, then all three variables must be true and therefore {r1w, r2w} is722

linked to e2u1
, e2u2

, and e2u3
, which are free, but {b1w, b2w} is linked to e1u1

, e1u2
, and e1u3

,723

which are not free.724

The next theorem follows from combining the previous two lemmas with the fact725

that 2/2/4-SAT is NP-hard.726

Theorem 4.1. Pairwise Disjoint Cycle Packing is NP-complete for t = 1.727

4.2. A polynomial kernel for t = 1. There are many similarities but also728

some subtle differences when dealing with the cases t = 1 and t ≥ 2. For instance, for729

any value of t ≥ 1, finding a flower of order k in the graph is sufficient to solve the730

problem. On the other hand, we can not apply Reduction Rule A2 (which is the same731

as Reduction Rule B2) for all vertices of degree two when t ≥ 2. More importantly,732

finding two vertices in G with more than 2k common neighbors is enough to solve the733

problem for t ≥ 2 but not for t = 1. As we shall see, this seemingly small difference734

requires major changes when dealing with the case t = 1. We start with some classical735

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 19

results and reduction rules which will be used throughout. Whenever some reduction736

rule applies, we apply the lowest-numbered applicable rule. For clarity, we will always737

denote a reduced instance by (G, k, t) (the one where reduction rules do not apply).738

The first step in our kernelization algorithm is to run the algorithm of Theorem 2.1739

and either output a trivial yes-instance (if k vertex disjoint cycles are found) or mark740

the vertices of the feedback vertex set and denote this set by F . We proceed with the741

following simple reduction rules to handle low-degree vertices and self-loops in the742

graph.743

Reduction Rule B1. Delete vertices of degree zero or one in G.744

Reduction Rule B2. If there is a vertex v of degree exactly two in G then delete745

v and connect its two neighbors by a new edge.746

Reduction Rule B3. If there exists a vertex v ∈ V (G) with a self-loop then747

delete the loop (not the vertex) and decrease the parameter k by one.748

Reduction Rule B4. If there is a pair of vertices u and v in V (G) such that749

there are more than two parallel edges between them then reduce the multiplicity of750

the edge to two.751

Lemma 4.4. Reduction Rule B2 is safe.752

Proof. Let (G, k, t) denote the original instance and let (G′, k, t) denote the in-753

stance obtained after applying Reduction Rule B2, i.e. after deleting vertex v and754

adding an edge between its two neighbors u and w.755

Assume (G′, k, t) is a yes-instance and let C′ = {C ′1, . . . , C ′k} denote the set of k756

distinct cycles satisfying |V (C ′i)∩ V (C ′j)| ≤ 1, for all 1 ≤ i, j ≤ k and i 6= j. Consider757

a cycle C ′ ∈ C′. If only one of u or w is in C ′ then C ′ is also a cycle in G. If both u758

and w are in C ′ then every other cycle in C′ contains at most one of the two. Hence,759

if such a cycle exists we can obtain a corresponding cycle in G by simply replacing760

the edge (u,w) by the path formed by u, v, and w.761

For the other direction, let (G, k, t) be a yes-instance and let C = {C1, . . . , Ck}762

denote the corresponding solution. Assume, without loss of generality, that there763

exists a cycle C ∈ C such that v ∈ V (C); otherwise C is also a solution for G′. Since764

v has degree two in G, both u and w must also belong to C. Let C ′ denote the cycle765

in G′ obtained by deleting v and connecting u and w by an edge. We claim that766

C′ = (C \ {C}) ∪ C ′ is a solution in G′. To see why, it is enough to note there can be767

at most one cycle in C containing v; otherwise at least one pair of cycles in C violates768

the disjointness constraint |V (Ci) ∩ V (Cj)| ≤ 1, 1 ≤ i, j ≤ k and i 6= j.769

Lemma 4.5. Reduction Rule B3 is safe.770

Proof. Let (G, k, t) denote the original instance and let (G′, k − 1, t) denote the771

instance obtained after applying Reduction Rule B3, i.e. after deleting the loop at772

vertex v.773

Assume (G′, k− 1, t) is a yes-instance and let C′ = {C ′1, . . . , C ′k−1} denote the set774

of k − 1 distinct cycles satisfying |V (C ′i) ∩ V (C ′j)| ≤ 1, for all 1 ≤ i, j ≤ k − 1 and775

i 6= j. Any cycle in C′ can intersect with {v} in at most one vertex. Therefore, adding776

the cycle corresponding to the loop at v we obtain a solution of size k for G.777

For the other direction, let (G, k, t) be a yes-instance and let C = {C1, . . . , Ck}778

denote the corresponding solution. Even though v could have multiple self-loops, each779

such loop corresponds to at most one cycle in C. Therefore, (G′, k − 1, t) is also a780

yes-instance.781

Lemma 4.6. Reduction Rule B4 is safe.782

This manuscript is for review purposes only.

20 A. AGRAWAL ET AL.

Proof. Assume u and v are connected by more than two parallel edges in G. Since783

t = 1, u and v can appear together in at most one cycle. Either this cycle includes784

other vertices, in which case at most one (u, v) edge is used, or the cycle consists of785

only u and v, in which case exactly two (u, v) edges are required. Therefore, reducing786

the multiplicity of any edge to two is safe.787

Once none of the above reduction rules are applicable, our next goal is to bound788

the maximum degree in the graph. To do so, we make use of the following.789

Lemma 4.7 (see [8]). Given a (multi) graph G, an integer k, and a vertex790

v ∈ V (G), there is a polynomial-time algorithm that either finds a v-flower of order791

k or finds a set Zv such that Zv ⊆ V (G) \ {v} intersects all cycles passing through v,792

|Zv| ≤ 2k, and there are at most 2k edges incident to v and with second endpoint in793

Zv.794

A q-star, q ≥ 1, is a graph with q + 1 vertices, one vertex of degree q and all other795

vertices of degree 1. Let G be a bipartite graph with vertex bipartition (A,B). A set796

of edges M ⊆ E(G) is called a q-expansion of A into B if797

• Every vertex of A is incident with exactly q edges of M798

• M saturates exactly q|A| vertices in B, i.e. there is a set of q|A| vertices in799

B that are incident to edges in M .800

Lemma 4.8 (see [8, 30]). Let q be a positive integer and G be a bipartite graph801

with vertex bipartition (A,B) such that |B| ≥ q|A| and there are no isolated vertices802

in B. Then, there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that:803

• X has a q-expansion into Y and804

• no vertex in Y has a neighbour outside X, i.e. N(Y) ⊆ X.805

Furthermore, the sets X and Y can be found in time polynomial in the size of G.806

For every vertex v ∈ V (G) of high degree (which will be specified later), we apply the807

algorithm of Lemma 4.7. If the algorithm finds a v-flower of order k, the following808

reduction rule allows us to deal with it.809

Reduction Rule B5. If G has a vertex v such that there is a v-flower of order810

at least k then return a trivial yes-instance.811

Hence, in what follows we assume that no such flower was found but instead we have812

a set Zv of size at most 2k such that Zv ⊆ V (G) intersects all cycles passing through813

v. Consider the connected components of the graph G[V (G) \ (Zv ∪ {v})]. At most814

k − 1 of those components can contain a cycle, as otherwise we again have a trivial815

yes-instance consisting of k vertex disjoint cycles.816

Reduction Rule B6. If there are k or more components in G \ ({v} ∪Zv) con-817

taining a cycle then return a trivial yes-instance.818

Moreover, for every component D of G[V (G)\(Zv∪{v})], we have |NG(v)∩V (D)| ≤ 1.819

In other words, v has at most one neighbor in any component and out of those820

components at most k − 1 are not trees (see Figure 5). Let D = {D1, D2, . . . , Dq}821

denote those trees in which v has a neighbor. Since the minimum degree of the graph822

is three, every leaf of a tree in D must have at least one neighbor in Zv.823

Lemma 4.9. Let C = {C1, . . . , Ck} be a solution in G and let C be a cycle in C824

such that V (C)∩(Zv∪{v}) 6= ∅. Then, C can intersect with at most 2k+1 components825

in D and therefore the solution C can intersect with at most 2k2 + k components in826

D.827

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 21

v

Zv

D1 D2 Dq R1 Rk�1

Fig. 5. A vertex v ∈ V (G), its corresponding set Zv, and the set D = {D1, D2, . . . , Dq}

Proof. Consider any cycle C ∈ C that intersects Zv ∪ {v}. We contract all edges828

of C that are not incident to any vertex in Zv ∪ {v} and denote this new cycle by829

C ′. Between any two consecutive vertices in C ′ ∩ (Zv ∪ {v}), there is either an edge830

from E(G) or a path passing through a vertex z /∈ Zv ∪ {v}, where z corresponds to831

a contracted path from some component in G \ (Zv ∪ {v}). Since |Zv ∪ {v}| ≤ 2k+ 1,832

there can be at most 2k + 1 such vertices. Therefore, any cycle C ∈ C can intersect833

with at most 2k+ 1 components from G \ (Zv ∪{v}). Summing up for the k cycles in834

C, we get the desired bound.835

We now construct a bipartite graph H with bipartition (A = Zv, B = D). We836

slightly abuse notation and assume that every component in D corresponds to a vertex837

in B and every vertex in Zv corresponds to a vertex in A. For every Di ∈ D and838

for every z ∈ Zv, (Di, z) ∈ E(H) if and only if there exists u ∈ V (Di) such that839

(u, z) ∈ E(G). After exhaustive application of Reduction Rule B4, every pair of840

vertices in G can have at most two edges between them. In particular, there can be841

at most two edges between any z ∈ Zv and v. Therefore, if the degree of v in G is842

more than (2k2 + k + 2)2k + 3k − 1 then the number of components |D| is at least843

(2k2 + k + 2)2k (taking into account the at most k − 1 neighbors of v in components844

containing a cycle as well as the at most 2k edges incident to v and some vertex in845

Zv). Consequently, |D| ≥ (2k2 + k + 2)|Zv|. We are now ready to state our main846

reduction rule.847

Reduction Rule B7. If there exists a vertex v ∈ V (G) such that dG(v) > (2k2+848

k+ 2)2k+ 3k−1 then apply Lemma 4.8 with q = 2k2 +k+ 2 in the bipartite graph H.849

• Let D′ ⊆ D and Z ′v ⊆ Zv be the sets obtained after applying Lemma 4.8 with850

q = 2k2+k+2, A = Zv, and B = D, such that Z ′v has a (2k2+k+2)-expansion851

into D′ in H.852

• Delete all the edges of the form (u, v) ∈ E(G) such that u ∈ Di and Di ∈ D′.853

• Add two parallel edges between v and every vertex in Z ′v.854

Lemma 4.10. Reduction Rule B7 is safe.855

Proof. Let (G′, k, t) be the instance obtained after applying Reduction Rule B7,856

let (G, k, t) be the original instance, and let C = {C1, . . . , Ck} be the cycles in G857

satisfying the pairwise intersection constraint. We let Cv ⊆ C be the set of cycles858

containing the high degree vertex v. Note that any such cycle must also contain at859

least one vertex from Zv. From Lemma 4.8 and Reduction Rule B7, we know that860

NG(D′) ⊆ Z ′v. Hence, any cycle C ∈ Cv which contains a vertex from D′ must also861

This manuscript is for review purposes only.

22 A. AGRAWAL ET AL.

contain a vertex from Z ′v. In other words, whenever a cycle passes through D′ it must862

also pass through Z ′v. We let C′v ⊆ Cv denote all these cycles. Note that any cycle in863

C \C′v is not modified in G′ and hence such cycles can still be packed in G′. Moreover,864

for any two cycles C1 and C2 in C′v, we have (V (C1) ∩ Z ′v) ∩ (V (C2) ∩ Z ′v) = ∅, as865

both C1 and C2 contain v. Now, let V (C) ∩ Z ′v denote the set of vertices in cycle866

C ∈ C′v. We can pick any vertex z ∈ V (C)∩Z ′v and replace the cycle C with the cycle867

consisting of only z and v (as we added two edges between them). Consequently, for868

any packing C of size k in G we can find a corresponding packing C′ of size k in G′,869

as needed.870

Assume (G′, k, t) is a yes-instance and let C′ = {C ′1, . . . , C ′k} be a collection of k871

cycles pairwise intersecting in at most one vertex. Consider those cycles in C′ which872

contain an edge (v, z) /∈ E(G) (z ∈ Z ′v). Such cycles can be of two types. Either873

they contain a single edge (v, z) /∈ E(G) or they contain two edges (v, z) /∈ E(G) and874

(v, z′) /∈ E(G), with z′ possibly equal to z. Therefore, for every vertex z ∈ Z ′v, we875

need to have two components whose intersection with C is empty. However, we know876

that, for every z ∈ Z ′v, z is connected to at least q = 2k2 + k+ 2 distinct components877

in D′. By Lemma 4.9, C intersects at most 2k2 +k components in D′. In other words,878

for every vertex z ∈ Z ′v there are at least two components in D′, say D1 and D2, such879

that V (D1) ∩ V (C) = V (D2) ∩ V (C) = ∅. Consequently, we can find a solution in G880

by replacing any edge of the form (v, z) /∈ E(G) by a path that starts from z, goes881

through D1 (or D2), and finally reaches v.882

We now have all the required ingredients to bound the size of our kernel. From883

Theorem 2.1, we know that the graph has a feedback vertex set F of size at most884

O(k log k). The degree of any vertex in the graph is at least three (Reduction Rule B2)885

and at most in O(k3) (Reduction Rule B7). Theorem 4.2 follows from combining these886

facts with Lemma 4.11.887

Lemma 4.11 (see [8]). Let G = (V,E) be an undirected (multi) graph having888

minimum degree at least three, maximum degree at most d, and a feedback vertex set889

of size at most r. Then, |V (G)| < (d+ 1)r and |E(G)| < 2dr.890

Theorem 4.2. For t = 1, Pairwise Disjoint Cycle Packing admits a kernel891

with O(k4 log k) vertices and O(k4 log k) edges.892

4.3. A polynomial compression for t ≥ 2 (independent of t). When t ≥ 2,893

finding two vertices in G with 2k internally vertex-disjoint paths connecting them is894

enough to pack k cycles pairwise intersecting in at most 2 vertices. Hence, bounding895

the maximum degree is relatively easy. We first mark the feedback vertex set F and896

exhaustively apply Reduction Rule B1 and the following modified variant of Reduction897

Rule B2.898

Reduction Rule B8. If there exists a set of vertices P = {v1, . . . , vt+2} ⊆ V (G)899

such that G[P] is a path and dG(vi) = 2, 2 ≤ i ≤ t+ 1, then contract the edge v1v2.900

As before, for every vertex v ∈ V (G), we apply the algorithm of Lemma 4.7. If the901

algorithm finds a v-flower of order k, we apply Reduction Rule B5. Otherwise, consider902

the connected components of the graph G[V (G) \ (Zv ∪ {v})]. We ignore the at most903

k−1 components that can contain a cycle and focus on the set D = {D1, D2, . . . , Dq}904

of trees in which v has a neighbor (recall that |NG(v) ∩ V (D)| ≤ 1 for all D ∈ D and905

each component D must have a neighbor in Zv).906

Reduction Rule B9. If |D| > 4k− 2 (or equivalently if dG(v) > 7k− 3) return907

a trivial yes-instance.908

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 23

Lemma 4.12. Reduction Rule B9 is safe.909

Proof. Let v be a vertex in V (G), Zv be the set given by Lemma 4.7, and D =910

{D1, D2, . . . , Dq} be the set of trees in which v has a neighbor. Observe that each911

D ∈ D contains at least one vertex which is adjacent to some vertex in Zv. Let912

Zv = {z1, z2, . . . , zl}, where l ≤ 2k. For i = 1 to l (in increasing order), we let913

Di = {D | D ∈ D ∧ zi ∈ NG(D) ∩ Zv ∧ ∀i′<iD 6∈ Di′}. In other words, Di contains a914

component D ∈ D whenever D contains a vertex which is adjacent to zi and D does915

not belong to Di′ , for all i′ < i.916

Once we have constructed the set Di, for all i ∈ [l], we arbitrarily pair the917

components in Di (all pairs being disjoint); there can be at most one component918

in Di which is left unpaired. If we can find k pairs in ∪i∈[l]Di, then for each pair919

(D1, D2) ∈ Di we can pack a cycle formed by vertices in V (D1) ∪ V (D2) ∪ {v, zi}.920

Every pair of such cycles intersects in at most two vertices, namely {v, zi}, and we921

have a total of at least k cycles, as needed. Otherwise, |D| ≤ 2(k − 1) + l ≤ 4k − 2.922

Since v can have at most k−1 additional neighbors in G[V (G)\ (Zv ∪{v})] and there923

are at most 2k edges incident to v with second endpoint in Zv, the bound on dG(v)924

follows.925

Having bounded the maximum degree of any vertex by O(k), we immediately926

obtain a bound of O(k2 log k) on |T≤1|, |T≥3|, and the number of maximal degree-two927

paths in T2. Recall that T≤1, T2, and T≥3, are the sets of vertices in T = G[V (G)\F]928

having degree at most one in T , degree exactly two in T , and degree greater than929

two in T , respectively. To bound the size of T2, note that if we mark all vertices930

in F ∪ NG(F) we would have marked a total of O(k2 log k) vertices and the only931

unmarked vertices form (not necessarily maximal) degree-two paths in T2 (and G),932

which we call segments. However, we know from Reduction Rule B8 that the size of933

any segment is at most t+ 1. Moreover, the total number of such segments is at most934

O(k2 log k). Putting it all together, we now have a kernel with O(tk2 log k) vertices.935

Lemma 4.13. For any t ≥ 2, Pairwise Disjoint Cycle Packing admits a936

kernel with O(tk2 log k) vertices.937

More work is needed to get rid of the dependence on t. The first step is to show938

that we can solve Pairwise Disjoint Cycle Packing in cp(k)nO(1) time, where c939

is a fixed constant and p(.) is a polynomial function in k. In the second step, we940

introduce a “succinct” version of Pairwise Disjoint Cycle Packing, namely Suc-941

cinct Pairwise Disjoint Cycle Packing, and show that we can reduce Pairwise942

Disjoint Cycle Packing to an instance of Succinct Pairwise Disjoint Cycle943

Packing where all the information can be encoded using a number of bits polynomi-944

ally bounded in k alone. As is usually the case, we assume that the weight of a set of945

vertices/edges is equal to the sum of the weights of the individual vertices/edges.946

Succinct Pairwise Disjoint Cycle Packing Parameter: k
Input: An undirected (multi) graph G, integers k and t, a weight function α :
V (G)→ N, and a weight function β : E(G)→ N.
Question: Does G have at least k distinct cycles C1, . . . , Ck such that α(V (Ci)∩
V (Cj)) ≤ t and β(E(Ci) ∩ E(Cj)) ≤ t for all i 6= j?

947

Lemma 4.14. For any t ≥ 2, Pairwise Disjoint Cycle Packing can be948

solved in 2k
3 log knO(1) time.949

Proof. We first obtain the kernel guaranteed by Lemma 4.13. Note that both the950

This manuscript is for review purposes only.

24 A. AGRAWAL ET AL.

number of vertices having degree three or more and the number of segments in the951

reduced instance is bounded by O(k2 log k). We assume, without loss of generality,952

that any cycle in the solution must contain at least one degree-three vertex (if some953

components of G consist of degree-two cycles we can greedily pack those cycles).954

Hence, we can guess, for each cycle, which of those O(k2 log k) vertices and segments955

will be included in O(2k
2 log k) time. Repeating this process for each of the k cycles956

and checking that they satisfy the pairwise intersection constraint can therefore be957

accomplished in O(2k
3 log k) time.958

Theorem 4.3. For any t ≥ 2, we can compress an instance of Pairwise Dis-959

joint Cycle Packing to an equivalent instance of Succinct Pairwise Disjoint960

Cycle Packing using at most O(k5 log2 k) bits. In other words, Pairwise Disjoint961

Cycle Packing admits a polynomial compression.962

Proof. Given an instance of Pairwise Disjoint Cycle Packing we apply the963

kernelization algorithm to obtain an equivalent instance on at most O(tk2 log k) ver-964

tices. Then, we create an equivalent instance of Succinct Pairwise Disjoint Cy-965

cle Packing, where each vertex is assigned weight 1 and each edge is assigned weight966

0. Note that in this new instance we still have a total number of at most O(k2 log k)967

segments each of size at most t+ 1. We replace each such segment by an edge whose968

weight is equal to the number of vertices on the segment, which requires log t ≤ log n969

bits at most. However, if log n > k3 log k, by Lemma 4.14, we can solve the corre-970

sponding Pairwise Disjoint Cycle Packing instance in time polynomial in n (and971

obtain a polynomial kernel). Hence, the number of bits required to encode the weight972

of each such edge is at most k3 log k. Multiplying by the total number of segments973

we obtain the claimed bound.974

5. Conclusion. To summarize, we have showed that when relaxing the Dis-975

joint Cycle Packing problem by allowing pairwise overlapping cycles (i.e. Pair-976

wise Disjoint Cycle Packing) then polynomial kernels are relatively easy to ob-977

tain, even when cycles can share at most one vertex. On the other hand, relaxing978

the Disjoint Cycle Packing problem by limiting the number of cycles each vertex979

can appear in has much more diverse consequences on the kernelization complexity.980

However, even though we obtain a polynomial kernel for Almost Disjoint Cycle981

Packing with t = k
c , where c is a constant, it is not clear whether the problem is982

even NP-complete in this case. It would be very interesting to settle this question983

(probably more interesting to settle it negatively). Finally, it would also be inter-984

esting to consider relaxed variants of more problems known to admit no polynomial985

kernels and determine whether (for any of them) there exists a “smooth” relation-986

ship between relaxation parameters and kernelization complexity, i.e. whether kernel987

bounds improve as the relaxation parameter increases.988

REFERENCES989

[1] H. Abasi, N. H. Bshouty, A. Gabizon, and E. Haramaty, On r-simple k-path, in Mathe-990
matical Foundations of Computer Science 2014 - 39th International Symposium, MFCS,991
2014, pp. 1–12.992

[2] A. Agrawal, D. Lokshtanov, D. Majumdar, A. E. Mouawad, and S. Saurabh, Kerneliza-993
tion of cycle packing with relaxed disjointness constraints, in 43rd International Colloquium994
on Automata, Languages, and Programming, ICALP, 2016, pp. 26:1 – 26:14.995

[3] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth,996
SIAM Journal on Computing, 25 (1996), pp. 1305–1317.997

This manuscript is for review purposes only.

CYCLE PACKING WITH RELAXED DISJOINTNESS CONSTRAINTS 25

[4] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin, On problems without998
polynomial kernels, Journal of Computer and System Sciences, 75 (2009), pp. 423–434.999

[5] H. L. Bodlaender and A. M. C. A. Koster, Combinatorial optimization on graphs of bounded1000
treewidth, The Computer Journal, 51 (2008), pp. 255–269.1001

[6] H. L. Bodlaender, S. Thomassé, and A. Yeo, Kernel bounds for disjoint cycles and disjoint1002
paths, Theoretical Computer Science, 412 (2011), pp. 4570–4578.1003

[7] B. Courcelle, The monadic second-order logic of graphs. I. recognizable sets of finite graphs,1004
Information and Computation, 85 (1990), pp. 12 – 75.1005

[8] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,1006
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015.1007

[9] H. Dell and D. Marx, Kernelization of packing problems, in Proceedings of the 23rd Annual1008
ACM-SIAM Symposium on Discrete Algorithms, SODA, 2012, pp. 68–81.1009

[10] H. Dell and D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the1010
polynomial-time hierarchy collapses, Journal of the ACM, 61 (2014), pp. 23:1–23:27.1011

[11] R. Diestel, Graph Theory, 4th Edition, vol. 173 of Graduate texts in mathematics, Springer,1012
2012.1013

[12] R. G. Downey and M. R. Fellows, Parameterized complexity, Springer-Verlag, 1997.1014
[13] A. Drucker, New limits to classical and quantum instance compression, SIAM Journal on1015

Computing, 44 (2015), pp. 1443–1479.1016
[14] P. Erdős and L. Pósa, On independent circuits contained in a graph, Canadian Journal of1017

Mathematics, 17 (1965), pp. 347–352.1018
[15] H. Fernau, A. López-Ortiz, and J. Romero, Kernelization algorithms for packing problems1019

allowing overlaps, in Theory and Applications of Models of Computation - 12th Annual1020
Conference, TAMC, 2015, pp. 415–427.1021

[16] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag New York, Inc.,1022
Secaucus, NJ, USA, 2006.1023

[17] L. Fortnow and R. Santhanam, Infeasibility of instance compression and succinct PCPs for1024
NP, Journal of Computer and System Sciences, 77 (2011), pp. 91–106.1025

[18] A. Gabizon, D. Lokshtanov, and M. Pilipczuk, Fast algorithms for parameterized problems1026
with relaxed disjointness constraints, in Algorithms - 23rd Annual European Symposium,1027
ESA, 2015, pp. 545–556.1028

[19] M. Grohe, Logic, graphs, and algorithms., Electronic Colloquium on Computational Complex-1029
ity (ECCC), 14 (2007).1030

[20] D. Hermelin, S. Kratsch, K. Soltys, M. Wahlström, and X. Wu, A completeness theory1031
for polynomial (turing) kernelization, Algorithmica, 71 (2015), pp. 702–730.1032

[21] D. Hermelin and X. Wu, Weak compositions and their applications to polynomial lower1033
bounds for kernelization, in Proceedings of the 23rd Annual ACM-SIAM Symposium on1034
Discrete Algorithms, SODA, 2012, pp. 104–113.1035

[22] S. Kratsch, Recent developments in kernelization: A survey, Bulletin of the EATCS, 1131036
(2014).1037

[23] D. Lokshtanov, N. Misra, and S. Saurabh, Kernelization - preprocessing with a guarantee,1038
in The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R.1039
Fellows on the Occasion of His 60th Birthday, 2012, pp. 129–161.1040

[24] D. Lokshtanov, F. Panolan, M. S. Ramanujan, and S. Saurabh, Lossy kernelization,1041
CoRR, abs/1604.04111 (2016).1042

[25] R. Niedermeier, Invitation to fixed-parameter algorithms, Oxford University Press, Oxford,1043
2006.1044

[26] J. Ramon and S. Nijssen, Polynomial-delay enumeration of monotonic graph classes, The1045
Journal of Machine Learning Research, 10 (2009), pp. 907–929.1046

[27] D. Ratner and M. K. Warmuth, NxN puzzle and related relocation problem, Journal of1047
Symbolic Computation, 10 (1990), pp. 111–138.1048

[28] J. Romero and A. López-Ortiz, The G-packing with t-overlap problem, in Algorithms and1049
Computation - 8th International Workshop, WALCOM, 2014, pp. 114–124.1050

[29] J. Romero and A. López-Ortiz, A parameterized algorithm for packing overlapping subgraphs,1051
in Computer Science - Theory and Applications - 9th International Computer Science1052
Symposium in Russia, CSR, 2014, pp. 325–336.1053

[30] S. Thomassé, A 4k2 kernel for feedback vertex set, ACM Transactions on Algorithms, 6 (2010),1054
pp. 32:1–32:8.1055

This manuscript is for review purposes only.

	Introduction
	Preliminaries
	Almost Disjoint Cycle Packing
	Refuting polynomial kernels for t = O(k1 -)
	A kernel for Almost Disjoint Cycle Packing

	Pairwise Disjoint Cycle Packing
	NP-completeness for t = 1
	A polynomial kernel for t = 1
	A polynomial compression for t 2 (independent of t)

	Conclusion
	References

