
Title: Bidimensionality And Kernels
Name: Daniel Lokshtanov1

Affil./Addr. Department of Informatics, University of Bergen,
Norway

Keywords: Kernelization; Bidimensionality; Graph Algorithms;
Parameterized Complexity; Polynomial Time Pre-
processing

SumOriWork: 2010; Fomin, Lokshtanov, Saurabh, Thilikos

Bidimensionality And Kernels
Daniel Lokshtanov1

Department of Informatics, University of Bergen, Norway

Years aud Authors of Summarized Original Work

2010; Fomin, Lokshtanov, Saurabh, Thilikos

Keywords

Kernelization; Bidimensionality; Graph Algorithms; Parameterized Complexity; Poly-
nomial Time Pre-processing

Problem Definition

The theory of Bidimensionality simultaneously provides subexponential time parame-
terized algorithms and efficient approximation schemes for a wide range of optimization
problems on planar graphs, and more generally, on classes of graphs excluding a fixed
graph H as a minor. It turns out that Bidimensionality also provides linear kernels for
a multitude of problems on these classes of graphs. The results stated here unify and
generalize a number of kernelization results for problems on planar graphs and graphs
of bounded genus, see [2] for a more thorough discussion.

Kernelization. Kernelization is a mathematical framework for the study of polyno-
mial time pre-processing of instances of computationally hard problems. Let G be the
set of all graphs. A parameterized graph problem is a subset Π of G ×N. An instance is
a pair (G, k) ∈ G × N. The instance (G, k) is a “yes”-instance of Π if (G, k) ∈ Π and
a “no”-instance otherwise. A strict kernel with ck vertices for a parameterized graph
problem Π and constant c > 0 is an algorithm A with the following properties.

• A takes as input an instance (G, k), runs in polynomial time, and outputs an-
other instance (G′, k′).

• (G′, k′) is a “yes”-instance of Π if and only if (G, k) is.
• |V (G′)| ≤ c · k and k′ ≤ k.

2

A linear kernel for a parameterized graph problem is a strict kernel with ck vertices
for some constant c. We remark that our definition of a linear kernel is somewhat
simplified compared to the classic definition [8], but that it is essentially equivalent.
For a discussion of the definition of a kernel we refer to the textbook of Cygan et al. [4].

Graph Classes. Bidimensionality theory primarily concerns itself with graph prob-
lems where the input graph is restricted to be in a specific graph class. A graph class
C is simply a subset of the set G of all graphs. As an example, the set of all planar
graphs is a graph class. Another example of a graph class is the set of all apex graphs.
Here a graph H is apex if H contains a vertex v such that deleting v from H leaves a
planar graph. Notice that every planar graph is apex.

A graph H is a minor of a graph G if H can be obtained from G by deleting
vertices, deleting edges, or contracting edges. Here contracting the edge {u, v} in G
means identifying the vertices u and v and removing all self loops and double edges. If
H can be obtained from G just by contracting edges then H is a contraction of G.

A graph class C is minor closed if every minor of a graph in C is also in C. A
graph class C is minor-free if C is minor closed and there exists a graph H /∈ C. A graph
class C is apex-minor-free if C is minor closed and there exists an apex graph H /∈ C.
Notice that H /∈ C for a minor closed class C implies that H can not be a minor of any
graph G ∈ C.

CMSO Logic. CMSO logic stands for Counting Monadic Second Order logic, a for-
mal language to describe properties of graphs. A CMSO-sentence is a formula ψ with
variables for single vertices, vertex sets, single edges and edge sets, existential and uni-
versal quantifiers (∃ and ∀), logical connectives ∨, ∧ and ¬, as well as the following
operators:

• v ∈ S where v is a vertex variable and S is a vertex set variable. The operator
returns true if the vertex v is in the vertex set S. Similarly CMSO has an
operator e ∈ X where e is an edge variable and X is an edge set variable.

• v1 = v2 where v1 and v2 are vertex variables. The operator returns true if v1 and
v2 are the same vertex of G. There is also an operator e1 = e2 to check equality
of two edge variables e1 and e2.

• adj(v1, v2) is defined for vertex variables v1 and v2 and returns true if v1 and v2
are adjacent in G.

• inc(v, e) is defined for a vertex variable v and edge variable e. inc(v, e) returns
true if the edge e is incident to the vertex v in G, in other words, if v is one of
the two endpoints of e.

• cardp,q(S) is defined for every pair of integers p, q and vertex or edge set variable
S. cardp,q(S) returns true if |S| ≡ q mod p. For an example card2,1(S) returns
true if |S| is odd.

When we quantify a variable we need to specify whether it is a vertex variable,
edge variable, vertex set variable or edge set variable. To specify that an existentially
quantified variable x is a vertex variable we will write ∃x ∈ V (G). We will use ∀e ∈
E(G) to universally quantify edge variables and ∃X ⊆ V (G) to existentially quantify
vertex set variables. We will always use lower case letters for vertex and edge variables,
and upper case letters for vertex set and edge set variables.

A graph G on which the formula ψ is true is said to model ψ. The notation
G |= ψ means that G models ψ. As an example, consider the formula

ψ1 = ∀v ∈ V (G) ∀x ∈ V (G) ∀y ∈ V (G) ∀z ∈ V (G) :

(x = y) ∨ (x = z) ∨ (y = z) ∨ ¬adj(v, x) ∨ ¬adj(v, y) ∨ ¬adj(v, z)

3

The formula ψ1 states that for every four (not necessarily distinct) vertices v, x,
y, z, if x, y and z are distinct, then v is not adjacent to all of {x, y, z}. In other words,
a graph G models φ1 if and only if the degree of every vertex G is at most 2. CMSO
can be used to express many graph properties, such as G having a hamiltonian cycle,
G being 3-colorable, or G being planar.

In CMSO one can also write formulas where one uses free variables. These are
variables that are used in the formula but never quantified with an ∃ or ∀ quantifier.
As an example, consider the formula:

ψDS = ∀u ∈ V (G) ∃v ∈ V (G) : (v ∈ S) ∧ (u = v ∨ adj(u, v))

The variable S is a free variable in ψDS because it used in the formula, but is never
quantified. It does not make sense to ask whether a graph G models ψDS because when
we ask whether the vertex v is in S, the set S is not well defined. However, if the set
S ⊆ V (G) is provided together with the graph G, we can evaluate the formula ψDS.
ψDS will be true for a graph G and set S ⊆ V (G) if, for every vertex u ∈ V (G), there
exists a vertex v ∈ V (G) such that v is in S and either u = v or u and v are neighbors
in G In other words, the pair (G,S) models ψDS (written (G,S) |= ψDS) if and only if
S is a dominating set in G (i.e. every vertex not in S has a neighbor in S).

CMSO-Optimization Problems. We are now in position to define the parameterized
problems for which we will obtain kernelization results. For every CMSO formula ψ
with a single free vertex set variable S, we define the following two problems.

ψ-CMSO-Min (Max):
INPUT: Graph G and integer k.

QUESTION: Does there exist a vertex set S ⊆ V (G) such that (G,S) |= ψ and
|S| ≤ k (|S| ≥ k for Max).

Formally, ψ-CMSO-Min (Max) is a parameterized graph problem where the
“yes” instances are exactly the pairs (G, k) such that there exists a vertex set S of
size at most k (at least k) and (G,S) |= ψ. We will use the term CMSO-optimization
problems to refer to ψ-CMSO-Min (Max) for some CMSO formula ψ.

Many well-studied and not so well-studied graph problems are CMSO-optimization
problems. Examples include Vertex Cover, Dominating Set, Cycle Packing,
the list goes on and on (see [2]). We encourage the interested reader to attempt to
formulate the problems mentioned above as CMSO-optimization problems. We will be
discussing CMSO-optimization problems on planar graphs and on minor-free classes of
graphs.

Our results are for problems where the input graph is promised to belong to a
certain graph class C. We formalize this by encoding membership in C in the formula
ψ. For an example, ψDS-CMSO-Min is the well-studied Dominating Set problem.
If we want to restrict the problem to planar graphs, we can make a new CMSO logic
formula ψplanar such that G |= ψplanar if and only if G is planar. We can now make

a new formula
ψ′DS = ψDS ∧ ψplanar

and consider the problem ψ′DS-CMSO-Min. Here (G, k) is a “yes” instance if G has
a dominating set S of size at most k and G is planar. Thus, this problem also forces
us to check planarity of G, but this is polynomial time solvable and therefore not an
issue with repsect to kernelization. In a similar manner one can restrict any CMSO-
optimization problem to a graph class C, as long as there exists a CMSO formula ψC
such that G |= ψC if and only if G ∈ C. Luckily, such a formula is known to exist for
every minor-free class C. We will say that a parameterized problem Π is a problem on
the graph class C if, for every “yes” instance (G, k) of Π, the graph G is in C.

4

For any CMSO-Min problem Π we have that (G, k) ∈ Π implies that (G, k′) ∈
Π for all k′ ≥ k. Similarly, for a CMSO-Max problem Π we have that (G, k) ∈ Π
implies that (G, k′) ∈ Π for all k′ ≤ k. Thus the notion of “optimality” is well defined
for CMSO-optimization problems. For the problem Π = ψ-CMSO-Min, we define

OPTΠ(G) = min {k : (G, k) ∈ Π} .

If no k such that (G, k) ∈ Π exists, OPTΠ(G) returns +∞. Similarly, for the problem
Π = ψ-CMSO-Max,

OPTΠ(G) = max {k : (G, k) ∈ Π} .

If no k such that (G, k) ∈ Π exists, OPTΠ(G) returns −∞. We define SOLΠ(G) to be
a function that given as input a graph G returns a set S of size OPTΠ(G) such that
(G,S) |= ψ, and returns null if no such set S exists.

Bidimensionality For many problems it holds that contracting an edge can not in-
crease the size of the optimal solution. We will say that such problems are contraction
closed. Formally a CMSO-optimization problem Π is contraction-closed if for any G
and uv ∈ E(G), OPTΠ(G/uv) ≤ OPTΠ(G). If contracting edges, deleting edges and
deleting vertices can not increase the size of the optimal solution, we say that the
problem is minor-closed.

Informally, a problem is bidimensional if it is minor closed and the value of the
optimum grows with both dimensions of a grid. In other words, on a (k × k)-grid the
optimum should be approximately quadratic in k. To formally define bidimensional
problems we first need to define the (k × k)-grid �k, as well as the related graph Γk.

For a positive integer k, a k× k grid, denoted by �k, is a graph with vertex set
{(x, y) : x, y ∈ {1, . . . , k}}. Thus �k has exactly k2 vertices. Two different vertices
(x, y) and (x′, y′) are adjacent if and only if |x−x′|+ |y− y′| = 1. For an integer k > 0,
the graph Γk is obtained from the grid �k by adding in every grid cell the diagonal edge
going up and to the right, and making the bottom right vertex of the grid adjacent to
all border vertices. The graph Γ9 is shown in Fig. 1.

Fig. 1. The graph Γ9.

We are now ready to give the definition of bidimensional problems. A CMSO-
optimization problem Π is contraction-bidimensional if it is contraction-closed, and
there exists a constant c > 0 such that OPTΠ(Γk) ≥ ck2. Similarly, Π is minor-
bidimensional if it is minor-closed, and there exists a constant c > 0 such that
OPTΠ(�k) ≥ ck2.

5

As an example, the Dominating Set problem is contraction-bidimensional.
It is easy to verify that contracting an edge may not increase the size of the smallest
dominating set of a graph G, and that Γk does not have a dominating set of size smaller

than (k−2)2
7

.

Separability Our kernelization algorithms work by recursively splitting the input
instance by small separators. For this to work, the problem has to be somewhat well
behaved in the following sense. Whenever a graph is split along a small separator into
two independent sub-instances L and R, the size of the optimum solution for the graph
G[L] is relatively close to the size of the intersection between L and the optimum
solution to the original graph G. We now proceed with a formal definition of what it
means for a problem to be well behaved.

For a set L ⊆ V (G) we define ∂(L) to be the set of vertices in L with at least
one neighbor outside L. A CMSO-optimization problem Π is linear-separable if there
exists a constant c ≥ 0 such that for every set L ⊆ V (G) we have

|SOLΠ(G) ∩ L| − c · |∂(L)| ≤ OPTΠ(G[L]) ≤ |SOLΠ(G) ∩ L|+ c · |∂(L)|.

For a concrete example, we encourage the reader to consider the Dominating
Set problem, and to prove that for Dominating Set the inequalities above hold.
The crux of the argument is to augment optimal solutions of G and G[L] by adding all
vertices in ∂(L) to them.

Key Results

We can now state our main theorem.

Theorem 1. Let Π be a separable CMSO-optimization problem on the graph class
C. Then, if Π is minor-bidimensional and C is minor-free, or if Π is contraction-
bidimensional and C is apex-minor-free, Π admits a linear kernel.

The significance of Theorem 1 is that it is, in general, quite easy to formulate
graph problems as CMSO-optimization problems, and prove that the considered prob-
lem is bidimensional and separable. If we are able to do this, Theorem 1 immediately
implies that the problem admits a linear kernel on all minor-free graph classes, or on
all apex-minor-free graph classes. As an example, the Dominating Set problem has
been shown to have a linear kernel on planar graphs [1], and the proof of this fact is
quite tricky. However, in our examples, we have shown that Dominating Set is a
CMSO-Min problem, that it is contraction-bidimensional, and that it is separable.
Theorem 1 now implies that Dominating Set has a linear kernel not only on planar
graphs, but on all apex-minor-free classes of graphs! One can go through the motions
and use Theorem 1 to give linear kernels for quite a few problems. We refer the reader
to [9] for a non-exhaustive list.

We remark that the results stated here are generalizations of results obtained
by Bodlaender et al. [2]. Theorem 1 is proved by combining “algebraic reduction rules”
(fully developed by Bodlaender et al. [2]) with new graph decomposition theorems
(proved in [9]). The definitions here differ slightly from the definitions in the original
work [9] and appear here in the way they will appear in the journal version of [9].

Cross-References

Bidimensionality
Data Reduction for Domination in Graphs

http://link.springer.com/referenceworkentry/10.1007/978-3-642-27848-8_47-3
http://link.springer.com/referenceworkentry/10.1007/978-0-387-30162-4_99

6

Recommended Reading

1. Alber J, Fellows MR, Niedermeier R (2004) Polynomial-time data reduction for dominating set.
J ACM 51(3):363–384

2. Bodlaender HL, Fomin FV, Lokshtanov D, Penninkx E, Saurabh S, Thilikos DM (2013) (Meta)
Kernelization. CoRR abs/0904.0727, URL http://arxiv.org/abs/0904.0727

3. Borie RB, Parker RG, Tovey CA (1992) Automatic generation of linear-time algorithms from
predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica
7(5&6):555–581

4. Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S
(2015, to appear) Parameterized Algorithms. Springer

5. Demaine ED, Hajiaghayi M (2005) Bidimensionality: new connections between FPT algorithms
and PTASs. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, pp 590–601

6. Demaine ED, Hajiaghayi M (2008) The bidimensionality theory and its algorithmic applications.
Comput J 51(3):292–302

7. Demaine ED, Fomin FV, Hajiaghayi M, Thilikos DM (2005) Subexponential parameterized algo-
rithms on graphs of bounded genus and H-minor-free graphs. J ACM 52(6):866–893

8. Downey RG, Fellows MR (2013) Fundamentals of Parameterized Complexity. Texts in Computer
Science, Springer

9. Fomin FV, Lokshtanov D, Saurabh S, Thilikos DM (2010) Bidimensionality and kernels. In: Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, pp
503–510

10. Fomin FV, Lokshtanov D, Raman V, Saurabh S (2011) Bidimensionality and EPTAS. In: Pro-
ceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, pp
748–759

http://arxiv.org/abs/0904.0727

	Bidimensionality And Kernels

